WorldWideScience

Sample records for dark energy universe

  1. The dark universe dark matter and dark energy

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    According to the standard cosmological model, 95% of the present mass density of the universe is dark: roughly 70% of the total in the form of dark energy and 25% in the form of dark matter. In a series of four lectures, I will begin by presenting a brief review of cosmology, and then I will review the observational evidence for dark matter and dark energy. I will discuss some of the proposals for dark matter and dark energy, and connect them to high-energy physics. I will also present an overview of an observational program to quantify the properties of dark energy.

  2. Dark energy and universal antigravitation

    International Nuclear Information System (INIS)

    Chernin, A D

    2008-01-01

    Universal antigravitation, a new physical phenomenon discovered astronomically at distances of 5 to 8 billion light years, manifests itself as cosmic repulsion that acts between distant galaxies and overcomes their gravitational attraction, resulting in the accelerating expansion of the Universe. The source of the antigravitation is not galaxies or any other bodies of nature but a previously unknown form of mass/energy that has been termed dark energy. Dark energy accounts for 70 to 80% of the total mass and energy of the Universe and, in macroscopic terms, is a kind of continuous medium that fills the entire space of the Universe and is characterized by positive density and negative pressure. With its physical nature and microscopic structure unknown, dark energy is among the most critical challenges fundamental science faces in the twenty-first century. (physics of our days)

  3. Interacting agegraphic dark energy models in non-flat universe

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    A so-called 'agegraphic dark energy' was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate w D =-1 crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. k=0, all previous results of agegraphic dark energy in flat universe are restored.

  4. Dark energy and dark matter perturbations in singular universes

    International Nuclear Information System (INIS)

    Denkiewicz, Tomasz

    2015-01-01

    We discuss the evolution of density perturbations of dark matter and dark energy in cosmological models which admit future singularities in a finite time. Up to now geometrical tests of the evolution of the universe do not differentiate between singular universes and ΛCDM scenario. We solve perturbation equations using the gauge invariant formalism. The analysis shows that the detailed reconstruction of the evolution of perturbations within singular cosmologies, in the dark sector, can exhibit important differences between the singular universes models and the ΛCDM cosmology. This is encouraging for further examination and gives hope for discriminating between those models with future galaxy weak lensing experiments like the Dark Energy Survey (DES) and Euclid or CMB observations like PRISM and CoRE

  5. Covariant generalized holographic dark energy and accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya (Japan); Odintsov, S.D. [ICREA, Barcelona (Spain); Institute of Space Sciences (IEEC-CSIC), Barcelona (Spain); National Research Tomsk State University, Tomsk (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation)

    2017-08-15

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  6. Covariant generalized holographic dark energy and accelerating universe

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, S.D.

    2017-01-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F(R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy. (orig.)

  7. Covariant generalized holographic dark energy and accelerating universe

    Science.gov (United States)

    Nojiri, Shin'ichi; Odintsov, S. D.

    2017-08-01

    We propose the generalized holographic dark energy model where the infrared cutoff is identified with the combination of the FRW universe parameters: the Hubble rate, particle and future horizons, cosmological constant, the universe lifetime (if finite) and their derivatives. It is demonstrated that with the corresponding choice of the cutoff one can map such holographic dark energy to modified gravity or gravity with a general fluid. Explicitly, F( R) gravity and the general perfect fluid are worked out in detail and the corresponding infrared cutoff is found. Using this correspondence, we get realistic inflation or viable dark energy or a unified inflationary-dark energy universe in terms of covariant holographic dark energy.

  8. Classifying the future of universes with dark energy

    International Nuclear Information System (INIS)

    Chiba, Takeshi; Takahashi, Ryuichi; Sugiyama, Naoshi

    2005-01-01

    We classify the future of the universe for general cosmological models including matter and dark energy. If the equation of state of dark energy is less then -1, the age of the universe becomes finite. We compute the rest of the age of the universe for such universe models. The behaviour of the future growth of matter density perturbation is also studied. We find that the collapse of the spherical overdensity region is greatly changed if the equation of state of dark energy is less than -1

  9. Dark Energy Found Stifling Growth in Universe

    Science.gov (United States)

    2008-12-01

    WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its

  10. Acceleration of the universe dark energy or modified

    International Nuclear Information System (INIS)

    Cardenas, Rolando; Leyva, Yoelsy

    2007-01-01

    We present a composite model of dark energy, motivated in string and quantum field theory considerations. Then we speak on gravity theories in which the gravity Lagrangian is modified, resulting in a modification of General Relativity. We outline a methodology allowing a mapping between these two theories, i. e., both dark energy models and modified gravity can give the same cosmological dynamics. We apply aforementioned methodology to obtain the mapping composite dark energy-modified gravity for a particular case. Cosmic expansion history takes into account very large scales, the homogeneous Universe, and can not discriminate between above two theories. However, cosmic growth history takes into consideration intermediate cluster and galactic scales, the inhomogeneous Universe, and there might be the clue to discriminate whether the current acceleration of the Universe is because it is filled with a new fluid having repulsive gravity (dark energy) or it is just that gravity gets weaker and long scales (modified gravity). (Author)

  11. Coupled dark matter-dark energy in light of near Universe observations

    CERN Document Server

    Honorez, Laura Lopez; Mena, Olga; Verde, Licia; Jimenez, Raul

    2010-01-01

    Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified --and thus can be probed by a combination of tests for the expansion history and the growth of structure--, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inco...

  12. Dark energy and the accelerating universe: progress, problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2012-07-01

    Full text: A large number of recent observational data strongly suggest that we live in a flat, accelerating Universe composed by nearly 1/3 of matter (baryonic + dark) and 2/3 of an exotic component with large negative pressure, usually named Dark Energy. The basic set of experiments includes: observations from SNe Ia, CMB anisotropies, baryon acoustic oscillations (BAO) and X-ray data from galaxy clusters. Within the general relativity, the simplest explanation for dark energy is the cosmological constant associated with the zero-point energy density of all quantum fields present in the Universe. However, all estimates for its value are many orders-of-magnitude too large. Many alternative ideas include more exotic candidates for dark energy among them an extremely light scalar field. However, some possible explanations for the present accelerating stage also invokes gravitational physics beyond general relativity. In this way, several observations using satellites and ground-based telescopes are in operation or being planned to test whether dark energy is the cosmological constant or something more exotic, as well as to decide whether or not the standard general relativity can explain cosmic acceleration. In the current view, dark energy is an interesting example of new physics, and, certainly, its possible existence is one of the most profound mysteries of modern physics. In this talk we present a simplified picture of the main results and discuss briefly the difficulties underlying the dark energy paradigm and some of its possible alternatives. (author)

  13. Interacting polytropic gas model of phantom dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Ghaffari, S.; Fehri, J.

    2009-01-01

    By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for an even polytropic index by choosing K>Ba (3)/(n) , one can obtain ω Λ eff <-1, which corresponds to a universe dominated by phantom dark energy. (orig.)

  14. Dark matter, dark energy, gravitational lensing and the formation of structure in the universe

    International Nuclear Information System (INIS)

    Bernardeau, Francis

    2003-01-01

    The large-scale structure of the universe and its statistical properties can reveal many aspects of the physics of the early universe as well as of its matter content during the cosmic history. Numerous observations, based to a large extent on large-scale structure data, have given us a concordant picture of the energy and matter content in the universe. In view of these results the existence of dark matter has been firmly established although it still evades attempts at direct detection. An even more challenging puzzle is, however, yet to be explained. Indeed the model suggested by the observations is only viable with the presence of a 'dark energy', an ethereal energy associated with the cosmological vacuum, that would represent about two-thirds of the total energy density of the universe. Although strongly indicated by observations, the existence of this component is nonetheless very uncomfortable from a high-energy physics point of view. Its interpretation is a matter of far reaching debates. Indeed, the phenomenological manifestation of this component can be viewed as a geometrical property of large-scale gravity, or as the energy associated with the quantum field vacuum, or else as the manifestation of a new sort of cosmic fluid that would fill space and remain unclustered. Low redshift detailed examinations of the geometrical or clustering properties of the universe should in all cases help clarify the true nature of the dark energy. We present methods that can be used in the future for exploring the low redshift physical properties of the universe. Particular emphasis will be placed on the use of large-scale structure surveys and more specifically on weak lensing surveys that promise to be extremely powerful in exploring the large-scale mass distribution in the universe

  15. Dark Energy and the Fate of the Universe

    Science.gov (United States)

    Linde, A.

    2002-12-01

    The present stage of acceleration of the universe may continue forever. However, we have found a broad class of theories of dark energy that lead to a global collapse of the universe 10-30 billion years from now. I will discuss the possibility to find our destiny using cosmological observations.

  16. Dark matter and dark energy: The critical questions

    International Nuclear Information System (INIS)

    Michael S. Turner

    2002-01-01

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% ± 1% baryons; 29% ± 4% cold dark matter; and 66% ± 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up

  17. Pilgrim dark energy with apparent and event horizons in non-flat universe

    International Nuclear Information System (INIS)

    Sharif, M.; Jawad, Abdul

    2013-01-01

    Pilgrim dark energy is an interesting proposal which is based on the conjecture that phantom-like dark energy with strong enough repulsive force can prevent the formation of a black hole. We investigate this conjecture by assuming the apparent and event horizons in non-flat universe and we develop different cosmological parameters. We construct the corresponding equation of state parameter, which indicates that its present values lie in the phantom era of the universe for different ranges of μ (pilgrim dark energy parameter) as well as ξ 2 (interacting parameter). It is interesting to mention here that the pilgrim dark energy with event horizon yields a phantom region for all cases of ξ 2 with μ Λ - ω' Λ plane and explore the thawing as well as freezing region and ΛCDM limit for these models. The statefinders plane is also constructed, which shows the correspondence with different models such as quintessence and phantom dark energy, ΛCDM and Chaplygin gas. Finally, we investigate the validity of the generalized second law of thermodynamics with event horizon in a flat as well as non-flat universe. (orig.)

  18. Coupling q-Deformed Dark Energy to Dark Matter

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.

  19. Coupled dark matter-dark energy in light of near universe observations

    International Nuclear Information System (INIS)

    Honorez, Laura Lopez; Reid, Beth A.; Verde, Licia; Jimenez, Raul; Mena, Olga

    2010-01-01

    Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified — and thus can be probed by a combination of tests for the expansion history and the growth of structure —, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inconsistency between reconstructed expansion history and growth may not uniquely indicate deviations from GR. Our low redshift constraints arise from cosmic velocities, redshift space distortions and dark matter abundance in galaxy voids. We find that current data constrain the dimensionless coupling to be |ξ| < 0.2, but prospects from forthcoming data are for a significant improvement. Future, precise measurements of the Hubble constant, combined with high-precision constraints on the growth of structure, could provide the key to rule out dark coupling models which survive other tests. We shall exploit as well weak equivalence principle violation arguments, which have the potential to highly disfavour a broad family of coupled models

  20. Metastable dark energy

    Directory of Open Access Journals (Sweden)

    Ricardo G. Landim

    2017-01-01

    Full Text Available We build a model of metastable dark energy, in which the observed vacuum energy is the value of the scalar potential at the false vacuum. The scalar potential is given by a sum of even self-interactions up to order six. The deviation from the Minkowski vacuum is due to a term suppressed by the Planck scale. The decay time of the metastable vacuum can easily accommodate a mean life time compatible with the age of the universe. The metastable dark energy is also embedded into a model with SU(2R symmetry. The dark energy doublet and the dark matter doublet naturally interact with each other. A three-body decay of the dark energy particle into (cold and warm dark matter can be as long as large fraction of the age of the universe, if the mediator is massive enough, the lower bound being at intermediate energy level some orders below the grand unification scale. Such a decay shows a different form of interaction between dark matter and dark energy, and the model opens a new window to investigate the dark sector from the point-of-view of particle physics.

  1. Dark energy and dark matter

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    2003-01-01

    It is a puzzle why the densities of dark matter and dark energy are nearly equal today when they scale so differently during the expansion of the universe. This conundrum may be solved if there is a coupling between the two dark sectors. In this Letter we assume that dark matter is made of cold relics with masses depending exponentially on the scalar field associated to dark energy. Since the dynamics of the system is dominated by an attractor solution, the dark matter particle mass is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy become a constant at late times and one readily realizes that the present-day dark matter abundance is not very sensitive to its value when dark matter particles decouple from the thermal bath. We show that the dependence of the present abundance of cold dark matter on the parameters of the model differs drastically from the familiar results where no connection between dark energy and dark matter is present. In particular, we analyze the case in which the cold dark matter particle is the lightest supersymmetric particle

  2. Supergravity, Dark Energy and the Fate of the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2002-09-27

    We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M-theory with non-compact internal spaces. Masses of ultra-light scalars in these models are quantized in units of the Hubble constant: m{sup 2} = nH{sup 2}. If dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N = 8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N = 1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t = O(10{sup 10}) years. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.

  3. Imprints of dark energy on the structuring of the universe

    International Nuclear Information System (INIS)

    Bouillot, V.

    2012-01-01

    This thesis is dedicated to the research of specific imprints of Dark Energy in both linear and non-linear gravitational collapse processes through theoretical and numerical developments. Indeed, many aspects of cosmology has been tackled: first, to study the influence of various complex Dark Energy models on the halo clustering, we develop in a covariant formalism the usual linear cosmological perturbation theory. It gives an extent of the classical Sasaki-Mukhanov equations to scalar fields coupled with multiple cosmological fluids. The result is the description of the evolution of linear perturbations of complex Dark Energy models with a minimal number of degrees of freedom. In the last decade, the number and quality of cosmological observations on the matter distribution in the Universe as well on the velocity fields have increased exponentially. In particular, recent measurements show the existence of abnormally high velocity fields with respect to the linear theory in ΛCDM. The explanation of this cosmic flow excess at intermediate scales is the main contribution of this thesis: reinterpreting the anomalous cosmic flow (Watkins et al.) measured at scales ∼ 50 Mpc/h as a rare event realization in linear theory, we propose a new cosmological probe. This probe uses the scale of convergence of the measured cosmic flow with the theoretical one. We develop the sensibility on this new cosmological probe in three competitive Dark Energy models. Those results, based on analytical methods, are compared with measures issued from state-of-the-art numerical simulations we are deeply involved in. Then, starting from those numerical simulations, we investigate the dynamical origin of such a cosmic flow: we prove this movement to be due to an asymmetry of the three-dimensional matter distribution at higher scales (∼ 80 Mpc/h). This asymmetry is shown by introducing an original estimator of the matter field, which quantify the deviation from symmetry of a given field

  4. Unified dark energy-dark matter model with inverse quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  5. Unified dark energy-dark matter model with inverse quintessence

    International Nuclear Information System (INIS)

    Ansoldi, Stefano; Guendelman, Eduardo I.

    2013-01-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future

  6. Dark energy: myths and reality

    International Nuclear Information System (INIS)

    Lukash, V N; Rubakov, V A

    2008-01-01

    We discuss the questions related to dark energy in the Universe. We note that in spite of the effect of dark energy, large-scale structure is still being generated in the Universe and this will continue for about ten billion years. We also comment on some statements in the paper 'Dark energy and universal antigravitation' by A D Chernin, Physics-Uspekhi 51 (3) (2008). (physics of our days)

  7. Model of a multiverse providing the dark energy of our universe

    Science.gov (United States)

    Rebhan, E.

    2017-09-01

    It is shown that the dark energy presently observed in our universe can be regarded as the energy of a scalar field driving an inflation-like expansion of a multiverse with ours being a subuniverse among other parallel universes. A simple model of this multiverse is elaborated: Assuming closed space geometry, the origin of the multiverse can be explained by quantum tunneling from nothing; subuniverses are supposed to emerge from local fluctuations of separate inflation fields. The standard concept of tunneling from nothing is extended to the effect that in addition to an inflationary scalar field, matter is also generated, and that the tunneling leads to an (unstable) equilibrium state. The cosmological principle is assumed to pertain from the origin of the multiverse until the first subuniverses emerge. With increasing age of the multiverse, its spatial curvature decays exponentially so fast that, due to sharing the same space, the flatness problem of our universe resolves by itself. The dark energy density imprinted by the multiverse on our universe is time-dependent, but such that the ratio w = ϱ/(c2p) of its mass density and pressure (times c2) is time-independent and assumes a value - 1 + 𝜖 with arbitrary 𝜖 > 0. 𝜖 can be chosen so small, that the dark energy model of this paper can be fitted to the current observational data as well as the cosmological constant model.

  8. Dark Energy and Structure Formation

    International Nuclear Information System (INIS)

    Singh, Anupam

    2010-01-01

    We study the gravitational dynamics of dark energy configurations. We report on the time evolution of the dark energy field configurations as well as the time evolution of the energy density to demonstrate the gravitational collapse of dark energy field configurations. We live in a Universe which is dominated by Dark Energy. According to current estimates about 75% of the Energy Density is in the form of Dark Energy. Thus when we consider gravitational dynamics and Structure Formation we expect Dark Energy to play an important role. The most promising candidate for dark energy is the energy density of fields in curved space-time. It therefore become a pressing need to understand the gravitational dynamics of dark energy field configurations. We develop and describe the formalism to study the gravitational collapse of fields given any general potential for the fields. We apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting evolution equations which determine the time evolution of field configurations as well as the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our universe.

  9. The dark side of cosmology: dark matter and dark energy.

    Science.gov (United States)

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  10. Weak lensing: Dark Matter, Dark Energy and Dark Gravity

    International Nuclear Information System (INIS)

    Heavens, Alan

    2009-01-01

    In this non-specialist review I look at how weak lensing can provide information on the dark sector of the Universe. The review concentrates on what can be learned about Dark Matter, Dark Energy and Dark Gravity, and why. On Dark Matter, results on the confrontation of theoretical profiles with observation are reviewed, and measurements of neutrino masses discussed. On Dark Energy, the interest is whether this could be Einstein's cosmological constant, and prospects for high-precision studies of the equation of state are considered. On Dark Gravity, we consider the exciting prospects for future weak lensing surveys to distinguish General Relativity from extra-dimensional or other gravity theories.

  11. Holographic dark energy interacting with dark matter in a closed Universe

    International Nuclear Information System (INIS)

    Cruz, Norman; Lepe, Samuel; Pena, Francisco; Saavedra, Joel

    2008-01-01

    A cosmological model of an holographic dark energy interacting with dark matter throughout a decaying term of the form Q=3(λ 1 ρ DE +λ 2 ρ m )H is investigated. General constraint on the parameters of the model are found when accelerated expansion is imposed and we found a phantom scenario, without any reference to a specific equation of state for the dark energy. The behavior of equation of state for dark energy is also discussed

  12. Common origin of visible and dark universe

    International Nuclear Information System (INIS)

    Gu Peihong; Sarkar, Utpal

    2010-01-01

    Dark matter, baryonic matter, and dark energy have different properties but contribute comparable energy density to the present Universe. We point out that they may have a common origin. As the dark energy has a scale far lower than all known scales in particle physics but very close to neutrino masses, while the excess matter over antimatter in the baryonic sector is probably related to the neutrino-mass generation, we unify the origin of the dark and visible universe in a variant of the seesaw model. In our model (i) the dark matter relic density is a dark matter asymmetry emerged simultaneously with the baryon asymmetry from leptogenesis; (ii) the dark energy is due to a pseudo-Nambu-Goldstone-Boson associated with the neutrino-mass generation.

  13. Static Universe model existing due to the matter-dark energy coupling

    International Nuclear Information System (INIS)

    Cabo Bizet, A.; Cabo Montes de Oca, A.

    2007-08-01

    The work investigates a static, isotropic and almost homogeneous Universe containing a real scalar field modeling the Dark-Energy (quintaessence) interacting with pressureless matter. It is argued that the interaction between matter and the Dark Energy, is essential for the very existence of the considered solution. Assuming the possibility that Dark-Energy can be furnished by the Dilaton (a scalar field reflecting the condensation of string states with zero angular momentum) we fix the value of scalar field at the origin to the Planck scale. It became possible to fix the ratio of the amount of Dark Energy to matter energy, in the currently estimated value (0.7)/0.3 and also the observed magnitude of the Hubble constant. The small value of the mass for the scalar field chosen for fixing the above ratio and Hubble effect strength, results to be of the order of 10 -29 cm -1 , a small value which seems to be compatible with the zero mass of the Dilaton in the lowest approximations. (author)

  14. Holographic dark energy interacting with dark matter in a closed Universe

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile); Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D Temuco (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl

    2008-11-27

    A cosmological model of an holographic dark energy interacting with dark matter throughout a decaying term of the form Q=3({lambda}{sub 1}{rho}{sub DE}+{lambda}{sub 2}{rho}{sub m})H is investigated. General constraint on the parameters of the model are found when accelerated expansion is imposed and we found a phantom scenario, without any reference to a specific equation of state for the dark energy. The behavior of equation of state for dark energy is also discussed.

  15. On Dark Energy and Matter of the Expanding Universe

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2009-04-01

    Full Text Available At present the expanding universe is observed to be dominated by the not fully under- stood concepts of dark energy and matter, in a conceived almost flat Euclidian geometry. As one of the possible efforts to understand the global behaviour of the expanding uni- verse, the present paper attempts to explain these concepts in terms of the pressure force and gravity of a spherical photon gas cloud of zero point energy, in a flat geometry. A difficult point of the conventional theory concerns the frequency distribution of the zero point energy oscillations which leads to the unacceptable result of an infinite total en- ergy per unit volume. A modification of this distribution is therefore proposed which results in finite energy density. A corresponding equilibrium state is investigated, as well as small dynamic deviations from it, to form a basis for a model of the expanding universe. Provided that the crucial points of the present approach hold true, the model satisfies the requirements of cosmic linear dimensions, results in an estimated accelera- tion of the expansion being of the order of the observed one, presents a possible solution of the coincidence problem of dark energy and matter, and provides one of the possible explanations of the observed excess of high-energy electrons and positrons in recent balloon and satellite experiments.

  16. Quadratic interaction effect on the dark energy density in the universe

    International Nuclear Information System (INIS)

    Deveci, Derya G; Aydiner, Ekrem

    2017-01-01

    In this study, we deal with the holographic model of interacting dark components of dark energy and dark matter quadratic case of the equation of state parameter (EoS). The effective equations of states for the interacting holographic energy density are derived and the results are analyzed and compared with the solution of the linear form in the literature. The result of our work shows that the value of interaction term between dark components affects the fixed points at far future in the DE-dominated universe in the case of quadratic EoS parameter; it is a different result from the linear case in the theoretical results in the literature, and as the Quintom scenario the equations of state had coincidence at the cosmological constant boundary of –1 from above to below. (paper)

  17. Interactions between dark energy and dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Marco

    2009-03-20

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter

  18. Interactions between dark energy and dark matter

    International Nuclear Information System (INIS)

    Baldi, Marco

    2009-01-01

    We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with Λ CDM . Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the Λ CDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios

  19. Unified Description of Dark Energy and Dark Matter

    OpenAIRE

    Petry, Walter

    2008-01-01

    Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...

  20. The Dark Universe Through Einstein's Lens

    Energy Technology Data Exchange (ETDEWEB)

    Bard, Deborah [SLAC; Kavli Institute for Particle Astrophysics and Cosmology

    2013-07-23

    Bard's talk explains the phenomenon known as gravitational lensing and how astrophysicists use it to explore the 95 percent of the universe that remains unseen: dark matter and dark energy. One of the most surprising predictions made by Einstein's theory of relativity is that light doesn't travel through the universe in a straight line. The gravitational field of massive objects will deflect the path of light traveling past, giving some very dramatic effects. We see multiple images of quasars, galaxies smeared into arcs and circles and magnified images of the most distant objects in the universe. This explains how gravitational lensing was first observed and discusses how scientists use this phenomenon to study everything from exoplanets to dark matter to the structure of the universe and the mysterious dark energy.

  1. Dark Side of the Universe

    CERN Document Server

    2016-01-01

    The Dark Side of the Universe (DSU) workshops bring together a wide range of theorists and experimentalists to discuss current ideas on models of the dark side, and relate them to current and future experiments. This year's DSU will take place in the colorful Norwegian city of Bergen. Topics include dark matter, dark energy, cosmology, and physics beyond the standard model. One of the goals of the workshop is to expose in particular students and young researchers to the fascinating topics of dark matter and dark energy, and to provide them with the opportunity to meet some of the best researchers in these areas .

  2. Dark Energy in Practice

    CERN Document Server

    Sapone, Domenico

    2010-01-01

    In this paper we review a part of the approaches that have been considered to explain the extraordinary discovery of the late time acceleration of the Universe. We discuss the arguments that have led physicists and astronomers to accept dark energy as the current preferable candidate to explain the acceleration. We highlight the problems and the attempts to overcome the difficulties related to such a component. We also consider alternative theories capable of explaining the acceleration of the Universe, such as modification of gravity. We compare the two approaches and point out the observational consequences, reaching the sad but foresightful conclusion that we will not be able to distinguish between a Universe filled by dark energy or a Universe where gravity is different from General Relativity. We review the present observations and discuss the future experiments that will help us to learn more about our Universe. This is not intended to be a complete list of all the dark energy models but this paper shou...

  3. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  4. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  5. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  6. Kinetic k-essence ghost dark energy model

    International Nuclear Information System (INIS)

    Rozas-Fernández, Alberto

    2012-01-01

    A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the Universe. In this model, the energy density of ghost dark energy, which comes from the Veneziano ghost of QCD, is proportional to the Hubble parameter, ρ D =αH. Here α is a constant of order Λ QCD 3 where Λ QCD ∼100 MeV is the QCD mass scale. We consider a connection between ghost dark energy with/without interaction between the components of the dark sector and the kinetic k-essence field. It is shown that the cosmological evolution of the ghost dark energy dominated Universe can be completely described a kinetic k-essence scalar field. We reconstruct the kinetic k-essence function F(X) in a flat Friedmann-Robertson-Walker Universe according to the evolution of ghost dark energy density.

  7. Supernovae, dark energy and the accelerating universe

    CERN Multimedia

    Perlmutter, Saul

    1999-01-01

    Based on an analysis of 42 high-redshift supernovae discovered by the supernovae cosmology project, we have found evidence for a positive cosmological constant, Lambda, and hence an accelerating universe. In particular, the data are strongly inconsistent with a Lambda=0 flat cosmology, the simplest inflationary universe model. The size of our supernova sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We will discuss results of these and other studies and the ongoing hunt for further loopholes to evade the apparent consequences of the measurements. We will present further work that begins to constrain the alternative physics theories of "dark energy" that have been proposed to explain these results. Finally, we propose a new concept for a definitive supernova measurement of the cosmological parameters.

  8. Dark cosmos in search of our universe's missing mass and energy

    CERN Document Server

    Hooper, Dan

    2007-01-01

    Everyone knows that there are things no one can see, for example, the air you're breathing or a black hole, to be more exotic. But not everyone knows that what we can see makes up only 5 percent of the Universe. The rest is totally invisible to us. The invisible stuff comes in two varieties—dark matter and dark energy. One holds the Universe together while the other tears it apart. What these forces really are has been a mystery for as long as anyone has suspected they were there, but the latest discoveries of experimental physics have brought us closer to that knowledge. Particle physicist Dan Hooper takes his readers, with wit, grace, and a keen knack for explaining the toughest ideas science has to offer, on a quest few would ever have expected: to discover what makes up our dark cosmos.

  9. Bianchi Type-I Universe with wet dark fluid

    Indian Academy of Sciences (India)

    Bianchi-type Universe; wet dark fluid; cosmological parameters. Abstract. The Bianchi Type-I Universe filled with dark energy from a wet dark fluid has been considered. A new equation of ... Pramana – Journal of Physics | News. © 2017 Indian ...

  10. Investigating Dark Energy with Black Hole Binaries

    International Nuclear Information System (INIS)

    Mersini-Houghton, Laura; Kelleher, Adam

    2009-01-01

    The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accrete dark energy. The accretion induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state w[z] of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. This talk describes how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy.

  11. Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?

    OpenAIRE

    Arbey, A.

    2008-01-01

    The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...

  12. The role of dark energy in the evolution of the universe

    CSIR Research Space (South Africa)

    Greben, JM

    2012-10-01

    Full Text Available - expanding universe. In lowest order this expansion remains linear in the presence of matter and radiation, so that the proportions of dark energy and matter are not fixed strongly by the supernovae data and must be deduced from other astronomical data. One...

  13. Entropy in the Present and Early Universe: New Small Parameters and Dark Energy Problem

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2010-04-01

    Full Text Available It is demonstrated that entropy and its density play a significant role in solving the problem of the vacuum energy density (cosmological constant of the Universe and hence the dark energy problem. Taking this in mind, two most popular models for dark energy—Holographic Dark Energy Model and Agegraphic Dark Energy Model—are analysed. It is shown that the fundamental quantities in the first of these models may be expressed in terms of a new small dimensionless parameter that is naturally occurring in High Energy Gravitational Thermodynamics and Gravitational Holography (UV-limit. On this basis, the possibility of a new approach to the problem of Quantum Gravity is discussed. Besides, the results obtained on the uncertainty relation of the pair “cosmological constant–volume of space-time”, where the cosmological constant is a dynamic quantity, are reconsidered and generalized up to the Generalized Uncertainty Relation.

  14. Agegraphic dark energy as a quintessence

    International Nuclear Information System (INIS)

    Zhang, Jingfei; Liu, Hongya; Zhang, Xin

    2008-01-01

    Recently, a dark energy model characterized by the age of the universe, dubbed ''agegraphic dark energy'', was proposed by Cai. In this paper, a connection between the quintessence scalar-field and the agegraphic dark energy is established, and accordingly, the potential of the agegraphic quintessence field is constructed. (orig.)

  15. Cosmological anisotropy from non-comoving dark matter and dark energy

    International Nuclear Information System (INIS)

    Harko, Tiberiu; Lobo, Francisco S. N.

    2013-01-01

    We consider a cosmological model in which the two major fluid components of the Universe, dark energy and dark matter, flow with distinct four-velocities. This cosmological configuration is equivalent to a single anisotropic fluid, expanding with a four-velocity that is an appropriate combination of the two fluid four-velocities. The energy density of the single cosmological fluid is larger than the sum of the energy densities of the two perfect fluids, i.e., dark energy and dark matter, respectively, and contains a correction term due to the anisotropy generated by the differences in the four-velocities. Furthermore, the gravitational field equations of the two-fluid anisotropic cosmological model are obtained for a Bianchi type I geometry. By assuming that the non-comoving motion of the dark energy and dark matter induces small perturbations in the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker type cosmological background, and that the anisotropy parameter is small, the equations of the cosmological perturbations due to the non-comoving nature of the two major components are obtained. The time evolution of the metric perturbations is explicitly obtained for the cases of the exponential and power law background cosmological expansion. The imprints of a non-comoving dark energy - dark matter on the Cosmic Microwave Background and on the luminosity distance are briefly discussed, and the temperature anisotropies and the quadrupole are explicitly obtained in terms of the metric perturbations of the flat background metric. Therefore, if there is a slight difference between the four-velocities of the dark energy and dark matter, the Universe would acquire some anisotropic characteristics, and its geometry will deviate from the standard FLRW one. In fact, the recent Planck results show that the presence of an intrinsic large scale anisotropy in the Universe cannot be excluded a priori, so that the model presented in this work can be considered as a

  16. From asymptotic safety to dark energy

    International Nuclear Information System (INIS)

    Ahn, Changrim; Kim, Chanju; Linder, Eric V.

    2011-01-01

    We consider renormalization group flow applied to the cosmological dynamical equations. A consistency condition arising from energy-momentum conservation links the flow parameters to the cosmological evolution, restricting possible behaviors. Three classes of cosmological fixed points for dark energy plus a barotropic fluid are found: a dark energy dominated universe, which can be either accelerating or decelerating depending on the RG flow parameters, a barotropic dominated universe where dark energy fades away, and solutions where the gravitational and potential couplings cease to flow. If the IR fixed point coincides with the asymptotically safe UV fixed point then the dark energy pressure vanishes in the first class, while (only) in the de Sitter limit of the third class the RG cutoff scale becomes the Hubble scale.

  17. Why No Dark Energy, No Big Bang, But A Likely Fractal Universe?

    Science.gov (United States)

    Mitra, Abhas

    Recently, it has been shown that the "Big Bang Model" (BBM) actually corresponds to zero pressure and zero temperature (Mitra, Astr. Sp. Sc., 333, 351, 2011). Thus BBM cannot explain the observed universe having radiation and pressure. Consequently, the very idea of a "Dark Energy" resulting from the attempt of explaining the observed universe by BBM gets invalidated. Also, the fact that the BBM badly violates the principle of energy conservation independently suggests that it is physically unacceptable (Mitra, Gen. Rel. Grav. 42, 443 2010). To confirm this, we consider the transformation of vacuum de-Sitter metric from comoving coordinates to original Schwarzschild coordinates. Since the proper space-time volume must remain invariant for all such coordinate transformations, it is found cosmological constant Λ = 0; implying no dark energy. It is pointed out that, recent observations have (actually) shown that observed universe has a fractal structure upto largest observed scale with D˜2.2. Thus the universe is likely to be infinite hierarchial fractal rather than any smooth distribution of matter presumed by BBM. It is pointed out that the observed microwave background radiation may be explained as superposition of gravitationally red-shifted quiescent thermal radiation from the photosphere of the so-called black hole candidates.

  18. Dark energy interacting with two fluids

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)], E-mail: slepe@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D Temuco (Chile)], E-mail: fcampos@ufro.cl

    2008-05-29

    A cosmological model of dark energy interacting with dark matter and another general component of the universe is investigated. We found general constraints on these models imposing an accelerated expansion. The same is also studied in the case for holographic dark energy.

  19. Thermodynamical properties of dark energy

    International Nuclear Information System (INIS)

    Gong Yungui; Wang Bin; Wang Anzhong

    2007-01-01

    We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature T∼a -n and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation, and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously

  20. Black Hole Universe Model and Dark Energy

    Science.gov (United States)

    Zhang, Tianxi

    2011-01-01

    Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.

  1. The dark components of the Universe are slowly clarified

    Energy Technology Data Exchange (ETDEWEB)

    Burdyuzha, V. V., E-mail: burdyuzh@asc.rssi.ru [Russian Academy of Sciences, Astro-Space Center, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a “crisis” before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10{sup —5}–10{sup –3} eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was “repeated” by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.

  2. The dark components of the Universe are slowly clarified

    International Nuclear Information System (INIS)

    Burdyuzha, V. V.

    2017-01-01

    The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a “crisis” before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10"—"5–10"–"3 eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was “repeated” by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.

  3. The dark components of the Universe are slowly clarified

    Science.gov (United States)

    Burdyuzha, V. V.

    2017-02-01

    The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a "crisis" before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10—5-10-3 eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was "repeated" by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.

  4. Dark Energy. What the ...?

    Energy Technology Data Exchange (ETDEWEB)

    Wechsler, Risa

    2007-10-30

    What is the Universe made of? This question has been asked as long as humans have been questioning, and astronomers and physicists are finally converging on an answer. The picture which has emerged from numerous complementary observations over the past decade is a surprising one: most of the matter in the Universe isn't visible, and most of the Universe isn't even made of matter. In this talk, I will explain what the rest of this stuff, known as 'Dark Energy' is, how it is related to the so-called 'Dark Matter', how it impacts the evolution of the Universe, and how we can study the dark universe using observations of light from current and future telescopes.

