WorldWideScience

Sample records for darlington nuclear generation

  1. Report on Darlington nuclear generating station

    International Nuclear Information System (INIS)

    1985-12-01

    The Select Committee on Energy was appointed on July 10, 1985 by the Legislative Assembly of the Province of Ontario in order to inquire into and report on Ontario Hydro affairs within ten months. Two sessions were planned the first of which was a review of the Darlington Nuclear Generating Station. Darlington is a large, 4 unit nuclear-powered electricity generating station currently under construction on the shore of Lake Ontario in the town of Newcastle. At the time the Committee met, construction had been underway for over four years. The first two units are scheduled to become operational in 1988 and 1989 with the second two scheduled to become operational in 1991 and 1992. The total estimated cost of the station is $10.895 billion of which $3.66 billion has been spent and $3.385 billion has been committed. Though the nuclear industry has been a major area of investment in Ontario over the past decade, the demand for electrical power from nuclear stations has been significantly decreased. This report focusses on the need for Darlington and public policy issues involved in planning and completing it. The Committee proposed the following recommendations: 1) The relationship between the Government of Ontario and Ontario Hydro and their individual responsibilities should be clarified. 2) An independent review of the Ontario Hydro demand/supply options should be carried out. 3) No further significant contracts for Darlington units 3 and 4 should be let for materials not required for construction during the next 6 months while the Committee studies demand and supply options

  2. AECB staff annual assessment of the Darlington Nuclear Generating Station for the year 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of safety at the Darlington Nuclear Generating Station for 1996. Ontario Hydro operated the station in a safe manner in 1996. All four special safety systems were fully available 100 percent of the time. There were more problems that affected the safety support systems in 1996 than in the previous year

  3. Proposed Darlington generating station

    International Nuclear Information System (INIS)

    1975-05-01

    The proposed Darlington GS A project, consisting of four 850 MW CANDU-type reactors, is described. Construction and operation will cause environmental changes with regard to air, water, aquatic life, the site area, safety and noise, and the predicted changes are described. (E.C.B.)

  4. Environmental assessment, proposed generating station for Darlington

    International Nuclear Information System (INIS)

    1975-04-01

    This document indicates the intention of Ontario Hydro to seek approval from the Provincial Government for its plan to construct and operate a 3400 MWe nuclear generating station at the Darlington site, west of Bowmanville. This preliminary proposal also contains the environmental assessment. The environmental section of this proposal describes and assesses the existing environment and the environmental influences which would occur due to the construction and operation of a nuclear generating station, consisting of four 850 MW units, at the Darlington site. This proposed station is similar to the Bruce GS A station presently under construction. (author)

  5. Phytotoxicology section investigation in the vicinity of the Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the Darlington Nuclear Generating Station, in October, 1989

    International Nuclear Information System (INIS)

    1991-02-01

    The Phytotoxicology Section, Air Resources Branch is a participant in the Pickering and Bruce Nuclear Contingency Plans. The Phytotoxicology Emergency Response Team is responsible for collecting vegetation samples in the event of a nuclear emergency at any of the nuclear generating stations in the province. As part of its responsibility the Phytotoxicology Section collects samples around the nuclear generating stations for comparison purposes in the event of an emergency. Because of the limited frequency of sampling, the data from the surveys are not intended to be used as part of a regulatory monitoring program. These data represent an effort by the MOE to begin to establish a data base of tritium concentrations in vegetation. The Phytotoxicology Section has carried out seven surveys in the vicinity of Ontario Hydro nuclear generating stations since 1981. Surveys were conducted for tritium in snow in the vicinity of Bruce Nuclear Power Development (BNPD), February, 1981; tritium in cell-free water of white ash in the vicinity of BNPD, September, 1981; tritium in snow in the vicinity of BNPD, March, 1982; tritium in tree sap in the vicinity of BNPD, April, 1982; tritium in tree sap in the vicinity of BNPD, April, 1984, tritium in the cell-free water of white ash in the vicinity of BNPD, September, 1985; and, tritium in cell-free water of grass in the vicinity of Pickering Nuclear Generation Station (PNGS), October 1986. In all cases a pattern of decreasing tritium levels with increasing distance from the stations was observed. In October, 1989, assessment surveys were conducted around Bruce Nuclear Power Development, the Pickering Nuclear Generating Station and the new Darlington Nuclear Generating Station (DNGS). The purpose of these surveys was to provide baseline data for tritium in cell-free water of grass at all three locations at the same time of year. As none of the reactor units at DNGS had been brought on line at the time of the survey, this data was to be

  6. GRA/RIAM model development at Darlington Nuclear

    International Nuclear Information System (INIS)

    Plourde, J.; Parmar, R.

    2006-01-01

    In 2004, the Darlington Nuclear (DN) Plant of Ontario Power Generation (OPG) undertook a project, in partnership with Nuclear Safety Solutions (NSS) Limited, to develop Risk-Informed Asset Management (RIAM) and Generation Risk Assessment (GRA) models. The models are intended to optimize plant decision-making. The objective of this paper is to present the scope of the project, the methodology employed, the results and the potential applications. DN has recognized the strategic importance of RIAM in the plant decision-making process and has begun its implementation. The required work was split into three phases. Phase 1 involved industry benchmarking, along with collection and review of the industry literature such as EPRI publications and other relevant papers. Based on the review, a description of the requirements to produce a prototype RIAM model was developed. Phase 2 consisted of the development of prototype RIAM and GRA models. Phase 3, currently underway, consists of the work required to translate the prototype models into an operational decision-making tool. RIAM and GRA are relatively new concepts hence the related methodology and the tools are still evolving. NSS has tailored the available methodology to suit the needs of the DN plant. Draft EPRI guides on GRA/RIAM were used in developing DN specific methodology. The details are provided in the paper. At DN, RIAM is expected to support business decisions by facilitating the assessment of risks associated with projects, programs and business case alternatives. These applications are further discussed in the paper. (author)

  7. Steam generator waterlancing at Darlington NGS (system development and field application)

    International Nuclear Information System (INIS)

    Seppala, D.; Malaugh, J.; Kiisel, E.; Kamler, F.

    1996-01-01

    From the initial steam generator (SG) inspections at Darlington Nuclear Generating Station (DNGS), the authors know that the sludge accumulations on the secondary side tubesheets have been minimal. DNGS is a fairly new station but the experience at the older Ontario Hydro plants have shown that significant accumulations will happen. A pro-active strategy has been adopted for maintaining SGs that will minimize corrosion product accumulation and the potential for component degradation. During the four year planned Unit maintenance outages, SGs will be inspected and waterlanced using a waterlance system designed and built by Babcock and Wilcox International. This automated state-of-the-art system also allows fully recorded inspections of the tubesheet/first half-lattice supports. Some of the key elements covered include results of the initial field application (May, 1995), system development and design, system qualification, cleaning performance, and lessons learned for future outages

  8. Review of Darlington

    International Nuclear Information System (INIS)

    1985-09-01

    This multi-part report outlines the considerations and results of technical, economic and financial analyses, and analyses of the impact on Ontario's economy associated with continuation of Ontario Hydro's Darlington nuclear generation project. In addition, it assesses and compares the effects of partial or complete cancellation of the project. The introduction to follow briefly outlines the main contents of each part of the report

  9. Fire fighting capability assessment program Darlington NGS

    International Nuclear Information System (INIS)

    1995-05-01

    This is a report on the completion of work relating to the assessment of the capability of Darlington NGS to cope with a large fire incident. This included an evaluation of an exercise scenario that would simulate a large fire incident and of their fire plans and procedures which became the subject of interim reports as part of the process of preparing for the fire fighting and rescue exercise. Finally the execution of fire plans by Darlington Nuclear Generating Station (NGS), as demonstrated by their application of human and material resources during a simulated large fire, was observed. 1 tab., 1 fig

  10. MOV predictive maintenance program at Darlington NGS

    International Nuclear Information System (INIS)

    Morrison, J.F.

    1992-01-01

    This paper details the Motor Operated Valve (MOV) Predictive Maintenance program at Darlington Nuclear Generating Station. The program encompasses the use of diagnostics tooling in conjunction with more standard maintenance techniques, with the goal of improving performance of MOV's. Problems encountered and solutions developed during the first two phases of this program are presented, along with proposed actions for the final trending phase of the program. This paper also touches on the preventive and corrective maintenance aspects of an overall MOV maintenance program. 6 refs., 6 tabs., 6 figs

  11. Ontario Power Generation Nuclear: results and opportunities

    International Nuclear Information System (INIS)

    Dermarkar, F.

    2006-01-01

    This paper describes the accomplishments of Ontario Power Generation (OPG) Nuclear and outlines future opportunities. OPG's mandate is to cost effectively produce electricity, while operating in a safe, open and environmentally responsible manner. OPG's nuclear production has been increasing over the past three years - partly from the addition of newly refurbished Pickering A Units 1 and 4, and partly from the increased production from Darlington and Pickering B. OPG will demonstrate its proficiency and capability in nuclear by continuing to enhance the performance and cost effectiveness of its existing operations. Its priorities are to focus on performance excellence, commercial success, openness, accountability and transparency

  12. Darlington annunciation: User information needs, current experience and improvement priorities

    International Nuclear Information System (INIS)

    Long, T.; Davey, E.C.

    1997-01-01

    The Darlington Nuclear Generating Station (DNGS) is located approximately 40 kilometers east of Toronto, Ontario on the coast of Lake Ontario. The station consists of four 935 MW(e) pressurized heavy water CANDU type units with a nominal power output of 850 MW(e) per unit. The station was designed and is operated by Ontario Hydro and provides electricity to meet the commercial, industrial and residential needs for 3 million people. Units 1 and 2 began commercial operation in 1990, followed by Unit 3 in 1991 and Unit 4 in 1992. Since commissioning in 1991, the station has continually achieved annual production of greater than 80% of capacity. At Darlington, as in most other industrial enterprises, the plant annunciation systems play a key role in supporting operations staff in supervising and controlling plant operations to achieve both safety and production objectives. This paper will summarize the information needs of operations staff for annunciation of changing plant conditions, describe the operational experience with current plant annunciation systems, discuss areas for annunciation improvement, and outline some of the initiatives being taken to improve plant annunciation in the future. (author). 8 refs, 2 figs, 1 tab

  13. Darlington Station outage - a maintenance perspective

    Energy Technology Data Exchange (ETDEWEB)

    Plourde, J.; Marczak, J.; Stone, M.; Myers, R.; Sutton, K. [Ontario Hydro, Darlington Nuclear Generating Station, Bowmanville, ON (Canada)

    1997-07-01

    Ontario Hydro's Darlington Nuclear Generating Station (4x881MW(e)net) has carried out its first station outage since full commercial operation. The outage presented challenges to the organization in terms of outage planning, support, management, and safe execution within the constraints of schedule, budget and resources. This paper will focus on the success of the outage maintenance program, identifying the major work programs - a vacuum structure and containment outage, an emergency service water system outage, an emergency coolant injection system outage, intake channel inspections, low pressure service water inspections, and significant outage maintenance work on each of the four reactor units. Planning for the outage was initiated early in anticipation of this important milestone in the station's life. Detailed safety reviews - nuclear, radiation, and conventional - were conducted in support of the planned maintenance program. System lineup and work protection were provided by the Station Operator work group. Work protection permitry was initiated well in advance of the outage. Station maintenance staff resources were bolstered in support of the outage to ensure program execution could be maintained within the schedule. Training programs were in place to ensure that expectations were clear and that high standards would be maintained. Materials management issues in support of maintenance activities were given high priority to ensure no delays to the planned work. Station management review and monitoring in preparation for and during the outage ensured that staff priorities remained focused. Lessons learned from the outage execution are being formalized in maintenance procedures and outage management procedures, and shared with the nuclear community. (author)

  14. Darlington Station outage - a maintenance perspective

    International Nuclear Information System (INIS)

    Plourde, J.; Marczak, J.; Stone, M.; Myers, R.; Sutton, K.

    1997-01-01

    Ontario Hydro's Darlington Nuclear Generating Station (4x881MW(e)net) has carried out its first station outage since full commercial operation. The outage presented challenges to the organization in terms of outage planning, support, management, and safe execution within the constraints of schedule, budget and resources. This paper will focus on the success of the outage maintenance program, identifying the major work programs - a vacuum structure and containment outage, an emergency service water system outage, an emergency coolant injection system outage, intake channel inspections, low pressure service water inspections, and significant outage maintenance work on each of the four reactor units. Planning for the outage was initiated early in anticipation of this important milestone in the station's life. Detailed safety reviews - nuclear, radiation, and conventional - were conducted in support of the planned maintenance program. System lineup and work protection were provided by the Station Operator work group. Work protection permitry was initiated well in advance of the outage. Station maintenance staff resources were bolstered in support of the outage to ensure program execution could be maintained within the schedule. Training programs were in place to ensure that expectations were clear and that high standards would be maintained. Materials management issues in support of maintenance activities were given high priority to ensure no delays to the planned work. Station management review and monitoring in preparation for and during the outage ensured that staff priorities remained focused. Lessons learned from the outage execution are being formalized in maintenance procedures and outage management procedures, and shared with the nuclear community. (author)

  15. Infrared thermography program at Darlington NGD

    International Nuclear Information System (INIS)

    Speer, B.

    1997-01-01

    Infrared thermography is a proven predictive maintenance tool for improving equipment reliability and reducing maintenance costs. It has been identified as one of the maintenance technologies that could contribute to the reduction of OHN forced incapability factor. At Darlington NGD a program has been established by combining OHN and Nuclear Maintenance Applications Center (NMAC) operating experience. This presentation outlines the development and implementation of this program. The main points are: roles and responsibilities, equipment selection, software requirements, manpower level, inspection equipment, training and a cost/benefit review. (author)

  16. Thermal efficiency improvements - an imperative for nuclear generating stations

    International Nuclear Information System (INIS)

    Hassanien, S.; Rouse, S.

    1997-01-01

    A one and a half percent thermal performance improvement of Ontario Hydro's operating nuclear units (Bruce B, Pickering B, and Darlington) means almost 980 GWh are available to the transmission system (assuming an 80% capacity factor). This is equivalent to the energy consumption of 34,000 electrically-heated homes in Ontario, and worth more than $39 million in revenue to Ontario Hydro Nuclear Generation. Improving nuclear plant thermal efficiency improves profitability (more GWh per unit of fuel) and competitiveness (cost of unit energy), and reduces environmental impact (less spent fuel and nuclear waste). Thermal performance will naturally decrease due to the age of the units unless corrective action is taken. Most Ontario Hydro nuclear units are ten to twenty years old. Some common causes for loss of thermal efficiency are: fouling and tube plugging of steam generators, condensers, and heat exchangers; steam leaks in the condenser due to valve wear, steam trap and drain leaks; deposition, pitting, cracking, corrosion, etc., of turbine blades; inadequate feedwater metering resulting from corrosion and deposition. This paper stresses the importance of improving the nuclear units' thermal efficiency. Ontario Hydro Nuclear has demonstrated energy savings results are achievable and affordable. Between 1994 and 1996, Nuclear reduced its energy use and improved thermal efficiency by over 430,000 MWh. Efficiency improvement is not automatic - strategies are needed to be effective. This paper suggests practical strategies to systematically improve thermal efficiency. (author)

  17. Updating of the program for simulation of Darlington shutdown and regulation systems

    International Nuclear Information System (INIS)

    1988-07-01

    This report describes the current status of the developments of a simulation of the Darlington Nuclear Generating Station shutdown and regulating systems, DARSIM done under contract to the Atomic Energy Control Board (AECB). The DARSIM program simulates the spatial neutron dynamics, the regulation of the reactor power, and shutdown system 1 and shutdown system 2 software. The DARSIM program operates in the interactive simulation program environment. DARSIM was installed on the APOLLO computer at the AECB and a version for an IBM-PC was also provided for the exclusive use of the AECB. Shutdown system software was updated to incorporate the latest revisions in the functional specifications. Additional developments have been provided to assist in the use and interpretation of the DARSIM results

  18. Treatment of Arsenazo III contaminated heavy water stored at Darlington

    International Nuclear Information System (INIS)

    Suryanarayan, S.; Husain, A.; Williams, D.

    2010-01-01

    Darlington Nuclear Generating Station (DNGS) has accumulated over 48 drums of chemistry laboratory waste arising from analysis of heavy water (D 2 O). Several organic, including Arsenazo III, and inorganic contaminants present in these drums results in high total organic carbon (TOC) and conductivity. These drums have not been processed due to uncertainties related to clean-up of Arsenazo III contaminated heavy water. This paper provides details of chemical characterization as well as bench scale studies performed to demonstrate the feasibility of treating the downgraded D 2 O to the stringent target specifications of <1 ppm TOC and <0.1mS/m conductivity, required for feed to the Station Upgrading Plant (SUP). Both ionic organic species such as glycolate, acetate and formate as well as neutral organics such as acetone, methanol and ethylene glycol were detected in all the samples. Morpholine and propylene glycol were detected in one sample. Arsenazo III was determined to be not a major contaminant (maximum 8.4 ppm) in these waste drums, compared to the other organic contaminants present. Various unit processes such as pH adjustment, granular activated carbon (GAC), ion exchange resin (IX), UV-peroxide oxidation (UV-H 2 O 2 ) treatments, nanofiltration (NF) as well as reverse osmosis (RO) were tested on a bench scale both singly as well as in various combinations to evaluate their ability to achieve the stringent target conductivity and TOC specifications. Among the various bench scale tests evaluated, the successive processing train used at DNGS and consisting of GAC+IX+UV/H 2 O 2 +IX (polishing) unit operations was found to meet target specifications for both conductivity and TOC. Unit processes comprising (GAC+IX) and (RO-double pass + GAC+IX) met conductivity targets but failed to meet TOC specifications. The results of GAC+IX tests clearly emphasize the importance of using low flow rates for successful reduction in both conductivity as well as TOC. Detailed

  19. Future nuclear power generation

    International Nuclear Information System (INIS)

    Mosbah, D.S.; Nasreddine, M.

    2006-01-01

    The book includes an introduction then it speaks about the options to secure sources of energy, nuclear power option, nuclear plants to generate energy including light-water reactors (LWR), heavy-water reactors (HWR), advanced gas-cooled reactors (AGR), fast breeder reactors (FBR), development in the manufacture of reactors, fuel, uranium in the world, current status of nuclear power generation, economics of nuclear power, nuclear power and the environment and nuclear power in the Arab world. A conclusion at the end of the book suggests the increasing demand for energy in the industrialized countries and in a number of countries that enjoy special and economic growth such as China and India pushes the world to search for different energy sources to insure the urgent need for current and anticipated demand in the near and long-term future in light of pessimistic and optimistic outlook for energy in the future. This means that states do a scientific and objective analysis of the currently available data for the springboard to future plans to secure the energy required to support economy and welfare insurance.

  20. Nuclear power generation device

    International Nuclear Information System (INIS)

    Sugai, Hideto.

    1993-01-01

    In a PWR type reactor, a free piston type stirling engine is disposed instead of a conventional steam generator and a turbine. Since the stirling engine does not cause radiation leakage in view of the structure, safety and reliability of the nuclear power generation are improved. Further, the thermal cycle, if it operates theoretically, is equivalent with a Carnot cycle having the highest thermodynamical heat efficiency, thereby enabling to obtain a high heat efficiency in an actual engine. (N.H.)

  1. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  2. RFSP simulations of Darlington FINCH refuelling transient

    International Nuclear Information System (INIS)

    Carruthers, E.V.; Chow, H.C.

    1997-01-01

    Immediately after refuelling of a channel, the fresh bundles are free of fission products. Xenon-135, the most notable of the saturating fission products, builds up to an equilibrium level in about 30 h. The channel power of the refuelled channel would therefore initially peak and then drop to a steady-state level. The RFSP code can track saturating-fission-product transients and power transients. The Fully INstrumented CHannels (FINCHs) in Darlington NGS provides channel power data on the refuelling power transients. In this paper, such data has been used to identify the physical evidence of the fission-product transient effect on channel power, and to validate RFSP fission-product-driver calculation results. (author)

  3. Steam generator waterlancing at DNGS

    International Nuclear Information System (INIS)

    Seppala, D.; Malaugh, J.

    1995-01-01

    Darlington Nuclear Generating Station (DNGS) is a four 900 MW Unit nuclear station forming part of the Ontario Hydro East System. There are four identical steam generators(SGs) per reactor unit. The Darlington SGs are vertical heat exchangers with an inverted U-tube bundle in a cylindrical shell. The DNGS Nuclear Plant Life Assurance Group , a department of DNGS Engineering Services have taken a Proactive Approach to ensure long term SG integrity. Instead of waiting until the tubesheets are covered by a substantial and established hard deposit; DNGS plan to clean each steam generator's tubesheet, first half lattice tube support assembly and bottom of the thermal plate every four years. The ten year business plan provides for cleaning and inspection to be conducted on all four SGs in each unit during maintenance outages (currently scheduled for every four years)

  4. Universal delivery machine - design of the Bruce and Darlington heads

    International Nuclear Information System (INIS)

    Gray, M.G.; Brown, R.

    2003-01-01

    The Universal Delivery Machine (UDM) was designed and supplied to reduce the time required to perform channel inspection services. The Bruce UDM was the first to be completed followed by Pickering and Darlington. The Bruce and Darlington machines are nearly identical. Design concepts applied include a rotating, multiple tool station magazine, a rigid chain driving telescoping rams, a common drive package, and an external support frame to meet seismic qualification requirements. (author)

  5. Design of the Bruce and Darlington universal delivery machine heads

    International Nuclear Information System (INIS)

    Gray, M.G.; Brown, R.

    2003-01-01

    The Universal Delivery Machine was designed and supplied to reduce the time required to perform channel inspection services. The Bruce UDM was the first to be completed followed by Pickering and Darlington. The Bruce and Darlington machines are nearly identical. Design concepts applied include a rotating, multiple tool station magazine, a rigid chain driving telescoping rams, a common drive package, and an external support frame to meet seismic qualification requirements. (author)

  6. Recent experience related to neutronic transients in Ontario Hydro CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Frescura, G.M.; Smith, A.J.; Lau, J.H.

    1991-01-01

    Ontario Hydro presently operates 18 CANDU reactors in the province of Ontario, Canada. All of these reactors are of the CANDU Pressurized Heavy Water design, although their design features differ somewhat reflecting the evolution that has taken place from 1971 when the first Pickering unit started operation to the present as the Darlington units are being placed in service. Over the last three years, two significant neutronic transients took place at the Pickering Nuclear Generating Station 'A' (NGS A) one of which resulted in a number of fuel failures. Both events provided valuable lessons in the areas of operational safety, fuel performance And accident analysis. The events and the lessons learned are discussed in this paper

  7. Generation 'Next' and nuclear power

    International Nuclear Information System (INIS)

    Sergeev, A.A.

    2001-01-01

    My generation was labeled by Russian mass media as generation 'Next.' My technical education is above average. My current position is as a mechanical engineer in the leading research and development institute for Russian nuclear engineering for peaceful applications. It is noteworthy to point out that many of our developments were really first-of-a-kind in the history of engineering. However, it is difficult to grasp the importance of these accomplishments, especially since the progress of nuclear technologies is at a standstill. Can generation 'Next' be independent in their attitude towards nuclear power or shall we rely on the opinions of elder colleagues in our industry? (authors)

  8. Janaki Ammal, CD Darlington and JBS Haldane: scientific ...

    Indian Academy of Sciences (India)

    Right from the beginning, genetics has been an international venture, with international networks involving the collaboration of scientists across continents. Janaki Ammal's career illustrates this. This paper traces her scientific path by situating it in the context of her relationships with J. B. S. Haldane and C. D. Darlington.

  9. Darlington refurbishment - performance improvement programs goals and experience

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, N. [Ontario Power Generation, Toronto, ON (Canada)

    2015-07-01

    This paper discusses the refurbishment program at the Darlington site. The program focuses on safety, integrity, excellence and personnel. Worker safety and public safety are of the highest priority. Success resulted from collaborative engineering interface, collaborative front end planning, highly competent people and respectful relationship with partners and regulators.

  10. Control valve friction operational experience at Darlington NGD

    International Nuclear Information System (INIS)

    Speer, B.

    1995-01-01

    Proper installation of valve packing is an important part of ensuring that control valves operate as intended. Darlington NGD has developed a Valve Packing Program. This program combined with valve diagnostics has enabled the station to ensure that the operability of control valves is maintained after repacking. This paper outlines the process that is used for this. (author)

  11. Fear of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Higson, D.J. [Paddington, NSW (Australia)

    2014-07-01

    Communicating the benefits of nuclear power generation, although essential, is unlikely to be sufficient by itself to counter the misconceptions which hinder the adoption of this technology, viz: that it is unsafe, generates intractable waste, facilitates the proliferation of nuclear weapons, etc. Underlying most of these objections is the fear of radiation, engendered by misunderstandings of the effects of exposure - not the actual risks of radiation exposure themselves. Unfortunately, some aspects of current radiation protection practices promote the misconception that there is no safe dose. A prime purpose of communications from the nuclear industry should be to dispel these misconceptions. (author)

  12. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1980-08-01

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  13. The Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Dr. David A. Petti

    2009-01-01

    The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950°C) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

  14. Supplementary report: cooling water systems for Darlington G.S

    International Nuclear Information System (INIS)

    1975-08-01

    This report summarizes Ontario Hydro's existing aquatic environmental programs, presents results of these investigations, and outlines plans and activities for expanded aquatic environment studies including the evaluation of alternative cooling systems. This report outlines specific considerations regarding possible alternative cooling arrangements for the Darlington station. It concludes with a recommendation that a study be initiated to examine the potential benefits of using the heated discharge water in a warm water recreational centre. (author)

  15. Adoption of nuclear power generation

    International Nuclear Information System (INIS)

    Sommers, P.

    1980-01-01

    This article develops a model of the innovation-adoption decision. The model allows the economic situation of a utility and its perception of uncertainty associated with an innovation to affect the probability of adopting it. This model is useful when uncertainties affecting decisions about adoption persist throughout the diffusion process, thereby making the usual adoption model implicit in rate-of-diffusion studies inappropriate. An empirical test of the model finds that firm size, power pool size, and selected aspects of uncertainty about the innovation are significant predictors of US utility companies' decisions on whether or not to adopt nuclear power generation. 17 references, 2 tables

  16. Do we really need nuclear generating companies?

    International Nuclear Information System (INIS)

    Biewald, B.

    1990-01-01

    This article examines the potential role of nuclear generating companies (NUGENCO) in providing future power needs. The author feels that electric supply will not be short, nuclear power still has problems, and NUGENCOs would exist largely to get around state regulation. The topics discussed include the adequacy of reserve generating capacity, nuclear plant costs, nuclear plant reliability, abandoned and troubled reactors, NUGENCOs regulatory issues, NUGENCOs radioactive waste issues, the Diablo Canyon settlement, and the Palisades Generating Company

  17. AECB staff annual report of Darlington NGS for the year 1991

    International Nuclear Information System (INIS)

    1992-11-01

    Ontario Hydro operated Darlington in a safe manner in 1991. Ontario Hydro violated the Atomic Energy Control Regulations once and the physical security regulations three times in 1991. They failed to observe the Operating Licence conditions on ten occasions. The AECB did not find that the individual events had a significant impact on safety. There were no violations of the construction licence. None of the station staff received a radiation dose in excess of the regulatory limit. Radioactive emissions from the station were far below the regulatory limit. Special safety system performance was not fully satisfactory. Ontario Hydro failed to meet the unavailability targets for shutdown system one and the negative pressure containment system. Ontario Hydro reported seventeen incidents under conditions of the Operating and Construction licences. Units 1 and 2 remained shut down for most of 1991 because of unexplained fuel bundle damage in the reactor core. Ontario Hydro has decided to replace the main generator rotors because of cracks discovered on the rotor shaft. A fully modified rotor was installed on Unit 1. Ontario Hydro staff have a significant backlog of maintenance work. The Quality Improvement Program seemed to work well, resulting in some noticeable improvements. Three Shift Supervisors and four Control Operators were licensed this year. All planned emergency exercises and drills took place as scheduled. Ontario Hydro identified and are addressing several areas for improvement during the drills. Except for a power supply interruption to some IAEA equipment, Ontario Hydro achieved all its safeguards goals at Darlington in 1991. The Tritium Removal Facility (TRF) operated intermittently during 1991. Ontario Hydro is proceeding with the design and planning of an annex to the TRF to replace the present temporary facilities. (Author)

  18. Dispersion, mixing and intentional ignition of hydrogen in the Darlington reactor vault

    International Nuclear Information System (INIS)

    Lee, J.H.S.; Knystautas, R.

    1989-03-01

    The present report reviews the Darlington Safety Report (DSR) which has been used as basis for decisions regarding intentional ignition in the Darlington reactor vault. The validity of the assumptions in the DSR regarding mixing of contents is assessed and possible hydrogen release scenarios, specific to the Darlington reactor vault, are examined. The combustion analysis in the DSR vent code calculations are reviewed in the light of existing state of the art information on high speed turbulent flames and transition to detonation. Limitations of the vent code, in this context, are identified and improvements recommended

  19. Situation of nuclear power generation in Europe

    International Nuclear Information System (INIS)

    Toukai, Kunihiro

    2003-01-01

    Nuclear power plants began to be built in Europe in the latter half of 1960. 146 plants are operating and generating about 33% of total power in 2002. France is top of Europe and operating 59 plants, which generate about 75% of power generation in the country. Germany is second and 30%. England is third and 30%. However, Germany decided not to build new atomic power plant in 2000. Movement of non-nuclear power generation is decreasing in Belgium and Switzerland. The liberalization of power generation decreased the wholesale price and BE Company in England was financial difficulties. New nuclear power generation is planning in Finland and France. (S.Y.)

  20. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  1. Kenyan Young Generation in Nuclear

    International Nuclear Information System (INIS)

    Chesori, R.

    2017-01-01

    KYGN Educates, informs, promotes and facilitate transfer of knowledge on peaceful, safe and secure uses of nuclear science and technology in Kenya. A network of young scientists and students with special interest in the nuclear science and allied fields. It is an affiliate of the IYNC whose membership is drawn from member states of United Nations

  2. Conscience of Japanese on nuclear power generation

    International Nuclear Information System (INIS)

    Hayashi, Chikio

    1995-01-01

    There are considerably many investigations and researches on the attitude of general public to nuclear power generation, but those which analyzed the contents of attitude or the research which got into the problem of what method is desirable to obtain the understanding of nuclear power generation for power generation side is rarely found. Therefore, the research on where is its cause was begun. As the result, since the attitude to nuclear power generation is related to the attitudes to many things that surround nuclear power generation in addition to that directly to nuclear power generation, it is necessary to elucidate the problem synthetically. The social investigation was carried out for the public of from 18 to 79 years old who live in the supply area of Kansai Electric Power Co., Inc. The data were obtained from those selected by probabilistic sampling, 1000 in urban area (rate of recovery 76%) and 440 in country area (rate of recovery 77%). The way of thinking on making questionnaire is shown. The investigation and the analysis of the obtained data were carried out. What do you recollect as a dangerous matter, the attitude to nuclear power generation, the structure of the conscience to nuclear power generation and its significance, the type classification of people and its features are reported and discussed. (K.I.)

  3. The nuclear industry and the young generation

    International Nuclear Information System (INIS)

    Hanti, A.

    2000-01-01

    The European Nuclear Society was founded in 1975. It is a federation of 25 nuclear societies from 24 countries-stretching from the Atlantic to the Urals and on across Russia to the Pacific. Through Russia's membership in the Pacific Nuclear Council. ENS is directly linked to that area, too. ENS comprises more than 20 000 professionals from industry, power stations, research centers and authorities, working to advance nuclear energy. ENS has three Member Societies in Australia, Israel and Morocco. Also it has collaboration agreements with the American Nuclear Society, the Argentinean Nuclear Energy Association, the Canadian and the Chinese Nuclear Societies. ENS is doing pioneering work with its Young Generation Network, standing for positive measures to recruit and educate young people as engineers, technicians and skilled staff ion the nuclear field: from school to university and in industry. The goals of the YGN are: to promote the establishment of national Young Generation networks; to promote the exchange of knowledge between older and younger generation cross-linked all over Europe; to encourage young people in nuclear technology to provide a resource for the future; to communicate nuclear issues to the public (general public, media, politicians). (N.C.)

  4. The third generation of nuclear power development

    International Nuclear Information System (INIS)

    Townsend, H.D.

    1987-01-01

    Developing nations use the nuclear plant option to satisfy important overall national development objectives, in addition to providing economical electric power. The relative importance of these two objectives changes as the nuclear program develops and the interim milestones are reached. This paper describes the three typical stages of nuclear power development programs. The first and the second generations are development phases with the third generation reaching self sufficiency. Examples are presented of European and Far East countries or regions which have reached of are about to step into the third generation phase of development. The paper concludes that to achieve the objective of a nuclear power self sufficiency, other than merely filling the need of economical electric power, a careful technology transfer plan must be followed which sets realistic and achievable goals and establishes the country as a reliable and technically competent member of the nuclear power industry. (author)

  5. Ergonomics and nuclear power generation

    International Nuclear Information System (INIS)

    Beyers, C.J.; Bogie, K.D.

    1986-01-01

    The design and construction of nuclear power plants are executed to rigorous standards of safety and reliability. Similarly the human interface within the nuclear power plant must meet very high standards, and these must be demonstrated to be maintained and assured through time. The control room, as the operating nerve-centre of the plant, carries a large part of this responsibility. It is the work space dimension within which the operator-instrumentation interface must function as efficiently as possible. This paper provides an overview of how ergonomics has been used as a major tool in reshaping the man-machine interface within the control room in the interest of safety and reliability. Topics covered in the paper include workspace design, control panel layout, demarcation and labelling, switch and meter types, and annunciated and unannunciated alarms

  6. New generation of nuclear reactors

    International Nuclear Information System (INIS)

    Chwaszczewski, S.

    2000-01-01

    The development trends of the construction of nuclear reactors has been performed on the background of worldwide electricity demand for now and predicted for future. The social acceptance, political and economical circumstances has been also taken into account. Seems to Electric Power Research Institute (US) and other national authorities the advanced light water reactors have the best features and chances for further development and commercial applications in future

  7. Nuclear Data Needs for Generation IV Nuclear Energy Systems

    Science.gov (United States)

    Rullhusen, Peter

    2006-04-01

    Nuclear data needs for generation IV systems. Future of nuclear energy and the role of nuclear data / P. Finck. Nuclear data needs for generation IV nuclear energy systems-summary of U.S. workshop / T. A. Taiwo, H. S. Khalil. Nuclear data needs for the assessment of gen. IV systems / G. Rimpault. Nuclear data needs for generation IV-lessons from benchmarks / S. C. van der Marck, A. Hogenbirk, M. C. Duijvestijn. Core design issues of the supercritical water fast reactor / M. Mori ... [et al.]. GFR core neutronics studies at CEA / J. C. Bosq ... [et al]. Comparative study on different phonon frequency spectra of graphite in GCR / Young-Sik Cho ... [et al.]. Innovative fuel types for minor actinides transmutation / D. Haas, A. Fernandez, J. Somers. The importance of nuclear data in modeling and designing generation IV fast reactors / K. D. Weaver. The GIF and Mexico-"everything is possible" / C. Arrenondo Sánchez -- Benmarks, sensitivity calculations, uncertainties. Sensitivity of advanced reactor and fuel cycle performance parameters to nuclear data uncertainties / G. Aliberti ... [et al.]. Sensitivity and uncertainty study for thermal molten salt reactors / A. Biduad ... [et al.]. Integral reactor physics benchmarks- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) and the International Reactor Physics Experiment Evaluation Project (IRPHEP) / J. B. Briggs, D. W. Nigg, E. Sartori. Computer model of an error propagation through micro-campaign of fast neutron gas cooled nuclear reactor / E. Ivanov. Combining differential and integral experiments on [symbol] for reducing uncertainties in nuclear data applications / T. Kawano ... [et al.]. Sensitivity of activation cross sections of the Hafnium, Tanatalum and Tungsten stable isotopes to nuclear reaction mechanisms / V. Avrigeanu ... [et al.]. Generating covariance data with nuclear models / A. J. Koning. Sensitivity of Candu-SCWR reactors physics calculations to nuclear data files / K. S

  8. Darlington NGD fuel handling head eight acceptance program

    International Nuclear Information System (INIS)

    Skelton, P.H.; Sie, T.

    1996-01-01

    Darlington NGD requires eight fuelling machine heads to fuel the four 932 MW reactors. Six heads are used on the three fuelling machine trolleys for normal fuelling operations. A further two heads are required to allow for maintenance and to provide for such reactor face activities as PIPE and CIGAR. Seven heads were successfully delivered to site from the head supplier. During acceptance testing, stalls on the charge tube screw assembly of the eighth and final head prevented its delivery to site. Replacement of the charge tube screw with a spare screw did not alleviate the problem. An in depth series of tests were undertaken at site, at the supplier and at the screw sub-supplier to determine the root cause of the problem. These tests included taking torque measurements under different operating conditions and using different components to assess the effects of the changes on torque levels. An assessment of the effects of changing chemical conditions (particularly crud levels) was also made. To ensure that the results of the testing were well understood, additional torque testing was also completed on a head and screw assembly at site that was known to work well. Based on all of the above series of tests, a recommendation was made to re-machine the charge tube screw(s). The original charge tube screw from Head eight was subsequently returned to the sub-supplier for re-work. Follow-up torque measurements and acceptance testing showed that the screw rework was effective and that Head eight could be successfully delivered to site. This paper focuses on the results of the head/screw test program. Results of the acceptance testing are also discussed. (author). 2 refs., 4 figs

  9. The Birth of Nuclear-Generated Electricity

    Science.gov (United States)

    1999-09-01

    The Experimental Breeder Reactor-I (EBR-I), built in Idaho in 1949, generated the first usable electricity from nuclear power on December 20, 1951. More importantly, the reactor was used to prove that it was possible to create more nuclear fuel in the reactor than it consumed during operation -- fuel breeding. The EBR-I facility is now a National Historic Landmark open to the public.

  10. Generation IV nuclear plant design strategies

    International Nuclear Information System (INIS)

    Altin, V.

    2007-01-01

    In this presentation Generation IV nuclear reactor design criteria are examined under the light of known nuclear properties of fissile and fertile nuclei. Their conflicting nature is elucidated along with the resulting inevitability of a multitude of designs. The designs selected as candidates for further development are evaluated with respect to their potential to serve the different design criteria, thereby revealing their more difficult aspects of realization and the strong research challenges lying ahead

  11. French nuclear power plants for heat generation

    International Nuclear Information System (INIS)

    Girard, Y.

    1984-01-01

    The considerable importance that France attributes to nuclear energy is well known even though as a result of the economic crisis and the energy savings it is possible to observe a certain downward trend in the rate at which new power plants are being started up. In July 1983, a symbolic turning-point was reached - at more than 10 thousand million kW.h nuclear power accounted, for the first time, for more than 50% of the total amount of electricity generated, or approx. 80% of the total electricity output of thermal origin. On the other hand, the direct contribution - excluding the use of electricity - of nuclear energy to the heat market in France remains virtually nil. The first part of this paper discusses the prospects and realities of the application, at low and intermediate temperatures, of nuclear heat in France, while the second part describes the French nuclear projects best suited to the heat market (excluding high temperatures). (author)

  12. Iran's nuclear program - for power generation or nuclear weapons?

    International Nuclear Information System (INIS)

    Kippe, Halvor

    2008-11-01

    would withdraw from the Nuclear Non-proliferation Treaty (NPT), has generated enough concern among several of the dominant nations in the world, that they have gone to great lengths to try to dissuade Tehran from the continued pursuit of its in principle legal nuclear activities. As this report is issued, Iran still has some way ahead before its infrastructure can readily provide it with nuclear weapons on demand. But Iran seems almost to have overcome the presumably highest technological threshold, namely full-scale uranium enrichment. Today's infrastructure is far from sufficiently developed to be able to fully support Iran's planned nuclear power developments, but on the other hand the need for indigenously produced nuclear fuel is also several years ahead, as long as Iran's first self-constructed nuclear power plant is far from completion. The known and assumed uranium deposits, however, are of minute proportions compared to the stated ambitions of their nuclear power programme (20 GWe within 2030). Iran's future reactors will hardly be able to go online before they become dependent on fuel from abroad. The uranium deposits are, on the other hand, abundant for the future production of several thousands of nuclear weapons. And if the infrastructure that is arising today is actually directed towards that purpose, Iran will in theory some day be able to produce more than a hundred nuclear weapons a year. (Author)

  13. New steam generators slated for nuclear units

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is a brief discussion of Duke Power's plans to replace steam generators at its McGuire and Catawba nuclear units. A letter of intent to purchase (from Babcock and Wilcox) the 12 Westinghouse steam generators has been signed, but no constructor has been selected at this time. This action is brought about by the failures of more than 3000 tubes in these units

  14. Development of generation IV nuclear energy systems

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Oka, Yoshiaki; Ogawa, Masuro; Ichimiya, Masakazu; Noda, Hiroshi

    2003-01-01

    The fifth 'Generation IV International Forum (GIF), Policy Group Meetings' was held at the Zen-Nikku Hotel in Tokyo, on September 19-20, 2002, under participations of Abraham, Secretary of DOE in U.S.A., Columbani, Secretary of CEA in France, Fujiie, Chairman of CAE in Japan, Kano, Parliamental Minister of MIS in Japan, and so on. Ten nations entering GIF (Argentina, Brazil, Canada, France, Japan, Korea, South Africa, Switzerland, U.K., and U.S.A.) selected six next generation nuclear energy concepts for objects of international cooperative research and development aiming at its practice by 2030. These concepts applicable to not only power generation, but also hydrogen production, sea water purification, and so on, are sodium liquid metal cooled reactor (Japan), high temperature gas cooled reactor (France), Super-critical pressure water cooled reactor (SCWR: Canada), Lead metal cooled reactor (Switzerland), Gas cooled fast reactor (U.S.A.), and molten salts reactor. On the generation IV nuclear reactor systems aiming to further upgrade their sustainability, safety, economical efficiency, and nuclear non proliferation, the 'Plans on Technical Development' (Road-map) to decide priority of their R and Ds has been cooperatively discussed under frameworks of international research cooperation by the GIF members nations. Here were shared descriptions on nuclear fuel cycle as a remise of technical evaluation and adopted concepts by Japanese participants contributing to making up the Road-map. (G.K.)

  15. Designing steam generators for nuclear power plants

    International Nuclear Information System (INIS)

    Hanak, D.

    1989-01-01

    The existing types, their performance, assets and shortcomings are given for vertical steam generators manufactured by Combustion Engineering and by Westinghouse, for through-flow steam generators with slight overheating of the withdrawn steam manufactured by Babcock, and for horizontally positioned WWER-440 and WWER-1000 steam generators. The steam generator for the WWER-1000 reactors of the Temelin nuclear power plant is dealt with in detail. Its design and structural materials used are given. The procedure for strength calculations of the pressure parts of the steam generator by the finite elements method, the in-service diagnostics system as well as the device for simulating corrosion phenomena in steam generators are described. (E.J.). 6 figs., 26 refs

  16. Janaki Ammal, C. D. Darlington and J. B. S. Haldane: scientific ...

    Indian Academy of Sciences (India)

    VINITA DAMODARAN

    2017-11-24

    Nov 24, 2017 ... policies. Forward thinking scientists including Haldane,. Penrose, Huxley with the notable exception of Darlington used modern evolutionary biology and genetics to combat racism. This group clearly included Janaki Ammal as is clear from her published work and correspondence. Dar- lington unfortunately ...

  17. The different generation of nuclear reactors from Generation-1 to Generation-4

    International Nuclear Information System (INIS)

    Cognet, G.

    2010-01-01

    In this work author deals with the history of the development of nuclear reactors from Generation-1 to Generation-4. The fuel cycle and radioactive waste management as well as major accidents are presented, too.

  18. CO2 emissions of nuclear electricity generation

    International Nuclear Information System (INIS)

    Wissel, Steffen; Mayer-Spohn, Oliver; Fahl, Ulrich; Blesl, Markus; Voss, Alfred

    2008-01-01

    A survey of LCA studies on nuclear electricity generation revealed life cycle CO 2 emissions ranging between 3 g/kWhe to 60 g/kWhe and above. Firstly, this paper points out the discrepancies in studies by estimating the CO 2 emissions of nuclear power generation. Secondly, the paper sets out to provide critical review of future developments of the fuel cycle for light water reactors and illustrates the impact of uncertainties on the specific CO 2 emissions of nuclear electricity generation. Each step in the fuel cycle will be considered and with regard to the CO 2 emissions analysed. Thereby different assumptions and uncertainty levels are determined for the nuclear fuel cycle. With the impacts of low uranium ore grades for mining and milling as well as higher burn-up rates future fuel characteristics are considered. Sensitivity analyses are performed for all fuel processing steps, for different technical specifications of light water reactors as well as for further external frame conditions. (authors)

  19. On risk of nuclear power generation

    International Nuclear Information System (INIS)

    Suguri, Susumu

    1995-01-01

    When energy consumption becomes high and industrial activities become active, the risk of the death due to traffic accidents and work place accidents becomes high. On the other hand, if energy consumption is very low, and industrial activities are not active, there is the demerit or risk that human life becomes short as the result. In this study, on the viewpoint of the effects that poverty, electric power generation, nuclear reactor accidents, various disasters and spreading diseases exert to human life, the risks were determined quantitatively, and the risk of nuclear power generation was investigated by comparing it with other risks. When the relation of the energy consumption per one person with human life was investigated in various countries, there was considerably good correlation. In order to clarify the factors that exert influence to average life, the survival number curves of now and in the past were discussed on their change. The effects on average human life of poverty, the atmospheric contamination caused by power stations, the serious accidents in nuclear power stations such as that in Chernobyl, unexpected disasters such as Great Hanshin Earthquake and spreading diseases are reported. The comparison of the risk of nuclear power generation with other risks is shown. (K.I.)

  20. Revalidation program for nuclear standby diesel generators

    International Nuclear Information System (INIS)

    Muschick, R.P.

    1985-01-01

    This paper describes the program which Duke Power Company carried out to revalidate the diesel engines used in diesel generators for nuclear standby service at Unit 1 of the Catawba Nuclear Station. The diesels operated satisfactorily during the tests, and only relatively minor conditions were noted during the test and inspections, with one exception. This exception was that cracks were detected in the piston skirts. The piston skirts have been replaced with improved design skirts. The diesels have been fully revalidated for their intended service, and have been declared operable

  1. Microstructural Characterization of Next Generation Nuclear Graphites

    Energy Technology Data Exchange (ETDEWEB)

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  2. Chances for nuclear district heat generation

    International Nuclear Information System (INIS)

    Winkens, H.P.

    1986-01-01

    Nuclear power plants in the FRG or other European countries so far have not been intended for heat generation, as for reasons of safety they have to be sited too far away from urban agglomerations to make heat transport competible. In addition, heat generation costs of fossil-fueled power plants have not been so much higher than those of nuclear power stations that the extra cost for heat transport over large distances could have been justified. This situation is expected to gradually change over the next decade, as the heat from fossil-fueled power stations will become more expensive, as a result of this heat capacity being more and more used for medium-load and peak-load supply only, and with more efficient heat distribution systems becoming available in the near future. (orig.) [de

  3. Nuclear data banks generation by interpolation

    International Nuclear Information System (INIS)

    Castillo M, J. A.

    1999-01-01

    Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, use to generate Nuclear Data Banks employing bicubic polynominal interpolation, taking as independent variables the uranium and gadolinia percents. Two proposal were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed, to obtain the interpolating polynomial and later, the corresponding linear equation systems. In the solution of this systems the Gaussian elimination methods with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validation tests, a comparison was made between the values obtained with INTPOLBI and INTERTEG (create at the Instituto de Investigaciones Electricas (MX) with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks

  4. Generation of nuclear data banks through interpolation

    International Nuclear Information System (INIS)

    Castillo M, J.A.

    1999-01-01

    Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, used to generate Nuclear Data Banks employing bi cubic polynomial interpolation, taking as independent variables the uranium and gadolinium percents. Two proposals were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed to obtain the interpolating polynomial and later, the corresponding linear equations system. In the solution of this system the Gaussian elimination method with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validations test, a comparison was made between the values obtained with INTPOLBI and INTERTEG (created at the Instituto de Investigaciones Electricas with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks. (Author)

  5. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Beckmann, N.X.

    1986-01-01

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  6. Safety assessment for Generation IV nuclear systems

    International Nuclear Information System (INIS)

    Leahy, T.J.

    2012-01-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Recent RSWG work has focused on the definition of an integrated safety assessment methodology (ISAM) for evaluating the safety of Generation IV systems. ISAM is an integrated 'tool-kit' consisting of 5 analytical techniques that are available and matched to appropriate stages of Generation IV system concept development: 1) qualitative safety features review - QSR, 2) phenomena identification and ranking table - PIRT, 3) objective provision tree - OPT, 4) deterministic and phenomenological analyses - DPA, and 5) probabilistic safety analysis - PSA. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time

  7. 78 FR 39018 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3

    Science.gov (United States)

    2013-06-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3 AGENCY: Nuclear Regulatory Commission. ACTION: Supplement to Final Supplement 38 to the Generic Environmental...

  8. Next generation advanced nuclear reactor designs

    International Nuclear Information System (INIS)

    Turgut, M. H.

    2009-01-01

    Growing energy demand by technological developments and the increase of the world population and gradually diminishing energy resources made nuclear power an indispensable option. The renewable energy sources like solar, wind and geothermal may be suited to meet some local needs. Environment friendly nuclear energy which is a suitable solution to large scale demands tends to develop highly economical, advanced next generation reactors by incorporating technological developments and years of operating experience. The enhancement of safety and reliability, facilitation of maintainability, impeccable compatibility with the environment are the goals of the new generation reactors. The protection of the investment and property is considered as well as the protection of the environment and mankind. They became economically attractive compared to fossil-fired units by the use of standard designs, replacing some active systems by passive, reducing construction time and increasing the operation lifetime. The evolutionary designs were introduced at first by ameliorating the conventional plants, than revolutionary systems which are denoted as generation IV were verged to meet future needs. The investigations on the advanced, proliferation resistant fuel cycle technologies were initiated to minimize the radioactive waste burden by using new generation fast reactors and ADS transmuters.

  9. Total generating costs: coal and nuclear plants

    International Nuclear Information System (INIS)

    1979-02-01

    The study was confined to single and multi-unit coal- and nuclear-fueled electric-generating stations. The stations are composed of 1200-MWe PWRs; 1200-MWe BWRs; 800-and 1200-MWe High-Sulfur Coal units, and 800- and 1200-MWe Low-Sulfur Coal units. The total generating cost estimates were developed for commercial operation dates of 1985 and 1990; for 5 and 8% escalation rates, for 10 and 12% discount rates; and, for capacity factors of 50, 60, 70, and 80%. The report describes the methodology for obtaining annualized capital costs, levelized coal and nuclear fuel costs, levelized operation and maintenance costs, and the resulting total generating costs for each type of station. The costs are applicable to a hypothetical Middletwon site in the Northeastern United States. Plant descriptions with general design parameters are included. The report also reprints for convenience, summaries of capital cost by account type developed in the previous commercial electric-power cost studies. Appropriate references are given for additional detailed information. Sufficient detail is given to allow the reader to develop total generating costs for other cases or conditions

  10. Nuclear power generation and fuel cycle report 1996

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included

  11. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  12. Materials for generation-IV nuclear reactors

    International Nuclear Information System (INIS)

    Alvarez, M. G.

    2009-01-01

    Materials science and materials development are key issues for the implementation of innovative reactor systems such as those defined in the framework of the Generation IV. Six systems have been selected for Generation IV consideration: gas-cooled fast reactor, lead-cooled fast reactor, molten salt-cooled reactor, sodium-cooled fast reactor, supercritical water-cooled reactor, and very high temperature reactor. The structural materials need to resist much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. For this reason, the first consideration in the development of Generation-IV concepts is selection and deployment of materials that operate successfully in the aggressive operating environments expected in the Gen-IV concepts. This paper summarizes the Gen-IV operating environments and describes the various candidate materials under consideration for use in different structural applications. (author)

  13. Creep in generation IV nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Rissanen, L. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2010-05-15

    Nuclear power has an important role in fulfilling the world's growing energy needs and reducing the carbon dioxide emission. Six new, innovative nuclear energy systems have been identified and selected for further development by the international Generation Four International Forum (GIF). These generation four (Gen IV) nuclear energy systems include a variety of reactor, energy conversion and fuel cycle technologies. The successful development and deployment of these largely depend on the performance and reliability of the available structural materials. These potential materials need to sustain their mechanical properties up to high temperatures, high neutron doses and corrosive environments of the new or enhanced types of coolants. Current knowledge on material properties, material-coolant interaction and especially material degradation processes in these new environments are limited. This paper gives an overview of the Gen IV material issues with special emphasis on European design of supercritical light water reactor concept high performance light water reactor (HPLWR). The challenges for the structural materials and the components most likely to suffer from creep and creep-irradiation are highlighted. Some results from relatively short term creep testing in supercritical water are presented for AISI 316NG, 347H and 1.4970 steels. The 1.4970 steel was superior in creep and oxidation resistance (orig.)

  14. Operating performance of LWR nuclear generating units

    International Nuclear Information System (INIS)

    Pia, S.

    1984-01-01

    This work aims at reviewing, on the basis of historical data, the operational problem areas which explain the degree of availability and productivity achieved up to now by nuclear power plants in commercial operation in the world. The operating performance data of nuclear power plants area analysed with respect to plant type, size and other significant reference parameters and they are evaluated also by comparison with fossil generating unit data. Major performance indices data are presented for both nuclear and fossil units type and distribution of outage causes. Unplanned full outages caused by nuclear power plant equipment and components failure are particulary emphasized. The trend for unplanned full outages due to the failure of components shows decreasing numerical values in 1981 with respect to the previous years. But this result should be weighed with the increasing plant unavailability hours needed for maintenance and repair action (chiefly preventive maintenance on critical components). This means that the number and downtime of forced outage must be drastically reduced for economic reasons (production losses and problems associated with the unavailable unit unplanned replacement) as well as for plant safe and reliable operation (sudden unavailability of key components and frequency of transients associated with plant shutdown and routine startup operation)

  15. Nuclear power generation and fuel cycle report 1997

    International Nuclear Information System (INIS)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East

  16. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  17. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  18. Limerick Nuclear Generating Station vibration monitoring system

    International Nuclear Information System (INIS)

    Mikulski, R.

    1988-01-01

    Philadelphia Electric Company utilizes a vibration monitoring computer system at its Limerick Nuclear Generating Station to evaluate machine performance. Performance can be evaluated through instantaneous sampling, online static and transient data. The system functions as an alarm monitor, displaying timely alarm data to the control area. The passage of time since the system's inception has been a learning period. Evaluation through continuous use has led to many enhancements in alarm handling and in the acquisition and display of machine data. Due to the system's sophistication, a routine maintenance program is a necessity. This paper describes the system's diagnostic tools and current utilization. System development and maintenance techniques will also be discussed

  19. Fate of Gases generated from Nuclear Wastes

    International Nuclear Information System (INIS)

    Srinivasulu, M.; Francis, A. J.; Francis, A. J.

    2013-01-01

    The backfill materials such as cement, bentonite or crushed rock are used as engineered barriers against groundwater infiltration and radionuclide transport. Gas generation from radioactive wastes is attributed to radiolysis, corrosion of metals, and degradation of organic materials. Corrosion of steel drums and biodegradation of organic materials in L/ILW can generate gas which causes pressure build up and has the potential to compromise the integrity of waste containers and release the radionuclides and other contaminants into the environment. Performance assessment therefore requires a detailed understanding of the source and fate of gas generation and transport within the disposal system. Here we review the sources and fate of various type of gases generated from nuclear wastes and repositories. Studies on modeling of the fate and transport of repository gases primarily deal with hydrogen and CO 2 . Although hydrogen and carbon dioxide are the major gases of concern, microbial transformations of these gases in the subterranean environments could be significant. Metabolism of hydrogen along with the carbon dioxide results in the formation of methane, low molecular weight organic compounds and cell biomass and thus could affect the total inventory in a repository environment. Modeling studies should take into consideration of both the gas generation and consumption processes over the long-term

  20. 77 FR 40091 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3

    Science.gov (United States)

    2012-07-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating, Units 2 and 3 AGENCY: Nuclear... statement for license renewal of nuclear plants; availability. SUMMARY: The U.S. Nuclear Regulatory...

  1. Nuclear power generation and global heating

    International Nuclear Information System (INIS)

    Taboada, Horacio

    1999-01-01

    The Professionals Association and Nuclear Activity of National Atomic Energy Commission (CNEA) are following with great interest the worldwide discussions on global heating and the role that nuclear power is going to play. The Association has an active presence, as part of the WONUC (recognized by the United Nations as a Non-Governmental Organization) in the COP4, which was held in Buenos Aires in November 1998. The environmental problems are closely related to human development, the way of power production, the techniques for industrial production and exploitation fields. CO 2 is the most important gas with hothouse effects, responsible of progressive climatic changes, as floods, desertification, increase of average global temperature, thermal expansion in seas and even polar casks melting and ice falls. The consequences that global heating will have on the life and economy of human society cannot be sufficiently emphasized, great economical impact, destruction of ecosystems, loss of great coast areas and complete disappearance of islands owing to water level rise. The increase of power retained in the atmosphere generates more violent hurricanes and storms. In this work, the topics presented in the former AATN Meeting is analyzed in detail and different technological options and perspectives to mitigate CO 2 emission, as well as economical-financial aspects, are explored. (author)

  2. Safety improvement technologies for nuclear power generation

    International Nuclear Information System (INIS)

    Nishida, Koji; Adachi, Hirokazu; Kinoshita, Hirofumi; Takeshi, Noriaki; Yoshikawa, Kazuhiro; Itou, Kanta; Kurihara, Takao; Hino, Tetsushi

    2015-01-01

    As the Hitachi Group's efforts in nuclear power generation, this paper explains the safety improvement technologies that are currently under development or promotion. As efforts for the decommissioning of Fukushima Daiichi Nuclear Power Station, the following items have been developed. (1) As for the spent fuel removal of Unit 4, the following items have mainly been conducted: removal of the debris piled up on the top surface of existing reactor building (R/B), removal of the debris deposited in spent fuel pool (SFP), and fuel transfer operation by means of remote underwater work. The removal of all spent fuels was completed in 2014. (2) The survey robots inside R/B, which are composed of a basement survey robot to check leaking spots at upper pressure suppression chamber and a floor running robot to check leaking spots in water, were verified with a field demonstration test at Unit 1. These robots were able to find the leaking spots at midair pipe expansion joint. (3) As the survey robot for reactor containment shells, robots of I-letter posture and horizontal U-letter posture were developed, and the survey on the upper part of first-floor grating inside the containment shells was performed. (4) As the facilities for contaminated water measures, sub-drain purification equipment, Advanced Liquid Processing System, etc. were developed and supplied, which are now showing good performance. On the other hand, an advanced boiling water reactor with high safety of the United Kingdom (UK ABWR) is under procedure of approval for introduction. In addition, a next-generation light-water reactor of transuranic element combustion type is under development. (A.O.)

  3. Equipment transporter for nuclear steam generator

    International Nuclear Information System (INIS)

    Hayes, L.R.

    1987-01-01

    A transporter is described for use in a steam generator of a nuclear power installation. The generator is essentially a heat exchanger having a vertically extended shell. Across the lower portion extends a horizontal tube sheet having an upper surface which supports a bundle of vertically extending tubes forming a limited annular space with the inside of the shell wall and the upper surface. An opening of limited dimensions through the shell wall gains manual access to the limited annular space. The transporter has means for locating and removing solid debris from the upper surface of the tube sheet in the annular space and has a means for assembly and disassembly of the transporter so that it may be manually passed through the shell opening to and from a position on the upper surface of the tube sheet in the annular space. The transporter includes: a body; at least three wheels mounted on the body for engaging the upper surface of the tube sheet; a first motor mounted on the body drivingly connected to the wheels for moving the transporter along the upper surface of the tube sheet in the annular space; a remotely operated means on the body for locating solid debris on the upper surface of the tube sheet; and means for securing and removing solid debris on the upper surface of the tube sheet located by the means for locating

  4. Power generation from nuclear reactors in aerospace applications

    International Nuclear Information System (INIS)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion

  5. Power generation from nuclear reactors in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  6. Nuclear Knowledge Management Programmes for Young Generations

    International Nuclear Information System (INIS)

    De Grosbois, John

    2017-01-01

    The Future of Nuclear Energy: Today’s Challenges - •Climate change •Investment in renewables •Societal acceptance of nuclear energy •Nuclear R&D declining •Aging reactor fleets •Phase-outs •Pace of new builds •Future uncertainties. Future Opportunities - •Shift to smart energy grids •Carbon tax and “cap and trade” systems •Possible need for new nuclear energy solutions: –high temperature reactors –hybrids → steam reforming –smaller plants needed –minimized nuclear waste –inherently safe designs. Supporting TC’s “Strategic Capacity Building Approach” (SCBA) by Strengthening Sustainable National Nuclear Education Systems: Knowledge sharing & eLearning platforms (e.g. CLP4NET) and supporting tools → Regional Nuclear Education Networks; → National Nuclear Education Networks; → Stakeholder Networking for Human Resource and Knowledge Development

  7. High-gain AlGaAs/GaAs double heterojunction Darlington phototransistors for optical neural networks

    Science.gov (United States)

    Kim, Jae H. (Inventor); Lin, Steven H. (Inventor)

    1991-01-01

    High-gain MOCVD-grown (metal-organic chemical vapor deposition) AlGaAs/GaAs/AlGaAs n-p-n double heterojunction bipolar transistors (DHBTs) and Darlington phototransistor pairs are provided for use in optical neural networks and other optoelectronic integrated circuit applications. The reduced base doping level used results in effective blockage of Zn out-diffusion, enabling a current gain of 500, higher than most previously reported values for Zn-diffused-base DHBTs. Darlington phototransitor pairs of this material can achieve a current gain of over 6000, which satisfies the gain requirement for optical neural network designs, which advantageously may employ neurons comprising the Darlington phototransistor pairs in series with a light source.

  8. Nuclear Knowledge to the Next Generation

    International Nuclear Information System (INIS)

    Mazour, Thomas; Kossilov, Andrei

    2004-01-01

    The safe, reliable, and cost-effective operation of Nuclear Power Plants (NPPs) requires that personnel possess and maintain the requisite knowledge, skills, and attitudes to do their jobs properly. Such knowledge includes not only the technical competencies required by the nature of the technology and particular engineering designs, but also the softer competencies associated with effective management, communication and teamwork. Recent studies have shown that there has been a loss of corporate knowledge and memory. Both explicit knowledge and tacit knowledge must be passed on to the next generation of workers in the industry to ensure a quality workforce. New and different techniques may be required to ensure timely and effective knowledge retention and transfer. The IAEA prepared a report on this subject. The main conclusions from the report regarding strategies for managing the aging workforce are included. Also included are main conclusions from the report regarding the capture an d preservation of mission critical knowledge, and the effective transfer of this knowledge to the next generation of NPP personnel. The nuclear industry due to its need for well-documented procedures, specifications, design basis, safety analyses, etc., has a greater fraction of its mission critical knowledge as explicit knowledge than do many other industries. This facilitates the task of knowledge transfer. For older plants in particular, there may be a need for additional efforts to transfer tacit knowledge to explicit knowledge to support major strategic initiatives such as plant license extensions/renewals, periodic safety reviews, major plant upgrades, and plant specific control room simulator development. The challenge in disseminating explicit knowledge is to make employees aware that it is available and provide easy access in formats and forms that are usable. Tacit knowledge is more difficult to identify and disseminate. The challenge is to identify what can be converted to

  9. 75 FR 9956 - PSEG Nuclear LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1...

    Science.gov (United States)

    2010-03-04

    ... COMMISSION PSEG Nuclear LLC, Hope Creek Generating Station and Salem Nuclear Generating Station, Unit Nos. 1... Station, Unit Nos. 1 and 2 (Salem), and Hope Creek Generating Station (HCGS). The licenses provide, among... life or property or the common defense and security, and are otherwise in the public interest. NRC...

  10. Next Generation Nuclear Plant GAP Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Sydney J [ORNL; Burchell, Timothy D [ORNL; Corwin, William R [ORNL; Fisher, Stephen Eugene [ORNL; Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Morris, Robert Noel [ORNL; Moses, David Lewis [ORNL

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  11. Lawsuits concerning nuclear power generation in FRG

    International Nuclear Information System (INIS)

    Saito, Osamu

    1980-01-01

    The confirmation of the courts of justice is required for the permission of power stations. This proposition is not in the laws in FRG, but in view of the recent judicatory regulation, it seems to be the norm established experimentally. From the character of German nation, more than 40 specialists and the committees independent of administration take part in the procedure of administrative permission, but considering the temporary procedure, the processes of five classes of courts join in these. Based on the background of such situation, the author outlined the traditional practice in the legislation and administration in the field of nuclear power generation, then investigated into the decisions of Freiburg and Wuerzburg courts of administrative litigation in 1977 and the decision of the federal constitutional court in 1978. Confronting the same technology of light water reactors, the Freiburg court said that the device protecting from the burst of a pressure vessel is necessary, but the Wuerzburg court did not demand it. The confrontations similar to it were seen in the requirements for the utilization of radioactive substances and the final storage of them. The recent decision of the federal constitutional court is concerned with FBRs, and the court discussed the problem of ''residual risks''. The studies on the German decisions are useful for Japan. (Kako, I.)

  12. A progress review of Ontario Hydro's nuclear generation and heavy water production programs

    International Nuclear Information System (INIS)

    Kee, F.J.; Woodhead, L.W.

    Performance and economics of CANDU reactors in service are described. Progress of commissioning, construction and planning of reactors at Pickering, Bruce, and Darlington is outlined. Heavy water production is reviewed. (E.C.B.)

  13. Optimization in the scale of nuclear power generation and the economy of nuclear power

    International Nuclear Information System (INIS)

    Suzuki, Toshiharu

    1983-01-01

    In the not too distant future, the economy of nuclear power will have to be restudied. Various conditions and circumstances supporting this economy of nuclear power tend to change, such as the decrease in power demand and supply, the diversification in base load supply sources, etc. The fragility in the economic advantage of nuclear power may thus be revealed. In the above connection, on the basis of the future outlook of the scale of nuclear power generation, that is, the further reduction of the current nuclear power program, and of the corresponding supply and demand of nuclear fuel cycle quantities, the aspect of the economic advantage of nuclear power was examined, for the purpose of optimizing the future scale of nuclear power generation (the downward revision of the scale, the establishment of the schedule of nuclear fuel cycle the stagnation of power demand and nuclear power generation costs). (Mori, K.)

  14. World nuclear power generation market and prospects of industry reorganization

    International Nuclear Information System (INIS)

    Murakami, Tomoko

    2007-01-01

    In late years there are many trends placing nuclear energy with important energy in various countries in the world due to a remarkable rise to an energy price, importance of energy security and a surge of recognition to a global environment problem. Overseas nuclear industry's acquisition by a Japanese nuclear power plant maker and its capital or business tie-up with an overseas company, were announced in succession in 2006. A nuclear power plant maker has played an extremely important role supporting wide technology in all stages of a design, construction, operation and maintenance in a nuclear power generation business. After having surveyed the recent trend of world nuclear power generation situation, a background and the summary of these acquisition/tie-ups made were investigated and analyzed to consider the influence that movement of such an industry gives a world nuclear power generation market. (T. Tanaka)

  15. Promotion of public awareness relating nuclear power in young generation

    International Nuclear Information System (INIS)

    Kobayashi, Yoko

    2011-01-01

    Although nuclear power presents problems of waste, safety and non-proliferation, many people understand that it is an essential energy for addressing the global climate and reducing CO2. However, a vague negative-image to the radiation and nuclear power is deep-rooted among the public. Young generation is not an exception. It is very important to transfer many information from the experienced generation in the industry to young generations. In this paper, the research that applied the information intelligence to nuclear power, which involves of the nuclear fuel cycle, and the communication related activities for the social acceptance and improvement. (author)

  16. Global movement in reviewing nuclear power generation

    International Nuclear Information System (INIS)

    Kimura, Yoshiyasu

    2007-01-01

    The price of crude oil, natural gas and coal has increased since 2004 with the rapid increase of primary energy demand in China, India and other developing countries. Moreover due to the political uncertainty in the Middle East, and the state control of energy resources in countries like Russia, the issue of energy security has become a critical issue. Nuclear power has been reconsidered in recent years in the US and European countries, because nuclear power is one of the cheapest sources of low carbon energy and also has relatively stable costs, and is thereby useful to energy security and to prevent climate change. Electricity demand is growing very rapidly in China and additional reactors are planned to give a fivefold increase in nuclear capacity to 40,000 MWe by 2020. India has a largely indigenous nuclear power program and expects to have 20,000 MWe nuclear capacity by 2020. Russia is moving steadily forward with plans for a much expanded role of nuclear energy, and the restructuring of nuclear industries has begun to strengthen competitiveness in international nuclear markets. (author)

  17. Fuqing nuclear power of nuclear steam turbine generating unit No.1 at the implementation and feedback

    International Nuclear Information System (INIS)

    Cao Yuhua; Xiao Bo; He Liu; Huang Min

    2014-01-01

    The article introduces the Fuqing nuclear power of nuclear steam turbine generating unit no.l purpose, range of experience, experiment preparation, implementation, feedback and response. Turn of nuclear steam turbo-generator set flush, using the main reactor coolant pump and regulator of the heat generated by the electric heating element and the total heat capacity in secondary circuit of reactor coolant system (steam generator secondary side) of saturated steam turbine rushed to 1500 RPM, Fuqing nuclear power of nuclear steam turbine generating unit no.1 implementation of the performance of the inspection of steam turbine and its auxiliary system, through the test problems found in the clean up in time, the nuclear steam sweep turn smooth realization has accumulated experience. At the same time, Fuqing nuclear power of nuclear steam turbine generating unit no.1 at turn is half speed steam turbine generator non-nuclear turn at the first, with its smooth realization of other nuclear power steam turbine generator set in the field of non-nuclear turn play a reference role. (authors)

  18. Worldwide experience in nuclear power generation

    International Nuclear Information System (INIS)

    Stueger, R.; Krejsa, P.; Putz, F.

    1982-01-01

    Five years after their own big conference on nuclear energy and the nuclear fuel cycle of 1977 in Salzburg, and one year before the new Geneva conference planned by the United Nations, the International Atomic Energy Organization (IAEO) organized from 13. to 17.9.82 in Vienna in connection with their 25 years' existence an international conference on nuclear power experience. The NPE differs from other big international conferences of the present year and the last years with similar overall topics mainly by the fact that the Soviet Union and other Eastern countries as well as a great number of developing countries were very much represented, with contributions. (orig.) [de

  19. Spent fuel bundle counter sequence error manual - DARLINGTON NGS

    International Nuclear Information System (INIS)

    Nicholson, L.E.

    1992-01-01

    The Spent Fuel Bundle Counter (SFBC) is used to count the number and type of spent fuel transfers that occur into or out of controlled areas at CANDU reactor sites. However if the transfers are executed in a non-standard manner or the SFBC is malfunctioning, the transfers are recorded as sequence errors. Each sequence error message typically contains adequate information to determine the cause of the message. This manual provides a guide to interpret the various sequence error messages that can occur and suggests probable cause or causes of the sequence errors. Each likely sequence error is presented on a 'card' in Appendix A. Note that it would be impractical to generate a sequence error card file with entries for all possible combinations of faults. Therefore the card file contains sequences with only one fault at a time. Some exceptions have been included however where experience has indicated that several faults can occur simultaneously

  20. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  1. Outlook of nuclear power generation and international situation

    International Nuclear Information System (INIS)

    Eklund, S.

    1978-01-01

    Nuclear power generation is advancing at rapid rate over the world, without any major accident. For the base load of electric power, when choice is made between nuclear energy and petroleum, the Nuclear energy has larger economic advantages over the petroleum as compared with the days before the oil crisis. The costs of its fuel and fuel cycle technology are reasonble. However, nuclear power generation currently has a number of problems. What causes this uncertainty is not technological, but political, i.e. governmental policy changes, and this is based on the apprehension about nuclear proliferation. What is necessary is to strengthen the existing international framework of nuclear nonproliferation. In this respect, IAEA through comprehensive safeguards will make contribution largely to reduction of the political uncertainty. It is important that the new initiatives toward international nuclear cooperation should eliminate the current trends of restraint and denial. (Mori, K.)

  2. Process of public attitudes toward nuclear power generation

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    1993-01-01

    The Japanese public attitudes toward nuclear power generation had become negative year by year. After the Chernobyl accident, a percentage of the unfavorable respondent toward nuclear power generation has dramatically increased, and a new type of anti-nuclear movement has been observed. On the basis of our public opinion polls, the reason for this increase was found to be primarily decrease of sense of usefulness rather than increase of sense of nueasiness about nuclear safety. Particularly, social factors (change of life style, progress of civilian consciousness, credibility of the existing institutional system etc.) have influence on the attitude of either pro or anti-nuclear. Based on the above observation, we have inferred that process of the public attitudes has two flows arising from the above social factors, one is the usefulness and the other is the easiness about nuclear safety, and have formulated a model representing the process of public attitudes toward nuclear power. (author)

  3. Treatment of Nuclear Data Covariance Information in Sample Generation

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Adams, Brian M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wieselquist, William [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2017-10-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on developing a sampling capability that can handle the challenges of generating samples from nuclear cross-section data. The covariance information between energy groups tends to be very ill-conditioned and thus poses a problem using traditional methods for generated correlated samples. This report outlines a method that addresses the sample generation from cross-section matrices.

  4. Nuclear Power's Role in Generating Electricity

    National Research Council Canada - National Science Library

    Falk, Justin

    2008-01-01

    This study assesses the commercial viability of advanced nuclear technology as a means of meeting future demand for electricity by comparing the costs of producing electricity from different sources...

  5. PENGARUH PENAMBAHAN RANGKAIAN DARLINGTON SISTEM PENGAPIAN DAN PUTARAN TERHADAP TEGANGAN JARUM YANG DIHASILKAN PADA MESIN KIJANG TYPE 5 K

    Directory of Open Access Journals (Sweden)

    Paryono Paryono

    2012-09-01

    Full Text Available Abstract: Vehicle technology development in this era pushes every vehicle industry to compete tightly in producing of practical, economic and environmentally sound vehicles. Recent fact shows that there are so many vehicles in its operation failed in having correct specification, creating wasteful of fuel consumtion and bad emission through certain limit. Economically, in reaching thrift gasoline with optimal power, it can increase the needle voltage  which is resulted when plug jumped a fire and started the ignition. The research aimed to test the difference between the use of circuit of Darlington ignition system to the needle voltage  in vehicle at low, middle, and high rotation of Toyota Kijang 5K motor. The data collection was done by testing needle voltage in vehicle which used conventional ignition system and Darlington serial ignition system. Research method used was testing the needle voltage which is resulted from conventional ignition system and Darlington ignition system by using factoral 2x2 Design. The results show that the use of Darlington serial ignition system in every motor rotation caused a significant difference with ratio F = 10,214 and P

  6. A realistic way for graduating from nuclear power generation

    International Nuclear Information System (INIS)

    Kikkawa, Takeo

    2012-01-01

    After Fukushima Daiichi Nuclear Power Plant accident, fundamental reform of Japanese energy policy was under way. As for reform of power generation share for the future, nuclear power share should be decided by three independent elements of the progress: (1) extension of power generation using renewable energy, (2) reduction of power usage by electricity saving and (3) technical innovation toward zero emission of coal-fired thermal power. In 2030, nuclear power share would still remain about 20% obtained by the 'subtraction' but in the long run nuclear power would be shutdown judging from difficulties in solution of backend problems of spent fuel disposal. (T. Tanaka)

  7. Nuclear energy resources for electrical power generation

    International Nuclear Information System (INIS)

    Alder, K.F.

    1974-01-01

    'Nuclear Energy Resources' is interpreted as the nuclear power systems currently available commercially and those at an advanced stage of development, together with full and associated resources required to implement large-scale nuclear programs. Technical advantages and disadvantages of the established power reactor systems are reviewed, and the uranium fuel situation is outlined in terms of supply and demand, the relationship of resources to the requiremnts of current reactor types, and the likely future implications of the Fast Breeder Reactor (FBR). Because of its importance for the future, the problems, status, and likely time scale of the FBR are discussed in some detail. It is concluded that the most important areas for nearterm attention in Australia are the criteria and conditions that would apply to nuclear installations, and the possible development of uranium fuel cycle industries. The pattern of development of reactor and fuel cycle strategies overseas is important for uranium industry planning, and in the long term plutonium availability may be a key factor in power and energy planning. Finally, acceptance of nuclear power includes acceptance that its radioactive wastes will have to be stored on earth, and recent developments to demonstrate that this can be done safely and economically are very important in terms of longterm public attitudes. (author)

  8. Human factor problem in nuclear power generation

    International Nuclear Information System (INIS)

    Yoshino, Kenji; Fujimoto, Junzo

    1999-01-01

    Since a nuclear power plant accident at Threemile Island in U.S.A. occurred in March, 1979, twenty years have passed. After the accident, the human factor problem became focussed in nuclear power, to succeed its research at present. For direct reason of human error, most of factors at individual level or work operation level are often listed at their center. Then, it is natural that studies on design of a machine or apparatus suitable for various human functions and abilities and on improvement of relationship between 'human being and machine' and 'human being and working environment' are important in future. Here was, as first, described on outlines of the human factor problem in a nuclear power plant developed at a chance of past important accident, and then was described on educational training for its countermeasure. At last, some concrete researching results obtained by human factor research were introduced. (G.K.)

  9. Public attitudes toward nuclear generating facilities: positive

    International Nuclear Information System (INIS)

    Krannich, R.S.

    1977-01-01

    Public opposition and intervention in the siting and development of nuclear power plants has become more of a limiting factor than technological issues. Attitude surveys indicate that, while the majority of Americans support nuclear power, the utilities would do well to respond to the concerns and opinions of local residents when projects are in the planning stages. Recent polls are analyzed to identify the demographic and perceptive factors of opposition. Demographic studies indicate that the greatest opposition comes from women, young people, urban residents, farmers, low-income groups, and the unemployed. Perceptual opposition is associated with anticipated negative impacts in the form of hazards and social disruption. Since there appears to be a correlation between access to pertinent information and level of support, utility planners could develop educational programs to provide this information on the advantages of nuclear power. 10 references

  10. Developing people for the new nuclear generation

    International Nuclear Information System (INIS)

    Gordon, C.; Fluke, R.; Moya, R.

    2005-01-01

    The importance of having high-calibre people and the urgency in ensuring adequate numbers of knowledgeable staff has been recognized in the nuclear industry world wide. This paper describes how Nuclear Safety Solutions Limited is addressing these challenges by adopting a pro-active approach to training and development. This paper describes the integrated processes and tools used to ensure: adequate numbers of appropriately qualified staff to meet current and projected business needs, suitably qualified staff are assigned to projects for clients, and individual staff development. NSS uses a Qualification and Experience (Q and E) Registry to ensure the proper functioning of these processes. (author)

  11. Prestressed concrete structures for nuclear power generation

    International Nuclear Information System (INIS)

    Funabashi, Isao; Ichikawa, Kazuo.

    1981-01-01

    Prestressed concrete containment vessels are about to be adopted for power reactors, and many informations have been seen recently in newspapers and technical magazines in Japan. But prestressed concrete structures have never been used in nuclear power stations in Japan. The first nuclear power plant which will use a prestressed concrete containment vessel is the Tsuruga No. 2 plant of Japan Atomic Power Co., which is a PWR plant with 1100 MW capacity. This project is in the stage of the safety deliberation by the government as of October, 1980, and if the construction of a PCCV must be started in near future, the experiences in foreign countries are indispensable for reference. Accordingly, the construction engineers and PC engineers must prepare the related technologies steadily for enabling to meet to the expectation of the users and society, and establish the construction techniques as early as possible. The tendency of constructing nuclear facilities, the kinds of power reactors, the features in the design of nuclear reactor buildings and the application of prestressed concrete construction method are described. The prestressed concrete construction method enables to rationalize the stress condition in concrete structures, to reduce the weight, to extend the span and to upgrade the material quality, thus the applications are expanded. (Kako, I.)

  12. Aiming at the rebirth of the nuclear generation

    International Nuclear Information System (INIS)

    Uematsu, M.M.

    2000-01-01

    A half century has passed since Japan began an industrialization of nuclear energy. The nuclear industries of today have a variety of branches and each industry functions independently. Young professionals need opportunities for communications among industries, utilities and institutes, and also nuclear experts. We, young professionals, are in the motion of organizing the 'Young Generation Network (YGN) of Japan,' and also foresee to organize 'YGN in Asia' in the future

  13. Management of radioactive waste generated in nuclear medicine

    International Nuclear Information System (INIS)

    Lorenz Perez, P.

    2015-01-01

    Nuclear medicine is a clinical specialty in which radioactive material is used in non-encapsulated form, for the diagnosis and treatment of patients. Nuclear medicine involves administering to a patient a radioactive substance, usually liquid, both diagnostic and therapeutic purposes. This process generates solid radioactive waste (syringes, vials, gloves) and liquid (mainly the patient's urine). (Author)

  14. Mechanical cleaning of steam generators in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ding Xunshen; Li Sujia

    1994-01-01

    The mechanical cleaning of steam generators and its equipment currently employed internationally and in Daya Bay Nuclear Power Plant are described. The site mechanical cleaning practices for nuclear power plant are also introduced. A number of remarks on mechanical cleaning, chemical cleaning, TV inspection of cleanness and withdrawal of foreign materials are given

  15. New nuclear power generation in the UK: Cost benefit analysis

    International Nuclear Information System (INIS)

    Kennedy, David

    2007-01-01

    This paper provides an economic analysis of possible nuclear new build in the UK. It compares costs and benefits of nuclear new build against conventional gas-fired generation and low carbon technologies (CCS, wind, etc.). A range of scenarios are considered to allow for uncertainty as regards nuclear and other technology costs, gas prices and carbon prices. In the base case, the analysis suggests that there is a small cost penalty for new nuclear generation relative to conventional gas-fired generation, but that this is offset by environmental and security of supply benefits. More generally nuclear new build has a positive net benefit for a range of plausible nuclear costs, gas prices and carbon prices. This supports the UK policy of developing an enabling framework for nuclear new build in a market-based context. To the extent that assumptions in the analysis are not borne out in reality (e.g. as regards nuclear cost), this is a no regrets policy, given that the market would not invest in nuclear if it is prohibitively costly. (author)

  16. US central station nuclear electric generating units: significant milestones

    International Nuclear Information System (INIS)

    1979-09-01

    Listings of US nuclear power plants include significant dates, reactor type, owners, and net generating capacity. Listings are made by state, region, and utility. Tabulations of status, schedules, and orders are also presented

  17. 77 FR 16278 - License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear...

    Science.gov (United States)

    2012-03-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION License Renewal Application for Indian Point Nuclear Generating Units 2 and 3; Entergy Nuclear Operations, Inc. AGENCY: Nuclear Regulatory Commission. ACTION: License renewal application; intent to...

  18. 78 FR 26662 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public...

    Science.gov (United States)

    2013-05-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit No. 3 Extension of Public Comment Period AGENCY: Nuclear Regulatory Commission. ACTION: Draft environmental assessment and finding...

  19. Developing the next generation of nuclear workers at OPG

    International Nuclear Information System (INIS)

    Spekkens, P.

    2007-01-01

    This presentation is about developing the next generation of nuclear workers at Ontario Power Generation (OPG). Industry developments are creating urgent need to hire, train and retain new staff. OPG has an aggressive hiring campaign. Training organization is challenged to accommodate influx of new staff. Collaborating with colleges and universities is increasing the supply of qualified recruits with an interest in nuclear. Program for functional and leadership training have been developed. Knowledge retention is urgently required

  20. Radioactive emissions data from Canadian nuclear generating stations

    International Nuclear Information System (INIS)

    1993-03-01

    This document reports on the magnitude of gaseous and liquid emissions from each nuclear generating station in Canada and indicates how these emissions compare with the limits imposed by the Atomic Energy Control Board (AECB). The data show that the levels of emissions from all currently operating nuclear generating stations are well below the values mandated by AECB. Since 1980 no emissions have exceeded 1 percent of those values. (L.L.) 62 figs., 3 tabs

  1. Steam generator life cycle management: Ontario Power Generation (OPG) experience

    International Nuclear Information System (INIS)

    A systematic managed process for steam generators has been implemented at Ontario Power Generation (OPG) nuclear stations for the past several years. One of the key requirements of this managed process is to have in place long range Steam Generator Life Cycle Management (SG LCM) plans for each unit. The primary goal of these plans is to maximize the value of the nuclear facility through safe and reliable steam generator operation over the expected life of the units. The SG LCM plans integrate and schedule all steam generator actions such as inspection, operation, maintenance, modifications, repairs, assessments, R and D, performance monitoring and feedback. This paper discusses OPG steam generator life cycle management experience to date, including successes, failures and how lessons learned have been re-applied. The discussion includes relevant examples from each of the operating stations: Pickering B and Darlington. It also includes some of the experience and lessons learned from the activities carried out to refurbish the steam generators at Pickering A after several years in long term lay-up. The paper is structured along the various degradation modes that have been observed to date at these sites, including monitoring and mitigating actions taken and future plans. (author)

  2. Background submission to the Royal Commission on Nuclear Power Generation

    International Nuclear Information System (INIS)

    1976-12-01

    The Royal Commission on Nuclear Power Generation in New Zealand is required to inquire into and report upon the likely consequences of a nuclear power programme. The New Zealand Electricity Department would have prime responsibilty for implementing the construction, operation and maintenance of nuclear power plants should the need be established and should this be acceptable to the Government. In this submission the Department has attempted to present the issues raised by the introduction of nuclear power in relatively simple terms on the assumption that elaboration can be provided later if necessary

  3. Developing people for the new nuclear generation

    International Nuclear Information System (INIS)

    Gordon, C.; Fluke, R.; Moya, R.

    2005-01-01

    The importance of having high-calibre people and the urgency in ensuring adequate numbers of knowledgeable staff has been recognised in the nuclear industry world wide. This paper describes how NSS is addressing these challenges by adopting a pro-active approach to training and development. This paper describes the integrated processes and tools used to ensure: adequate numbers of appropriately qualified staff to meet current and projected business needs; suitably qualified staff are assigned to projects for clients, and individual staff development. NSS uses a Qualification and Experience (Q and E) Registry to ensure the proper functioning of these processes. (author)

  4. Generation IV nuclear energy systems: road map and concepts. 2. Generation II Measurement Systems for Generation IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Miller, Don W.

    2001-01-01

    Instrumentation and Control (I and C) systems in current operating plants have not changed appreciably since their original design in the 1950's. These systems depend on a variety of traditional process and radiation sensors for the measurement of safety and control variables such as temperature, pressure, and neutron flux. To improve their performance and to make them more robust, many plant control systems have been upgraded from analog to digital; most of them continue to utilize traditional single-input single-output architecture. Transmission of data, for the most part, continues to employ large coaxial cables. These cables are not the small cables used in a laboratory (i.e., RG-58 or RG-59). Because of concern about electromagnetic and radio frequency interference and other environmental effects, bulky triax cables, which are cables with two outer shields separated by an insulator, are used. In a nuclear plant there are literally miles of cables and hundreds of specialized penetrations for cables going through containment or pressure vessel walls. The I and C systems in the advanced light water reactor (ALWR) designs, i.e., Generation III reactors, do employ more advanced technology than current plants; however, they do not incorporate new technology on a broad scale. This in part is a consequence of the ALWR design philosophy that discouraged use of advanced technology if current technology was adequate. As a consequence, the I and C systems in the ALWRs continue to make use of current technology. There are two exceptions, however, which include the broad use of software-based digital systems and fiber optics for signal isolation and data transmission in nonradioactive areas. The ALWR design philosophy was a justifiably low-risk approach when considering the overall objective of 'capturing' lessons learned from current operating plants to design a plant that would exhibit performance superior to current plants and would be relatively easy to license without

  5. Reaching the next generation of nuclear engineers

    International Nuclear Information System (INIS)

    Djokic, Denia; Fratoni, Massimiliano

    2008-01-01

    The University of California, Berkeley (UCB) American Nuclear Society (ANS) Student Section hosted two outreach events for young students between the ages of seven and twelve. The students were part of a private after-school club called Adventures Through Open Minds Science TM club for kids (A.T.O.M.S. club for kids) heated by Leslie Buchalter. Buchalter is an expert in early education and teaches children fundamental scientific concepts by using 'kid language' and associating usually difficult ideas with something even the very young children can understand. The greatest challenge for us UCB student organizers was to follow this manner of teaching and to construct activities that would always keep the attention of the children. We put together an array of fundamental concept demonstrations based on this philosophy. For example, the concept of half-life was taught by repeatedly tossing M and M's onto a surface and removing the upside down M and M's, and the concept of a nuclear chain reaction was introduced using a mousetrap-and-ping-pong-ball contraption. The main lessons learned were that the children most successfully absorbed ideas by engaging the students activity in the concept demonstrations, by using concepts and vocabulary already familiar to them which encouraged them to answer questions about familiar topics, and by creating a playful game out of every learning opportunity. (author)

  6. Nuclear data evaluation and group constant generation for reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Do; Gil, Choong Sup [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-12-01

    In nuclear or shielding design analysis for reactors including nuclear facilities, nuclear data are one of the primary importances. Research project for nuclear data evaluation and their effective applications has been continuously performed. The objectives of this project are (1) to compile the latest evaluated nuclear data files, (2) to establish their processing code systems, and (3) to evaluate the multigroup constant library using the newly compiled data files and the code systems. As the results of this project, JEF-2.2 which is latest version of Joint Evaluated File developed at OECD/NEA was compiled and COMPLOT and EVALPLOT utility codes were installed in personal computer, which are able to draw ENDF/B-formatted nuclear data for comparison and check. Computer system (NJOY/ACER) for generating continuous energy Monte Carlo code MCNP library was established and the system was validated by analyzing a number of experimental data. (Author).

  7. Solid waste generation in reprocessing nuclear fuel

    International Nuclear Information System (INIS)

    North, E.D.

    1975-01-01

    Estimates are made of the solid wastes generated annually from a 750-ton/year plant (such as the NFS West Valley plant): high-level waste, hulls, intermediate level waste, failed equipment, HEPA filters, spent solvent, alpha contaminated combustible waste, and low specific activity waste. The annual volume of each category is plotted versus the activity level

  8. Pulse sequence generator for nuclear magnetic resonance spectrometer

    International Nuclear Information System (INIS)

    Bartusek, K.

    1990-01-01

    The hardware and the properties are described of a pulsed sequence generator for a 200 MHz nuclear magnetic resonance spectrometer designed by the Institute for Research of Instrumentation of the Czechoslovak Academy of Sciences in Brno. The universal design of the generator meets the requirements of both NMR tomography and NMR microscopy. (author). 3 figs., 6 refs

  9. Radionuclide Generators: New Systems for Nuclear Medicine Applications

    International Nuclear Information System (INIS)

    Knapp, F.F.; Butler, T.A.

    1984-01-01

    This book reviews and discusses in detail the new generation and improved versions of older radionuclide generators that are being developed for nuclear medicine applications. Short-lived radionuclides, positron-emitting radionuclides, and radionuclide production and miscellaneous applications are studied

  10. Prerequisites for successful nuclear generation in Southern Africa

    International Nuclear Information System (INIS)

    Semark, P.M.

    1990-01-01

    In this paper, the General Manager (Generation) of Eskom shares his view of what is required to be addressed to ensure the ongoing success of nuclear powered electricity generation in South Africa. The task, the means, the timing and the human factors are discussed from the practical viewpoint of the plant owner and operator. (author)

  11. Nuclear renaissance in Asia. Energy security and development of nuclear power generation system

    International Nuclear Information System (INIS)

    Nakasugi, Hideo

    2009-01-01

    The energy policy and strategy of development of nuclear power generation system of China, India and Korea are stated on the basis of use of light water reactors (LWRs). The conditions of power generation and introduction plans of nuclear energy of other Asian countries such as Vietnam, Thailand, Indonesia, Malaysia and Philippines are described. The power plant capacity of China increased from 50,500 MW in 2004, to 65,000 MW in 2005, and the target value is 40,000 MW of operating nuclear plants and 18,000 MW in building in 2020. China is lagging behind in peaceful use of nuclear energy technologies. A plan for the reform of nuclear industry and nuclear power generation projects of China are summarized. Total power plant capacity of India is 145,000 MW, but the nuclear plant capacity is 4,120 MW in 2008 and 63,000 MW of the target in 2032. Development of nuclear power, circumstance, and cooperation with other countries' industries are explained. 17,716 MW of nuclear power is in operation, 6,800 MW in building and 2,800 MW in the planning stage in Korea. History of development of national reactors and the subjects of development of the fourth generation reactor of Korea are stated. Management system of nuclear power plants in China, technical bases of nuclear power plants in China, development system of nuclear power generation in India, the conditions of power production of Korea in 2008, the capacity factor of Korea, Japan and world from 1998 to 2008, and comparison of nuclear industries in China, India and Korea are illustrated. (S.Y.)

  12. Ceramics composites for next generation nuclear reactors

    International Nuclear Information System (INIS)

    Pouchon, Manuel A.; Rebac, Tomislav; Chen, Jiachao; Dai, Yong; Hoffelner, Wolfgang

    2011-01-01

    Silicon carbide and carbon based composite materials are promising candidates for structural components of future nuclear systems. From non nuclear applications, both, the silicon carbide and the carbon matrix are well known for their excellent high temperature behavior and in case of the carbide, for the chemical inertness. The usage of these materials in their composite variant is inevitable, as the additionally introduced ductility is absolutely necessary in safety relevant components. Possible applications are structural components in high temperature reactors and claddings of advanced reactor systems, such as gas cooled fast reactors, including subcritical ones. The basic mechanical behavior of many of these composite materials is well known, however, little data is available about the degradation in mechanical performance after irradiation. The present paper investigates the mechanical behavior of four different composite materials before and after proton and neutron irradiation. The testing method is a three point bend experiment on non-notched sample bars. Four kinds of materials were tested. Two chemically vapor infiltrated CVI composites with silicon carbide matrices, one with a 2D silicon carbide fiber structure, and the other one with carbon fibers woven in a 2D structure. The two others were liquid silicon infiltrated LSI, both with carbon fibers, but one with a random and the other one with a 2D woven structure. The CVI samples with carbon fibers showed the highest mechanical strength after irradiation. The CVI material with silicon carbide fibers degraded most, but starting from a very high strength before irradiation. Both LSI materials showed a quite constant performance, before and after irradiation. (author)

  13. Nuclear material accounting: The next generation

    International Nuclear Information System (INIS)

    Kern, E.A.; McRae, L.P.; O'Callaghan, P.B.; Yearsley, D.

    1992-07-01

    The Westinghouse Hanford company (Westinghouse Hanford) and the Los Alamos National Laboratory (LANL) have undertaken a joint effort to develop a new generation material accounting system. The system will incorporate the latest advances in microcomputer hardware, software, and network technology. This system, the Local Area Network Material Accounting System (LANMAS), offers greater performance and functionality at a reduced overall cost. It also offers the possibility of establishing a standard among DOE and NRC facilities for material accounting. This report provides a discussion of this system

  14. Nuclear power plants in Canada: how we address community issues and concerns

    International Nuclear Information System (INIS)

    McFarlane, D.