  5. On the geometry of dark energy

    International Nuclear Information System (INIS)

    Maia, M D; Monte, E M; Maia, J M F; Alcaniz, J S

    2005-01-01

    Experimental evidence suggests that we live in a spatially flat, accelerating universe composed of roughly one-third of matter (baryonic + dark) and two-thirds of a negative-pressure dark component, generically called dark energy. The presence of such energy not only explains the observed accelerating expansion of the universe but also provides the remaining piece of information connecting the inflationary flatness prediction with astronomical observations. However, despite its good observational indications, the nature of dark energy still remains an open question. In this paper we explore a geometrical explanation for such a component within the context of braneworld theory without mirror symmetry, leading to a geometrical interpretation for dark energy as a warp in the universe given by the extrinsic curvature. In particular, we study the phenomenological implications of the extrinsic curvature of a Friedmann-Robertson-Walker universe in a five-dimensional constant curvature bulk, with signatures (4,1) or (3,2), as compared with the x-matter (XCDM) model. From the analysis of the geometrically modified Friedmann's equations, the deceleration parameter and the weak energy condition, we find a consistent agreement with the presently known observational data on inflation for the de Sitter bulk, but not for the anti-de Sitter case

  6. Holographic dark energy in the DGP model

    International Nuclear Information System (INIS)

    Cruz, Norman; Lepe, Samuel; Pena, Francisco; Avelino, Arturo

    2012-01-01

    The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: ε=±1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)

  7. Holographic dark energy in the DGP model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Facultad de Ciencias, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile); Avelino, Arturo [Universidad de Guanajuato, Departamento de Fisica, DCI, Codigo Postal 37150, Leon, Guanajuato (Mexico)

    2012-09-15

    The braneworld model proposed by Dvali, Gabadadze, and Porrati leads to an accelerated universe without cosmological constant or any other form of dark energy. Nevertheless, we have investigated the consequences of this model when an holographic dark energy is included, taking the Hubble scale as IR cutoff. We have found that the holographic dark energy leads to an accelerated flat universe (de Sitter-like expansion) for the two branches: {epsilon}={+-}1, of the DGP model. Nevertheless, in universes with no null curvature the dark energy presents an EoS corresponding to a phantom fluid during the present era and evolving to a de Sitter-like phase for future cosmic time. In the special case in which the holographic parameter c is equal to one we have found a sudden singularity in closed universes. In this case the expansion is decelerating. (orig.)

  8. Quantum mechanical theory behind "dark energy"?

    CERN Multimedia

    Colin Johnson, R

    2007-01-01

    "The mysterious increase in the acceleration of the universe, when intuition says it should be slowing down, is postulated to be caused by dark energy - "dark" because it is undetected. Now a group of scientists in the international collaboration Essence has suggested that a quantum mechanical interpretation of Einstein's proposed "cosmological constant" is the simplest explanation for dark energy. The group measured dark energy to within 10 percent." (1,5 page)

  9. A Possible Interpretation of Dark Energy and Matter of the Expanding Universe

    International Nuclear Information System (INIS)

    Lehnert, B.

    2009-01-01

    At present the expanding universe is observed to be dominated by the not fully understood concepts of dark energy and matter, in a conceived almost flat Euclidian geometry. As one of the possible efforts to understand its global behaviour, the present paper attempts to explain these concepts in terms of the pressure force and gravity of a spherical photon gas cloud of zero point energy, in flat geometry. A difficult point concerns the frequency distribution of the zero point energy oscillations which leads to the unacceptable result of an infinite total energy. A modification of this distribution is therefore proposed which results in finite energy density. A corresponding equilibrium is investigated, as well as small dynamic deviations from it, to form a basis for a model of the expanding universe. Provided that the crucial points of the present approach hold true, the model satisfies the requirements of cosmic linear dimensions, results in an estimated acceleration of the expansion being of the order of the observed one, presents a possible solution of the coincidence problem of dark energy and matter, and provides one of the possible explanations of the observed excess of high-energy electrons and positrons in recent balloon and satellite experiments.

  10. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  11. Interacting dark energy and the expansion of the universe

    CERN Document Server

    Silbergleit, Alexander S

    2017-01-01

    This book presents a high-level study of cosmology with interacting dark energy and no additional fields. It is known that dark energy is not necessarily uniform when other sources of gravity are present: interaction with matter leads to its variation in space and time. The present text studies the cosmological implications of this circumstance by analyzing cosmological models in which the dark energy density interacts with matter and thus changes with the time. The book also includes a translation of a seminal article about the remarkable life and work of E.B. Gliner, the first person to suggest the concept of dark energy in 1965.

  12. Dark energy and dark matter in galaxy halos

    International Nuclear Information System (INIS)

    Tetradis, N.

    2006-01-01

    We consider the possibility that the dark matter is coupled through its mass to a scalar field associated with the dark energy of the Universe. In order for such a field to play a role at the present cosmological distances, it must be effectively massless at galactic length scales. We discuss the effect of the field on the distribution of dark matter in galaxy halos. We show that the profile of the distribution outside the galaxy core remains largely unaffected and the approximately flat rotation curves persist. The dispersion of the dark matter velocity is enhanced by a potentially large factor relative to the case of zero coupling between dark energy and dark matter. The counting rates in terrestrial dark matter detectors are similarly enhanced. Existing bounds on the properties of dark matter candidates can be extended to the coupled case, by taking into account the enhancement factor

  13. Origin of holographic dark energy models

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Seo, Min-Gyun

    2009-01-01

    We investigate the origin of holographic dark energy models which were recently proposed to explain the dark energy-dominated universe. For this purpose, we introduce the spacetime foam uncertainty of δl≥l p α l α-1 . It was argued that the case of α=2/3 could describe the dark energy with infinite statistics, while the case of α=1/2 can describe the ordinary matter with Bose-Fermi statistics. However, two cases may lead to the holographic energy density if the latter recovers from the geometric mean of UV and IR scales. Hence the dark energy with infinite statistics based on the entropy bound is not an ingredient for deriving the holographic dark energy model. Furthermore, it is shown that the agegraphic dark energy models are the holographic dark energy model with different IR length scales

  14. Ricci-Gauss-Bonnet holographic dark energy

    Science.gov (United States)

    Saridakis, Emmanuel N.

    2018-03-01

    We present a model of holographic dark energy in which the infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the infrared cutoff, and consequently the holographic dark energy density, does not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. We extract analytical solutions for the behavior of the dark energy density and equation-of-state parameters as functions of the redshift. These reveal the usual thermal history of the universe, with the sequence of radiation, matter and dark energy epochs, resulting in the future to a complete dark energy domination. The corresponding dark energy equation-of-state parameter can lie in the quintessence or phantom regime, or experience the phantom-divide crossing during the cosmological evolution, and its asymptotic value can be quintessencelike, phantomlike, or be exactly equal to the cosmological-constant value. Finally, we extract the constraints on the model parameters that arise from big bang nucleosynthesis.

  15. Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass

    Science.gov (United States)

    Gorkavyi, N.

    2005-12-01

    Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).

  16. Dark energy two decades after: observables, probes, consistency tests.

    Science.gov (United States)

    Huterer, Dragan; Shafer, Daniel L

    2018-01-01

    The discovery of the accelerating universe in the late 1990s was a watershed moment in modern cosmology, as it indicated the presence of a fundamentally new, dominant contribution to the energy budget of the universe. Evidence for dark energy, the new component that causes the acceleration, has since become extremely strong, owing to an impressive variety of increasingly precise measurements of the expansion history and the growth of structure in the universe. Still, one of the central challenges of modern cosmology is to shed light on the physical mechanism behind the accelerating universe. In this review, we briefly summarize the developments that led to the discovery of dark energy. Next, we discuss the parametric descriptions of dark energy and the cosmological tests that allow us to better understand its nature. We then review the cosmological probes of dark energy. For each probe, we briefly discuss the physics behind it and its prospects for measuring dark energy properties. We end with a summary of the current status of dark energy research.

  17. Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch

    International Nuclear Information System (INIS)

    Piattella, O.F.; Martins, D.L.A.; Casarini, L.

    2014-01-01

    We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100

  18. 10th Symposium on Sources and Detection of Dark Matter and Dark Energy in the Universe

    CERN Document Server

    UCLA Dark Matter 2012

    2012-01-01

    These proceedings provide the latest results on dark matter and dark energy research. The UCLA Department of Physics and Astronomy hosted its tenth Dark Matter and Dark Energy conference in Marina del Rey and brought together all the leaders in the field. The symposium provided a scientific forum for the latest discussions in the field.  Topics covered at the symposium:  •Status of measurements of the equation of state of dark energy and new experiments •The search for missing energy events at the LHC and implications for dark matter search •Theoretical calculations on all forms of dark matter (SUSY, axions, sterile neutrinos, etc.) •Status of the indirect search for dark matter •Status of the direct search for dark matter in detectors around the world •The low-mass wimp search region •The next generation of very large dark matter detectors •New underground laboratories for dark matter search  

  19. Exploring the dark side of the Universe

    International Nuclear Information System (INIS)

    Das, Mala

    2014-01-01

    Astronomical observations show that about 95% of the energy density of the Universe cannot be accounted for in terms of mass and energy of which about 26.8% is considered to be dark matter. The detection of this dark matter is one of the major and interesting unsolved problems in Physics. There are many experiments running worldwide at different underground laboratories for the direct detection of dark matter, mainly WIMPs (Weakly Interacting Massive Particles), the most favoured candidate of dark matter. Direct detection experiments expect to detect the dark matter directly by measuring the small energy imparted to recoil nuclei in occasional dark matter interactions with detector, stationed at earth's laboratory. In the subsequent sections, the challenges of such experiments are discussed followed by the details on PICASSO/PICO dark matter search experiment at SNO Lab, activities related to this experiment at SINP and the future direction of dark matter experiments

  20. Academic Training Lecture Regular Programme: Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3)

    CERN Multimedia

    2012-01-01

    Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3), by Dr. Edward (Rocky) Kolb (University of Chicago).   Wednesday, May 9, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 500-1-001 - Main Auditorium ) Ninety-five percent of the present mass-energy density of the Universe is dark.  Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universeDark matter and dark energy cannot be explained within the standard model of particle physics.  In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter.  I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis.  Finally, I will discus...

  1. Cosmological acceleration. Dark energy or modified gravity?

    International Nuclear Information System (INIS)

    Bludman, S.

    2006-05-01

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  2. Cosmological acceleration. Dark energy or modified gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Bludman, S

    2006-05-15

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  3. Report of the Dark Energy Task Force

    Science.gov (United States)

    Albrecht, Andreas; Bernstein, Gary; Cahn, Robert; Freedman, Wendy L.; Hewitt, Jacqueline; Hu, Wayne; Huth, John; Kamionkowski, Marc; Kolb, Edward W.; Knox, Lloyd; Mather, John C.

    2006-01-01

    Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude. The acceleration of the Universe is, along with dark matter, the observed phenomenon that most directly demonstrates that our theories of fundamental particles and gravity are either incorrect or incomplete. Most experts believe that nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among the very most compelling of all outstanding problems in physical science. These circumstances demand an ambitious observational program to determine the dark energy properties as well as possible.

  4. Analysis of pilgrim dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Jawad, Abdul [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2013-04-15

    The proposal of pilgrim dark energy is based on the idea that phantom dark energy possesses enough resistive force to preclude black hole formation. We work on this proposal by choosing an interacting framework with cold dark matter and three cutoffs such as Hubble as well as event horizon and conformal age of the universe. We present a graphical analysis and focus our study on the pilgrim dark energy as well as interacting parameters. It is found that these parameters play an effective role on the equation of state parameter for exploring the phantom region of the universe. We also make the analysis of {omega}-{omega}' and point out freezing region in the {omega}-{omega}' plane. Finally, it turns out that the {Lambda}CDM is achieved in the statefinders plane for all models. (orig.)

  5. Universe reveals its dark side

    International Nuclear Information System (INIS)

    Araujo, Henrique

    2005-01-01

    Evidence for dark matter is growing, and so are our chances of directly detecting it. It may come as a surprise to many people but 95% of what makes up the universe is still a mystery to scientists. Until very recently, however, we had devoted at least that proportion of our effort to understanding the remaining 5% - the small fraction that seems to be made up of ordinary baryonic matter such as atoms. But most cosmologists now agree that there is five times as much 'dark matter' as ordinary matter. Moreover, the remaining 70% of the universe is thought to consist of an even more mysterious entity called dark energy, which is causing the universe to expand ever more rapidly. Dark matter may be invisible but it ranks among the hottest topics in modern physics. Without it, we cannot explain the gravitational pull that holds galaxies and clusters of galaxies together when they clearly have insufficient mass in the form of stars. This mass discrepancy was noted as long ago as the 1930s, but it is only in the last few years that precision observations of the cosmic microwave background, combined with other cosmological measurements, have allowed physicists to determine the abundance of dark matter more precisely. (U.K.)

  6. Interacting entropy-corrected new agegraphic dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Sorouri, Arash, E-mail: KKarami@uok.ac.i [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2010-08-15

    Here, we consider the entropy-corrected version of the new agegraphic dark energy (NADE) model in the non-flat Friedmann-Robertson-Walker universe. We derive the exact differential equation that determines the evolution of the entropy-corrected NADE density parameter in the presence of interaction with dark matter. We also obtain the equation of state and deceleration parameters and present a necessary condition for the selected model to cross the phantom divide. Moreover, we reconstruct the potential and the dynamics of the phantom scalar field according to the evolutionary behavior of the interacting entropy-corrected new agegraphic model.

  7. A model for dark energy decay

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Elcio, E-mail: eabdalla@usp.br [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo (Brazil); Graef, L.L., E-mail: leilagraef@usp.br [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo (Brazil); Wang, Bin, E-mail: wang_b@sjtu.edu.cn [INPAC and Department of Physics, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2013-11-04

    We discuss a model of nonperturbative decay of dark energy. We suggest the possibility that this model can provide a mechanism from the field theory to realize the energy transfer from dark energy into dark matter, which is the requirement to alleviate the coincidence problem. The advantage of the model is the fact that it accommodates a mean life compatible with the age of the universe. We also argue that supersymmetry is a natural set up, though not essential.

  8. Interacting Dark Matter and q-Deformed Dark Energy Nonminimally Coupled to Gravity

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2016-01-01

    Full Text Available In this paper, we propose a new approach to study the dark sector of the universe by considering the dark energy as an emerging q-deformed bosonic scalar field which is not only interacting with the dark matter, but also nonminimally coupled to gravity, in the framework of standard Einsteinian gravity. In order to analyze the dynamic of the system, we first give the quantum field theoretical description of the q-deformed scalar field dark energy and then construct the action and the dynamical structure of this interacting and nonminimally coupled dark sector. As a second issue, we perform the phase-space analysis of the model to check the reliability of our proposal by searching the stable attractor solutions implying the late-time accelerating expansion phase of the universe.

  9. Leptogenesis, Dark Energy, Dark Matter and the neutrinos

    International Nuclear Information System (INIS)

    Sarkar, Utpal

    2007-01-01

    In this review we discuss how the models of neutrino masses can accommodate solutions to the problem of matter-antimatter asymmetry in the universe, dark energy or cosmological constant problem and dark matter candidates. The matter-antimatter asymmetry is explained by leptogenesis, originating from the lepton number violation associated with the neutrino masses. The dark energy problem is correlated with a mass varying neutrinos, which could originate from a pseudo-Nambu-Goldstone boson. In some radiative models of neutrino masses, there exists a Higgs doublet that does not acquire any vacuum expectation value. This field could be inert and the lightest inert particle could then be a dark matter candidate. We reviewed these scenarios in connection with models of neutrino masses with right-handed neutrinos and with triplet Higgs scalars

  10. Entropy of holographic dark energy and the generalized second law

    International Nuclear Information System (INIS)

    Praseetha, P; Mathew, Titus K

    2014-01-01

    In this paper we have considered holographic dark energy and studied its cosmology and thermodynamics. We have analyzed the generalized second law (GSL) of thermodynamics in a flat universe consisting of interacting dark energy and dark matter. We performed the analysis under both thermal equilibrium and nonequilibrium conditions. If the apparent horizon is taken as the boundary of the universe, we have shown that the rate of change of the total entropy of the universe is proportional to (1+q) 2 , which in fact shows that the GSL is valid at the apparent horizon, irrespective of the sign of the deceleration parameter, q. Hence, for any form of dark energy, the apparent horizon can be considered as a perfect thermodynamic boundary of the universe. We confirmed this conclusion by using the holographic dark energy model. When the event horizon is taken as the boundary, we found that the GSL is only partially satisfied. The analysis under nonequilibrium conditions revealed that the GSL is satisfied if the temperature of the dark energy is greater than the temperature of the dark matter. (paper)

  11. Dark energy: a quantum fossil from the inflationary universe?

    International Nuclear Information System (INIS)

    Sola, Joan

    2008-01-01

    The discovery of dark energy (DE) as the physical cause for the accelerated expansion of the Universe is the most remarkable experimental finding of modern cosmology. However, it leads to insurmountable theoretical difficulties from the point of view of fundamental physics. Inflation, on the other hand, constitutes another crucial ingredient, which seems necessary to solve other cosmological conundrums and provides the primeval quantum seeds for structure formation. One may wonder if there is any deep relationship between these two paradigms. In this work, we suggest that the existence of the DE in the present Universe could be linked to the quantum field theoretical mechanism that may have triggered primordial inflation in the early Universe. This mechanism, based on quantum conformal symmetry, induces a logarithmic, asymptotically free, running of the gravitational coupling. If this evolution persists in the present Universe, and if matter is conserved, the general covariance of Einstein's equations demands the existence of dynamical DE in the form of a running cosmological term, Λ, whose variation follows a power law of the redshift

  12. Consequences of dark matter-dark energy interaction on cosmological parameters derived from type Ia supernova data

    International Nuclear Information System (INIS)

    Amendola, Luca; Campos, Gabriela Camargo; Rosenfeld, Rogerio

    2007-01-01

    Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling δ between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w DE (z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w DE and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy

  13. Dark energy and extended dark matter halos

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  14. Limits on dark radiation, early dark energy, and relativistic degrees of freedom

    International Nuclear Information System (INIS)

    Calabrese, Erminia; Melchiorri, Alessandro; Huterer, Dragan; Linder, Eric V.; Pagano, Luca

    2011-01-01

    Recent cosmological data analyses hint at the presence of an extra relativistic energy component in the early universe. This component is often parametrized as an excess of the effective neutrino number N eff over the standard value of 3.046. The excess relativistic energy could be an indication for an extra (sterile) neutrino, but early dark energy and barotropic dark energy also contribute to the relativistic degrees of freedom. We examine the capabilities of current and future data to constrain and discriminate between these explanations, and to detect the early dark energy density associated with them. We find that while early dark energy does not alter the current constraints on N eff , a dark radiation component, such as that provided by barotropic dark energy models, can substantially change current constraints on N eff , bringing its value back to agreement with the theoretical prediction. Both dark energy models also have implications for the primordial mass fraction of Helium Y p and the scalar perturbation index n s . The ongoing Planck satellite mission will be able to further discriminate between sterile neutrinos and early dark energy.

  15. Large-scale stability and astronomical constraints for coupled dark-energy models

    OpenAIRE

    Yang, W; Pan, S; Barrow, John David

    2018-01-01

    The physics of the dark energy and the dark matter is still an open issue in cosmology. The dark energy occupies about 68.5% of the total energy density of the universe today [1], and is believed to accelerate its observed expansion, but the physical nature, origin, and time evolution of this dark energy remain unknown. On the other hand, the dark matter sector (occupying almost 27.5% of the total energy density of the present-day universe) appears to be the principal gravitationa...

  16. Dark matter and dark energy a challenge for modern cosmology

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Matarrese, Sabino

    2011-01-01

    This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift su...

  17. Dark energy from gravitoelectromagnetic inflation?

    International Nuclear Information System (INIS)

    Membiela, A.; Bellini, M.

    2008-01-01

    Gravitoelectromagnetic Inflation (GI) was introduced to describe in a unified manner electromagnetic, gravitatory and inflation fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields B i = A i /a produced during inflation could be the source of dark energy in the Universe.

  18. Dark energy from gravitoelectromagnetic inflation?

    Science.gov (United States)

    Membiela, F. A.; Bellini, M.

    2008-02-01

    Gravitoectromagnetic Inflation (GI) was introduced to describe in an unified manner, electromagnetic, gravitatory and inflaton fields from a 5D vacuum state. On the other hand, the primordial origin and evolution of dark energy is today unknown. In this letter we show using GI that the zero modes of some redefined vector fields $B_i=A_i/a$ produced during inflation, could be the source of dark energy in the universe.

  19. How to distinguish dark energy and modified gravity?

    International Nuclear Information System (INIS)

    Wei Hao; Zhang Shuangnan

    2008-01-01

    The current accelerated expansion of our universe could be due to an unknown energy component (dark energy) or a modification of general relativity (modified gravity). In the literature it has been proposed that combining the probes of the cosmic expansion history and growth history can distinguish between dark energy and modified gravity. In this work, without invoking nontrivial dark energy clustering, we show that the possible interaction between dark energy and dark matter could make the interacting dark model and the modified gravity model indistinguishable. An explicit example is also given. Therefore, it is required to seek some complementary probes beyond the ones of cosmic expansion history and growth history.

  20. Gravitational Waves and Dark Energy

    Directory of Open Access Journals (Sweden)

    Peter L. Biermann

    2014-12-01

    Full Text Available The idea that dark energy is gravitational waves may explain its strength and its time-evolution. A possible concept is that dark energy is the ensemble of coherent bursts (solitons of gravitational waves originally produced when the first generation of super-massive black holes was formed. These solitons get their initial energy as well as keep up their energy density throughout the evolution of the universe by stimulating emission from a background, a process which we model by working out this energy transfer in a Boltzmann equation approach. New Planck data suggest that dark energy has increased in strength over cosmic time, supporting the concept here. The transit of these gravitational wave solitons may be detectable. Key tests include pulsar timing, clock jitter and the radio background.

  1. A dark energy multiverse

    International Nuclear Information System (INIS)

    Robles-Perez, Salvador; Martin-Moruno, Prado; Rozas-Fernandez, Alberto; Gonzalez-Diaz, Pedro F

    2007-01-01

    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunches or big rips singularities. Classically these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe. (fast track communication)

  2. A dark energy multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Perez, Salvador; Martin-Moruno, Prado; Rozas-Fernandez, Alberto; Gonzalez-Diaz, Pedro F [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 121, 28006 Madrid (Spain)

    2007-05-21

    We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunches or big rips singularities. Classically these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe. (fast track communication)

  3. Dark Energy, Dark Matter and Science with Constellation-X

    Science.gov (United States)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  4. Adiabatic instability in coupled dark energy/dark matter models

    International Nuclear Information System (INIS)

    Bean, Rachel; Flanagan, Eanna E.; Trodden, Mark

    2008-01-01

    We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the Universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled cold dark matter and mass varying neutrino models of dark energy and clarify for these theories the regimes in which the instability can be evaded due to nonadiabaticity or weak coupling.

  5. Searching for dark matter-dark energy interactions: Going beyond the conformal case

    Science.gov (United States)

    van de Bruck, Carsten; Mifsud, Jurgen

    2018-01-01

    We consider several cosmological models which allow for nongravitational direct couplings between dark matter and dark energy. The distinguishing cosmological features of these couplings can be probed by current cosmological observations, thus enabling us to place constraints on these specific interactions which are composed of the conformal and disformal coupling functions. We perform a global analysis in order to independently constrain the conformal, disformal, and mixed interactions between dark matter and dark energy by combining current data from: Planck observations of the cosmic microwave background radiation anisotropies, a combination of measurements of baryon acoustic oscillations, a supernova type Ia sample, a compilation of Hubble parameter measurements estimated from the cosmic chronometers approach, direct measurements of the expansion rate of the Universe today, and a compilation of growth of structure measurements. We find that in these coupled dark-energy models, the influence of the local value of the Hubble constant does not significantly alter the inferred constraints when we consider joint analyses that include all cosmological probes. Moreover, the parameter constraints are remarkably improved with the inclusion of the growth of structure data set measurements. We find no compelling evidence for an interaction within the dark sector of the Universe.

  6. New holographic scalar field models of dark energy in non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Fehri, J. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-02-08

    Motivated by the work of Granda and Oliveros [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199], we generalize their work to the non-flat case. We study the correspondence between the quintessence, tachyon, K-essence and dilaton scalar field models with the new holographic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe. In the limiting case of a flat universe, i.e. k=0, all results given in [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199] are obtained.

  7. New holographic scalar field models of dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Fehri, J.

    2010-01-01

    Motivated by the work of Granda and Oliveros [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199], we generalize their work to the non-flat case. We study the correspondence between the quintessence, tachyon, K-essence and dilaton scalar field models with the new holographic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe. In the limiting case of a flat universe, i.e. k=0, all results given in [L.N. Granda, A. Oliveros, Phys. Lett. B 671 (2009) 199] are obtained.

  8. Cosmic Visions Dark Energy. Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Heitmann, Katrin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Hirata, Chris [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Roodman, Aaron [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seljak, Uroš [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Slosar, Anže [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Trodden, Mark [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  9. Cosmic Visions Dark Energy: Science

    Energy Technology Data Exchange (ETDEWEB)

    Dodelson, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Slosar, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heitmann, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hirata, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Honscheid, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roodman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Seljak, U. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trodden, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-26

    Cosmic surveys provide crucial information about high energy physics including strong evidence for dark energy, dark matter, and inflation. Ongoing and upcoming surveys will start to identify the underlying physics of these new phenomena, including tight constraints on the equation of state of dark energy, the viability of modified gravity, the existence of extra light species, the masses of the neutrinos, and the potential of the field that drove inflation. Even after the Stage IV experiments, DESI and LSST, complete their surveys, there will still be much information left in the sky. This additional information will enable us to understand the physics underlying the dark universe at an even deeper level and, in case Stage IV surveys find hints for physics beyond the current Standard Model of Cosmology, to revolutionize our current view of the universe. There are many ideas for how best to supplement and aid DESI and LSST in order to access some of this remaining information and how surveys beyond Stage IV can fully exploit this regime. These ideas flow to potential projects that could start construction in the 2020's.

  10. Large-scale instability in interacting dark energy and dark matter fluids

    International Nuclear Information System (INIS)

    Väliviita, Jussi; Majerotto, Elisabetta; Maartens, Roy

    2008-01-01

    If dark energy interacts with dark matter, this gives a new approach to the coincidence problem. But interacting dark energy models can suffer from pathologies. We consider the case where the dark energy is modelled as a fluid with constant equation of state parameter w. Non-interacting constant-w models are well behaved in the background and in the perturbed universe. But the combination of constant w and a simple interaction with dark matter leads to an instability in the dark sector perturbations at early times: the curvature perturbation blows up on super-Hubble scales. Our results underline how important it is to carefully analyse the relativistic perturbations when considering models of coupled dark energy. The instability that we find has been missed in some previous work where the perturbations were not consistently treated. The unstable mode dominates even if adiabatic initial conditions are used. The instability also arises regardless of how weak the coupling is. This non-adiabatic instability is different from previously discovered adiabatic instabilities on small scales in the strong-coupling regime

  11. Interacting dark energy models as an approach for solving Cosmic Coincidence Problem

    Science.gov (United States)

    Shojaei, Hamed

    Understanding the dark side of the Universe is one of the main tasks of physicists. As there is no thorough understanding of nature of the dark energy, this area is full of new ideas and there may be several discoveries, theoretical or experimental, in the near future. We know that dark energy, though not detected directly, exists and it is not just an exotic idea. The presence of dark energy is required by the observation of the acceleration of the universe. There are several questions regarding dark energy. What is the nature of dark energy? How does it interact with matter, baryonic or dark? Why is the density of dark energy so tiny, i.e. why rhoΛ ≈ 10--120 M4Pl ? And finally why does its density have the same order of magnitude as the density of matter does at the present time? The last question is one form of what is known as the "Cosmic Coincidence Problem" and in this work, I have been investigating one way to resolve this issue. Observations of Type Ia supernovae indicate that we are in an accelerating universe. A matter-dominated universe cannot be accelerating. A good fit is obtained if we assume that energy density parameters are O Λ = 0.7 and Om = 0.3. Here O Λ is related to dark energy, or cosmological constant in ΛCDM model. At the same time data from Wilkinson Microwave Anisotropy Probe (WMAP) satellite and supernova surveys have placed a constraint on w, the equation of state for dark energy, which is actually the ratio of pressure and energy density. Any good theory needs to explain this coincidence problem and yields a value for w between -1.1 and -0.9. I have employed an interesting approach to solve this problem by assuming that there exists an interaction between dark energy and matter in the context of holographic dark energy. This interaction converts dark energy to matter or vice versa without violating the local conservation of energy in the universe. Holographic dark energy by itself indicates that the value of dark energy is related

  12. Evolution of holographic dark energy with interaction term Q∝ Hρde ...

    Indian Academy of Sciences (India)

    A flat FLRW Universe with dark matter and dark energy, which are interacting witheach other, is considered. The dark energy is represented by the holographic dark energy model and the interaction term is taken as proportional to the dark energy density. We have studied the cosmological evolution and analysed the ...

  13. Physical Alternative to the Dark Energy Paradigm

    Directory of Open Access Journals (Sweden)

    Sapar A.

    2013-12-01

    Full Text Available The physical nature of the presently dominating enigmatic dark energy in the expanding universe is demonstrated to be explainable as an excess of the kinetic energy with respect to its potential energy. According to traditional Friedman cosmology, any non-zero value of the total energy integral is ascribed to the space curvature. However, as we show, in the flat universe the total energy also can be different from zero. Initially, a very small excess of kinetic energy originates from the early universe. The present observational data show that our universe has probably a flat space with an excess of kinetic energy. The evolutionary scenario shows that the universe presently is in the transitional stage where its radial coordinate expansion approaches the velocity of light. A possibility of the closed Bubble universe with the local Big Bang and everlasting expansion is demonstrated. Dark matter can be essentially contributed by the non-relativistic massive neutrinos, which have cooled to very low temperatures and velocities thus favoring the formation of the observed broad equipotential wells in galaxies.

  14. Dark matter universe

    Science.gov (United States)

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  15. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  16. Dark group: dark energy and dark matter

    International Nuclear Information System (INIS)

    Macorra, A. de la

    2004-01-01

    We study the possibility that a dark group, a gauge group with particles interacting with the standard model particles only via gravity, is responsible for containing the dark energy and dark matter required by present day observations. We show that it is indeed possible and we determine the constrains for the dark group. The non-perturbative effects generated by a strong gauge coupling constant can de determined and a inverse power law scalar potential IPL for the dark meson fields is generated parameterizing the dark energy. On the other hand it is the massive particles, e.g., dark baryons, of the dark gauge group that give the corresponding dark matter. The mass of the dark particles is of the order of the condensation scale Λ c and the temperature is smaller then the photon's temperature. The dark matter is of the warm matter type. The only parameters of the model are the number of particles of the dark group. The allowed values of the different parameters are severely restricted. The dark group energy density at Λ c must be Ω DGc ≤0.17 and the evolution and acceptable values of dark matter and dark energy leads to a constrain of Λ c and the IPL parameter n giving Λ c =O(1-10 3 ) eV and 0.28≤n≤1.04

  17. Bianchi Type-I Universe with wet dark fluid

    Indian Academy of Sciences (India)

    Abstract. The Bianchi Type-I Universe filled with dark energy from a wet dark fluid has ... model is in the spirit of the generalized Chaplygin gas (GCG) [9], where a physically motivated .... From the mechanical point of view, eq. (2.28) can be ...

  18. Importance of supernovae at z>1.5 to probe dark energy

    International Nuclear Information System (INIS)

    Linder, Eric V.; Huterer, Dragan

    2003-01-01

    The accelerating expansion of the universe suggests that an unknown component with strongly negative pressure, called dark energy, currently dominates the dynamics of the universe. Such a component makes up ∼70% of the energy density of the universe yet has not been predicted by the standard model of particle physics. The best method for exploring the nature of this dark energy is to map the recent expansion history, at which type Ia supernovae have proved adept. We examine here the depth of survey necessary to provide a precise and qualitatively complete description of dark energy. A realistic analysis of parameter degeneracies, allowance for natural time variation of the dark energy equation of state, and systematic errors in astrophysical observations all demonstrate the importance of a survey covering the full range 0< z < or approx. 2 for revealing the nature of dark energy

  19. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    International Nuclear Information System (INIS)

    Jhalani, V.; Kharkwal, H.; Singh, A.

    2016-01-01

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  20. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    Energy Technology Data Exchange (ETDEWEB)

    Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com [L. N. Mittal Institute of Information Technology, Physics Department (India)

    2016-11-15

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  1. Bianchi-V string cosmological model with dark energy anisotropy

    Science.gov (United States)

    Mishra, B.; Tripathy, S. K.; Ray, Pratik P.

    2018-05-01

    The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.

  2. "Dark energy" in the Local Void

    Science.gov (United States)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  3. Metamaterial Model of Tachyonic Dark Energy

    Directory of Open Access Journals (Sweden)

    Igor I. Smolyaninov

    2014-02-01

    Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.

  4. Reconstructing interacting entropy-corrected holographic scalar field models of dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Khaledian, M S [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: KKarami@uok.ac.ir, E-mail: MS.Khaledian@uok.ac.ir, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2011-02-15

    Here we consider the entropy-corrected version of the holographic dark energy (DE) model in the non-flat universe. We obtain the equation of state parameter in the presence of interaction between DE and dark matter. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic DE model.

  5. Phantom dark energy with varying-mass dark matter particles: Acceleration and cosmic coincidence problem

    International Nuclear Information System (INIS)

    Leon, Genly; Saridakis, Emmanuel N.

    2010-01-01

    We investigate several varying-mass dark matter particle models in the framework of phantom cosmology. We examine whether there exist late-time cosmological solutions, corresponding to an accelerating universe and possessing dark energy and dark matter densities of the same order. Imposing exponential or power-law potentials and exponential or power-law mass dependence, we conclude that the coincidence problem cannot be solved or even alleviated. Thus, if dark energy is attributed to the phantom paradigm, varying-mass dark matter models cannot fulfill the basic requirement that led to their construction.

  6. Effective dark energy equation of state in interacting dark energy models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Silva, H.M.R. da

    2012-01-01

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  7. Effective dark energy equation of state in interacting dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: ppavelin@fc.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Silva, H.M.R. da, E-mail: hilberto.silva@gmail.com [Departamento de Fisica e Astronomia da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2012-07-24

    In models where dark matter and dark energy interact non-minimally, the total amount of matter in a fixed comoving volume may vary from the time of recombination to the present time due to energy transfer between the two components. This implies that, in interacting dark energy models, the fractional matter density estimated using the cosmic microwave background assuming no interaction between dark matter and dark energy will in general be shifted with respect to its true value. This may result in an incorrect determination of the equation of state of dark energy if the interaction between dark matter and dark energy is not properly accounted for, even if the evolution of the Hubble parameter as a function of redshift is known with arbitrary precision. In this Letter we find an exact expression, as well as a simple analytical approximation, for the evolution of the effective equation of state of dark energy, assuming that the energy transfer rate between dark matter and dark energy is described by a simple two-parameter model. We also provide analytical examples where non-phantom interacting dark energy models mimic the background evolution and primary cosmic microwave background anisotropies of phantom dark energy models.

  8. Probing the sign-changeable interaction between dark energy and dark matter with current observations

    Science.gov (United States)

    Guo, Juan-Juan; Zhang, Jing-Fei; Li, Yun-He; He, Dong-Ze; Zhang, Xin

    2018-03-01

    We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b( a) = b 0 a+ b e(1- a), where at the early-time the coupling is given by a constant b e and today the coupling is described by another constant b 0. We explore six specific models with (i) Q = b( a) H 0 ρ 0, (ii) Q = b( a) H 0 ρ de, (iii) Q = b( a) H 0 ρ c, (iv) Q = b( a) Hρ 0, (v) Q = b( a) H ρ de, and (vi) Q = b( a) Hρ c. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have b 0 0 at around the 1 σ level, and b 0 and b e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1 σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.

  9. Voids as alternatives to dark energy and the propagation of γ rays through the universe.

    Science.gov (United States)

    DeLavallaz, Arnaud; Fairbairn, Malcolm

    2012-04-27

    We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.