    2003-01-01

    This presentation was developed by the public affairs staff of three Canadian utilities who offered case studies from three nuclear generating stations. Ontario Power Generation (OPG) facilities include Pickering Nuclear, with 8 units, and Darlington Nuclear, with 4 units, both located in the Region of Durham. The Pickering community is located east of Toronto on the shore of Lake Ontario. The facilities are located in the City of Pickering but are close to Ajax and the City of Toronto as well. They are surrounded by residences and businesses. The Darlington station is close to Pickering but further east of Toronto. It is located in a more rural environment in the Municipality of Clarington. Approximately 96% of installed capacity in Quebec is based on hydropower. Hydro-Quebec's Gentilly-2 is the only thermal nuclear generation station in operation. The station is located in Becancour on the south shore of the St. Lawrence River between Quebec City and Montreal. The population of Becancour is 12 000, while Trois-Rivieres and Champlain, on the north shore, count 100 000 residents. New Brunswick Power's Point Lepreau generating station (PLGS) is the only nuclear facility in Atlantic Canada, and supplies some 30% of in-province energy. The station is located in a rural area on the Lepreau peninsula overlooking the Bay of Fundy. It is located within 10 kilometers of the small communities of Dipper Harbour, Maces Bay, Little Lepreau and Chance Harbour. Approximately 38 kilometers to the northeast is located Saint John with a population of about 120 000. Corporate-community relations objectives are similar across the three utilities. They include building trust, garnering support for ongoing operations, and being - as well as being viewed as - a good corporate citizen. Meeting these objectives implies knowing and caring for the community and the issues raised by residents - not just issues of interest to the company. (author)

  15. Economic analysis of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Dong; Lee, Han Myeong; Lee, Man Kee; Moon, Ki Hwan; Kim, Seung Soo; Kim, Seong Ki; Lee, Yeong Ki [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1993-12-01

    As CO{sub 2} emission is recognized as the one of the major causes of the global worming, international CO{sub 2} emission regulation has been of great concern and has been discussed actively on the global level. Several means of CO{sub 2} emission regulation have been raised and have received much attention recently. CO{sub 2} emission regulation is expected to affect the national economy as well as the national energy policy. Since the electricity sector closely interacts with CO{sub 2} emission, environmental regulation has the possibility of implementation in this sector. Considering the enormous role played by electricity in the national economy, it is very important to study the effect of environmental regulation on the electricity sector. The main purpose of this study is to estimate the marginal cost of CO{sub 2} emission by analyzing the effect of CO{sub 2} emission regulation on the electricity sector in terms of capacity and generation mix. This information can be used effectively in energy policy establishment. In addition, the effect of CO{sub 2} emission regulation on economic viability of electricity generating type is also being studied in order to contribute to the establishment of Electric System Expansion Planning in Korea.

  16. Advanced Ceramic Materials For Next-Generation Nuclear Applications

    International Nuclear Information System (INIS)

    Marra, J.

    2010-01-01

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and

  17. NNSA Program Develops the Next Generation of Nuclear Security Experts

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  18. The SCC testing of nuclear steam generator tubing materials

    Science.gov (United States)

    Doherty, P. E.; Sarver, J. M.; Miglin, B. P.

    1996-05-01

    The integrity of heat-exchanger tubes in a nuclear reaction system is crucial for the safe operation of a power plant. In order to study the corrosion behavior of certain alloys, constant extension rate (CERT) tests were performed on alloy 690 and alloy 800 nuclear steam generator tubing specimens. In this article, the CERT test results (such as maximum stress achieved and crack morphology) are correlated to tubing microstructure, chemistry, and manufacturing processes.

  19. Improving nuclear generating station response for electrical grid islanding

    International Nuclear Information System (INIS)

    Chou, Q.B.; Kundur, P.; Acchione, P.N.; Lautsch, B.

    1989-01-01

    This paper describes problems associated with the performance characteristics of nuclear generating stations which do not have their overall plant control design functions co-ordinated with the other grid controls. The paper presents some design changes to typical nuclear plant controls which result in a significant improvement in both the performance of the grid island and the chances of the nuclear units staying on-line following the disturbance. This paper focuses on four areas of the overall unit controls and turbine governor controls which could be modified to better co-ordinate the control functions of the nuclear units with the electrical grid. Some simulation results are presented to show the performance of a typical electrical grid island containing a nuclear unit with and without the changes

  20. Future perspective of cost for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Ichiro

    1988-01-01

    The report presents and discussed results of evaluation of the cost for power generation in this and forthcoming years on the basis of an analysis of the current fuel prices and the economics of various power sources. Calculations show that nuclear power generation at present is inferior to coal-firing power generation in terms of required costs, but can become superior in the future due to an increased burn-up and reduced construction cost. Investigations are made of possible contributions of future technical improvements to reduction in the overall cost. Results suggest that nuclear power generation will be the most efficient among the various electric sources because of its technology-intensive feature. Development of improved light water reactors is of special importance to achieve a high burn-up and reduced construction costs. In general, the fixed cost accounts for a large part of the overall nuclear power generation cost, indicating that a reduction in construction cost can greatly increase the economic efficiency. Changes in the yen's exchange rate seem to have little effect on the economics of nuclear power generation, which represents another favorable aspect of this type of energy. (Nogami, K.)

  1. Change of public awareness on nuclear power generation in 2010

    International Nuclear Information System (INIS)

    Shimooka, Hiroshi

    2011-01-01

    The eighth attitude survey for nuclear power generation was carried out by two methods (the written questionnaire survey and online survey), from 22nd in October to 22nd in November, 2010. The survey population of the first method was 500, 250 of male and 250 female from over twenty years old lived within 30 km from Tokyo station. That of second method was 500 from over twenty years old lived in the Metropolitan area. The questionnaire consisted of four items such as awareness on the general public and life, energy problems, nuclear power generation and others. The written questionnaire survey showed almost same results as the previous surveys. New results showed some subjects (23%) thought the nuclear power generation was useful at that time but not useful in the future. Outline of survey, the main results, the analytical results and comparison between the written questionnaire survey and online survey were reported. (S.Y.)

  2. Is there a tomorrow for nuclear power generation?

    International Nuclear Information System (INIS)

    Kanoh, Tokio.

    1995-01-01

    Globally, the generation of electricity using nuclear power is continuing to expand despite negative press reports. In countries such as Japan, which are scarce in natural energy resources, public opinion on nuclear power wavers between safety and necessity. Three positive aspects of nuclear power are its minimal fuel requirement, its usefulness as an alternative to oil and its compatibility with the environment. Set against this are public concern about accidents and the disposal of radioactive wastes. Arguments to allay these fears in the particular context of Japan are advanced. Three scenarios have been presented for the future of nuclear power into the 21st century. The first envisages no further construction of nuclear plants so that amounts of nuclear power generation dwindles gradually. In the second, it is supposed that while nuclear power expands in the Asia-Pacific region this will be offset by a contraction elsewhere in the world. Advanced reactor designs and increased safety could, however, encourage construction in the West, Eastern Europe and the former Soviet Union, leading to worldwide expansion. Seven proposals to win public support so that the last scenario becomes a reality are put forward. (3 tables, 11 figures, 7 references). (UK)

  3. Is there a tomorrow for nuclear power generation?

    Energy Technology Data Exchange (ETDEWEB)

    Kanoh, Tokio

    1995-12-31

    Globally, the generation of electricity using nuclear power is continuing to expand despite negative press reports. In countries such as Japan, which are scarce in natural energy resources, public opinion on nuclear power wavers between safety and necessity. Three positive aspects of nuclear power are its minimal fuel requirement, its usefulness as an alternative to oil and its compatibility with the environment. Set against this are public concern about accidents and the disposal of radioactive wastes. Arguments to allay these fears in the particular context of Japan are advanced. Three scenarios have been presented for the future of nuclear power into the 21st century. The first envisages no further construction of nuclear plants so that amounts of nuclear power generation dwindles gradually. In the second, it is supposed that while nuclear power expands in the Asia-Pacific region this will be offset by a contraction elsewhere in the world. Advanced reactor designs and increased safety could, however, encourage construction in the West, Eastern Europe and the former Soviet Union, leading to worldwide expansion. Seven proposals to win public support so that the last scenario becomes a reality are put forward. (3 tables, 11 figures, 7 references). (UK).

  4. Nuclear power generation in Chile, possibility or utopia

    International Nuclear Information System (INIS)

    Vergara Aimone, Julio

    2000-01-01

    Regardless the pressure of several groups, nuclear power stands for one sixth of worldwide electricity supply, produced from a resource that well managed could be available for centuries beyond the exhaustion of oil and natural gas. Such power option could support a macro power system with low environmental impact. The Chilean power demand is growing at a high rate. Without fossil supplies, our potential hydraulic capacity would become exhausted at an early date and our country would face a severe energy dependence, without control of generation costs and with increased atmospheric emissions, some of which would be responsible for global environmental effects. Nuclear power would stabilize generation costs in the near and mid terms and would also arrest gaseous emissions. This paper discusses the current status of the nuclear industry and those pending issues, compared to other power options. It also discusses the estimated year for the operation the of first nuclear power plant. Although nuclear power technology seems to be in a mature stage, it is suggested that the aggressive use of advanced and moreover innovative reactor designs would result in a greater nuclear technology penetration. Several of such designs or concepts await commercial demonstration within the decade. Those would also extend the benefits of nuclear power to countries with reduced or moderate power grids, as is our case. (author)

  5. Prediction of future dispute concerning nuclear power generation

    International Nuclear Information System (INIS)

    1981-04-01

    This investigation is the third research on the public acceptance of nuclear power generation by the National Congress on Social Economics. In this study, how the energy dispute including that concerning nuclear power generation will develop in 1980s and 1990s, how the form of dispute and the point of controversy will change, were predicted. Though the maintenance of the concord of groups strongly regulates the behavior of people, recently they have become to exercise individual rights frequently. The transition to the society of dispute is the natural result of the modernization of society and the increase of richness. The proper prediction of social problems and the planning and execution of proper countermeasures are very important. The background, objective, basic viewpoint, range and procedure of this investigation, the change of social dispute, the history of the dispute concerning nuclear power generation, the basic viewpoint in the prediction of the dispute concerning nuclear power generation, the social situation in 1980s, the prediction and avoidance of the dispute in view of social and energy situations, and the fundamental strategy for seeking a clue to the solution in 1980s and 1990s are described. The establishment of neutral mediation organs and the flexible technologies of nuclear reactors are necessary. (Kako, I.)

  6. Future of nuclear energy for electricity generation in Brazil

    International Nuclear Information System (INIS)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro

    2015-01-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  7. Future of nuclear energy for electricity generation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, Jose R.; Moreira, Joao M.L.; Carajlescov, Pedro, E-mail: joserubens.maiorino@ufabc.edu.br, E-mail: joao.moreira@ufabc.edu.br, E-mail: pedro.carajlescov@ufabc.edu.br [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Aplicadas

    2015-07-01

    We discuss in this paper the medium- and long- terms evolution of nuclear power in Brazil considering official governmental studies and reports prepared by research groups. The documents reviewed include the national energy balance (BEN, 2014), the short-term planning (PDEE, 2023) and long-term planning (PNE-2030) documents emitted by EPE, and studies conducted by independent institutions and researchers. The studies consider different scenarios regarding gross national product growth and institutional development for the country and conclude that nuclear power should increase its role in Brazil. The generation matrix should diversity by 2030 and 2040 with hydropower decreasing its share from today's 70 % to values between 47 and 57 %. Nuclear power is considered a viable alternative for base load electricity generation in Brazil; to reduce generation risks during dry seasons, and to facilitate the operation of the whole power generation system. The share of nuclear power may reach values between 8 % and 15 % by 2040 according to different scenarios. To meet such growth and facilitate new investments, it is necessary to change the legal framework of the sector, and allow private ownership of enterprises to build and operate nuclear power plants in the country. (author)

  8. Regional comparison of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Bowers, H.I.

    1984-01-01

    Nuclear's main disadvantages are its high capital investment cost and uncertainty in schedule compared with alternatives. Nuclear plant costs continue to rise whereas coal plant investment costs are staying relative steady. Based on average experience, nuclear capital investment costs are nearly double those of coal-fired generation plants. The capital investment cost disadvantage of nuclear is balanced by its fuel cost advantages. New base load nuclear power plants were projected to be competitive with coal-fired plants in most regions of the country. Nuclear power costs wre projected to be significantly less (10% or more) than coal-fired power costs in the South Atlantic region. Coal-fired plants were projected to have a significant economic advantage over nuclear plants in the Central and North Central regions. In the remaining seven regions, the levelized cost of power from either option was projected to be within 10%. Uncertainties in future costs of materials, services, and financing affect the relative economics of the nuclear and coal options significantly. 10 figures

  9. Nuclear power - strategic planning for the next generation

    International Nuclear Information System (INIS)

    Turner, K.H.

    1989-01-01

    Regardless of the real or perceived causes of the nuclear power industry's current difficulties, a number of recent trends-increasing electricity demand, foreign oil dependency, and attention paid to acid rain and the greenhouse effect-taken together, point of the most favorable atmosphere in recent history for nuclear power. Already, serious public discussion of its advantages have begun anew. Thus, the time is ripe to consider the developmental structure of nuclear power's next generation. Although much uncertainty still surrounds the nuclear industry, valuable lessons have been learned, and the evolution of the industry from this point cannot be left to chance. The purpose of this paper is to discuss a framework for nuclear power strategic planning activities. The strategic planning objectives outlined in this paper span issues that affect virtually every aspect of the nuclear power industry. Piecemeal responses to the vagaries of random stimuli will not be adequate. A proactive, integrated, industry-wide initiative-an Institute of Nuclear Power Planning, actively supported by the members of the industry-should be undertaken immediately to fill the strategic planning role. In so doing, the industry will not only be acting in its own best interest but will also be helping the nation realize the real and important benefits of its nuclear power technology

  10. Challenges of deploying nuclear energy for power generation in Malaysia

    Science.gov (United States)

    Jaafar, Mohd Zamzam; Nazaruddin, Nurul Huda; Lye, Jonathan Tan Thiam

    2017-01-01

    Under the 10th Malaysia Plan (2010-2015) and the Economic Transformation Programme (ETP), nuclear energy was identified as a potential long-term option to be explored for electricity generation in Peninsular Malaysia. The energy sector in Malaysia currently faces several concerns including depleting domestic gas supply which will affect security and reliability of supply as well as overdependance on fossil fuels - mainly gas and imported coal, and nuclear energy may offer a possible solution to these issues as well as global climate change concern. Pursuing the nuclear option, Malaysia Nuclear Power Corporation (MNPC) is undertaking a series of comprehensive studies to facilitate an informed Government decision on the matter. This paper aims to discuss the many challenges towards the peaceful use of nuclear energy for electricity generation in the context of the New Energy Policy 2010 to achieve a balanced and sustainable energy mix. This effort will continue in the 11th Malaysia Plan (2016-2020) with emphasis on implementing a comprehensive communications plan and public awareness programme for the potential use of nuclear energy in the future. In analysing the challenges for the development of nuclear energy in Malaysia, the traditional triple bottom line (TBL) framework for sustainability, encompassing economic, social and environmental objectives is utilized. An additional factor, technical, is also included in the analysis to provide a more holistic view. It is opined that the main challenges of developing nuclear energy for electricity generation in a newcomer country like Malaysia can be attributed primarily to domestic non-technical factors compared to the technical factor.

  11. Regional projections of nuclear and fossil electric power generation costs

    International Nuclear Information System (INIS)

    Smolen, G.R.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1983-12-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base load nuclear and coal-fired power plants with a startup date of January 1995. A complete data set is supplied which specifies each parameter used to obtain the comparative results. When the comparison is based on reference cost parameters, nuclear- and coal-fired generation costs are found to be very close in most regions of the country. Nuclear power is favored in the South Atlantic region where coal must be transported over long distances, while coal-fired generation is favored in the Central and North Central regions where large reserves of cheaply mineable coal exist. The reference data set reflects recent electric utility construction experience. Significantly lower nuclear capital investment costs would result if regulatory reform and improved construction practices were instituted. The electric power generation costs for base load oil- and natural gas-fired plants were also estimated. These plants were found to be noncompetitive in all regions for those scenarios most likely to develop. Generation cost sensitivity to changes in various parameters was examined at a reference location. The sensitivity parameters included capital investment costs, lead times, capacity factors, costs of money, and coal and uranium prices. In addition to the levelized lifetime costs, year-by-year cash flows and revenue requirements are presented. The report concludes with an analysis of the economic merits of recycling spent fuel in light-water reactors

  12. Reliability of generation at a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    Clark, R.G.; Dowis, W.J.

    1977-12-01

    A nuclear energy center characteristically would have large amounts of electric generating capacity in a relatively small geographical area. HNEC is a conceptual nuclear energy center containing 20 generating units of 1200 MW capacity each, located at Hanford, Washington. DS is an alternative concept; namely, 20 generating units of similar capacity in six clusters at sites along the Columbia and Willamette rivers in Washington and Oregon. HNEC in year 2005 could provide up to 30% of system capacity; typically utilities limit concentration of thermal plant generation to about 15% of system requirements. For this reason it is appropriate to examine the reliability of generation at a nuclear energy center to determine if it could be less than at dispersed sites because of local conditions and the close proximity of many generating units. In the report, reliability of generation HNEC is assessed by comparing it with that at Dispersed Sites (DS) throughout the Pacific Northwest. Reliability is measured in terms of two sets of risks: risk of forced outage, and risk of user power shortage

  13. Emerging nuclear systems for energy generation and transmutation

    International Nuclear Information System (INIS)

    Kupitz, J.; Arkhipov, V.

    1997-01-01

    Nuclear energy is a proven technology that already makes a large contribution to energy supply worldwide. At the end of 1995, there were 437 nuclear power plants operating in the world with a total capacity of some 344 GW(e). The average annual growth rate of electricity production from nuclear power is estimated to be about 0.6% per year for the period from now to 2015. One of the greatest obstacles facing nuclear energy is the highly radioactive waste which is generated during power production. In order for nuclear power to realize its full potential as a major energy source for the entire world, there must be a safe and effective way to deal with this waste. While mined geological disposal is the method chosen by some countries, it has been consistently stalled by a pervasive public perception that it is not a safe disposal technology. One of the primary reasons for this is the long life of many of the radioisotopes generated from fission. Therefore, science should come to rescue in the form of new, more effective technology aimed at reducing the amount of long-lived radioactive waste and eliminating nuclear weapons grade material through transmutation of these isotopes in fission reactors or accelerators. In the past years more and more studies were carried out on advanced waste management strategy (i.e. actinide separation and elimination) in various countries and at an international level. 3 refs., 1 tab

  14. Generating the option of a two-stage nuclear renaissance.

    Science.gov (United States)

    Grimes, Robin W; Nuttall, William J

    2010-08-13

    Concerns about climate change, security of supply, and depleting fossil fuel reserves have spurred a revival of interest in nuclear power generation in Europe and North America, while other regions continue or initiate an expansion. We suggest that the first stage of this process will include replacing or extending the life of existing nuclear power plants, with continued incremental improvements in efficiency and reliability. After 2030, a large-scale second period of construction would allow nuclear energy to contribute substantially to the decarbonization of electricity generation. For nuclear energy to be sustainable, new large-scale fuel cycles will be required that may include fuel reprocessing. Here, we explore the opportunities and constraints in both time periods and suggests ways in which measures taken today might, at modest cost, provide more options in the decades to come. Careful long-term planning, along with parallel efforts aimed at containing waste products and avoiding diversion of material into weapons production, can ensure that nuclear power generation remains a carbon-neutral option.

  15. Generating cost and economic feature of nuclear power

    International Nuclear Information System (INIS)

    Ishibashi, Shuichi

    1982-01-01

    Since the operation of the first LWR power plant in 1970, presently 21 LWR power plants have entered in practical operation. During this period of eleven years, the power generation in Japan has increased by about 90% along with the growth in GNP. In order for the economy of nuclear power generation to take root, the reduction of the accident and failure rates of the nuclear power plants is the most important, which is at the same time the only way of gaining the public acceptance. This fact is being proved currently by the rise in plant factor. The power costs according to sources are: in 1981, 11.1 Per kWh for nuclear energy and 19.8 For petroleum, and in 1985, by prediction, 14.5 And 25.4, Respectively. (Mori, K.)

  16. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  17. Valve maintainability in CANDU-PHW nuclear generating stations

    International Nuclear Information System (INIS)

    Pothier, N.E.; Crago, W.A.

    1977-09-01

    Design, application, layout and administrative factors which affect valve maintainability in CANDU-PHW power reactors are identified and discussed. Some of these are illustrated by examples based on prototype reactor operation experience. Valve maintainability improvements resulting from laboratory development and maintainability analysis, have been incorporated in commercial CANDU-PHW nuclear generating stations. These, also, are discussed and illustrated. (author)

  18. New Generation Nuclear Plant -- High Level Functions and Requirements

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  19. The Environmental Impact of Electrical Generation: Nuclear vs. Conventional.

    Science.gov (United States)

    McDermott, John J., Ed.

    This minicourse, partially supported by the Division of Nuclear Education and Training of the U.S. Atomic Energy Commission, is an effort to describe the benefit-to-risk ratio of various methods of generating electrical power. It attempts to present an unbiased, straightforward, and objective view of the advantages and disadvantages of nuclear…

  20. Aiming at the rebirth of the nuclear generation

    International Nuclear Information System (INIS)

    Uematsu, M.M.

    2001-01-01

    The nuclear industries of today have a variety of branches and each industry functions independently, and young professionals need opportunities for communicating among themselves across the different fields of industries, utilities and institutes. We, young professionals, are in the motion of organizing the 'Young Generation Network (YGN) of Japan'. (authors)

  1. Three Mile Island Nuclear Station steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Hansen, C.A.

    1992-01-01

    The Three Mile Island-1 steam generators were chemically cleaned in 1991 by the B and W Nuclear Service Co. (BWNS). This secondary side cleaning was accomplished through application of the EPRI/SGOG (Electric Power Research Institute - Steam Generator Owners Group) chemical cleaning iron removal process, followed by sludge lancing. BWNS also performed on-line corrosion monitoring. Corrosion of key steam generator materials was low, and well within established limits. Liquid waste, subsequently processed by BWNS was less than expected. 7 tabs

  2. Nuclear-reactor steam-generator shut-off valve

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1978-01-01

    In a nuclear reactor installation a live-steam line leading from each steam generator through the containment is equipped with a fast-acting valve. If the pressure in the generator rises the valve operates as a safety valve and releases up to one-half of the aperture cross section of the valve, so that there is no danger of damage to the steam generators. According to the invention, the valve is operated for this purpose by two pistons by means of steam. The invention is of interest particularly for light-water reactors, e.g., pressurized-water reactors

  3. National need for utilizing nuclear energy for process heat generation

    International Nuclear Information System (INIS)

    Gambill, W.R.; Kasten, P.R.

    1984-01-01

    Nuclear reactors are potential sources for generating process heat, and their applications for such use economically competitive. They help satisfy national needs by helping conserve and extend oil and natural gas resources, thus reducing energy imports and easing future international energy concerns. Several reactor types can be utilized for generating nuclear process heat; those considered here are light water reactors (LWRs), heavy water reactors (HWRs), gas-cooled reactors (GCRs), and liquid metal reactors (LMRs). LWRs and HWRs can generate process heat up to 280 0 C, LMRs up to 540 0 C, and GCRs up to 950 0 C. Based on the studies considered here, the estimated process heat markets and the associated energy markets which would be supplied by the various reactor types are summarized

  4. Tritium in groundwater investigation at the Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    DeWilde, J.; Yu, L.; Wootton, R.; Belanger, D.; Hansen, K.; McGurk, E.; Teare, A.

    2001-01-01

    Ontario Power Generation Inc. (OPG) investigated tritium in groundwater at the Pickering Nuclear Generating Station (PNGS). The objectives of the study were to evaluate and define the extent of radionuclides, primarily tritium, in groundwater, investigate the causes or sources of contamination, determine impacts on the natural environment, and provide recommendations to prevent future discharges. This paper provides an overview of the investigations conducted in 1999 and 2000 to identity the extent of the tritium beneath the site and the potential sources of tritium released to the groundwater. The investigation and findings are summarized with a focus on unique aspects of the investigation, on lessons learned and benefits. Some of the investigative techniques discussed include process assessments, video inspections, hydrostatic and tracer tests, Helium 3 analysis for tritium age dating, deuterium and tritium in soil analysis. The investigative techniques have widespread applications to other nuclear generating stations. (author)

  5. Prospective thorium fuels for future nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2017-01-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  6. Status of development of robots for nuclear power generation

    International Nuclear Information System (INIS)

    Kawakami, Shoji; Asai, Takashi; Kihara, Shisho.

    1984-01-01

    In the field of checkup, inspection, maintenance and repair in nuclear power plants, remotely operated automatic devices, that is, the robots for nuclear power generation, have been adopted from the past as one of the measures to improve the reliability of equipment, to shorten the period of regular inspection and to reduce the radiation exposure dose of workers. As the proportion of nuclear power generation in electric power supply has increased, the reduction of the period and man-hour of the repair works in radioactive environment and the qualitative improvement of works have become important problems. So far, several tens of the remotely operated automatic devices for repair works have been developed and applied to PWR plants. As the range of robotization expands, the inside of existing power stations becomes overcrowded with such special devices and their control boards, therefore, it is desirable to advance the mechanization toward high performance, versatility and autonomous systems. The remotely operated automatic devices for the repair of steam generators, nuclear reactors and fuel, the automatic ultrasonic flaw detectors for pipings, the storage systems for radioactive solid wastes, unmanned forklift trucks, the submerged robots for cleaning water intake and discharge channels and so on are described. (Kako, I.)

  7. Online control loop tuning in Pickering Nuclear Generating Stations

    International Nuclear Information System (INIS)

    Yu, K.X.; Harrington, S.

    2008-01-01

    Most analog controllers in the Pickering B Nuclear Generating Stations adopted PID control scheme. In replacing the analog controllers with digital controllers, the PID control strategies, including the original tuning parameters were retained. The replacement strategy resulted in minimum effort on control loop tuning. In a few cases, however, it was found during commissioning that control loop tuning was required as a result of poor control loop performance, typically due to slow response and controlled process oscillation. Several factors are accounted for the necessities of control loop re-tuning. Our experience in commissioning the digital controllers showed that online control tuning posted some challenges in nuclear power plant. (author)

  8. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  9. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  10. Public acceptance of nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Liverman, J.L.; Thorne, R.D.

    1977-01-01

    Within the United States environmental awareness has spread and matured since the early 1960's. Evidence of this is found in cautious attitudes toward the installation of nuclear power reactors and other components of the nuclear fuel cycle. Hazards associated with nuclear energy technologies appear to attract a greater share of public attention than the hazards of nonnuclear counterparts. The association of nuclear power with nuclear weapons may be at the root of this concern. The explicit identification of increased incidences of cancer and genetic effects in humans as potential consequences of exposure to ionizing radiation and knowledge that radiation exposures and health consequences arising from nuclear power operations might occur many generations after operations cease also underlie this concern. Based in large part on these concerns, a number of actions have been taken in the United States to prevent and to delay installation and development of nuclear technology. These actions are reviewed and analyzed with emphasis on the 1976 California nuclear moratorium referendum and other more recent actions at state and national levels. They are compared with the status and outcome of similar actions in other nations as is possible. Additionally, ERDA's current approaches to public involvement in the decision making process is discussed, including the value of comprehensive analyses of health, environmental, and socioeconomic aspects of alternative energy sources in responding to public needs. U.S. plans for providing such analyses for all installed and developing energy technologies are presented with special reference to areas which require international cooperation for implementation. The value of international analysis and internationally accepted environmental control strategies for all energy technologies is also addressed

  11. Simulation on effect of stopping nuclear power generation

    International Nuclear Information System (INIS)

    Yajima, Masayuki; Kumakura, Osamu; Sakurai, Norihisa; Nagata, Yutaka; Hattori, Tsuneaki

    1990-01-01

    The effects that the stopping of nuclear power generation exerts on the price of primary energy such as petroleum, LNG and coal and the trend of Japanese energy and economy are analyzed by using the medium term economy forecasting system. In the simulation, the case of stopping nuclear power generation in seven countries of OECD is supposed, and as for the process of stopping, two cases of immediate stopping and stopping by gradual reduction are set up. The models used for the simulation are the world energy model, the competition among energies model and the multiple category model. By the decrease of nuclear power generation, thermal power generation increases, and the demand of fossil fuel increases. As the result, the price of fossil fuel rises (the world energy model), and the price of fossil fuel imported to Japan rises. Also the quantity of fossil fuel import to Japan increase. These price rise and quantity increase exert deflation effect to Japanese economy (the multiple category model). The price rise of fossil fuel affects the competition among energies in Japan through the relative change of secondary energy price (the competition among energies model). The impact to the world and to Japan is discussed. (K.I.)

  12. Nordic Nuclear Materials Forum for Generation IV Reactors

    International Nuclear Information System (INIS)

    Anghel, C.; Penttilae, S.

    2010-03-01

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  13. Nordic Nuclear Materials Forum for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, C. (Studsvik Nuclear AB, Nykoeping (Sweden)); Penttilae, S. (Technical Research Centre of Finland, VTT (Finland))

    2010-03-15

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  14. European Nuclear Young Generation. Position Paper on Nuclear Energy and the Environment

    International Nuclear Information System (INIS)

    2015-01-01

    The world population is continually growing; from 1 billion in 1800 to 7 billion in 2011, we are expected to reach 10 billion by the end of the 21. century. To sustain this population growth, an increased energy supply is required to provide sufficient clean water, health care, education, food, shelter, communication and transportation. Whereas energy access is today guaranteed in OECD countries, around 1.3 billion people still live without sufficient access to energy. Affordable and reliable sources of energy are required to sustain our development. At the same time, it is now acknowledged by the scientific community that human activities are mainly responsible for climate change. Our growing energy-intensive societies are accelerating climate change and its associated consequences: rise of ocean levels, more frequent extreme meteorological phenomena and massive loss of biodiversity; consequences that must be prevented at all costs. We need sustainable, affordable, reliable and safe sources of energy. It is our responsibility to promote low carbon energies and responsible consumer behaviors that will prevent social and environmental disasters for current and future generations. Nuclear, a solution? Nuclear power is regarded by many as being environmentally friendly. Nuclear power plants have nearly no CO 2 emission, while the nuclear industry is recognized as one of the safest industries; backed by stringent safety standards, transparency culture and international cooperation based on an evolution of lessons learnt from a variety of operations. Moreover, solutions for decommissioning and waste management exist and are already implemented in most European countries. Nuclear power is affordable and reliable. Nuclear power has one of the lowest production costs within the energy market, this stems from production costs which mainly depend upon the investment costs; fuel and operating costs have little impact on the price of nuclear electricity. Nuclear generation is

  15. A survey on the corrosion susceptibility of Alloy 800 CANDU steam generator tubing materials

    International Nuclear Information System (INIS)

    Lu, Y.C.; Dupuis, M.; Burns, D.

    2008-01-01

    To provide support for a proactive steam generator (SG) aging management strategy, a survey on the corrosion susceptibility of the archived Alloy 800 tubing from CANDU SGs under plausible crevice chemistry conditions was conducted to assess the potential material degradation issues in CANDU SGs. Archived Alloy 800 samples were collected from four CANDU utilities. High-temperature electrochemical analysis was carried out to assess the corrosion susceptibility of the archived SG tubing under simulated CANDU crevice chemistry conditions at both 150 o C and 300 o C. The potentiodynamic polarization results obtained from the archived CANDU SG tubes were compared to the data from ex-service tubes removed from Darlington Nuclear Generating Station (DNGS) SGs and a reference nuclear grade Alloy 800 tubing. It was found that the removed Darlington SG tubes, with signs of in-service degradation, were more susceptible to pitting corrosion than the reference nuclear grade Alloy 800 tubing. At 150 o C, under the same neutral crevice chemistry conditions, the potentiodynamic polarization curve of the ex-service Darlington SG tubing has an active peak, which is a sign of propensity to crevice/underdeposit corrosion. This active peak was not observed in any of the potentiodynamic polarization curves of all archived Alloy 800 CANDU SG tubing indicating that archived CANDU SG tubes are less susceptible to the underdeposit corrosion under SG startup conditions. The corrosion behaviour of the archived Alloy 800 tubes from CANDU SG was similar to that of the reference nuclear grade Alloy 800 tubing. The results of this survey suggest that the Alloy 800 tubing materials used in the existing CANDU utilities (other than ex-service DNGS tubing) will continue to have reliable performance under specified CANDU operating conditions. Ex-service SG tubing from DNGS, although showing lower than average corrosion resistance, still has a wide acceptable operating margin and the in

  16. A century of nuclear science. Important contributions of early generation Chinese physicist to nuclear science

    International Nuclear Information System (INIS)

    Zheng Chunkai; Xu Furong

    2003-01-01

    The great discoveries and applications of nuclear science have had tremendous impact on the progress and development of mankind over the last 100 years. In the 1920's to 1940's, many young Chinese who yearned to save the country through science and education went to west Europe and north America to study science, including physics. Studying and working with famous physicists throughout the world, they made many important contributions and discoveries in the development of nuclear science. This paper describes the historical contributions of the older generation of Chinese physicists to nuclear science

  17. Generating highly polarized nuclear spins in solution using dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Wolber, J.; Ellner, F.; Fridlund, B.

    2004-01-01

    A method to generate strongly polarized nuclear spins in solution has been developed, using Dynamic Nuclear Polarization (DNP) at a temperature of 1.2K, and at a field of 3.354T, corresponding to an electron spin resonance frequency of 94GHz. Trityl radicals are used to directly polarize 13C...... and other low-γ nuclei. Subsequent to the DNP process, the solid sample is dissolved rapidly with a warm solvent to create a solution of molecules with highly polarized nuclear spins. Two main applications are proposed: high-resolution liquid state NMR with enhanced sensitivity, and the use...

  18. Nuclear Energy In Switzerland: It's going ahead. Challenges For The Swiss Nuclear Society Young Generation Group

    International Nuclear Information System (INIS)

    Streit, Marco; Bichsel, Thomas; Fassbender, Andre; Horvath, Matthias

    2008-01-01

    Swiss energy policy is focused on generating domestic electric power without combusting fossil fuels for already four decades. Roughly 60% of the electricity is generated in hydroelectric plants, which is possible due to the country's favourable topography; the remaining 40% are produced by the country's five nuclear power plants (NPPs). As in any other country nuclear power has its enemies in Switzerland. Due to the direct democracy system in Switzerland the nuclear opposition has a lot of possibilities to disturb the energy policy. Since 1969, when the first Swiss nuclear power plant went online, four plebiscites were held on the issue of civil use of nuclear energy. Four times Swiss citizens voted in favour of further operation of the existing plants also in the latest battle for nuclear energy, which was won in 2003. In 2005 and 2006 several Swiss studies about the future energy situation, especially the electricity situation, have been published. All off them show clearly that there will be a big gab around the year 2020 when the oldest three nuclear power plants will fade out. A public debate was started, how to solve the problem. Beside others, building new nuclear power plants was mentioned and discussed rationally. In 2007 the energy police of the Swiss government changed into a more nuclear friendly position and at the end of the same year some electricity companies lunched a new build program. Hosting the International Youth Nuclear Congress 2008 (IYNC 2008) in Switzerland seems to be just the right moment for the nuclear industry in our country. The slightly changed surroundings effected the organization of Swiss Nuclear Society (SNS) and SNS Young Generation Group (SNSYG) and enlarged the fields of activities for SNSYG. Those activities mentioned in the previous chapters will be developed in the future. The discussion about new builds in Switzerland has started and because of that more nuclear activities in Switzerland will occur. And surely there will

  19. Nuclear and conventional baseload electricity generation cost experience

    International Nuclear Information System (INIS)

    1993-04-01

    The experienced costs of electricity generation by nuclear and conventional plants and the expected costs of future plants are important for evaluating the economic attractiveness of various power projects and for planning the expansion of electrical generating systems. The main objective of this report is to shed some light on recent cost experience, based on well authenticated information made available by the IAEA Member States participating in this study. Cost information was provided by Canada (Ontario Hydro), Czechoslovakia, Hungary, India, the Republic of Korea and Spain. Reference is also made to information received from Brazil, China, France, Russia and the United States of America. The part of the report that deals with cost experience is Section 2, where the costs of both nuclear and fossil fired plants are reviewed. Other sections give emphasis to the analysis of the major issues and relevant cost elements influencing the costs of nuclear power plants and to a discussion of cost projections. Many of the conclusions can also be applied to conventional plants, although they are usually less important than in the case of nuclear plants. 1 ref., figs and tabs

  20. International project GT-MHR - New generation of nuclear reactors

    International Nuclear Information System (INIS)

    Vasyaev, A.; Kodochigov, N.; Kuzavkov, N.; Kuznetsov, L.

    2001-01-01

    Gas turbine-modular helium reactor (GT-MHR) is the reactor of new generation, which satisfies the requirements of the progressing large-scale nuclear power engineering. The activities in GT-MHR Project started in 1995. In 1997 the Conceptual Design was developed under four-side Agreement (MINATOM, General Atomics, FRAMATOME, Fuji Electric); it has passed through the internal and international reviews, has been approved and recommended for further development as one of new trends in creation of new generation plants. Starting from 1999, the activities in the development of the Preliminary Design of the plant were deployed under the Agreement between the Government of the United States of America and the Government of the Russian Federation on Scientific and Technical Cooperation in the Management of Plutonium That Has Been Withdrawn From Nuclear Military Programs dated July 24, 1998. The activities are established under the Contract between MINATOM and OKBM Russia, and under the General Agreement between Department of Energy (DOE), USA and OKBM. The GT-MHR Project is included into 'Development Strategy of Russian Nuclear Power in the first Half of the XXI-st Century' providing for 'the participation in an international project on the development and construction of GT-MHR nuclear power plant till year 2010 and 'operation of GT-MHR prototype unit and creation of fuel fabrication facility (within framework of International Project) till year 2030'. (author)

  1. Diagnostic knowledge generation of nuclear power plants using knowledge compilers

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji; Endou, Akira; Ikeda, Mitsuru; Mizoguchi, Riichiro

    1994-01-01

    This paper discusses a method to generate diagnostic knowledge of nuclear power plants, from commonly accepted physical knowledge and design information about plant configuration. This method is based on qualitative reasoning, which is advantageous to numerical information processing in the sense that system can explain why and how directly applicable knowledge is correctly generated, and that knowledge base is highly reusable and expandable because it is independent on detailed numerical design specifications. However, reasoning ambiguity has been found as the largest problem in applying the technique to nuclear power plants. The proposed approach mainly consists of a knowledge representation scheme, reasoning algorithm, and qualitative model construction method. (author). 4 refs, 8 figs, 1 tab

  2. Reducing Risk for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  3. Korea's choice of a new generation of nuclear plants

    International Nuclear Information System (INIS)

    Redding, J.R.

    1994-01-01

    The ABWR and SBWR design, both under development at GE, provide the best platform for developing the next generation advanced plants. The ABWR, which is rapidly setting the standard for new nuclear reactor plants, is clearly the best choice to meet the present energy needs of Korea. And through a GE/Korea partnership to develop the plant of the next century, Korea will establish itself as a leader in innovative reactor technology

  4. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  5. Basic recognition on safety of nuclear electric power generation

    International Nuclear Information System (INIS)

    Miyazaki, Keiji

    1995-01-01

    The safety of nuclear electric power generation is not to inflict radiation damage on public. Natural radiation is about 1 mSv every year. As far as the core melting on large scale does not occur, there is not the possibility of exerting serious radiation effect to public. The way of thinking on ensuring the safety is defense in depth. The first protection is the prevention of abnormality, the second protection is the prevention of accidents, and the third protection is the relaxation of effect. As design base accidents, the loss of coolant accident due to the breakdown of inlet pipings of reactors and the breaking of fine tubes in steam generators are included. The suitability of location is evaluated. As the large scale accidents of nuclear power stations in the past, Chernobyl accident and Three Mile Island accident are explained. The features of the countermeasures to the accident in Mihama No. 2 plant are described. The countermeasures to severe accidents, namely accident management and general preventive maintenance are explained. The background of the nonconfidence feeling to nuclear electric power generation and the importance of opening information to public are shown. (K.I.)

  6. Nuclear Power as a Basis for Future Electricity Generation

    Science.gov (United States)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power - primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 - 40%) or very low (5 - 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  7. 76 FR 19795 - Exelon Generation Company, LLC; Oyster Creek Nuclear Generating Station; Exemption

    Science.gov (United States)

    2011-04-08

    ... based on the loads that are lost (e.g., control room ventilation, service water pump, etc.) and a fire... licensee stated that they conservatively assume that instrument air is lost for all Appendix R fires based... the Oyster Creek Nuclear Generating Station (Oyster Creek). The license provides, among other things...

  8. Prospective thorium fuels for future nuclear energy generation

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In the beginning of the Nuclear Era, many countries were interested on thorium, particularly during the 1950 1970 periods. Nevertheless, since its discovery almost two centuries ago, the use of thorium has been restricted to gas mantles employed in gas lighting. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Nowadays approximately the worldwide yearly requirement of uranium for about 435 nuclear reactors in operation is 65,000 metric t. Therefore, alternative solutions for future must be developed. Thorium is nearly three times more abundant than uranium in The Earth's crust. Despite thorium is not a fissile material, {sup 232}Th can be converted to {sup 233}U (fissile) more efficiently than {sup 238}U to {sup 239}Pu. Besides this, thorium is an environment alternative energy source and also inherently resistant to proliferation.. Many countries had initiated research on thorium in the past, Nevertheless, the interest evanesced due new uranium resources discoveries and availability of enriched uranium at low prices from obsolete weapons. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. A brief history of thorium and its utilization are presented, besides a very short discussion about prospective thorium nuclear fuels for the next generation of nuclear reactors. (author)

  9. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  10. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  11. Young Generation in Nuclear Initiative to Promote Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Kilavi Ndege, P.K.

    2015-01-01

    The Kenyan Young Generation in Nuclear (KYGN) is a recently founded not to profit organization. Its mandate is to educate, inform, promote and transfer knowledge on the peaceful, safe and secure users of nuclear science and technology in Kenya. It brings on board all scientist and students with special interest in nuclear science and related fields. KYGN is an affiliate of International Youth Nuclear Congress (YNC) whose membership with IYNC whose membership is drawn from member state of United Nations. Through our membership with IYNC, KYGN members have been able to participate in different forums. In this paper, we discuss KYGN’s prime roles opportunities as well as the challenges of the organization

  12. A linear current injection generator for the generation of electrons in a nuclear reactor

    International Nuclear Information System (INIS)

    Kar, Moutushi; Thakur, Satish Kumar; Agiwal, Mamta; Sholapurwala, Zarir H.

    2011-01-01

    While, operating a nuclear reactor it is absolutely necessary for generating a chain reaction or fission. A chain reaction can be initiated by bombardment of a heavy nucleus with fast moving particles. One of the common methods used for generating a fast moving particle is injecting a very high voltage into a particle accelerator and accelerating high energy particle beams using machine like cyclotron, synchrotron, linear accelerators i.e. linac and similar equipment. These equipment generated and run by several high voltage applications like simple high voltage DC systems and supplies or pulsed electron systems. (author)

  13. Glas generator for the steam gasification of coal with nuclear generated heat

    International Nuclear Information System (INIS)

    Buchner, G.

    1980-01-01

    The use of heat from a High Temperature Reactor (HTR) for the steam gasification of coal saves coal, which otherwise is burnt to generate the necessary reaction heat. The gas generator for this process, a horizontal pressure vessel, contains a fluidized bed of coal and steam. An ''immersion-heater'' type of heat exchanger introduces the nuclear generated heat to the process. Some special design problems of this gasifier are presented. Reference is made to the present state of development of the steam gasification process with heat from high temperature reactors. (author)

  14. Pressurized-water coolant nuclear reactor steam generator

    International Nuclear Information System (INIS)

    Mayer, H.; Schroder, H.J.

    1975-01-01

    A description is given of a pressurized-water coolant nuclear reactor steam generator having a vertical housing for the steam generating water and containing an upstanding heat exchanger to which the pressurized-water coolant passes and which is radially surrounded by a guide jacket supporting a water separator on its top. By thermosiphon action the steam generating water flows upward through and around the heat exchanger within the guide chamber to the latter's top from which it flows radially outwardly and downwardly through a down draft space formed between the outside of the jacket and the housing. The water separator discharges separated water downwardly. The housing has a feedwater inlet opening adjacent to the lower portion of the heat exchanger, providing preheating of the introduced feedwater. This preheated feedwater is conveyed by a duct upwardly to a location where it mixes with the water discharged from the water separator

  15. Electrosleeve process for in-situ nuclear steam generator repair

    Energy Technology Data Exchange (ETDEWEB)

    Barton, R.A. [Ontario Hydro Technologies, Toronto, ON (Canada); Moran, T.E. [Framatome Technologies Inc., Lynchburg, VA (United States); Renaud, E. [Babcock and Wilcox Industries Ltd., Cambridge, ON (Canada)

    1997-07-01

    Degradation of steam generator (SG) tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced out-ages, unit de-rating, SG replacement or even the permanent shutdown of a reactor. In response to the onset of SG tubing degradation at Ontario Hydro's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for SG tubing repair and the unique properties of the advanced sleeve material. The successful installation of Electrosleeves that have been in service for more than three years in Alloy 400 SG tubing at the Pickering-5 CANDU unit, the more recent extension of the technology to Alloy 600 and its demonstration in a U.S. pressurized water reactor (PWR), is presented. A number of PWR operators have requested plant operating technical specification changes to permit Electrosleeve SG tube repair. Licensing of the Electrosleeve by the U.S. Nuclear Regulatory Commission (NRC) is expected imminently. (author)

  16. Human Reliability for the Next Generation of Nuclear Experts

    Energy Technology Data Exchange (ETDEWEB)

    Coates, Cameron W [ORNL; Eisele, Gerhard R [ORNL

    2010-01-01

    As the nuclear renaissance progresses and today s nuclear and radiological experts retire, a new generation of experts will ultimately be recruited, trained, and replace the old guard. Selecting individuals who have the attitudes and values appropriate to work in the nuclear industry and who have the best qualifications for the position will be a key to the success of this renaissance. In a world with deep divisions on political and social issues; how a State, agency, or company assures that those hired can be trusted with the access to, and responsibilities for, nuclear and/or radiological materials is an important consideration. Human interactions invariably rely on the offering of assurance and the receipt of trust. A fundamental element in any human relationship is knowing when to trust and when to doubt. When are assurances to be believed or questioned? Human reliability programs (HRP) are used to assure a person s truthfulness and loyalty to the State. An HRP program has a number of elements and may not fit all cultures in the same form. An HRP can vary in scope from simple background checks of readily available data to full field investigations and testing. This presentation discusses possible elements for an HRP from regulation to implementation and the issues related to each element. The effects of an HRP on potential recruits will be discussed.

  17. The future of nuclear power and fourth-generation reactors

    International Nuclear Information System (INIS)

    Carre, F.; Renault, C.

    2006-01-01

    Faced with the exhaustion of fossil fuel resources, the output of existing nuclear power must quadruple between now and 2050, and the Commissariat a l'Energie atomique (CEA) and its industrial partners are cooperating in a programme of R and D on future nuclear power. France strategy puts rapid neutron reactors (RNR) at the forefront, in view of their possible introduction by 2040. These reactors allow a more efficient use of uranium resources and minimise the production of long-life nuclear waste. Two technologies which use respectively, sodium and gas as their coolant are being studied. For the sodium RNR, which benefits from significant existing experience, the key is to first improve its economic performance. For the gas RNR, which draws on the principles and the generic assets of the RNR, for those using helium as the coolant, and those with applications at high temperature, it is important firstly to demonstrate the key technologies such as the fuel. The decision of President Chirac to launch the study of a prototype, fourth-generation reactor for 2020 is stimulating the research effort into France future nuclear power. (author)

  18. Introduction to the methods of estimating nuclear power generating costs

    International Nuclear Information System (INIS)

    1961-01-01

    The present report prepared by the Agency with the guidance and assistance of a panel of experts from Member States, the names of whom will be found at the end of this report, represents the first step in the methods of cost evaluation. The main objectives of the report are: (1) The preparation of a full list of the cost items likely to be encountered so that the preliminary estimates for a given nuclear power system can be relied upon in deciding on its economic merits. (2) A survey of the methods currently used for the estimation of the generating costs of the power produced by a nuclear station. The survey is intended for a wide audience ranging from engineers to public officials with an interest in the prospects of nuclear power. An attempt has therefore been made to refrain from detailed technical discussions in order to make the presentation easily understandable to readers with only a very general knowledge of the principles of nuclear engineering. 3 figs, tabs

  19. Steam generator replacement at the Obrigheim nuclear power station

    International Nuclear Information System (INIS)

    Pickel, E.; Schenk, H.; Huemmler, A.