  10. A modified generalized Chaplygin gas as the unified dark matter-dark energy revisited

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xue-Mei, E-mail: xmd@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China)

    2011-12-15

    A modified generalized Chaplygin gas (MGCG) is considered as the unified dark matter-dark energy revisited. The character of MGCG is endued with the dual role, which behaves as matter at early times and as a quiescence dark energy at late times. The equation of state for MGCG is p = -{alpha}{rho}/(1 + {alpha}) - {upsilon}(z){rho}{sup -{alpha}/(1 + {alpha})}, where {upsilon}(z) = -[{rho}0{sub c}(1 + z){sup 3}] {sup (1+{alpha})} (1 - {Omega}{sub 0B}){sup {alpha} {l_brace}{alpha}{Omega}0{sub DM} + {Omega}{sub 0DE} [{omega}{sub DE} + {alpha}(1 +{omega}{sub DE})](1 + z){sup 3}{omega}DE(1+{alpha}){r_brace}}. Some cosmological quantities, such as the densities of different components of the universe {Omega}{sub i} (i, respectively, denotes baryons, dark matter, and dark energy) and the deceleration parameter q, are obtained. The present deceleration parameter q{sub 0}, the transition redshift z{sub T}, and the redshift z{sub eq}, which describes the epoch when the densities in dark matter and dark energy are equal, are also calculated. To distinguish MGCG from others, we then apply the Statefinder diagnostic. Later on, the parameters ({alpha} and {omega}{sub DE}) of MGCG are constrained by combination of the sound speed c{sup 2}{sub s} , the age of the universe t{sub 0}, the growth factor m, and the bias parameter b. It yields {alpha} = -3.07{sup +5.66} {sub -4.98} x 10{sup -2} and {omega}{sub DE} = -1.05 {sup +0.06} {sub -0.11}. Through the analysis of the growth of density perturbations for MGCG, it is found that the energy will transfer from dark matter to dark energy which reach equal at z{sub e}{approx} 0.48 and the density fluctuations start deviating from the linear behavior at z {approx} 0.25 caused by the dominance of dark energy. (author)

  11. Distinguishing modified gravity from dark energy

    International Nuclear Information System (INIS)

    Bertschinger, Edmund; Zukin, Phillip

    2008-01-01

    The acceleration of the Universe can be explained either through dark energy or through the modification of gravity on large scales. In this paper we investigate modified gravity models and compare their observable predictions with dark energy models. Modifications of general relativity are expected to be scale independent on superhorizon scales and scale dependent on subhorizon scales. For scale-independent modifications, utilizing the conservation of the curvature scalar and a parametrized post-Newtonian formulation of cosmological perturbations, we derive results for large-scale structure growth, weak gravitational lensing, and cosmic microwave background anisotropy. For scale-dependent modifications, inspired by recent f(R) theories we introduce a parametrization for the gravitational coupling G and the post-Newtonian parameter γ. These parametrizations provide a convenient formalism for testing general relativity. However, we find that if dark energy is generalized to include both entropy and shear stress perturbations, and the dynamics of dark energy is unknown a priori, then modified gravity cannot in general be distinguished from dark energy using cosmological linear perturbations.

  12. Interacting holographic dark energy in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2009-01-01

    We study cosmological application of interacting holographic energy density in the framework of Brans-Dicke cosmology. We obtain the equation of state and the deceleration parameter of the holographic dark energy in a non-flat universe. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L=ar(t). We find that the combination of Brans-Dicke field and holographic dark energy can accommodate w D =-1 crossing for the equation of state of noninteracting holographic dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of w D to phantom regime can be more easily accounted for than when resort to the Einstein field equations is made.

  13. Baryon acoustic oscillation intensity mapping of dark energy.

    Science.gov (United States)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  14. On the Origin of the Dark Matter/Energy in the Universe and the Pioneer Anomaly

    Directory of Open Access Journals (Sweden)

    Abraham A. Ungar

    2008-07-01

    Full Text Available Einstein's special relativity is a theory rich of paradoxes, one of which is the recently discovered Relativistic Invariant Mass Paradox. According to this Paradox, the relativistic invariant mass of a galaxy of moving stars exceeds the sum of the relativistic invariant masses of the constituent stars owing to their motion relative to each other. This excess of mass is the mass of virtual matter that has no physical properties other than positive relativistic invariant mass and, hence, that reveals its presence by no means other than gravity. As such, this virtual matter is the dark matter that cosmologists believe is necessary in order to supply the missing gravity that keeps galaxies stable. Based on the Relativistic Invariant Mass Paradox we offer in this article a model which quantifies the anomalous acceleration of Pioneer 10 and 11 spacecrafts and other deep space missions, and explains the presence of dark matter and dark energy in the universe. It turns out that the origin of dark matter and dark energy in the Universe lies in the Paradox, and that the origin of the Pioneer anomaly results from neglecting the Paradox. In order to appreciate the physical significance of the Paradox within the frame of Einstein's special theory of relativity, following the presentation of the Paradox we demonstrate that the Paradox is responsible for the extension of the kinetic energy theorem and of the additivity of energy and momentum from classical to relativistic mechanics. Clearly, the claim that the acceleration of Pioneer 10 and 11 spacecrafts is anomalous is incomplete, within the frame of Einstein's special relativity, since those who made the claim did not take into account the presence of the Relativistic Invariant Mass Paradox (which is understandable since the Paradox, published in the author's 2008 book, was discovered by the author only recently. It remains to test how well the Paradox accords with observations.

  15. Proceedings, 8th International Workshop on the Dark Side of the Universe (DSU 2012)

    CERN Document Server

    2012-01-01

    Recent observations suggest that about 95% of the Universe's energy lies in a dark sector. This sector is comprised of dark matter, a form of non-luminous matter, and dark energy whose origin and composition is unknown. Dark matter seems to make up 23% of the Universe and it possibly consists of new exotic particles that interact very weakly with ordinary matter. Dark energy, about 73% of the Universe, is responsible for a mysterious force that is speeding up its expansion. The origin and microscopic composition of dark matter and dark energy are outstanding fundamental problems in physics, and may possibly find a resolution in new theories pointing beyond the standard models of particle physics and cosmology. This prompts a strong connection between particle physics, astrophysics and cosmology. The aim of the meeting is to bring together experts from all around the world to discuss the latest advances in the theoretical, phenomenological and experimental aspects of the field.

  16. Dark energy in systems of galaxies

    Science.gov (United States)

    Chernin, A. D.

    2013-11-01

    The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1-10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1-3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (˜1 Mpc) can be extended to the scale of clusters (˜10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.

  17. 3D map of Universe bolsters case for dark energy and dark matter

    CERN Multimedia

    2003-01-01

    "Astronomers from the Sloan Digital Sky Survey (SDSS) have made the most precise measurement to date of the cosmic clustering of galaxies and dark matter, refining our understanding of the structure and evolution of the Universe" (1 page).

  18. On the Effective Equation of State of Dark Energy

    DEFF Research Database (Denmark)

    Sloth, Martin Snoager

    2010-01-01

    In an effective field theory model with an ultraviolet momentum cutoff, there is a relation between the effective equation of state of dark energy and the ultraviolet cutoff scale. It implies that a measure of the equation of state of dark energy different from minus one, does not rule out vacuum...... energy as dark energy. It also indicates an interesting possibility that precise measurements of the infrared properties of dark energy can be used to probe the ultraviolet cutoff scale of effective quantum field theory coupled to gravity. In a toy model with a vacuum energy dominated universe...... with a Planck scale cutoff, the dark energy effective equation of state is -0.96....

  19. Interacting agegraphic dark energy

    International Nuclear Information System (INIS)

    Wei, Hao; Cai, Rong-Gen

    2009-01-01

    A new dark energy model, named ''agegraphic dark energy'', has been proposed recently, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed. (orig.)

  20. Dark energy cosmology with generalized linear equation of state

    International Nuclear Information System (INIS)

    Babichev, E; Dokuchaev, V; Eroshenko, Yu

    2005-01-01

    Dark energy with the usually used equation of state p = wρ, where w const 0 ), where the constants α and ρ 0 are free parameters. This non-homogeneous linear equation of state provides the description of both hydrodynamically stable (α > 0) and unstable (α < 0) fluids. In particular, the considered cosmological model describes the hydrodynamically stable dark (and phantom) energy. The possible types of cosmological scenarios in this model are determined and classified in terms of attractors and unstable points by using phase trajectories analysis. For the dark energy case, some distinctive types of cosmological scenarios are possible: (i) the universe with the de Sitter attractor at late times, (ii) the bouncing universe, (iii) the universe with the big rip and with the anti-big rip. In the framework of a linear equation of state the universe filled with a phantom energy, w < -1, may have either the de Sitter attractor or the big rip

  1. The CHASE laboratory search for chameleon dark energy

    International Nuclear Information System (INIS)

    Steffen, Jason H.

    2010-01-01

    A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. We present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys.

  2. The CHASE laboratory search for chameleon dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason [Fermi National Accelerator Laboratory - Fermilab, P.O. Box 500, Batavia, IL 60510-5011 (United States)

    2010-07-01

    A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. I present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement over other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys. (author)

  3. Cosmological viability conditions for f(T) dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

  4. Embrace the Dark Side: Advancing the Dark Energy Survey

    Science.gov (United States)

    Suchyta, Eric

    The Dark Energy Survey (DES) is an ongoing cosmological survey intended to study the properties of the accelerated expansion of the Universe. In this dissertation, I present work of mine that has advanced the progress of DES. First is an introduction, which explores the physics of the cosmos, as well as how DES intends to probe it. Attention is given to developing the theoretical framework cosmologists use to describe the Universe, and to explaining observational evidence which has furnished our current conception of the cosmos. Emphasis is placed on the dark sector - dark matter and dark energy - the content of the Universe not explained by the Standard Model of particle physics. As its name suggests, the Dark Energy Survey has been specially designed to measure the properties of dark energy. DES will use a combination of galaxy cluster, weak gravitational lensing, angular clustering, and supernovae measurements to derive its state of the art constraints, each of which is discussed in the text. The work described in this dissertation includes science measurements directly related to the first three of these probes. The dissertation presents my contributions to the readout and control system of the Dark Energy Camera (DECam); the name of this software is SISPI. SISPI uses client-server and publish-subscribe communication patterns to coordinate and command actions among the many hardware components of DECam - the survey instrument for DES, a 570 megapixel CCD camera, mounted at prime focus of the Blanco 4-m Telescope. The SISPI work I discuss includes coding applications for DECam's filter changer mechanism and hexapod, as well as developing the Scripts Editor, a GUI application for DECam users to edit and export observing sequence SISPI can load and execute. Next, the dissertation describes the processing of early DES data, which I contributed. This furnished the data products used in the first-completed DES science analysis, and contributed to improving the

  5. Precision Photometry to Study the Nature of Dark Energy

    International Nuclear Information System (INIS)

    Lorenzon, Wolfgang; Schubnell, Michael

    2011-01-01

    Over the past decade scientists have collected convincing evidence that the expansion of the universe is accelerating, leading to the conclusion that the content of our universe is dominated by a mysterious 'dark energy'. The fact that present theory cannot account for the dark energy has made the determination of the nature of dark energy central to the field of high energy physics. It is expected that nothing short of a revolution in our understanding of the fundamental laws of physics is required to fully understand the accelerating universe. Discovering the nature of dark energy is a very difficult task, and requires experiments that employ a combination of different observational techniques, such as type-Ia supernovae, gravitational weak lensing surveys, galaxy and galaxy cluster surveys, and baryon acoustic oscillations. A critical component of any approach to understanding the nature of dark energy is precision photometry. This report addresses just that. Most dark energy missions will require photometric calibration over a wide range of intensities using standardized stars and internal reference sources. All of the techniques proposed for these missions rely on a complete understanding of the linearity of the detectors. The technical report focuses on the investigation and characterization of 'reciprocity failure', a newly discovered count-rate dependent nonlinearity in the NICMOS cameras on the Hubble Space Telescope. In order to quantify reciprocity failure for modern astronomical detectors, we built a dedicated reciprocity test setup that produced a known amount of light on a detector, and to measured its response as a function of light intensity and wavelength.

  6. The generalized second law in irreversible thermodynamics for the interacting dark energy in a non-flat FRW universe enclosed by the apparent horizon

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghaffari, S. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-03-01

    We investigate the validity of the generalized second law in irreversible thermodynamics in a non-flat FRW universe containing the interacting dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for the present time, the generalized second law in nonequilibrium thermodynamics is satisfied for the special range of the energy transfer constants.

  7. The generalized second law in irreversible thermodynamics for the interacting dark energy in a non-flat FRW universe enclosed by the apparent horizon

    International Nuclear Information System (INIS)

    Karami, K.; Ghaffari, S.

    2010-01-01

    We investigate the validity of the generalized second law in irreversible thermodynamics in a non-flat FRW universe containing the interacting dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for the present time, the generalized second law in nonequilibrium thermodynamics is satisfied for the special range of the energy transfer constants.

  8. Modified holographic Ricci dark energy coupled to interacting dark matter and a non-interacting baryonic component

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, Luis P.; Richarte, Martin G. [Universidad de Buenos Aires, IFIBA, CONICET, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Forte, Monica [Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2013-01-15

    We examine a Friedmann-Robertson-Walker universe filled with interacting dark matter, modified holographic Ricci dark energy (MHRDE), and a decoupled baryonic component. The estimations of the cosmic parameters with Hubble data lead to an age of the universe of 13.17 Gyr and show that the MHRDE is free from the cosmic-age problem at low redshift (0{<=}z{<=}2) in contrast to holographic Ricci dark energy (HRDE) case. We constrain the parameters with the Union2 data set and contrast with the Hubble data. We also study the behavior of dark energy at early times by taking into account the severe bounds found at recombination era and/or at big bang nucleosynthesis. The inclusion of a non-interacting baryonic matter forces that the amount of dark energy at z{sub t} {proportional_to} O(1) changes abruptly implying that {Omega} {sub x} (z {approx_equal}1100)=0.03, so the bounds reported by the forecast of Planck and CMBPol experiments are more favored for the MHRDE model than in the case of HRDE cutoff. For the former model, we also find that at high redshift the fraction of dark energy varies from 0.006 to 0.002, then the amount of {Omega} {sub x} at the big bang nucleosynthesis era does not disturb the observed helium abundance in the universe provided that the bound {Omega} {sub x} (z {approx_equal}10 {sup 10}) <0.21 is hold. (orig.)

  9. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Khaledian, M.S.; Felegary, F.; Azarmi, Z. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-03-29

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  10. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Khaledian, M.S.; Felegary, F.; Azarmi, Z.

    2010-01-01

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  11. Could dark energy be measured in the lab?

    International Nuclear Information System (INIS)

    Beck, Christian; Mackey, Michael C.

    2005-01-01

    The experimentally measured spectral density of current noise in Josephson junctions provides direct evidence for the existence of zero-point fluctuations. Assuming that the total vacuum energy associated with these fluctuations cannot exceed the presently measured dark energy of the universe, we predict an upper cutoff frequency of ν c =(1.69+/-0.05)x10 12 Hz for the measured frequency spectrum of zero-point fluctuations in the Josephson junction. The largest frequencies that have been reached in the experiments are of the same order of magnitude as ν c and provide a lower bound on the dark energy density of the universe. It is shown that suppressed zero-point fluctuations above a given cutoff frequency can lead to 1/f noise. We propose an experiment which may help to measure some of the properties of dark energy in the lab

  12. DGP cosmological model with generalized Ricci dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Yeremy [Universidad de Santiago, Departamento de Matematicas y Ciencia de la Computacion, Santiago (Chile); Avelino, Arturo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Facultad de Ciencias, Instituto de Fisica, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile)

    2014-11-15

    The brane-world model proposed by Dvali, Gabadadze and Porrati (DGP) leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (element of = +1). For the negative branch (element of = -1) we have investigated the behavior of a model with an holographic Ricci-like dark energy and dark matter, where the IR cutoff takes the form αH{sup 2} + βH, H being the Hubble parameter and α, β positive constants of the model. We perform an analytical study of the model in the late-time dark energy dominated epoch, where we obtain a solution for r{sub c}H(z), where r{sub c} is the leakage scale of gravity into the bulk, and conditions for the negative branch on the holographic parameters α and β, in order to hold the conditions of weak energy and accelerated universe. On the other hand, we compare the model versus the late-time cosmological data using the latest type Ia supernova sample of the Joint Light-curve Analysis (JLA), in order to constrain the holographic parameters in the negative branch, as well as r{sub c}H{sub 0} in the positive branch, where H{sub 0} is the Hubble constant. We find that the model has a good fit to the data and that the most likely values for (r{sub c}H{sub 0}, α, β) lie in the permitted region found from an analytical solution in a dark energy dominated universe. We give a justification to use a holographic cutoff in 4D for the dark energy in the 5-dimensional DGP model. Finally, using the Bayesian Information Criterion we find that this model is disfavored compared with the flat ΛCDM model. (orig.)

  13. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Fay, Stéphane, E-mail: steph.fay@gmail.com [Palais de la Découverte, Astronomy Department, Avenue Franklin Roosevelt, 75008 Paris (France)

    2013-09-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.

  14. Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy

    International Nuclear Information System (INIS)

    Fay, Stéphane

    2013-01-01

    We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion

  15. Matter, dark matter, and anti-matter in search of the hidden universe

    CERN Document Server

    Mazure, Alain

    2012-01-01

    For over ten years, the dark side of the universe has been headline news. Detailed studies of the rotation of spiral galaxies, and 'mirages' created by clusters of galaxies bending the light from very remote objects, have convinced astronomers of the presence of large quantities of dark (unseen) matter in the cosmos. Moreover, in the 1990s, it was discovered that some four to five billion years ago the expansion of the universe entered a phase of acceleration. This implies the existence of dark energy. The nature of these 'dark; ingredients remains a mystery, but they seem to comprise about 95 percent of the matter/energy content of the universe. As for ordinary matter, although we are immersed in a sea of dark particles, including primordial neutrinos and photons from 'fossil' cosmological radiation, both we and our environment are made of ordinary, baryonic matter. Strangely, even if 15-20 percent of matter is baryonic matter, this represents only 4-5 percent of the total matter/energy content of the cosmos...

  16. Laboratory tests on dark energy

    International Nuclear Information System (INIS)

    Beck, Christian

    2006-01-01

    The physical nature of the currently observed dark energy in the universe is completely unclear, and many different theoretical models co-exist. Nevertheless, if dark energy is produced by vacuum fluctuations then there is a chance to probe some of its properties by simple laboratory tests based on Josephson junctions. These electronic devices can be used to perform 'vacuum fluctuation spectroscopy', by directly measuring a noise spectrum induced by vacuum fluctuations. One would expect to see a cutoff near 1.7 THz in the measured power spectrum, provided the new physics underlying dark energy couples to electric charge. The effect exploited by the Josephson junction is a subtile nonlinear mixing effect and has nothing to do with the Casimir effect or other effects based on van der Waals forces. A Josephson experiment of the suggested type will now be built, and we should know the result within the next 3 years

  17. Studies of dark energy with X-ray observatories.

    Science.gov (United States)

    Vikhlinin, Alexey

    2010-04-20

    I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity.

  18. Unified picture for Dirac neutrinos, dark matter, dark energy and matter–antimatter asymmetry

    OpenAIRE

    Gu, Pei-Hong

    2008-01-01

    We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter-antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.

  19. Observational constraints on dark energy and cosmic curvature

    International Nuclear Information System (INIS)

    Wang Yun; Mukherjee, Pia

    2007-01-01

    Current observational bounds on dark energy depend on our assumptions about the curvature of the universe. We present a simple and efficient method for incorporating constraints from cosmic microwave background (CMB) anisotropy data and use it to derive constraints on cosmic curvature and dark energy density as a free function of cosmic time using current CMB, Type Ia supernova (SN Ia), and baryon acoustic oscillation data. We show that there are two CMB shift parameters, R≡√(Ω m H 0 2 )r(z CMB ) (the scaled distance to recombination) and l a ≡πr(z CMB )/r s (z CMB ) (the angular scale of the sound horizon at recombination), with measured values that are nearly uncorrelated with each other. Allowing nonzero cosmic curvature, the three-year WMAP (Wilkinson Microwave Anisotropy Probe) data give R=1.71±0.03, l a =302.5±1.2, and Ω b h 2 =0.02173±0.00082, independent of the dark energy model. The corresponding bounds for a flat universe are R=1.70±0.03, l a =302.2±1.2, and Ω b h 2 =0.022±0.00082. We give the covariance matrix of (R,l a ,Ω b h 2 ) from the three-year WMAP data. We find that (R,l a ,Ω b h 2 ) provide an efficient and intuitive summary of CMB data as far as dark energy constraints are concerned. Assuming the Hubble Space Telescope (HST) prior of H 0 =72±8 (km/s) Mpc -1 , using 182 SNe Ia (from the HST/GOODS program, the first year Supernova Legacy Survey, and nearby SN Ia surveys), (R,l a ,Ω b h 2 ) from WMAP three-year data, and SDSS (Sloan Digital Sky Survey) measurement of the baryon acoustic oscillation scale, we find that dark energy density is consistent with a constant in cosmic time, with marginal deviations from a cosmological constant that may reflect current systematic uncertainties or true evolution in dark energy. A flat universe is allowed by current data: Ω k =-0.006 -0.012-0.025 +0.013+0.025 for assuming that the dark energy equation of state w X (z) is constant, and Ω k =-0.002 -0.018-0.032 +0.018+0.041 for w X (z

  20. Understanding the Fundamental Properties of Dark Matter and Dark Energy in Structure formation and Cosmology

    International Nuclear Information System (INIS)

    Ellis, Richard S.

    2008-01-01

    This program is concerned with developing and verifying the validity of observational methods for constraining the properties of dark matter and dark energy in the universe. Excellent progress has been made in comparing observational projects involving weak gravitational lensing using both ground and space-based instruments, in further constraining the nature of dark matter via precise measures of its distribution in clusters of galaxies using strong gravitational lensing, in demonstrating the possible limitations of using distant supernovae in future dark energy missions, and in investigating the requirement for ground-based surveys of baryonic acoustic oscillations.

  1. Heart of darkness unraveling the mysteries of the invisible universe

    CERN Document Server

    Ostriker, Jeremiah P

    2013-01-01

    Heart of Darkness describes the incredible saga of humankind's quest to unravel the deepest secrets of the universe. Over the past thirty years, scientists have learned that two little-understood components--dark matter and dark energy--comprise most of the known cosmos, explain the growth of all cosmic structure, and hold the key to the universe's fate. The story of how evidence for the so-called "Lambda-Cold Dark Matter" model of cosmology has been gathered by generations of scientists throughout the world is told here by one of the pioneers of the field, Jeremiah Ostriker, and his coauthor Simon Mitton. From humankind's early attempts to comprehend Earth's place in the solar system, to astronomers' exploration of the Milky Way galaxy and the realm of the nebulae beyond, to the detection of the primordial fluctuations of energy from which all subsequent structure developed, this book explains the physics and the history of how the current model of our universe arose and has passed every test hurled at it b...

  2. Observational constraints on dark matter-dark energy scattering cross section

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Suresh [BITS Pilani, Department of Mathematics, Rajasthan (India); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Departamento de Fisica, Juiz de Fora, MG (Brazil)

    2017-11-15

    In this letter, we report precise and robust observational constraints on the dark matter-dark energy scattering cross section, using the latest data from cosmic microwave background (CMB) Planck temperature and polarization, baryon acoustic oscillations (BAO) measurements and weak gravitational lensing data from Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). The scattering scenario consists of a pure momentum exchange between the dark components, and we find σ{sub d} < 10{sup -29} cm{sup 2} (m{sub dm}c{sup 2}/GeV) at 95% CL from the joint analysis (CMB + BAO + CFHTLenS), where m{sub dm} is a typical dark matter particle mass. We notice that the scattering among the dark components may influence the growth of large scale structure in the Universe, leaving the background cosmology unaltered. (orig.)

  3. Dark energy: Recent observations and future prospects

    International Nuclear Information System (INIS)

    Perlmutter, Saul

    2003-01-01

    Dark energy presents us with a challenging puzzle: understanding the new element of physics evident in the acceleration of the expansion of the universe. Type Ia supernovae first detected this acceleration and have been instrumental in breaking the matter dominated universe paradigm, measuring the current acceleration of the expansion, and probing back to the decelerating phase. To further study the nature of dark energy requires understanding of systematic errors entering into any cosmological probe. Type Ia supernovae provide simple, transparent tracers of the expansion history of the universe, and the sources of systematic uncertainties in the supernova measurement have been identified. We briefly review the progress to date and examine the promise of future surveys with large numbers of supernovae and well bounded systematics

  4. Time arrow is influenced by the dark energy.

    Science.gov (United States)

    Allahverdyan, A E; Gurzadyan, V G

    2016-05-01

    The arrow of time and the accelerated expansion are two fundamental empirical facts of the universe. We advance the viewpoint that the dark energy (positive cosmological constant) accelerating the expansion of the universe also supports the time asymmetry. It is related to the decay of metastable states under generic perturbations, as we show on example of a microcanonical ensemble. These states will not be metastable without dark energy. The latter also ensures a hyperbolic motion leading to dynamic entropy production with the rate determined by the cosmological constant.

  5. Holographic dark energy with cosmological constant

    Science.gov (United States)

    Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  6. Holographic dark energy with cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yazhou; Li, Nan; Zhang, Zhenhui [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Li, Miao, E-mail: asiahu@itp.ac.cn, E-mail: mli@itp.ac.cn, E-mail: linan@itp.ac.cn, E-mail: zhangzhh@mail.ustc.edu.cn [School of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China)

    2015-08-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.

  7. Holographic dark energy with cosmological constant

    International Nuclear Information System (INIS)

    Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao

    2015-01-01

    Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω hde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ 2 min =426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω Λ0 <0.68 and correspondingly 0.04<Ω hde0 <0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model

  8. Self-accelerated Universe Induced by Repulsive Effects as an Alternative to Dark Energy and Modified Gravities

    Science.gov (United States)

    Luongo, Orlando; Quevedo, Hernando

    2018-01-01

    The existence of current-time universe's acceleration is usually modeled by means of two main strategies. The first makes use of a dark energy barotropic fluid entering by hand the energy-momentum tensor of Einstein's theory. The second lies on extending the Hilbert-Einstein action giving rise to the class of extended theories of gravity. In this work, we propose a third approach, derived as an intrinsic geometrical effect of space-time, which provides repulsive regions under certain circumstances. We demonstrate that the effects of repulsive gravity naturally emerge in the field of a homogeneous and isotropic universe. To this end, we use an invariant definition of repulsive gravity based upon the behavior of the curvature eigenvalues. Moreover, we show that repulsive gravity counterbalances the standard gravitational attraction influencing both late and early times of the universe evolution. This phenomenon leads to the present speed up and to the fast expansion due to the inflationary epoch. In so doing, we are able to unify both dark energy and inflation in a single scheme, showing that the universe changes its dynamics when {\\ddot{H}\\over H}=-2 \\dot{H}, at the repulsion onset time where this condition is satisfied. Further, we argue that the spatial scalar curvature can be taken as vanishing because it does not affect at all the emergence of repulsive gravity. We check the goodness of our approach through two cosmological fits involving the most recent union 2.1 supernova compilation.

  9. Interacting Agegraphic Dark Energy

    OpenAIRE

    Wei, Hao; Cai, Rong-Gen

    2007-01-01

    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\\'{a}rolyh\\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegrap...

  10. Dark energy

    International Nuclear Information System (INIS)

    Wang, Yun

    2010-01-01

    Dark energy research aims to illuminate the mystery of the observed cosmic acceleration, one of the fundamental problems in physics and astronomy today. This book presents a systematic and detailed review of the current state of dark energy research, with the focus on the examination of the major observational techniques for probing dark energy. It can be used as a textbook to train students and others who wish to enter this extremely active field in cosmology.

  11. Dark energy, antimatter gravity and geometry of the Universe

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2010-01-01

    This article is based on two hypotheses. The first one is the existence of the gravitational repulsion between particles and antiparticles. Consequently, virtual particle-antiparticle pairs in the quantum vacuum might be considered as gravitational dipoles. The second hypothesis is that the Universe has geometry of a four-dimensional hyper-spherical shell with thickness equal to the Compton wavelength of a pion, which is a simple generalization of the usual geometry of a 3-hypersphere. It is striking that these two hypotheses lead to a simple relation for the gravitational mass density of the vacuum, which is in very good agreement with the observed dark energy density. It might be a sign that QCD fields provide the largest contribution to the gravitational mass of the physical vacuum; contrary to the prediction of the Standard Model that QCD contribution is much smaller than some other contributions.

  12. Dark energy interacting with dark matter and a third fluid: Possible EoS for this component

    International Nuclear Information System (INIS)

    Cruz, Norman; Lepe, Samuel; Pena, Francisco

    2011-01-01

    A cosmological model of dark energy interacting with dark matter and another general component of the universe is considered. The equations for the coincidence parameters r and s, which represent the ratios between dark energy and dark matter and the other cosmic fluid respectively, are analyzed in terms of the stability of stationary solutions. The obtained general results allow to shed some light on the equations of state of the three interacting fluids, due to the constraints imposed by the stability of the solutions. We found that for an interaction proportional to the sum of the dark energy density and the third fluid density, the hypothetical fluid must have positive pressure, which leads naturally to a cosmological scenario with radiation, unparticle or even some form of warm dark matter as the third interacting fluid.

  13. Dark energy interacting with dark matter and a third fluid: Possible EoS for this component

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman, E-mail: ncruz@lauca.usach.c [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile); Lepe, Samuel, E-mail: slepe@ucv.c [Instituto de Fisica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Pena, Francisco, E-mail: fcampos@ufro.c [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)

    2011-05-09

    A cosmological model of dark energy interacting with dark matter and another general component of the universe is considered. The equations for the coincidence parameters r and s, which represent the ratios between dark energy and dark matter and the other cosmic fluid respectively, are analyzed in terms of the stability of stationary solutions. The obtained general results allow to shed some light on the equations of state of the three interacting fluids, due to the constraints imposed by the stability of the solutions. We found that for an interaction proportional to the sum of the dark energy density and the third fluid density, the hypothetical fluid must have positive pressure, which leads naturally to a cosmological scenario with radiation, unparticle or even some form of warm dark matter as the third interacting fluid.

  14. The generalized second law of thermodynamics for the interacting polytropic dark energy in non-flat FRW universe enclosed by the apparent horizon

    International Nuclear Information System (INIS)

    Karami, K.; Ghaffari, S.

    2010-01-01

    We investigate the validity of the generalized second law of thermodynamics in a non-flat FRW universe containing the interacting polytropic dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for this model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the deceleration parameter.

  15. The generalized second law of thermodynamics for the interacting polytropic dark energy in non-flat FRW universe enclosed by the apparent horizon

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghaffari, S. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-05-03

    We investigate the validity of the generalized second law of thermodynamics in a non-flat FRW universe containing the interacting polytropic dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for this model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the deceleration parameter.

  16. Anisotropic perturbations due to dark energy

    International Nuclear Information System (INIS)

    Battye, Richard A.; Moss, Adam

    2006-01-01

    A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with P/ρ=-2/3, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model

  17. Simulations of structure formation in interacting dark energy cosmologies

    International Nuclear Information System (INIS)

    Baldi, M.

    2009-01-01

    The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.

  18. Viscous Ricci dark energy

    International Nuclear Information System (INIS)

    Feng Chaojun; Li Xinzhou

    2009-01-01

    We investigate the viscous Ricci dark energy (RDE) model by assuming that there is bulk viscosity in the linear barotropic fluid and the RDE. In the RDE model without bulk viscosity, the universe is younger than some old objects at certain redshifts. Since the age of the universe should be longer than any objects living in the universe, the RDE model suffers the age problem, especially when we consider the object APM 08279+5255 at z=3.91 with age t=2.1 Gyr. In this Letter, we find that once the viscosity is taken into account, this age problem is alleviated.

  19. On the internal consistency of holographic dark energy models

    International Nuclear Information System (INIS)

    Horvat, R

    2008-01-01

    Holographic dark energy (HDE) models, underpinned by an effective quantum field theory (QFT) with a manifest UV/IR connection, have become convincing candidates for providing an explanation of the dark energy in the universe. On the other hand, the maximum number of quantum states that a conventional QFT for a box of size L is capable of describing relates to those boxes which are on the brink of experiencing a sudden collapse to a black hole. Another restriction on the underlying QFT is that the UV cut-off, which cannot be chosen independently of the IR cut-off and therefore becomes a function of time in a cosmological setting, should stay the largest energy scale even in the standard cosmological epochs preceding a dark energy dominated one. We show that, irrespective of whether one deals with the saturated form of HDE or takes a certain degree of non-saturation in the past, the above restrictions cannot be met in a radiation dominated universe, an epoch in the history of the universe which is expected to be perfectly describable within conventional QFT

  20. Fermion field as inflaton, dark energy and dark matter

    International Nuclear Information System (INIS)

    Grams, Guilherme; Souza, Rudinei C de; Kremer, Gilberto M

    2014-01-01

    The search for constituents that can explain the periods of accelerating expansion of the Universe is a fundamental topic in cosmology. In this context, we investigate how fermionic fields minimally and non-minimally coupled with the gravitational field may be responsible for accelerated regimes during the evolution of the Universe. The forms of the potential and coupling of the model are determined through the technique of the Noether symmetry for two cases. The first case comprises a Universe filled only with the fermion field. Cosmological solutions are straightforwardly obtained for this case and an exponential inflation mediated by the fermion field is possible with a non-minimal coupling. The second case takes account of the contributions of radiation and baryonic matter in the presence of the fermion field. In this case the fermion field plays the role of dark energy and dark matter, and when a non-minimal coupling is allowed, it mediates a power-law inflation. (paper)

  1. Evaluating dark energy probes using multidimensional dark energy parameters

    International Nuclear Information System (INIS)

    Albrecht, Andreas; Bernstein, Gary

    2007-01-01

    We investigate the value of future dark-energy experiments by modeling their ability to constrain the dark-energy equation of state. Similar work was recently reported by the Dark Energy Task Force (DETF) using a two dimensional parameterization of the equation-of-state evolution. We examine constraints in a nine-dimensional dark-energy parameterization, and find that the best experiments constrain significantly more than two dimensions in our 9D space. Consequently the impact of these experiments is substantially beyond that revealed in the DETF analysis, and the estimated cost per 'impact' drops by about a factor of 10 as one moves to the very best experiments. The DETF conclusions about the relative value of different techniques and of the importance of combining techniques are unchanged by our analysis

  2. Ricci dark energy in Chern-Simons modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Silva, J.G.; Santos, A.F. [Universidade Federal de Mato Grosso (UFMT), Campo Grande, MT (Brazil)

    2013-07-01

    Full text: Currently the accelerated expansion of the universe has been strongly confirmed by some independent experiments such as the Cosmic Microwave Background Radiation (CMBR) and Sloan Digital Sky Survey (SDSS). In an attempt to explain this phenomenon there are two possible paths; first option - propose corrections to general relativity, second option - assuming that there is a dominant component of the universe, a kind of antigravity called dark energy. Any way that we intend to follow, there are numerous models that attempt to explain this effect. One of the models of modified gravity that has stood out in recent years is the Chern-Simons modified gravity. This modification consists in the addition of the Pontryagin density, which displays violation of parity symmetry in Einstein-Hilbert action. From among the various models proposed for dark energy there are some that are based on the holographic principle, known as holographic dark energy. Such models are based on the idea that the energy density of a given system is proportional to the inverse square of some characteristic length of the system. From these studies, here we consider the model proposed by Gao et. al., a model of dark energy where the characteristic length is given by the average radius of the Ricci scalar. Thus, the dark energy density is proportional to the Ricci scalar, i.e., ρ{sub x} ∝ R. It is a phenomenologically viable model and displays results similar to that presented by the cosmological model ACDM. In this work, we have considered the Ricci dark energy model in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas. (author)

  3. Ricci dark energy in Chern-Simons modified gravity

    International Nuclear Information System (INIS)

    Silva, J.G.; Santos, A.F.

    2013-01-01

    Full text: Currently the accelerated expansion of the universe has been strongly confirmed by some independent experiments such as the Cosmic Microwave Background Radiation (CMBR) and Sloan Digital Sky Survey (SDSS). In an attempt to explain this phenomenon there are two possible paths; first option - propose corrections to general relativity, second option - assuming that there is a dominant component of the universe, a kind of antigravity called dark energy. Any way that we intend to follow, there are numerous models that attempt to explain this effect. One of the models of modified gravity that has stood out in recent years is the Chern-Simons modified gravity. This modification consists in the addition of the Pontryagin density, which displays violation of parity symmetry in Einstein-Hilbert action. From among the various models proposed for dark energy there are some that are based on the holographic principle, known as holographic dark energy. Such models are based on the idea that the energy density of a given system is proportional to the inverse square of some characteristic length of the system. From these studies, here we consider the model proposed by Gao et. al., a model of dark energy where the characteristic length is given by the average radius of the Ricci scalar. Thus, the dark energy density is proportional to the Ricci scalar, i.e., ρ x ∝ R. It is a phenomenologically viable model and displays results similar to that presented by the cosmological model ACDM. In this work, we have considered the Ricci dark energy model in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas. (author)

  4. Dynamics of Stars, Dark Matter and the Universe

    DEFF Research Database (Denmark)

    Samsing, Johan Georg Mulvad

    of these X-rays alone. This has implication for mass measurements which can be used for constraining the amount of matter and dark energy we have in our universe. On even smaller scales I did an interesting study on the interaction between stars and black holes. I especially looked into the interaction where...... a new model independent way of doing this which also seems promising for measuring modifications to the theory of gravity itself. On slightly smaller scales I looked into what happens when two dark matter structures merge. Numerical simulations show that a smaller fraction of the dark matter particles...

  5. Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies

    CERN Document Server

    D'Amico, Guido; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.

  6. Holographic Dark Energy Interacting with Two Fluids and Validity of Generalized Second Law of Thermodynamics

    OpenAIRE

    Debnath, Ujjal

    2010-01-01

    We have considered a cosmological model of holographic dark energy interacting with dark matter and another unknown component of dark energy of the universe. We have assumed two interaction terms $Q$ and $Q'$ in order to include the scenario in which the mutual interaction between the two principal components (i.e., holographic dark energy and dark matter) of the universe leads to some loss in other forms of cosmic constituents. Our model is valid for any sign of $Q$ and $Q'$. If $Q

  7. Cosmic Visions Dark Energy: Small Projects Portfolio

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle; Frieman, Josh; Heitmann, Katrin; Jain, Bhuvnesh; Kahn, Steve; Mandelbaum, Rachel; Perlmutter, Saul; Slosar, Anže

    2018-02-20

    Understanding cosmic acceleration is one of the key science drivers for astrophysics and high-energy physics in the coming decade (2014 P5 Report). With the Large Synoptic Survey Telescope (LSST) and the Dark Energy Spectroscopic Instrument (DESI) and other new facilities beginning operations soon, we are entering an exciting phase during which we expect an order of magnitude improvement in constraints on dark energy and the physics of the accelerating Universe. This is a key moment for a matching Small Projects portfolio that can (1) greatly enhance the science reach of these flagship projects, (2) have immediate scientific impact, and (3) lay the groundwork for the next stages of the Cosmic Frontier Dark Energy program. In this White Paper, we outline a balanced portfolio that can accomplish these goals through a combination of observational, experimental, and theory and simulation efforts.

  8. Effects of Low Anisotropy on Generalized Ghost Dark Energy in Galileon Gravity

    Science.gov (United States)

    Hossienkhani, H.; Fayaz, V.; Jafari, A.; Yousefi, H.

    2018-04-01

    The definition of the Galileon gravity form is extended to the Brans-Dicke theory. Given, the framework of the Galileon theory, the generalized ghost dark energy model in an anisotropic universe is investigated. We study the cosmological implications of this model. In particular, we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy in Bianchi type I model. We also probe observational constraints by using the latest observational data on the generalized ghost dark energy models as the unification of dark matter and dark energy. In order to do so, we focus on observational determinations of the Hubble expansion rate (namely, the expansion history) H(z). As a result, we show the influence of the anisotropy (although low) on the evolution of the universe in the statefinder diagrams for Galileon gravity.

  9. Has ESA's XMM-Newton cast doubt over dark energy?

    Science.gov (United States)

    2003-12-01

    Galaxy cluster RXJ0847 hi-res Size hi-res: 100k Galaxy cluster RXJ0847 The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Observations of eight distant clusters of galaxies, the furthest of which is around 10 thousand million light years away, were studied by an international group of astronomers led by David Lumb of ESA's Space Research and Technology Centre (ESTEC) in the Netherlands. They compared these clusters to those found in the nearby Universe. This study was conducted as part of the larger XMM-Newton Omega Project, which investigates the density of matter in the Universe under the lead of Jim Bartlett of the College de France. Clusters of galaxies are prodigious emitters of X-rays because they contain a large quantity of high-temperature gas. This gas surrounds galaxies in the same way as steam surrounds people in a sauna. By measuring the quantity and energy of X-rays from a cluster, astronomers can work out both the temperature of the cluster gas and also the mass of the cluster. Theoretically, in a Universe where the density of matter is high, clusters of galaxies would continue to grow with time and so, on average, should contain more mass now than in the past. Most astronomers believe that we live in a low-density Universe in which a mysterious substance known as 'dark energy' accounts for 70% of the content of the cosmos and, therefore, pervades everything. In this scenario, clusters of galaxies should stop growing early in the history of the Universe and look virtually indistinguishable from those of today. In a paper soon to be published by the European journal Astronomy and Astrophysics, astronomers from the XMM

  10. Revival of the unified dark energy-dark matter model?

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2004-01-01

    We consider the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and show that it admits an unique decomposition into dark energy and dark matter components once phantomlike dark energy is excluded. Within this framework, we study structure formation and show that difficulties associated to unphysical oscillations or blowup in the matter power spectrum can be circumvented. Furthermore, we show that the dominance of dark energy is related to the time when energy density fluctuations start deviating from the linear δ∼a behavior

  11. Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.i [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: mjamil@camp.edu.p [Center for Advanced Mathematics and Physics, National University of Sciences and Technology, Rawalpindi 46000 (Pakistan)

    2010-06-07

    We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter {alpha} (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.

  12. Holographic dark energy in Brans-Dicke cosmology with chameleon scalar field

    International Nuclear Information System (INIS)

    Setare, M.R.; Jamil, Mubasher

    2010-01-01

    We study a cosmological implication of holographic dark energy in the Brans-Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter α (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans-Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans-Dicke cosmology framework.

  13. Constraints on holographic dark energy from type Ia supernova observations

    International Nuclear Information System (INIS)

    Zhang Xin; Wu Fengquan

    2005-01-01

    In this paper, we use the type Ia supernovae data to constrain the holographic dark energy model proposed by Li. We also apply a cosmic age test to this analysis. We consider in this paper a spatially flat Friedmann-Robertson-Walker universe with a matter component and a holographic dark energy component. The fit result shows that the case c m 0 =0.28, and h=0.65, which lead to the present equation of state of dark energy w 0 =-1.03 and the deceleration/acceleration transition redshift z T =0.63. Finally, an expected supernova/acceleration probe simulation using ΛCDM as a fiducial model is performed on this model, and the result shows that the holographic dark energy model takes on c<1 (c=0.92) even though the dark energy is indeed a cosmological constant

  14. Dark energy from the string axiverse.

    Science.gov (United States)

    Kamionkowski, Marc; Pradler, Josef; Walker, Devin G E

    2014-12-19

    String theories suggest the existence of a plethora of axionlike fields with masses spread over a huge number of decades. Here, we show that these ideas lend themselves to a model of quintessence with no super-Planckian field excursions and in which all dimensionless numbers are order unity. The scenario addresses the "Why now?" problem-i.e., Why has accelerated expansion begun only recently?-by suggesting that the onset of dark-energy domination occurs randomly with a slowly decreasing probability per unit logarithmic interval in cosmic time. The standard axion potential requires us to postulate a rapid decay of most of the axion fields that do not become dark energy. The need for these decays is averted, though, with the introduction of a slightly modified axion potential. In either case, a universe like ours arises in roughly 1 in 100 universes. The scenario may have a host of observable consequences.

  15. Vector theory of gravity: Universe without black holes and solution of dark energy problem

    Science.gov (United States)

    Svidzinsky, Anatoly A.

    2017-12-01

    We propose an alternative theory of gravity which assumes that background geometry of the Universe is fixed four dimensional Euclidean space and gravity is a vector field A k in this space which breaks the Euclidean symmetry. Direction of A k gives the time coordinate, while perpendicular directions are spatial coordinates. Vector gravitational field is coupled to matter universally and minimally through the equivalent metric f ik which is a functional of A k . We show that such assumptions yield a unique theory of gravity, it is free of black holes and, to the best of our knowledge, passes all available tests. For cosmology our theory predicts the same evolution of the Universe as general relativity with cosmological constant and zero spatial curvature. However, the present theory provides explanation of the dark energy as energy of longitudinal gravitational field induced by the Universe expansion and yields, with no free parameters, the value of {{{Ω }}}{{Λ }}=2/3≈ 0.67 which is consistent with the recent Planck result {{{Ω }}}{{Λ }}=0.686+/- 0.02. Such close agreement with cosmological data indicates that gravity has a vector, rather than tensor, origin. We demonstrate that gravitational wave signals measured by LIGO are compatible with vector gravity. They are produced by orbital inspiral of massive neutron stars which can exist in the present theory. We also quantize gravitational field and show that quantum vector gravity is equivalent to QED. Vector gravity can be tested by making more accurate measurement of the time delay of radar signal traveling near the Sun; by improving accuracy of the light deflection experiments; or by measuring propagation direction of gravitational waves relative to laser interferometer arms. Resolving the supermassive object at the center of our Galaxy with VLBA could provide another test of gravity and also shed light on the nature of dark matter.

  16. Nonlinear spherical perturbations in quintessence models of dark energy

    Science.gov (United States)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  17. Dark matters

    International Nuclear Information System (INIS)

    Silk, Joseph

    2010-01-01

    One of the greatest mysteries in the cosmos is that it is mostly dark. That is, not only is the night sky dark, but also most of the matter and the energy in the universe is dark. For every atom visible in planets, stars and galaxies today there exists at least five or six times as much 'Dark Matter' in the universe. Astronomers and particle physicists today are seeking to unravel the nature of this mysterious but pervasive dark matter, which has profoundly influenced the formation of structure in the universe. Dark energy remains even more elusive, as we lack candidate fields that emerge from well established physics. I will describe various attempts to measure dark matter by direct and indirect means, and discuss the prospects for progress in unravelling dark energy.

  18. Galaxy evolution, cosmology and dark energy with the Square Kilometer Array

    NARCIS (Netherlands)

    Rawlings, S; Abdalla, FB; Bridle, SL; Blake, CA; Baugh, CM; Greenhill, LJ; van der Hulst, JM

    2004-01-01

    The present-day Universe is seemingly dominated by dark energy and dark matter, but mapping the normal (baryonic) content remains vital for both astrophysics - understanding how galaxies form - and astro-particle physics inferring properties of the dark components. The Square Kilometer Array (SKA)

  19. Thermodynamics of interacting holographic dark energy with the apparent horizon as an IR cutoff

    International Nuclear Information System (INIS)

    Sheykhi, Ahmad

    2010-01-01

    As soon as an interaction between holographic dark energy and dark matter is taken into account, the identification of an IR cutoff with the Hubble radius H -1 , in a flat universe, can simultaneously drive accelerated expansion and solve the coincidence problem. Based on this, we demonstrate that in a non-flat universe the natural choice for the IR cutoff could be the apparent horizon radius, r-tilde A =1/√(H 2 +k/a 2 ). We show that any interaction of dark matter with holographic dark energy, whose infrared cutoff is set by the apparent horizon radius, implies an accelerated expansion and a constant ratio of the energy densities of both components thus solving the coincidence problem. We also verify that for a universe filled with dark energy and dark matter, the Friedmann equation can be written in the form of the modified first law of thermodynamics, dE = T h dS h + WdV, at the apparent horizon. In addition, the generalized second law of thermodynamics is fulfilled in a region enclosed by the apparent horizon. These results hold regardless of the specific form of dark energy and interaction term. Our study might reveal that in an accelerating universe with spatial curvature, the apparent horizon is a physical boundary from the thermodynamical point of view.

  20. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    International Nuclear Information System (INIS)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1989-01-01

    Until now, most studies on the cold dark matter (CDM) universe have considered only the distribution of the dark matter and compared that with the observed distribution of galaxies. Even though the dark matter determines the overall dynamics of the large-scale structure, galaxies form out of the baryonic matter whose density and velocity distributions can be different from those of the dark matter, depending on the thermal history of the universe. In this paper, the authors study both the dark matter component and the baryonic component, that is, galaxies and the IGM, with several simplifying assumptions, by explicitly following the evolution. The dark matter, galaxies, and IGM are coupled through gravity; galaxies form out of the IGM by taking mass and momentum, whereas the IGM responds to the energy input from the galaxies

  1. Particle creation and non-equilibrium thermodynamical prescription of dark fluids for universe bounded by an event horizon

    OpenAIRE

    Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy

    2015-01-01

    In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of...

  2. DOE and NASA joint Dark Energy mission

    CERN Multimedia

    2003-01-01

    "DOE and NASA announced their plan for a Joint Dark Energy Mission (JDEM) on October 23, 2003, at the NASA Office of Space Science Structure and Evolution of the Universe Subcommittee (SEUS) meeting" (1 paragraph).

  3. Baryogenesis, dark matter and the maximal temperature of the early universe

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried

    2012-12-15

    Mechanisms for the generation of the matter-antimatter asymmetry and dark matter strongly depend on the reheating temperature T{sub R}, the maximal temperature reached in the early universe. Forthcoming results from the LHC, low energy experiments, astrophysical observations and the Planck satellite will significantly constrain baryogenesis and the nature of dark matter, and thereby provide valuable information about the very early hot universe. At present, a wide range of reheating temperatures is still consistent with observations. We illustrate possible origins of matter and dark matter with four examples: moduli decay, electroweak baryogenesis, leptogenesis in the {nu}MSM and thermal leptogenesis. Finally, we discuss the connection between baryogenesis, dark matter and inflation in the context of supersymmetric spontaneous B-L breaking.

  4. Baryogenesis, dark matter and the maximal temperature of the early universe

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried

    2012-12-01

    Mechanisms for the generation of the matter-antimatter asymmetry and dark matter strongly depend on the reheating temperature T R , the maximal temperature reached in the early universe. Forthcoming results from the LHC, low energy experiments, astrophysical observations and the Planck satellite will significantly constrain baryogenesis and the nature of dark matter, and thereby provide valuable information about the very early hot universe. At present, a wide range of reheating temperatures is still consistent with observations. We illustrate possible origins of matter and dark matter with four examples: moduli decay, electroweak baryogenesis, leptogenesis in the νMSM and thermal leptogenesis. Finally, we discuss the connection between baryogenesis, dark matter and inflation in the context of supersymmetric spontaneous B-L breaking.

  5. Dark energy as consequence of release of cosmological nuclear binding-energy, and its further extension towards a new theory of inflation

    International Nuclear Information System (INIS)

    Gupta, R.C.; Pradhan, Anirudh; Gupta, Sushant

    2012-01-01

    Comparatively recent observations on Type-Ia supernovae and low density (Um = 0.3) measurement of matter including dark matter suggest that the present day universe consists mainly of repulsive-gravity type 'exotic matter' with negative-pressure often said 'dark energy' (Ux = O7). But the nature of dark energy is mysterious and its puzzling questions, such as why, how, where and when about the dark energy, are intriguing. In the present paper the authors attempt to answer these questions while making an effort to reveal the genesis of dark energy, and suggest that the cosmological nuclear binding energy liberated during primordial nucleo-synthesis remains trapped dormant for a long time and then is released free which manifests itself as dark energy in the universe. It is also explained why for dark energy the parameter w = -2/3. Noting that w = 1 for stiff matter and w = 1/3 for radiation; w = -2/3 is for dark energy because '- 1' is due to 'deficiency of stiff- nuclear-matter' and that this binding energy is ultimately released as 'radiation' contributing '+ 1/3', making w = -1+ 1/3 = -2/3. When dark energy is released free at Z = 80, w = -2/3. But as on present day at Z = 0 when radiation strength has diminished to ä ? 0, the parameter w = -1 + ä 1/3 = -1. This, thus almost solves the dark- energy mystery of negative pressure and repulsive-gravity. The proposed theory makes several estimates/predictions which agree reasonably well with the astrophysical constraints and observations. Though there are many candidate-theories, the proposed model of this paper presents an entirely new approach (cosmological nuclear energy) as a possible candidate for dark energy. The secret of acceleration of big-universe is hidden in the small-nucleus. (author)

  6. Dark energy from discrete spacetime.

    Directory of Open Access Journals (Sweden)

    Aaron D Trout

    Full Text Available Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  7. Dark energy from discrete spacetime.

    Science.gov (United States)

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  8. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    International Nuclear Information System (INIS)

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  9. Early-matter-like dark energy and the cosmic microwave background

    International Nuclear Information System (INIS)

    Aurich, R.; Lustig, S.

    2016-01-01

    Early-matter-like dark energy is defined as a dark energy component whose equation of state approaches that of cold dark matter (CDM) at early times. Such a component is an ingredient of unified dark matter (UDM) models, which unify the cold dark matter and the cosmological constant of the ΛCDM concordance model into a single dark fluid. Power series expansions in conformal time of the perturbations of the various components for a model with early-matter-like dark energy are provided. They allow the calculation of the cosmic microwave background (CMB) anisotropy from the primordial initial values of the perturbations. For a phenomenological UDM model, which agrees with the observations of the local Universe, the CMB anisotropy is computed and compared with the CMB data. It is found that a match to the CMB observations is possible if the so-called effective velocity of sound c eff of the early-matter-like dark energy component is very close to zero. The modifications on the CMB temperature and polarization power spectra caused by varying the effective velocity of sound are studied

  10. Another two dark energy models motivated from Karolyhazy uncertainty relation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Cheng-Yi; Yang, Wen-Li; Song, Yu. [Northwest University, Institute of Modern Physics, Xian (China); Yue, Rui-Hong [Ningbo University, Faculty of Science, Ningbo (China)

    2012-03-15

    The Karolyhazy uncertainty relation indicates that there exists a minimal detectable cell {delta}t{sup 3} over the region t{sup 3} in Minkowski space-time. Due to the energy-time uncertainty relation, the energy of the cell {delta}t {sup 3} cannot be less {delta}t{sup -1}. Then we get a new energy density of metric fluctuations of Minkowski spacetime as {delta}t{sup -4}. Motivated by the energy density, we propose two new dark-energy models. One model is characterized by the age of the universe and the other is characterized by the conformal age of the universe. We find that in the two models, the dark energy mimics a cosmological constant in the late time. (orig.)

  11. What do we really know about dark energy?

    Science.gov (United States)

    Durrer, Ruth

    2011-12-28

    In this paper, we discuss what we truly know about dark energy. I shall argue that, to date, our single indication for the existence of dark energy comes from distance measurements and their relation to redshift. Supernovae, cosmic microwave background anisotropies and observations of baryon acoustic oscillations simply tell us that the observed distance to a given redshift z is larger than the one expected from a Friedmann-Lemaître universe with matter only and the locally measured Hubble parameter.

  12. A Short History of the Missing Mass and Dark Energy Paradigms

    OpenAIRE

    Bergh, Sidney van den

    2000-01-01

    In 1900 it was believed that almost 100% of the mass of the Universe resided in stars. Now, in the year 2000, such stars (and cold gas) are known to account for only ~1% its mass. The remaining mass of the Universe is thought to reside in hot baryons (~3%), cold dark matter (~30%) and dark energy (~66%). The present paper traces the evolution of our thinking about the density of the Universe during the Twentieth Century, with special emphasis on the of the discovery of cold dark matter.

  13. Particle creation and non-equilibrium thermodynamical prescription of dark fluids for universe bounded by an event horizon

    Science.gov (United States)

    Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy

    2015-03-01

    In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of state and (ii) Holographic dark energy. In both the cases, the validity of generalized second law of thermodynamics (GSLT) which states that the total entropy of the fluid as well as that of the horizon should not decrease with the evolution of the universe, has been examined graphically for universe bounded by the event horizon. It is found that GSLT holds in both the cases with some restrictions on the interacting coupling parameter.

  14. Measuring the speed of dark: Detecting dark energy perturbations

    International Nuclear Information System (INIS)

    Putter, Roland de; Huterer, Dragan; Linder, Eric V.

    2010-01-01

    The nature of dark energy can be probed not only through its equation of state but also through its microphysics, characterized by the sound speed of perturbations to the dark energy density and pressure. As the sound speed drops below the speed of light, dark energy inhomogeneities increase, affecting both cosmic microwave background and matter power spectra. We show that current data can put no significant constraints on the value of the sound speed when dark energy is purely a recent phenomenon, but can begin to show more interesting results for early dark energy models. For example, the best fit model for current data has a slight preference for dynamics [w(a)≠-1], degrees of freedom distinct from quintessence (c s ≠1), and early presence of dark energy [Ω de (a<<1)≠0]. Future data may open a new window on dark energy by measuring its spatial as well as time variation.

  15. New agegraphic dark energy in Hořava-Lifshitz cosmology

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Saridakis, Emmanuel N.

    2010-01-01

    We investigate the new agegraphic dark energy scenario in a universe governed by Hořava-Lifshitz gravity. We consider both the detailed and non-detailed balanced version of the theory, we impose an arbitrary curvature, and we allow for an interaction between the matter and dark energy sectors. Extracting the differential equation for the evolution of the dark energy density parameter and performing an expansion of the dark energy equation-of-state parameter, we calculate its present and its low-redshift value as functions of the dark energy and curvature density parameters at present, of the Hořava-Lifshitz running parameter λ, of the new agegraphic dark energy parameter n, and of the interaction coupling b. We find that w 0 = −0.82 +0.08 −0.08 and w 1 = 0.08 +0.09 −0.07 . Although this analysis indicates that the scenario can be compatible with observations, it does not enlighten the discussion about the possible conceptual and theoretical problems of Hořava-Lifshitz gravity

  16. Analysis of Generalized Ghost Dark Energy in LQC and Galileon Gravity

    International Nuclear Information System (INIS)

    Biswas, Mahasweta; Debnath, Ujjal

    2016-01-01

    A so-called ghost dark energy was recently proposed to explain the present acceleration of the universe. The energy density of ghost dark energy, which originates from Veneziano ghost of Quantum Chromodynamics (QCD), in a time dependent background, can be written in the form, ρ_D = (αH + βH"2) where H is the Hubble parameter. We investigate the generalized ghost dark energy (GGDE) model in the setup of loop quantum Cosmology (LQC) and Galileon Cosmology. We study the cosmological implications of the models. We also obtain the equation of state and the deceleration parameters and differential equations governing the evolution of this dark energy model for LQC and Galileon Cosmology. (paper)

  17. Unification of dark energy and dark matter

    International Nuclear Information System (INIS)

    Takahashi, Fuminobu; Yanagida, T.T.

    2006-01-01

    We propose a scenario in which dark energy and dark matter are described in a unified manner. The ultralight pseudo-Nambu-Goldstone (pNG) boson, A, naturally explains the observed magnitude of dark energy, while the bosonic supersymmetry partner of the pNG boson, B, can be a dominant component of dark matter. The decay of B into a pair of electron and positron may explain the 511 keV γ ray from the Galactic Center

  18. Dark Mass Creation During EWPT Via Dark Energy Interaction

    OpenAIRE

    Kisslinger, Leonard S.; Casper, Steven

    2013-01-01

    We add Dark Matter Dark Energy terms with a quintessence field interacting with a Dark Matter field to a MSSM EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From the expectation value of the quintessence field we estimate the Dark Matter mass for parameters used in previous work on Dark Matter-Dark Energy interactions.

  19. Neutrino mixing, flavor states and dark energy

    International Nuclear Information System (INIS)

    Blasone, M.; Capolupo, A.; Capozziello, S.; Vitiello, G.

    2008-01-01

    We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe

  20. Interaction of Gravitational field and Brans-Dicke field in R/W universe containing Dark Energy like fluid

    International Nuclear Information System (INIS)

    Singh, Kangujam Priyokumar; Dewri, Mukunda; Singh, Koijam Manihar

    2016-01-01

    On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further. (paper)

  1. Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2015-10-15

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √(-g) (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless ''dust'' fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies. (orig.)

  2. Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe

    OpenAIRE

    Takahashi, Ryuichi

    2008-01-01

    We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime ($k \\approx 0.1h$/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state $w(a)$. It turns out that the power spectrum coincides with the approx...

  3. Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars

    Energy Technology Data Exchange (ETDEWEB)

    Yazadjiev, Stoytcho S. [Department of Theoretical Physics, Faculty of Physics, St. Kliment Ohridski University of Sofia, James Bourchier Blvd. 5, 1164 Sofia (Bulgaria); Doneva, Daniela D., E-mail: yazad@phys.uni-sofia.bg, E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, IAAT, Eberhard-Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2012-03-01

    In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.

  4. Dark energy in hybrid inflation

    International Nuclear Information System (INIS)

    Gong, Jinn-Ouk; Kim, Seongcheol

    2007-01-01

    The situation that a scalar field provides the source of the accelerated expansion of the Universe while rolling down its potential is common in both the simple models of the primordial inflation and the quintessence-based dark energy models. Motivated by this point, we address the possibility of causing the current acceleration via the primordial inflation using a simple model based on hybrid inflation. We trigger the onset of the motion of the quintessence field via the waterfall field, and find that the fate of the Universe depends on the true vacuum energy determined by choosing the parameters. We also briefly discuss the variation of the equation of state and the possible implementation of our scenario in supersymmetric theories

  5. Dynamics of Mixed Dark Energy Domination in Teleparallel Gravity and Phase-Space Analysis

    Directory of Open Access Journals (Sweden)

    Emre Dil

    2015-01-01

    Full Text Available We consider a novel dark energy model to investigate whether it will provide an expanding universe phase. Here we propose a mixed dark energy domination which is constituted by tachyon, quintessence, and phantom scalar fields nonminimally coupled to gravity, in the absence of background dark matter and baryonic matter, in the framework of teleparallel gravity. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions implying the acceleration phase of universe.

  6. Cosmological implications of a dark matter self-interaction energy density

    International Nuclear Information System (INIS)

    Stiele, Rainer; Boeckel, Tillmann; Schaffner-Bielich, Juergen

    2010-01-01

    We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle m SI and coupling constant α SI . Because of the expansion behavior in a Robertson-Walker metric we investigate self-interacting dark matter that is warm in the case of thermal relics. The scaling behavior of dark matter self-interaction energy density (ρ SI ∝a -6 ) shows that it can be the dominant contribution (only) in the very early universe. Thus its impact on primordial nucleosynthesis is used to restrict the interaction strength m SI /√(α SI ), which we find to be at least as strong as the strong interaction. Furthermore we explore dark matter decoupling in a self-interaction dominated universe, which is done for the self-interacting warm dark matter as well as for collisionless cold dark matter in a two component scenario. We find that strong dark matter self-interactions do not contradict superweak inelastic interactions between self-interacting dark matter and baryonic matter (σ A SIDM weak ) and that the natural scale of collisionless cold dark matter decoupling exceeds the weak scale (σ A CDM >σ weak ) and depends linearly on the particle mass. Finally structure formation analysis reveals a linear growing solution during self-interaction domination (δ∝a); however, only noncosmological scales are enhanced.

  7. An effective description of dark matter and dark energy in the mildly non-linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Matthew; Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94306 (United States); Maleknejad, Azadeh, E-mail: matthew.lewandowski@cea.fr, E-mail: azade@ipm.ir, E-mail: senatore@stanford.edu [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)

    2017-05-01

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the information resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.

  8. Astronomers find evidence of a 'dark' force in the Universe

    CERN Multimedia

    Spice, B

    2003-01-01

    "Astrophysicists led by a core of Pittsburgh researchers yesterday said they have found new evidence for "dark energy," the mysterious, repulsive force that appears to be speeding up the expansion of the universe" (1 page).

  9. Supplying Dark Energy from Scalar Field Dark Matter

    OpenAIRE

    Gogberashvili, Merab; Sakharov, Alexander S.

    2017-01-01

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  10. Interacting vacuum energy in the dark sector

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, L. P. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Cuidad Universitaria, Buenos Aires 1428 (Argentina); Carneiro, S. [Instituto de Física, Uníversídade Federal da Bahia, 40210-340, Salvador, BA (Brazil)

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  11. On dark energy isocurvature perturbation

    International Nuclear Information System (INIS)

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe

    2011-01-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data

  12. Dark energy equation of state and anthropic selection

    International Nuclear Information System (INIS)

    Garriga, Jaume; Linde, Andrei; Vilenkin, Alexander

    2004-01-01

    We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects. We find that, in some models, the most probable values of the slope are very small, implying that the dark energy density stays constant to very high accuracy throughout cosmological evolution. In other models, however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied, leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter case, the effective equation of state varies appreciably with the redshift, leading to a number of testable predictions

  13. Conformal Gravity: Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Robert K. Nesbet

    2013-01-01

    Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.

  14. Probing the stability of superheavy dark matter particles with high-energy neutrinos

    International Nuclear Information System (INIS)

    Esmaili, Arman; Peres, O.L.G.

    2012-01-01

    Full text: There is currently mounting evidence for the existence of dark matter in our Universe from various astrophysical and cosmological observations, but the two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive lower limits on the lifetime of dark matter particles with masses in the range 10 TeV - 10 18 GeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. All these experiments probe different energy windows and perfectly complement each other. For dark matter particles which produce neutrinos in a two body or a three body decay, we find that the dark matter lifetime must be longer than ∼ 10 26 s for masses between 10 TeV and the Grand Unification scale. We will consider various scenarios where the decay of the dark matter particle produces high energy neutrinos. Neutrinos travel in the Universe without suffering an appreciable attenuation, even for EeV neutrinos, in contrast to photons which rapidly lose their energy via pair production. This remarkable property makes neutrinos a very suitable messenger to constrain the lifetime of superheavy dark matter particles. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay. (author)

  15. Constraints on early dark energy from CMB lensing and weak lensing tomography

    International Nuclear Information System (INIS)

    Hollenstein, Lukas; Crittenden, Robert; Sapone, Domenico; Schäfer, Björn Malte

    2009-01-01

    Dark energy can be studied by its influence on the expansion of the Universe as well as on the growth history of the large-scale structure. In this paper, we follow the growth of the cosmic density field in early dark energy cosmologies by combining observations of the primary CMB temperature and polarisation power spectra at high redshift, of the CMB lensing deflection field at intermediate redshift and of weak cosmic shear at low redshifts for constraining the allowed amount of early dark energy. We present these forecasts using the Fisher matrix formalism and consider the combination of Planck data with the weak lensing survey of Euclid. We find that combining these data sets gives powerful constraints on early dark energy and is able to break degeneracies in the parameter set inherent to the various observational channels. The derived statistical 1σ-bound on the early dark energy density parameter is σ(Ω e d ) = 0.0022 which suggests that early dark energy models can be well examined in our approach. In addition, we derive the dark energy figure of merit for the considered dark energy parameterisation and comment on the applicability of the growth index to early dark energy cosmologies

  16. Dynamical 3-Space: Supernovae and the Hubble Expansion — the Older Universe without Dark Energy

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2007-10-01

    Full Text Available We apply the new dynamics of 3-space to cosmology by deriving a Hubble expansion solution. This dynamics involves two constants; G and — the fine structure constant. This solution gives an excellent parameter-free fit to the recent supernova and gamma- ray burst redshift data without the need for “dark energy” or “dark matter”. The data and theory together imply an older age for the universe of some 14.7Gyrs. The 3-space dynamics has explained the bore hole anomaly, spiral galaxy flat rotation speeds, the masses of black holes in spherical galaxies, gravitational light bending and lensing, all without invoking “dark matter” or “dark energy”. These developments imply that a new understanding of the universe is now available.

  17. When the universe expands too fast: relentless dark matter

    Science.gov (United States)

    D'Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano

    2017-05-01

    We consider a modification to the standard cosmological history consisting of introducing a new species phi whose energy density red-shifts with the scale factor a like ρphi propto a-(4+n). For 0n>, such a red-shift is faster than radiation, hence the new species dominates the energy budget of the universe at early times while it is completely negligible at late times. If equality with the radiation energy density is achieved at low enough temperatures, dark matter can be produced as a thermal relic during the new cosmological phase. Dark matter freeze-out then occurs at higher temperatures compared to the standard case, implying that reproducing the observed abundance requires significantly larger annihilation rates. Here, we point out a completely new phenomenon, which we refer to as relentless dark matter: for large enough n, unlike the standard case where annihilation ends shortly after the departure from thermal equilibrium, dark matter particles keep annihilating long after leaving chemical equilibrium, with a significant depletion of the final relic abundance. Relentless annihilation occurs for n >= 2 and n >= 4 for s-wave and p-wave annihilation, respectively, and it thus occurs in well motivated scenarios such as a quintessence with a kination phase. We discuss a few microscopic realizations for the new cosmological component and highlight the phenomenological consequences of our calculations for dark matter searches.

  18. Accelerated Expansion of the Universe: Dark Energy or modifications to the theory of gravity to Einstein?

    International Nuclear Information System (INIS)

    Quiros, I.

    2008-01-01

    Full text: An overview of the state of the art in modern astrophysics and cosmology is given, emphasizing the 'Dark Energy Problem', one of the fundamental problems of theoretical physics at present. In particular is analyzed the possibility that the universe could be a three-dimensional membrane embedded in a higher dimensional space. These models known as 'brane worlds' can explain the present accelerated expansion of the Universe as dissipation due to gravity at cosmological scales extra or limit space infrared (IR). However there are many other problems to solve, including the problem of 'ghost' modes that are inevitable in any IR modification of gravity. (author)

  19. Dynamics of teleparallel dark energy

    International Nuclear Information System (INIS)

    Wei Hao

    2012-01-01

    Recently, Geng et al. proposed to allow a non-minimal coupling between quintessence and gravity in the framework of teleparallel gravity, motivated by the similar one in the framework of General Relativity (GR). They found that this non-minimally coupled quintessence in the framework of teleparallel gravity has a richer structure, and named it “teleparallel dark energy”. In the present work, we note that there might be a deep and unknown connection between teleparallel dark energy and Elko spinor dark energy. Motivated by this observation and the previous results of Elko spinor dark energy, we try to study the dynamics of teleparallel dark energy. We find that there exist only some dark-energy-dominated de Sitter attractors. Unfortunately, no scaling attractor has been found, even when we allow the possible interaction between teleparallel dark energy and matter. However, we note that w at the critical points is in agreement with observations (in particular, the fact that w=−1 independently of ξ is a great advantage).

  20. The year in ideas; dark energy

    CERN Multimedia

    Burdick, A

    2002-01-01

    Gravity should halt the expansion of the universe but a few years ago a study of supernovae showed that in fact cosmic expansion is speeding up. To explain this, cosmologists have postulated that a strange, repulsive force, which they call dark energy, is at work, counteracting gravity and pushing galaxies apart at an accelerating rate (1/2 page).

  1. Roles of dark energy perturbations in dynamical dark energy models: can we ignore them?

    Science.gov (United States)

    Park, Chan-Gyung; Hwang, Jai-chan; Lee, Jae-heon; Noh, Hyerim

    2009-10-09

    We show the importance of properly including the perturbations of the dark energy component in the dynamical dark energy models based on a scalar field and modified gravity theories in order to meet with present and future observational precisions. Based on a simple scaling scalar field dark energy model, we show that observationally distinguishable substantial differences appear by ignoring the dark energy perturbation. By ignoring it the perturbed system of equations becomes inconsistent and deviations in (gauge-invariant) power spectra depend on the gauge choice.