    1984-01-01

    The Obrigheim Nuclear Power Station (KWO) is equipped with a dual-loop pressurized water reactor of 345 MW electric power; it was built by Siemens in the period 1965 to 1968. By the end of 1983, KWO had produced some 35 billion kWh in 109,000 hours of operation. Repeated leaks in the heater tubes of the two steam generators had occurred since 1971. Both steam generators were replaced in the course of the 1983 annual revision. Kraftwerk Union AG (KWU) was commissioned to plant and carry out the replacement work. Despite the leakages the steam generators had been run safely and reliably over a period of 14 years until their replacement. Replacing the steam generators was completed within twelve weeks. In addition to the KWO staff and the supervising crew of KWU, some 400 external fitters were employed on the job at peak work-load periods. For the revision of the whole plant, work on the emergency systems and replacement of the steam generators a maximum number of approx. 900 external fitters were employed in the plant in addition to some 250 members of the plant crew. The exposure dose of the personnel sustained in the course of the steam generator replacement was 690 man-rem, which was clearly below previous estimates. (orig.) [de

  20. Draining down of a nuclear steam generating system

    International Nuclear Information System (INIS)

    Jawor, J.C.

    1987-01-01

    The method is described of draining down contained reactor-coolant water from the inverted vertical U-tubes of a vertical-type steam generator in which the upper, inverted U-shaped ends of the tubes are closed and the lower ends thereof are open. The steam generator is part of a nuclear powered steam generating system wherein the reactor coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator. The method comprises continuously introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tube sheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator, while permitting the water to flow out from the open ends of the U-tubes

  1. In 2002 nuclear power plants generated 2575 TWh

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    In 2002 nuclear power plants produced 2575 TWh throughout the world. At the end of 2002, 441 reactors were operating in 31 countries and 32 were being built in 12 countries (India (7), China (4), Ukraine (4), Japan (3), Russia (3), Iran (2), Slovakia (2), South-Korea (2), Taiwan (2), Argentina (1), North-Korea (1) and Rumania (1). In 2002, 6 reactors came into operation : Qinshan-III-1, Qinshan-II-1, Lingao-I and Lingao-II in China, Yongwang-6 in South-Korea, and Temelin-2 in the Czech Republic. In the same period 4 reactors were decommissioned: 2 in U.K. (Bradwell) and 2 in Bulgaria (Kozloduy-1 and -2). In 2002 nuclear energy generated more than 40% of the electrical power production in 9 countries: Lithuania, France, Slovakia, Belgium, Bulgaria, Sweden, Ukraine, Slovenia and Armenia. (A.C.)

  2. History of the nuclear power generation technology in Japan

    International Nuclear Information System (INIS)

    2016-01-01

    First, the outline of the historical fact is described. Next, the research institution, the industrial world, and the government which were the bearers of technical development are described and look back upon the history of development from each position. The focus is a viewpoint based on refection of a Fukushima disaster. 'Teachings from history' seen from each actor was described being based on the objective fact. Moreover, it focuses also on the society, the politics, and the economic factor which affected development of nuclear development. The following three were treated as themes. 1. Relation with the atomic power and the nonproliferation policy of the U.S. government. 2. Relation with public opinion or media. 3. Social responsibility of a society, or a scientist and an engineering person. Finally, based on these teachings, the viewpoint considered to be important for future nuclear power generation and technical development was summarized as a proposal. (author)

  3. Nuclear-fuel-cycle facility deployment and price generation

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    The enrichment process and how it is to be modeled in the International Nuclear Model (INM) is described. The details of enrichment production, planning, unit price generation, demand estimation and ordering are examined. The enrichment process from both the producer's and the utility's point of view is analyzed. The enrichment separative-work-unit (SWU) contracts are also discussed. The relationship of the enrichment process with other sectors of the nuclear fuel cycle, expecially uranium mining and milling is considered. There are portions of the enrichment process that are not completely understood at the present time. These areas, which require further study, will be pinpointed in the following discussion. In many cases, e.g., the advent of SMU brokerage activities, the answers will emerge only in time. In other cases, e.g., political trends, uncertainties will always remain. It is possible to cast the uncertainties in a probabilistic framework, but this is beyond the scope of this report. INM, a comprehensive model of the international nuclear industry, simulates the market decision process based on current and future price expectations under a broad range of scenario specifications. INM determines the proper reactor mix as well as the planning, operation, and unit price generation of the attendant nuclear fuel cycle facilities. The level of detail of many of the enrichment activities presented in this report, e.g., the enrichment contracts, is too fine to be incorporated into INM. Nevertheless, they are presented in a form that is ammendable to modeling. The reasons for this are two-fold. First, it shows the level of complexity that would be required to model the entire system. Second, it presents the structural framework for a detailed, stand-alone enrichment model

  4. Nuclear data generation for cryogenic moderators and high temperature moderators

    International Nuclear Information System (INIS)

    Petriw, Sergio

    2007-01-01

    The commonly used processing codes for nuclear data only allow the generation of cross section data for a limited number of materials and physical conditions.At present, one of the most used computer codes for the generation of neutron cross sections is N J O Y, which is based on a phonon expansion of the scattering function starting from the frequency spectrum.Therefore, the information related to the system's density of states is crucial to produce the required data of interest. In this work the formalism of the Synthetic Model for Molecular Solids (S M M S) was implemented, which is in turn based on the Synthetic Frequency Spectrum (S F S) concept.The synthetic spectrum is central in the present work, and it is built from simple, relevant parameters of the moderator, thus conforming an alternative tool when no information on the actual frequency spectrum of the moderator material is available.S F S 's for several material of interest where produced in this work, for both cryogenic and high temperature moderators.We studied some materials of special interest, like solid methane, ice, methyl clathrate and two which are of special interest in the nuclear industry: graphite and beryllium.The libraries generated in the present work for the materials considered, in spite of their synthetic origin, are able to produce results that are even in better agreement with available information [es

  5. New radionuclide generator systems for use in nuclear medicine

    International Nuclear Information System (INIS)

    Atcher, R.W.

    1979-01-01

    A current emphasis in nuclear medicine is to better match the physical lifetime of the radionuclides used in vivo for diagnosis and treatment to the biological lifetime of the diagnostic procedure or to minimize radiation dose to areas other than those to be treated. In many cases the biological lifetime is on the order of minutes. Since the direct production of radionuclides with half lives of minutes requires the user to be near a suitable reactor or accelerator, this study was undertaken to produce short-lived radionuclides indirectly. If a long-lived radionuclide decays into a short-lived radionuclide, quick separation of the daughter activity from the parent enables the user to have a short-lived daughter while freeing him from the constraint of proximity to a cyclotron. Systems where a short-lived daughter is separated from a long-lived parent are called radionuclide generators. Two generator systems were developed for use in nuclear medicine, one in diagnostic work and the other for therapeutic work. The yield and breakthrough characteristics were within the limits required to minimize unnecessary radiation exposure in patients. Two parent radionuclides were produced using 4 He beams available from medium energy cyclotrons. The yield was high enough to produce generators that would be useful in clinical applications

  6. Soviet steam generator technology: fossil fuel and nuclear power plants

    International Nuclear Information System (INIS)

    Rosengaus, J.

    1987-01-01

    In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins with a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references

  7. Static and dynamic high power, space nuclear electric generating systems

    International Nuclear Information System (INIS)

    Wetch, J.R.; Begg, L.L.; Koester, J.K.

    1985-01-01

    Space nuclear electric generating systems concepts have been assessed for their potential in satisfying future spacecraft high power (several megawatt) requirements. Conceptual designs have been prepared for reactor power systems using the most promising static (thermionic) and the most promising dynamic conversion processes. Component and system layouts, along with system mass and envelope requirements have been made. Key development problems have been identified and the impact of the conversion process selection upon thermal management and upon system and vehicle configuration is addressed. 10 references

  8. Operating experience with diesel generators in Belgian nuclear power plants

    International Nuclear Information System (INIS)

    Merny, R.

    1986-01-01

    Various problems have occurred on the diesel generators in the Belgian nuclear power plants, independently of the D.G. manufacturer or from the operating crew. Furthermore no individual part of the D.G. can be incriminated as being the main cause of the incidents. The incidents reported in this paper are chosen because of the importance for the safety or for the long repair period. The unavailability of a D.G. can only be detected by periodic tests and controls. Combined with a good preventive maintenance, the risks of incidents can be reduced. (author)

  9. The random signal generator of imitated nuclear radiation pulse

    International Nuclear Information System (INIS)

    Li Dongcang; Yang Lei; Yuan Shulin; Yang Yinghui; Zang Fujia

    2007-01-01

    Based in pseudo-random uniformity number, it produces random numbers of Gaussian distribution and exponential distribution by arithmetic. The hardware is the single-chip microcomputer of 89C51. Program language makes use of Keil C. The output pulse amplitude is Gaussian distribution, exponential distribution or uniformity distribution. Likewise, it has two mode or upwards two. The time alternation of output pulse is both periodic and exponential distribution. The generator has achieved output control of multi-mode distribution, imitated random characteristic of nuclear pulse in amplitude and in time. (authors)

  10. The Development of OZONE Washer at nuclear power generation plants

    International Nuclear Information System (INIS)

    Goi, N.; Ito, Kazuaki; Nagano, T.; Tawaki

    2001-01-01

    An OZONE Washer for working clothes in nuclear power generation plants was developed. An ozone generator, tank for the solution with ozone and its recycling, washer and exhaust ventilation makes constructs of the OZONE Washer. The washing effect was determined by the difference of the absorbance of samples between before and after washing. These samples were sewed on the stained places and washed. Main strain was consisted of sebum and protein from human bodies. The average removing stains of samples by water and ozone dissolved solution were 100% and 200%, respectively. Moreover, the deodorization and disinfecting effect were observed by ozone. The water saving of equipment was carried out by reuse of washing water after adding ozone. The strains was dissolved in water and then oxidized thoroughly by ozone added. (S.Y.)

  11. Foundations for the Fourth Generation of Nuclear Power

    International Nuclear Information System (INIS)

    Lake, James Alan

    2000-01-01

    Plentiful, affordable electrical energy is a critically important commodity to nations wishing to grow their economy. Energy, and more specifically electricity, is the fuel of economic growth. More than one-third of the world's population (more than 2 billion people), however, live today without access to any electricity. Further, another 2 billion people in the world exist on less than 100 watts of electricity per capita. By comparison, the large economies of Japan and France use more than 800 watts of electricity per capita, and the United States uses nearly 1500 watts of electricity per capita. As the governments of developing nations strive to improve their economies, and hence the standard of living of their people, electricity use is increasing. Several forecasts of electrical generation growth have concluded that world electricity demand will roughly double in the next 20-25 years, and possibly triple by 2050. This electrical generation growth will occur primarily in the rapidly developing and growing economies in Asia and Latin America. This net growth is in addition to the need for replacement generating capacity in the United States and Europe as aging power plants (primarily fossil-fueled) are replaced. This very substantial worldwide electricity demand growth places the issue of where this new electricity generation capacity is to come from squarely in front of the developed countries. They have a fundamental desire (if not a moral obligation) to help these developing countries sustain their economic growth and improve their standard of living, while at the same time protecting the energy (and economic) security of their own countries. There are currently 435 power reactors generating about 16 percent of the world's electricity. We know full well that nuclear power shows great promise as an economical, safe, and emissions-free source of electrical energy, but it also carries at least the perception of great problems, from public safety to dealing with

  12. Generation of Transgenic Xenopus laevis: III. Sperm Nuclear Transplantation.

    Science.gov (United States)

    Ishibashi, Shoko; Kroll, Kristin L; Amaya, Enrique

    2007-09-01

    INTRODUCTIONManipulating genes specifically during later stages of amphibian embryonic development requires fine control over the time and place of expression. These protocols describe an efficient nuclear-transplantation-based method of transgenesis developed for Xenopus laevis. The approach enables stable expression of cloned gene products in Xenopus embryos. The procedure is based on restriction-enzyme-mediated integration (REMI) and can be divided into three parts: (I) high-speed preparation of egg extracts, (II) sperm nuclei preparation, and (III) nuclear transplantation. This protocol describes a method for the nuclear transplantation in Xenopus laevis. Permeabilized sperm nuclei are incubated briefly with linearized plasmid DNA, after which egg extract and a small amount of restriction enzyme are added. The egg extract partially decondenses the chromosomes, and the restriction enzyme stimulates recombination by creating double-strand breaks, facilitating integration of DNA into the genome. Diluted nuclei are transplanted into unfertilized eggs. Because the transgene integrates into the genome prior to fertilization, the resulting transgenic embryos are not chimeric and there is no need to breed to the next generation in order to obtain nonmosaic transgenic animals.

  13. Quality control of stainless steel pipings for nuclear power generation

    International Nuclear Information System (INIS)

    Miki, Minoru; Kitamura, Ichiro; Ito, Hisao; Sasaki, Ryoichi

    1979-01-01

    The proportion of nuclear power in total power generation is increasing recently in order to avoid the concentrated dependence on petroleum resources, consequently the reliability of operation of nuclear power plants has become important. In order to improve the reliability of plants, the reliability of each machine or equipment must be improved, and for the purpose, the quality control at the time of manufacture is the important factor. The piping systems for BWRs are mostly made of carbon steel, and stainless steel pipings are used for the recirculation system cooling reactors and instrumentation system. Recently, grain boundary type stress corrosion cracking has occurred in the heat-affected zones of welded stainless steel pipings in some BWR plants. In this paper, the quality control of stainless steel pipings is described from the standpoint of preventing stress corrosion cracking in BWR plants. The pipings for nuclear power plants must have sufficient toughness so that the sudden rupture never occurs, and also sufficient corrosion resistance so that corrosion products do not raise the radioactivity level in reactors. The stress corrosion cracking occurred in SUS 304 pipings, the factors affecting the quality of stainless steel pipings, the working method which improves the corrosion resistance and welding control are explained. (Kako, I.)

  14. Design of nuclear power generation plants adopting model engineering method

    International Nuclear Information System (INIS)

    Waki, Masato

    1983-01-01

    The utilization of model engineering as the method of design has begun about ten years ago in nuclear power generation plants. By this method, the result of design can be confirmed three-dimensionally before actual production, and it is the quick and sure method to meet the various needs in design promptly. The adoption of models aims mainly at the improvement of the quality of design since the high safety is required for nuclear power plants in spite of the complex structure. The layout of nuclear power plants and piping design require the model engineering to arrange rationally enormous quantity of things in a limited period. As the method of model engineering, there are the use of check models and of design models, and recently, the latter method has been mainly taken. The procedure of manufacturing models and engineering is explained. After model engineering has been completed, the model information must be expressed in drawings, and the automation of this process has been attempted by various methods. The computer processing of design is in progress, and its role is explained (CAD system). (Kako, I.)

  15. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from

  16. Scaling back French nuclear generation poses risk to trade deficit

    International Nuclear Information System (INIS)

    Mavroleon, Beatrice

    2013-01-01

    Increasing electricity costs weigh on the performance of France's exports, and this should lead to 'prudence' regarding the rate at which France's nuclear plants are taken out of service, says a report from the council of economic analysis (CAE), an economic think tank that advises the French prime minister. Reducing the proportion of nuclear energy in the country's generation mix was part of French president Francois Hollande's agreement with the country's green parties during his election campaign and is one of the key issues being discussed in France's energy transition debate. The government has said that nuclear energy's share in the generation mix should be reduced from 75% to 50% by 2025. The only nuclear plant the government has committed to closing is France's oldest, the 1.8 GW Fessenheim plant. It is scheduled to close at the end of 2016, but the move has generated much debate. 'Nobody knows why Fessenheim should be closed. Because it is old? So what?' said a legal source close to the French energy market who asked to remain anonymous. 'It's a shame that the French energy transition debate is not dealing with fundamental questions. It's too political', said the source. Low electricity prices are a key factor in maintaining France's economic competitiveness in relation to other European countries, said the CAE report, which was published on 16 May. A 10% increase in power prices paid by industrial consumers would lead to a 1.9% average reduction in the value of France's exports, it said. The market share of France's exports fell 19% in 2005-10, one of the largest slumps in Europe, according to a report published last summer by the European Commission. The country's current account recorded a growing deficit from 2005 onwards, reaching -2.2% in 2011, with the trade balance for goods accounting for most of this deterioration, said the report. Although France's trade deficit improved in 2012, driven by aerospace sector sales and weak domestic demand, the

  17. Thorium and its future importance for nuclear energy generation

    International Nuclear Information System (INIS)

    Lainetti, Paulo E.O.

    2015-01-01

    Thorium was discovered in 1828 by the Swedish chemist Jons J. Berzelius. Despite some advantages over uranium for use in nuclear reactors, its main use, in the almost two centuries since its discovery, the use of thorium was restricted to use for gas mantles, especially in the early twentieth century. In the beginning of the Nuclear Era, many countries had interested on thorium, particularly during the 1950-1970 period. There are about 435 nuclear reactors in the world nowadays. They need more than 65.000 tons of uranium yearly. The future world energy needs will increase and, even if we assumed a conservative contribution of nuclear generation, it will be occur a significant increasing in the uranium prices, taking into account that uranium, as used in the present thermal reactors, is a finite resource. Thorium is nearly three times more abundant than uranium in the Earth's crust. Despite thorium is not a fissile material, 232 Th can be converted to 233 U (fissile) more efficiently than 238 U to 239 Pu. Besides this, since it is possible to convert thorium waste into nonradioactive elements, thorium is an environment-friendly alternative energy source. Thorium fuel cycle is also inherently resistant to proliferation. Some papers evaluate the thorium resources in Brazil over 1.200.000 metric t. Then, the thorium alternative must be seriously considered in Brazil for strategic reasons. In this paper a brief history of thorium is presented, besides a review of the world thorium utilization and a discussion about advantages and restrictions of thorium use. (author)

  18. Full range nuclear power plant steam generator level control system

    International Nuclear Information System (INIS)

    Geets, J.M.

    1988-01-01

    In a method of controlling feedwater level in a steam generator of a pressurized water reactor nuclear power plant, the steam generator having secondary loop feedwater lines. The method is described including the steps of outputting a first signal from a first three-mode controller to control feedwater flow through the secondary loop feedwater lines at reactor power levels below a predetermined percentage, and outputting a second signal from a second three-mode controller to control feedwater flow through the secondary loop feedwater lines at reactor power levels above the predetermined percentage. The improvement in combination therewith comprises: receiving the first and second signals at a transition controller means; generating a first feedwater temperature-dependent function; operating on the first input signal with the first temperature dependent function to produce a third signal; generating a second feedwater temperature-dependent function; operating on the second input signal with the second temperature-dependent function to produce a fourth signal; and adding the third and fourth signals resulting from the operating steps to control the feedwater flow through the secondary loop feedwater lines throughout an entire range of reactor load

  19. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  20. Nuclear data banks generation by interpolation; Generacion de bancos de datos nucleares mediante interpolacion

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J. A

    1999-07-01

    Nuclear Data Bank generation, is a process in which a great amount of resources is required, both computing and humans. If it is taken into account that at some times it is necessary to create a great amount of those, it is convenient to have a reliable tool that generates Data Banks with the lesser resources, in the least possible time and with a very good approximation. In this work are shown the results obtained during the development of INTPOLBI code, use to generate Nuclear Data Banks employing bicubic polynominal interpolation, taking as independent variables the uranium and gadolinia percents. Two proposal were worked, applying in both cases the finite element method, using one element with 16 nodes to carry out the interpolation. In the first proposals the canonic base was employed, to obtain the interpolating polynomial and later, the corresponding linear equation systems. In the solution of this systems the Gaussian elimination methods with partial pivot was applied. In the second case, the Newton base was used to obtain the mentioned system, resulting in a triangular inferior matrix, which structure, applying elemental operations, to obtain a blocks diagonal matrix, with special characteristics and easier to work with. For the validation tests, a comparison was made between the values obtained with INTPOLBI and INTERTEG (create at the Instituto de Investigaciones Electricas (MX) with the same purpose) codes, and Data Banks created through the conventional process, that is, with nuclear codes normally used. Finally, it is possible to conclude that the Nuclear Data Banks generated with INTPOLBI code constitute a very good approximation that, even though do not wholly replace conventional process, however are helpful in cases when it is necessary to create a great amount of Data Banks.

  1. Steam generator and condenser design of WWER-1000 type of nuclear power plant

    International Nuclear Information System (INIS)

    Zare Shahneh, Abolghasem.

    1995-03-01

    Design process of steam generator and condenser at Russian nuclear power plant type WWER-1000 is identified. The four chapter of the books are organized as nuclear power plant, types of steam generators specially horizontal steam generator, process of steam generator design and the description of condenser and its process design

  2. Generation IV nuclear reactors: Current status and future prospects

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro; Todeschini, Nicola

    2013-01-01

    Generation IV nuclear power plants (GEN IV NPPs) are supposed to become, in many countries, an important source of base load power in the middle–long term (2030–2050). Nowadays there are many designs of these NPPs but for political, strategic and economic reasons only few of them will be deployed. International literature proposes many papers and reports dealing with GEN IV NPPs, but there is an evident difference in the types and structures of the information and a general unbiased overview is missing. This paper fills the gap, presenting the state-of-the-art for GEN IV NPPs technologies (VHTR, SFR, SCWR, GFR, LFR and MSR) providing a comprehensive literature review of the different designs, discussing the major R and D challenges and comparing them with other advanced technologies available for the middle- and long-term energy market. The result of this research shows that the possible applications for GEN IV technologies are wider than current NPPs. The economics of some GEN IV NPPs is similar to actual NPPs but the “carbon cost” for fossil-fired power plants would increase the relative valuation. However, GEN IV NPPs still require substantial R and D effort, preventing short-term commercial adoption. - Highlights: • Generation IV reactors are the middle–long term technology for nuclear energy. • This paper provides an overview and a taxonomy for the designs under consideration. • R and D efforts are in the material, heat exchangers, power conversion unit and fuel. • The life cycle costs are competitive with other innovative technologies. • The hydrogen economy will foster the development of Generation IV reactors

  3. Water releasing electric generating device for nuclear power plant

    International Nuclear Information System (INIS)

    Umehara, Toshihiro; Tomohara, Yasutaka; Usui, Yoshihiko.

    1994-01-01

    Warm sea water discharged after being used for cooling in an equipment of a coastal nuclear powder plant is discharged from a water discharge port to a water discharge pit, and a conduit vessel is disposed in front of the water discharge port for receiving overflown warm sea water. The warm sea water taken to the conduit vessel is converted to a fallen flow and charged to a turbine generator under water, and electric power is generated by the water head energy of the fallen flow before it is discharged to the water discharge pit. The conduit vessel incorporates a foam preventing unit having spiral flow channels therein, so that the warm sea water taken to the conduit vessel is flown into the water discharge pit after consuming the water head energy while partially branched and flown downwardly and gives lateral component to the downwarding flowing direction. Then, warm sea water is made calm when it is flown into the water discharge pit and, accordingly, generation of bubbles on the water surface of the water discharge pit is avoided. (N.H.)

  4. Decision process regarding nuclear generation: the Brazilian case

    International Nuclear Information System (INIS)

    Metri, Paulo

    2009-01-01

    Countries face a constant need to expand their electricity generation capacities. Electricity sources in a country and the respective generation technologies have different technical, economic, environmental, social and political characteristics. The evaluation criteria of the generating sources and their technologies must not be restricted to the supply of the increased demand at the lowest cost. Compliance with other public policies must be considered in the decision process of the expansion, for instance, maximize local acquisition and minimize foreign fuel purchase. Countries have different energy resources, as well as different levels of technology and development in their industrial parks. Brazil has many mineral reserves, besides the hydraulic potential, for supporting the expansion. The decision process in this sector, which includes nuclear energy as a sub-sector, requires analyzing and evaluating various information and data. In this stage, a quantitative model providing a first approach for the decision may be applied. The new institutional structure adopted in the sector during the 1990s and 2000s brought about new conditions into an already complex decision process. In such context of methodology complexity, political aspects gain relevance, becoming of increased importance. The political environment is described and the players are identified. One conclusion and a few recommendations are provided. (author)

  5. Main operation results of the 3-rd generation nuclear fuel

    International Nuclear Information System (INIS)

    Adeev, V.; Saprykin, V.; Gagarinsky, A.

    2013-01-01

    On the Kola NPP, Unit 4 trial operation of the 3-rd generation fuel continues. This fuel have a number of design features, providing the best operational characteristics. Increasing of efficiency of nuclear fuel usage will be achieved by reduction of the parasitic capture of thermal neutrons in constructional materials (weight of zirconium is reduced), optimization of uranium water relation (increase in fuel elements step), increasing of uranium loading (usage of fuel pallets with increased diameter and without central hole in them). The basic characteristics of the core with fuel of the 3rd generation are provided in work [3]. In the present report, being addition to the report [4], gave new results of operation and the short analysis of the obtained data is made. Experimental characteristics of WWER-440 reactor core with fuel assemblies of the 2nd (FA-2) and 3rd (FA-3) generation of the enrichment increased to 4.87% are submitted. Some questions of operation of FA-2 and FA-3 are discussed: assessment of influence of cover absence on indications of thermocouples at joint operation of FA-2 and FA-3, features and methods of core design. (authors)

  6. Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective

    International Nuclear Information System (INIS)

    Murphy, E.L.; Sullivan, E.J.

    1997-01-01

    In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule as a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with

  7. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    OpenAIRE

    Eder, Anja; Bading, Hilmar

    2007-01-01

    Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nuc...

  8. Chemistry technician performance evaluation program Palo Verde Nuclear Generating Station

    International Nuclear Information System (INIS)

    Shawver, J.M.

    1992-01-01

    The Arizona Nuclear Power Project (ANPP), a three-reactor site located 50 miles west of Phoenix, Arizona, has developed and implemented a program for evaluating individual chemistry technician analytical performance on a routine basis. About 45 chemistry technicians are employed at the site, 15 at each operating unit. The technicians routinely perform trace level analyses for impurities of concern to PWRs. Each month a set of blind samples is provided by an outside vendor. The blind samples contain 16 parameters which are matrixed to approximate the PWR's primary and secondary cycles. Nine technicians receive the samples, three from each operating unit, and perform the required analyses. Acceptance criteria for successful performance on the blind parameters is based on the values found in the Institute of Nuclear Power Operations (INPO) Document 83-016, Revision 2, August 1989, Chemistry Quality Control Program. The goal of the program is to have each technician demonstrate acceptable performance on each of 16 analytical parameters. On completion of each monthly set, a summary report of all of the analytical results for the sample set is prepared. From the summary report, analytical bias can be detected, technician performance is documented, and overall laboratory performance can be evaluated. The program has been very successful at satisfying the INPO requirement that the analytical performance of each individual technician should be checked on at least a six-month frequency for all important parameters measured. This paper describes the program as implemented at the Palo Verde Nuclear Generating Station and provides a summary report and trend and bias graphs for illustrative purposes

  9. Control technology for nuclear power system of next generation

    International Nuclear Information System (INIS)

    1995-01-01

    This report is the summary of the results obtained by the investigation activities for two years carried out by the expert committee on investigation of control technology for nuclear power system of next generation. The course of investigation is outlined, and as the results, as advanced control technologies, adaptive control. H sub (infinite) control, fuzzy control and the application of autonomous distributed system and genetic algorithm to control; as operation support technology, the operation and monitoring system for nuclear power plants and safety support system; as interface technology which is the basic technology of them, virtual reality, multimedia and so on; further, various problems due to human factors, computer technology, artificial intelligence and others were taken up, and the grasp of the present status and the future subjects was carried out, including the information in international conferences. The items of the investigation are roughly divided into measurement and control technologies, interface technology and operation support, human factors, computer technology and artificial intelligence, and the trend in foreign countries, and the results of investigation for respective items are reported. (K.I.)

  10. World electricity generation, nuclear power, and oil markets

    International Nuclear Information System (INIS)

    1990-01-01

    Striking changes have characterized the world's production and use of energy over the past 15 years. Most prominent have been the wide price fluctuations, politicization of world oil prices and supply, along with profound changes in patterns of production and consumption. This report, based on a study by energy analysts at Science Concepts, Inc., in the United States, traces changes in world energy supply since 1973-74 - the time of the first oil ''price shocks''. In so doing, it identifies important lessons for the future. The study focused in particular on the role of the electric power sector because the growth in fuel use in it has been accomplished without oil. Instead, the growth has directly displaced oil. In the pre-1973 era, the world relied increasingly on oil for many energy applications, including the production of electricity. By 1973, more than on-fourth of the world's electricity was produced by burning oil. By 1987, however, despite a large increase in electric demand, the use of oil was reigned back to generating less than 10% of the world's electricity. Nuclear power played a major role in this turnaround. From 1973-87, analysts at Science Concepts found, nuclear power displaced the burning of 11.7 billion barrels of oil world-wide and avoided US $323 billion in oil purchases

  11. Change of energy demand and future of nuclear power generation

    International Nuclear Information System (INIS)

    Takei, Mitsuo; Suzuki, Toshiharu.

    1985-01-01

    The energy demand in Japan showed very sluggish trend since the first oil crisis, especially after the second oil crisis, the growth of primary energy consumption showed the tendency of decrease. Its temporary increase from 1983 to 1984 was the phenomenon caused by the superposition of transitory factors. The structural change occurred in the energy consumption in Japan since 1973, and the change of input/output structure in the industries consuming much energy has become the most important factor of changing energy demand. The trend of energy demand for the future depends on to what stage the change of input/output structure continues. The electric power demand in Japan does not seem to show large growth hereafter. The recent trend of electric power demand works to reduce the expansion of nuclear power, and the trend of loading pattern in electric power is to impose severe condition on the economy of LWRs. The use of FBRs at the beginning of 21st century becomes difficult gradually. Not only unit cost but also loading pattern and the composition of electric power sources must be taken in consideration when nuclear power generation is scrutinized. (Kako, I.)

  12. Aging assessment of electrical cables from NPD nuclear generating station

    International Nuclear Information System (INIS)

    Stonkus, D.J.; Anandakumaran, K.

    1991-05-01

    Degradation of NPD Nuclear Generating Station control and power cables after approximately 25 years of service was assessed. The PVC and SBR insulated cables were also exposed to radiation, accident and post-accident conditions, and accelerated aging to simulate extended service life. The degradation of the samples from the containment boiler room was minimal, caused mainly by thermal conditions rather than radiation. Although irradiation to 55 Mrad, simulating normal operation and accident radiation levels, caused degradation, the cables could still function during accident and post-accident conditions. Accelerated thermal aging to simulate an additional 10 years of service at 45 degrees C caused embrittlement of the PVC and a 60% decrease in elongation of the SBR. Comparison of test results of aged NPD cables with newer PVC cables obtained from Pickering NGS 'A' shows that the newer cables have improved aging stability and therefore should provide adequate service during their design life of 31 years

  13. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  14. Public response to the Diablo Canyon Nuclear Generating Station

    International Nuclear Information System (INIS)

    Pijawka, K.D.

    1982-01-01

    The authors examine the nature of the public response to the Diablo Canyon Nuclear Generating Station located in San Luis Obispo, California, from the early 1960s to the present. Four distinct phases of public intervention were discerned, based on change in both plant-related issues and in the nature of the antinuclear constituencies in the region. The level of public concern varied both geographically and temporally and is related to the area's social structure, environmental predispositions, and distribution of plant-related economic benefits. External events, such as the prolonged debate over the risk assessment of the seismic hazard and the Three Mile Island accident were found to be important factors in explaining variation in public concern and political response

  15. Public response to the Diablo Canyon Nuclear Generating Station

    International Nuclear Information System (INIS)

    Pijawka, K.D.

    1982-01-01

    We examine the nature of the public response to the Diablo Canyon Nuclear Generating Station located in San Luis Obispo, California, from the early 1960s to the present. Four distinct phases of public intervention were discerned, based on change in both plant-related issues and in the nature of the antinuclear constituencies in the region. The level of public concern varied both geographically and temporally and is related to the area's social structure, environmental predispositions, and distribution of plant-related economic benefits. External events, such as the prolonged debate over the risk assessment of the seismic hazard and the Three Mile Island accident were found to be important factors in explaining variation in public concern and political response. (author)

  16. Analysis of the environmental impact generated by nuclear activities

    International Nuclear Information System (INIS)

    Lazar, Roxana Elena; Dumitrescu, Maria

    2000-01-01

    Assessment of environmental impact represents one of the most formalized examples of interdisciplinary approach. After more then a century from the introduction of the concept of environmental impact assessment, this undertaking still represents an amalgamation of mini-studies based on pre-determined approaches rather than a genuine integrated document. This work presents the most important and adequate techniques of analysis of environmental impact generated by nuclear activities starting from identification of the events causing negative effects upon environment (by using checking list, the matrices and the cause-effect diagram) and radiation dose determination up to the decision making process. To preserve environment integrity the human factor should be re-evaluated as well as its active participation in formation and settling of an real environmental culture

  17. Hipse: an event generator for nuclear collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D.; Van Lauwe, A.; Durand, D

    2003-11-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or/and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50 MeV/u and Ni + Ni at 82 MeV/u. (authors)

  18. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  19. Metrology for New Generation Nuclear Power Plants - MetroFission

    International Nuclear Information System (INIS)

    Johansson, Lena; Dinsdale, Alan; Keightley, John; Filtz, Jean-Remy; Hay, Bruno; DeFelice, Pierino; Sadli, Mohamed; Plompen, Arjan; Heyse, Jan; Pomme, Stefaan; Cassette, Philippe

    2013-06-01

    MetroFission project has been looking at solving metrological problems related to a new generation of NPPs. The proposed Gen. IV NPPs are designed to run safely, make efficient use of natural resources, minimize the waste and maintain proliferation resistance. In order to reach these goals, the reactor operation involves higher temperatures, high-energy neutron fluence, different types of fuel where the minor actinides are included etc. The work has focused on improved temperature measurements, investigation of thermal properties of advanced materials, determination of new and relevant nuclear data and development of measurement techniques for radionuclides suitable for Gen. IV NPPs. The improved temperature measurement for nuclear power plant applications includes the development of a new Fe-C fixed point. Robust, repeatable and versatile cells have been constructed and compared with success among the project participants and their melting temperatures have been determined. Methodology of self-validating thermocouples has proven efficient at several fixed point temperatures using different designs. A practical acoustic thermometer has been tested at 1000 deg. C with success thanks to the use of innovative signal processing methods. Mo/Nb thermocouples have been obtained with different sheath materials and tested with the aim to achieve for the first time a reference function determined with the best possible uncertainties. Following reviews of designs and technology proposed for fourth generation nuclear plants effort within this project, with regards to thermal properties of advanced materials for nuclear design, has concentrated on provision of thermodynamic data to support the development of the sodium cooled fast reactor. Data has been critically assessed to represent the potential interaction between the Na coolant and the nuclear fuel taken to be based on (U, Pu)O 2 but incorporating minor actinides such as Np and Am. Data for the fission products and

  20. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  1. Tasmanitachoides Erwin glabellus n. sp. from North Queensland, Australia, with a note on Tasmanitachoides lutus (Darlington (Insecta, Coleoptera, Carabidae, Bembidiinae

    Directory of Open Access Journals (Sweden)

    Baehr, M.

    2001-01-01

    Full Text Available A new species of the genus Tasmanitachoides Erwin from North Queensland is described: T. glabellus n. sp. The species belongs to the T. murrumbidgensis¿group of species that is characterized by its distinctly impressed clypeus, but it is distinguished from all related species by its glabrous body surface. It is the first Tasmanitachoides from northern Australia to be found in rainforest on high mountains and has thus probably preserved the original habits of the genus that are still characteristic for those species living in southern temperate regions of Australia. Tasmanitachoides lutus (Darlington so far known from the type locality in southern New South Wales and from the holotype only, is now recorded from eastern Victoria.

  2. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  3. Next Generation Nuclear Plant Intermediate Heat Exchanger Acquisition Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, Ronald Eugene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C to 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium cooled, prismatic or pebble-bed reactor, and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. The purpose of this report is to address the acquisition strategy for the NGNP Intermediate Heat Exchanger (IHX).This component will be operated in flowing, impure helium on the primary and secondary side at temperatures up to 950°C. There are major high temperature design, materials availability, and fabrication issues that need to be addressed. The prospective materials are Alloys 617, 230, 800H and X, with Alloy 617 being the leading candidate for the use at 950°C. The material delivery schedule for these materials does not pose a problem for a 2018 start up as the vendors can quote reasonable delivery times at the moment. The product forms and amount needed must be finalized as soon as possible. An

  4. GC Side Event: Future of Nuclear Energy: Engaging the Young Generation. Presentations

    International Nuclear Information System (INIS)

    2017-01-01

    This event presented the IAEA’s programmes for the education and training of a new generation of nuclear professionals. It also featured the annual European Master of Science in Nuclear Engineering (EMSNE) award ceremony

  5. Proceedings of the 13. annual conference of the Canadian Nuclear Society. V. 2

    International Nuclear Information System (INIS)

    1992-01-01

    Volume 2 of the proceedings of the 13. annual conference of the Canadian Nuclear Society includes sessions on the following topics: compliance and licensing, fusion science and technology, Darlington assessment, plant aging and life assessment, thermalhydraulic modelling and analysis, diagnostics and data management, operator training and certification. The individual papers have been abstracted separately

  6. Recent technology for nuclear steam turbine-generator units

    International Nuclear Information System (INIS)

    Moriya, Shin-ichi; Kuwashima, Hidesumi; Ueno, Takeshi; Ooi, Masao

    1988-01-01

    As the next nuclear power plants subsequent to the present 1,100 MWe plants, the technical development of ABWRs was completed, and the plan for constructing the actual plants is advanced. As for the steam turbine and generator facilities of 1,350 MWe output applied to these plants, the TC6F-52 type steam turbines using 52 in long blades, moisture separation heaters, butterfly type intermediate valves, feed heater drain pumping-up system and other new technologies for increasing the capacity and improving the thermal efficiency were adopted. In this paper, the outline of the main technologies of those and the state of examination when those are applied to the actual plants are described. As to the technical fields of the steam turbine system for ABWRs, the improvement of the total technologies of the plants was promoted, aiming at the good economical efficiency, reliability and thermal efficiency of the whole facilities, not only the main turbines. The basic specification of the steam turbine facilities for 50 Hz ABWR plants and the main new technologies applied to the turbines are shown. The development of 52 in long last stage blades, the development of the analysis program for the coupled vibration of the large rotor system, the development of moisture separation heaters, the turbine control system, condensate and feed water system, and the generators are described. (Kako, I.)

  7. Nuclear Fusion Effects Induced in Intense Laser-Generated Plasmas

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2013-01-01

    Full Text Available Deutered polyethylene (CD2n thin and thick targets were irradiated in high vacuum by infrared laser pulses at 1015W/cm2 intensity. The high laser energy transferred to the polymer generates plasma, expanding in vacuum at supersonic velocity, accelerating hydrogen and carbon ions. Deuterium ions at kinetic energies above 4 MeV have been measured by using ion collectors and SiC detectors in time-of-flight configuration. At these energies the deuterium–deuterium collisions may induce over threshold fusion effects, in agreement with the high D-D cross-section valuesaround 3 MeV energy. At the first instants of the plasma generation, during which high temperature, density and ionacceleration occur, the D-D fusions occur as confirmed by the detection of mono-energetic protonsand neutrons with a kinetic energy of 3.0 MeV and 2.5 MeV, respectively, produced by the nuclear reaction. The number of fusion events depends strongly on the experimental set-up, i.e. on the laser parameters (intensity, wavelength, focal spot dimension, target conditions (thickness, chemical composition, absorption coefficient, presence of secondary targets and used geometry (incidence angle, laser spot, secondary target positions.A number of D-D fusion events of the order of 106÷7 per laser shot has been measured.

  8. The spanish electric system operation. The contribution of nuclear generation

    International Nuclear Information System (INIS)

    Duvison, M. R.; Torre, M. de la

    2009-01-01

    Operation of an electric system encloses the collection of activities which extend from affective generation dispatch to issuing instruction for network manoeuvring along with international exchange scheduling. Based on the market mechanisms that apply to energy transactions, these tasks guarantee the security of supply end consumers, which is the final goal of the System Operators actions. In Spain this function is executed by Red Electrica de Espana (REE) since 1985, after being constituted as the first Transmission and System Operator (TSO) in the world. Additionally the variations to Law 54/1997 introduced by law 17/2007 also assign REE the function of sole transmission owner in the Spanish electric system. In order to achieve the aforementioned goal, nuclear energy plays in Spain a fundamental role in electric generation thanks to its high availability rate, the predictability of its fuel recharges, its high operational reliability, its geographical location, the stability of its costs and the security of supply given by the possibility of on-site fuel storage in the power plant. (Author)

  9. Next generation LP system for maintenance in nuclear power reactors

    International Nuclear Information System (INIS)

    Mukai, Naruhiko; Uehara, Takuya; Suezono, Nobuichi; Saeki, Ryoichi; Sano, Yuji

    2006-01-01

    Laser peening (LP) is a process to introduce residual compressive stress on metal surface by irradiating laser pulses underwater without any surface preparations. Toshiba has developed and applied LP system to preventive maintenance against stress corrosion cracking (SCC) in nuclear power reactors since 1999. The system is composed of laser oscillators, a beam delivery system, a laser irradiation head, remote handling equipment and a monitor/control system. In the early applications, a rigidly laser beam delivery system with many mirrors and beam guide pipes was accomplished. A flexible fiber-delivery system has been developed for accessing to the narrow place, and presently it is adopted mainly. As these beam-delivery systems require a wide installation space and difficult operation, a simple and small system is desired. In order to meet this demand, we are developing the small-sized next generation LP system that builds in the laser oscillator inside the remote handling equipment. In the next generation system new irradiating method is adopted, stress improvement speed is faster than the present system. (author)

  10. Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nathan V. Hoffer; Piyush Sabharwall; Nolan A. Anderson

    2011-01-01

    Options for the primary heat transport loop heat exchangers for the Next Generation Nuclear Plant are currently being evaluated. A helical-coil steam generator is one heat exchanger design under consideration. Safety is an integral part of the helical-coil steam generator evaluation. Transient analysis plays a key role in evaluation of the steam generators safety. Using RELAP5-3D to model the helical-coil steam generator, a loss of pressure in the primary side of the steam generator is simulated. This report details the development of the steam generator model, the loss of pressure transient, and the response of the steam generator primary and secondary systems to the loss of primary pressure. Back ground on High Temperature Gas-cooled reactors, steam generators, the Next Generation Nuclear Plant is provided to increase the readers understanding of the material presented.

  11. The technology of the bearings used in the nuclear power generation system turbine generator units

    International Nuclear Information System (INIS)

    Vialettes, J.M.; Rossato, M.

    1997-01-01

    A bearing consists of all the stationary part which allow the relative motion in rotation or in translation, of a shaft line. Inside the bearing there is a journal bearing with a metallic anti-friction coating (the babbitt metal). The high power turbine generator unit rotors are supported by smooth transversal journal bearings fed with oil which fills the empty space and runs along the shaft. The technologies used for the bearings and the thrust bearings of the turbine generator units and the various shaft lines of the French CP0/CP1- and CP2/1300 MW-type nuclear power plants are described. The experience feedback is then discussed in terms of the dynamics of the shaft line, i.e. vibrational problems, the influence of the alignment and the babbitt metal incidents. (author)

  12. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    Science.gov (United States)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  13. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Oblozinsky, P.; Herman, M.

    2006-01-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6 Li, 10 B, Au and for 235,238 U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238 U and 208 Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  14. The nuclear electricity generating industry in England and Wales post-privatisation

    International Nuclear Information System (INIS)

    Johnson, C.B.

    1992-01-01

    This paper presents an overview of the new legal framework within which the nuclear generating industry has operated in England and Wales since 31 March 1990. It describes the formation of Nuclear Electric plc and the licensing arrangements, including the various obligations which have been placed upon Nuclear Electric by virtue of its Generation Licence. The impact of competition law is outlined, together with the commercial arrangements including electricity pooling and some of the other more important agreements which Nuclear Electric has entered into. Finally, the Paper discusses some of the constraints under which Nuclear Electric operates, and summarises Government policy towards nuclear power and its future prospects in the United Kingdom. (author)

  15. Training of troubleshooting skills in nuclear power plants

    International Nuclear Information System (INIS)

    Rhodes, W.; Szlapetis, I.J.; Casselman, K.

    1995-12-01

    This report details the study of training of troubleshooting skills for Canadian nuclear power plant operators and maintainers. The study was conducted in three distinct stages: 1) literature review and production of annotated bibliographies; 2) survey of experts in training for troubleshooting skills in North America; 3) survey of Canadian nuclear power plant training centres. Within this report are 12 annotated bibliographies of significant documents and an extensive bibliographic listing of relevant literature. The review of the literature and the survey of training experts identified the state-of-art in troubleshooting training with respect to training approaches and training tools. Trainers in the military, pharmaceutical, petro-chemical, and nuclear industries were surveyed and/or interviewed to determine the current approaches and technologies used in training for troubleshooting. Training personnel responsible for Canada's major nuclear generating stations (Bruce, Darlington, Pickering, and Point Lepreau) were interviewed and surveyed to determine the status of troubleshooting training in the Canadian nuclear industry. This information has been integrated and presented in this report. Conclusions and recommendations regarding the nature of the troubleshooting tasks performed by operators and maintainers and the related training were submitted. (author). 152 refs., 7 tabs., 1 fig

  16. Nuclear power generation in competition with other sources for base load electricity generation

    International Nuclear Information System (INIS)

    Notari, C.; Rey, F.C.

    1996-01-01

    The latest studies performed by OECD and IAEA on the subject were analyzed in order to clarify the international context. Nuclear, gas and coal are compared. The general conclusion is that nuclear power is competitive for electricity generation considering new plants to be commissioned around year 2000. If the discount rate is 5% per annum it is considered the best option in most of the countries included in the studies. If 10% is chosen the levelized costs favour the gas option. In the Argentine case, the analysis of possible plants for the near future shows a clear advantage for the gas projects. This is mainly due to the low capital costs and low local gas prices. The possible evolution of this situation is considered: gas prices will most probably increase because they should approach the price of fuel oil or diesel oil which are used as substitutes in winter for electricity generation and the export projects to Chile and Brasil will also push prices up. The environmental aspects of the question and its influence on regulations and costs is a matter of speculation. Some countries have already penalized greenhouse gases emissions but it is not clear how and when this trend will affect local prices. (author). 4 refs., 6 tabs

  17. Next Generation Nuclear Plant Materials Research and Development Program Plan

    International Nuclear Information System (INIS)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-01-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R and D) Program is responsible for performing R and D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R and D Program includes the following elements: (1) Developing a specific approach, program plan and other project management

  18. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  19. 77 FR 66484 - PSEG Nuclear LLC; Hope Creek Generating Station and Salem Generating Station, Units 1 and 2...

    Science.gov (United States)

    2012-11-05

    ... COMMISSION PSEG Nuclear LLC; Hope Creek Generating Station and Salem Generating Station, Units 1 and 2... Nos. NPF-57, DPR-70, and DPR-75, which authorize operation of the Hope Creek Generating Station (HCGS... will not endanger life or property or the common defense and security, and are otherwise in the public...

  20. An experimental study on the effect of TV commercials on the attitudes towards nuclear power generation

    International Nuclear Information System (INIS)

    Tada, Yasuyuki

    1999-01-01

    The present study is about the effect TV commercials have on the subjects' attitudes towards nuclear power generation. A number of 191 female students participated in the experiment. It was hypothesized that TV commercials would have a positive effect on the viewer's attitude towards nuclear power generation. The main results of the study supported this hypothesis, demonstrating that TV commercials constitute an effective means for changing people's perception of nuclear power generation. (author)

  1. Steam generator maintenance and life management at Embalse Nuclear Station

    International Nuclear Information System (INIS)

    Sainz, R.; Diaz, G.; Sveruga, H.; Ramakrishnan, T.K.; Azeez, S.