  2. Dark energy and the cosmic microwave background radiation

    Science.gov (United States)

    Dodelson, S.; Knox, L.

    2000-01-01

    We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.

  3. Higgs seesaw mechanism as a source for dark energy.

    Science.gov (United States)

    Krauss, Lawrence M; Dent, James B

    2013-08-09

    Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea.

  4. Dark energy and dark matter from primordial QGP

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  5. Vacuum fluctuations in an ancestor vacuum: A possible dark energy candidate

    Science.gov (United States)

    Aoki, Hajime; Iso, Satoshi; Lee, Da-Shin; Sekino, Yasuhiro; Yeh, Chen-Pin

    2018-02-01

    We consider an open universe created by bubble nucleation, and study possible effects of our "ancestor vacuum," a de Sitter space in which bubble nucleation occurred, on the present universe. We compute vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly, and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy equation of state w (z ) as a function of the redshift.

  6. Dark energy with a gradient coupling to the dark matter fluid: cosmological dynamics and structure formation

    Science.gov (United States)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola

    2018-01-01

    We consider scalar field models of dark energy interacting with dark matter through a coupling proportional to the contraction of the four-derivative of the scalar field with the four-velocity of the dark matter fluid. The coupling is realized at the Lagrangian level employing the formalism of Scalar-Fluid theories, which use a consistent Lagrangian approach for relativistic fluid to describe dark matter. This framework produces fully covariant field equations, from which we can derive unequivocal cosmological equations at both background and linear perturbations levels. The background evolution is analyzed in detail applying dynamical systems techniques, which allow us to find the complete asymptotic behavior of the universe given any set of model parameters and initial conditions. Furthermore we study linear cosmological perturbations investigating the growth of cosmic structures within the quasi-static approximation. We find that these interacting dark energy models give rise to interesting phenomenological dynamics, including late-time transitions from dark matter to dark energy domination, matter and accelerated scaling solutions and dynamical crossing of the phantom barrier. Moreover we obtain possible deviations from standard ΛCDM behavior at the linear perturbations level, which have an impact on the dynamics of structure formation and might provide characteristic observational signatures.

  7. Modified holographic dark energy in DGP brane world

    International Nuclear Information System (INIS)

    Liu, Dao-Jun; Wang, Hua; Yang, Bin

    2010-01-01

    In this Letter, the cosmological dynamics of a modified holographic dark energy which is derived from the UV/IR duality by considering the black hole mass in higher dimensions as UV cutoff, is investigated in Dvali-Gabadadze-Porrati (DGP) brane world model. We choose Hubble horizon and future event horizon as IR cutoff respectively. And the two branches of the DGP model are both taken into account. When Hubble horizon is considered as IR cutoff, the modified holographic dark energy (HDE) behaves like an effect dark energy that modification of gravity in pure DGP brane world model acts and it can drive the expansion of the universe speed up at late time in ε=-1 branch which in pure DGP model cannot undergo an accelerating phase. When future event horizon acts as IR cutoff, the equation of state parameter of the modified HDE can cross the phantom divide.

  8. Distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    International Nuclear Information System (INIS)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code

  9. Distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, D.; Vishniac, E.T.; Chiang, W.H.

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  10. Quantum mechanical look at the radioactive-like decay of metastable dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland); Stachowski, Aleksander [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Urbanowski, Krzysztof [University of Zielona Gora, Institute of Physics, Zielona Gora (Poland)

    2017-12-15

    We derive the Shafieloo, Hazra, Sahni and Starobinsky (SHSS) phenomenological formula for the radioactive-like decay of metastable dark energy directly from the principles of quantum mechanics. To this aim we use the Fock-Krylov theory of quantum unstable states. We obtain deeper insight on the decay process as having three basic phases: the phase of radioactive decay, the next phase of damping oscillations, and finally the phase of power-law decay. We consider the cosmological model with matter and dark energy in the form of decaying metastable dark energy and study its dynamics in the framework of non-conservative cosmology with an interacting term determined by the running cosmological parameter. We study the cosmological implications of metastable dark energy and estimate the characteristic time of ending of the radioactive-like decay epoch to be 2.2 x 10{sup 4} of the present age of the Universe. We also confront the model with astronomical data which show that the model is in good agreement with the observations. Our general conclusion is that we are living in the epoch of the radioactive-like decay of metastable dark energy which is a relict of the quantum age of the Universe. (orig.)

  11. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    Science.gov (United States)

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  12. Dark information of black hole radiation raised by dark energy

    Science.gov (United States)

    Ma, Yu-Han; Chen, Jin-Fu; Sun, Chang-Pu

    2018-06-01

    The "lost" information of black hole through the Hawking radiation was discovered being stored in the correlation among the non-thermally radiated particles (Parikh and Wilczek, 2000 [31], Zhang et al., 2009 [16]). This correlation information, which has not yet been proved locally observable in principle, is named by dark information. In this paper, we systematically study the influences of dark energy on black hole radiation, especially on the dark information. Calculating the radiation spectrum in the existence of dark energy by the approach of canonical typicality, which is reconfirmed by the quantum tunneling method, we find that the dark energy will effectively lower the Hawking temperature, and thus makes the black hole has longer life time. It is also discovered that the non-thermal effect of the black hole radiation is enhanced by dark energy so that the dark information of the radiation is increased. Our observation shows that, besides the mechanical effect (e.g., gravitational lensing effect), the dark energy rises the stored dark information, which could be probed by a non-local coincidence measurement similar to the coincidence counting of the Hanbury-Brown-Twiss experiment in quantum optics.

  13. Role of energy conservation and vacuum energy in the evolution of the universe

    CSIR Research Space (South Africa)

    Greben, JM

    2010-06-01

    Full Text Available accommodates the notion of dark energy and proposes a possible explanation for dark matter. It leads to a dual description of the universe, which is reminiscent of the dual theory proposed by Milne in 1937. On the one hand one can describe the universe in terms...

  14. A geometric measure of dark energy with pairs of galaxies.

    Science.gov (United States)

    Marinoni, Christian; Buzzi, Adeline

    2010-11-25

    Observations indicate that the expansion of the Universe is accelerating, which is attributed to a ‘dark energy’ component that opposes gravity. There is a purely geometric test of the expansion of the Universe (the Alcock–Paczynski test), which would provide an independent way of investigating the abundance (Ω(X)) and equation of state (W(X)) of dark energy. It is based on an analysis of the geometrical distortions expected from comparing the real-space and redshift-space shape of distant cosmic structures, but it has proved difficult to implement. Here we report an analysis of the symmetry properties of distant pairs of galaxies from archival data. This allows us to determine that the Universe is flat. By alternately fixing its spatial geometry at Ω(k)≡0 and the dark energy equation-of-state parameter at W(X)≡-1, and using the results of baryon acoustic oscillations, we can establish at the 68.3% confidence level that and -0.85>W(X)>-1.12 and 0.60<Ω(X)<0.80.

  15. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    Science.gov (United States)

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-04-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  16. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    Science.gov (United States)

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-01-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  17. James Webb Space Telescope Studies of Dark Energy

    Science.gov (United States)

    Gardner, Jonathan P.; Stiavelli, Massimo; Mather, John C.

    2010-01-01

    The Hubble Space Telescope (HST) has contributed significantly to studies of dark energy. It was used to find the first evidence of deceleration at z=1.8 (Riess et al. 2001) through the serendipitous discovery of a type 1a supernova (SN1a) in the Hubble Deep Field. The discovery of deceleration at z greater than 1 was confirmation that the apparent acceleration at low redshift (Riess et al. 1998; Perlmutter et al. 1999) was due to dark energy rather than observational or astrophysical effects such as systematic errors, evolution in the SN1a population or intergalactic dust. The GOODS project and associated follow-up discovered 21 SN1a, expanding on this result (Riess et al. 2007). HST has also been used to constrain cosmological parameters and dark energy through weak lensing measurements in the COSMOS survey (Massey et al 2007; Schrabback et al 2009) and strong gravitational lensing with measured time delays (Suyu et al 2010). Constraints on dark energy are often parameterized as the equation of state, w = P/p. For the cosmological constant model, w = -1 at all times; other models predict a change with time, sometimes parameterized generally as w(a) or approximated as w(sub 0)+(1-a)w(sub a), where a = (1+z)(sup -1) is the scale factor of the universe relative to its current scale. Dark energy can be constrained through several measurements. Standard candles, such as SN1a, provide a direct measurement of the luminosity distance as a function of redshift, which can be converted to H(z), the change in the Hubble constant with redshift. An analysis of weak lensing in a galaxy field can be used to derive the angular-diameter distance from the weak-lensing equation and to measure the power spectrum of dark-matter halos, which constrains the growth of structure in the Universe. Baryonic acoustic oscillations (BAO), imprinted on the distribution of matter at recombination, provide a standard rod for measuring the cosmological geometry. Strong gravitational lensing of a

  18. When the universe expands too fast: relentless dark matter

    Energy Technology Data Exchange (ETDEWEB)

    D' Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano, E-mail: fderamo@ucsc.edu, E-mail: nfernan2@ucsc.edu, E-mail: profumo@ucsc.edu [Department of Physics, University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064 (United States)

    2017-05-01

    We consider a modification to the standard cosmological history consisting of introducing a new species φ whose energy density red-shifts with the scale factor a like ρ{sub φ} ∝ a {sup −(4+} {sup n} {sup )}. For 0 n >, such a red-shift is faster than radiation, hence the new species dominates the energy budget of the universe at early times while it is completely negligible at late times. If equality with the radiation energy density is achieved at low enough temperatures, dark matter can be produced as a thermal relic during the new cosmological phase. Dark matter freeze-out then occurs at higher temperatures compared to the standard case, implying that reproducing the observed abundance requires significantly larger annihilation rates. Here, we point out a completely new phenomenon, which we refer to as relentless dark matter: for large enough n , unlike the standard case where annihilation ends shortly after the departure from thermal equilibrium, dark matter particles keep annihilating long after leaving chemical equilibrium, with a significant depletion of the final relic abundance. Relentless annihilation occurs for n ≥ 2 and n ≥ 4 for s -wave and p -wave annihilation, respectively, and it thus occurs in well motivated scenarios such as a quintessence with a kination phase. We discuss a few microscopic realizations for the new cosmological component and highlight the phenomenological consequences of our calculations for dark matter searches.

  19. Dark Energy from structure: a status report

    Science.gov (United States)

    Buchert, Thomas

    2008-02-01

    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein’s theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (“morphon field”) modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.

  20. Unifying dark energy and dark matter with the modified Ricci model

    International Nuclear Information System (INIS)

    Zhang, Linsen; Wu, Puxun; Yu, Hongwei

    2011-01-01

    In this paper, two modified Ricci models are considered as the candidates of unified dark matter-dark energy. In model one, the energy density is given by ρ MR =3M pl (αH 2 + βH), whereas, in model two, by ρ MR =3M pl ((α)/(6)R + γH H -1 ). We find that they can explain both dark matter and dark energy successfully. A constant equation of state of dark energy is obtained in model one, which means that it gives the same background evolution as the wCDM model, while model two can give an evolutionary equation of state of dark energy with the phantom divide line crossing in the near past. (orig.)

  1. Is w≠-1 evidence for a dynamical dark energy equation of state?

    International Nuclear Information System (INIS)

    Avelino, P. P.; Trindade, A. M. M.; Viana, P. T. P.

    2009-01-01

    Current constraints on the dark energy equation of state parameter, w, are expected to be improved by more than 1 order of magnitude in the next decade. If |w-1| > or approx. 0.01 around the present time, but the dark energy dynamics is sufficiently slow, it is possible that future constraints will rule out a cosmological constant while being consistent with a time-independent equation of state parameter. In this paper, we show that although models with such behavior can be constructed, they do require significant fine-tuning. Therefore, if the observed acceleration of the Universe is induced by a dark energy component, then finding w≠-1 would, on its own, constitute very strong evidence for a dynamical dark energy equation of state.

  2. Early Universe synthesis of asymmetric dark matter nuggets

    Science.gov (United States)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-01

    We compute the mass function of bound states of asymmetric dark matter—nuggets—synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  3. Precision cosmological measurements: Independent evidence for dark energy

    International Nuclear Information System (INIS)

    Bothun, Greg; Hsu, Stephen D.H.; Murray, Brian

    2008-01-01

    Using recent precision measurements of cosmological parameters, we re-examine whether these observations alone, independent of type Ia supernova surveys, are sufficient to imply the existence of dark energy. We find that best measurements of the age of the Universe t 0 , the Hubble parameter H 0 and the matter fraction Ω m strongly favor an equation of state defined by (w<-1/3). This result is consistent with the existence of a repulsive, acceleration-causing component of energy if the Universe is nearly flat

  4. Quantisation of the holographic Ricci dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Albarran, Imanol; Bouhmadi-López, Mariam, E-mail: imanol@ubi.pt, E-mail: mbl@ubi.pt [Departamento de Física, Universidade da Beira Interior, 6200 Covilhã (Portugal)

    2015-08-01

    While general relativity is an extremely robust theory to describe the gravitational interaction in our Universe, it is expected to fail close to singularities like the cosmological ones. On the other hand, it is well known that some dark energy models might induce future singularities; this can be the case for example within the setup of the Holographic Ricci Dark Energy model (HRDE). On this work, we perform a cosmological quantisation of the HRDE model and obtain under which conditions a cosmic doomsday can be avoided within the quantum realm. We show as well that this quantum model not only avoid future singularities but also the past Big Bang.

  5. Unification of inflation, dark energy, and dark matter within the Salam-Sezgin cosmological model

    International Nuclear Information System (INIS)

    Henriques, Alfredo B.; Potting, Robertus; Sa, Paulo M.

    2009-01-01

    We investigate a cosmological model, based on the Salam-Sezgin six-dimensional supergravity theory and on previous work by Anchordoqui, Goldberg, Nawata, and Nunez. Assuming a period of warm inflation, we show that it is possible to extend the evolution of the model back in time, to include the inflationary period, thus unifying inflation, dark matter, and dark energy within a single framework. Like the previous authors, we were not able to obtain the full dark matter content of the universe from the Salam-Sezgin scalar fields. However, even if only partially successful, this work shows that present-day theories, based on superstrings and supergravity, may eventually lead to a comprehensive modeling of the evolution of the universe. We find that the gravitational-wave spectrum of the model has a nonconstant negative slope in the frequency range (10 -15 -10 6 ) rad/s, and that, unlike standard (cold) inflation models, it shows no structure in the MHz/GHz range of frequencies.

  6. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-01-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  7. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    Science.gov (United States)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-11-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega0 = 1 and h = 0.5 was considered (here h = H0 bar 100/kms/Mpc and H0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  8. What makes the Universe accelerate? A review on what dark energy could be and how to test it.

    Science.gov (United States)

    Brax, Philippe

    2018-01-01

    Explaining the origin of the acceleration of the expansion of the Universe remains as challenging as ever. In this review, we present different approaches from dark energy to modified gravity. We also emphasize the quantum nature of the problem and the need for an explanation which should violate Weinberg's no go theorem. This might involve a self-tuning mechanism or the acausal sequestering of the vacuum energy. Laboratory tests of the coupling to matter of nearly massless scalar fields, which could be one of the features required to explain the cosmic acceleration, are also reviewed.

  9. Why we need to see the dark matter to understand the dark energy

    OpenAIRE

    Kunz, Martin

    2007-01-01

    The cosmological concordance model contains two separate constituents which interact only gravitationally with themselves and everything else, the dark matter and the dark energy. In the standard dark energy models, the dark matter makes up some 20% of the total energy budget today, while the dark energy is responsible for about 75%. Here we show that these numbers are only robust for specific dark energy models and that in general we cannot measure the abundance of the dark constituents sepa...

  10. Fundamentalist physics: why Dark Energy is bad for astronomy

    International Nuclear Information System (INIS)

    White, Simon D M

    2007-01-01

    Astronomers carry out observations to explore the diverse processes and objects which populate our Universe. High-energy physicists carry out experiments to approach the Fundamental Theory underlying space, time and matter. Dark Energy is a unique link between them, reflecting deep aspects of the Fundamental Theory, yet apparently accessible only through astronomical observation. Large sections of the two communities have therefore converged in support of astronomical projects to constrain Dark Energy. In this essay I argue that this convergence can be damaging for astronomy. The two communities have different methodologies and different scientific cultures. By uncritically adopting the values of an alien system, astronomers risk undermining the foundations of their own current success and endangering the future vitality of their field. Dark Energy is undeniably an interesting problem to tackle through astronomical observation, but it is one of many and not necessarily the one where significant progress is most likely to follow a major investment of resources

  11. Entropy-Corrected Holographic Dark Energy

    International Nuclear Information System (INIS)

    Wei Hao

    2009-01-01

    The holographic dark energy (HDE) is now an interesting candidate of dark energy, which has been studied extensively in the literature. In the derivation of HDE, the black hole entropy plays an important role. In fact, the entropy-area relation can be modified due to loop quantum gravity or other reasons. With the modified entropy-area relation, we propose the so-called 'entropy-corrected holographic dark energy' (ECHDE) in the present work. We consider many aspects of ECHDE and find some interesting results. In addition, we briefly consider the so-called 'entropy-corrected agegraphic dark energy' (ECADE). (geophysics, astronomy, and astrophysics)

  12. Stable dark energy stars

    International Nuclear Information System (INIS)

    Lobo, Francisco S N

    2006-01-01

    The gravastar picture is an alternative model to the concept of a black hole, where there is an effective phase transition at or near where the event horizon is expected to form, and the interior is replaced by a de Sitter condensate. In this work a generalization of the gravastar picture is explored by considering matching of an interior solution governed by the dark energy equation of state, ω ≡ p/ρ < -1/3, to an exterior Schwarzschild vacuum solution at a junction interface. The motivation for implementing this generalization arises from the fact that recent observations have confirmed an accelerated cosmic expansion, for which dark energy is a possible candidate. Several relativistic dark energy stellar configurations are analysed by imposing specific choices for the mass function. The first case considered is that of a constant energy density, and the second choice that of a monotonic decreasing energy density in the star's interior. The dynamical stability of the transition layer of these dark energy stars to linearized spherically symmetric radial perturbations about static equilibrium solutions is also explored. It is found that large stability regions exist that are sufficiently close to where the event horizon is expected to form, so that it would be difficult to distinguish the exterior geometry of the dark energy stars, analysed in this work, from an astrophysical black hole

  13. Late time phase transition as dark energy

    Indian Academy of Sciences (India)

    Abstract. We show that the dark energy field can naturally be described by the scalar condensates of a non-abelian gauge group. This gauge group is unified with the standard model gauge groups and it has a late time phase transition. The small phase transition explains why the positive acceleration of the universe is ...

  14. Advanced Dark Energy Physics Telescope (ADEPT)

    Energy Technology Data Exchange (ETDEWEB)

    Charles L. Bennett

    2009-03-26

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first

  15. Dark matter in the universe

    Science.gov (United States)

    Turner, Michael S.

    1991-01-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand. Most of the radiation in the Universe does not give off detectable radiation; it is dark. The dark matter associated with bright galaxies contributes somewhere between 10 and 30 percent of the critical density; baryonic matter contributes between 1.1 and 12 percent of the critical. The case for the spatially flat, Einstein-de Sitter model is supported by three compelling theoretical arguments - structure formation, the temporal Copernican principle, and inflation - and by some observational data. If Omega is indeed unity, or even just significantly greater than 0.1, then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark matter candidates: an axion of mass 10 (exp -6) eV to 10 (exp -4) eV; a neutrino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either planned or are underway.

  16. Dark matter in the universe

    International Nuclear Information System (INIS)

    Turner, M.S.; Chicago Univ., IL

    1990-11-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is ''dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If Ω is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10 -6 eV to 10 -4 eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs

  17. Dark clouds in particle physics and cosmology: the issues of dark matter and dark energy

    International Nuclear Information System (INIS)

    Zhang Xinmin

    2011-01-01

    Unveiling the nature of dark matter and dark energy is one of the main tasks of particle physics and cosmology in the 21st century. We first present an overview of the history and current status of research in cosmology, at the same time emphasizing the new challenges in particle physics. Then we focus on the scientific issues of dark energy, dark matter and anti-matter, and review the recent progress made in these fields. Finally, we discuss the prospects for future research on the experimental probing of dark matter and dark energy in China. (authors)

  18. Why we need to see the dark matter to understand the dark energy

    International Nuclear Information System (INIS)

    Kunz, M

    2008-01-01

    Abstract. The cosmological concordance model contains two separate constituents which interact only gravitationally with themselves and everything else, the dark matter and the dark energy. In the standard dark energy models, the dark matter makes up some 20% of the total energy budget today, while the dark energy is responsible for about 75%. Here we show that these numbers are only robust for specific dark energy models and that in general we cannot measure the abundance of the dark constituents separately without making strong assumptions

  19. Distance measurements from supernovae and dark energy constraints

    International Nuclear Information System (INIS)

    Wang Yun

    2009-01-01

    Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, the data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z)≡ρ X (z)/ρ X (0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at ∼95% confidence level at 0 98% confidence level for z≤0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z≥1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.

  20. Dark energy and the fifth force problem

    International Nuclear Information System (INIS)

    Guendelman, E I; Kaganovich, A B

    2008-01-01

    Generally accepted explanation of the observed accelerated expansion of the present day universe is based on the idea of the existence of a new entity called dark energy. Resolution of the 'cosmic coincidence' problem implies that dark energy and dark matter follow the same scaling solution during a significant period of evolution. This becomes possible only if there exists a coupling of the dark energy (modeled by a light scalar field) to dark matter. This conclusion following from the observed cosmological data serves for an additional evidence of well-known theoretical predictions of a light scalar coupled to matter. However, according to the results of the fifth force experiments, a similar coupling of the light scalar field to visible (baryonic) matter is strongly suppressed. After a brief review of some models intended for resolution of this 'fifth force problem', we present a model with spontaneously broken scale invariance where the strength of the dilaton-to-matter coupling appears to be dependent on the matter density. This is realized without any special assumptions in the underlying action intended for obtaining such a dependence. As a result the dilaton-to-matter coupling constant measured under conditions of all known fifth force experiments turns out automatically (without any sort of fine tuning) to be so small that, at least in the near future, experiments will not be able to reveal it. On the other hand, if the matter is very diluted (such as galaxy halo dark matter) then its coupling to the dilaton may not be weak. However, the latter situation is realized under conditions not compatible with the design of the fifth force experiments

  1. Novel Probes of Gravity and Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Bhuvnesh; et al.

    2013-09-20

    The discovery of cosmic acceleration has stimulated theorists to consider dark energy or modifications to Einstein's General Relativity as possible explanations. The last decade has seen advances in theories that go beyond smooth dark energy -- modified gravity and interactions of dark energy. While the theoretical terrain is being actively explored, the generic presence of fifth forces and dark sector couplings suggests a set of distinct observational signatures. This report focuses on observations that differ from the conventional probes that map the expansion history or large-scale structure. Examples of such novel probes are: detection of scalar fields via lab experiments, tests of modified gravity using stars and galaxies in the nearby universe, comparison of lensing and dynamical masses of galaxies and clusters, and the measurements of fundamental constants at high redshift. The observational expertise involved is very broad as it spans laboratory experiments, high resolution astronomical imaging and spectroscopy and radio observations. In the coming decade, searches for these effects have the potential for discovering fundamental new physics. We discuss how the searches can be carried out using experiments that are already under way or with modest adaptations of existing telescopes or planned experiments. The accompanying paper on the Growth of Cosmic Structure describes complementary tests of gravity with observations of large-scale structure.

  2. Quasilocal variables in spherical symmetry: Numerical applications to dark matter and dark energy sources

    International Nuclear Information System (INIS)

    Sussman, Roberto A.

    2009-01-01

    A numerical approach is considered for spherically symmetric spacetimes that generalize Lemaitre-Tolman-Bondi dust solutions to nonzero pressure ('LTB spacetimes'). We introduce quasilocal (QL) variables that are covariant LTB objects satisfying evolution equations of Friedman-Lemaitre-Robertson-Walker (FLRW) cosmologies. We prove rigorously that relative deviations of the local covariant scalars from the QL scalars are nonlinear, gauge invariant and covariant perturbations on a FLRW formal background given by the QL scalars. The dynamics of LTB spacetimes is completely determined by the QL scalars and these exact perturbations. Since LTB spacetimes are compatible with a wide variety of ''equations of state,'' either single fluids or mixtures, a large number of known solutions with dark matter and dark energy sources in a FLRW framework (or with linear perturbations) can be readily examined under idealized but nontrivial inhomogeneous conditions. Coordinate choices and initial conditions are derived for a numerical treatment of the perturbation equations, allowing us to study nonlinear effects in a variety of phenomena, such as gravitational collapse, nonlocal effects, void formation, dark matter and dark energy couplings, and particle creation. In particular, the embedding of inhomogeneous regions can be performed by a smooth matching with a suitable FLRW solution, thus generalizing the Newtonian 'top hat' models that are widely used in astrophysical literature. As examples of the application of the formalism, we examine numerically the formation of a black hole in an expanding Chaplygin gas FLRW universe, as well as the evolution of density clumps and voids in an interactive mixture of cold dark matter and dark energy.

  3. Inflation, Dark Matter, and Dark Energy in the String Landscape

    OpenAIRE

    Liddle, Andrew R; Ureña-López, L Arturo

    2006-01-01

    We consider the conditions needed to unify the description of dark matter, dark energy and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.

  4. An introduction to the dark energy problem

    Science.gov (United States)

    Dobado, Antonio; Maroto, Antonio L.

    2009-04-01

    In this work we review briefly the origin and history of the cosmological constant and its recent reincarnation in the form of the dark energy component of the universe. We also comment on the fundamental problems associated to its existence and magnitude which require an urgent solution for the sake of the internal consistency of theoretical physics.

  5. Relic dark energy from the trans-Planckian regime

    International Nuclear Information System (INIS)

    Mersini, Laura; Bastero-Gil, Mar; Kanti, Panagiota

    2001-01-01

    As yet, there is no underlying fundamental theory for the trans-Planckian regime. There is a need to address the issue of how the observables in our present Universe are affected by processes that may have occurred at super-Planckian energies (referred to as the trans-Planckian regime). Specifically, we focus on the impact the trans-Planckian regime has on two observables: namely, dark energy and the cosmic microwave background radiation (CMBR) spectrum. We model the trans-Planckian regime by introducing a 1-parameter family of smooth non-linear dispersion relations which modify the frequencies at very short distances. A particular feature of the family of dispersion functions chosen is the production of ultralow frequencies at very high momenta k (for k>M P ). We name the range of the ultralow energy modes (of very short distances) that have frequencies equal to or less than the current Hubble rate H 0 as the tail modes. These modes are still frozen today due to the expansion of the Universe. We calculate their energy today and show that the tail provides a strong candidate for the dark energy of the Universe. During inflation, their energy is about 122 to 123 orders of magnitude smaller than the total energy, for any random value of the free parameter in the family of dispersion relations. For this family of dispersions, we present the exact solutions and show that the CMBR spectrum is that of a (nearly) blackbody, and that the adiabatic vacuum is the only choice for the initial conditions

  6. The effect of anisotropy on the thermodynamics of the interacting holographic dark energy model

    Science.gov (United States)

    Hossienkhani, H.; Jafari, A.; Fayaz, V.; Ramezani, A. H.

    2018-02-01

    By considering a holographic model for the dark energy in an anisotropic universe, the thermodynamics of a scheme of dark matter and dark energy interaction has been investigated. The results suggest that when holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium, therefore the interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. Also the relation between the interaction term of the dark components and this thermal fluctuation has been obtained. Additionally, for a cosmological interaction as a free function, the anisotropy effects on the generalized second law of thermodynamics have been studied. By using the latest observational data on the holographic dark energy models as the unification of dark matter and dark energy, the observational constraints have been probed. To do this, we focus on observational determinations of the Hubble expansion rate H( z). Finally, we evaluate the anisotropy effects (although low) on various topics, such as the evolution of the statefinder diagnostic, the distance modulus and the spherical collapse from the holographic dark energy model and compare them with the results of the holographic dark energy of the Friedmann-Robertson-Walker and Λ CDM models.

  7. Dark fluid: A complex scalar field to unify dark energy and dark matter

    International Nuclear Information System (INIS)

    Arbey, Alexandre

    2006-01-01

    In this article, we examine a model which proposes a common explanation for the presence of additional attractive gravitational effects - generally considered to be due to dark matter - in galaxies and in clusters, and for the presence of a repulsive effect at cosmological scales - generally taken as an indication of the presence of dark energy. We therefore consider the behavior of a so-called dark fluid based on a complex scalar field with a conserved U(1)-charge and associated to a specific potential, and show that it can at the same time account for dark matter in galaxies and in clusters, and agree with the cosmological observations and constraints on dark energy and dark matter

  8. Neutralino Dark Matter in non-universal and non-minimal SUSY

    International Nuclear Information System (INIS)

    King, S.F.

    2010-01-01

    We discuss neutralino dark matter in non-universal SUSY including the NUHM, SU(5) with non-universal gauginos. In the MSSM we argue from naturalness that non-universal soft mass parameters are preferred, with non-universal gaugino masses enabling supernatural dark matter beyond the MSSM, we also discuss neutralino dark matter in the U SSM and E 6 SSM. In the E 6 SSM a light neutralino LSP coming from the inert Higgsino and singlino sector is unavoidable and makes an attractive dark matter candidate.

  9. Stochastic dark energy from inflationary quantum fluctuations

    Science.gov (United States)

    Glavan, Dražen; Prokopec, Tomislav; Starobinsky, Alexei A.

    2018-05-01

    We study the quantum backreaction from inflationary fluctuations of a very light, non-minimally coupled spectator scalar and show that it is a viable candidate for dark energy. The problem is solved by suitably adapting the formalism of stochastic inflation. This allows us to self-consistently account for the backreaction on the background expansion rate of the Universe where its effects are large. This framework is equivalent to that of semiclassical gravity in which matter vacuum fluctuations are included at the one loop level, but purely quantum gravitational fluctuations are neglected. Our results show that dark energy in our model can be characterized by a distinct effective equation of state parameter (as a function of redshift) which allows for testing of the model at the level of the background.

  10. ASTROPHYSICS. Atom-interferometry constraints on dark energy.

    Science.gov (United States)

    Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J

    2015-08-21

    If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration. Copyright © 2015, American Association for the Advancement of Science.

  11. Local dark matter and dark energy as estimated on a scale of ~1 Mpc in a self-consistent way

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2009-12-01

    Context: Dark energy was first detected from large distances on gigaparsec scales. If it is vacuum energy (or Einstein's Λ), it should also exist in very local space. Here we discuss its measurement on megaparsec scales of the Local Group. Aims: We combine the modified Kahn-Woltjer method for the Milky Way-M 31 binary and the HST observations of the expansion flow around the Local Group in order to study in a self-consistent way and simultaneously the local density of dark energy and the dark matter mass contained within the Local Group. Methods: A theoretical model is used that accounts for the dynamical effects of dark energy on a scale of ~1 Mpc. Results: The local dark energy density is put into the range 0.8-3.7ρv (ρv is the globally measured density), and the Local Group mass lies within 3.1-5.8×1012 M⊙. The lower limit of the local dark energy density, about 4/5× the global value, is determined by the natural binding condition for the group binary and the maximal zero-gravity radius. The near coincidence of two values measured with independent methods on scales differing by ~1000 times is remarkable. The mass ~4×1012 M⊙ and the local dark energy density ~ρv are also consistent with the expansion flow close to the Local Group, within the standard cosmological model. Conclusions: One should take into account the dark energy in dynamical mass estimation methods for galaxy groups, including the virial theorem. Our analysis gives new strong evidence in favor of Einstein's idea of the universal antigravity described by the cosmological constant.

  12. Voids and overdensities of coupled Dark Energy

    International Nuclear Information System (INIS)

    Mainini, Roberto

    2009-01-01

    We investigate the clustering properties of dynamical Dark Energy even in association of a possible coupling between Dark Energy and Dark Matter. We find that within matter inhomogeneities, Dark Energy migth form voids as well as overdensity depending on how its background energy density evolves. Consequently and contrarily to what expected, Dark Energy fluctuations are found to be slightly suppressed if a coupling with Dark Matter is permitted. When considering density contrasts and scales typical of superclusters, voids and supervoids, perturbations amplitudes range from |δ φ | ∼ O(10 −6 ) to |δ φ | ∼ O(10 −4 ) indicating an almost homogeneous Dark Energy component

  13. arXiv Supplying Dark Energy from Scalar Field Dark Matter

    CERN Document Server

    Gogberashvili, Merab

    We consider the hypothesis that dark matter and dark energy consists of ultra-light self-interacting scalar particles. It is found that the Klein-Gordon equation with only two free parameters (mass and self-coupling) on a Schwarzschild background, at the galactic length-scales has the solution which corresponds to Bose-Einstein condensate, behaving as dark matter, while the constant solution at supra-galactic scales can explain dark energy.

  14. Constraining viscous dark energy models with the latest cosmological data

    Science.gov (United States)

    Wang, Deng; Yan, Yang-Jie; Meng, Xin-He

    2017-10-01

    Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H_0 tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios.

  15. Fireworks in a dark universe

    CERN Document Server

    Levinson, Amir

    2018-01-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  16. Dark matter in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Fermi National Accelerator Lab., Batavia, IL (USA) Chicago Univ., IL (USA). Enrico Fermi Inst.)

    1991-03-01

    What is the quantity and composition of material in the universe This is one of the most fundamental questions we can ask about the universe, and its answer bears on a number of important issues including the formation of structure in the universe, and the ultimate fate and the earliest history of the universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: most of the material in the universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments -- structure formation, the temporal Copernican principle, and inflation -- and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 71 refs., 6 figs.

  17. Dark matter in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Fermi National Accelerator Lab., Batavia, IL (USA) Chicago Univ., IL (USA). Enrico Fermi Inst.)

    1990-11-01

    What is the quantity and composition of material in the Universe This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs.

  18. Dynamics of interacting dark energy

    International Nuclear Information System (INIS)

    Caldera-Cabral, Gabriela; Maartens, Roy; Urena-Lopez, L. Arturo

    2009-01-01

    Dark energy and dark matter are only indirectly measured via their gravitational effects. It is possible that there is an exchange of energy within the dark sector, and this offers an interesting alternative approach to the coincidence problem. We consider two broad classes of interacting models where the energy exchange is a linear combination of the dark sector densities. The first class has been previously investigated, but we define new variables and find a new exact solution, which allows for a more direct, transparent, and comprehensive analysis. The second class has not been investigated in general form before. We give general conditions on the parameters in both classes to avoid unphysical behavior (such as negative energy densities).

  19. Dynamical evolution of quintessence dark energy in collapsing dark matter halos

    International Nuclear Information System (INIS)

    Wang Qiao; Fan Zuhui

    2009-01-01

    In this paper, we analyze the dynamical evolution of quintessence dark energy induced by the collapse of dark matter halos. Different from other previous studies, we develop a numerical strategy which allows us to calculate the dark energy evolution for the entire history of the spherical collapse of dark matter halos, without the need of separate treatments for linear, quasilinear, and nonlinear stages of the halo formation. It is found that the dark energy perturbations evolve with redshifts, and their specific behaviors depend on the quintessence potential as well as the collapsing process. The overall energy density perturbation is at the level of 10 -6 for cluster-sized halos. The perturbation amplitude decreases with the decrease of the halo mass. At a given redshift, the dark energy perturbation changes with the radius to the halo center, and can be either positive or negative depending on the contrast of ∂ t φ, ∂ r φ, and φ with respect to the background, where φ is the quintessence field. For shells where the contrast of ∂ r φ is dominant, the dark energy perturbation is positive and can be as high as about 10 -5 .

  20. Gravitationally neutral dark matter-dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    Science.gov (United States)

    Gribov, I. A.; Trigger, S. A.

    2016-11-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.