    2004-01-01

    The Embalse Nuclear Station has four steam generators (SGs) with inverted vertical U tubes manufactured by Babcock and Wilcox Canada (B and W). These are main components, both from the operative point of view as the heat transfer from the Primary Heat Transport System (PHTS) to the Secondary System, and from the point of view of safety, as they are the part of the PHTS and its radioactive inventory pressure barrier. In addition, they are one of the most important cost-related elements for potential life extensions. Maintenance and inspections are carried out in order to maintain a high availability of the SGs, as they have had a positive impact on the operational availability of the plant, and to reduce the tube failure probabilities, thus minimizing the amount of radioactive effluents and taking care of the condition of the main components in order to enable the plant life management and the planning of the plant life extension. The most relevant maintenance activities performed have been the inspections performed on 100% of the tubes every 3 years. the mechanical cleaning of the inside of the tubes, the sludge removal from the secondary side tubesheet, the divider plate replacement, and the inspection of internals of the secondary side.Thanks to the latter and to the eddy current inspections, the degradation in the U-bend supports was detected early and every effort is being made to repair them shortly. Besides, a life management program has been started covering the entire plant starting with this important component. The Embalse Nuclear Station's SGs show a low percentage of plugged tubes compared to other stations in similar conditions, but they must be monitored continually and systematically if a life extension is intended. (author)

  2. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: (1) Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission (2) Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented

  3. How generation choices are influenced by costs, risks and externalities: the generation planning process in Ontario, Canada

    International Nuclear Information System (INIS)

    Marriage, E.A.; Rogers, M.S.

    1994-01-01

    Ontario Hydro is responsible for generating, supplying and delivering electricity throughout Ontario, Canada. Installed generation capacity of 32 GW consists of 20% hydro-electric (6.4 GW), 35% fossil (11.3 GW) and 40% nuclear (14.2 GW). Ontario Hydro' s planning process has evolved significantly since its decision in the late 1970's to build the 4-unit 3500 MW Darlington Nuclear Station. The emergence of environmental issues as a primary consideration, increased awareness of financial and regulatory risks, and uncertainty about the load forecast and the impact of demand management programs on the load have all contributed to the changed planning process. This paper discusses Ontario Hydro's responses to these changes such as: increased public involvement in the decision-making process; the use of a broader range of options including demand management and non-utility generation; optimizing the use of the existing system; more complete risk analyses of generation options, and recent attempts to incorporate externalities into the decision-making process. (authors). 3 figs

  4. Next Generation Nuclear Plant Methods Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  5. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg; Hans D. Gougar; Richard W. Johnson; William K. Terry; Chang H. Oh; Donald W. McEligot; Gary W. Johnsen; Glenn E. McCreery; Woo Y. Yoon; James W. Sterbentz; J. Steve Herring; Temitope A. Taiwo; Thomas Y. C. Wei; William D. Pointer; Won S. Yang; Michael T. Farmer; Hussein S. Khalil; Madeline A. Feltus

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope of the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.

  6. Recycling of concrete generated from Nuclear Power Plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nawa, Toyoharu; Ishikura, Takeshi; Tanaka, Hiroaki

    2013-01-01

    Reactor decommissioning required various technologies such as dismantling of facilities, decontamination, radioactivity measurement and recycling of dismantling wastes. This article discussed recycling of demolished concrete wastes. Dismantling of reactor building of large one unit of nuclear power plants would generate about 500 K tons of concrete wastes, about 98% of which was non-radioactive and could be used as base course material or backfill material after crushed to specified particle size. Since later part of 1990s, high quality recycled aggregate with specified limit of bone-dry density, water absorptivity and amount of fine aggregate had been developed from demolished concrete with 'Heat and rubbing method', 'Eccentric rotor method' and 'Screw grinding method' so as to separate cements attached to aggregate. Recycled aggregates were made from concrete debris with 'Jaw crusher' to particle size less than 40 mm and then particle size control or grinded by various grinding machines. Recycled fine aggregates made from crushing would have fragile site with cracks, air voids and bubbles. The author proposed quality improvement method to selectively separate fragile defects from recycled aggregates using weak grinding force, leaving attached pastes much and preventing fine particle generation as byproducts. This article outlined experiments to improve quality of recycled fine aggregates and their experimental results confirmed improvement of flow ability and compressive strength of mortal using recycled fine aggregates using 'Particle size selector' and 'Ball mill' so as to remove their fragile parts less than 2%. Mortal made from recycled fine aggregate could also prevent permeation of chloride ion. Recycled aggregate could be used for concrete instead of natural aggregate. (T. Tanaka)

  7. Recycling of concrete waste generated from nuclear power plant dismantling

    International Nuclear Information System (INIS)

    Ogawa, Hideo; Nagase, Takahiro; Tanaka, Hiroaki; Nawa, Toyoharu

    2012-01-01

    Non-radioactive concrete waste generated from dismantling of a standard large nuclear power plant is estimated to be about 500,000 tons in weight. Using such waste as recycled aggregate within the enclosure of the plant requires a new manufacturing technology that generates a minimal amount of by-product powder. Recycled aggregate has brittle parts with defects such as cracks, pores, and voids in residual paste from original concrete. This study presents a method of selectively removing the defective parts during manufacture to improve the quality of the recycled fine aggregate. With this selective removal method used, the amount of by-product powder can be reduced by half as compared to that by a conventional method. The influences of the characteristics of the recycled fine aggregate on the flowability and strength of the mortar using recycled fine aggregate were evaluated by multiple linear regression analysis. The results clearly showed that the flowability was primarily affected by the filling fraction of recycled fine aggregate, while the compressive strength of mortar was primarily affected by the fraction of defects in the aggregate. It was also found that grains produced by a granulator have more irregularities in the surfaces than those produced by a ball mill, providing an increased mortar strength. Using these findings from this study, efforts are also being made to develop a mechanical technology that enables simultaneous processing of decontamination and recycling. The granulator under consideration is capable of grinding the surfaces of irregularly shaped particles and may be used successfully, under optimal conditions, for the surface decontamination of concrete waste contaminated with radioactive materials. (author)

  8. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    International Nuclear Information System (INIS)

    Demick, L.E.

    2011-01-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  9. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  10. Optimization of air ducts for nuclear reactor power generation station

    International Nuclear Information System (INIS)

    Hirao, Katsumi; Yoshino, Hirokazu; Sonoda, Takayuki

    1991-01-01

    In the optimization study on the heating, ventilating and air conditions system in Nuclear Reactor Power Generation Station, proper arrangement of air ducts has been studied using the experimental and analytical investigation from a viewpoint of duct arrangement optimization. This study consists of two parts. Part I is optimization of air ducts in the corridors and Part II is optimization of air duct in each room. In part I, from viewpoints of confinement of radioactive materials in facilities having possible radioactive contamination and improvement of thermal environment for workers, the authors have studied air ducts system in which fresh air is supplied to corridors and heat removal and ventilation for each room are performed by transferring air from the corridors, instead of current ducts system with supply duct to each room. In part II, the condenser room with complex configuration and large space, and the electrical equipment room with simple space are selected for model areas. Based on these studies, experimental and analytical investigation (using a three-dimensional thermal hydraulic analysis) technique has been established, and the effective design method for duct arrangement of HVAC design has been verified for Boiling Water Reactor Power Station. The air-duct arrangements optimized in this study are applied to an Advanced Boiling Water Reactor Power Station in trial and reduction of the air-duct quantity is confirmed

  11. Steam generator management at Ontario Hydro Nuclear Stations

    Energy Technology Data Exchange (ETDEWEB)

    Nickerson, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Maruska, C.C. [Ontario Hydro, Toronto, Ontario (Canada)

    1998-07-01

    Managing ageing steam generators involves costly decisions for the utility, both in terms of the cost of the maintenance activities andin terms of having the unit shutdown and consequent power loss while performing these activities. The benefits of these activities are seldom guaranteed and are sometimes very intangible. For nuclear utilities the most pertinent questions that arise are have we identified all the problem(s), can we predict the risk due to these problems? Can we implement corrective and preventive activities to manage the problem and what is the optimum timing of implementation? Is the money spent worthwhile, i.e. has it given us a return in production and safety? Can we avoid surprises? How can we tangibly measure success? This paper touches briefly on all the questions mentioned above but it mainly addresses the last question: 'how can we tangibly measure success?' by using several success indicators proposed by EPRI and by applying them to actual Ontario Hydro experience. The appropriateness of these success indicators as the means to assess the success of these programs, to feed back the results, and to enhance or revise the programs will be discussed. (author)

  12. Strain measurement on a compact nuclear reactor steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Scaldaferri, Denis Henrique Bianchi; Gomes, Paulo de Tarso Vida; Mansur, Tanius Rodrigues, E-mail: dhbs@cdtn.b, E-mail: gomespt@cdtn.b, E-mail: tanius@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Pozzo, Renato del, E-mail: delpozzo@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil); Mola, Jairo [Unitecnica Engenharia, Sao Paulo, SP (Brazil)

    2011-07-01

    This work presents the strain measurement procedures applied to a compact nuclear reactor steam generator, during a hydrostatic test, using strain gage technology. The test was divided in two steps: primary side test and secondary side test. In the primary side test twelve points for strain measurement using rectangular rosettes, three points (two external and one internal) for temperature measurement using special strain gages and one point for pressure measurement using a pressure transducer were monitored. In the secondary side test 18 points for strain measurement using rectangular rosettes, four points (two external and two internal) for temperature measurement using special strain gages and one point for pressure measurement using a pressure transducer were monitored. The measurement points on both internal and external pressurizer walls were established from pre-calculated stress distribution by means of numerical approach (finite elements modeling). Strain values using a quarter Wheatstone bridge circuit were obtained. Stress values, from experimental strain were determined, and to numerical calculation results were compared. (author)

  13. Quality assured technical documentation for nuclear power generation

    International Nuclear Information System (INIS)

    Ault, M.P.

    1992-01-01

    Present day large scale industry in general is made up of highly complex technology subjected to many rigorous external controls and constraints. This is particularly so in the nuclear power industry where it is essential that materials and services provided during the phases of construction, commissioning and operations, conform precisely to requirements as specified. Failure to do this could lead to unit shut-down and loss of income. For over 25 years, a central unit within the Central Electricity Generating Board (CEGB) developed an enviable reputation for the production of high class technical documentation essential during power station commissioning and operations phases. Following privatization of the electricity supply industry in 1991 the unit became a stand-alone organization and since 1989 has been known as Technical Publications Management Services (TPMS). TPMS with its many years of experience now offers its services to industry in general as well as to the electricity supply industry. Work currently being undertaken by TPMS is described here. Recent contracts obtained for work at Sizewell and for Severn Trent Water indicate the continuing and expanding need for specialist documentation services. (author)

  14. Turbo-generator foundations for thermal and nuclear power plants

    International Nuclear Information System (INIS)

    Gomi, Masanori

    1981-01-01

    The foundations of rotary machines are classified into rigid foundations and elastic foundations from the viewpoint of vibration technology, or into high harmonic order and low harmonic order foundations. As the foundations for turbogenerators, those of high harmonic order type, made of reinforced concrete, have been constructed in USA and Japan. While in Europe, low harmonic order type has been used, and there are many steel frame foundations besides those of reinforced concrete. In Japan, by the import of the know-how from Kraftwerk Union AG in 1963, the low harmonic order type foundations of reinforced concrete have been constructed. The external forms of the foundations of both types are compared, and the meaning of the names of foundations regarding the vibration characteristics is explained. The actual natural frequency of upper foundations, the actual vibration of total system due to machine vibration, and the strength to endure vibration are discussed. The Kraftwerk Union AG has developed and put in practical use the foundations made of reinforced concrete and equipped with steel springs as the standard structure for large turbogenerators for nuclear power generation. With this structure, the degree of harmonic order can be selected effectively low. The precast construction method for foundations using steel box type joints is introduced. (Kako, I.)

  15. Steam generator management at Ontario Hydro Nuclear Stations

    International Nuclear Information System (INIS)

    Nickerson, J.; Maruska, C.C.

    1998-01-01

    Managing ageing steam generators involves costly decisions for the utility, both in terms of the cost of the maintenance activities and in terms of having the unit shutdown and consequent power loss while performing these activities. The benefits of these activities are seldom guaranteed and are sometimes very intangible. For nuclear utilities the most pertinent questions that arise are have we identified all the problem(s), can we predict the risk due to these problems? Can we implement corrective and preventive activities to manage the problem and what is the optimum timing of implementation? Is the money spent worthwhile, i.e. has it given us a return in production and safety? Can we avoid surprises? How can we tangibly measure success? This paper touches briefly on all the questions mentioned above but it mainly addresses the last question: 'how can we tangibly measure success?' by using several success indicators proposed by EPRI and by applying them to actual Ontario Hydro experience. The appropriateness of these success indicators as the means to assess the success of these programs, to feed back the results, and to enhance or revise the programs will be discussed. (author)

  16. Management of radioactive waste generated in nuclear medicine; Gestion de los residuos radiactivos generados en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz Perez, P.

    2015-07-01

    Nuclear medicine is a clinical specialty in which radioactive material is used in non-encapsulated form, for the diagnosis and treatment of patients. Nuclear medicine involves administering to a patient a radioactive substance, usually liquid, both diagnostic and therapeutic purposes. This process generates solid radioactive waste (syringes, vials, gloves) and liquid (mainly the patient's urine). (Author)

  17. 75 FR 57820 - Luminant Generation Company, LLC.; Combined License Application for Comanche Peak Nuclear Power...

    Science.gov (United States)

    2010-09-22

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC.; Combined License Application for Comanche Peak Nuclear Power Plant, Units 3 and 4; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuanc...

  18. 78 FR 25486 - Luminant Generation Company, LLC., Combined License Application for Comanche Peak Nuclear Power...

    Science.gov (United States)

    2013-05-01

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company, LLC., Combined License Application for Comanche Peak Nuclear Power Plant, Units 3 and 4, Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuanc...

  19. Technical characteristics of new generation of nuclear power plants; Charakterystyka techniczna elektrowni jadrowych nowej generacji

    Energy Technology Data Exchange (ETDEWEB)

    Janczak, R.; Mikulski, A.; Staron, E. [Instytut Energii Atomowej, Swierk-Otwock (Poland)

    1997-12-31

    The concept of Advanced Light Water Reactors (ALWR) as a new generation of nuclear reactors for energetics have been presented. The influence of reactor accidents (TMI and Chernobyl) on technical and scientific development of nuclear reactors has been discussed from the view point of safety assurance and requirements being defined by American and European Nuclear Regulatory commission. 12 refs, 14 figs.

  20. Generation 4 International Forum. 2009 GIF R and D outlook for generation 4 nuclear energy systems

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents the state, at mid 2009, of research and development of the 6 reactor types that were selected in the framework of the GIF (Generation 4 International Forum): VHTR (Very High Temperature Reactor), SFR (Sodium-cooled Fast Reactor), SCWR (Super-Critical Water Reactor), GFR (Gas-cooled Fast Reactor), LFR (Lead-cooled reactor), and MSR (Molten Salt Reactor). Regarding each type of reactors, the state of advancement is reported for the reactor itself, its specific components and materials, its nuclear fuel, and its fuel cycle. The outlook of development and research work is also given for the next 5 years for the 6 types of reactors. (A.C.)

  1. Next Generation Nuclear Plant Project Preliminary Project Management Plan

    International Nuclear Information System (INIS)

    Dennis J. Harrell

    2006-01-01

    This draft preliminary project management plan presents the conceptual framework for the Next Generation Nuclear Plant (NGNP) Project, consistent with the authorization in the Energy Policy Act of 2005. In developing this plan, the Idaho National Laboratory has considered three fundamental project planning options that are summarized in the following section. Each of these planning options is literally compliant with the Energy Policy Act of 2005, but each emphasizes different approaches to technology development risks, design, licensing and construction risks, and to the extent of commercialization support provided to the industry. The primary focus of this draft preliminary project management plan is to identify those activities important to Critical Decision-1, at which point a decision on proceeding with the NGNP Project can be made. The conceptual project framework described herein is necessary to establish the scope and priorities for the technology development activities. The framework includes: A reference NGNP prototype concept based on what is judged to be the lowest risk technology development that would achieve the needed commercial functional requirements to provide an economically competitive nuclear heat source and hydrogen production capability. A high-level schedule logic for design, construction, licensing, and acceptance testing. This schedule logic also includes an operational shakedown period that provides proof-of-principle to establish the basis for commercialization decisions by end-users. An assessment of current technology development plans to support Critical Decision-1 and overall project progress. The most important technical and programmatic uncertainties (risks) are evaluated, and potential mitigation strategies are identified so that the technology development plans may be modified as required to support ongoing project development. A rough-order-of-magnitude cost evaluation that provides an initial basis for budget planning. This

  2. Next Generation Nuclear Plant Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    P. E. MacDonald

    2005-01-01

    The U.S Department of Energy (DOE) is conducting research and development (R&D) on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core could be either a prismatic graphite block type core or a pebble bed core. Use of a liquid salt coolant is also being evaluated. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission Demonstrate safe and economical nuclearassisted production of hydrogen and electricity. The DOE laboratories, led by the INL, will perform R&D that will be critical to the success of the NGNP, primarily in the areas of: High temperature gas reactor fuels behavior High temperature materials qualification Design methods development and validation Hydrogen production technologies Energy conversion. The current R&D work is addressing fundamental issues that are relevant to a variety of possible NGNP designs. This document describes the NGNP R&D planned and currently underway in the first three topic areas listed above. The NGNP Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is presented in Section 2, the NGNP Materials R&D Program Plan is presented in Section 3, and the NGNP Design Methods Development and Validation R&D Program is presented in Section 4. The DOE-funded hydrogen

  3. New U.S. Nuclear Generation: 2010-2030

    OpenAIRE

    Geoffrey Rothwell

    2010-01-01

    The report's key finding is that new nuclear capacity in NEMS-RFF from 2015 to 2020 under the current levels of U.S. Department of Energy (DOE) loan guarantees is similar to the marginal increase in new capacity from lowering the nominal return-on-equity (ROE) in NEMS-RFF for new nuclear power from 17 to 14 percent. This equivalence allows for an analysis of the costs and benefits of increasing DOE loan guarantees to new nuclear plants.

  4. The Japanese attitude towards nuclear power generation. Changes as seen through time series

    International Nuclear Information System (INIS)

    Kitada, Atsuko; Hayashi, Chikio

    1999-01-01

    This study is intended to determine people's attitudes toward nuclear power generation, shedding light on the changed and unchanged structures of attitudes by comparing data on nuclear power generation for 1993 and 1998. Although some nuclear facility accidents occurred during the last five years, public attitudes toward nuclear power generation remain almost the same. For the utilization of nuclear power generation, there was a slight increase in passive affirmation. The percentage of active affirmation was less than 10 percent, but if passive affirmation is included a high percentage exceeding 70 percent acknowledged the utilization of nuclear power. It was found that people's attitudes toward the utilization of nuclear power became slightly more positive in 1998 than in 1993. The difference was found in the general measure of attitudes based on many questions about nuclear power generation, and in the importance and the utility of nuclear power generation including the purpose of nuclear power generation. People are not conscious of the anxiety about nuclear power generation in ordinary life. However, when people were made to think about nuclear power generation, the degree of anxiety increases even if provided with data that prove its safety. On the other hand, it was revealed that the degree of anxiety about nuclear facility accidents remains the same in the last five years, that is, it has not increased, although a growing interest in the disposal and treatment of radioactive wastes was seen. As a result of a comparison of the structure of attitudes, based on the study by Hayashi 1994, it was found that the group that had no interest in nuclear power generation offered the most noticeable features in answering pattern in both 1993 and 1998. Moreover, it was found also that the latter group of respondents were characterized by a little opportunity to have information. A similarity in the relationship between people's attitudes toward nuclear power generation

  5. 76 FR 1197 - Arizona Public Service Company, Palo Verde Nuclear Generating Station; Notice of Availability of...

    Science.gov (United States)

    2011-01-07

    ... Service Company, Palo Verde Nuclear Generating Station; Notice of Availability of the Final Supplement 43... of operation for the Palo Verde Nuclear Generating Station (PVNGS). Possible alternatives to the... Arizona Public Service Company; (3) consultation with Federal, State, and local agencies; (4) a review of...

  6. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    International Nuclear Information System (INIS)

    Ka-Ngo Leung; Jasmina L. Vujic; Edward C. Morse; Per F. Peterson

    2005-01-01

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL)

  7. Nuclear Energy - a Part of a Solution to Generate Electric Power in Croatia?

    International Nuclear Information System (INIS)

    Mikulicic, V.; Simic, Z.

    1998-01-01

    The growth in Croatian energy, particularly electricity, demand together with growing environmental considerations is such that Croatia needs to have flexibility to respond, by having the option of expanding the nuclear sector. This paper deals with nuclear energy as an option for sustainable Croatian economic development, and with the nuclear power controversy. The conclusion is that there is a necessity for extended use of nuclear energy in Croatia. Most certainly the nuclear technology can provide the energy necessary to sustain progress and, as a country without coal, Croatia should favour nuclear power utilisation as the lowest cost option for base-load electricity generation. (author)

  8. The trend of the public opinion upon nuclear power generation in internet blog

    International Nuclear Information System (INIS)

    Maruta, Katsuhiko; Ueda, Yoshitaka

    2011-01-01

    The authors pay attention to and survey internet information which is called 'blog' to grasp how nuclear power generation information is treated in internet and forms public opinion. Examples of the outcomes are as follows. 1) Numbers of blog reference will change by public opinion upon nuclear power generation. A lot of blog references about nuclear power plants are conducted when a big earthquake occurred. 2) As a feature of the report, numbers of the references against nuclear power generation exceed those which are positive for nuclear power. There are a lot of blog reports which are against nuclear power generation and easy to make readers believe that they are true even if they are based on misunderstanding. It is worried that such reports give people too much negative influence for the public opinion upon nuclear power generation. The authors survey short term trend of the internet public opinion after TEPCO's Fukushima Daiichi Power Plants Accident too. As a result, it is made clear that people's concern upon nuclear power became very high and the ratio of the supporters of nuclear power generation changed after the accident. (author)

  9. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Workshop

    International Nuclear Information System (INIS)

    Hoopingarner, K.R.; Vause, J.W.

    1987-08-01

    Pacific Northwest Laboratory (PNL) evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume II, reports the results of an industry-wide workshop held on May 28 and 29, 1986, to discuss the technical issues associated with aging of nuclear service emergency diesel generators. The technical issues discussed most extensively were: man/machine interfaces, component interfaces, thermal gradients of startup and cooldown and the need for an accurate industry database for trend analysis of the diesel generator system

  10. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hoopingarner, K.R.; Vause, J.W.

    1987-08-01

    Pacific Northwest Laboratory (PNL) evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume II, reports the results of an industry-wide workshop held on May 28 and 29, 1986, to discuss the technical issues associated with aging of nuclear service emergency diesel generators. The technical issues discussed most extensively were: man/machine interfaces, component interfaces, thermal gradients of startup and cooldown and the need for an accurate industry database for trend analysis of the diesel generator system.

  11. Nuclear power generation alternative for a clean energy future

    International Nuclear Information System (INIS)

    Bobric, Elena; Bucur, Cristina; Popescu, Ion; Simionov, Vasile

    2010-01-01

    Full text: World Energy Council stated that it is a huge goal to raise the efficiency in which energy is provided. Over 60% of primary energy is, in effect, wasted. At present 63% of the world's electricity comes from thermal power (coal, oil and gas) 19% from hydro, 17% from nuclear, 0.5% from geothermal and 0.1% from solar, wind and biomass. Nuclear power almost completely avoids all the problems associated with fossil fuels: no greenhouse effect, no acid rain, no air pollution with sulfur dioxide or nitrogen oxides, no oil spills, etc. Its impact on health and environment is related to radiation and is relatively minor. Without pretending a high accuracy of numbers, if the Romanian nuclear power reactors will be replaced by a coal plant of equivalent capacity, about 10 millions tons of CO 2 and large quantities of associated sulfur and nitrous oxides, would be discharged to the atmosphere each year. However the acceptance of nuclear power is largely and an emotional issue. In all activities in which nuclear industry is involved, it takes care of the environment. Nuclear energy can have an important contribution for the future of mankind regarding the sustainable supply of energy. Security problems are part of universal nuclear technology management and it is not risk free. The nuclear industry acknowledges responsibilities and has a unique security culture. Security is not only a technical problem, but also an emotional one. Based on the environmental monitoring program this paper tries to demonstrate that the routine radioactive emissions of Cernavoda NPP, which are limited by National Competent Authority, gives an insignificant risk increase. For assessing the environmental impacts and damage costs from exposure, IAEA's Model SIMPACTS is applied. SIMPACT is a powerful and convenient tool for evaluating external costs of human health and environmental impacts for nuclear power and other energy sources. (authors)

  12. Environmental and health effects of fossil fuel and nuclear power generation

    International Nuclear Information System (INIS)

    Naqvi, S.J.; Black, D.B.; Phillips, C.R.

    1978-03-01

    The objective of this study was to identify and assess the present and future dimensions of environmental effects and impacts of various energy generation alternatives, and to place safety and environmental risks associated with the nuclear industry in Canada in perspective with the risks from other sources. It was found that nuclear power generation involves a comparable risk to that of conventional methods of thermoelectric power generation

  13. Study on risk management for operation of nuclear generation plant

    International Nuclear Information System (INIS)

    Yamashita, Hiroko

    2012-01-01

    Reputation loss is regarded as a management issue because it impacts to business and industries significantly. Reputation management is one of the approach both business and public organizations. Application of reputation management for nuclear plant management is discussed. (author)

  14. Nuclear power generation safe and competitive - now and in future

    Energy Technology Data Exchange (ETDEWEB)

    Wolf-Dieter, Krebs [European Nuclear Society and Framatome ANP (Germany); Hoffman, D.R. [American Nuclear Society and Excel Services Corp. (United States)

    2002-07-01

    ENC brings together scientists, academics, chief executives and all the major players from both the European and world nuclear utilities, to debate on the nuclear energy from technical, commercial and political perspectives. The abstracts of presentation from this conference are proposed in this paper grouped in four main themes: innovative reactors and fuel cycle; waste management including partitioning and transmutation and ADS development; experimental, research reactors and neutron sources; operation, maintenance, inspection and thermal hydraulics. (A.L.B.)

  15. When does a kernel generate a nuclear operator? | Popa ...

    African Journals Online (AJOL)

    ... 1] a continuous bijective function and U : C[0, 1] → C [0, 1] the operator defined by (Uƒ) (x) = ∫0a(x) ƒ(t)K (t, x) dt: We prove that U is compact and absolutely summing, but U is nuclear if and only if K (t, a-1 (t)) = 0 for λ-almost all t ∈ [0, 1] . Keywords: Banach spaces, continuous functions, compact, nuclear, p-summing.

  16. Nuclear power generation safe and competitive - now and in future

    International Nuclear Information System (INIS)

    Wolf-Dieter, Krebs; Hoffman, D.R.

    2002-01-01

    ENC brings together scientists, academics, chief executives and all the major players from both the European and world nuclear utilities, to debate on the nuclear energy from technical, commercial and political perspectives. The abstracts of presentation from this conference are proposed in this paper grouped in four main themes: innovative reactors and fuel cycle; waste management including partitioning and transmutation and ADS development; experimental, research reactors and neutron sources; operation, maintenance, inspection and thermal hydraulics. (A.L.B.)

  17. Electricity Generation Through the Koeberg Nuclear Power Station of Eskom in South Africa

    International Nuclear Information System (INIS)

    Dladla, G.; Joubert, J.

    2015-01-01

    The poster provides information on the process of nuclear energy generation in a nuclear power plant in order to produce electricity. Nuclear energy currently provides approximately 11% of the world’s electricity needs, with Koeberg Nuclear Power Station situated in the Western Cape providing 4.4% of South Africa’s electricity needs. As Africa’s first nuclear power station, Koeberg has an installed capacity of 1910 MW of power. Koeberg’ s total net output is 1860 MW. While there are significant differences, there are many similarities between nuclear power plants and other electrical generating facilities. Uranium is used for fuel in nuclear power plants to make electricity. With the exception of solar, wind, and hydroelectric plants, all others including nuclear plants convert water to steam that spins the propeller-like blades of a turbine that spins the shaft of a generator. Inside the generator coils of wire and magnetic fields interact to create electricity. The energy needed to boil water into steam is produced in one of two ways: by burning coal, oil, or gas (fossil fuels) in a furnace or by splitting certain atoms of uranium in a nuclear energy plant. The uranium fuel generates heat through a controlled fission process fission, which is described in this poster presentation. The Koeberg Nuclear Power Station is a Pressurised water reactor (PWR). The operating method and the components of the Koeberg Power Station are also described. The nuclear waste generated at a nuclear power station is described under three headings— low-level waste, intermediate-level waste and used or spent fuel, which can be solid, liquid or gaseous. (author)

  18. Commercial grade item (CGI) dedication of generators for nuclear safety related applications

    International Nuclear Information System (INIS)

    Das, R.K.; Hajos, L.G.

    1993-01-01

    The number of nuclear safety related equipment suppliers and the availability of spare and replacement parts designed specifically for nuclear safety related application are shrinking rapidly. These have made it necessary for utilities to apply commercial grade spare and replacement parts in nuclear safety related applications after implementing proper acceptance and dedication process to verify that such items conform with the requirements of their use in nuclear safety related application. The general guidelines for the commercial grade item (CGI) acceptance and dedication are provided in US Nuclear Regulatory Commission (NRC) Generic Letters and Electric Power Research Institute (EPRI) Report NP-5652, Guideline for the Utilization of Commercial Grade Items in Nuclear Safety Related Applications. This paper presents an application of these generic guidelines for procurement, acceptance, and dedication of a commercial grade generator for use as a standby generator at Salem Generating Station Units 1 and 2. The paper identifies the critical characteristics of the generator which once verified, will provide reasonable assurance that the generator will perform its intended safety function. The paper also delineates the method of verification of the critical characteristics through tests and provide acceptance criteria for the test results. The methodology presented in this paper may be used as specific guidelines for reliable and cost effective procurement and dedication of commercial grade generators for use as standby generators at nuclear power plants

  19. Factors affecting the next generation of nuclear power

    International Nuclear Information System (INIS)

    Remick, F.J.

    1990-01-01

    For both financial, environmental and health reasons, and because of external and internal factors affecting this nation's energy supply, nuclear power will likely play a part in supplying this nation's energy in the coming decades. I believe this to be true for some other parts of the world as well. Even some severe critics of the nuclear power industry and the NRC might agree with me on this point. Increasing concern with the environmental consequences of the burning of fossil fuels has led some former opponents of the use of nuclear power to balance anew the risks and benefits of nuclear power and to modify to some degree their former opposition. A related concern with the adequacy of the energy supply is leading others to modify their positions. According to analyses done by the U.S. Department of Energy, after 1994 the United States will no longer be able to assure all its citizens a reliable supply of electricity. Already, many areas of the country are in need of additional electric capacity. In both Sweden and Switzerland, similar concerns have led to the adoption by many of more compromising positions. Some critics of nuclear power may in the end still reject it as an alternative, but, with the increased pressures on the environment and on our energy supply, nuclear power is an alternative which cannot be rejected without the most serious consideration. This should be, I believe, a point of consensus among us. In sum, there is a future for nuclear power in the sense that there is a use for it

  20. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  1. Non-intrusive downcomer flow measurements: a means of monitoring steam generator performance

    International Nuclear Information System (INIS)

    Taylor, C.E.; McGregor, J.E.; Kittmer, C.A.; Pettigrew, M.J.; Jelinski, E.F.; Seppala, D.A.

    1995-01-01

    Nuclear plant reliability depends directly on steam generator performance. Downcomer flow is a good monitor of steam generator performance. It provides information critical to the efficient and safe operation of steam generators as determined by the recirculation ratio and water inventory. In addition, reduced downcomer flow may indicate steam generator crudding or inadequate chemical cleaning. This paper describes the application of ultrasonic technology to measure flow velocity in the downcomer annulus during operation. The technique is non-intrusive since the measurements are taken with ultrasonic transducers mounted on the outer shell of the steam generator. Successful application of this technique required development in several areas - high temperature couplants, signal quality, transducer performance and reliability, and remote monitoring. The effects of carry under, obstacles in the downcomer annulus, temperature variation, and wall thickness are also discussed in this paper. The results of measurements from 0 to 1 00% power in the Darlington nuclear station are presented. The results are compared to thermalhydraulic calculations. A second ultrasonic technique has recently been successfully tested at operating conditions with void in the flow. This new technique is also presented in this paper. (author)

  2. Review on studies for external cost of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Ko, Won Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    External cost is cost imposed on a third party when producing or consuming a good or service. Since the 1990s, the external costs of nuclear powered electricity production have been studied. Costs are a very important factor in policy decision and the external cost is considered for cost comparison on electricity production. As for nuclear fuel cycle, a chosen technology will determine the external cost. However, there has been little research on this issue. For this study, methods for external cost on nuclear power production have been surveyed and analyzed to develop an approach for evaluating external cost on nuclear fuel cycles. Before the Fukushima accident, external cost research had focused on damage costs during normal operation of a fuel cycle. However, accident cost becomes a major concern after the accident. Various considerations for external cost including accident cost have been used to different studies, and different methods have been applied corresponding to the considerations. In this study, the results of the evaluation were compared and analyzed to identify methodological applicability to the external cost estimation with nuclear fuel cycles.

  3. Attitude changes toward nuclear power generation. Analysis of data from a longitudinal survey

    International Nuclear Information System (INIS)

    Matsuda, Toshihiro

    1998-01-01

    The Attitude changes toward nuclear power generation in response to incidents/accidents at the nuclear facilities were examined, using a longitudinal survey. A replicated survey was conducted in Kansai area following the incidents in 1995 and 1997, and a panel survey was conducted in 1997, using the same subjects as those in the survey conducted by C. Hayashi in 1993 about the attitude toward nuclear power generation. The results of the panel survey showed that an anxiety about a nuclear incident/accident tended to increase and that the number of those who decreased an anxiety about a nuclear incident/accident was relatively small, compared to an anxiety about other incidents/accidents. Using the quantification theory to analyze the group that showed changes in attitude toward nuclear power generation, it was suggested that the increase or decrease in the level of anxiety about a nuclear power incident/accident had an influence on the changes in attitude. However, the influence was not the most significant one compared to other factors. With the inclusion of the group that showed no change in attitude, the general population structure that the approval for nuclear power generation because of inevitable use of nuclear energy accounted for sixty percent remained with no significant change. (author)

  4. The development and use of radionuclide generators in nuclear medicine - recent advances and future perspectives

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.

    1998-03-01

    Although the trend in radionuclide generator research has declined, radionuclide generator systems continue to play an important role in nuclear medicine. Technetium-99m obtained from the molybdenum-99/technetium-99m generator system is used in over 80% of all diagnostic clinical studies and there is increasing interest and use of therapeutic radioisotopes obtained from generator systems. This paper focuses on a discussion of the major current areas of radionuclide generator research, and the expected areas of future research and applications

  5. Determination of leveled costs of electric generation for gas plants, coal and nuclear

    International Nuclear Information System (INIS)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A.

    2005-01-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  6. Argentine activities on fuels for nuclear generation stations

    International Nuclear Information System (INIS)

    Olezza, R.L.; Valesi, J.

    1995-01-01

    In the last six years, significant changes have taken place in the nuclear fuel activity field in Argentina, therefore all the areas of the nuclear fuel cycle have been strongly influenced by these. The strategies carried out by CNEA to give an initial answer to the modifications of the domestic and international context of the nuclear fuel cycle were described in the previous Conference. Three years later, it is possible to appreciate the first results of the application of those strategies, and also that the frame has continued not only evolving and requiring new answers, but adapting and accentuating some strategies as well. A brief review of those results is presented here, together with a summary of the condition of the current situation and of the proposals to face it. (author)

  7. The Spanish Nuclear Electricity Generating Capacity since 1982

    International Nuclear Information System (INIS)

    Garcia de Ubieta, A.

    2000-01-01

    The article describes the evolution of Spain's nuclear power plants since 1982, the year in which the journal of the Spanish Nuclear Society first appeared, underlining those events that have had a special impact on this evolution at national and international level. At present, there are 9 nuclear groups operating in the country, of the total 17 that were at different stages of their life cycle at that time. This reduction in the number of groups that finally managed to initiated and indefinitely continue their operating lifetime contrasts with the growth of electricity consumption over the period, which has practically doubled. During these 18 years have been profound transformations in the social, economic and political context of Spain, both in general and in the Electricity Industry in particular. Nevertheless, there are now reasons, old new, to feel confident as regards the future of this energy source. (Author)

  8. A study of wet deposition of atmospheric tritium releases at the Ontario Power Generation, Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    Crooks, G.; DeWilde, J.; Yu, L.

    2001-01-01

    The Ontario Power Generation,Pickering Nuclear Generating Station (PNGS) has been investigating deposition of atmospheric releases of tritium on their site. This study has included numerical dispersion modelling studies conducted over the past three years, as well as an ongoing field monitoring study. The following paper will present results of the field monitoring study and make comparisons to the numerical modelling. The results of this study could be of potential use to nuclear stations in quantifying tritium deposition in near field regions where building wake effects dominate pollutant dispersion

  9. Nuclear Energy In Switzerland: It's going ahead. Challenges For The Swiss Nuclear Society Young Generation Group

    Energy Technology Data Exchange (ETDEWEB)

    Streit, Marco [Aare-Tessin Ltd for Electricity, Bahnhofquai 12, CH-4601 Olten (Switzerland); Bichsel, Thomas [BKW FMB Energie AG, NPP Muehleberg, CH-3203 Muehleberg (Switzerland); Fassbender, Andre [NPP Goesgen-Daeniken AG, CH-4658 Daeniken (Switzerland); Horvath, Matthias [National Emergency Operations Centre, CH-8044 Zurich (Switzerland)

    2008-07-01

    Swiss energy policy is focused on generating domestic electric power without combusting fossil fuels for already four decades. Roughly 60% of the electricity is generated in hydroelectric plants, which is possible due to the country's favourable topography; the remaining 40% are produced by the country's five nuclear power plants (NPPs). As in any other country nuclear power has its enemies in Switzerland. Due to the direct democracy system in Switzerland the nuclear opposition has a lot of possibilities to disturb the energy policy. Since 1969, when the first Swiss nuclear power plant went online, four plebiscites were held on the issue of civil use of nuclear energy. Four times Swiss citizens voted in favour of further operation of the existing plants also in the latest battle for nuclear energy, which was won in 2003. In 2005 and 2006 several Swiss studies about the future energy situation, especially the electricity situation, have been published. All off them show clearly that there will be a big gab around the year 2020 when the oldest three nuclear power plants will fade out. A public debate was started, how to solve the problem. Beside others, building new nuclear power plants was mentioned and discussed rationally. In 2007 the energy police of the Swiss government changed into a more nuclear friendly position and at the end of the same year some electricity companies lunched a new build program. Hosting the International Youth Nuclear Congress 2008 (IYNC 2008) in Switzerland seems to be just the right moment for the nuclear industry in our country. The slightly changed surroundings effected the organization of Swiss Nuclear Society (SNS) and SNS Young Generation Group (SNSYG) and enlarged the fields of activities for SNSYG. Those activities mentioned in the previous chapters will be developed in the future. The discussion about new builds in Switzerland has started and because of that more nuclear activities in Switzerland will occur. And surely

  10. Detailed requirements for a next generation nuclear data structure.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-07-05

    This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as found in the ENDF format. This set of requirements will be used to guide the development of a new data structure to replace the legacy ENDF format.

  11. A Course Case Study: Nuclear Power Generation and the Environment

    Science.gov (United States)

    Schlesinger, Allen B.

    1975-01-01

    Describes a course that uses the Ft. Calhoun nuclear power plant as a case study. The course involves three component parts: physics of fission events, engineering requirements, and economic considerations; environmental impact from radiation and thermal effluents; and the impact of social, political and legal factors. (GS)

  12. Electro-nuclear neutron generator – XADS at ITEP

    Indian Academy of Sciences (India)

    (iii) Creation of an educational center for training specialists in several branches of nuclear science and technology. (iv) Demonstration of the possibility of ... 36 junction of internal volumes of the drift tubes and the vacuum tube of the. DTL cavities simplifying fabrication and increased reliability of the tubes had been checked ...

  13. Requirements for a next generation nuclear data format

    International Nuclear Information System (INIS)

    Archier, Pascal; Jouanne, Cedric; Peneliau, Yannick; Saint-Jean, Cyrille de; Trama, Jean-Christophe; Becky, Bret; Cullen, D.E. Red; Mattoony, Caleb; McNabb, Dennis; Brownyz, David; Herman, Michal; Johnson, Timothy; Sonzogni, Alejandro; Cabellos, Oscar; Capote Noy, Roberto; Forrest, Robin; Trkov, Andrej; Zerkiny, Viktor; Go, Chiba; Conliny, Jeremy Lloyd; Kahler, A.H. Skip; Talouy, Patrick; Whitey, Morgan C.; Cornock, Mark; Coste-Delclaux, Mireille; Malvagi, Fausto; Dunn, Michael; Leal, Luiz; Pigni, Marco; Wiarda, Dorothea; Dupont, Emmeric; Fischer, Ulrich; Tokio, Fukahori; Makoto, Ishikawa; Osamu, Iwamoto; Chikara, Konno; Teruhiko, Kugo; Kenji, Nishihara; Tatsuhiko, Sato; Kenya, Suyama; Kenji, Yokoyama; Haeck, Wim; Hawari, Ayman; Holmes, Jessie; Jacqmin, Robert; Noguere, Gilles; Kodeli, Ivo; Koningy, Arjan; Lee, Morgan; Sublet, Jean-Christophe; Lubitz, Cecil; Romano, Paul; Millsy, Robert; Roubtsovy, Danila; Scopatz, Anthony; Sinitsa, Valentin; Soppera, Nicolas; Vogty, Romona

    2015-01-01

    This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as is found in the ENDF format. This set of requirements will be used to guide the development of a new set of formats to replace the legacy ENDF format. (authors)

  14. Corrosion aspects in steam generators of nuclear power plants

    International Nuclear Information System (INIS)

    Visoni, E.; Santos Pinto, M. dos

    1988-01-01

    Steam generators of pressurized water reactors (PWR), transfer heat from a primary coolant system to a secondary coolant system. Primary coolant water is heated in the core and passes through the steam generator that transfer heat to the secondary coolant water. However, the steam generator is dead for ionic impurities, corrosion products and fabrication/maintenence residues. These impurities concentrate between crevice and cracks. Many types of degradation mechanisms affect the tubes. The tubes are dented, craked, ovalized, wasted, etc. This paper describes the main corrosion problems in steam generators and includes the corrective actions to considered to reduce or eliminate these corrosion problems. (author) [pt

  15. New reactor concepts for new generation of nuclear power in the USA: An overview

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Milosevic, M. . E-mail addresses of corresponding authors: vujic@nuc.berkeley.edu , mmilos@vin.bg.ac.yu; Vujic, J.; Milosevic, M.)

    2005-01-01

    With the growing demands for more reliable energy sources, there is an international interest in the development of new nuclear energy systems to be deployed between 2010 and 2030, that will improve safety and reliability, decrease proliferation risks, improve radioactive waste management and lower cost of nuclear energy production. Six nuclear energy systems were selected as candidates for this Generation IV initiative. In this paper we will explore each of these concepts, as well as several of more advanced concepts. (author)

  16. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Directory of Open Access Journals (Sweden)

    Bading Hilmar

    2007-07-01

    Full Text Available Abstract Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.

  17. Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Science.gov (United States)

    Eder, Anja; Bading, Hilmar

    2007-01-01

    Background In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types. Results Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border. Conclusion Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events. PMID:17663775

  18. Relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation and nuclear power generation

    International Nuclear Information System (INIS)

    Hashiba, Takashi

    2001-01-01

    In this research, relationship between people's awareness of environmental capabilities of saving energy, photovoltaic power generation (PV) and nuclear power generation was investigated using questionnaire method. The results showed that saving energy is conducted without reference to its environment preservation effect. However the older people tend to regard saving energy as contribution to environment preservation. The attitude toward usage of PV has a close relationship to awareness of energy environmental concerns. Acceptance of cost sharing for the introducing of wide-scale PV systems to society is related to environment protection image of PV and the attitude toward loss of social convenience lost as a result of saving energy activities. The older people become, the more priority people put on environment protection before the social convenience. There is little relationship between environmental capabilities of nuclear power generation, that never discharge CO 2 on generation, and awareness of energy environmental concerns. (author)

  19. 75 FR 38845 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit No. 1; Exemption

    Science.gov (United States)

    2010-07-06

    ...; Three Mile Island Nuclear Station, Unit No. 1; Exemption 1.0 Background Exelon Generation Company, LLC... of the Three Mile Island Nuclear Station, Unit 1 (TMI-1). The license provides, among other things... demonstrations, the licensee stated that three qualified operators are available to perform the manual action at...

  20. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  1. 75 FR 52045 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental...

    Science.gov (United States)

    2010-08-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0281; Docket No. STN 50-530] Arizona Public Service Company, Palo Verde Nuclear Generating Station, Unit 3; Environmental Assessment and Finding of No.... NPF-74, issued to Arizona Public Service Company (APS, the licensee), for operation of Palo Verde...

  2. Nuclear Power and Justice between Generations. A Moral Analysis of Fuel Cycles

    NARCIS (Netherlands)

    Taebi, B.

    2010-01-01

    When we produce nuclear power we are depleting a non-renewable resource (uranium) that will eventually not be available to future generations. Furthermore the ensuing nuclear waste needs to be isolated from the biosphere for long periods of time to come. This gives rise to the problem of justice to

  3. Outlook for world nuclear power generation and long-term energy supply and demand situations

    International Nuclear Information System (INIS)

    Matsuo, Yuhji

    2012-01-01

    In this article, the author presents a long-term outlook for the world's nuclear generating capacity, taking into account the nuclear policy changes after Fukushima Daiichi nuclear power plant accident. World primary energy demand will grow from 11.2 billion tons of oil equivalent (toe) in 2009 to 17.3 billion toe in 2035. Along with this rapid increase in global energy consumption, the world's nuclear generating capacity will grow from 392 GW in 2010 to 484 GW in 2020 and 574 GW in 2035 in the 'Reference scenario'. Even in the 'Low nuclear scenario', where the maximum impact of Fukushima accident to the nuclear policies of each government is assumed, it will continue to grow in the future, exceeding 500 GW in 2035. In particular, Asian countries such as China and India will lead the growth both in the energy demand and in the nuclear power capacity. Therefore, it is essential to better ensure the safety of nuclear power generation. It is important for technologically developed countries, including Japan, to make active contributions to the establishment of a global nuclear safety control system. On the other hand, energy security and global warming will continue to be major issues, which will make it indispensable to make the best effort to save energy and expand renewable energy utilization. Japan is competitive in energy-saving and environmental conservation technologies, thus further development and utilization of there technologies should be a key option of Japan's growth growth strategy in the future. (author)

  4. Strategic thinking about nuclear energy: implications of the emerging market structure in electric generation

    International Nuclear Information System (INIS)

    Bodde, D.L.

    1998-01-01

    Global environmental concerns provide strong motivation for electric generating technologies that reduce greenhouse gas emissions. By itself however, this incentive is probably not sufficient to reverse the long-term decline in the market share of nuclear energy. This is because the power plants now offered by the nuclear vendors mesh poorly with the needs of competitive generating markets. Where managers of generating companies are held accountable to share owners in a competitive environment, the nuclear power plants now offered in the market for new generating capacity are at a distinct disadvantage. As much of the world moves toward the competitive model, this disadvantage will become increasingly limiting. An alternative nuclear power plant concept and fuel cycle is needed, a radical departure from current practice, designed with the competitive marketplace in mind. To accomplish this, a new kind of institution is required: multinational in scope, oriented toward the market, and able to master the politics of the fuel cycle. (author)

  5. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  6. Maintenance Practices for Emergency Diesel Generator Engines Onboard United States Navy Los Angeles Class Nuclear Submarines

    National Research Council Canada - National Science Library

    Hawks, Matthew A

    2006-01-01

    .... All underway Navy nuclear reactors are operated with diesel generators as a backup power system, able to provide emergency electric power for reactor decay heat removal as well as enough electric...

  7. Measuring the linear heat generation rate of a nuclear reactor fuel pin

    International Nuclear Information System (INIS)

    Smith, R.D.

    1981-01-01

    A miniature gamma thermometer is described which is capable of travelling through bores distributed in an array through a nuclear reactor core and measure the linear heat generation rate of the fuel pins. (U.K.)

  8. Radioactive release data from Canadian nuclear generating stations 1972 to 1988

    International Nuclear Information System (INIS)

    1990-01-01

    All nuclear generating stations emit small quantities of radioactive effluent both into the atmosphere and, in the form of liquid effluent, into the adjoining water body, be it river, lake or sea. The purpose of this document is to report on the magnitude of these emissions for each nuclear generating station in Canada and to indicate how these emissions compare with the relevant limitations imposed by the Atomic Energy Control Board as part of its regulatory and licensing program

  9. Production and testing of tubes for nuclear boiler steam generators

    International Nuclear Information System (INIS)

    Jacson, M.

    1977-01-01

    Vallourec, second pipe manufacturer in Europe, has developed a workshop for the production of nuclear heat exchanger tubes in its Montbard plant. This workshop, by its special construction, production engineering and handling procedures, has attained nuclear standards and can produce U-bended tubes from diameter 12 to 25 mm with a maximum length of 36 meters. Its annual out-put is 1.500.000 meters. The final dimensions are obtained by a cold rolling procedure, followed by an outside and inside degreasing, a solution annealing in a controlled atmosphere continuous type furnace, a surface grinding and an inside surface conditionning. The non-destructive tests: eddy currents, ultrasonic tests and thickness mesures are recorded on a single tube basis. The curving and packing procedures have been specially developed for this production [fr

  10. Spent fuel storage at the Rancho Seco Nuclear Generation Station

    International Nuclear Information System (INIS)

    Miller, K.R.; Field, J.J.

    1995-01-01

    The Sacramento Municipal Utility District (SMUD) has developed a strategy for the storage and transport of spent nuclear fuel and is now in the process of licensing and manufacturing a Transportable Storage System (TSS). Staff has also engaged in impact limiter testing, non-fuel bearing component reinsertion, storage and disposal of GTCC waste, and site specific upgrades in support of spent fuel dry storage

  11. Electro-nuclear neutron generator – XADS at ITEP

    Indian Academy of Sciences (India)

    This hybrid electro-nuclear facility of moderate power integrates the pulse proton linac (36 MeV, 0.5 mA) and heavy water sub-critical blanket assembly (heat power of 100 kW). Most parts of the equipment units are ordered for industrial manufacturing and some are under development. The facility is supposed to be used for ...

  12. Next Generation Nuclear Plant Project 2009 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick; Jim Kinsey; Keith Perry; Dave Petti

    2010-05-01

    The mission of the NGNP Project is to broaden the environmental and economic benefits of nuclear energy technology to the United States and other economies by demonstrating its applicability to market sectors not served by light water reactors (LWRs). Those markets typically use fossil fuels to fulfill their energy needs, and high temperature gas-cooled reactors (HTGRs) like the NGNP can reduce this dependence and the resulting carbon footprint.

  13. Review of 12-hour shifts at nuclear generating stations

    International Nuclear Information System (INIS)

    Smiley, A.; Moray, N.P.

    1989-04-01

    This project reviewed the practice of 12-hour shift work schedules at nuclear power plants, and its relationship to safety. The current literature was examined for information on accidents, fatigue and personal preferences. Interviews with operators and maintainers showed that these groups had attitude and preference differences related to both 12 hour shift schedules and overtime work opportunities. Several factors related to 12-hour schedules were identified which could affect safety, but which have not been adequately considered. (24 refs.)

  14. Foreign Material Exclusion Program at CNE Cernavoda Nuclear Generating Station

    International Nuclear Information System (INIS)

    Urjan, Daniel

    2008-01-01

    In the face of a continuing attention to operations and maintenance costs at nuclear power plants, the future of the industry depends largely upon increasing plant availability and improving operating efficiency. The success in achieving these objectives is dependent upon the success of each plant's equipment maintenance program. Preventing the introduction of foreign materials into a nuclear power plant system or component requires a careful, thoughtful, and professional approach by all site personnel. This paper describes a proactive approach to prevent the introduction of foreign material into systems and components, by providing an overview of technical considerations required to develop, implement, and manage a foreign material exclusion program at CNE Cernavoda Unit 1 and 2 Nuclear Power Station. It is also described an example of Foreign Material Intrusion which happened during the 2003 planned maintenance outage at Cernavoda Unit no.1. This paper also defines personnel responsibilities and key nomenclature and a means for evaluating prospective work tasks and activities against standardized criteria, in order to identify the appropriate level of the required FME controls. (author)

  15. Palo Verde nuclear generating station EASEplus SIMULATE model

    International Nuclear Information System (INIS)

    McDonald, W.F.; Reed, M.L.; Fauste, J.L.

    1992-01-01

    The Palo Verde on-site reactor engineers have an extremely powerful and accurate tool for quickly predicting the effects of reactor power maneuvers on core axial shape index (ASI) and xenon worth. They can analyze postulated future power maneuvers quickly and supply the reactor operators with valuable predictions without having to consult with the off-site nuclear analysis group. The tool developed by the nuclear analysis group was an advanced nodal code with a graphic user interface (GUI) driver for ease of use. The advanced nodal code used was the Studsvik of America SIMULATE-3 Version 2.20-DSI. This SIMULATE version was compiled for use on a personal computer (PC) with a Definicon Systems' 50-MHz coprocessor board. The GUI face used was Expert-EASE Systems' EASE+SIM3 Version 3.0 pre-/postprocessor. The system was installed on Compaq Deskpro 386/20e PCs located in the control room of each of the three units, in the reactor engineering office, in the nuclear analysis office, and in the control room of the training simulator

  16. Recognition of people with an opinion that nuclear power generation causes global warming

    International Nuclear Information System (INIS)

    Fukue, Chiyokazu

    2004-01-01

    Almost a half of the people are thinking that nuclear power generation causes global warming. We conducted a survey in order to explore the recognition and background for the thinking of people. Consequently, the existence of the right knowledge ''nuclear power generation does not discharge carbon dioxide at the time of power generation'' influenced most the idea which nuclear power generation prevents global warming. On the other hand, the misunderstanding as ''the radioactive material produced from a nuclear power plant advances global warming'' has influenced the idea considered as a cause, and it is though that this misunderstanding depend on the negative image to nuclear power generation. Moreover, many people do not recognize the mechanism of global warming, and it is thought that they confuse global warming with the other global environment problems, such as acid rain or ozone layer destruction. Therefore, it is required to spread the knowledge that nuclear power generation does not discharge carbon dioxide, and to promote the understanding that a radioactive material is not related to global warming. Furthermore, it is required to distinguish global warming from the other global environment problems, and to explain them intelligibly. (author)

  17. Nuclear Photo-Electron Avalanche Cells (NPEAC) Generator

    Data.gov (United States)

    National Aeronautics and Space Administration — Vast increase in power density to 1 kWe/kg level or higher by NPEAC would represent a revolution in energy generation for deep space exploration and other...

  18. Comparative costs of coal and nuclear-generated electricity in the united states

    International Nuclear Information System (INIS)

    Brandfon, W.W.

    1987-01-01

    This paper compares the future first-year operating costs and lifetime levelized costs of producing baseload coal- and nuclear-generated electricity under schedules shorter than those recently experienced at U.S. plants. Nuclear appears to have a clear economic advantage. Coal is favorable only when it is assumed that the units will operate at very low capacity factors and/or when the capital cost differential between nuclear and coal is increased far above the recent historical level. Nuclear is therefore a cost-competitive electric energy option for utilities and should be considered as an alternative to coal when large baseload capacity is required. (author)

  19. French Nuclear Power Generation Program: The Industrial Achievements; Le Programme Electronucleaire Francais: Realisations industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Dupraz, B. [Societe Francaise d' Energie Nucleaire (SFEN), 75 - Paris (France); Lacoste, A.C. [Direction de la Surete des Installations Nucleaires (DSIN), 75 - Paris (France); Merle, P. [Bureau de Controle des Chaudieres Nucleaires (BCCN), 75 - Paris (France); Scherrer, J. [Commission Centrale des Appareils a Pression (CCAP), 75 - Paris (France); Stricker, L. [Electricite de France (EDF), 75 - Paris (France). Div. Production Nucleaire; Joint-Lambert, V. [FRAMATOME, 92 - Paris-La-Defense (France); Montalembert, A. de [Cogema, 78 - Velizy-Villacoublay (France); Flament, T.A.; Hubert, X. [Numatec Hanford Corporation (NHC), Richland-Washington (United States); Zaccai, H. [SGN Reseau Eurisys, 78 - Saint Quentin (France); Ouzounian, G. [Agence Nationale pour la Gestion des Dechets Nucleaires (ANDRA), 92 - Chatenay-Malabry (France); Voin, R. [Groupe Intersyndical de l' Industrie Nucleaire (GIIN), 75 - Paris (France)

    1999-09-01

    The 're-opening' issue (no 4) of RGN is devoted, each year, to the situation of the French nuclear power generation program under several aspects (achievements, operation, safety, maintenance, fuel cycle, waste management, etc.). This issue is very similar, but more particularly dedicated to the industrial aspects of the program. Thus, in parallel with scientific and technical topics, the issue deals with several subjects (nuclear competitiveness, plutonium management, cleanup of nuclear sites, etc.) from the economic and industrial standpoint, and with the situation of medium- and small-size French nuclear companies. (author)

  20. Chemical Plant Accidents in a Nuclear Hydrogen Generation Scheme

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    A high temperature nuclear reactor (HTR) could be used to drive a steam reformation plant, a coal gasification facility, an electrolysis plant, or a thermochemical hydrogen production cycle. Most thermochemical cycles are purely thermodynamic, and thus achieve high thermodynamic efficiency. HTRs produce large amounts of heat at high temperature (1100 K). Helium-cooled HTRs have many passive, or inherent, safety characteristics. This inherent safety is due to the high design basis limit of the maximum fuel temperature. Due to the severity of a potential release, containment of fission products is the single most important safety issue in any nuclear reactor facility. A HTR coupled to a chemical plant presents a complex system, due primarily to the interactive nature of both plants. Since the chemical plant acts as the heat sink for the nuclear reactor, it important to understand the interaction and feedback between the two systems. Process heat plants and HTRs are generally very different. Some of the major differences include: time constants of plants, safety standards, failure probability, and transient response. While both the chemical plant and the HTR are at advanced stages of testing individually, no serious effort has been made to understand the operation of the integrated system, especially during accident events that are initiated in the chemical plant. There is a significant lack of knowledge base regarding scaling and system integration for large scale process heat plants coupled to HTRs. Consideration of feedback between the two plants during time-dependent scenarios is absent from literature. Additionally, no conceptual studies of the accidents that could occur in either plant and impact the entire coupled system are present in literature

  1. A study of the public opinion concerning nuclear power generation in the United States

    International Nuclear Information System (INIS)

    Oiso, Shinichi

    2008-01-01

    In this study, I surveyed the outcome of opinion poll about people's attitude toward nuclear power and analysed their awareness of nuclear power generation in the United States. As a result, it was found that percentage of the people who have positive attitude toward nuclear power has been over 60% since 1998. This result corresponds to the fact that people's preference is tending more toward nuclear power generation which is called the nuclear power Renaissance in the United States. Furthermore, analysis of the outcome of the opinion poll in power stations site region was also conducted and it was found that attitude of the people in the site region was more positive than that of average level in the United States. (author)

  2. Major issues associated with nuclear power generation cost and their evaluation

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Shimogori, Kei; Suzuki, Atsuhiko

    2015-01-01

    This paper discusses the evaluation of power generation cost that is an important item for energy policy planning. Especially with a focus on nuclear power generation cost, it reviews what will become a focal point on evaluating power generation cost at the present point after the estimates of the 'Investigation Committee on Costs' that was organized by the government have been issued, and what will be a major factor affecting future changes in costs. This paper firstly compared several estimation results on nuclear power generation cost, and extracted/arranged controversial points and unsolved points for discussing nuclear power generation cost. In evaluating nuclear power generation cost, the comparison of capital cost and other costs can give the understanding of what can be important issues. Then, as the main issues, this paper evaluated/discussed the construction cost, operation/maintenance cost, external cost, issue of discount rate, as well as power generation costs in foreign countries and the impact of fossil fuel prices. As other issues related to power generation cost evaluation, it took up expenses for decommissioning, disposal of high-level radioactive waste, and re-processing, outlined the evaluation results by the 'Investigation Committee on Costs,' and compared them with the evaluation examples in foreign countries. These costs do not account for a large share of the entire nuclear power generation costs. The most important point for considering future energy policy is the issue of discount rate, that is, the issue of fund-raising environment for entrepreneurs. This is the factor to greatly affect the economy of future nuclear power generation. (A.O.)

  3. 77 FR 135 - Exelon Generation Company, LLC, Oyster Creek Nuclear Generating Station; Exemption

    Science.gov (United States)

    2012-01-03

    ... not have a significant effect on the quality of the human environment (76 FR 79227, December 21, 2011.... For The Nuclear Regulatory Commission. Michele G. Evans, Director, Division of Operating Reactor...

  4. Korean students' behavioral change toward nuclear power generation through education

    International Nuclear Information System (INIS)

    Han, Eun Ok; Kim, Jae Rok; Choi, Yoon Seok

    2014-01-01

    As a result of conducting a 45 minute-long seminar on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of perception including the necessity (p<0.017), safety (p<0.000), information acquisition (p<0.000), and subjective knowledge (p<0.000), objective knowledge (p<0.000), attitude (p<0.000), and behavior (p<0.000) were all significantly higher. This indicates that education can be effective in promoting widespread social acceptance of nuclear power and its continued use. In order to induce behavior change toward positive judgments on nuclear power generation, it is necessary to focus on attitude improvement while providing the information in all areas related to the perception, knowledge, attitude, and behavior. Here, the positive message on the convenience and the safety of nuclear power generation should be highlighted.

  5. Korean students' behavioral change toward nuclear power generation through education

    Energy Technology Data Exchange (ETDEWEB)

    Han, Eun Ok; Kim, Jae Rok; Choi, Yoon Seok [Dept. of Education and Research, Korea Academy of Nuclear Safety, Seoul (Korea, Republic of)

    2014-10-15

    As a result of conducting a 45 minute-long seminar on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of perception including the necessity (p<0.017), safety (p<0.000), information acquisition (p<0.000), and subjective knowledge (p<0.000), objective knowledge (p<0.000), attitude (p<0.000), and behavior (p<0.000) were all significantly higher. This indicates that education can be effective in promoting widespread social acceptance of nuclear power and its continued use. In order to induce behavior change toward positive judgments on nuclear power generation, it is necessary to focus on attitude improvement while providing the information in all areas related to the perception, knowledge, attitude, and behavior. Here, the positive message on the convenience and the safety of nuclear power generation should be highlighted.

  6. The role of nuclear energy in the generation of electricity in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.

    1981-01-01

    A comparative calculation of the potential of conventional electricity-generating energy sources-hydroelectric, coal, nuclear - according to different cost levels of generated energy is presented. Assuming a plausible estimate of the demand increase for electricity in the country, calculations show that nuclear energy will have an important role in Brazil only in the second decade of the next century. The potential of some other alternative electricity generating sources is calculated - shale and biomass (bagasse and biogas of vinhoto are discussed) - indicating that by that time nuclear energy will indeed be an option, but not necessarily the only one or the best. Finally a chronological table has been worked out indicating a construction schedule for the reactors in case the option is for nuclear energy - keeping in mind that this option does not depend exclusively on technical and economic but also political criteria and therefore requires a democratic decision-making process. (Author) [pt

  7. Technical and economic experience in the generation of nuclear power

    International Nuclear Information System (INIS)

    Gouni, L.; Bigeard, C.; Gaussot, D.; Sagot, M.

    1983-01-01

    The French nuclear power programme is one of the largest in the world, and a number of interesting lessons can be drawn from the programme as it now stands, in the light of its scale, its development with time and its specific characteristics (standardization, industrial and human environment, etc.). These lessons relate both to the construction and to the operation and economics of power plants. Construction work has benefitted from the efforts to standardize power plant units, making it possible to concentrate design and manufacturing resources on major reactor series. Construction times have been shortened and costs reduced by industrial organization and in particular by appropriate co-ordination of site work, although that approach has given rise to some problems which had to be solved in a timely fashion. Following the startup and initial years of operation of the plant units, once the trials were completed and the various difficulties overcome, availability rates were achieved which are entirely comparable to those of conventional thermal plants, although it is still too early to pass final judgement on the performance of the equipment. A very considerable effort had to be devoted to specific training for the operating and maintenance staff, for which purpose some original and interesting schemes were introduced. The first economic assessments of nuclear power plants provide a basis on which to judge the economic value of their contribution to the French energy scene. (author)

  8. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  9. Socio-economic impacts of nuclear generating stations

    International Nuclear Information System (INIS)

    Weisiger, M.L.; Pijawka, K.D.

    1982-07-01

    This report documents a case study of the socio-economic impacts of the construction and operation of the St. Lucie nuclear power station. It is part of a major post-licensing study of the socio-economic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period, 1980-1981. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socio-economic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined

  10. Research on the response of various persons to information about nuclear power generation

    International Nuclear Information System (INIS)

    Maruta, Katsuhiko

    2014-01-01

    The author surveyed blogs readily available on the Internet for three purposes: (1) to grasp the public response to nuclear problems after the accident at the Fukushima Daiichi Nuclear Power Station, (2) to determine changes in the number of blogs based on an article search, and (3) to identify the stance of bloggers on the necessity of nuclear power generation based on reading contribution contents. Furthermore the author conducted a questionnaire survey of public response in reference to the results of the blog survey. From the blog survey, it was found that immediately after the accident, the number of blogs which were negative toward nuclear power generation drastically increased, but as time has passed, blogs which are positive are increasing in number somewhat in expectation of stabilized economic and living conditions. The main results of the questionnaire survey are as follows. (1) Many persons want power generation that is non-nuclear; this is because they have good expectations for renewable energy sources or new thermal power generation as an alternative energy and they strongly feel anxious about the issue of disposal of spent nuclear fuel. (2) Because of the risk of negative impacts which electricity shortages bring on the economy and lifestyles, some persons do not want immediate decommissioning of nuclear power reactors, they favor a phase-out of nuclear power generation. Though public opinion about nuclear problems includes the expectation that one alternative energy can be selected, there is a possibility that this opinion will shift to find an optimum energy mix of plural energy sources. (author)

  11. Small Nuclear Co-generation Plants Based on Shipbuilding Technology

    International Nuclear Information System (INIS)

    Vasyukov, V. I.; Veshnyakov, K. B.; Goryunov, E. V.; Zalugin, V. I.; Panov, Yu. K.; Polunichev, V. I.

    2002-01-01

    The development of nuclear cogeneration plants and power desalination complexes of relatively small power, using proven shipbuilding technology, becomes more and more attractive for solving the power supply problems of remote districts of the Extreme North and the Far East with small and medium power grids and for removing the shortage of fresh water in different world regions. The idea of transportation of the power unit with high degree of readiness to the place of its location with minimum construction and mounting activities at the site is very attractive. Compactness typical of RP based on shipbuilding technology allows to develop floating or ground-based plants at minimum use of water area and territory. Small construction scope at the site under conditions of minimum anthropogenic loads and high ecological indices are important arguments in favor of floating nuclear cogeneration plant based on ship power units against the alternative fossil sources. At present, the activities on floating nuclear cogeneration plant design, which is developed on the basis of floating power unit with two KLT-40S reactor plant, which is a modified option of standard KLT-40-type ship plant for icebreaker fleet in Russia are the most advanced. To date, a detailed design of reactor plant has been developed and approved, design activities on floating power unit are in the stage of completion, the site for its location has been selected and licensing by GAN, Russia, is in progress. Besides OKBM has developed some designs of nuclear cogeneration plants of different power on the basis of integral reactor plants, using the experience of transport and stationary power plants designing. Nuclear cogeneration plant investment analysis showed acceptable social and economical efficiency of the design that creates conditions for commercial construction of floating power units with KLT-40S reactor plan. At the same time the reduction of the design recovering terms, increase of budget income and

  12. Nuclear systems of the future: international forum generation 4 and research and development projects at the Cea

    International Nuclear Information System (INIS)

    Carre, F.

    2003-01-01

    To advance nuclear energy to meet future energy needs, ten countries have agreed to develop a future generation of nuclear energy systems, known as Generation 4. A technology road map to guide the Generation 4 effort was begun. This document presents the goals for these nuclear systems and the research programs of the Cea on the gas technology, GT-MHR, VHTR and GFR and the other systems as sodium Fast Neutron reactors, supercritical water and space nuclear. (A.L.B.)

  13. Nuclear energy cost data base: A reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    1988-09-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on a once-through cycle, and high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line around the turn of the century. In addition to current generation light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on improved and advanced light-water reactors, liquid metal reactor plants and fuel cycle facilities. This report includes an updated data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, a sample calculation for illustrative and benchmark purposes and projected power generation costs for fission and coal-fired alternatives. Effects of the 1986 Tax Reform Act are included. 126 refs., 17 figs., 47 tabs

  14. 78 FR 52987 - Entergy Nuclear Operations, Inc., Indian Point Nuclear Generating Unit 3

    Science.gov (United States)

    2013-08-27

    ... concludes that the proposed action will not have a significant effect on the quality of the human... Commission. Michele G. Evans, Director, Division of Operating Reactor Licensing, Office of Nuclear Reactor...

  15. Heat exchanger tubing materials for CANDU nuclear generating stations

    International Nuclear Information System (INIS)

    Taylor, G.F.

    1977-07-01

    The performance of steam generator tubing (nickel-chromium-iron alloy in NPD and nickel-copper alloy in Douglas Point and Pickering generating stations) has been outstanding and no corrosion-induced failures have occurred. The primary coolant will be allowed to boil in the 600 MW (electrical) CANDU-PHW reactors. An iron-nickel-chromium alloy has been selected for the steam generator tubing because it will result in lower radiation fields than the alloys used before. It is also more resistant than nickel-chromium-iron alloy to stress corrosion cracking in the high purity water of the primary circuit, an unlikely but conceivable hazard associated with higher operating temperatures. Austenitic alloy and ferritic-austenitic stainless steel tubing have been selected for the moderator coolers in CANDU reactors being designed and under construction. These materials will reduce the radiation fields around the moderator circuit while retaining the good resistance to corrosion in service water that has characterized the copper-nickel alloys now in use. Brass and bronze tubes in feedwater heaters and condensers have given satisfactory service but do, however, complicate corrosion control in the steam cycle and, to reduce the transport of corrosion products from the feedtrain to the steam generator, stainless steel is preferred for feedwater heaters and stainlss steel or titanium for condensers. (author)

  16. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil.

    Science.gov (United States)

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power,…

  17. Effects of the accident at Mihama Nuclear Power Plant Unit 3 on the public's attitude to nuclear power generation

    International Nuclear Information System (INIS)

    Kitada, Atsuko

    2005-01-01

    As part of an ongoing public opinion survey regarding nuclear power generation, which started in 1993, a survey was carried out in the Kansai and Kanto regions two months after the accident at Unit 3 of the Mihama Nuclear Power Plant. In addition to analyzing the statistically significant changes that have taken place since the previous survey (taken in 2003), increase and decrease of the ratio of answers to all the questions related to nuclear power before and after the two accidents were compared in the case of the accidents which occurred in the Mihama Unit 3 and the JCO company's nuclear-fuel plant. In the Kansai region, a feeling of uneasiness about the risky character of nuclear power generation increased to some extent, while the public's trust in the safety of nuclear power plants decreased somewhat. After a safety-related explanation on ''Early detection of troubles'' and Accident prevention'' was given from a managerial standpoint, people felt a little less at ease than they had before. Uneasiness, however, did not increase in relation to the overall safety explanation given about the engineering and technical functioning of the plant. There was no significant negative effect on the respondents' evaluation of or attitude toward nuclear power generation. It was found that the people's awareness about the Mihama Unit 3 accident was lower and the effect of the accident on their awareness of nuclear power generation was more limited and smaller when compared with the case of the JCO accident. In the Kanto region, people knew less about the Mihama Unit 3 accident than those living in the Kansai region, and they remembered the JCO accident, the subsequent cover-up by Tokyo Electric Power Company, and the resulting power shortage better than those living in Kansai. This suggested that there was a little difference in terms of psychological distance in relation to the accidents an incidents depending on the place where the events occurred and the company which

  18. Natural Gas, Wind and Nuclear Options for Generating Electricity in a Carbon Constrained World

    NARCIS (Netherlands)

    Kooten, van G.C.

    2012-01-01

    A linear programming model is used to examine the impact of carbon taxes on the optimal generation mix in the Alberta electrical system. The model permits decommissioning of generating assets with high carbon dioxide emissions and investment in new gas-fired, wind and, in some scenarios, nuclear

  19. The young generation - guarantors for the future of the nuclear industry

    International Nuclear Information System (INIS)

    Broy, Y.

    2001-01-01

    For several years the 'YOUNG GENERATION' has been attracting great interest all over Europe. Based on the Young Generation Network of the European Nuclear Society (ENS) founded by Jan Runermark, in a lot of European countries a national Young Generation Network has been established, as well in Germany. Since October 1998 the Young Generation in Germany has been working in the frame of a difficult political situation after the decision was made about the phasing out of nuclear energy in Germany. Nowadays, our highly qualified and motivated young people who have been working for a couple of years in the nuclear field and already took over a lot of knowledge and experiences, have to decide: Is there a future for us in the nuclear industry? The paper will briefly summarise the wide range of activities of the German Young Generation. A selection of them will be chosen to highlight our fight for the future of nuclear energy in Germany, e.g. communication with the public, know-how-transfer, improvement of links between the fuel vendor and their customers. The main purpose is to point out: There is a young generation who is ready to take over the knowledge and the responsibility for the future. (author)

  20. Acoustic nuclear magnetic resonance due to generation of sound waves in metals

    International Nuclear Information System (INIS)

    Solovarov, N.K.

    1975-01-01

    Nuclear magnetic resonance (NMR) in a metallic plate is considered taking account of acoustic waves (AW) generated by an outer electromagnetic field. In observing the NMR in a conducting media it is suggested that only nuclear spins in a thin skin-layer, participate in the energy resonance absorption. Electromagnetic wave penetration into a sample in the presence of a constant magnetic field is followed by a direct sound generation. Acoustic NMR can be observed during interaction of excited AW with nuclear spins. Energy absorption by nuclear spins occurs over the whole volume of the sample by means of helicons and AW. In this case the NMR signal is the summarized absorption one. It is necessary to analize every time carefully the nature of the observed signal . Relative values of contributions into the NMR signal of the following mechanisms of sound absorption by the nuclear spin-system are estimated in the present paper: 1) electromagnetic absorption taking no account of sound generation; 2) the mechanism of the magnetic dipole absorption of AW, generated in the sample; 3) the mechanism of absorption of AW different from that of the magnetic dipole mechanism. The results of numerical estimates are represented graphically. The conclusions are as follows: 1) in the majority of cases it is necessary to take into account sound generation in metals in observing NMR; 2) contributions due to mechanisms diferent from the magnetic dipole mechanism of absorption of the sound, generated in the sample by the spin-system, may be significant

  1. Reliable, fault tolerant control systems for nuclear generating stations

    International Nuclear Information System (INIS)

    McNeil, T.O.; Olmstead, R.A.; Schafer, S.

    1990-01-01

    Two operational features of CANDU Nuclear Power Stations provide for high plant availability. First, the plant re-fuels on-line, thereby eliminating the need for periodic and lengthy refuelling 'outages'. Second, the all plants are controlled by real-time computer systems. Later plants are also protected using real-time computer systems. In the past twenty years, the control systems now operating in 21 plants have achieved an availability of 99.8%, making significant contributions to high CANDU plant capacity factors. This paper describes some of the features that ensure the high degree of system fault tolerance and hence high plant availability. The emphasis will be placed on the fault tolerant features of the computer systems included in the latest reactor design - the CANDU 3 (450MWe). (author)

  2. Korea's choice for a new generation of nuclear plants

    International Nuclear Information System (INIS)

    Redding, John R.

    1995-01-01

    This need will primarily occur in developing countries with growing economies. In Asia, for example, which has experienced rapid economic growth, the demand for electricity has been growing in some cases at more than 10% a year. This growth is expected to continue with an additional 400 GWe of new power plants, a staggering amount, needed. While the need for new electricity grows, so does the concern for the environment. New regulations in the United States and Europe, for example, sharply curtail the emission levels from power plants and in Asia unhealthy urban air is a major concern. Nuclear energy is ideally suited to help countries improve the standard of living for its people by meeting the needs for new electricity, which fuels new economic growth, and by cleaning up the environment

  3. The nuclear safety regulation in Japan and the response to changes of circumstances surrounding the nuclear electricity generation

    International Nuclear Information System (INIS)

    Hombu, K.; Hirota, M.; Taniguchi, T.; Tanaka, N.; Akimoto, S.

    2001-01-01

    The influences of external factors on nuclear safety are discussed in this paper, based on the views on the circumstances of nuclear electricity generation. The following external factors, which might have some potential impacts on nuclear safety, are selected for discussion: (1) The deregulation in the electricity generation industry; (2) The modification of approval/certification system in the regulation of electricity generation; (3) The influences on social atmosphere due to the occurrence of a series of troubles; (4) The government reform and the structural adjustment of industry and (5) Others. Our further discussion seems to focus on the following 2 issues: (a) Whether nuclear power and the other electrical sources should compete with each other for short term economical cost, or whether factors of cost stability and competitiveness as well as longer term energy supply security and global environmental issues ranging over several decades should be considered; (b) How to realize the appropriate regulation from the perspective of public acceptance and confidence (when a series of troubles occur) without imposing unnecessary burdens on industry and without jeopardizing safety. These issues may be common among many countries and can be widely discussed. (author)

  4. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study

    Energy Technology Data Exchange (ETDEWEB)

    Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

    1987-08-01

    Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators.

  5. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study

    International Nuclear Information System (INIS)

    Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

    1987-08-01

    Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators

  6. Present and future nuclear power generation as a reflection of individual countries' resources and objectives

    International Nuclear Information System (INIS)

    Borg, I.Y.

    1987-01-01

    The nuclear reactor industry has been in a state of decline for more than a decade in most of the world. The reasons are numerous and often unique to the energy situation of individual countries. Two commonly cited issues influence decisions relating to construction of reactors: costs and the need, or lack thereof, for additional generating capacity. Public concern has ''politicized'' the nuclear industry in many non-communist countries, causing a profound effect on the economics of the option. The nuclear installations and future plans are reviewed on a country-by-country basis for 36 countries in the light of the resources and objectives of each. Because oil and gas for power production throughout the world are being phased out as much as possible, coal-fired generation currently tends to be the chosen alternative to nuclear power production. Exceptions occur in many of the less developed countries that collectively have a very limited operating experience with nuclear reactors. The Chernobyl accident in the USSR alarmed the public; however, national strategies and plans to build reactors have not changed markedly in the interim. Assuming that the next decade of nuclear power generation is uneventful, additional electrical demand would cause the nuclear power industry to experience a rejuvenation in Europe as well as in the US. 80 refs., 3 figs., 22 tabs

  7. Knowledge Transfer and Leadership Development in Coordination with Young Generation in Nuclear (YGN) Societies

    International Nuclear Information System (INIS)

    Batra, Chirayu; Janin, Denis

    2017-01-01

    IYNC in a Nutshell: The mission - IYNC (International Youth Nuclear Congress) is the global network of a new generation of nuclear professionals to: •Communicate the benefits of nuclear science and applications •Promote the peaceful use of nuclear power •Provide a platform for networking •Facilitate knowledge transfer between generations and across boundaries; The structure - IYNC is a non-profit organization run by: •11 Officers •Board of Directors •50 National Representatives (e.g. YGN) •20 Members at Large •Dedicated committees and team for projects (30+) → more than 80 volunteers; The activities - •Biannual Congress (IYNCWiN18) •Grants Committee •YGN Startup & Support •Bulletin, Newsletter – sign up www.iync.org •Innovation4Nuclear (I4N) •Nuclear4Climate •Annual Board of Directors. YGN (Young Generation Network): What is a YGN? • A group of young professionals and students interested in nuclear science and technology; Benefits: •Knowledge transfer •Train the future international leaders •Networking •Attracts, develops and retains young professionals

  8. Corrosion in steam generators of PWR type nuclear power plants

    International Nuclear Information System (INIS)

    Hyspecka, L.; Tvrdy, M.

    1988-01-01

    Problems are discussed of heat exchange tubes of Westinghouse type vertical steam generators exhibiting corrosion damage such as point corrosion, planar corrosion, tube denting, corrosion stress cracking, crevice corrosion, fretting corrosion and intergranular corrosion. Attention is also paid to problems of WWER-440 type horizontal steam generators, where the level fluctuation area is critical; noncompact porous deposits of the corrosion products give rise to crevice effects and cause significant concentration of chloride ions and other additions. This problem can be partly resolved by a modification of the collector design at the level variation area. An additional measure is the production of steel 08Kh18N10T with a very low level of harmful elements and inclusions. (Z.M.). 3 figs., 11 refs

  9. Green technology into nuclear industry Eligibility of Ambidexter nuclear complex for a generation IV nuclear power system

    International Nuclear Information System (INIS)

    Park, Kwangheon; Koh, Moosung; Ryu, Jeongdong; Kim, Yangeun; Lee, Bumsik; Park, Hyuntack

    2000-01-01

    Green power is being developed up to a point that is feasible not only in an environmental sense, but also in an economical viewpoint. This paper introduces two case studies that applied green technology into nuclear industry. 1) Nuclear laundry: A laundry machine that uses liquid and supercritical Co 2 as a solvent for decontamination of contaminated working dresses in nuclear power plants was developed. The machine consists of a 16 liter reactor, a recovery system with compressors, and storage tanks. All CO 2 used in cleaning is fully recovered and reused in next cleaning, resulting in no production

  10. S100 lathe bed pulse generator applied to pulsed nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cernicchiaro, G.R.C.; Rudge, M.G.; Albuquerque, M.P.

    1989-01-01

    The project and construction of four channel pulse generator in the S100 standard plate and its control software for microcomputer are described. The microcomputer has total control on the pulse generator, which has seven programable parameters, defining the position of four pulses and the width for the three first ones. This pulse generator is controlled by a software developed in c language, and is used in pulsed nuclear magnetic resonance experiences. (M.C.K.) [pt

  11. General design criteria for diesel-generator sets for nuclear power plants

    International Nuclear Information System (INIS)

    Rangarao, G.

    1975-01-01

    The design criteria for diesel-generators for nuclear power plants are examined. Applicable standards, loading, design performance, and characteristics to be considered in the selection of diesel-generator set and its auxiliary system are discussed. Also, engineered safety features loads together with loss of power safe shutdown loads and their starting sequence, analysis of voltage and frequency response and the diesel-generator ability to start various load blocks successfully to meet the reactor emergency core cooling requirements are discussed

  12. Development of technology for next generation reactor - Research of evaluation technology for nuclear power plant -

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Chang, Moon Heuy; Hwang, Yung Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)] [and others

    1993-09-01

    For development of next generation reactor, a project for evaluation technology for nuclear power plant is performed. Evaluation technology is essential to next generation reactor for reactor safety and system analysis. For design concept, detailed evaluation technologies are studied as follows: evaluation of safety margin, evaluation of safety facilities, evaluation of measurement and control technology; man-machine interface. Especially for thermal efficiency, thermal properties and chemical composition of inconel 690 tube, instead of inconel 600 tube, are measured for steam generator. (Author).

  13. Steam generator tube failures: experience with water-cooled nuclear power reactors during 1976

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1978-02-01

    A survey was conducted of experience with steam generator tubes at nuclear power stations during 1976. Failures were reported at 25 out of 68 water-cooled reactors. The causes of these failures and the repair and inspection procedures designed to cope with them are summarized. Examination of the data indicates that corrosion was the major cause of steam generator tube failures. Improvements are needed in steam generator design, condenser integrity and secondary water chemistry control. (author)

  14. Nuclear Energy Cost Data Base: a reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    1985-06-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on either the current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line in the last decade of this century. In addition to light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on liquid metal reactor plants. This report includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of a recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative and benchmark purposes

  15. Nuclear Energy Cost Data Base: A reference data base for nuclear and coal-fired powerplant power generation cost analysis

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1986-12-01

    A reference data base and standard methodology are needed for performing comparative nuclear and fossil power generation cost analyses for the Department of Energy, Office of Nuclear Energy. This report contains such a methodology together with reference assumptions and data to be used with the methodology. It is intended to provide basic guidelines or a starting point for analyses and to serve as a focal point in establishing parameters and methods to be used in economic comparisons of nuclear systems with alternatives. The data base is applicable for economic comparisons of new base load light-water reactors on either the current once-through cycle or self-generated recycle, high- and low-sulfur coal-fired plants, and oil- and natural gas-fired electric generating plants coming on line around the turn of the century. In additions to light-water reactors and fossil fuel-fired plants, preliminary cost information is also presented on liquid metal reactor plants. This report includes a data base containing proposed technical and economic assumptions to be used in analyses, discussions of recommended methodology to be used in calculating power generation costs, and a sample calculation for illustrative benchmark purposes

  16. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    Science.gov (United States)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  17. The potential of nuclear energy to generate clean electric power in Brazil

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine; Giarola, Rodrigo S.; Coelho, Talita S.

    2013-01-01

    The generation of electricity in Brazil is concentrated in hydroelectric generation, renewable and clean source, but that does not satisfy all the demand and leads to necessity of a supplementary thermal sources portion. Considering the predictions of increase in demand for electricity in the next years, it becomes necessary to insert new sources to complement the production taking into account both the volume being produced and the needs of environmental preservation. Thus, nuclear power can be considered a potential supplementary source for electricity generation in Brazil as well as the country has large reserves of fissile material, the generation emits no greenhouse gases, the country has technological mastery of the fuel cycle and it enables the production of large volumes of clean energy. The objective of this study is to demonstrate the potential of nuclear energy in electricity production in Brazil cleanly and safely, ensuring the supplies necessary to maintain the country's economic growth and the increased demand sustainable. For this, will be made an analysis of economic and social indicators of the characteristics of our energy matrix and the availability of our sources, as well as a description of the nuclear source and arguments that justify a higher share of nuclear energy in the matrix of the country. Then, after these analysis, will notice that the generation of electricity from nuclear source has all the conditions to supplement safely and clean supply of electricity in Brazil. (author)

  18. High-speed particle tracking in nuclear emulsion by last-generation automatic microscopes

    International Nuclear Information System (INIS)

    Armenise, N.; De Serio, M.; Ieva, M.; Muciaccia, M.T.; Pastore, A.; Simone, S.; Damet, J.; Kreslo, I.; Savvinov, N.; Waelchli, T.; Consiglio, L.; Cozzi, M.; Di Ferdinando, D.; Esposito, L.S.; Giacomelli, G.; Giorgini, M.; Mandrioli, G.; Patrizii, L.; Sioli, M.; Sirri, G.; Arrabito, L.; Laktineh, I.; Royole-Degieux, P.; Buontempo, S.; D'Ambrosio, N.; De Lellis, G.; De Rosa, G.; Di Capua, F.; Coppola, D.; Formisano, F.; Marotta, A.; Migliozzi, P.; Pistillo, C.; Scotto Lavina, L.; Sorrentino, G.; Strolin, P.; Tioukov, V.; Juget, F.; Hauger, M.; Rosa, G.; Barbuto, E.; Bozza, C.; Grella, G.; Romano, G.; Sirignano, C.

    2005-01-01

    The technique of nuclear emulsions for high-energy physics experiments is being revived, thanks to the remarkable progress in measurement automation achieved in the past years. The present paper describes the features and performances of the European Scanning System, a last-generation automatic microscope working at a scanning speed of 20cm 2 /h. The system has been developed in the framework of the OPERA experiment, designed to unambigously detect ν μ ->ν τ oscillations in nuclear emulsions

  19. Fitting of power generated by nuclear power plants into the Hungarian electricity system

    International Nuclear Information System (INIS)

    Lengyel, Gyula; Potecz, Bela

    1984-01-01

    The moderate increase of electrical energy demands (3% at present) can only be met by the parallel application of fossil and nuclear power plants and by electric power import via the transmission lines of the CMEA countries. The changes in the electrical energy and fuel demands and the development of the available capacities during the last 35 years are reviewed. The major purpose of Hungarian power economy is to save hydrocarbon fuels by taking advantages of power import opportunities by operating nuclear power plants at maximum capacity and the coal fired power stations at high capacity. The basic principles, the algorithm applied to optimize the load distribution of the electrical power system are discussed in detail with special attention to the role of nuclear power. The planned availability of nuclear power plants and the amount of electricity generated by nuclear plants should also be optimized. (V.N.)

  20. The human factors specialist in nuclear control centre design

    International Nuclear Information System (INIS)

    Wilson, R.B.; Beattie, J.D.

    The main focus at Ontario Hydro for man-machine interface design is in the design of control centres. Because the control of a nuclear generating unit is highly centralized there is an increasing need for effective information display and control layout. Control panel design innovations such as the use of CRT displays and the extended use of computerized control in the Darlington station have made it possible for Ontario Hydro to continue to have one first operator for each generating unit. The human factors specialist involved in control panel design must deal with people who know much more about the specific systems being controlled, and must become a generalist in all these systems as well. Designers have to use conceptual techniques such as task analysis, systems design, panel mock-ups, anthropometric data, and personal judgement based on experience as they design panels. They must find a balance between becoming locked into existing technology and methods, slavishly following the latest technological trends, and forgetting that real people will be using what they design

  1. Thermal and nuclear power generation cost estimates using corporate financial statements

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Nagatomi, Yu; Murakami, Tomoko

    2012-01-01

    There are two generally accepted methods for estimating power generation costs: so-called 'model plant' method and the method using corporate financial statements. The method using corporate financial statements, though under some constraints, can provide useful information for comparing thermal and nuclear power generation costs. This study used this method for estimating thermal and nuclear power generation costs in Japan for the past five years, finding that the nuclear power generation cost remained stable at around 7 yen per kilowatt-hour (kWh) while the thermal power generation cost moved within a wide range of 9 to 12 yen/kWh in line with wild fluctuations in primary energy prices. The cost of nuclear power generation is expected to increase due to the enhancement of safety measures and accident damage compensation in the future, while there are reactor decommissioning, backend and many other costs that the financial statement-using approach cannot accurately estimate. In the future, efforts should be continued to comprehensively and accurately estimate total costs. (author)

  2. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  3. On fire risk/methodology for the next generation of reactors and nuclear facilities

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Alesso, H.P.; Altenbach, T.J.

    1992-01-01

    Methodologies for including fire in probabilistic risk assessments (PRAs) have been evolving during the last ten years. Many of these studies show that fire risk constitutes a significant percentage of external events, as well as the total core damage frequency. This paper summarizes the methodologies used in the fire risk analysis of the next generation of reactors and existing DOE nuclear facilities. Methodologies used in other industries, as well as existing nuclear power plants, are also discussed. Results of fire risk studies for various nuclear plants and facilities are shown and compared

  4. Czech young generation activities in nuclear training and education framework in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Matejkova, J.; Foral, S.; Varmuza, J.; Katovsky, K.

    2014-07-01

    The Czech Republic has a long tradition in nuclear power production. One third of Czech electricity production is generated in two nuclear power plants, Dukovany and Temelin, totaling six power reactors. There are also three non-power, research reactors: two zero power reactors for education and research support, and one material testing reactor (MTR) used mainly for radioisotopes production. One of zero power reactors is employed by the Czech Technical University in Prague for education and research purposes, other zero power reactor and MTR are situated at nuclear research complex in Rez. (Author)

  5. A qualitative model construction method of nuclear power plants for effective diagnostic knowledge generation

    International Nuclear Information System (INIS)

    Yoshikawa, Shinji; Endou, Akira; Kitamura, Yoshinobu; Sasajima, Munehiko; Ikeda, Mitsuru; Mizoguchi, Riichiro.

    1994-01-01

    This paper discusses a method to construct a qualitative model of a nuclear power plant, in order to generate effective diagnostic knowledge. The proposed method is to prepare deep knowledge to be provided to a knowledge compiler based upon qualitative reasoning (QR). Necessity of knowledge compilation for nuclear plant diagnosis will be explained first, and conventionally-experienced problems in qualitative reasoning and a proposed method to overcome this problem is shown next, then a sample procedure to build a qualitative nuclear plant model is demonstrated. (author)

  6. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    Science.gov (United States)

    Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper

    2017-12-01

    Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.

  7. Informing the next nuclear generation - how does the Ginna plant branch do it?

    International Nuclear Information System (INIS)

    Saavedra, A.

    1995-01-01

    Most of us are familiar with the latest advertising phrase, ''Our children are our future.'' This phrase has been used in so many instances - from concerns about waste, Social Security, and the federal deficit to drug abuse and violence. One more area can be added to the list and advertised nuclear power. Since the establishment of the Ginna plant branch (GPB) in 1992, our target audience has been the next nuclear generation (our children), but our vehicle for dissemination has been the current generation (the adults). Have you ever thought about how often your opinions affect the children you come in contact with? One of GPB's goals is to provide as much information as possible to teachers, neighbors, and civic organizations of our community so that there is a nuclear future that can be carried on by the next generation

  8. Radioactive emission data from Canadian nuclear generating stations 1972 to 1994

    International Nuclear Information System (INIS)

    1996-07-01

    All nuclear generating stations release small quantities of radioactivity in a controlled manner into both the atmosphere (as gaseous effluents) and adjoining water bodies(as liquid effluents). The purpose of this document is to report on the magnitude of these emissions for each nuclear generating station (NGS) in Canada and to indicate how these emissions compare with the relevant limitations imposed by the AECB as part of its regulatory and licensing program. The data show that the levels of emissions of gaseous and liquid effluents from all currently operating nuclear generating stations are well below the values mandated by the AECB. In fact, since 1987 no emissions have exceeded 1% of those values. 3 tabs., 10 figs

  9. Progress on the decommissioning of Zion nuclear generating station

    International Nuclear Information System (INIS)

    Moloney, B. P.; Hess, J.

    2013-01-01

    The decommissioning of the twin 1040 MWe PWRs at Zion, near Chicago USA is a ground breaking programme. The original owner, Exelon Nuclear Corporation, transferred the full responsibility for reactor dismantling and site license termination to a subsidiary of EnergySolutions. The target end state of the Zion site for return to Exelon will be a green field with the exception of the dry fuel storage pad. In return, ZionSolutions has access to the full value of the decommissioning trust fund. There are two potential attractions of this model: lower overall cost and significant schedule acceleration. The Zion programme which commenced in September 2010 is designed to return the cleared site with an Independent Spent Fuel Storage Installation (ISFSI) pad in 2020, 12 years earlier than planned by Exelon. The overall cost, at $500 M per full size power reactor is significantly below the long run trend of $750 M+ per PWR. Implementation of the accelerated programme has been underway for nearly three years and is making good progress. The programme is characterised by numerous projects proceeding in parallel. The critical path is defined by the inspection and removal of fuel from the pond and transfer into dry fuel storage casks on the ISFSI pad and completion of RPV segmentation. Fuel loading is expected to commence in mid- 2013 with completion in late 2014. In parallel, ZionSolutions is proceeding with the segmentation of the Reactor Vessel (RV) and internals in both Units. Removal of large components from Unit 1 is underway. Numerous other projects are underway or have been completed to date. They include access openings into both containments, installation of heavy lift crane capacity, rail upgrades to support waste removal from the site, radiological characterization of facilities and equipment and numerous related tasks. As at February 2013, the programme is just ahead of schedule and within the latest budget. The paper will provide a fuller update. The first two

  10. Changes in the Factors Influencing Public Acceptance of Nuclear Power Generation in Japan Since the 2011 Fukushima Daiichi Nuclear Disaster.

    Science.gov (United States)

    Tsujikawa, Norifumi; Tsuchida, Shoji; Shiotani, Takamasa

    2016-01-01

    Public support for nuclear power generation has decreased in Japan since the Fukushima Daiichi nuclear accident in March 2011. This study examines how the factors influencing public acceptance of nuclear power changed after this event. The influence factors examined are perceived benefit, perceived risk, trust in the managing bodies, and pro-environmental orientation (i.e., new ecological paradigm). This study is based on cross-sectional data collected from two online nationwide surveys: one conducted in November 2009, before the nuclear accident, and the other in October 2011, after the accident. This study's target respondents were residents of Aomori, Miyagi, and Fukushima prefectures in the Tohoku region of Japan, as these areas were the epicenters of the Great East Japan Earthquake and the locations of nuclear power stations. After the accident, trust in the managing bodies was found to have a stronger influence on perceived risk, and pro-environmental orientation was found to have a stronger influence on trust in the managing bodies; however, perceived benefit had a weaker positive influence on public acceptance. We also discuss the theoretical and practical implications of these findings. © 2015 Society for Risk Analysis.