  1. Gravitationally neutral dark matter–dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    International Nuclear Information System (INIS)

    Gribov, I A; Trigger, S A

    2016-01-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” ( M + gr and M -gr ), which have the same positive inertial mass M in = | M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M +gr -M -gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M ±gr superclusters without Big Rip. (paper)

  2. Constraints on the coupling between dark energy and dark matter from CMB data

    International Nuclear Information System (INIS)

    Murgia, R.; Gariazzo, S.; Fornengo, N.

    2016-01-01

    We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both models are found to be compatible with all cosmological observables, but in the case where dark matter decays into dark energy, the tension with the independent determinations of H 0 and σ 8 , already present for standard cosmology, increases: this model in fact predicts lower H 0 and higher σ 8 , mostly as a consequence of the higher amount of dark matter at early times, leading to a stronger clustering during the evolution. Instead, when dark matter is fed by dark energy, the reconstructed values of H 0 and σ 8 nicely agree with their local determinations, with a full reconciliation between high- and low-redshift observations. A non-zero coupling between dark energy and dark matter, with an energy flow from the former to the latter, appears therefore to be in better agreement with cosmological data

  3. Irreversible thermodynamics of dark energy on the entropy-corrected apparent horizon

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Sahraei, N [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, M, E-mail: KKarami@uok.ac.i, E-mail: mjamil@camp.nust.edu.p [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2010-10-15

    We study the irreversible (non-equilibrium) thermodynamics of the Friedmann-Robertson-Walker (FRW) universe containing only dark energy. Using the modified entropy-area relation that is motivated by loop quantum gravity, we calculate the entropy-corrected form of the apparent horizon of the FRW universe.

  4. Plane Symmetric Dark Energy Models in the Form of Wet Dark Fluid in f ( R, T) Gravity

    Science.gov (United States)

    Chirde, V. R.; Shekh, S. H.

    2016-06-01

    In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f ( R, T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy-momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω( ρ - ρ ∗). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.

  5. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul; Frontiere, Nicholas; Bhattacharya, Suman [HEP Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Bingham, Derek; Bergner, Steven [Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC (Canada); Lawrence, Earl [CCS-6, CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Higdon, David [Social and Decision Analytics Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Arlington, VA 22203 (United States); Pope, Adrian; Finkel, Hal [ALCF Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2016-04-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear power spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy.

  6. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    International Nuclear Information System (INIS)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul; Frontiere, Nicholas; Bhattacharya, Suman; Bingham, Derek; Bergner, Steven; Lawrence, Earl; Higdon, David; Pope, Adrian; Finkel, Hal

    2016-01-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear power spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy

  7. Interacting diffusive unified dark energy and dark matter from scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Benisty, David; Guendelman, E.I. [Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)

    2017-06-15

    Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the ΛCDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories. (orig.)

  8. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    Schrempp, L.

    2008-02-01

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  9. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  10. Constraining viscous dark energy models with the latest cosmological data

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)

    2017-10-15

    Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H{sub 0} tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios. (orig.)

  11. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    Science.gov (United States)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  12. No-Go Theorem for k-Essence Dark Energy

    International Nuclear Information System (INIS)

    Bonvin, Camille; Caprini, Chiara; Durrer, Ruth

    2006-01-01

    We demonstrate that if k-essence can solve the coincidence problem and play the role of dark energy in the Universe, the fluctuations of the field have to propagate superluminally at some stage. We argue that this implies that successful k-essence models violate causality. It is not possible to define a time ordered succession of events in a Lorentz invariant way. Therefore, k-essence cannot arise as a low energy effective field theory of a causal, consistent high energy theory

  13. Dark Energy and Inflation from Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Leonid Marochnik

    2017-10-01

    Full Text Available In this seven-part paper, we show that gravitational waves (classical and quantum produce the accelerated de Sitter expansion at the start and at the end of the cosmological evolution of the Universe. In these periods, the Universe contains no matter fields but contains classical and quantum metric fluctuations, i.e., it is filled with classical and quantum gravitational waves. In such evolution of the Universe, dominated by gravitational waves, the de Sitter state is the exact solution to the self-consistent equations for classical and quantum gravitational waves and background geometry for the empty space-time with FLRW metric. In both classical and quantum cases, this solution is of the instanton origin since it is obtained in the Euclidean space of imaginary time with the subsequent analytic continuation to real time. The cosmological acceleration from gravitational waves provides a transparent physical explanation to the coincidence, threshold and “old cosmological constant” paradoxes of dark energy avoiding recourse to the anthropic principle. The cosmological acceleration from virtual gravitons at the start of the Universe evolution produces inflation, which is consistent with the observational data on CMB anisotropy. Section 1 is devoted to cosmological acceleration from classical gravitational waves. Section 2 is devoted to the theory of virtual gravitons in the Universe. Section 3 is devoted to cosmological acceleration from virtual gravitons. Section 4 discusses the consistency of the theory with observational data on dark energy and inflation. The discussion of mechanism of acceleration and cosmological scenario are contained in Sections 5 and 6. Appendix contains the theory of stochastic nonlinear gravitational waves of arbitrary wavelength and amplitude in an isotropic Universe.

  14. A sensitive search for dark energy through chameleon scalar fields using neutron interferometry

    International Nuclear Information System (INIS)

    Snow, W M; Li, K; Skavysh, V; Arif, M; Huber, M; Heacock, B; Young, A R; Pushin, D

    2015-01-01

    The physical origin of the dark energy, which is postulated to cause the accelerated expansion rate of the universe, is one of the major open questions of cosmology. A large subset of theories postulate the existence of a scalar field with a nonlinear coupling to matter chosen so that the effective range and/or strength of the field is greatly suppressed unless the source is placed in vacuum. We describe a measurement using neutron interferometry which can place a stringent upper bound on chameleon fields proposed as a solution to the problem of the origin of dark energy of the universe in the regime with a strongly-nolinear coupling term. In combination with other experiments searching for exotic short-range forces and laser-based measurements, slow neutron experiments are capable of eliminating this and many similar types of scalar-field-based dark energy models by laboratory experiments

  15. Direct reconstruction of dark energy.

    Science.gov (United States)

    Clarkson, Chris; Zunckel, Caroline

    2010-05-28

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data.

  16. Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe(Astrophysics and Cosmology)

    OpenAIRE

    Ryuichi, TAKAHASHI; Department of Physics and Astrophysics, Nagoya University

    2008-01-01

    We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime (k≈0.1h/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state w(a). It turns out that the power spectrum coincides with the approximate res...

  17. Characterizing Dark Energy Through Supernovae

    Science.gov (United States)

    Davis, Tamara M.; Parkinson, David

    Type Ia supernovae are a powerful cosmological probe that gave the first strong evidence that the expansion of the universe is accelerating. Here we provide an overview of how supernovae can go further to reveal information about what is causing the acceleration, be it dark energy or some modification to our laws of gravity. We first review the methods of statistical inference that are commonly used, making a point of separating parameter estimation from model selection. We then summarize the many different approaches used to explain or test the acceleration, including parametric models (like the standard model, ΛCDM), nonparametric models, dark fluid models such as quintessence, and extensions to standard gravity. Finally, we also show how supernova data can be used beyond the Hubble diagram, to give information on gravitational lensing and peculiar velocities that can be used to distinguish between models that predict the same expansion history.

  18. A cosmic equation of state for the inhomogeneous universe: can a global far-from-equilibrium state explain dark energy?

    International Nuclear Information System (INIS)

    Buchert, Thomas

    2005-01-01

    A system of effective Einstein equations for spatially averaged scalar variables of inhomogeneous cosmological models can be solved by providing a 'cosmic equation of state'. Recent efforts to explain dark energy focus on 'backreaction effects' of inhomogeneities on the effective evolution of cosmological parameters in our Hubble volume, avoiding a cosmological constant in the equation of state. In this letter, it is argued that if kinematical backreaction effects are indeed of the order of the averaged density (or larger as needed for an accelerating domain of the universe), then the state of our regional Hubble volume would have to be in the vicinity of a far-from-equilibrium state that balances kinematical backreaction and average density. This property, if interpreted globally, is shared by a stationary cosmos with effective equation of state p eff = -1/3 ρ eff . It is concluded that a confirmed explanation of dark energy by kinematical backreaction may imply a paradigmatic change of cosmology. (letter to the editor)

  19. Signature of the interaction between dark energy and dark matter in observations

    International Nuclear Information System (INIS)

    Abdalla, Elcio; Abramo, L. Raul; Souza, Jose C. C. de

    2010-01-01

    We investigate the effect of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. This effect is computed through the Layser-Irvine equation, which describes how an astrophysical system reaches virial equilibrium and was modified to include the dark interactions. Using observational data from almost 100 purportedly relaxed galaxy clusters we put constraints on the strength of the couplings in the dark sector. We compare our results with those from other observations and find that a positive (in the sense of energy flow from dark energy to dark matter) nonvanishing interaction is consistent with the data within several standard deviations.

  20. Dynamics of the universe with disformal coupling between the dark sectors

    Energy Technology Data Exchange (ETDEWEB)

    Karwan, Khamphee; Sapa, Stharporn [Naresuan University, The Institute for Fundamental Study ' ' The Tah Poe Academia Institute' ' , Phitsanulok (Thailand)

    2017-05-15

    We use a dynamical analysis to study the evolution of the universe at late time for the model in which the interaction between dark energy and dark matter is inspired by a disformal transformation. We extend the analysis in the existing literature by assuming that the disformal coefficient depends both on the scalar field and its kinetic terms. We find that the dependence of the disformal coefficient on the kinetic term of scalar field leads to two classes of the scaling fixed points that can describe the acceleration of the universe at late time. The first class exists only for the case where the disformal coefficient depends on the kinetic terms. The fixed points in this class are saddle points unless the slope of the conformal coefficient is sufficiently large. The second class can be viewed as the generalization of the fixed points studied in the literature. According to the stability analysis of these fixed points, we find that the stable fixed point can take two different physically relevant values for the same value of the parameters of the model. These different values of the fixed points can be reached for different initial conditions for the equation of state parameter of dark energy. We also discuss the situations in which this feature disappears. (orig.)

  1. ΛGR Centennial: Cosmic Web in Dark Energy Background

    Science.gov (United States)

    Chernin, A. D.

    The basic building blocks of the Cosmic Web are groups and clusters of galaxies, super-clusters (pancakes) and filaments embedded in the universal dark energy background. The background produces antigravity, and the antigravity effect is strong in groups, clusters and superclusters. Antigravity is very weak in filaments where matter (dark matter and baryons) produces gravity dominating in the filament internal dynamics. Gravity-antigravity interplay on the large scales is a grandiose phenomenon predicted by ΛGR theory and seen in modern observations of the Cosmic Web.

  2. Dark Energy and Spacetime Symmetry

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-03-01

    Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.

  3. Latest astronomical constraints on some non-linear parametric dark energy models

    Science.gov (United States)

    Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos

    2018-04-01

    We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.

  4. Effects of the interaction between dark energy and dark matter on cosmological parameters

    International Nuclear Information System (INIS)

    He, Jian-Hua; Wang, Bin

    2008-01-01

    We examine the effects of possible phenomenological interactions between dark energy and dark matter on cosmological parameters and their efficiency in solving the coincidence problem. We work with two simple parameterizations of the dynamical dark energy equation of state and the constant dark energy equation of state. Using observational data coming from the new 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, we perform a statistical joint analysis of different forms of phenomenological interaction between dark energy and dark matter

  5. Non-minimal derivative coupling scalar field and bulk viscous dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Mostaghel, Behrang [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Moshafi, Hossein [Institute for Advanced Studies in Basic Sciences, Department of Physics, Zanjan (Iran, Islamic Republic of); Movahed, S.M.S. [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-08-15

    Inspired by thermodynamical dissipative phenomena, we consider bulk viscosity for dark fluid in a spatially flat two-component Universe. Our viscous dark energy model represents phantom-crossing which avoids big-rip singularity. We propose a non-minimal derivative coupling scalar field with zero potential leading to accelerated expansion of the Universe in the framework of bulk viscous dark energy model. In this approach, the coupling constant, κ, is related to viscosity coefficient, γ, and the present dark energy density, Ω{sub DE}{sup 0}. This coupling is bounded as κ element of [-1/9H{sub 0}{sup 2}(1 - Ω{sub DE}{sup 0}), 0]. We implement recent observational data sets including a joint light-curve analysis (JLA) for SNIa, gamma ray bursts (GRBs) for most luminous astrophysical objects at high redshifts, baryon acoustic oscillations (BAO) from different surveys, Hubble parameter from HST project, Planck CMB power spectrum and lensing to constrain model free parameters. The joint analysis of JLA + GRBs + BAO + HST shows that Ω{sub DE}{sup 0} = 0.696 ± 0.010, γ = 0.1404 ± 0.0014 and H{sub 0} = 68.1 ± 1.3. Planck TT observation provides γ = 0.32{sup +0.31}{sub -0.26} in the 68% confidence limit for the viscosity coefficient. The cosmographic distance ratio indicates that current observed data prefer to increase bulk viscosity. The competition between phantom and quintessence behavior of the viscous dark energy model can accommodate cosmological old objects reported as a sign of age crisis in the ΛCDM model. Finally, tension in the Hubble parameter is alleviated in this model. (orig.)

  6. The Casimir effect as a candidate of dark energy

    OpenAIRE

    Matsumoto, Jiro

    2013-01-01

    It is known that the simply evaluated value of the zero point energy of quantum fields is extremely deviated from the observed value of dark energy density. In this paper, we consider whether the Casimir energy, which is the zero point energy brought from boundary conditions, can cause the accelerating expansion of the Universe by using proper renormalization method and introducing the fermions of finite temperature living in $3+n+1$ space-time. We show that the zero temperature Casimir energ...

  7. Non-adiabatic perturbations in Ricci dark energy model

    International Nuclear Information System (INIS)

    Karwan, Khamphee; Thitapura, Thiti

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included

  8. Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion

    International Nuclear Information System (INIS)

    Huterer, Dragan; Kirkby, David; Bean, Rachel; Connolly, Andrew; Dawson, Kyle; Dodelson, Scott; Evrard, August; Jain, Bhuvnesh; Jarvis, Michael; Linder, Eric; Mandelbaum, Rachel; May, Morgan; Raccanelli, Alvise; Reid, Beth; Rozo, Eduardo; Schmidt, Fabian; Sehgal, Neelima; Slosar, Anze; Van Engelen, Alex; Wu, Hao-Yi; Zhao, Gongbo

    2014-01-01

    The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansion such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe

  9. Probing the dynamics of dark energy with novel parametrizations

    International Nuclear Information System (INIS)

    Ma Jingzhe; Zhang Xin

    2011-01-01

    We point out that the CPL parametrization has a problem that the equation of state w(z) diverges in the far future, so that this model can only properly describe the past evolution but cannot depict the future evolution. To overcome such a difficulty, in this Letter we propose two novel parametrizations for dark energy, the logarithm form w(z)=w 0 +w 1 ((ln(2+z))/(1+z) -ln2) and the oscillating form w(z)=w 0 +w 1 ((sin(1+z))/(1+z) -sin(1)), successfully avoiding the future divergency problem in the CPL parametrization, and use them to probe the dynamics of dark energy in the whole evolutionary history. Our divergency-free parametrizations are proven to be very successful in exploring the dynamical evolution of dark energy and have powerful prediction capability for the ultimate fate of the universe. Constraining the CPL model and the new models with the current observational data, we show that the new models are more favored. The features and the predictions for the future evolution in the new models are discussed in detail.

  10. Understanding Dark Energy

    Science.gov (United States)

    Greyber, Howard

    2009-11-01

    By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum

  11. Late forming dark matter in theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Das, Subinoy; Weiner, Neal

    2011-01-01

    We study the possibility of late forming dark matter, where a scalar field, previously trapped in a metastable state by thermal or finite density effects, goes through a phase transition near the era matter-radiation equality and begins to oscillate about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprises the present dark matter, the matter power spectrum typically shows a sharp break at small, presently nonlinear scales, below which power is highly suppressed and previously contained acoustic oscillations. If, instead, such a field forms a subdominant component of the total dark matter, such acoustic oscillations may imprint themselves in the linear regime.

  12. Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field

    Science.gov (United States)

    Singh, C. P.; Kumar, Pankaj

    2017-10-01

    In this paper, an interacting holographic dark energy model with Hubble horizon as an infra-red cut-off is considered in the framework of Brans-Dicke theory. We assume the Brans-Dicke scalar field as a logarithmic form ϕ = ϕ 0 l n( α + β a), where a is the scale factor, α and β are arbitrary constants, to interpret the physical phenomena of the Universe. The equation of state parameter w h and deceleration parameter q are obtained to discuss the dynamics of the evolution of the Universe. We present a unified model of holographic dark energy which explains the early time acceleration (inflation), medieval time deceleration and late time acceleration. It is also observed that w h may cross the phantom divide line in the late time evolution. We also discuss the cosmic coincidence problem. We obtain a time-varying density ratio of holographic dark energy to dark matter which is a constant of order one (r˜ O(1)) during early and late time evolution, and may evolve sufficiently slow at present time. Thus, the model successfully resolves the cosmic coincidence problem.

  13. Traversable geometric dark energy wormholes constrained by astrophysical observations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Meng, Xin-he [Nankai University, Department of Physics, Tianjin (China); Institute of Theoretical Physics, CAS, State Key Lab of Theoretical Physics, Beijing (China)

    2016-09-15

    In this paper, we introduce the astrophysical observations into the wormhole research. We investigate the evolution behavior of the dark energy equation of state parameter ω by constraining the dark energy model, so that we can determine in which stage of the universe wormholes can exist by using the condition ω < -1. As a concrete instance, we study the Ricci dark energy (RDE) traversable wormholes constrained by astrophysical observations. Particularly, we find from Fig. 5 of this work, when the effective equation of state parameter ω{sub X} < -1 (or z < 0.109), i.e., the null energy condition (NEC) is violated clearly, the wormholes will exist (open). Subsequently, six specific solutions of statically and spherically symmetric traversable wormhole supported by the RDE fluids are obtained. Except for the case of a constant redshift function, where the solution is not only asymptotically flat but also traversable, the five remaining solutions are all non-asymptotically flat, therefore, the exotic matter from the RDE fluids is spatially distributed in the vicinity of the throat. Furthermore, we analyze the physical characteristics and properties of the RDE traversable wormholes. It is worth noting that, using the astrophysical observations, we obtain the constraints on the parameters of the RDE model, explore the types of exotic RDE fluids in different stages of the universe, limit the number of available models for wormhole research, reduce theoretically the number of the wormholes corresponding to different parameters for the RDE model, and provide a clearer picture for wormhole investigations from the new perspective of observational cosmology. (orig.)

  14. Traversable geometric dark energy wormholes constrained by astrophysical observations

    International Nuclear Information System (INIS)

    Wang, Deng; Meng, Xin-he

    2016-01-01

    In this paper, we introduce the astrophysical observations into the wormhole research. We investigate the evolution behavior of the dark energy equation of state parameter ω by constraining the dark energy model, so that we can determine in which stage of the universe wormholes can exist by using the condition ω < -1. As a concrete instance, we study the Ricci dark energy (RDE) traversable wormholes constrained by astrophysical observations. Particularly, we find from Fig. 5 of this work, when the effective equation of state parameter ω X < -1 (or z < 0.109), i.e., the null energy condition (NEC) is violated clearly, the wormholes will exist (open). Subsequently, six specific solutions of statically and spherically symmetric traversable wormhole supported by the RDE fluids are obtained. Except for the case of a constant redshift function, where the solution is not only asymptotically flat but also traversable, the five remaining solutions are all non-asymptotically flat, therefore, the exotic matter from the RDE fluids is spatially distributed in the vicinity of the throat. Furthermore, we analyze the physical characteristics and properties of the RDE traversable wormholes. It is worth noting that, using the astrophysical observations, we obtain the constraints on the parameters of the RDE model, explore the types of exotic RDE fluids in different stages of the universe, limit the number of available models for wormhole research, reduce theoretically the number of the wormholes corresponding to different parameters for the RDE model, and provide a clearer picture for wormhole investigations from the new perspective of observational cosmology. (orig.)

  15. University of Oklahoma - High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Skubic, Patrick L. [University of Oklahoma

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest

  16. Structure formation in inhomogeneous Early Dark Energy models

    International Nuclear Information System (INIS)

    Batista, R.C.; Pace, F.

    2013-01-01

    We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to the ΛCDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on δ c parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to the ΛCDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to the ΛCDM model than its homogeneous counterparts

  17. Weak lensing and dark energy

    International Nuclear Information System (INIS)

    Huterer, Dragan

    2002-01-01

    We study the power of upcoming weak lensing surveys to probe dark energy. Dark energy modifies the distance-redshift relation as well as the matter power spectrum, both of which affect the weak lensing convergence power spectrum. Some dark-energy models predict additional clustering on very large scales, but this probably cannot be detected by weak lensing alone due to cosmic variance. With reasonable prior information on other cosmological parameters, we find that a survey covering 1000 sq deg down to a limiting magnitude of R=27 can impose constraints comparable to those expected from upcoming type Ia supernova and number-count surveys. This result, however, is contingent on the control of both observational and theoretical systematics. Concentrating on the latter, we find that the nonlinear power spectrum of matter perturbations and the redshift distribution of source galaxies both need to be determined accurately in order for weak lensing to achieve its full potential. Finally, we discuss the sensitivity of the three-point statistics to dark energy

  18. Radio Astronomers Develop New Technique for Studying Dark Energy

    Science.gov (United States)

    2010-07-01

    Pioneering observations with the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT) have given astronomers a new tool for mapping large cosmic structures. The new tool promises to provide valuable clues about the nature of the mysterious "dark energy" believed to constitute nearly three-fourths of the mass and energy of the Universe. Dark energy is the label scientists have given to what is causing the Universe to expand at an accelerating rate. While the acceleration was discovered in 1998, its cause remains unknown. Physicists have advanced competing theories to explain the acceleration, and believe the best way to test those theories is to precisely measure large-scale cosmic structures. Sound waves in the matter-energy soup of the extremely early Universe are thought to have left detectable imprints on the large-scale distribution of galaxies in the Universe. The researchers developed a way to measure such imprints by observing the radio emission of hydrogen gas. Their technique, called intensity mapping, when applied to greater areas of the Universe, could reveal how such large-scale structure has changed over the last few billion years, giving insight into which theory of dark energy is the most accurate. "Our project mapped hydrogen gas to greater cosmic distances than ever before, and shows that the techniques we developed can be used to map huge volumes of the Universe in three dimensions and to test the competing theories of dark energy," said Tzu-Ching Chang, of the Academia Sinica in Taiwan and the University of Toronto. To get their results, the researchers used the GBT to study a region of sky that previously had been surveyed in detail in visible light by the Keck II telescope in Hawaii. This optical survey used spectroscopy to map the locations of thousands of galaxies in three dimensions. With the GBT, instead of looking for hydrogen gas in these individual, distant galaxies -- a daunting challenge beyond the technical

  19. Reconstruction of the Dark Energy Equation of State from the Latest Observations

    Science.gov (United States)

    Dai, Ji-Ping; Yang, Yang; Xia, Jun-Qing

    2018-04-01

    Since the discovery of the accelerating expansion of our universe in 1998, studying the features of dark energy has remained a hot topic in modern cosmology. In the literature, dark energy is usually described by w ≡ P/ρ, where P and ρ denote its pressure and energy density. Therefore, exploring the evolution of w is the key approach to understanding dark energy. In this work, we adopt three different methods, polynomial expansion, principal component analysis, and the correlated prior method, to reconstruct w with a collection of the latest observations, including the type-Ia supernova, cosmic microwave background, large-scale structure, Hubble measurements, and baryon acoustic oscillations (BAOs), and find that the concordance cosmological constant model (w = ‑1) is still safely consistent with these observational data at the 68% confidence level. However, when we add the high-redshift BAO measurement from the Lyα forest (Lyα FB) of BOSS DR11 quasars into the calculation, there is a significant impact on the reconstruction result. In the standard ΛCDM model, since the Lyα FB data slightly prefer a negative dark energy density, in order to avoid this problem, a dark energy model with a w significantly smaller than ‑1 is needed to explain this Lyα FB data. In this work, we find the consistent conclusion that there is a strong preference for the time-evolving behavior of dark energy w at high redshifts, when including the Lyα FB data. Therefore, we think that this Lyα FB data needs to be watched carefully attention when studying the evolution of the dark energy equation of state.

  20. Dark-energy cosmological models in f(G) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences Lahore Campus, Department of Sciences and Humanities (Pakistan)

    2016-10-15

    We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G{sup 5/6} support expansion of universe while those with f(G) = G{sup 1/2} do not favor the current expansion.

  1. Dark matter in the universe

    CERN Document Server

    Seigar, Marc S

    2015-01-01

    The study of dark matter, in both astrophysics and particle physics, has emerged as one of the most active and exciting topics of research in recent years. This book reviews the history behind the discovery of missing mass (or unseen mass) in the universe, and ties this into the proposed extensions to the Standard Model of Particle Physics (such as Supersymmetry), which were being proposed within the same time frame. This book is written as an introduction to these problems at the forefront of astrophysics and particle physics, with the goal of conveying the physics of dark matter to beginning undergraduate majors in scientific fields. The book goes on to describe existing and upcoming experiments and techniques, which will be used to detect dark matter either directly or indirectly.

  2. White Dwarfs in the HET Dark Energy Experiment

    Science.gov (United States)

    Castanheira, B. G.; Winget, D. E.; Williams, K.; Montgomery, M. H.; Falcon, R. E.; Hermes, J. J.

    2010-11-01

    In the past decades, large scale surveys have discovered a large number of white dwarfs. For example, the Sloan Digital Sky Survey (SDSS) Data Release 7 [5] lists about 20 000 spectroscopically confirmed new white dwarfs. More than just a number, the new discoveries revealed different flavors of white dwarfs, including a new class of pulsators [7] and a larger percentage of stars with a magnetic field [4]. The HET Dark Energy Experiment (HETDEX) will use the 9.2 m Hobby-Eberly Telescope at McDonald Observatory and a set of 150 spectrographs to map the three-dimensional positions of one million galaxies. The main goal of the survey is to probe dark energy by observing the recent universe (2products. We expect to obtain spectra for about 10 000 white dwarfs in the next 3 to 4 years.

  3. Clustering properties of dynamical dark energy models

    International Nuclear Information System (INIS)

    Avelino, P. P.; Beca, L. M. G.; Martins, C. J. A. P.

    2008-01-01

    We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter

  4. Dark Energy and the Cosmological Constant: A Brief Introduction

    Science.gov (United States)

    Harvey, Alex

    2009-01-01

    The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…

  5. Dark Energy and the Hubble Law

    Science.gov (United States)

    Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.

    The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.

  6. Interacting holographic dark energy with logarithmic correction

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Farooq, M. Umar

    2010-01-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Employing this new definition, we investigate the model of interacting dark energy and derive its effective equation of state. Finally we establish a correspondence between generalized Chaplygin gas and entropy-corrected holographic dark energy

  7. Constraining Dark Energy with X-ray Clusters, SNe Ia and the CMB

    International Nuclear Information System (INIS)

    Rapetti, D

    2005-01-01

    In [1] we present new constraints on the evolution of dark energy from an analysis of Cosmic Microwave Background, supernova and X-ray galaxy cluster data. From a combined analysis of all three data sets and assuming that the Universe is at, we examine a series of dark energy models with up to three free parameters: the current dark energy equation of state w 0 , the early time equation of state w et and the scale factor at transition, a t . Allowing the transition scale factor to vary over the range 0.5 t 0 = -1.27 -0.39 +0.33 and w et = -0.66 -0.62 +0.44 . They find no significant evidence for evolution in the dark energy equation of state parameter with redshift. The complementary nature of the data sets leads to a tight constraint on the mean matter density, (Omega) m , alleviates a number of other parameter degeneracies, including that between the scalar spectral index n s , the physical baryon density (Omega) b h 2 and the optical depth τ and also allows us to examine models dropping the flatness prior. As required for the energy-momentum conservation our analysis includes spatial perturbations in the dark energy component. We show that not including them leads to spuriously tighter constraints on w 0 and especially on wet

  8. R2 dark energy in the laboratory

    Science.gov (United States)

    Brax, Philippe; Valageas, Patrick; Vanhove, Pierre

    2018-05-01

    We analyze the role, on large cosmological scales and laboratory experiments, of the leading curvature squared contributions to the low-energy effective action of gravity. We argue for a natural relationship c0λ2≃1 at low energy between the R2 coefficients c0 of the Ricci scalar squared term in this expansion and the dark energy scale Λ =(λ MPl)4 in four-dimensional Planck mass units. We show how the compatibility between the acceleration of the expansion rate of the Universe, local tests of gravity and the quantum stability of the model all converge to select such a relationship up to a coefficient which should be determined experimentally. When embedding this low-energy theory of gravity into candidates for its ultraviolet completion, we find that the proposed relationship is guaranteed in string-inspired supergravity models with modulus stabilization and supersymmetry breaking leading to de Sitter compactifications. In this case, the scalar degree of freedom of R2 gravity is associated to a volume modulus. Once written in terms of a scalar-tensor theory, the effective theory corresponds to a massive scalar field coupled with the universal strength β =1 /√{6 } to the matter stress-energy tensor. When the relationship c0λ2≃1 is realized, we find that on astrophysical scales and in cosmology the scalar field is ultralocal and therefore no effect arises on such large scales. On the other hand, the scalar field mass is tightly constrained by the nonobservation of fifth forces in torsion pendulum experiments such as Eöt-Wash. It turns out that the observation of the dark energy scale in cosmology implies that the scalar field could be detectable by fifth-force experiments in the near future.

  9. Comparing holographic dark energy models with statefinder

    International Nuclear Information System (INIS)

    Cui, Jing-Lei; Zhang, Jing-Fei

    2014-01-01

    We apply the statefinder diagnostic to the holographic dark energy models, including the original holographic dark energy (HDE) model, the new holographic dark energy model, the new agegraphic dark energy (NADE) model, and the Ricci dark energy model. In the low-redshift region the holographic dark energy models are degenerate with each other and with the ΛCDM model in the H(z) and q(z) evolutions. In particular, the HDE model is highly degenerate with the ΛCDM model, and in the HDE model the cases with different parameter values are also in strong degeneracy. Since the observational data are mainly within the low-redshift region, it is very important to break this lowredshift degeneracy in the H(z) and q(z) diagnostics by using some quantities with higher order derivatives of the scale factor. It is shown that the statefinder diagnostic r(z) is very useful in breaking the low-redshift degeneracies. By employing the statefinder diagnostic the holographic dark energy models can be differentiated efficiently in the low-redshift region. The degeneracy between the holographic dark energy models and the ΛCDM model can also be broken by this method. Especially for the HDE model, all the previous strong degeneracies appearing in the H(z) and q(z) diagnostics are broken effectively. But for the NADE model, the degeneracy between the cases with different parameter values cannot be broken, even though the statefinder diagnostic is used. A direct comparison of the holographic dark energy models in the r-s plane is also made, in which the separations between the models (including the ΛCDM model) can be directly measured in the light of the current values {r 0 , s 0 } of the models. (orig.)

  10. Dark energy observational evidence and theoretical models

    CERN Document Server

    Novosyadlyj, B; Shtanov, Yu; Zhuk, A

    2013-01-01

    The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

  11. The interaction between dark energy and dark matter

    International Nuclear Information System (INIS)

    He Jianhua; Wang Bin

    2010-01-01

    In this review we first present a general formalism to study the growth of dark matter perturbations in the presence of interactions between dark matter(DM) and dark energy(DE). We also study the signature of such interaction on the temperature anisotropies of the large scale cosmic microwave background (CMB). We find that the effect of such interaction has significant signature on both the growth of dark matter structure and the late Integrated Sachs Wolfe effect(ISW). We further discuss the potential possibility to detect the coupling by cross-correlating CMB maps with tracers of the large scale structure. We finally confront this interacting model with WMAP 5-year data as well as other data sets. We find that in the 1σ range, the constrained coupling between dark sectors can solve the coincidence problem.

  12. Advanced Dark Energy Physics Telescope (ADEPT). Final Report

    International Nuclear Information System (INIS)

    Bennett, Charles L.

    2009-01-01

    In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for ∼10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z ∼ 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan Digital

  13. Searching dark matter at LHC

    International Nuclear Information System (INIS)

    Nojiri, Mihoko M.

    2007-01-01

    We now believe that the dark matter in our Universe must be an unknown elementary particle, which is charge neutral and weakly interacting. The standard model must be extended to include it. The dark matter was likely produced in the early universe from the high energy collisions of the particles. Now LHC experiment starting from 2008 will create such high energy collision to explore the nature of the dark matter. In this article we explain how dark matter and LHC physics will be connected in detail. (author)

  14. Probing dark energy via galaxy cluster outskirts

    Science.gov (United States)

    Morandi, Andrea; Sun, Ming

    2016-04-01

    We present a Bayesian approach to combine Planck data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters (0.056 definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.

  15. Dark Matter Freeze-in Production in Fast-Expanding Universes

    Science.gov (United States)

    D'Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano

    2018-02-01

    If the dark matter is produced in the early universe prior to Big Bang nucleosynthesis, a modified cosmological history can drastically affect the abundance of relic dark matter particles. Here, we assume that an additional species to radiation dominates at early times, causing the expansion rate at a given temperature to be larger than in the standard radiation-dominated case. We demonstrate that, if this is the case, dark matter production via freeze-in (a scenario when dark matter interacts very weakly, and is dumped in the early universe out of equilibrium by decay or scattering processes involving particles in the thermal bath) is dramatically suppressed. We illustrate and quantitatively and analytically study this phenomenon for three different paradigmatic classes of freeze-in scenarios. For the frozen-in dark matter abundance to be as large as observations, couplings between the dark matter and visible-sector particles must be enhanced by several orders of magnitude. This sheds some optimistic prospects for the otherwise dire experimental and observational outlook of detecting dark matter produced by freeze-in.

  16. Parameter splitting in dark energy: is dark energy the same in the background and in the cosmic structures?

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, José Luis; Cuesta, Antonio J. [Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, Barcelona, E08028 Spain (Spain); Verde, Licia, E-mail: joseluis.bernal@icc.ub.edu, E-mail: liciaverde@icc.ub.edu, E-mail: ajcuesta@icc.ub.edu [ICREA (Institució Catalana de Recerca i Estudis Avançats), Passeig Lluís Companys, Barcelona, E-23 08010 Spain (Spain)

    2016-02-01

    We perform an empirical consistency test of General Relativity/dark energy by disentangling expansion history and growth of structure constraints. We replace each late-universe parameter that describes the behavior of dark energy with two meta-parameters: one describing geometrical information in cosmological probes, and the other controlling the growth of structure. If the underlying model (a standard wCDM cosmology with General Relativity) is correct, that is under the null hypothesis, the two meta-parameters coincide. If they do not, it could indicate a failure of the model or systematics in the data. We present a global analysis using state-of-the-art cosmological data sets which points in the direction that cosmic structures prefer a weaker growth than that inferred by background probes. This result could signify inconsistencies of the model, the necessity of extensions to it or the presence of systematic errors in the data. We examine all these possibilities. The fact that the result is mostly driven by a specific sub-set of galaxy clusters abundance data, points to the need of a better understanding of this probe.

  17. The dark side of the universe

    International Nuclear Information System (INIS)

    Freese, Katherine

    2006-01-01

    I will begin by reviewing the evidence for dark matter in the Universe, as well as the candidates for dark matter. At most 20% of the dark matter in galaxies can be in the form of MACHOs (Massive Compact Halo Objects); the remainder appears to be some unknown exotic component. The most sensible candidates from the point of view of particle physics are axions and WIMPs (Weakly Interacting Massive Particles), where WIMPs may be supersymmetric particles. Three recent claims of possible detection of WIMP dark matter are tantalizing and will be discussed: the DAMA annual modulation, the HEAT positron excess, and gamma-rays from the Galactic Center. In addition, I will discuss the dependence of signals in detectors on the mass distribution in the Galactic Halo. In particular, the Sagittarius stream can be a smoking gun for WIMP detection

  18. Is Gravitational Aberration Responsible for the Origin of Dark Energy?

    NARCIS (Netherlands)

    Křížek, M.; Brandts, J.; Somer, L.; Del Valle, C.A.; Longoria, D.F.