  11. Challenges in education and qualification of human resources for next nuclear generation

    International Nuclear Information System (INIS)

    Pupak, Marcia Orrico

    2009-01-01

    The general goal of this paper is to present an overview of Higher Education and personnel qualification for Nuclear Field by the perspective of the International Atomic Energy Agency (IAEA), also by the Organization for Economic Co-operation and Development (OECD and by the United Nations Educational Scientific and Cultural Organization (UNESCO). On the other hand to present the challenge of the Brazilian Government in redesigning, since 2003, the role of the state in order to make it active for younger generations, while promoting growth and social justice, has guided in all actions carried out under the Policy of Human Resources Management of public personnel. The government should be able to formulate and implement public policies and decide among various options, what is the most appropriate for its Human Resources. For this, they require the strengthening of strategic intelligence and government adoption of new ways of interaction and participation. The role played by the Brazilian Nuclear Energy Commission (CNEN) in looking forward to replace and qualify its nuclear staff, as soon as up, since that the qualification of a human resource in this field demands more than one decade. Last but not least the proactive work of IPEN-CNEN/SP to encourage young generation to enter nuclear area, and the efforts of the Brazilian government to implement an integrated Nuclear Programme to form human resources, to attract and retain students in nuclear engineering and related specialized fields, and how this problem should attract the attention of the entire nuclear community, government and industry. (author)

  12. The pitfalls in arbitration and litigation of nuclear power plant disputes - issues raised by cases involving nuclear steam generator failures

    International Nuclear Information System (INIS)

    O'Neill, J.

    1992-01-01

    The Achilles' Heel for successful power plant operations for pressurized water nuclear reactors has been the performance of nuclear steam generators. Steam generators have been replaced or plans for replacement have been announced at nuclear plants in Belgium, France, Brazil, Korea, Japan, Spain, Sweden, Switzerland, Yugoslavia and the United States. The cost of replacing these massive components can exceed US $ 100 million for each plant. This problem of component failures has thus far spawned thirteen legal actions against the original equipment manufacturer, involving over 70 steam generators, in international arbitration and United States (U.S.) Federal Courts. Other claims by utilities, both in the United States and in Europe, have been settled short of litigation. The case for liability of the component designer and manufacturer involves issues of fact relating to materials, corrosion mechanisms, the effects of water purity and temperature on corrosion, system integration with the component, potential safety issues, predictions of component life based on corrosion rates, and the efficacy of remedial actions. The manner in which these issues are raised before an arbitral tribunal and before a U.S. District Court judge and jury are very different. This paper will discuss some of the competing considerations involved in the two different systems for dispute resolution. (author)

  13. Risk-informed business modeling for nuclear power generation

    International Nuclear Information System (INIS)

    Liming, J.K.; Grantom, C.R.

    2000-01-01

    This paper documented the results of operations and maintenance cost-benefit-risk analysis (OMCBRA) of the currently planned refueling outage schedule profile and two potential alternate outage schedule strategy options for the South Texas Project Electric Generating Station (STPEGS). The objects, basic methodology, including bases and assumptions, results, conclusions, and recommendations developed for STPNOC during the project were presented. The application of the cost-benefit-risk analysis tools and techniques developed for the STPEGS staffs during the project were presented. The key question under consideration by the STPNOC leadership was whether or not there is an economic lower limit to planned refueling outage duration at STPEGS. The results showed that 14-day outage duration strategy was preferable in all assumption sets evaluated in this project. Therefore, this analysis shows that the 'point of diminishing returns' for outage duration reduction has not been reached between 14- and 30-day outage duration options. The sensitivity study on profitability versus refueling outage duration showed that the hypothetical optimum refueling outage duration was probably somewhere between 5 and 10 days. That is, given the bases and assumptions applied in this analysis, any reasonable options for reducing refueling outage duration below the current 21-day strategy would appear to be justified on cost-benefit-risk considerations. OMCBRA can be used to both monitor station overall economic performance as well as support change management and it can be applied to continually optimize station decision-making for maximum profitability. (M.N.)

  14. Corrosion fracture of bolts of nuclear power steam generators

    International Nuclear Information System (INIS)

    Hrivnak, I.

    1990-01-01

    Bolts connecting collector bodies with lids were the first components of steam generators at Czechoslovak WWER-440 units on which corrosion damage was observed in 1982 to 1983. Corrosion cracks developed particularly in the cylindrical parts of the bolts. This was due to intergranular corrosion caused by the unsuitable chemical composition of the steel used, by secondary water level fluctuations, by the surrounding environment of the bolts being unamenable to deaeration, as well as by inappropriate tightening of the bolts which gave rise to additional deformation stress. Steps were taken to eliminate all these drawbacks, and owing to this the corrosion cracking of the bolts was prevented for longer than 6 years. Cracks were observed again in 1989; they occurred then not only in the cylindrical parts but also in the thread parts of the bolts. The corrosion was again of intergranular nature. As yet, the cause of the corrosion cracking of the bolts is not unambiguously known. It is largely assumed that the material used, viz. the high-strength KhN35VT nickel alloy, is exceedingly sensitive to the working procedure and to stress. (Z.M.)

  15. Fuzzy logic control for improved pressurizer systems in nuclear power plants

    International Nuclear Information System (INIS)

    Brown, Chris; Gabbar, Hossam A.

    2014-01-01

    Highlights: • Improved performance of the pressurizer system in a CANDU nuclear power plant (NPP). • Inventory control for the pressurizer system in NPP. • Compare fuzzy logic with PID in pressurizer system in NPP. • Develop a fuzzy controller to regulate the pressurizer inventory control. • Compare control performance with current proportional controller used at NPP. - Abstract: The pressurizer system in a CANDU nuclear power plant is responsible for maintaining the pressure of the primary heat transport system to ensure the plant is operated within its safe operating envelope. The inventory control for the pressurizer system use a combination of level sensors, feed valves and bleed valves to ensure that there is adequate room in the pressurizer to accommodate any swell or shrinkage in the PHT system. The Darlington Nuclear Generating Station (DNGS) in Ontario, Canada currently uses a proportional controller for the bleed and feed valves to regulate the pressurizer inventory control which can result in large coolant level overshoot along with excessive settling times. The purpose of this paper is to develop a fuzzy controller to regulate the pressurizer inventory control and compare its performance to the current proportional controller used at DNGS. The simulation of the pressurizer inventory control system shows the fuzzy controller performs better than the proportional controller in terms of settling time and overshoot

  16. Generation IV SFR Nuclear Reactors: Under Sodium Robotics for ASTRID

    International Nuclear Information System (INIS)

    Jouan-de-Kervenoael, T.; Rey, F.; Baque, F.

    2013-06-01

    For non-removable components of the future ASTRID prototype, repair operations will be performed in a gas environment. If the faulty area is located under the sodium free level, the gas-tight system will have to contain the inspection and repair tools and to protect them from the surrounding liquid sodium. Concerning repair tools, the unique laser tool has been selected for future SFRs: the repair scenario for in-sodium structures will first involve removing the sodium (after bulk draining), then machining and finally welding. Concerning conventional tools (brush or gas blower for sodium removal, milling machine for machining and TIG for welding for which its feasibility was demonstrated in the 1990's) are still considered as a back-up solution. The maintenance of future ASTRID nuclear reactor prototype (inspection, repair) will be performed during shut down periods with some robotic carriers which have to be introduced within the main vessel, in primary 200 deg. C sodium coolant with argon gas cover. Inspection campaigns will be 20 days long. These robots (or carriers) will allow bringing inspection and repairing tools up to concerned components and structures. The needed degrees of freedom associated to these operations will be assumed either directly by the carrier itself or by specifics lower end carrier device for accurate local positioning. Several carriers will be designed, well adapted to specific needs: type of maintenance operation and location of inspection and repair sites. Feedback experience was gained during Superphenix SFR operation with the MIR robot which allowed to successfully make the Non Destructive Examination of main vessel welding joints, the carrier being outside bulk sodium. Operating conditions for the ASTRID robots will be harder from those of the MIR robot: temperature ranging from 180 deg. C to 200 deg. C, radiation dose ranging from 105 to 106 Gy, but mainly direct immersion within liquid sodium coolant. At the design phase of

  17. Radioactive waste generation in the nuclear reactors in Romania

    International Nuclear Information System (INIS)

    Popescu, I.V.

    2002-01-01

    The successful use of nuclear fission as major source of energy for this century is based upon the technological capabilities acquired to face the issue of radioactive waste and spent fuel. The management of radioactive waste is complex and implies solving the following major problems: - isolation of the radioisotopes from the complex of effluents released in the environment; - processing the separated radioisotopes for subsequent storing and final disposal; - transport of processed and conditioned wastes towards disposal repository; - selecting the sites for storage and final disposal. During reactor operation liquid and gaseous effluents are released to the environment as well as radioactive materials. All these may have an dangerous impact upon the environment when the international regulations, i.e. the ALARA principle are not strictly observed. The maximal values for the radioactive release are established by national regulations which are concordant with the IAEA principles. The amount of radioactive materials released depends of the reactor type and the measures adopted to reduce these releases. The average values of these releases during the normal operation of the reactor constitute the 'source term'. Its calculation implies several factors such as: the reactor type; the radionuclide concentration in the primary cooling systems; the transport mechanisms and leaks resulting in liquid and gaseous radionuclide emissions; the efficiency of the barriers and engineered safety systems built to reduce the amounts of radionuclide in the effluents. The concentration of radionuclides in the primary cooling circuit depends on the reactor power level, fuel burnup, fuel sheath type, tightness of the fuel cans, impurity concentration, chemical additives in the fluid of the primary cooling system, the total volume of this fluid, as well as its purification system. The methods applied to facilitate the calculation of the source term are described. In 1998 the spent fuel

  18. Static analysis of rectifier cabinet for nuclear power generating stations based on finite element method

    Science.gov (United States)

    Yin, Qiang; Chen, Tian-jin; Li, Wei-yang; Xiong, Ze-cheng; Ma, Rui

    2017-09-01

    In order to obtain the deformation map and equivalent stress distribution of rectifier cabinet for nuclear power generating stations, the quality distribution of structure and electrical are described, the tensile bond strengths of the rings are checked, and the finite element model of cabinet is set up by ANSYS. The transport conditions of the hoisting state and fork loading state are analyzed. The deformation map and equivalent stress distribution are obtained. The attentive problems are put forward. It is a reference for analysis method and the obtained results for the transport of rectifier cabinet for nuclear power generating stations.

  19. Projected costs of nuclear and conventional base load electricity generation in some IAEA Member States

    International Nuclear Information System (INIS)

    1990-09-01

    The cost of nuclear and conventional electricity is one of the most important parameters for power system planning, and in particular for decisions on base load power projects. This study reviews the projected levelized electricity generation costs of the base load power generation options expected to be available in the medium term, using an agreed common economic methodology. Cost projections were obtained and evaluated for nuclear and fossil fuelled (mainly coal-fired) plants that could be commissioned in the mid- to late 1990s in 10 IAEA Member States. 27 refs, figs and tabs

  20. Stress corrosion cracking of the tubing materials for nuclear steam generators in an environment containing lead

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, Uh Chul; Lee, Eun Hee; Hwang, Seong Sik

    2004-01-01

    Steam generator tube materials show a high susceptibility to stress corrosion cracking (SCC) in an environment containing lead species and some nuclear power plants currently have degradation problems associated with lead-induced stress corrosion cracking in a caustic solution. Effects of an applied potential on SCC is tested for middle-annealed Alloy 600 specimens since their corrosion potential can be changed when lead oxide coexists with other oxidizing species like copper oxide in the sludge. In addition, all the steam generator tubing materials used for nuclear power plants being operated and currently under construction in Korea are tested in a caustic solution with lead oxide. (author)

  1. Comparing the sustainability parameters of renewable, nuclear and fossil fuel electricity generation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Annette; Strezov, Vladimir; Evans, Tim

    2010-09-15

    The sustainability parameters of electricity generation have been assessed by the application of eight key indicators. Photovoltaics, wind, hydro, geothermal, biomass, natural gas, coal and nuclear power have been assessed according to their price, greenhouse gas emissions, efficiency, land use, water use, availability, limitations and social impacts on a per kilowatt hour basis. The relevance of this information to the Australian context is discussed. Also included are the results of a survey on Australian opinions regarding electricity generation, which found that Australian prefer solar electricity above any other method, however coal, biomass and nuclear power have low acceptance.

  2. On the nuclear energy generation rate in a simple analytic stellar model

    International Nuclear Information System (INIS)

    Haubold, H.J.

    1985-01-01

    For a shperically symmetric star in quasi-static equilibrium a simple analytic stellar model is presented. The common technique of integration theory of special functions for treating a special solution of the equations of stellar structure is described. As an example the sun can be considered as a fluid in hydrostatic equilibrium. The total net rate of nuclear energy generation, which is equal to the luminosity of the star, is evaluated analytically for a linear density distribution assumed for a simple stellar model. For several analytic representations of the nuclear energy generation rate the luminosity function is evaluated for the presented stellar model in closed form

  3. Fuelling innovation: Countries look to the next generation of nuclear power

    International Nuclear Information System (INIS)

    Perera, Judith

    2004-01-01

    The past few years have seen several multinational initiatives looking at the prospects for the medium and long-term development of nuclear energy. These include: the US-led Generation IV International Forum (GIF), the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), and the European Michelangelo network for competitiveness and sustainability of nuclear energy in the EU (Micanet). There have also been two major studies - a joint investigation by the IAEA together with the OECD's International Energy Agency (IEA) and Nuclear Energy Agency (NEA), Innovative Nuclear Reactor Development; Opportunities for International Co-operation; and an interdisciplinary study by the Massachusetts Institute of Technology (MIT) on The Future of Nuclear Energy. All these cover much of the same ground, looking at innovative nuclear systems including reactors and fuel cycles. But, while they were prompted by the same set of underlying imperatives, they also differ to some extent, not least in the importance they attach to the nuclear fuel cycle. GIF and INPRO are two initiatives where enhanced international cooperation could emerge

  4. Socio-economic impacts of nuclear generating stations: Arkansas Nuclear One Station case study

    International Nuclear Information System (INIS)

    Pijawka, K.D.

    1982-07-01

    This report documents a case study of the socio-economic impacts of the construction and operation of the Arkansas Nuclear One nuclear power station. It is part of a major post-licensing study of the socio-economic impacts at twelve nuclear power stations. The case study covers the period beginning with the announcement of plans to construct the reactor and ending in the period 1980 to 1981. The case study deals with changes in the economy, population, settlement patterns and housing, local government and public services, social structure, and public response in the study area during the construction/operation of the reactor. A regional modeling approach is used to trace the impact of construction/operation on the local economy, labor market, and housing market. Emphasis in the study is on the attribution of socio-economic impacts to the reactor or other causal factors. As part of the study of local public response to the construction/operation of the reactor, the effects of the Three Mile Island accident are examined

  5. Nuclear Power and Environment Comparative Assessment of Environmental and Health Impacts of Electricity Generating Systems

    International Nuclear Information System (INIS)

    Rashed, S.M.

    1999-01-01

    This paper deals with comparative assessment of the environmental and health impacts of nuclear and other electricity generation systems. The study including normal operations and accidents in full energy chain analysis. The comparison of the environmental impacts arising from the waste management cycles associated with non emission waste are also discussed. Nuclear Power while economically feasible and meeting 17% of the world,s demand for electricity is almost free of the air polluting gases that threaten the global climate. Comparing nuclear power with other sources for electricity generation in terms of their associated environmental releases of pollutant such as SO 2 , NOX, CO 2 , CH 4 and radioisotopes, taking into account the full fuel chains chains of supply option, nuclear power will help to reduce environmental degradation due to electricity generation activities. In view of CO 2 emission, the ranking order commences with hydro, followed by nuclear, wind and photovoltaic Power Plants. CO 2 emissions from a nuclear power plant are by two orders of magnitude lower than those of fossil fueled power plants. A consequent risk comparison between different energy sources has to include al phases of the whole energy cycle. Coal mines accidents have resulted in several 1000 acute deaths over the years. Later fatalities have never been estimated. Then came hydropower, also resulting in many catastrophes and losses of human lives. Followed oil and gas energy industry, its tribute in acute fatalities is expressed in more than 1000 life lost. No estimate is available concerning later fatalities. latest in the list is commercial nuclear energy, badly illustrated by the Chernobyl accident resulting officially in 31 acute fatalities, 145 latent fatalities, and 135000 evacuated individuals. The paper offers some findings and conclusions on the role of nuclear power in protecting the global environment

  6. The feature of emergency diesel generator relaying protection in Tianwan nuclear power station

    International Nuclear Information System (INIS)

    Jiang Xiaopeng; Shi Yan; Li Cong

    2014-01-01

    This paper mainly introduces the function and feature of emergency diesel generator in nuclear power plant, which plays an important role in nuclear accident. It minutely tells about the feature and configuration of relay protection and discusses the rationality of protection scheme, which shows that it can be completely contented all kinds of operation states. It is an analysis and argument about the principle of relay protection in detail, that would operate correctly when emergency diesel generator be in abnormal operating and serious fault conditions, such as cut off emergency diesel generator in order to avoid more harm to emergency diesel generator. It analyzes how the relay responses quickly and locks up the protection action under perturbations in the external power, so it can avoid unnecessary resection of emergency diesel generator to emergency power supply loss and effect of nuclear safety. It also analyzes the flexible use of protection setting of the protective relay to meet various operating status. It elaborates the particularity of relay protection which is due to the particularity of nuclear safety. It analyses the possibility of relay protection which has to be applied to other equipment and the protection setting that was provided by design institute, and puts forward the author's viewpoints. (authors)

  7. Policy and practices in the United States of America for DOE-generated nuclear wastes

    International Nuclear Information System (INIS)

    Gilbert, F.C.

    1984-01-01

    Throughout the history of attempts to utilize atomic power in the USA, health and safety have been primary considerations in programme policy formulation. A brief historical review of the US nuclear waste management policy formulation over the years aids understanding of our current management strategy for government-generated (primarily defence-related) nuclear wastes. Scientists involved in the Manhattan project during World War II were aware of the dangers of radioactive wastes. The first reaction to this concern was the establishment of a health physics programme to monitor radioactive hazards in Manhattan District Laboratories. The Atomic Energy Act of 1946, which established the Atomic Energy Commission, called for protection of the health and safety of the public as well as atomic workers. That concept has been continued and strengthened, throughout the history of nuclear waste management in the USA. Passage of the Atomic Energy Act of 1954 required consideration of radioactive wastes generated by private industry as well as those produced by the Manhattan projects. Commercial waste management policy was based on the already established policy for management of government-generated wastes and is the subject of a separate paper at this symposium. Current US policy is to maintain separate but complementary programmes for nuclear wastes generated by government activities and those from commercial sources. US policy and practices for management of government-generated radioactive waste are summarized. Key organizational structure relating to waste management responsibility is presented. (author)

  8. An FPGA-based nuclear pulse generator with a prescribed amplitude distribution

    Science.gov (United States)

    Ponikvar, Dušan

    2018-01-01

    A design of a low-cost electrical pulse generator capable of producing random pulses with exponentially decaying tail as coming from a nuclear detector is described. The generator can generate periodic single or double pulses of a user-defined amplitude and decay time, or randomly occurring pulses with amplitudes drawn at random from a user-prescribed probability density function. The electronics is based on a low power consumption Spartan-6 field-programmable gate array (FPGA) and a 14-bit digital to analog converter (DAC) running at frequency of 40 MHz, and a complete technical documentation to build the generator is available online.

  9. Thermal hydraulic characteristics of a double-walled tube advanced nuclear steam generator

    International Nuclear Information System (INIS)

    Cho, S.M.; Seltzer, A.H.

    1989-01-01

    In this paper the thermal hydraulic characteristics of double-walled tube steam generator designed for sodium-cooled nuclear reactors are presented. The double-walled tube construction, along with double-barrier welds for tube-to-tubesheet joints, virtually eliminates the probability of heat transfer tube failure. Considerations are given to the use of the internal core tube, helical vane swirl generator, external protector tube, and variably perforated flow baffles to improve thermal and hydraulic performance of the steam generator. These thermal hydraulic design features with a particular reference to a 432 MW PRISM steam generator are discussed

  10. Least cost analysis of Belarus electricity generation system with focus on nuclear option

    International Nuclear Information System (INIS)

    Mikhalevich, A.; Yakushau, A.

    2004-01-01

    A basic feature of the Belarus electricity system is that about 50% of the installed power capacity is used to produce heat for the central heating supply system. The Republic has one of the most developed districts heating system in Europe. The installation started in 1930, and developed very fast after 1945. Co-generation of electricity and thermal energy in central power plants has played a fundamental role in the local economy. Presently, Belarus electricity generation system includes: Total installed capacities of condensing turbines 3665 MW; Total installed capacities of co-generation turbines 3889 MW. It is expected that in 2020 in accordance with electricity demand forecast peak load demand will be equaled approximately 9500 MW. Taking into account that operation time of 60 % existent co-generation turbine and 70 % of condensing turbine can be extended up to 2020 during the period 2005 - 2020 it is necessity to install about 1500 MW of new co-generation units and about 2000 MW of condensing turbines. To select the least cost scenario for electricity generation system expansion improved computer code WASP-IV for Windows had been used. As far code WASP-IV do not allow finding out optimal solution for electricity generation system with high share of co-generation directly the methodology of application of this program for this case had been developed. Methodology is based on utilization of code WASP-IV for simulation condensing turbines and module BALANCE for modeling co-generation part of the system. The scenarios for the electricity system expansion plan included only conventional technologies. Presently, the works connected with the preparedness for NPP construction in the Republic including site survey for NPP are being carried out. The first stage of siting process according to the IAEA classification has been completed. It was based on a set of criteria answered to A Safety Guide of the IAEA Site Survey for Nuclear Power Plants and requirements to be

  11. High current transistor pulse generator

    Science.gov (United States)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability.

  12. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  13. Awareness of the general public relations strategy for nuclear power generation in Korea

    International Nuclear Information System (INIS)

    Kim, Chano-Ok

    1989-01-01

    Ten years has passed since the first nuclear power plant was established in Korea. During the period, the total nuclear power generation capacity has increased to 5,716,000 kW, and additional two 950,000 kW plants currently under construction will start operating in 1988 and 1989, respectively. As of the end of 1987, nuclear power generation accounted for 53.1 % of the total power generated in the nation. The average utilization rate of the plants increased continuously from 46.3 % ten years ago up to 79.7 % in 1987. Public opinion polls were conducted in August and October of 1986, the year when the Chernobyl accident took place. The first survey covered 2,000 residents in urban and rural areas while the second one covered a total 1,000 nuclear-related engineers, scientists, administrative officials, businessmen, journalists and writers. The surveys have shown that 74.4 % of the general public agree on the construction of more nuclear power plants. The corresponding figure was 75 % for engineers and 50 % for journalists and writers. However, 73 % of the respondents who are for their construction did not want such a plant to be constructed near their residences. Concerning the safety of these plants, 79.5 % of the experts gave a positive reply while the corresponding figure was only 48.3 % for the general public. It is concluded that more active public relations activities are required in the future. (Nogami, K.)

  14. Awareness of the general public relations strategy for nuclear power generation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chano-Ok

    1989-02-01

    Ten years has passed since the first nuclear power plant was established in Korea. During the period, the total nuclear power generation capacity has increased to 5,716,000 kW, and additional two 950,000 kW plants currently under construction will start operating in 1988 and 1989, respectively. As of the end of 1987, nuclear power generation accounted for 53.1 % of the total power generated in the nation. The average utilization rate of the plants increased continuously from 46.3 % ten years ago up to 79.7 % in 1987. Public opinion polls were conducted in August and October of 1986, the year when the Chernobyl accident took place. The first survey covered 2,000 residents in urban and rural areas while the second one covered a total 1,000 nuclear-related engineers, scientists, administrative officials, businessmen, journalists and writers. The surveys have shown that 74.4 % of the general public agree on the construction of more nuclear power plants. The corresponding figure was 75 % for engineers and 50 % for journalists and writers. However, 73 % of the respondents who are for their construction did not want such a plant to be constructed near their residences. Concerning the safety of these plants, 79.5 % of the experts gave a positive reply while the corresponding figure was only 48.3 % for the general public. It is concluded that more active public relations activities are required in the future. (Nogami, K.).

  15. Check of condition of steam generators, volume compensators and turbine condensers in nuclear power plants

    International Nuclear Information System (INIS)

    Matal, O.; Klinga, J.; Holy, F.; Sobotka, J.

    1989-01-01

    A negative pressure leak detector is described designed for leak testing of tubes in steam generators and steam turbine condensers. The principle, operation and use are described of inflatable bags and an inflatable platform. The bags are designed for insulating and sealing spaces in nuclear reactor components while the inflatable platform is used in pressurizer inspections and repairs. Their properties, and other facilities for detecting leaks in steam generator tubes are briefly described. (M.D.). 3 figs

  16. Nuclear power investment and generating costs from a utility point of view

    International Nuclear Information System (INIS)

    Roth, B.F.

    1975-01-01

    Nuclear power stations presently in operation in the Federal Republic of Germany have electricity generating costs between 3.5 Pf/kWh and 4.5 Pf/kWh. The higher electricity generating costs are due mainly to the increased expenditure required for the protection of plants against airplane crashes, earthquakes and sabotage, and to the higher costs of the entire fuel cycle. (orig./RW) [de

  17. Determination of reliability criteria for standby diesel generators at a nuclear power station

    International Nuclear Information System (INIS)

    Evans, M.G.K.

    1987-01-01

    The requirement for standby diesel generators at nuclear power stations is developed and a probabilistic approach used to define the reliability parameters. The present criteria used when ordering a diesel generator are compared with the testing required by the regulatory body and the most likely requirement following an accident. The impact of this on the diesels at a particular station and the root cause of failures are discussed. (orig.)

  18. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  19. Nuclear power and sustainable development. Maintaining and increasing the overall assets available to future generations

    International Nuclear Information System (INIS)

    2002-01-01

    A central goal of sustainable development is to maintain or increase the overall assets available to future generations, while minimizing consumption of finite resources and not exceeding the carrying capacities of ecosystems. The development of nuclear power broadens the natural resource base usable for energy production, increases human and man-made capital, and, when safely handled, has little impact on ecosystems. Energy is essential for sustainable development. With continuing population and economic growth, and increasing needs in the developing world, substantially greater energy demand is a given, even taking into account continuing and accelerated energy efficiency and intensity improvements. Today, nuclear power is mostly utilized in industrialized countries that have the necessary technological, institutional and financial resources. Many of the industrialized countries that are able and willing to use nuclear power are also large energy consumers. Nuclear power currently generates 16% of the world's electricity. It produces virtually no sulfur dioxide, particulates, nitrogen oxides, volatile organic compounds or greenhouse gases. Globally, nuclear power currently avoids approximately 600 million tonnes of carbon emissions annually, about the same as hydropower. The 600 MtC avoided by nuclear power equals 8% of current global greenhouse gases emissions. In the OECD countries, nuclear power has for 35 years accounted for most of the reduction in the carbon intensity per unit of delivered energy. Existing operating nuclear power plants (NPPs) for which initial capital investments are largely depreciated are also often the most cost-effective way to reduce carbon emissions from electricity generation. In fact in the United States in 2000, NPPs were the most cost-effective way to generate electricity, irrespective of avoided carbon emissions. In other countries the advantages of existing nuclear generating stations are also increasingly recognized. Interest

  20. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility

    CERN Document Server

    Fassbender, M; Heaton, R C; Jamriska, D J; Kitten, J J; Nortier, F M; Peterson, E J; Phillips, D R; Pitt, L R; Salazar, L L; Valdez, F O; 10.1524/ract.92.4.237.35596

    2004-01-01

    Generator nuclides constitute a convenient tool for applications in nuclear medicine. In this paper, some radiochemical aspects of generator nuclide parents regularly processed at Los Alamos are introduced. The bulk production of the parent nuclides /sup 68/Ge, /sup 82/Sr, /sup 109/Cd and /sup 88/Zr using charged particle beams is discussed. Production nuclear reactions for these radioisotopes, and chemical separation procedures are presented. Experimental processing yields correspond to 80%-98% of the theoretical thick target yield. Reaction cross sections are modeled using the code ALICE-IPPE; it is observed that the model largely disagrees with experimental values for the nuclear processes treated. Radionuclide production batches are prepared 1-6 times yearly for sales. Batch activities range from 40MBq to 75 GBq.

  1. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    International Nuclear Information System (INIS)

    None

    2005-01-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R and D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R and D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan

  2. Management of radioactive waste generated from nuclear power reactors in Korea

    International Nuclear Information System (INIS)

    Jeong-Mook Kim

    2000-01-01

    Fundamental objectives and efforts to safely manage radioactive wastes generating from the expanding nuclear power industry in the Republic of Korea are described. Management, treatment and storage of radioactive wastes arising in different form are addressed. A long tern plan to reduce the volume of solid waste is outlined. (author)

  3. Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Pete Jordan

    2010-09-01

    This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

  4. Common cause failure rate estimates for diesel generators in nuclear power plants

    International Nuclear Information System (INIS)

    Steverson, J.A.; Atwood, C.L.

    1982-01-01

    Common cause fault rates for diesel generators in nuclear power plants are estimated, using Licensee Event Reports for the years 1976 through 1978. The binomial failure rate method, used for obtaining the estimates, is briefly explained. Issues discussed include correct classification of common cause events, grouping of the events into homogeneous data subsets, and dealing with plant-to-plant variation

  5. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-03-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R&D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R&D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan.

  6. Radioactive release data from Canadian nuclear generating stations 1872-1987

    International Nuclear Information System (INIS)

    1989-03-01

    All nuclear generating stations emit small quantities of radioactive effluent both into the atmosphere and in the form of liquid effluent, into the adjoining water body, be it river, lake or sea. The purpose of this document is to report on the magnitude of these emissions for each nuclear generating station in Canada and to indicate how these emissions compare with the relevant limitations imposed by the Atomic Energy Control Board as part of its regulatory and licensing program. This report incorporates histograms indicating the annual releases of tritium in air, noble gases, iodine-131, airborne particulates, tritium in water and waterborne gross beta activity for each nuclear generating station. In addition, for Pickering NGS 'A', annual released of carbon-14 are depicted for the years 1986 and 1987. In each case the emission data are compared to the Derived Emission Limit (DEL) in order that the data may be placed in perspective. At present, only Pickering NGS 'A' is required to monitor and report carbon-14 emissions. Environmental monitoring for C-14 is conducted around the Bruce site to determine the environmental impact of its emission and whether effluent monitoring will be necessary in future years. Three nuclear generating stations have been permanently taken out of service during the last few years (Gentilly NGS-1, Douglas Point NGS and NPD NGS). Some small emissions from these sites do still occur, however, due to decontamination and decommissioning operations. (11 tabs., 26 figs.)

  7. Trans generational ethics: protecting future generations against nuclear waste hazards. Some ethical considerations

    International Nuclear Information System (INIS)

    Cornelis, G.C.

    2002-01-01

    This paper describes the activities launched at SCK x CEN, intended to explore ethical and other non-technical aspects when dealing with the time scales considered in the high-level waste disposal program. Especially the issues of retrievability and precaution will be focused on which will be philosophically contextualised. Many questions will be raised in order to sensitize all stakeholders for the trans-disciplinary character of the trans-generational problem at hand. (author)

  8. The continuing important role of radionuclide generator systems for nuclear medicine

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Mirzadeh, S.

    1994-01-01

    In this review, the continuing importance and status of development of radionuclide generator systems for nuclear medicine are discussed. Radioisotope costs and availability are two important factors, and both nuclear reactors and accelerator facilities are required for production of the parent radioisotopes. Radionuclide generator research is currently focused on the development of generators which provide radioisotopes for positron emission tomography (PET) applications and daughter radioisotopes for various therapeutic applications which decay primarily by particle emission. Generator research continues to be influenced by developments and requirements of complementary technologies, such as the increasing availability of PET. In addition, the availability of a wide spectrum of tumor-specific antibodies, fragments, and peptides for radioimmunodiagnosis and radioimmunotherapy has stimulated the need for generator-derived radioisotopes. The advantages of treatment of arthritis of the synovial joints with radioactive particles (radiation synovectomy) may be expected to be of increasing importance as the elderly population increases, and many of these agents are prepared using generator-derived radioisotopes such as yttrium-90 and rhenium-188. Therapeutic use of the ''in vivo generator'' is a new approach, where the less radiotoxic parent radioisotope is used to prepare tissue-speciic therapeutic agents. Following in vivo site localization, decay of the parent provides the daughter for therapy at the target site. The principal foundation of most diagnostic agents will continue to require technetium-99m from the molybdenum-99/technetium-99m (''Moly'') generator. (orig./VHE)

  9. Hydraulics, DARLINGTON COUNTY, SC

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Recent developments in digital terrain and geospatial database management technology make it possible to protect this investment for existing and future projects to...

  10. Recent developments in plugging of steam generator tubes

    International Nuclear Information System (INIS)

    Buhay, S.; Abucay, R.C.

    1995-01-01

    Mechanical Plugging capability has been developed for Bruce Nuclear Generating Station (BNGS) steam generator (SG) tubes and Darlington Nuclear Generating Station (DNGS) SG tubes and tubesheet holes. The plug concept was a modified ABB/Combustion Engineering Inconel 690 plug with a nickel band, rolled into the tube or tubesheet hole from the primary side of the tubesheet. The qualification program included analytical justification of the plug body and experimental testing to verify the leak tightness of the rolled joint under conditions which meet or exceed all service or design requirements. Tools and procedures were developed and tested for manual and remote/robotic installation and removal of the mechanical plugs. Additionally, tools and procedures were developed to plug tubes/tubesheet holes at DNGS in the event the steam generator is recalled to service to act as a heat sink. A crew of Ontario Hydro personnel were trained and qualified for the installation of mechanical plugs for permanent and recall applications. During the DNGS Unit 4 spring 1995 outage, 6 tubes were plugged and the 'Recall Plugging Capability' was deployed and ready for use during a primary side SG tube removal. The mechanical plugs were installed manually with a typical 3 minute/plug in-bowl duration time with an average radiation dose of 12.5 mrem per plug. This compares favourably with manual plug welding during the same outage in the same SG bowl at approximately 15-30 minutes/plug in-bowl duration with an average radiation dose of 117 mrem/plug. (author)

  11. Prairie Island Nuclear Generating Plant steam generator owners group II: examination of 3 tubes removed from steam generator No. 12

    International Nuclear Information System (INIS)

    Kuchirka, P.; Madeyski, A.; Pearson, R.

    1986-01-01

    The No. 12 steam generator at Prairie Island Unit 1 has experienced some degradation of the hot leg tubes within the tube sheet region. The history of the degradation is given. A comparison of the rate of degradation of No. 12 steam generator with similar rates at Point Beach and Ginna is presen. The No. 11 steam generator has not experienced similar degradation. To investigate the cause and degree of degradation and to obtain correlation of field eddy current (EC) indications with actual conditions, the three hot leg tube segments were removed from the No. 12 steam generator for laboratory EC testing and destructive examination. Two of the tubes had field EC indications in the tube sheet region and one was apparently free of indications. The results of the testing and examinations are given. These tests showed that the lab EC correlated well with the destructive exam, but the field EC did not. The lab EC detected defects that are >35% thru wall, whereas the field EC detected defects that are >80%. The principle degradation was intergranular stress corrosion cracking in the tube sheet region with some uniform intergranular attack. The clean tube had randomly distributed IGA with a maximum depth of 15%. tube/tube sheet deposit chemical analysis does not support the existence of a caustic environment. The conclusions of this work are given

  12. Specification of steam generator, condenser and regenerative heat exchanger materials for nuclear applications

    International Nuclear Information System (INIS)

    Jovasevic, J.V.; Stefanovic, V.M.; Spasic, Z.LJ.

    1977-01-01

    The basic standards specifications of materials for nuclear applications are selected. Seamless Ni-Cr-Fe alloy Tubes (Inconel-600) for steam generators, condensers and other heat exchangers can be employed instead of austenitic stainless steal or copper alloys tubes; supplementary requirements for these materials are given. Specifications of Ni-Cr-Fe alloy plate, sheet and strip for steam generator lower sub-assembly, U-bend seamless copper-alloy tubes for heat exchanger and condensers are also presented. At the end, steam generator channel head material is proposed in the specification for carbon-steel castings suitable for welding

  13. Optimization of the steam generator project of a gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Sakai, Massao

    1978-01-01

    The present work is concerned with the modeling of the primary and secondary circuits of a gas cooled nuclear reactor in order to obtain the relation between the parameters of the two cycles and the steam generator performance. The procedure allows the optimization of the steam generator, through the maximization of the plant net power, and the application of the optimal control theory of dynamic systems. The heat balances for the primary and secondary circuits are carried out simultaneously with the optimized - design parameters of the steam generator, obtained using an iterative technique. (author)

  14. The competitive economics of a middle aged multi unit nuclear generating station

    International Nuclear Information System (INIS)

    Talbot, K.H.

    1994-01-01

    In 1992 Ontario Hydro's 15 year old 4 x 850 MWe Candu, Bruce A Nuclear Generating Station was predicted to need considerable capital investment to replace pressure tubes, steam generators and other prematurely ageing equipment in order to restore the station to high performance. Over the subsequent two years the station has undergone 2 major economic assessment studies which have confirmed the economic viability of continued operation of the plant. Declining demand for electricity in Ontario combined with a excess of generating capacity and a need to stabilise electricity rates have however forced significant operational cost reductions and reduced capital availability for rehabilitation work, it's medium and long term future remains in question. This presentation offers a practical illustration of the need to maintain steady high performance from nuclear generating plant via the appropriate life management techniques. The avoidance of mid life infusion of capital is considered as essential if nuclear generation is to successfully survive major changes in economic conditions. 2 tabs., 7 figs

  15. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Yea-Kuang; Tsai, Yu-Ching [Institute of Nuclear Energy Research, Taoyuan City, Taiwan (China). Nuclear Engineering Division

    2017-03-15

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  16. Multiple regression approach to predict turbine-generator output for Chinshan nuclear power plant

    International Nuclear Information System (INIS)

    Chan, Yea-Kuang; Tsai, Yu-Ching

    2017-01-01

    The objective of this study is to develop a turbine cycle model using the multiple regression approach to estimate the turbine-generator output for the Chinshan Nuclear Power Plant (NPP). The plant operating data was verified using a linear regression model with a corresponding 95% confidence interval for the operating data. In this study, the key parameters were selected as inputs for the multiple regression based turbine cycle model. The proposed model was used to estimate the turbine-generator output. The effectiveness of the proposed turbine cycle model was demonstrated by using plant operating data obtained from the Chinshan NPP Unit 2. The results show that this multiple regression based turbine cycle model can be used to accurately estimate the turbine-generator output. In addition, this study also provides an alternative approach with simple and easy features to evaluate the thermal performance for nuclear power plants.

  17. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    DEFF Research Database (Denmark)

    Denning, Emil Vosmar; Iles-Smith, Jake; McCutcheon, Dara P. S.

    2017-01-01

    Multiphoton entangled states are a crucial resource for many applications inquantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confinedelectron spin, but dephasing caused by the host nuclear spin...... environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning...... that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present schemeallows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo...

  18. 78 FR 79709 - Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown...

    Science.gov (United States)

    2013-12-31

    ...] [FR Doc No: 2013-31317] NUCLEAR REGULATORY COMMISSION [Docket No. 50-302; NRC-2013-0283] Duke Energy Florida, Inc., Crystal River Unit 3 Nuclear Generating Plant Post-Shutdown Decommissioning Activities Report AGENCY: Nuclear Regulatory Commission (NRC). ACTION: Notice of receipt; availability; public...

  19. An Axiomatic Design Approach of Nanofluid-Engineered Nuclear Safety Features for Generation III+ React

    International Nuclear Information System (INIS)

    Bang, In Cheol; Heo, Gyun Young; Jeong, Yong Hoon; Heo, Sun

    2009-01-01

    A variety of Generation III/III+ reactor designs featuring enhanced safety and improved economics are being proposed by nuclear power industries around the world to solve the future energy supply shortfall. Nanofluid coolants showing an improved thermal performance are being considered as a new key technology to secure nuclear safety and economics. However, it should be noted that there is a lack of comprehensible design works to apply nanofluids to Generation III+ reactor designs. In this work, the review of accident scenarios that consider expected nanofluid mechanisms is carried out to seek detailed application spots. The Axiomatic Design (AD) theory is then applied to systemize the design of nanofluid-engineered nuclear safety systems such as Emergency Core Cooling System (ECCS) and External Reactor Vessel Cooling System (ERVCS). The various couplings between Gen-III/III+ nuclear safety features and nanofluids are investigated and they try to be reduced from the perspective of the AD in terms of prevention/mitigation of severe accidents. This study contributes to the establishment of a standard communication protocol in the design of nanofluid-engineered nuclear safety systems

  20. Evaluation of environmental data relating to selected nuclear power plant sites. Prairie Island Nuclear Generating Plant site

    International Nuclear Information System (INIS)

    Murarka, I.P.

    1976-11-01

    Environmental monitoring data for 1973 through 1975 pertaining to the Prairie Island Nuclear Generating Station (which began commercial operation in December 1973) were analyzed by the most practical qualitative and quantitative methods. Evaluations of aquatic and terrestrial biotic data are presented in this report. The data indicate no significant immediate deleterious effects on the biota from plant operation, thus confirming preoperational predictions. Although the station has not operated long enough to reveal long-term deleterious effects, present indications do not lead to a concerned prediction that any are developing. Recommendations are suggested for improving monitoring techniques

  1. Gaseous products and smoke generation on combustion of the insulation materials of nuclear cables

    International Nuclear Information System (INIS)

    Noguchi, Isamu; Takami, Hiroshi; Ueyama, Michio; Fujimura, Shun-ichi.

    1976-01-01

    Serious requirements have been introduced to the cables used for nuclear power plants on their flame retardation in the IEEE Standard 383-1974. The movements that the users prescribe the quantity of corrosive gas generated from cables are also observed. This report describes on the measured results of the gaseous products generated by burning polyethylene, polyvinyl-chloride (PVC) and their flame-resistant products, and a part of the covering materials of the cables for nuclear power plants (flame-resistant, crosslinking polyethylene, flame-resistant, low hydrochloric acid PVC, flame-resistant jute) in the infra-red rapid heating combustion test facility designed by the Furukawa Electric Co. Ltd. In addition, the report introduces the test method for the smoke generation evaluation of polymers and a part of the measured results. The gaseous products of combustion were collected and determined quantitatively by gas chromatographic method. Since smoke generation is affected greatly by the kinds, shape, atmosphere, temperature, ignition procedure and others of burnt matters, the establishment of the evaluation test method is difficult, and a number of methods have been proposed. As the measured results showed, it is clear that smoke generation increases with the increase of flame resistant reagent addition. The smoke generation of PVC was of course great in quantity because it contains considerable amount of chlorine for its molecular structure. Flame-resistant polyethylene generates smoke much more than polyethylene without flame-resisting treatment because of its flame resistivity, but less than that of PVC. (Wakatsuki, Y.)

  2. Nuclear fission, today and tomorrow. From renaissance to technological breakthrough (generation IV) - Part II

    International Nuclear Information System (INIS)

    Van Goethem, Georges

    2010-01-01

    This paper is an overview of the current Euratom FP-7 research and training actions in innovative nuclear fission reactors and fuel cycle technologies, including partitioning and transmutation. It is based on the more than 40 invited lectures that were delivered by research project coordinators and by keynote speakers at the FISA-2009 Conference, organised by the European Commission DG Research/Euratom. The education and training programmes in nuclear fission and radiation protection are also discussed, aiming at continuously increasing the level of nuclear competences across the EU. It is necessary to consider the most recent nuclear fission technologies (Generations of Nuclear Power Plants): - GEN II: safety and reliability of nuclear facilities and energy independence; - GEN III: continuous improvement of safety and reliability, and increased industrial competitiveness in a growing energy market; - GEN IV: for increased sustainability, and proliferation resistance. The focus in this paper is on the design objectives and research issues associated to Generations IV systems that have been agreed upon internationally. Their benefits are discussed according to a series of ambitious criteria or technology goals established at the international level. One will have to produce not only electricity at lower costs but also heat at very high temperatures, while exploiting a maximum of fissile and fertile matters, and recycling all actinides, under safe and reliable conditions. Scientific viability studies and technological performance tests for each Generation IV system are now being carried out in many laboratories world-wide, in line with the intergovernmental GIF agreement. The ultimate phase of commercial deployment is foreseen for 2040. (orig.)

  3. Environmental and other considerations in development of new nuclear power generation

    International Nuclear Information System (INIS)

    Wan, P.K.

    2005-01-01

    Power generation is well recognized as a major prerequisite for a country's economic development. When developing a new nuclear power project, major environmental issues range from understanding of the environmental regulations of the country where the project is going to be built and the policies of the financial institution(s) involved, to dealing with the logistical issues associated with the acquisition of in country consultants, and language and cultural differences in producing the required environmental documents. One of the important pre-construction environmental efforts for nuclear power project is preparation of an Environmental Impact Assessment (EIA). An EIA is typically required to be performed for both the host country and the financial institutions engaged. The primary issues addressed in the EIA prepared for the country and that prepared for the bank are not necessarily the same, nor are the level of analyses likely to be conducted for a given environmental topic. The consequences for the development of a nuclear power project can be far-reaching, since the proposed project has the potential to cause significant socioeconomic impacts on local population and government, if it is not properly sited and/or designed. Thus, many of the financial institutions (such as the World Bank) require environmental and social-economic impact assessments as pre-requisite for funding approval. In addition, sustainable development objectives must be identified and fulfilled to alleviate the risks associated with project go-ahead decision. This paper addresses environmental and other considerations in development of nuclear power generation systems under an electric power industry privatization environment. Case studies of recent permitting activities for new nuclear power generation projects in the United States and funding issues for a nuclear power plant recently built in China are also discussed. (authors)

  4. A Statistical Model for Generating a Population of Unclassified Objects and Radiation Signatures Spanning Nuclear Threats

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, K; Sokkappa, P

    2008-10-29

    This report describes an approach for generating a simulated population of plausible nuclear threat radiation signatures spanning a range of variability that could be encountered by radiation detection systems. In this approach, we develop a statistical model for generating random instances of smuggled nuclear material. The model is based on physics principles and bounding cases rather than on intelligence information or actual threat device designs. For this initial stage of work, we focus on random models using fissile material and do not address scenarios using non-fissile materials. The model has several uses. It may be used as a component in a radiation detection system performance simulation to generate threat samples for injection studies. It may also be used to generate a threat population to be used for training classification algorithms. In addition, we intend to use this model to generate an unclassified 'benchmark' threat population that can be openly shared with other organizations, including vendors, for use in radiation detection systems performance studies and algorithm development and evaluation activities. We assume that a quantity of fissile material is being smuggled into the country for final assembly and that shielding may have been placed around the fissile material. In terms of radiation signature, a nuclear weapon is basically a quantity of fissile material surrounded by various layers of shielding. Thus, our model of smuggled material is expected to span the space of potential nuclear weapon signatures as well. For computational efficiency, we use a generic 1-dimensional spherical model consisting of a fissile material core surrounded by various layers of shielding. The shielding layers and their configuration are defined such that the model can represent the potential range of attenuation and scattering that might occur. The materials in each layer and the associated parameters are selected from probability distributions that

  5. Radioactive waste assessment using 'moderate growth in nuclear electricity generation' scenario

    International Nuclear Information System (INIS)

    Richardson, J.A.; Goodill, D.R.; Tymons, B.J.

    1985-05-01

    This report describes an assessment of radioactive waste management arisings from a defined nuclear power generation scenario -Scheme 3. Scheme 3 assumes a moderate growth in nuclear generation scenario with raw waste arisings from 3 main groups: (i) existing and committed commercial reactors; (ii) fuel reprocessing plants; (iii) research, industry and medicine. No decommissioning wastes are considered except for arisings from the final fuel cores from decommissioned reactors. The study uses the SIMULATION2 code which models waste material flows through the system. With a knowledge of the accumulations and average production rates of the raw wastes and their isotopic compositions (or total activities), the rates at which conditioned wastes become available for transportation and disposal are calculated, with specific activity levels. The data bases for the inventory calculations and the assumptions concerning future operation of nuclear facilities were those current in 1983. Both the inventory data and plans for the future of existing nuclear installations have been updated since these calculations were completed. Therefore the results from this assessment do not represent the most up-to-date information available. The report does, however, illustrate the methodology of assessment, and indicates the type of information that can be generated. (author)

  6. On the reliability of steam generator performance at nuclear power plants with WWER type reactors

    International Nuclear Information System (INIS)

    Styrikovich, M.A.; Margulova, T.Kh.