    2012-01-01

    At the end of the 20th century, it was discovered that the expansion of the Universe is speeding up. This acceleration is attributed to dark energy, which seems to be distributed uniformly almost everywhere and thus essentially influences the Hubble parameter H = H(t) characterizing this expansion.

  19. Viscous cosmology in new holographic dark energy model and the cosmic acceleration

    International Nuclear Information System (INIS)

    Singh, C.P.; Srivastava, Milan

    2018-01-01

    In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to ΛCDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ = ζ 0 + ζ 1 H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ. By illustrating the evolutionary trajectories in r - s and r - q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the ΛCDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ. Our study shows that the bulk viscosity plays very important role in the expansion history of the universe. (orig.)

  20. Viscous cosmology in new holographic dark energy model and the cosmic acceleration

    Science.gov (United States)

    Singh, C. P.; Srivastava, Milan

    2018-03-01

    In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to Λ CDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ =ζ 0+ζ 1H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ . By illustrating the evolutionary trajectories in r-s and r-q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the Λ CDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ . Our study shows that the bulk viscosity plays very important role in the expansion history of the universe.

  1. Toward a unified description of dark energy and dark matter from the abnormally weighting energy hypothesis

    International Nuclear Information System (INIS)

    Fuezfa, A.; Alimi, J.-M.

    2007-01-01

    The abnormally weighting energy hypothesis consists of assuming that the dark sector of cosmology violates the weak equivalence principle (WEP) on cosmological scales, which implies a violation of the strong equivalence principle for ordinary matter. In this paper, dark energy is shown to result from the violation of WEP by pressureless (dark) matter. This allows us to build a new cosmological framework in which general relativity is satisfied at low scales, as WEP violation depends on the ratio of the ordinary matter over dark matter densities, but at large scales, we obtain a general relativity-like theory with a different value of the gravitational coupling. This explanation is formulated in terms of a tensor-scalar theory of gravitation without WEP for which there exists a revisited convergence mechanism toward general relativity. The consequent dark energy mechanism build upon the anomalous gravity of dark matter (i) does not require any violation of the strong energy condition p 2 /3, (ii) offers a natural way out of the coincidence problem thanks to the nonminimal couplings to gravitation, (iii) accounts fairly for supernovae data from various simple couplings and with density parameters very close to the ones of the concordance model ΛCDM, and therefore suggests an explanation to its remarkable adequacy. Finally, (iv) this mechanism ends up in the future with an Einstein-de Sitter expansion regime once the attractor is reached

  2. Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, G; Althouse, W; Amanullah, R; Annis, J; Astier, P; Baltay, C; Barrelet, E; Basa, S; Bebek, C; Bergstrom, L; Bernstein, G; Bester, M; Bigelow, B; Blandford, R; Bohlin, R; Bonissent, A; Bower, C; Brown, M; Campbell, M; Carithers, W; Commins, E; Craig, W; Day, C; DeJongh, F; Deustua, S; Diehl, T; Dodelson, S; Ealet, A; Ellis, R; Emmet, W; Fouchez, D; Frieman, J; Fruchter, A; Gerdes, D; Gladney, L; Goldhaber, G; Goobar, A; Groom, D; Heetderks, H; Hoff, M; Holland, S; Huffer, M; Hui, L; Huterer, D; Jain, B; Jelinsky, P; Karcher, A; Kent, S; Kahn, S; Kim, A; Kolbe, W; Krieger, B; Kushner, G; Kuznetsova, N; Lafever, R; Lamoureux, J; Lampton, M; Fevre, OL; Levi, M; Limon, P; Lin, H; Linder, E; Loken, S; Lorenzon, W; Malina, R; Marriner, J; Marshall, P; Massey, R; Mazure, A; McKay, T; McKee, S; Miquel, R; Morgan, N; Mortsell, E; Mostek, N; Mufson, S; Musser, J; Nugent, P; Oluseyi, H; Pain, R; Palaio, N; Pankow, D; Peoples, J; Perlmutter, S; Prieto, E; Rabinowitz, D; Refregier, A; Rhodes, J; Roe, N; Rusin, D; Scarpine, V; Schubnell, M; Sholl, M; Smadja, G; Smith, RM; Smoot, G; Snyder, J; Spadafora, A; Stebbins, A; Stoughton, C; Szymkowiak, A; Tarle, G; Taylor, K; Tilquin, A; Tomasch, A; Tucker, D; Vincent, D; Lippe, HVD; Walder, J-P; Wang, G; Wester, W

    2004-05-12

    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs.

  3. Paths to dark energy theory and observation

    CERN Document Server

    Valtonen, Mauri; Chernin, Arthur D; Byrd, Gene

    2012-01-01

    This work provides the current theory and observations behind the cosmological phenomenon of dark energy. The approach is comprehensivewith rigorous mathematical theory and relevant astronomical observations discussed in context.The book treats the background and history starting with the new-found importance of Einstein's cosmological constant (proposed long ago for the opposite purpose) in dark energy formulation, as well as the frontiers of dark energy.

  4. Local and global dynamical effects of dark energy

    Science.gov (United States)

    Chernin, A. D.

    Local expansion flows of galaxies were discovered by Lemaitre and Hubble in 1927-29 at distances of less than 25-30 Mpc. The global expansion of the Universe as a whole was predicted theoretically by Friedmann in 1922-24 and discovered in the 1990s in observations at truly cosmological distances of more than 1 000 Mpc. On all these spatial scales, the flows follow a (nearly) linear velocity-distance relation, known now as Hubble's law. This similarity of local and global phenomena is due to the universal dark energy antigravity which dominates the cosmic dynamics on both local and global spatial scales.

  5. Holography and holographic dark energy model

    International Nuclear Information System (INIS)

    Gong Yungui; Zhang Yuanzhong

    2005-01-01

    The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived

  6. Can strong gravitational lensing constrain dark energy?

    International Nuclear Information System (INIS)

    Lee, Seokcheon; Ng, K.-W.

    2007-01-01

    We discuss the ratio of the angular diameter distances from the source to the lens, D ds , and to the observer at present, D s , for various dark energy models. It is well known that the difference of D s s between the models is apparent and this quantity is used for the analysis of Type Ia supernovae. However we investigate the difference between the ratio of the angular diameter distances for a cosmological constant, (D ds /D s ) Λ , and that for other dark energy models, (D ds /D s ) other , in this paper. It has been known that there is lens model degeneracy in using strong gravitational lensing. Thus, we investigate the model independent observable quantity, Einstein radius (θ E ), which is proportional to both D ds /D s and velocity dispersion squared, σ v 2 . D ds /D s values depend on the parameters of each dark energy model individually. However, (D ds /D s ) Λ -(D ds /D s ) other for the various dark energy models, is well within the error of σ v for most of the parameter spaces of the dark energy models. Thus, a single strong gravitational lensing by use of the Einstein radius may not be a proper method to investigate the property of dark energy. However, better understanding to the mass profile of clusters in the future or other methods related to arc statistics rather than the distances may be used for constraints on dark energy

  7. Israel-Stewart Approach to Viscous Dissipative Extended Holographic Ricci Dark Energy Dominated Universe

    Directory of Open Access Journals (Sweden)

    Surajit Chattopadhyay

    2016-01-01

    Full Text Available This paper reports a study on the truncated Israel-Stewart formalism for bulk viscosity using the extended holographic Ricci dark energy (EHRDE. Under the consideration that the universe is dominated by EHRDE, the evolution equation for the bulk viscous pressure Π in the framework of the truncated Israel-Stewart theory has been taken as τΠ˙+Π=-3ξH, where τ is the relaxation time and ξ is the bulk viscosity coefficient. Considering effective pressure as a sum of thermodynamic pressure of EHRDE and bulk viscous pressure, it has been observed that under the influence of bulk viscosity the EoS parameter wDE is behaving like phantom, that is, wDE≤-1. It has been observed that the magnitude of the effective pressure peff=p+Π is decaying with time. We also investigated the case for a specific choice of scale factor; namely, a(t=(t-t0β/(1-α. For this choice we have observed that a transition from quintessence to phantom is possible for the equation of state parameter. However, the ΛCDM phase is not attainable by the state-finder trajectories for this choice. Finally it has been observed that in both of the cases the generalized second law of thermodynamics is valid for the viscous EHRDE dominated universe enveloped by the apparent horizon.

  8. The continuous tower of scalar fields as a system of interacting dark matter–dark energy

    International Nuclear Information System (INIS)

    Santos, Paulo

    2015-01-01

    This paper aims to introduce a new parameterisation for the coupling Q in interacting dark matter and dark energy models by connecting said models with the Continuous Tower of Scalar Fields model. Based upon the existence of a dark matter and a dark energy sectors in the Continuous Tower of Scalar Fields, a simplification is considered for the evolution of a single scalar field from the tower, validated in this paper. This allows for the results obtained with the Continuous Tower of Scalar Fields model to match those of an interacting dark matter–dark energy system, considering that the energy transferred from one fluid to the other is given by the energy of the scalar fields that start oscillating at a given time, rather than considering that the energy transference depends on properties of the whole fluids that are interacting.

  9. Strongly coupled dark energy with warm dark matter vs. LCDM

    Energy Technology Data Exchange (ETDEWEB)

    Bonometto, S.A.; Mezzetti, M. [INAF, Osservatorio di Trieste and Trieste University, Physics Department, Astronomy Unit, Via Tiepolo 11, 34143 Trieste (Italy); Mainini, R., E-mail: bonometto@oats.inaf.it, E-mail: mezzetti@oats.inaf.it, E-mail: roberto.mainini@mib.infn.it [Physics Department G. Occhialini, Milano-Bicocca University, Piazza della Scienza 3, 20126 Milano (Italy)

    2017-10-01

    Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field Φ and a DM component account for a stationary fraction, ∼ 1 %, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the end of inflation, when Φ (future DE) possibly plays a role in reheating, and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large k 's, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high k . This motivates a second related paper [1], where such problems are treated in a quantitative way.

  10. Universal Dark Halo Scaling Relation for the Dwarf Spheroidal Satellites

    Science.gov (United States)

    Hayashi, Kohei; Ishiyama, Tomoaki; Ogiya, Go; Chiba, Masashi; Inoue, Shigeki; Mori, Masao

    2017-07-01

    Motivated by a recently found interesting property of the dark halo surface density within a radius, {r}\\max , giving the maximum circular velocity, {V}\\max , we investigate it for dark halos of the Milky Way’s and Andromeda’s dwarf satellites based on cosmological simulations. We select and analyze the simulated subhalos associated with Milky-Way-sized dark halos and find that the values of their surface densities, {{{Σ }}}{V\\max }, are in good agreement with those for the observed dwarf spheroidal satellites even without employing any fitting procedures. Moreover, all subhalos on the small scales of dwarf satellites are expected to obey the universal relation, irrespective of differences in their orbital evolutions, host halo properties, and observed redshifts. Therefore, we find that the universal scaling relation for dark halos on dwarf galaxy mass scales surely exists and provides us with important clues for understanding fundamental properties of dark halos. We also investigate orbital and dynamical evolutions of subhalos to understand the origin of this universal dark halo relation and find that most subhalos evolve generally along the {r}\\max \\propto {V}\\max sequence, even though these subhalos have undergone different histories of mass assembly and tidal stripping. This sequence, therefore, should be the key feature for understanding the nature of the universality of {{{Σ }}}{V\\max }.

  11. The mystery of dark matter

    International Nuclear Information System (INIS)

    Khalatbari, Azar

    2015-01-01

    As only 0.5 per cent (the shining part) of the Universe is seen by telescopes, and corresponds to a tenth of ordinary matter or 5 per cent of the cosmos, astrophysicists postulated that the remaining 95 per cent are made of dark matter and dark energy. But always more researchers put the existence of this dark matter and energy into question again. They notably think of giving up Newton's law of universal gravitation, and also the basic assumption of cosmology, i.e. the homogeneous character of the Universe. The article recalls the emergence of the notion of dark matter to explain the fact that stars stay within a galaxy, whereas with their observed speed and the application of the gravitational theory they should escape their galaxy. Then, the issue has been to find evidence of the existence of dark matter. Neutrinos were supposed to be a clue, but only for a while. The notion of dark energy was introduced more recently by researchers who, by the observation of supernovae, noticed that the Universe expansion was accelerated in time. Then, after having discussed the issues raised by the possible existence of dark energy, the article explains how and why a new non homogeneous cosmology emerged. It also evokes current and future researches in this field. In an interview, an astrophysicist outlines why we should dare to modify Newton's law

  12. Dark matter and dark energy from the solution of the strong CP problem.

    Science.gov (United States)

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  13. Cosmological models described by a mixture of van der Waals fluid and dark energy

    International Nuclear Information System (INIS)

    Kremer, G.M.

    2003-01-01

    The Universe is modeled as a binary mixture whose constituents are described by a van der Waals fluid and by a dark energy density. The dark energy density is considered either as quintessence or as the Chaplygin gas. The irreversible processes concerning the energy transfer between the van der Waals fluid and the gravitational field are taken into account. This model can simulate (a) an inflationary period where the acceleration grows exponentially and the van der Waals fluid behaves like an inflaton, (b) an accelerated period where the acceleration is positive but it decreases and tends to zero whereas the energy density of the van der Waals fluid decays, (c) a decelerated period which corresponds to a matter dominated period with a non-negative pressure, and (d) a present accelerated period where the dark energy density outweighs the energy density of the van der Waals fluid

  14. Variable sound speed in interacting dark energy models

    Science.gov (United States)

    Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy

    2018-04-01

    We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.

  15. Sourcing dark matter and dark energy from α-attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Swagat S.; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Shtanov, Yuri, E-mail: swagat@iucaa.in, E-mail: varun@iucaa.in, E-mail: shtanov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2017-06-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m {sup 2}φ{sup 2}, while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m {sup 2}φ{sup 2} potential in describing dark matter.

  16. Sourcing dark matter and dark energy from α-attractors

    International Nuclear Information System (INIS)

    Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri

    2017-01-01

    In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m 2 φ 2 , while having none of its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m 2 φ 2 potential in describing dark matter.

  17. Can the Existence of Dark Energy be Directly Detected?

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Martin L.; /SLAC /KIPAC, Menlo Park

    2011-11-23

    The majority of astronomers and physicists accept the reality of dark energy and also believe that it can only be studied indirectly through observation of the motions of stars and galaxies. In this paper I open the experimental question of whether it is possible to directly detect dark energy through the presence of dark energy density. Two thirds of this paper outlines the major aspects of dark energy density as now comprehended by the astronomical and physics community. The final third summarizes various proposals for direct detection of dark energy density or its possible effects. At this time I do not have a fruitful answer to the question: Can the Existence of Dark Energy Be Directly Detected?

  18. Effect of Dark Energy Perturbation on Cosmic Voids Formation

    Science.gov (United States)

    Endo, Takao; Nishizawa, Atsushi J.; Ichiki, Kiyotomo

    2018-05-01

    In this paper, we present the effects of dark energy perturbation on the formation and abundance of cosmic voids. We consider dark energy to be a fluid with a negative pressure characterised by a constant equation of state w and speed of sound c_s^2. By solving fluid equations for two components, namely, dark matter and dark energy fluids, we quantify the effects of dark energy perturbation on the sizes of top-hat voids. We also explore the effects on the size distribution of voids based on the excursion set theory. We confirm that dark energy perturbation negligibly affects the size evolution of voids; c_s^2=0 varies the size only by 0.1% as compared to the homogeneous dark energy model. We also confirm that dark energy perturbation suppresses the void size when w -1 (Basse et al. 2011). In contrast to the negligible impact on the size, we find that the size distribution function on scales larger than 10 Mpc/h highly depends on dark energy perturbation; compared to the homogeneous dark energy model, the number of large voids of radius 30Mpc is 25% larger for the model with w = -0.9 and c_s^2=0 while they are 20% less abundant for the model with w = -1.3 and c_s^2=0.

  19. Dynamics of Interacting Tachyonic Teleparallel Dark Energy

    International Nuclear Information System (INIS)

    Banijamali, Ali

    2014-01-01

    We consider a tachyon scalar field which is nonminimally coupled to gravity in the framework of teleparallel gravity. We analyze the phase-space of the model, known as tachyonic teleparallel dark energy, in the presence of an interaction between dark energy and background matter. We find that although there exist some late-time accelerated attractor solutions, there is no scaling attractor. So, unfortunately interacting tachyonic teleparallel dark energy cannot alleviate the coincidence problem.

  20. Constraints on deflation from the equation of state of dark energy

    International Nuclear Information System (INIS)

    Baum, Lauris; Frampton, Paul H; Matsuzaki, Shinya

    2008-01-01

    In cyclic cosmology based on phantom dark energy the requirement that our universe satisfy a CBE condition (comes back empty) imposes a lower bound on the number N cp of causal patches which separate just prior to turnaround. This bound depends on the dark energy equation of state w = p/ρ = −1−φ with φ>0. More accurate measurement of φ will constrain N cp . The critical density ρ c in the model has a lower bound ρ c ≥(10 9 GeV) 4 or ρ c ≥(10 18 GeV) 4 when the smallest bound state has size 10 −15 m, or 10 −35 m, respectively

  1. Bouncing Cosmologies with Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Yi-Fu Cai

    2016-12-01

    Full Text Available We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence, could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  2. Dark energy and key physical parameters of clusters of galaxies

    Science.gov (United States)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  3. Statefinder diagnosis for Ricci dark energy

    International Nuclear Information System (INIS)

    Feng Chaojun

    2008-01-01

    Statefinder diagnostic is a useful method which can differ one dark energy model from each others. In this Letter, we apply this method to a holographic dark energy model from Ricci scalar curvature, called the Ricci dark energy model (RDE). We plot the evolutionary trajectories of this model in the statefinder parameter-planes, and it is found that the parameter of this model plays a significant role from the statefinder viewpoint. In a very special case, the statefinder diagnostic fails to discriminate LCDM and RDE models, thus we apply a new diagnostic called the Om diagnostic proposed recently to this model in this case in Appendix A and it works well

  4. "Type Ia Supernovae: Tools for Studying Dark Energy" Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, Stan [Lick Observatory, San Jose, CA (United States); Kasen, Dan [Univ. of California, Berkeley, CA (United States)

    2017-05-10

    Final technical report for project "Type Ia Supernovae: Tools for the Study of Dark Energy" awarded jointly to scientists at the University of California, Santa Cruz and Berkeley, for computer modeling, theory and data analysis relevant to the use of Type Ia supernovae as standard candles for cosmology.

  5. Generalized entropy formalism and a new holographic dark energy model

    Science.gov (United States)

    Sayahian Jahromi, A.; Moosavi, S. A.; Moradpour, H.; Morais Graça, J. P.; Lobo, I. P.; Salako, I. G.; Jawad, A.

    2018-05-01

    Recently, the Rényi and Tsallis generalized entropies have extensively been used in order to study various cosmological and gravitational setups. Here, using a special type of generalized entropy, a generalization of both the Rényi and Tsallis entropy, together with holographic principle, we build a new model for holographic dark energy. Thereinafter, considering a flat FRW universe, filled by a pressureless component and the new obtained dark energy model, the evolution of cosmos has been investigated showing satisfactory results and behavior. In our model, the Hubble horizon plays the role of IR cutoff, and there is no mutual interaction between the cosmos components. Our results indicate that the generalized entropy formalism may open a new window to become more familiar with the nature of spacetime and its properties.

  6. New interactions in the dark sector mediated by dark energy

    International Nuclear Information System (INIS)

    Brookfield, Anthony W.; Bruck, Carsten van de; Hall, Lisa M. H.

    2008-01-01

    Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example, two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles

  7. Probing dark energy using convergence power spectrum and bi-spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, Bikash R., E-mail: bikash@ctp-jamia.res.in [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2017-09-01

    Weak lensing convergence statistics is a powerful tool to probe dark energy. Dark energy plays an important role to the structure formation and the effects can be detected through the convergence power spectrum, bi-spectrum etc. One of the most promising and simplest dark energy model is the ΛCDM . However, it is worth investigating different dark energy models with evolving equation of state of the dark energy. In this work, detectability of different dark energy models from ΛCDM model has been explored through convergence power spectrum and bi-spectrum.

  8. Interacting holographic dark energy with logarithmic correction

    OpenAIRE

    Jamil, Mubasher; Farooq, M. Umar

    2010-01-01

    The holographic dark energy (HDE) is considered to be the most promising candidate of dark energy. Its definition is originally motivated from the entropy-area relation which depends on the theory of gravity under consideration. Recently a new definition of HDE is proposed with the help of quantum corrections to the entropy-area relation in the setup of loop quantum cosmology. Using this new definition, we investigate the model of interacting dark energy and derive its effective equation of s...

  9. Revisit of the interaction between holographic dark energy and dark matter

    International Nuclear Information System (INIS)

    Zhang, Zhenhui; Li, Xiao-Dong; Li, Song; Li, Miao; Zhang, Xin

    2012-01-01

    In this paper we investigate the possible direct, non-gravitational interaction between holographic dark energy (HDE) and dark matter. Firstly, we start with two simple models with the interaction terms Q∝ρ dm and Q∝ρ de , and then we move on to the general form Q∝ρ m α ρ de β . The cosmological constraints of the models are obtained from the joint analysis of the present Union2.1+BAO+CMB+H 0 data. We find that the data slightly favor an energy flow from dark matter to dark energy, although the original HDE model still lies in the 95.4% confidence level (CL) region. For all models we find c dm and ρ de is smaller, and the relative increment (decrement) amount of the energy in the dark matter component is constrained to be less than 9% (15%) at the 95.4% CL. By introducing the interaction, we find that even when c < 1 the big rip still can be avoided due to the existence of a de Sitter solution at z→−1. We show that this solution can not be accomplished in the two simple models, while for the general model such a solution can be achieved with a large β, and the big rip may be avoided at the 95.4% CL

  10. Hidden past of dark energy cosmological models

    International Nuclear Information System (INIS)

    Fernandez-Jambrina, L.

    2007-01-01

    In this Letter we analyse the possibility of having homogeneous isotropic cosmological models with observers reaching t=∞ in finite proper time. It is shown that just observationally-suggested dark energy models with w element of (-5/3,-1) show this feature and that they are endowed with an exotic curvature singularity. Furthermore, it is shown that non-accelerated observers in these models may experience a duration of the universe as short as desired by increasing their linear momentum. A subdivision of phantom models in two families according to this behavior is suggested

  11. The impact of dark energy on galaxy formation. What does the future of our Universe hold?

    Science.gov (United States)

    Salcido, Jaime; Bower, Richard G.; Barnes, Luke A.; Lewis, Geraint F.; Elahi, Pascal J.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop

    2018-04-01

    We investigate the effect of the accelerated expansion of the Universe due to a cosmological constant, Λ, on the cosmic star formation rate. We utilise hydrodynamical simulations from the EAGLE suite, comparing a ΛCDM Universe to an Einstein-de Sitter model with Λ = 0. Despite the differences in the rate of growth of structure, we find that dark energy, at its observed value, has negligible impact on star formation in the Universe. We study these effects beyond the present day by allowing the simulations to run forward into the future (t > 13.8 Gyr). We show that the impact of Λ becomes significant only when the Universe has already produced most of its stellar mass, only decreasing the total co-moving density of stars ever formed by ≈15%. We develop a simple analytic model for the cosmic star formation rate that captures the suppression due to a cosmological constant. The main reason for the similarity between the models is that feedback from accreting black holes dramatically reduces the cosmic star formation at late times. Interestingly, simulations without feedback from accreting black holes predict an upturn in the cosmic star formation rate for t > 15 Gyr due to the rejuvenation of massive (>1011M⊙) galaxies. We briefly discuss the implication of the weak dependence of the cosmic star formation on Λ in the context of the anthropic principle.

  12. Manifestations of dark energy in the dynamics of the Solar system

    NARCIS (Netherlands)

    Křížek, M.; Brandts, J.

    2010-01-01

    The expansion speed of the Universe is increasing (Glanz 1998). This acceleration is attributed to dark energy which acts almost uniformly everywhere (including the Solar system) and thus essentially influences the Hubble constant. Its current value on a distance of 1 AU is H0 = 10 m/(yr AU). This

  13. An instability of the standard model of cosmology creates the anomalous acceleration without dark energy

    Science.gov (United States)

    Smoller, Joel; Temple, Blake; Vogler, Zeke

    2017-11-01

    We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p=0. In this phase portrait, the critical k=0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.

  14. An instability of the standard model of cosmology creates the anomalous acceleration without dark energy.

    Science.gov (United States)

    Smoller, Joel; Temple, Blake; Vogler, Zeke

    2017-11-01

    We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p =0. In this phase portrait, the critical k =0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.

  15. Black holes in the presence of dark energy

    International Nuclear Information System (INIS)

    Babichev, E O; Dokuchaev, V I; Eroshenko, Yu N

    2013-01-01

    The new, rapidly developing field of theoretical research—studies of dark energy interacting with black holes (and, in particular, accreting onto black holes)–—is reviewed. The term 'dark energy' is meant to cover a wide range of field theory models, as well as perfect fluids with various equations of state, including cosmological dark energy. Various accretion models are analyzed in terms of the simplest test field approximation or by allowing back reaction on the black-hole metric. The behavior of various types of dark energy in the vicinity of Schwarzschild and electrically charged black holes is examined. Nontrivial effects due to the presence of dark energy in the black hole vicinity are discussed. In particular, a physical explanation is given of why the black hole mass decreases when phantom energy is being accreted, a process in which the basic energy conditions of the famous theorem of nondecreasing horizon area in classical black holes are violated. The theoretical possibility of a signal escaping from beneath the black hole event horizon is discussed for a number of dark energy models. Finally, the violation of the laws of thermodynamics by black holes in the presence of noncanonical fields is considered. (reviews of topical problems)

  16. Supersymmetric theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Fardon, Rob; Nelson, Ann E.; Weiner, Neal

    2006-01-01

    We present a supersymmetric model of dark energy from Mass Varying Neutrinos which is stable against radiative corrections to masses and couplings, and free of dynamical instabilities. This is the only such model of dark energy involving fields with significant couplings to any standard model particle. We briefly discuss consequences for neutrino oscillations and solar neutrinos

  17. Constraining dark energy with clusters: Complementarity with other probes

    International Nuclear Information System (INIS)

    Cunha, Carlos; Huterer, Dragan; Frieman, Joshua A.

    2009-01-01

    The Figure of Merit Science Working Group recently forecast the constraints on dark energy that will be achieved prior to the Joint Dark Energy Mission by ground-based experiments that exploit baryon acoustic oscillations, type Ia supernovae, and weak gravitational lensing. We show that cluster counts from ongoing and near-future surveys should provide robust, complementary dark energy constraints. In particular, we find that optimally combined optical and Sunyaev-Zel'dovich effect cluster surveys should improve the Dark Energy Task Force figure of merit for pre-Joint Dark Energy Mission projects by a factor of 2 even without prior knowledge of the nuisance parameters in the cluster mass-observable relation. Comparable improvements are achieved in the forecast precision of parameters specifying the principal component description of the dark energy equation of state parameter, as well as in the growth index γ. These results indicate that cluster counts can play an important complementary role in constraining dark energy and modified gravity even if the associated systematic errors are not strongly controlled.

  18. The Dark Side of the Universe

    International Nuclear Information System (INIS)

    Bradac, Marusa

    2007-01-01

    One of the greatest accomplishments in recent astrophysics is the creation of a model for the complete inventory of the Universe. All the observational data tells us with extremely high certainty that ordinary matter (every particle ever detected by every person who ever lived) makes up only one fifth of all the matter there is. The rest goes by the popular name of dark matter. Because it is dark, dark matter has been notoriously hard to detect; it doesn't emit or reflect radiation such as light or heat, and it can have only the feeblest of interactions with itself and ordinary matter. So how do we know it is there? In this talk, I will discuss how astronomers observe the invisible matter in one of the true gems on the sky: a giant cluster of galaxies.

  19. Using Dark Matter Haloes to Learn about Cosmic Acceleration: A New Proposal for a Universal Mass Function

    Science.gov (United States)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh

    2011-01-01

    Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.

  20. Signature of the interaction between dark energy and dark matter in galaxy clusters

    International Nuclear Information System (INIS)

    Abdalla, Elcio; Abramo, L. Raul; Sodre, Laerte; Wang Bin

    2009-01-01

    We investigate the influence of an interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain the general Layser-Irvine equation in the presence of interactions, and find how, in that case, the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions on the magnitude and significance of this coupling could be established

  1. Probing dark energy with braneworld cosmology in the light of recent cosmological data

    Science.gov (United States)

    García-Aspeitia, Miguel A.; Magaña, Juan; Hernández-Almada, A.; Motta, V.

    We investigate a brane model based on Randall-Sundrum scenarios with a generic dark energy component. The latter drives the accelerated expansion at late-times of the universe. In this scheme, extra terms are added into Einstein Field equations that are propagated to the Friedmann equations. To constrain the dark energy equation-of-state (EoS) and the brane tension we use observational data with different energy levels (Supernovae Type Ia, H(z), baryon acoustic oscillations, and cosmic microwave background radiation distance, and a joint analysis) in a background cosmology. Beside EoS being consistent with a cosmological constant at the 3σ confidence level for each dataset, the baryon acoustic oscillations probe favors an EoS consistent with a quintessence dark energy. Although we found different lower limit bounds on the brane tension for each dataset, being the most restricted for CMB, there is not enough evidence of modifications in the cosmological evolution of the universe by the existence of an extra dimension within observational uncertainties. Nevertheless, these new bounds are complementary to those obtained by other probes like table-top experiments, Big Bang Nucleosynthesis, and stellar dynamics. Our results show that a further test of the braneworld model with appropriate correction terms or a profound analysis with perturbations, may be needed to improve the constraints provided by the current data.

  2. Ionization history of the universe as a test for superheavy dark matter particles

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Naselsky, P.D.

    2002-01-01

    In this paper we discuss the possible distortions of the ionization history of the universe caused by an injection of nonthermal energy due to decays of hypothetical superheavy dark matter (SHDM) particles. These particles are usually considered as a possible source of ultrahigh energy cosmic rays in the framework of the top-down model. Estimates of the fraction of energy of decays converted to the UV range show that, for suitable parameters of the SHDM particles, significant distortions of the power spectra of the cosmic microwave background anisotropy appear. A comparison with the observed power spectrum allows us to restrict some properties of the SHDM particles. These decays can also increase by about 5-10 times the degree of ionization of hydrogen at redshifts z∼10-50, which essentially accelerates the formation of molecules of H 2 and the first stars during the 'dark ages'

  3. Dark Energy Camera for Blanco

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Gary A.; /Caltech /SLAC

    2010-08-25

    In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.

  4. Induced gravity and the attractor dynamics of dark energy/dark matter

    International Nuclear Information System (INIS)

    Cervantes-Cota, Jorge L.; Putter, Roland de; Linder, Eric V.

    2010-01-01

    Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity

  5. Dark Matter Annihilation at the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Timothy Ryan [Univ. of California, Santa Cruz, CA (United States)

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  6. Levitating dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Kaloper, Nemanja [Department of Physics, University of California, Davis, CA 95616 (United States); Padilla, Antonio, E-mail: kaloper@physics.ucdavis.edu, E-mail: antonio.padilla@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  7. Levitating dark matter

    Science.gov (United States)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  8. Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy

    Directory of Open Access Journals (Sweden)

    Leandros Perivolaropoulos

    2014-01-01

    Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.

  9. Future CMB cosmological constraints in a dark coupled universe

    CERN Document Server

    Martinelli, Matteo; Melchiorri, Alessandro; Mena, Olga

    2010-01-01

    Cosmic Microwave Background satellite missions as the on-going Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.

  10. Field Flows of Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  11. Cosmological evolution of interacting dark energy in Lorentz violation

    International Nuclear Information System (INIS)

    Zen, Freddy P.; Gunara, Bobby E.; Triyanta; Arianto; Purwanto, A.

    2009-01-01

    The cosmological evolution of an interacting scalar-field model in which the scalar field interacts with dark matter, radiation, and baryons via Lorentz violation is investigated. We propose a model of interaction through the effective coupling, anti β. Using dynamical system analysis, we study the linear dynamics of an interacting model and show that the dynamics of critical points are completely controlled by two parameters. Some results can be mentioned as follows. Firstly, the sequence of radiation, the dark matter, and the scalar-field dark energy exist and baryons are subdominant. Secondly, the model also allows for the possibility of having a universe in the phantom phase with constant potential. Thirdly, the effective gravitational constant varies with respect to time through anti β. In particular, we consider the simple case where anti β has a quadratic form and has a good agreement with the modified ΛCDM and quintessence models. Finally, we also calculate the first post-Newtonian parameters for our model. (orig.)

  12. Interacting holographic dark energy models: a general approach

    Science.gov (United States)

    Som, S.; Sil, A.

    2014-08-01

    Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.

  13. Puzzles of dark energy in the Universe—phantom

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P

    2015-01-01

    This paper is devoted to some simple approach based on general physics tools to describe the physical properties of a hypothetical particle which can be the source of dark energy in the Universe known as phantom. Phantom is characterized by the fact that it possesses negative momentum and kinetic energy and that it gives dominant negative pressure which acts as antigravity. We consider a phantom harmonic oscillator in comparison to a standard harmonic oscillator. By using the first law of thermodynamics we explain why the energy density of the Universe grows when it is filled with phantom. We also show how the collision of phantom with a standard particle leads to extraction of energy from the former by the latter (i.e. from phantom to the standard) if their masses are different. The most striking of our conclusions is that the collision of phantom and standard particles of the same mass is impossible unless both of them are at rest and suddenly start moving with opposite velocities and kinetic energies. This effect is a classic analog of quantum mechanical particle pair creation in a strong electric field or physical vacuum. (paper)

  14. Constraining Dark Energy with X-ray Galaxy Clusters, Supernovae and the Cosmic Microwave Background

    International Nuclear Information System (INIS)

    Rapetti, D

    2005-01-01

    We present new constraints on the evolution of dark energy from an analysis of Cosmic Microwave Background, supernova and X-ray galaxy cluster data. Our analysis employs a minimum of priors and exploits the complementary nature of these data sets. We examine a series of dark energy models with up to three free parameters: the current dark energy equation of state w 0 , the early time equation of state w et and the scale factor at transition, a t . From a combined analysis of all three data sets, assuming a constant equation of state and that the Universe is flat, we measure w 0 = 1.05 -0.12 +0.10 . Including w et as a free parameter and allowing the transition scale factor to vary over the range 0.5 t 0 = -1.27 -0.39 +0.33 and w et = -0.66 -0.62 +0.44 . We find no significant evidence for evolution in the dark energy equation of state parameter with redshift. Marginal hints of evolution in the supernovae data become less significant when the cluster constraints are also included in the analysis. The complementary nature of the data sets leads to a tight constraint on the mean matter density, (Omega) m and alleviates a number of other parameter degeneracies, including that between the scalar spectral index n s , the physical baryon density (Omega) b h 2 and the optical depth τ. This complementary nature also allows us to examine models in which we drop the prior on the curvature. For non-flat models with a constant equation of state, we measure w 0 = -1.09 -0.15 +0.12 and obtain a tight constraint on the current dark energy density, (Omega) de = 0.70 ± 0.03. For dark energy models other than a cosmological constant, energy-momentum conservation requires the inclusion of spatial perturbations in the dark energy component. Our analysis includes such perturbations, assuming a sound speed c s 2 = 1 in the dark energy fluid as expected for Quintessence scenarios. For our most general dark energy model, not including such perturbations would lead to spurious constraints

  15. Geodesics of black holes with dark energy

    Science.gov (United States)

    Ghaderi, K.