    1974-01-01

    The problem of ensuring reliable operation of steam generators in a nuclear power plant with a water-cooled, water-moderated reactor (WWER) was studied. At a nuclear power plant with a vertical steam generator (specifically, a Westinghouse product) the steam generator tubes were found to have been penetrated. Shutdown was due to corrosion disintegration of the austenitic stainless steel, type 18/8, used as pipe material for the heater surface. The corrosion was the result of the action of chlorine ions concentrated in the moisture contained in the iron oxide films deposited in low parts of the tube bundle, directly at the tube plate. Blowing through did not ensure complete removal of the film, and in some cases the construction features of the steam generator made removal of the film practically impossible. Replacement of type 18/8 stainless steel by other construction material, e.g., Inconel, did not give good results. To ensure reliable operation of vertical steam generators in domestic practice, the generators are designed without a low tube plate (a variant diagram of the vertical steam generator of such construction for the water-cooled, water-moderated reactor 1000 is presented). When low tube plates are used the film deposition is intolerable. For organization of a non-film regime a complex treatment of the feed water is used, in which the amount of complexion is calculated from the stoichmetric ratios with the composition of the feed water. It is noted that, if 100% condensate purification is used with complexon processing of the feed water to the generator, we can calculate the surface of the steam-generator heater without considering the outer placement on the tubes. In this the cost of the steam generator and all the nuclear power plants with WWER type reactors is decreased even with installation of a 100% condensate purification. It is concluded that only simultaneous solution of construction and water-regime problems will ensure relaible operation of

  7. Position of nuclear power generation in the public and further enhancement of safe and stable operation

    International Nuclear Information System (INIS)

    Miyazaki, Yozo

    1996-01-01

    In Japan, the first commercial light water reactor (LWR) started operation in 1970 when the International Exposition was held in Osaka, and now 50 nuclear power plants supply about 30 % of the total electricity and nuclear power plays the important role as a 'major power source'. Meanwhile, with the international transportation of plutonium and return shipment of vitrified HLW reprocessed abroad, nuclear power has closer relationship with the public in these days. We will review the history of nuclear power generation in Japan from the viewpoint of the safety culture and consider the safety culture under the present situation. The team of 'safety Charlotte's fixed its position since the occurrence of Chernobyl accident though the concept existed as expressed in words such as 'safety-first principle' and 'enhancement of morale'. The safety culture is a concept: high level 'safety Culture' cab be expected when 'the management of the organization' and 'individual consciousness concerning safety' are well balanced. The 'safety culture' has experienced various changes along with the development of nuclear power in Japan: at the initial period of the development, the management side invested excellent talents and funds to the nuclear division based on the 'safety-first principle' from the beginning. At the same time, the world of atom filled with dream appealed to those who had enthusiasm as pioneers and they were engaged in the development with enhanced morale

  8. Education and public relations in nuclear power toward the next generation in Korea

    International Nuclear Information System (INIS)

    I, Han-Joo; Seo, Doo-Han.

    1989-01-01

    The report outlines the education in nuclear engineering in colleges and universities in Korea, experiments and training in nuclear reactor operation, research project for education in peaceful utilization of nuclear power, and public relations activities and special plans intended for the new generation in the nation. Programs covering the education of students in nuclear engineering in colleges and universities in Korea, and public relations toward some selected groups and brackets have been conducted successfully, producing good results. On the other hand, some improvements in educational activities, including the revision of textbooks, are required in such a field of education of pupils in primary, middle and high schools. Specially-designed introductory courses and advanced courses in the peaceful utilization of nuclear power should be established to ensure that students in scientific or technological fields other than nuclear engineering will gain deeper understanding of the issue. For this, the preparation of textbooks are currently under way. It is hoped that public relations activities will be expanded on a more continuous and consistent basis, instead of the current intermittent basis, by making good use of the mass media to distribute information among the general public. (Nogami. K.)

  9. Education and public relations in nuclear power toward the next generation in Korea

    Energy Technology Data Exchange (ETDEWEB)

    I, Han-Joo; Seo, Doo-Han.

    1989-02-01

    The report outlines the education in nuclear engineering in colleges and universities in Korea, experiments and training in nuclear reactor operation, research project for education in peaceful utilization of nuclear power, and public relations activities and special plans intended for the new generation in the nation. Programs covering the education of students in nuclear engineering in colleges and universities in Korea, and public relations toward some selected groups and brackets have been conducted successfully, producing good results. On the other hand, some improvements in educational activities, including the revision of textbooks, are required in such a field of education of pupils in primary, middle and high schools. Specially-designed introductory courses and advanced courses in the peaceful utilization of nuclear power should be established to ensure that students in scientific or technological fields other than nuclear engineering will gain deeper understanding of the issue. For this, the preparation of textbooks are currently under way. It is hoped that public relations activities will be expanded on a more continuous and consistent basis, instead of the current intermittent basis, by making good use of the mass media to distribute information among the general public. (Nogami. K.).

  10. Manpower requirements and development for the new 33-GW nuclear generation plan of Japan

    International Nuclear Information System (INIS)

    Nishimura, K.

    1980-01-01

    The future planned level of nuclear power generation was recently amended by the Japan Atomic Energy Commission to 33 GW by the year 1985. It means that further construction of at least 19 nuclear power plants of 1000 MW(e) each will be needed for the accomplishment of this new plan during the next seven years. The technical manpower requirement for this new plan is estimated in this paper by use of a typical model, which requires a staff of 100 persons for the normal operation of a 1000-MW(e) nuclear power plant. Among these technical staff members, the number of well-trained and experienced persons, i.e. 'key personnel', is considered to be 28. A comparison between manpower requirement and supply for the new plan is made for reactor operators, technical staff, radiation safety staff and maintenance staff. Through this comparison, nuclear training programmes for the development of manpower needed for operation and maintenance is reviewed both from the aspects of quality and quantity by taking into account the functions of the existing training courses in Japan. In addition, the periodic inspection of a nuclear power plant requires almost 1300 persons per power plant; they do not belong to the nuclear power companies, but to either directly related or sub-contracted companies. The educational problems for the 'key personnel' among these people are discussed, and a new programme is proposed. (author)

  11. U.S. FUEL CYCLE TECHNOLOGIES R&D PROGRAM FOR NEXT GENERATION NUCLEAR MATERIALS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    M.C. MILLER

    2013-11-01

    Full Text Available The U.S. Department of Energy's Fuel Cycle Technologies R&D program under the Office of Nuclear Energy is working to advance technologies to enhance both the existing and future fuel cycles. One thrust area is in developing enabling technologies for next generation nuclear materials management under the Materials Protection, Accounting and Control Technologies (MPACT Campaign where advanced instrumentation, analysis and assessment methods, and security approaches are being developed under a framework of Safeguards and Security by Design. An overview of the MPACT campaign's activities and recent accomplishments is presented along with future plans.

  12. Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments

    International Nuclear Information System (INIS)

    Timothy Shaw; Vaugh Whisker

    2004-01-01

    The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project

  13. Generation IV Nuclear Energy Systems Construction Cost Reductions Through the Use of Virtual Environments

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Vaugh Whisker

    2004-02-28

    The objective of this multi-phase project is to demonstrate the feasibility and effectiveness of using full-scale virtual reality simulation in the design, construction, and maintenance of future nuclear power plants. The project will test the suitability of immersive virtual reality technology to aid engineers in the design of the next generation nuclear power plant and to evaluate potential cost reductions that can be realized by optimization of installation and construction sequences. The intent is to see if this type of information technology can be used in capacities similar to those currently filled by full-scale physical mockups. This report presents the results of the completed project.

  14. Manual of Nucost 1.0 - code for calculation of nuclear power generation costs

    International Nuclear Information System (INIS)

    Mascarenhas, H.A.

    1989-01-01

    Nucost is a computer code developed at CDTN to perform cost calculation of electric power generated in PWR nuclear power plants, based on present worth cost method. The Nucost version 1.0 performs calculations of nuclear fuel cost cycle by cycle during the time life of the power plant. That calculation is performed with enough details permitting optimization and minimization. The code is also a tool to aid reload projects and economic operation of PWR reactors. This manual presents a description of Nucost version 1.0, instruction to enter data preparation and description of the Nucost output. (M.I.)

  15. Public attitudes toward nuclear power generation. Focusing on measurement of attitude intensity

    International Nuclear Information System (INIS)

    Nagai, Yasuko; Hayashi, Chikio

    1999-01-01

    The purpose of the present study was to 1) examine the differences of the perception between nuclear power generation (NPG) and electric power generation by nuclear fusion, 2) find the structural characteristics of the attitude toward NPG, 3) shed light on the characteristics of knowledge about NPG, and 4) develop a scale to measure the intensity in attitude toward NPG. Subjects (N = 1,582) were randomly assigned into 4 groups and were asked to answer a questionnaire including public attitudes toward NPG and related matters. The results were as follows: 1) the perception of electric power generation by nuclear fusion was less favorable than that of NPG; 2) Items which correlated with attitudes toward NPG were: 'sense of anxiety,' sensitivity to risk,' 'trust in science and technology,' 'evaluation of Japan's nuclear policy', 'evaluation of electric power companies,' and interest in life and environmental issues.' Moreover, people with a strong attitude tended to be rational and had a better knowledge of NPG; 3) The evaluation of the amount of subjective knowledge concerning nuclear power and electric power generation was reliable as a measure of objective knowledge; 4) The measurement method used in this study was characterized by the use of biased questions(ten positively and ten negatively biased questions) which were shown to the subjects using the split-half method. An attempt was made to measure the attitude and its intensity taking into consideration gender, positive or negative attitude toward NPG, level of knowledge about NPG, age, and occupation. As a result, differences in intensity between different attributes were found. (author)

  16. 75 FR 9623 - Arizona Public Service Company, et al.; Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-03-03

    ...] Arizona Public Service Company, et al.; Palo Verde Nuclear Generating Station, Units 1, 2, and 3; Exemption 1.0 Background The Arizona Public Service Company (APS, the facility licensee) is the holder of... Nuclear Generating Station (PVNGS, the facility), Units 1, 2, and 3, respectively. The licenses provide...

  17. 76 FR 24064 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice...

    Science.gov (United States)

    2011-04-29

    ... Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3, Notice of Issuance of Renewed... issued Renewed Facility Operating License Nos. NPF-41, NPF-51, and NPF-74 to Arizona Public Service Company (licensee), the operator of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (PVNGS...

  18. 75 FR 8149 - Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-02-23

    ...] Arizona Public Service Company, et al. Palo Verde Nuclear Generating Station, Units 1, 2, and 3... NPF-74, issued to the Arizona Public Service Company (APS, or the licensee), for operation of the Palo Verde Nuclear Generating Station (PVNGS, the facility), Units 1, 2, and 3, respectively, located in...

  19. 75 FR 13606 - Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3...

    Science.gov (United States)

    2010-03-22

    ...] Arizona Public Service Company, Palo Verde Nuclear Generating Station, Units 1, 2, and 3; Environmental...-74, issued to Arizona Public Service Company (APS, the licensee), for operation of the Palo Verde Nuclear Generating Station, Units 1, 2, and 3 (PVNGS, Units 1, 2, and 3), located in Maricopa County...

  20. Determination of leveled costs of electric generation for gas plants, coal and nuclear; Determinacion de costos nivelados de generacion electrica para plantas de gas, carbon y nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: galonso@nuclear.inin.mx

    2005-07-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  1. Design of a fault diagnosis system for next generation nuclear power plants

    International Nuclear Information System (INIS)

    Zhao, K.; Upadhyaya, B.R.; Wood, R.T.

    2004-01-01

    A new design approach for fault diagnosis is developed for next generation nuclear power plants. In the nuclear reactor design phase, data reconciliation is used as an efficient tool to determine the measurement requirements to achieve the specified goal of fault diagnosis. In the reactor operation phase, the plant measurements are collected to estimate uncertain model parameters so that a high fidelity model can be obtained for fault diagnosis. The proposed algorithm of fault detection and isolation is able to combine the strength of first principle model based fault diagnosis and the historical data based fault diagnosis. Principal component analysis on the reconciled data is used to develop a statistical model for fault detection. The updating of the principal component model based on the most recent reconciled data is a locally linearized model around the current plant measurements, so that it is applicable to any generic nonlinear systems. The sensor fault diagnosis and process fault diagnosis are decoupled through considering the process fault diagnosis as a parameter estimation problem. The developed approach has been applied to the IRIS helical coil steam generator system to monitor the operational performance of individual steam generators. This approach is general enough to design fault diagnosis systems for the next generation nuclear power plants. (authors)

  2. Steam Generator control in Nuclear Power Plants by water mass inventory

    International Nuclear Information System (INIS)

    Dong Wei; Doster, J. Michael; Mayo, Charles W.

    2008-01-01

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators

  3. AECB staff annual assessment of the Bruce A Nuclear Generating Station for the year 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Bruce Nuclear Generating Station A for 1996. Ontario Hydro operated Bruce A safely in 1996, maintaining the risk to workers and the public at an acceptably low level. Special safety system performance at Bruce A was adequate. Availability targets were all met. Improvement is needed to reduce the number of operating licence non-compliances

  4. A distributed process monitoring system for nuclear powered electrical generating facilities

    International Nuclear Information System (INIS)

    Sweney, A.D.

    1991-01-01

    Duke Power Company is one of the largest investor owned utilities in the United States, with a service area of 20,000 square miles extending across North and South Carolina. Oconee Nuclear Station, one of Duke Power's three nuclear generating facilities, is a three unit pressurized water reactor site and has, over the course of its 15-year operating lifetime, effectively run out of plant processing capability. From a severely overcrowded cable spread room to an aging overtaxed Operator Aid Computer, the problems with trying to add additional process variables to the present centralized Operator Aid Computer are almost insurmountable obstacles. This paper reports that for this reason, and to realize the inherent benefits of a distributed process monitoring and control system, Oconee has embarked on a project to demonstrate the ability of a distributed system to perform in the nuclear power plant environment

  5. Counter Action Procedure Generation in an Emergency Situation of Nuclear Power Plants

    Science.gov (United States)

    Gofuku, A.

    2018-02-01

    Lessons learned from the Fukushima Daiichi accident revealed various weak points in the design and operation of nuclear power plants at the time although there were many resilient activities made by the plant staff under difficult work environment. In order to reinforce the measures to make nuclear power plants more resilient, improvement of hardware and improvement of education and training of nuclear personnel are considered. In addition, considering the advancement of computer technology and artificial intelligence, it is a promising way to develop software tools to support the activities of plant staff.This paper focuses on the software tools to support the operations by human operators and introduces a concept of an intelligent operator support system that is called as co-operator. This paper also describes a counter operation generation technique the authors are studying as a core component of the co-operator.

  6. AECB staff annual assessment of the Bruce B Nuclear Generating Station for the year 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The Atomic Energy Control Board is the independent federal agency that controls all nuclear activities in Canada. A major use of nuclear energy in Canada is electricity production. The AECB assesses every station's performance against legal requirements, including the conditions in the operating licence. Each station is inspected and all aspects of the station's operation and management is reviewed. This report is the AECB staff assessment of reactor safety at the Bruce Nuclear Generating Station B for 1996. It was concluded that Ontario Hydro operated Bruce B safely in 1996. Although the Bruce B plant is safe,it was noted that the number of outages and the number of secondary and tertiary equipment failures during reactor unit upsets increased. Ontario Hydro needs to pay special attention to prevent such a decrease in the safety performance at Bruce B

  7. The role of advanced nuclear plants in reducing the environmental and economic impact of greenhouse emissions on electrical generation

    International Nuclear Information System (INIS)

    Redding, J.; Veitch, C.

    1995-01-01

    The paper discusses the potential impact of imposing economic penalties (externalities) in an effort to reduce emission levels and environmental effect of existing and newly constructed electric facilities, on the selection of generation technology and fuel type, and how the nuclear industry's efforts to develop the next generation of nuclear power facilities will provide an economic, low emission generating option to meet the expanding global electrical needs. The efforts of the US nuclear industry to improve the performance and economics of the existing and next generation facilities are presented, focusing on General Electric's Advanced Boiling Water Reactor and Simplified Boiling Water Reactor. 5 refs., 4 figs., 2 tabs

  8. Trends on nuclear power generation and industry in European and American nations

    International Nuclear Information System (INIS)

    Tokai, Kunihiro

    2001-01-01

    In European and American nations, competitive principle was also recently introduced to electric industry allowed its local exclusion as a public business before today by liberalization of electric power market due to regulative relaxation, and then the existing electric power companies are now under serious competition with the other companies, of course with IPP which is its new comer. And, as nuclear power generation has already established there its position for an important source essential for electric power supply, by liberalization of electric power economy has also been severely required to the nuclear power generation. Then, the electric power companies intend to carry out cost-down by various means such as contraction of periodical inspection, and so on. Especially, in U.S.A., not only rationalization effort at a pace of every company but also various cost-down procedures ranging to reorganization of business such as purchase of other company power station, establishment of operation company integrally carrying out operation management of some companies, and so on, As a result, the nuclear power generation has come to obtain an evaluation to be an electric source sufficiently capable of competing with the other sources even at competitive market. On the other hand, its new construction continues at difficult condition. By adding to traditional objection against nuclear energy, in general, by recently entering of environmental protection party to the regime in some nations of western Europe, political environment around nuclear energy becomes unstable. And, liberalization of electric power also forms an investment environment advantageous for natural gas burning thermal power plants capable of carrying out short term capital recovery, in general. Therefore, the electric companies tend strongly to correspond to rather life elongation of the present plant than new plan construction. (G.K.)

  9. Generation Mix Study Focusing on Nuclear Power by Practical Peak Forecast

    International Nuclear Information System (INIS)

    Shin, Jung Ho; Roh, Myung Sub

    2013-01-01

    The excessive underestimation can lead to a range of problem; expansion of LNG plant requiring short construction period, the following increase of electricity price, low reserve margin and inefficient configuration of power source. With regard to nuclear power, the share of the stable and economic base load plant, nuclear power, can reduce under the optimum level. Amongst varied factors which contribute to the underestimate, immoderate target for demand side management (DSM) including double deduction of the constraint amount by DSM from peak demand forecast is one of the causes. The hypothesis in this study is that the better optimum generation mix including the adequate share of nuclear power can be obtained under the condition of the peak demand forecast without deduction of DSM target because this forecast is closer to the actual peak demand. In this study, the hypothesis is verified with comparison between peak demand forecast before (or after) DSM target application and the actual peak demand in the 3 rd through 5 th BPE from 2006 to 2010. Furthermore, this research compares and analyzes several generation mix in 2027 focusing on the nuclear power by a few conditions using the WASP-IV program on the basis of the 6 th BPE in 2013. According to the comparative analysis on the peak demand forecast and actual peak demand from 2006 to 2010, the peak demand forecasts without the deduction of the DSM target is closer to the actual peak demand than the peak demand forecasts considering the DSM target in the 3 th , 4 th , 5 th entirely. In addition, the generation mix until 2027 is examined by the WASP-IV. As a result of the program run, when considering the peak demand forecast without DSM reflection, since the base load plants including nuclear power take up adequate proportion, stable and economic supply of electricity can be achieved. On the contrary, in case of planning based on the peak demand forecast with DSM reflected and then compensating the shortage by

  10. Steam generator materials and secondary side water chemistry in nuclear power stations

    International Nuclear Information System (INIS)

    Rudelli, M.D.

    1979-04-01

    The main purpose of this work is to summarize the European and North American experiences regarding the materials used for the construction of the steam generators and their relative corrosion resistance considering the water chemestry control method. Reasons underlying decision for the adoption of Incoloy 800 as the material for the secondary steam generator system for Atucha I Nuclear Power Plant (Atucha Reactor) and Embalse de Rio III Nuclear Power Plant (Cordoba Reactor) are pointed out. Backup information taken into consideration for the decision of utilizing the All Volatil Treatment for the water chemistry control of the Cordoba Reactor is detailed. Also all the reasonswhich justify to continue with the congruent fosfatic method for the Atucha Reactor are analyzed. Some investigation objectives which would eventually permit the revision of the decisions taken on these subjects are proposed. (E.A.C.) [es

  11. Stress corrosion cracking of steam generator tube and primary pipe in PWR type nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Weiguo; Gao Fengqin; Zhou Hongyi

    1993-01-01

    The behavior of stress corrosion cracking (SCC) is studied by slow strain rate test (SSRT), constant load test (CLT) and low frequency cyclic loading test (LFCLT). The purpose of these tests is to get the test data for evaluating the integrity of pressurized boundary of pipes in Qinshan and Guangdong nuclear power plants. Tested materials are 316 nuclear grade stainless steel (SS) for primary pipes in welded heat affected zone (WHAZ) and steam generator tubes, such as Incoloy-800, Inconel-600, Inconel-690 and 321 SS which are used for steam generator in PWR. The effects of material metallurgy, shot-peening treatment, tensile load, strain rate, cyclic load and water chemistry on the behavior of SCC are investigated

  12. Experiences from maintaining the reliability of a nuclear standby diesel generator system

    International Nuclear Information System (INIS)

    Tammi, P.

    1982-01-01

    The nuclear standby diesel generator system is quite complicated comprising several mechanical and electrotechnical components, on which the reliability of the system is depending. It is an important support system of the plant safety system, and like the safety system it is composed of separate redundant units. The Loviisa nuclear power station has eight diesel generators. The first four of them were taken into operation in 1976. When the frequency of some mechanical failures showed increase, a project was started at the end of 1980 with the intention to find out potential failure possibilities and means for prevention of failures. The work has been mainly concentrated on improving the reliability of the diesel engines. (Auth.)

  13. Public sector effects and social impact assessment of nuclear generating facilities: Information for community mitigation management

    International Nuclear Information System (INIS)

    Pijawka, K.D.

    1984-01-01

    One of the major issues in community impact management is the gap between revenues generated by energy projects and expenditures for public facilities and services because of project-induced growth. Of issue is the experience of communities experiencing rapid growth where project revenues are not generated until operations commence and yet, considerable investments are needed to accommodate growth during the construction phase. Such revenue imbalances have resulted in communities demanding ''up-front'' capital investments or revenue prior to and during construction. However, with the construction and operation of nuclear facilities, the few available studies have found substantial revenue gains allocated to local jurisdiction and little adverse expenditure effects. The analyses of twelve nuclear stations found that the demand for new and expanded public facilities and the social services attributable to the plants were generally small, that adverse impacts were controllable and mitigatable, and that utility revenue payments varied substantially amount the host areas

  14. Impact of digital information and control system platform selection on nuclear power generating plant operating costs

    International Nuclear Information System (INIS)

    Bogard, T.; Radomski, S.; Sterdis, B.; Marta, H.; Bond, V.; Richardson, J.; Ramon, G.; Edvinsson, H.

    1998-01-01

    Information is presented on the benefits of a well-planned information and control systems (I and CS) replacement approach for aging nuclear power generating plants' I and CS. Replacement of an aging I and CS is accompanied by increases in plant profitability. Implementing a structured I and CS replacement with current technology allows improved plant electrical production in parallel with reduced I and CS operations and maintenance cost. Qualitative, quantitative, and enterprise management methods for cost benefit justification are shown to justify a comprehensive approach to I and CS replacement. In addition to the advantages of standard I and CS technologies, examples of new I and CS technologies are shown to add substantial cost benefit justification for I and CS replacements. Focus is upon I and CS replacements at nuclear power plants, however the information is applicable to other types of power generating facilities. (author)

  15. On the electromagnetic pulse generated by exo-atmospheric nuclear detonations

    International Nuclear Information System (INIS)

    Leuthaeuser, K.D.

    1983-01-01

    When gamma rays produced by high altitude nuclear weapons explosions interact with the atmosphere they generate an electromagnetic pulse (EMP) propagating towards the earth's surface. The EMP covers large areas of millions of km 2 and reaches peak electric fields of more than 50 kV/m which may couple into all kinds of conducting systems. The present paper deals with a simple model to calculate EMP fields basing on Maxwell's equations. (orig.)

  16. Aerial radiological survey of the San Onofre Nuclear Generating Station and surrounding area, San Clemente, California

    International Nuclear Information System (INIS)

    Hilton, L.K.

    1980-12-01

    An airborne radiological survey of an 11 km 2 area surrounding the San Onofre Nuclear Generating Station was made 9 to 17 January 1980. Count rates observed at 60 m altitude were converted to exposure rates at 1 m above the ground and are presented in the form of an isopleth map. Detected radioisotopes and their associated gamma ray exposure rates were consistent with that expected from normal background emitters, except directly over the plant

  17. 3D model of steam generator of nuclear power plant Krsko

    International Nuclear Information System (INIS)

    Ravnikar, I.; Petelin, S.

    1995-01-01

    The Westinghouse Electric Corporation D4 steam generator design was analyzed from a thermal-hydraulic point of view using the 3D PHOENICS computer code. Void fraction, velocity and enthalpy distributions were obtained in the U-tube riser. The boundary conditions of primary side were provided by SMUP 1D code. The calculations were carried out for present operating conditions of nuclear power plant Krsko. (author)

  18. The SGR Multipurpose - Generation IV - Transportable Cogeneration Nuclear Reactor with Innovative Shielding

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2002-01-01

    Deregulation and liberalization are changing the global energy-markets. At the same time innovative technologies are introduced in the electricity industry; often as a requirement from the upcoming Digital Society. Energy solutions for the future are more seen as a mix of energy-sources for generation-, transmission- and distribution energy-services. The Internet Energy-web based 'Virtual' enterprises are coming up and will gradually change our society. It the fast changing world we have to realize that there will be less time to look for the adequate solutions to anticipate on global developments and the way they will influence our own societies. Global population may reach 9 billion people by 2030; this will put tremendous pressure on energy-, water- and food supply in the global economy. It is time to think about some major issues as described below and come up with the right answers. These are needed on very short term to secure a humane global economic growth and the sustainable global environment. The DOE (Department of Energy - USA) has started the Generation IV initiative for the new generation of nuclear reactors that must lead to much better safety, economics and public acceptance the new reactors. The SGR (Simplified Gas-cooled Reactor) is being proposed as a Generation IV modular nuclear reactor, using graphite pebbles as fuel, whereby an attempt has been made to meet all the DOE requirements, to be used for future nuclear reactors. The focus in this paper is on the changing and emerging global energy-markets and shows some relevant criteria to the nuclear industry and how we can anticipate with improved and new designs towards the coming Digital Society. (author)

  19. Tailoring Laser-Generated Plasmas for Efficient Nuclear Excitation by Electron Capture

    Science.gov (United States)

    Wu, Yuanbin; Gunst, Jonas; Keitel, Christoph H.; Pálffy, Adriana

    2018-02-01

    The optimal parameters for nuclear excitation by electron capture in plasma environments generated by the interaction of ultrastrong optical lasers with solid matter are investigated theoretically. As a case study we consider a 4.85 keV nuclear transition starting from the long-lived Mom93 isomer that can lead to the release of the stored 2.4 MeV excitation energy. We find that due to the complex plasma dynamics, the nuclear excitation rate and the actual number of excited nuclei do not reach their maximum at the same laser parameters. The nuclear excitation achievable with a high-power optical laser is up to twelve and up to six orders of magnitude larger than the values predicted for direct resonant and secondary plasma-mediated excitation at the x-ray free electron laser, respectively. Our results show that the experimental observation of the nuclear excitation of Mom93 and the subsequent release of stored energy should be possible at laser facilities available today.

  20. X-Pinch Plasma Generation Testing for Neutron Source Development and Nuclear Fusion

    Directory of Open Access Journals (Sweden)

    Hossam A.Gabbar

    2018-04-01

    Full Text Available Nuclear fusion is a sought-out technology in which two light elements are fused together to create a heavier element and releases energy. Two primary nuclear fusion technologies are being researched today: magnetic and inertial confinement. However, a new type of nuclear fusion technology is currently being research: multi-pinch plasma beams. At the University of Ontario Institute of Technology, there is research on multi-pinch plasma beam technology as an alternative to nuclear fusion. The objective is to intersect two plasma arcs at the center of the chamber. This is a precursor of nuclear fusion using multi-pinch. The innovation portion of the students’ work is the miniaturization of this concept using high energy electrical DC pulses. The experiment achieved the temperature of 2300 K at the intersection. In comparison to the simulation data, the temperature from the simulation is 7000 K at the intersection. Additionally, energy harvesting devices, both photovoltaics and a thermoelectric generator, were placed in the chamber to observe the viable energy extraction.

  1. Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source

    International Nuclear Information System (INIS)

    Bowman, C.D.; Arthur, E.D.; Lisowski, P.W.; Lawrence, G.P.; Jensen, R.J.; Anderson, J.L.; Blind, B.; Cappiello, M.; Davidson, J.W.; England, T.R.; Engel, L.N.; Haight, R.C.; Hughes, H.G. III; Ireland, J.R.; Krakowski, R.A.; LaBauve, R.J.; Letellier, B.C.; Perry, R.T.; Russell, G.J.; Staudhammer, K.P.; Versamis, G.; Wilson, W.B.

    1992-01-01

    We describe a new approach for commercial nuclear energy production without a long-term high-level waste stream and for transmutation of both fission product and higher actinide commercial nuclear waste using a thermal flux of accelerator-produced neutrons in the 10 16 n/cm 2 s range. Continuous neutron fluxes at this intensity, which is approximately 100 times larger than is typically available in a large scale thermal reactor, appear practical, owing to recent advances in proton linear accelerator technology and to the spallation target-moderator design presented here. This large flux of thermal neutrons makes possible a waste inventory in the transmutation system which is smaller by about a factor of 100 than competing concepts. The accelerator allows the system to operate well below criticality so that the possibility for a criticality accident is eliminated. No control rods are required. The successful implementation of this new method for energy generation and waste transmutation would eliminate the need for nuclear waste storage on a geologic time scale. The production of nuclear energy from 232 Th or 238 U is used to illustrate the general principles of commercial nuclear energy, production without long-term high-level waste. There appears to be sufficient thorium to meet the world's energy needs for many millenia. (orig.)

  2. Attitudes of the general public and electric power company employees toward nuclear power generation

    International Nuclear Information System (INIS)

    Komiyama, Hisashi

    1997-01-01

    We conducted an awareness survey targeted at members of the general public residing in urban areas and in areas scheduled for construction of nuclear power plants as well as employees of electric power company in order to determine the awareness and attitude structures of people residing near scheduled construction sites of nuclear power plants with respect to nuclear power generation, and to examine ways of making improvements in terms of promoting nuclear power plant construction sites. Analysis of those results revealed that there are no significant differences in the awareness and attitudes of people residing in urban areas and in areas near scheduled construction sites. On the contrary, a general sense of apprehension regarding the construction of nuclear power plants was observed common to both groups. In addition, significant differences in awareness and attitudes with respect to various factors were determined to exist between members of the general public residing in urban areas and scheduled construction sites and employees of electric power company. (author)

  3. Eddy-current tests on operational evaluation of steam generator tubes in nuclear power plants

    International Nuclear Information System (INIS)

    Lopez, Luiz Antonio Negro Martin; Ting, Daniel Kao Sun

    2000-01-01

    This paper presents a worldwide research on the technical and economical impacts due to failure in tube bundles of nuclear power plant steam generators. An Eddy current non destructive test using Foucault currents for the inspection and failure detection on the tubes, and also the main type of defects. The paper also presents the signals generated by a Zetec MIZ-40 test equipment. This paper also presents a brief description of an automatic system for data analysis which is under development by using a fuzzy logic and artificial intelligence

  4. Visual Inspection of the Flow Distribution Plate Bolts of a Nuclear Steam Generator

    International Nuclear Information System (INIS)

    Jeong, Woo Tae; Kim, Suk Tae; Sohn, Wook; Kang, Duk Won; Kang, Seok Chul

    2007-01-01

    To develop a system for visually inspecting the flow distribution plate (FDP) bolts of a nuclear steam generator, we reviewed several types of similar inspection equipment. The equipment which are currently available are mostly for inspecting lower part of a steam generator such as tube sheets and annulus except ELVS (Eggcrate Visual Inspection System). However, the design concept of ELVS could not be used for developing a device which enables the visual inspection of flow distribution plate bolts. Therefore, based on the current state of the art technology on the similar equipment, we conceptually designed a new inspection system for checking the FDP bolts

  5. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    International Nuclear Information System (INIS)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-01-01

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models

  6. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Shaw; Anthony Baratta; Vaughn Whisker

    2005-02-28

    Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

  7. The concept of electro-nuclear facility for useful power generation and minor actinides transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Bergelson, B.R.; Balyuk, S.A. [ITEP, Moscow (Russian Federation)

    1995-10-01

    The possibility is shown to design in principle the double-purpose liquid fuel electro nuclear facility for useful power generation and minor actinides transmutation in U-Pu fuel cycle conditions. D{sub 2}O and a melt of fluorine salts are considered as a working media for liquid fuel. Such facility replenished with depicted or natural uranium only makes it possible to generate power of 900 MW (c) for external consumers and serve 20 WWER-1000 reactors for transmutation of MA. The facility could be thought as an alternative to fast reactors since appr. 30% of the total power confined in uranium is utilized in it.

  8. Multi-criteria Generation-Expansion Planning with Carbon dioxide emissions and Nuclear Safety considerations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hun Gyu [KINS, Daejeon (Korea, Republic of); Kim, Young Chang [Aju University, Suwon (Korea, Republic of)

    2010-10-15

    A multiple criteria decision making (MCDM) method is developed to aid decision makers in Generation Expansion planning and management. Traditionally, the prime objective of an electric utility's generation-expansion planning has been to determine the minimum cost supply plans that meet expected demands over a planning horizon (typically 10 to 30 years). Today, however, the nature of decision environments has changed substantially. Increased policy attention is given to solve the multiple tradeoff function including environmental and social factors as well as economic one related to nuclear power expansion. In order to deal with this MCDM problem, the Analytic Hierarchy Process (AHP) Model is applied

  9. Method and apparatus for preventing inadvertent criticality in a nuclear fueled electric power generating unit

    International Nuclear Information System (INIS)

    Tuley, C.R.; Bauman, D.A.; Neuner, J.A.; Feilchenfeld, M.M.; Greenberg, L.

    1984-01-01

    An inadvertent approach to criticality in a nuclear fueled electric power generating unit is detected and an alarm is generated through on-line monitoring of the neutron flux. The difficulties of accurately measuring the low levels of neutron flux in a subcritical reactor are overcome by the use of a microcomputer which continuously generates average flux count rate signals for incremental time periods from thousands of samples taken during each such period and which serially stores the average flux count rate signals for a preselected time interval. At the end of each incremental time period, the microcomputer compares the latest average flux count rate signal with the oldest, and preferably each of the intervening stored values, and if it exceeds any of them by at least a preselected multiplication factor, an alarm is generated. (author)

  10. Technology Road-map Update for Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2014-01-01

    This Technology Road-map Update provides an assessment of progress made by the Generation IV International Forum (GIF) in the development of the six systems selected when the original Technology Road-map was published in 2002. More importantly, it provides an overview of the major R and D objectives and milestones for the coming decade, aiming to achieve the Generation IV goals of sustainability, safety and reliability, economic competitiveness, proliferation resistance and physical protection. Lessons learnt from the Fukushima Daiichi nuclear power plant accident are taken into account to ensure that Generation IV systems attain the highest levels of safety, with the development of specific safety design criteria that are applicable across the six systems. Accomplishing the ten-year R and D objectives set out in this new Road-map should allow the more advanced Generation IV systems to move towards the demonstration phase. (authors)

  11. Consolidated results of the AECB staff's detailed review of Ontario Hydro Nuclear's integrated independent performance assessment and safety system functional inspection findings

    International Nuclear Information System (INIS)

    1998-01-01

    In January 1997, Ontario Hydro announced that a team of nuclear industry experts from the United States, called the Nuclear Performance Advisory Group (NPAG), had been employed to help manage its nuclear program and to implement needed improvements in Ontario Hydro Nuclear (OHN) operations. In the spring of 1997, NPAG initiated a series of detailed reviews of OHN's operations, at its Pickering, Bruce and Darlington nuclear generating stations and in OHN's Head Office groups. These reviews, called 'Independent Integrated Performance Assessments' (UPA) and 'Safety System Functional Inspections' (SSFI), were carried out in April and May of this year with the objective of developing 'an integrated, accurate, and comprehensive understanding of the performance of OHN'.They were conducted in response to a request from the President of Ontario Hydro for a 'brutally honest' assessment of Ontario Hydro Nuclear. NPAG has since been integrated into Ontario Hydro's line organization. Ontario Hydro's Board of Directors received the results of the IIPAs and SSFIs and an Ontario Hydro report titled Basis for Continued Operation on August 12, 1997. AECB staff has been reviewing the reports containing these results since receiving them at that time. The conclusions of these studies are extremely critical of the management of Ontario Hydro Nuclear. They identify a large number of shortcomings in the operation and maintenance of the nuclear generating stations. Ontario Hydro states in the IIPA and SSFI reports that the reports are, by design, negative in slant and emphasize the weaknesses in performance rather than the strengths. The reports conclude that the stations can continue to operate safety while the near and long term improvements are implemented. This report contains the consolidated results of the AECB staffs detailed review of the IIPA and SSFI findings. (author)

  12. Nuclear reactor capable of electric power generation during in-service inspection

    International Nuclear Information System (INIS)

    Nakamura, Shinsuke; Nogami, Hitoshi.

    1992-01-01

    The nuclear power plant according to the present invention can generate electric power even in a period when one of a pair of reactors is put to in-service inspection. That is, the nuclear power plant of the present invention comprises a system constitution of two nuclear reactors each of 50% thermal power and one turbine power generator of 100% electric power. Further, facilities of various systems relevant to the two reactors each of 50% thermal power, as a pair, are used in common as much as possible in order to reduce the cost for construction and maintenance/ inspection. Further, a reactor building and a turbine building disposed in adjacent with each for paired two reactors each of 50% thermal power are arranged vertically. This arrangement can facilitate the common use of the facilities for various systems and equipments to attain branching and joining of fluids in reactor feed water systems and main steam system pipelines easily with low pressure loss and low impact shocks. The facility utilization factor of such reactors is remarkably improved by doubling the period of continuous power generation. As a result, economic property is remarkably improved. (I.S.)

  13. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  14. The development of new radionuclide generator systems for nuclear medicine applications

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Callahan, A.P.; Mirzadeh, S.; Brihaye, C.; Guillaume, M.

    1991-01-01

    Radioisotope generator systems have traditionally played a central role in nuclear medicine in providing radioisotopes for both research and clinical applications. In this paper, the development of several tungsten-188/rhenium-188 prototype generators which provide rhenium-188 for radioimmunotherapy (RAIT) is discussed. The authors have recently demonstrated that carrier-free iridium-194 can be obtained from the activated carbon system from decay of reactor-produced osmium-194 for potential RAIT applications. Instrumentation advances such as the new generation of high-count-rate (fast) gamma camera systems for first-pass technology require the availability of generator-produced ultra short-lived radioisotopes for radionuclide angiography (RNA). The activated carbon generator is an efficient system to obtain ultra short-lived iridium-191 m from osmium-191 for RNA. In addition, the growing number of PET centers has stimulated research in generators which provide positron-emitting radioisotopes. Copper-62, obtained from the zinc-62 generator, is currently used for PET evaluation of organ perfusion. The availability of the parent radioisotopes, the fabrication and use of these generators, and the practical factors for use of these systems in the radiopharmacy are discussed. 74 refs., 6 figs., 5 tabs

  15. Blown by the wind. Replacing nuclear power in German electricity generation

    International Nuclear Information System (INIS)

    Lechtenböhmer, Stefan; Samadi, Sascha

    2013-01-01

    Only three days after the beginning of the nuclear catastrophe in Fukushima, Japan, on 11 March 2011, the German government ordered 8 of the country's 17 existing nuclear power plants (NPPs) to stop operating within a few days. In summer 2011 the government put forward a law – passed in parliament by a large majority – that calls for a complete nuclear phase-out by the end of 2022. These government actions were in contrast to its initial plans, laid out in fall 2010, to expand the lifetimes of the country's NPPs. The immediate closure of 8 NPPs and the plans for a complete nuclear phase-out within little more than a decade, raised concerns about Germany's ability to secure a stable supply of electricity. Some observers feared power supply shortages, increasing CO 2 -emissions and a need for Germany to become a net importer of electricity. Now – a little more than a year after the phase-out law entered into force – this paper examines these concerns using (a) recent statistical data on electricity production and demand in the first 15 months after the German government's immediate reaction to the Fukushima accident and (b) reviews the most recent projections and scenarios by different stakeholders on how the German electricity system may develop until 2025, when NPPs will no longer be in operation. The paper finds that Germany has a realistic chance of fully replacing nuclear power with additional renewable electricity generation on an annual basis by 2025 or earlier, provided that several related challenges, e.g. expansion of the grids and provision of balancing power, can be solved successfully. Already in 2012 additional electricity generation from renewable energy sources in combination with a reduced domestic demand for electricity will likely fully compensate for the reduced power generation from the NPPs shut down in March 2011. If current political targets will be realised, Germany neither has to become a net electricity importer, nor will be unable

  16. Improvement of Sodium Neutronic Nuclear Data for the Computation of Generation IV Reactors

    International Nuclear Information System (INIS)

    Archier, P.

    2011-01-01

    The safety criteria to be met for Generation IV sodium fast reactors (SFR) require reduced and mastered uncertainties on neutronic quantities of interest. Part of these uncertainties come from nuclear data and, in the particular case of SFR, from sodium nuclear data, which show significant differences between available international libraries (JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0). The objective of this work is to improve the knowledge on sodium nuclear data for a better calculation of SFR neutronic parameters and reliable associated uncertainties. After an overview of existing 23 Na data, the impact of the differences is quantified, particularly on sodium void reactivity effects, with both deterministic and stochastic neutronic codes. Results show that it is necessary to completely re-evaluate sodium nuclear data. Several developments have been made in the evaluation code Conrad, to integrate new nuclear reactions models and their associated parameters and to perform adjustments with integral measurements. Following these developments, the analysis of differential data and the experimental uncertainties propagation have been performed with Conrad. The resolved resonances range has been extended up to 2 MeV and the continuum range begins directly beyond this energy. A new 23 Na evaluation and the associated multigroup covariances matrices were generated for future uncertainties calculations. The last part of this work focuses on the sodium void integral data feedback, using methods of integral data assimilation to reduce the uncertainties on sodium cross sections. This work ends with uncertainty calculations for industrial-like SFR, which show an improved prediction of their neutronic parameters with the new evaluation. (author) [fr

  17. Status Report and Research Plan for Cables Harvested from Crystal River Unit 3 Nuclear Generating Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-20

    Harvested cables from operating or decommissioned nuclear power plants present an important opportunity to validate models, understanding material aging behavior, and validate characterization techniques. Crystal River Unit 3 Nuclear Generating Plant is a pressurized water reactor that was licensed to operate from 1976 to 2013. Cable segments were harvested and made available to the Light Water Reactor Sustainability research program through the Electric Power Research Institute. Information on the locations and circuits within the reactor from whence the cable segments came, cable construction, sourcing and installation information, and photographs of the cable locations prior to harvesting were provided. The cable variations provided represent six of the ten most common cable insulations in the nuclear industry and experienced service usage for periods from 15 to 42 years. Subsequently, these cables constitute a valuable asset for research to understand aging behavior and measurement of nuclear cables. Received cables harvested from Crystal River Unit 3 Nuclear Generating Plant consist of low voltage, insulated conductor surrounded by jackets in lengths from 24 to 100 feet each. Cable materials will primarily be used to investigate aging under simultaneous thermal and gamma radiation exposure. Each cable insulation and jacket material will be characterized in its as-received condition, including determination of the temperatures associated with endothermic transitions in the material using differential scanning calorimetry and dynamic mechanical analysis. Temperatures for additional thermal exposure aging will be selected following the thermal analysis to avoid transitions in accelerated laboratory aging that do not occur in field conditions. Aging temperatures above thermal transitions may also be targeted to investigate the potential for artifacts in lifetime prediction from rapid accelerated aging. Total gamma doses and dose rates targeted for each material

  18. Geração hidrelétrica, termelétrica e nuclear Hydroelectric, thermal and nuclear generation

    Directory of Open Access Journals (Sweden)

    Luiz Pinguelli Rosa

    2007-04-01

    Full Text Available O artigo apresenta a situação da produção de energia elétrica no Brasil e expõe os problemas para a implementação de um novo modelo no setor energético e para a inclusão de termelétricas em um grande sistema hidrelétrico. Questões ambientais são consideradas, particularmente as emissões de gás de efeito estufa. Atenta ainda para a possível construção de novos reatores nucleares no Brasil e destaca a importância da conservação energética e do uso de fontes de energia renovável.The situation of electric energy generation in Brazil is presented here, showing the problems in the implementation of the new model for the Power Sector, as well as in the inclusion of thermal plants in a very big hydroelectric system. Environment issues are considered, in particular the greenhouse gas emissions. The article pays attention to the possible construction of new nuclear reactors in Brazil. It is pointed out the importance of energy conservation and of using renewable energy sources.

  19. Ethics Beyond Finitude: Responsibility towards Future Generations and Nuclear Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Loefquist, Lars

    2008-05-15

    This dissertation has three aims: 1. To evaluate several ethical theories about responsibility towards future generations. 2. To construct a theory about responsibility towards future generations. 3. To carry out an ethical evaluation of different nuclear waste management methods. Five theories are evaluated with the help of evaluative criteria, primarily: A theory must provide future generations with some independent moral status. A theory should acknowledge moral pluralism. A theory should provide some normative claims about real-world problems. Derek Parfit's theory provides future generations with full moral status. But it is incompatible with moral pluralism, and does not provide reasonable normative claims about real-world problems. Brian Barry's theory provides such claims and a useful idea about risk management, but it does not provide an argument why future generations ought to exist. Avner de-Shalit's theory explains why they ought to exist; however, his theory can not easily explain why we ought to care for other people than those in our own community. Emmanuel Agius' theory gives an ontological explanation for mankind's unity, but reduces conflicts of interests to a common good. Finally, Hans Jonas' theory shifts the focus from the situation of future generations to the preconditions of human life generally. However, his theory presupposes a specific ontology, which might be unable to motivate people to act. The concluding chapters describe a narrative theory of responsibility. It claims that we should comprehend ourselves as parts of the common story of mankind and that we ought to provide future generations with equal opportunities. This implies that we should avoid transferring risks and focus on reducing the long-term risks associated with the nuclear waste

  20. Ethics Beyond Finitude: Responsibility towards Future Generations and Nuclear Waste Management

    International Nuclear Information System (INIS)

    Loefquist, Lars

    2008-01-01

    This dissertation has three aims: 1. To evaluate several ethical theories about responsibility towards future generations. 2. To construct a theory about responsibility towards future generations. 3. To carry out an ethical evaluation of different nuclear waste management methods. Five theories are evaluated with the help of evaluative criteria, primarily: A theory must provide future generations with some independent moral status. A theory should acknowledge moral pluralism. A theory should provide some normative claims about real-world problems. Derek Parfit's theory provides future generations with full moral status. But it is incompatible with moral pluralism, and does not provide reasonable normative claims about real-world problems. Brian Barry's theory provides such claims and a useful idea about risk management, but it does not provide an argument why future generations ought to exist. Avner de-Shalit's theory explains why they ought to exist; however, his theory can not easily explain why we ought to care for other people than those in our own community. Emmanuel Agius' theory gives an ontological explanation for mankind's unity, but reduces conflicts of interests to a common good. Finally, Hans Jonas' theory shifts the focus from the situation of future generations to the preconditions of human life generally. However, his theory presupposes a specific ontology, which might be unable to motivate people to act. The concluding chapters describe a narrative theory of responsibility. It claims that we should comprehend ourselves as parts of the common story of mankind and that we ought to provide future generations with equal opportunities. This implies that we should avoid transferring risks and focus on reducing the long-term risks associated with the nuclear waste