    2017-12-01

    Dark energy is the most popular hypothesis to explain recent observations suggesting that the world will increasingly expand. One of the models of dark energy is quintessence which is highly plausible. In this paper, we investigate the effect of dark energy on the null geodesics of Schwarzschild, Reissner-Nordström, Schwarzschild-de Sitter and Bardeen black holes. Using the definition of effective potential, the radius of the circular orbits, the period, the instability of the circular orbits, the force exerted on the photons and the deviation angle of light in quintessence field are calculated and the results are analyzed and discussed.

  16. The electromagnetic coupling and the dark side of the Universe

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Torres, P.

    2007-01-01

    We examine the properties of dark energy and dark matter through the study of the variation of the electromagnetic coupling. For concreteness, we consider the unification model of dark energy and dark matter, the generalized Chaplygin gas model (GCG), characterized by the equation of state p=-Aρ α , where p is the pressure, ρ is the energy density and A and α are positive constants. The coupling of electromagnetism with the GCG's scalar field can give rise to such a variation. We compare our results with experimental data, and find that the degeneracy on parameters α and A s , A s =A/ρ ch0 1+α , is considerable

  17. Holographic dark energy and f(R) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, A [Faculty of Science, Islamic Azad University of Sanandaj, Sanandaj (Iran, Islamic Republic of); Saaidi, Kh, E-mail: ksaaidi@uok.ac.ir, E-mail: agha35484@yahoo.com [Department of Physics, Faculty of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-02-15

    We investigate the corresponding relation between f(R) gravity and holographic dark energy. We introduce a type of energy density from f(R) that has the same role as holographic dark energy. We obtain the differential equation that specifies the evolution of the introduced energy density parameter based on a varying gravitational constant. We discover the relation for the equation of state parameter for low redshifts that contains varying G correction.

  18. Dark energy from quantum matter

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Hack, Thomas-Paul; Moeller, Jan; Pinamonti, Nicola

    2010-07-01

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  19. Dark energy from quantum matter

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Moeller, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Pinamonti, Nicola [Rome-2 Univ. (Italy). Dipt. di Matematica

    2010-07-15

    We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)

  20. A Unified Model of Phantom Energy and Dark Matter

    Science.gov (United States)

    Chaves, Max; Singleton, Douglas

    2008-01-01

    To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys w = p/ρ theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann) vector fields which act as a form of two component dark matter. Thus from a gauge theory based o! n a graded algebra we naturally obtained both phantom energy and dark matter.

  1. Testing the Cosmic Coincidence Problem and the Nature of Dark Energy

    International Nuclear Information System (INIS)

    Dalal, Neal; Abazajian, Kevork; Jenkins, Elizabeth; Manohar, Aneesh V.

    2001-01-01

    Dark energy models which alter the relative scaling behavior of dark energy and matter could provide a natural solution to the cosmic coincidence problem -- why the densities of dark energy and dark matter are comparable today. A generalized class of dark energy models is introduced which allows noncanonical scaling of the ratio of dark matter and dark energy with the Robertson-Walker scale factor a(t) . We show that determining whether there is a coincidence problem, and the extent of cosmic coincidence, can be addressed by several forthcoming experiments

  2. Quantum Yang–Mills Dark Energy

    Directory of Open Access Journals (Sweden)

    Roman Pasechnik

    2016-02-01

    Full Text Available In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein–Yang–Mills formulation. A brief outlook of existing studies of cosmological Yang–Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann–Lemaítre–Robertson–Walker (FLRW background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  3. A Unified Model of Phantom Energy and Dark Matter

    Directory of Open Access Journals (Sweden)

    Douglas Singleton

    2008-01-01

    Full Text Available To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys $w=p/ ho <-1/3$. This form of mass-energy leads to accelerated expansion. An extreme form of dark energy, called phantom energy, has been proposed which has $w=p/ ho <-1$. This possibility is favored by the observational data. The simplest model for phantom energy involves the introduction of a scalar field with a negative kinetic energy term. Here we show that theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann vector fields which act as a form of two component dark matter. Thus from a gauge theory based on a graded algebra we naturally obtained both phantom energy and dark matter.

  4. Entanglement in holographic dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, R., E-mail: horvat@lei3.irb.h [Rudjer Boskovic Institute, P.O. Box 180, 10002 Zagreb (Croatia)

    2010-10-18

    We study a process of equilibration of holographic dark energy (HDE) with the cosmic horizon around the dark-energy dominated epoch. This process is characterized by a huge amount of information conveyed across the horizon, filling thereby a large gap in entropy between the system on the brink of experiencing a sudden collapse to a black hole and the black hole itself. At the same time, even in the absence of interaction between dark matter and dark energy, such a process marks a strong jump in the entanglement entropy, measuring the quantum-mechanical correlations between the horizon and its interior. Although the effective quantum field theory (QFT) with a peculiar relationship between the UV and IR cutoffs, a framework underlying all HDE models, may formally account for such a huge shift in the number of distinct quantum states, we show that the scope of such a framework becomes tremendously restricted, devoid virtually any application in other cosmological epochs or particle-physics phenomena. The problem of negative entropies for the non-phantom stuff is also discussed.

  5. Entanglement in holographic dark energy models

    International Nuclear Information System (INIS)

    Horvat, R.

    2010-01-01

    We study a process of equilibration of holographic dark energy (HDE) with the cosmic horizon around the dark-energy dominated epoch. This process is characterized by a huge amount of information conveyed across the horizon, filling thereby a large gap in entropy between the system on the brink of experiencing a sudden collapse to a black hole and the black hole itself. At the same time, even in the absence of interaction between dark matter and dark energy, such a process marks a strong jump in the entanglement entropy, measuring the quantum-mechanical correlations between the horizon and its interior. Although the effective quantum field theory (QFT) with a peculiar relationship between the UV and IR cutoffs, a framework underlying all HDE models, may formally account for such a huge shift in the number of distinct quantum states, we show that the scope of such a framework becomes tremendously restricted, devoid virtually any application in other cosmological epochs or particle-physics phenomena. The problem of negative entropies for the non-phantom stuff is also discussed.

  6. Cosmological Analysis of Dynamical Chern-Simons Modified Gravity via Dark Energy Scenario

    Directory of Open Access Journals (Sweden)

    Abdul Jawad

    2015-01-01

    Full Text Available The purpose of this paper is to study the cosmological evolution of the universe in the framework of dynamical Chern-Simons modified gravity. We take pilgrim dark energy model with Hubble and event horizons in interacting scenario with cold dark matter. For this scenario, we discuss cosmological parameters such as Hubble and equation of state and cosmological plane like ωϑ-ωϑ′ and squared speed of sound. It is found that Hubble parameter approaches the ranges 75-0.5+0.5 (for u=2 and (74, 74.30 (for u=1,-1,-2 for Hubble horizon pilgrim dark energy. It implies the ranges 74.80-0.005+0.005 (for u=2 and (73.4, 74 (for u=-2 for event horizon pilgrim dark energy. The equation of state parameter provides consistent ranges with different observational schemes. Also, ωϑ-ωϑ′ planes lie in the range (ωϑ=-1.13-0.25+0.24,ωϑ′<1.32. The squared speed of sound shows stability for all present models in the present scenario. We would like to mention here that our results of various cosmological parameters show consistency with different observational data like Planck, WP, BAO, H0, SNLS, and WMAP.

  7. The Expanding Universe: Dark Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, Don [Fermilab; Nord, Brian [Fermilab

    2014-09-01

    In 1998, observations of distant supernovae led physicists that not only was the universe expanding, but the expansion was speeding up. In this article, we describe the evidence for an expanding universe and describe what physicists and cosmologists have learned in the intervening years. The target audience for this article is high school physics teachers and college physics professors at teaching institutions.

  8. Condensate cosmology: Dark energy from dark matter

    International Nuclear Information System (INIS)

    Bassett, Bruce A.; Parkinson, David; Kunz, Martin; Ungarelli, Carlo

    2003-01-01

    Imagine a scenario in which the dark energy forms via the condensation of dark matter at some low redshift. The Compton wavelength therefore changes from small to very large at the transition, unlike quintessence or metamorphosis. We study cosmic microwave background (CMB), large scale structure, supernova and radio galaxy constraints on condensation by performing a four parameter likelihood analysis over the Hubble constant and the three parameters associated with Q, the condensate field: Ω Q , w f and z t (energy density and equation of state today, and redshift of transition). Condensation roughly interpolates between ΛCDM (for large z t ) and SCDM (low z t ) and provides a slightly better fit to the data than ΛCDM. We confirm that there is no degeneracy in the CMB between H and z t and discuss the implications of late-time transitions for the Lyman-α forest. Finally we discuss the nonlinear phase of both condensation and metamorphosis, which is much more interesting than in standard quintessence models

  9. Phantom dark energy and cosmological solutions without the Big Bang singularity

    International Nuclear Information System (INIS)

    Baushev, A.N.

    2010-01-01

    The hypothesis is rapidly gaining popularity that the dark energy pervading our universe is extra-repulsive (-p>ρ). The density of such a substance (usually called phantom energy) grows with the cosmological expansion and may become infinite in a finite time producing a Big Rip. In this Letter we analyze the late stages of the universe evolution and demonstrate that the presence of the phantom energy in the universe is not enough in itself to produce the Big Rip. This singularity occurrence requires the fulfillment of some additional, rather strong conditions. A more probable outcome of the cosmological evolution is the decay of the phantom field into 'normal' matter. The second, more intriguing consequence of the presence of the phantom field is the possibility to introduce a cosmological scenario that does not contain a Big Bang. In the framework of this model the universe eternally expands, while its density and other physical parameters oscillate over a wide range, never reaching the Plank values. Thus, the universe evolution has no singularities at all.

  10. Interacting ghost dark energy in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Ebrahimi, Esmaeil; Sheykhi, Ahmad

    2011-01-01

    We investigate the QCD ghost model of dark energy in the framework of Brans-Dicke cosmology. First, we study the non-interacting ghost dark energy in a flat Brans-Dicke theory. In this case we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of ghost energy density. Interestingly enough, we find that the equation of state parameter of the non-interacting ghost dark energy can cross the phantom line (w D =-1) provided the parameters of the model are chosen suitably. Then, we generalize the study to the interacting ghost dark energy in both flat and non-flat Brans-Dicke framework and find out that the transition of w D to phantom regime can be more easily achieved for than when resort to the Einstein field equations is made.

  11. The missing universe

    International Nuclear Information System (INIS)

    Springel, V.; Taillet, R.; Deffayet, C.

    2014-01-01

    According to the Big Bang model, ordinary matter would play a second role in the universe compared to 2 mysterious components: dark matter and dark energy. Although the nature of both components is unknown, observational hints for their existence pile up but the direct detection of both has been unsuccessful so far. New ways have been explored to do without the concepts of dark matter and dark energy. This document that is divided into 3 parts presents the observational data that back the idea of dark matter and dark energy, the experimental effort made worldwide to detect dark matter particles, and the other ways to explain universe expansion

  12. Fingerprinting dark energy. II. Weak lensing and galaxy clustering tests

    International Nuclear Information System (INIS)

    Sapone, Domenico; Kunz, Martin; Amendola, Luca

    2010-01-01

    The characterization of dark energy is a central task of cosmology. To go beyond a cosmological constant, we need to introduce at least an equation of state and a sound speed and consider observational tests that involve perturbations. If dark energy is not completely homogeneous on observable scales, then the Poisson equation is modified and dark matter clustering is directly affected. One can then search for observational effects of dark energy clustering using dark matter as a probe. In this paper we exploit an analytical approximate solution of the perturbation equations in a general dark energy cosmology to analyze the performance of next-decade large-scale surveys in constraining equation of state and sound speed. We find that tomographic weak lensing and galaxy redshift surveys can constrain the sound speed of the dark energy only if the latter is small, of the order of c s < or approx. 0.01 (in units of c). For larger sound speeds the error grows to 100% and more. We conclude that large-scale structure observations contain very little information about the perturbations in canonical scalar field models with a sound speed of unity. Nevertheless, they are able to detect the presence of cold dark energy, i.e. a dark energy with nonrelativistic speed of sound.

  13. Dark Matter

    International Nuclear Information System (INIS)

    Holt, S. S.; Bennett, C. L.

    1995-01-01

    These proceedings represent papers presented at the Astrophysics conference in Maryland, organized by NASA Goddard Space Flight Center and the University of Maryland. The topics covered included low mass stars as dark matter, dark matter in galaxies and clusters, cosmic microwave background anisotropy, cold and hot dark matter, and the large scale distribution and motions of galaxies. There were eighty five papers presented. Out of these, 10 have been abstracted for the Energy Science and Technology database

  14. Viscous dark energy models with variable G and Λ

    International Nuclear Information System (INIS)

    Arbab, Arbab I.

    2008-01-01

    We consider a cosmological model with bulk viscosity η and variable cosmological A ∝ ρ -α , alpha = const and gravitational G constants. The model exhibits many interesting cosmological features. Inflation proceeds due to the presence of bulk viscosity and dark energy without requiring the equation of state p=-ρ. During the inflationary era the energy density ρ does not remain constant, as in the de-Sitter type. Moreover, the cosmological and gravitational constants increase exponentially with time, whereas the energy density and viscosity decrease exponentially with time. The rate of mass creation during inflation is found to be very huge suggesting that all matter in the universe is created during inflation. (author)

  15. Welcome to the dark side

    CERN Multimedia

    Hogan, Jenny

    2007-01-01

    "Physicists says that 96% of the Universe is unseen, and appeal tot he ideas of "dark matter" and "dark energy" to make up the difference. In the first of two articles, jeanny hogan reports that attempts to identify the mysterious dark matter are on the verge of success. In the second, Geoff Brumfiel asks why dark energy, hailed as a breakthrough when discovered a decade ago, is proving more frustrating than ever tot he scientists who study it." (4,5 pages)

  16. Braneworlds and dark energy

    International Nuclear Information System (INIS)

    Neves, Rui; Vaz, Cenalo

    2006-01-01

    In the Randall-Sundrum scenario, we analyse the dynamics of an AdS 5 braneworld when conformal matter fields propagate in five dimensions. We show that conformal fields of weight -4 are associated with stable geometries which describe the dynamics of inhomogeneous dust, generalized dark radiation and homogeneous polytropic dark energy on a spherically symmetric 3-brane embedded in the compact AdS 5 orbifold. We discuss aspects of the radion stability conditions and of the localization of gravity in the vicinity of the brane

  17. arXiv Signatures of Dark Radiation in Neutrino and Dark Matter Detectors

    CERN Document Server

    Cui, Yanou; Pradler, Josef

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with non-gravitational interactions with Standard Model (SM) particles. Such dark radiation may consist of SM singlets or a non-thermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In pa...

  18. Dark energy and the quietness of the local Hubble flow

    International Nuclear Information System (INIS)

    Axenides, M.; Perivolaropoulos, L.

    2002-01-01

    The linearity and quietness of the local ( X (t 0 ) of dark energy obeying the time independent equation of state p X =wρ X . We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value v rms ≅40 km/s have been ruled out by other observational tests constraining the dark energy parameters w and Ω X . Therefore despite the claims of recent qualitative studies, dark energy with time independent equation of state cannot by itself explain the quietness and linearity of the local Hubble flow

  19. The Dark Energy Survey: more than dark energy – an overview

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Vinu; Abbott, T; Abdalla, F. B.; Allam, S.; Aleksic, J.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Levy, A.

    2016-03-21

    This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from ‘Science Verification’, and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be Λ+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).

  20. High Energy Physics at the University of Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Liss, Tony M. [University of Illinois; Thaler, Jon J. [University of Illinois

    2013-07-26

    This is the final report for DOE award DE-FG02-91ER40677 (“High Energy Physics at the University of Illinois”), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

  1. Spherical collapse of dark energy with an arbitrary sound speed

    International Nuclear Information System (INIS)

    Basse, Tobias; Bjælde, Ole Eggers; Wong, Yvonne Y.Y.

    2011-01-01

    We consider a generic type of dark energy fluid, characterised by a constant equation of state parameter w and sound speed c s , and investigate the impact of dark energy clustering on cosmic structure formation using the spherical collapse model. Along the way, we also discuss in detail the evolution of dark energy perturbations in the linear regime. We find that the introduction of a finite sound speed into the picture necessarily induces a scale-dependence in the dark energy clustering, which in turn affects the dynamics of the spherical collapse in a scale-dependent way. As with other, more conventional fluids, we can define a Jeans scale for the dark energy clustering, and hence a Jeans mass M J for the dark matter which feels the effect of dark energy clustering via gravitational interactions. For bound objects (halos) with masses M >> M J , the effect of dark energy clustering is maximal. For those with M J , the dark energy component is effectively homogeneous, and its role in the formation of these structures is reduced to its effects on the Hubble expansion rate. To compute quantitatively the virial density and the linearly extrapolated threshold density, we use a quasi-linear approach which is expected to be valid up to around the Jeans mass. We find an interesting dependence of these quantities on the halo mass M, given some w and c s . The dependence is the strongest for masses lying in the vicinity of M ∼ M J . Observing this M-dependence will be a tell-tale sign that dark energy is dynamic, and a great leap towards pinning down its clustering properties

  2. Singularities and Entropy in Bulk Viscosity Dark Energy Model

    International Nuclear Information System (INIS)

    Meng Xinhe; Dou Xu

    2011-01-01

    In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ 0 + λ 1 (1 + z) n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. (geophysics, astronomy, and astrophysics)

  3. Hessence: a new view of quintom dark energy

    International Nuclear Information System (INIS)

    Wei Hao; Cai Ronggen; Zeng Dingfang

    2005-01-01

    Recently a lot of attention has been given to building a dark energy model in which the equation-of-state parameter w can cross the phantom divide w = -1. One of the models to realize crossing the phantom divide is called the quintom model, in which two real scalar fields appear, one is a normal scalar field and the other is a phantom-type scalar field. In this paper we propose a non-canonical complex scalar field as the dark energy, which we dub 'hessence', to implement crossing the phantom divide, in a similar sense as the quintom dark energy model. In the hessence model, the dark energy is described by a single field with an internal degree of freedom rather than two independent real scalar fields. However, the hessence is different from an ordinary complex scalar field, we show that the hessence can avoid the difficulty of the Q-ball formation which gives trouble to the spintessence model (an ordinary complex scalar field acts as the dark energy). Furthermore, we find that, by choosing a proper potential, the hessence could correspond to a Chaplygin gas at late times

  4. On the observability of coupled dark energy with cosmic voids

    Science.gov (United States)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  5. New limit on logotropic unified dark energy models

    Directory of Open Access Journals (Sweden)

    V.M.C. Ferreira

    2017-07-01

    Full Text Available A unification of dark matter and dark energy in terms of a logotropic perfect dark fluid has recently been proposed, where deviations with respect to the standard ΛCDM model are dependent on a single parameter B. In this paper we show that the requirement that the linear growth of cosmic structures on comoving scales larger than 8h−1Mpc is not significantly affected with respect to the standard ΛCDM result provides the strongest limit to date on the model (B<6×10−7, an improvement of more than three orders of magnitude over previous upper limits on the value of B. We further show that this limit rules out the logotropic Unified Dark Energy model as a possible solution to the small scale problems of the ΛCDM model, including the cusp problem of Dark Matter halos or the missing satellite problem, as well as the original version of the model where the Planck energy density was taken as one of the two parameters characterizing the logotropic dark fluid.

  6. Constraints on reconstructed dark energy model from SN Ia and BAO/CMB observations

    Energy Technology Data Exchange (ETDEWEB)

    Mamon, Abdulla Al [Manipal University, Manipal Centre for Natural Sciences, Manipal (India); Visva-Bharati, Department of Physics, Santiniketan (India); Bamba, Kazuharu [Fukushima University, Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima (Japan); Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)

    2017-01-15

    The motivation of the present work is to reconstruct a dark energy model through the dimensionless dark energy function X(z), which is the dark energy density in units of its present value. In this paper, we have shown that a scalar field φ having a phenomenologically chosen X(z) can give rise to a transition from a decelerated to an accelerated phase of expansion for the universe. We have examined the possibility of constraining various cosmological parameters (such as the deceleration parameter and the effective equation of state parameter) by comparing our theoretical model with the latest Type Ia Supernova (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background (CMB) radiation observations. Using the joint analysis of the SN Ia+BAO/CMB dataset, we have also reconstructed the scalar potential from the parametrized X(z). The relevant potential is found, a polynomial in φ. From our analysis, it has been found that the present model favors the standard ΛCDM model within 1σ confidence level. (orig.)

  7. PreCam: A Precursor Observational Campaign for Calibration of the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, K.; Kuhlmann, S.; Allam, S.; Annis, J. T.; Bailey, T.; Balbinot, E.; Bernstein, J. P.; Biesiadzinski, T.; Burke, D. L.; Butner, M.; Camargo, J. I. B.; da Costa, L. A. N.; DePoy, D.; Diehl, H. T.; Dietrich, J. P.; Estrada, J.; Fausti, A.; Gerke, B.; Guarino, V.; Head, H. H.; Kessler, R.; Lin, H.; Lorenzon, W.; Maia, M. A. G.; Maki, L.; Marshall, J.; Nord, B.; Neilsen, E.; Ogando, R. L. C.; Park, D.; Peoples, J.; Rastawicki, D.; Rheault, J. -P.; Santiago, B.; Schubnell, M.; Seitzer, P.; Smith, J. A.; Spinka, H.; Sypniewski, A.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.

    2013-04-01

    PreCam, a precursor observational campaign supporting the Dark Energy Survey (DES), is designed to produce a photometric and astrometric catalog of nearly a hundred thousand standard stars within the DES footprint, while the PreCam instrument also serves as a prototype testbed for the Dark Energy Camera's hardware and software. This catalog represents a potential 100-fold increase in Southern Hemisphere photometric standard stars, and therefore will be an important component in the calibration of the Dark Energy Survey. We provide details on the PreCam instrument's design, construction, and testing, as well as results from a subset of the 51 nights of PreCam survey observations on the University of Michigan Department of Astronomy's Curtis-Schmidt telescope at Cerro Tololo Inter-American Observatory (CTIO). We briefly describe the preliminary data processing pipeline that has been developed for PreCam data and the preliminary results of the instrument performance, as well as astrometry and photometry of a sample of stars previously included in other southern sky surveys.

  8. Probing interaction and spatial curvature in the holographic dark energy model

    International Nuclear Information System (INIS)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi; Zhang, Xin

    2009-01-01

    In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ Λ ), matter (ρ m ), and matter plus dark energy (ρ m +ρ Λ ). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model

  9. Weak-lensing magnification as a probe for the dark Universe

    Energy Technology Data Exchange (ETDEWEB)

    García Fernández, Manuel [Autonomous Univ. of Madrid (Spain)

    2017-06-01

    This Thesis is devoted to the analysis of weak-lensing magnification on the Dark Energy Survey. Two analysis with different goals each are made on different data-sets: the Science Verification (DES-SV) and the Year 1 (DES-Y1). The DES-SV analysis aims the development of techniques to detect the weak-lensing number count magnification signal and the mitigation of systematic errors. The DES-Y1 analysis employs the methods used with the DES-SV data to measure the convergence profile of the emptiest regions of the Universe –voids and troughs–to use them as a new cosmological probe.

  10. Direct probe of dark energy through gravitational lensing effect

    Energy Technology Data Exchange (ETDEWEB)

    He, Hong-Jian [T. D. Lee Institute, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Zhen, E-mail: hjhe@tsinghua.edu.cn, E-mail: zh.zhang@pku.edu.cn [Center for High Energy Physics, Peking University, Beijing 100871 (China)

    2017-08-01

    We show that gravitational lensing can provide a direct method to probe the nature of dark energy at astrophysical scales. For lensing system as an isolated astrophysical object, we derive the dark energy contribution to gravitational potential as a repulsive power-law term, containing a generic equation of state parameter w . We find that it generates w -dependent and position-dependent modification to the conventional light orbital equation of w =−1. With post-Newtonian approximation, we compute its direct effect for an isolated lensing system at astrophysical scales and find that the dark energy force can deflect the path of incident light rays. We demonstrate that the dark-energy-induced deflection angle Δα{sub DE}∝ M {sup (1+1/3} {sup w} {sup )} (with 1+1/3 w > 0), which increases with the lensing mass M and consistently approaches zero in the limit M → 0. This effect is distinctive because dark energy tends to diffuse the rays and generates concave lensing effect . This is in contrast to the conventional convex lensing effect caused by both visible and dark matter. Measuring such concave lensing effect can directly probe the existence and nature of dark energy. We estimate this effect and show that the current gravitational lensing experiments are sensitive to the direct probe of dark energy at astrophysical scales. For the special case w =−1, our independent study favors the previous works that the cosmological constant can affect light bending, but our prediction qualitatively and quantitatively differ from the literature, including our consistent realization of Δα{sub DE} → 0 (under 0 M → ) at the leading order.

  11. Energy weighted x-ray dark-field imaging.

    Science.gov (United States)

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  12. Dark Skies are a Universal Resource: Programs Planned for the International Year of Astronomy

    Science.gov (United States)

    Walker, Constance E.; US IYA Dark Skies Working Group

    2008-05-01

    The dark night sky is a natural resource that is being lost by much of the world's population. This loss is a growing, serious issue that impacts not only astronomical research, but also human health, ecology, safety, economics and energy conservation. One of the themes of the US Node targeted for the International Year of Astronomy (IYA) is "Dark Skies are a Universal Resource". The goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved locally in a variety of dark skies-related events. To reach this goal, activities are being developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs (e.g., GLOBE at Night, "How Many Stars?” and the Great World Wide Star Count) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., The Great Switch Out, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial on lighting issues). To deliver these programs, strategic networks have been established with the ASP's Night Sky Network's astronomy clubs, Astronomy from the Ground Up's science and nature centers and the Project and Family ASTRO programs, as well as the International Dark-Sky Association, GLOBE and the Astronomical League, among others. The poster presentation will outline the activities being developed, the plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".

  13. Deflation of the cosmological constant associated with inflation and dark energy

    International Nuclear Information System (INIS)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2016-01-01

    In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.

  14. Laser Probes of the Dark Sector

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Dark matter, dark energy, and gravity are fundamental components of the standard cosmological model, and their macroscopic effects on the evolution of the universe are well documented. However, the quantum properties of these fields remain largely unknown. An ongoing suite of laser experiments at Fermilab have conducted searches for axion-like dark matter, tested particle models of dark energy, and plans to test certain predictions of black hole thermodynamics---namely the holographic principle. I will present the results from the GammeV search for milli-eV axion-like particles and will discuss in detail the recently completed CHASE search for chameleon dark energy.

  15. Signatures of dark radiation in neutrino and dark matter detectors

    Science.gov (United States)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  16. Studies into the nature of cosmic acceleration: Dark energy or a modification to gravity on cosmological scales

    Science.gov (United States)

    Dossett, Jason Nicholas

    Since its discovery more than a decade ago, the problem of cosmic acceleration has become one of the largest in cosmology and physics as a whole. An unknown dark energy component of the universe is often invoked to explain this observation. Mathematically, this works because inserting a cosmic fluid with a negative equation of state into Einstein's equations provides an accelerated expansion. There are, however, alternative explanations for the observed cosmic acceleration. Perhaps the most promising of the alternatives is that, on the very largest cosmological scales, general relativity needs to be extended or a new, modified gravity theory must be used. Indeed, many modified gravity models are not only able to replicate the observed accelerated expansion without dark energy, but are also more compatible with a unified theory of physics. Thus it is the goal of this dissertation to develop and study robust tests that will be able to distinguish between these alternative theories of gravity and the need for a dark energy component of the universe. We will study multiple approaches using the growth history of large-scale structure in the universe as a way to accomplish this task. These approaches include studying what is known as the growth index parameter, a parameter that describes the logarithmic growth rate of structure in the universe, which describes the rate of formation of clusters and superclusters of galaxies over the entire age of the universe. We will explore the effectiveness of this parameter to distinguish between general relativity and modifications to gravity physics given realistic expectations of results from future experiments. Next, we will explore the modified growth formalism wherein deviations from the growth expected in general relativity are parameterized via changes to the growth equations, i.e. the perturbed Einstein's equations. We will also explore the impact of spatial curvature on these tests. Finally, we will study how dark energy

  17. Bose-Einstein condensate haloes embedded in dark energy

    Science.gov (United States)

    Membrado, M.; Pacheco, A. F.

    2018-04-01

    Context. We have studied clusters of self-gravitating collisionless Newtonian bosons in their ground state and in the presence of the cosmological constant to model dark haloes of dwarf spheroidal (dSph) galaxies. Aim. We aim to analyse the influence of the cosmological constant on the structure of these systems. Observational data of Milky Way dSph galaxies allow us to estimate the boson mass. Methods: We obtained the energy of the ground state of the cluster in the Hartree approximation by solving a variational problem in the particle density. We have also developed and applied the virial theorem. Dark halo models were tested in a sample of 19 galaxies. Galaxy radii, 3D deprojected half-light radii, mass enclosed within them, and luminosity-weighted averages of the square of line-of-sight velocity dispersions are used to estimate the particle mass. Results: Cosmological constant repulsive effects are embedded in one parameter ξ. They are appreciable for ξ > 10-5. Bound structures appear for ξ ≤ ξc = 1.65 × 10-4, what imposes a lower bound for cluster masses as a function of the particle mass. In principle, these systems present tunnelling through a potential barrier; however, after estimating their mean lifes, we realize that their existence is not affected by the age of the Universe. When Milky Way dSph galaxies are used to test the model, we obtain 3.5-1.0+1.3 × 10-22 eV for the particle mass and a lower limit of 5.1-2.8+2.2 × 106 M⊙ for bound haloes. Conclusions: Our estimation for the boson mass is in agreement with other recent results which use different methods. From our particle mass estimation, the treated dSph galaxies would present dark halo masses 5-11 ×107 M⊙. With these values, they would not be affected by the cosmological constant (ξ 10-5) would already feel their effects. Our model that includes dark energy allows us to deal with these dark haloes. Assuming quantities averaged in the sample of galaxies, 10-5 < ξ ≤ ξc dark

  18. Baryogenesis, neutrino masses, and dynamical dark energy

    International Nuclear Information System (INIS)

    Eisele, M.T.

    2007-01-01

    This thesis considers several models that connect different areas of particle physics and cosmology. Our first discussion in this context concerns a baryogenesis scenario, in which the baryon asymmetry of our universe is created through the dynamics of a dark energy field, thereby illustrating that these two topics might be related. Subsequently, several neutrino mass models are analyzed, which make use of an extra-dimensional setting to overcome certain problems of their fourdimensional counterparts. The central discussion of this thesis concerns a leptogenesis model with many standard model singlets. Amongst other things, we show that the presence of these states can lower the standard bound for the necessary reheating temperature of the universe by at least one and a half orders of magnitude. To further motivate this approach, we also discuss an explicit, extradimensional leptogenesis scenario that naturally yields many of the ingredients required in this context. (orig.)

  19. Baryogenesis, neutrino masses, and dynamical dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Eisele, M.T.

    2007-10-09

    This thesis considers several models that connect different areas of particle physics and cosmology. Our first discussion in this context concerns a baryogenesis scenario, in which the baryon asymmetry of our universe is created through the dynamics of a dark energy field, thereby illustrating that these two topics might be related. Subsequently, several neutrino mass models are analyzed, which make use of an extra-dimensional setting to overcome certain problems of their fourdimensional counterparts. The central discussion of this thesis concerns a leptogenesis model with many standard model singlets. Amongst other things, we show that the presence of these states can lower the standard bound for the necessary reheating temperature of the universe by at least one and a half orders of magnitude. To further motivate this approach, we also discuss an explicit, extradimensional leptogenesis scenario that naturally yields many of the ingredients required in this context. (orig.)

  20. LEP shines light on dark matter

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Harnik, Roni; Kopp, Joachim; Tsai, Yuhsin

    2011-01-01

    Dark matter pair production at high energy colliders may leave observable signatures in the energy and momentum spectra of the objects recoiling against the dark matter. We use LEP data on monophoton events with large missing energy to constrain the coupling of dark matter to electrons. Within a large class of models, our limits are complementary to and competitive with limits on dark matter annihilation and on WIMP-nucleon scattering from indirect and direct searches. Our limits, however, do not suffer from systematic and astrophysical uncertainties associated with direct and indirect limits. For example, we are able to rule out light (< or approx. 10 GeV) thermal relic dark matter with universal couplings exclusively to charged leptons. In addition, for dark matter mass below about 80 GeV, LEP limits are stronger than Fermi constraints on annihilation into charged leptons in dwarf spheroidal galaxies. Within its kinematic reach, LEP also provides the strongest constraints on the spin-dependent direct detection cross section in models with universal couplings to both quarks and leptons. In such models the strongest limit is also set on spin-independent scattering for dark matter masses below ∼4 GeV. Throughout our discussion, we consider both low energy effective theories of dark matter, as well as several motivated renormalizable scenarios involving light mediators.

  1. Dark energy exponential potential models as curvature quintessence

    International Nuclear Information System (INIS)

    Capozziello, S; Cardone, V F; Piedipalumbo, E; Rubano, C

    2006-01-01

    It has been recently shown that, under some general conditions, it is always possible to find a fourth-order gravity theory capable of reproducing the same dynamics as a given dark energy model. Here, we discuss this approach for a dark energy model with a scalar field evolving under the action of an exponential potential. In the absence of matter, such a potential can be recovered from a fourth-order theory via a conformal transformation. Including the matter term, the function f(R) entering the generalized gravity Lagrangian can be reconstructed according to the dark energy model

  2. Dark Matter in the Universe

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The question “What is the Universe made of?” is the longest outstanding problem in all of physics. Ordinary atoms only constitute 5% of the total, while the rest is of unknown composition. Already in 1933 Fritz Zwicky observed that the rapid motions of objects within clusters of galaxies were unexplained by the gravitation pull of luminous matter, and he postulated the existence of Dunkle Materie, or dark matter. A variety of dark matter candidates exist, including new fundamental particles already postulated in particle theories: axions and WIMPs (weakly interacting massive particles). Over the past 25 years, there has been a three pronged approach to WIMP detection: creating them at particle accelerators; searched for detection of astrophysical WIMPs scattering off of nuclei in underground detectors; and “indirect detection” of WIMP annihilation products (neutrinos, positrons, or photons). As yet the LHC has only placed bounds rather than finding discovery. For 13 years the DAMA experiment has proc...

  3. Zero-point quantum fluctuations and dark energy

    International Nuclear Information System (INIS)

    Maggiore, Michele

    2011-01-01

    In the Hamiltonian formulation of general relativity, the energy associated to an asymptotically flat space-time with metric g μν is related to the Hamiltonian H GR by E=H GR [g μν ]-H GR [η μν ], where the subtraction of the flat-space contribution is necessary to get rid of an otherwise divergent boundary term. This classic result indicates that the energy associated to flat space does not gravitate. We apply the same principle to study the effect of the zero-point fluctuations of quantum fields in cosmology, proposing that their contribution to cosmic expansion is obtained computing the vacuum energy of quantum fields in a Friedmann-Robertson-Walker space-time with Hubble parameter H(t) and subtracting from it the flat-space contribution. Then the term proportional to Λ c 4 (where Λ c is the UV cutoff) cancels, and the remaining (bare) value of the vacuum energy density is proportional to Λ c 2 H 2 (t). After renormalization, this produces a renormalized vacuum energy density ∼M 2 H 2 (t), where M is the scale where quantum gravity sets is, so for M of the order of the Planck mass a vacuum energy density of the order of the critical density can be obtained without any fine-tuning. The counterterms can be chosen so that the renormalized energy density and pressure satisfy p=wρ, with w a parameter that can be fixed by comparison to the observed value, so, in particular, one can choose w=-1. An energy density evolving in time as H 2 (t) is however observationally excluded as an explanation for the dominant dark energy component that is responsible for the observed acceleration of the Universe. We rather propose that zero-point vacuum fluctuations provide a new subdominant ''dark'' contribution to the cosmic expansion that, for a UV scale M slightly smaller than the Planck mass, is consistent with existing limits and potentially detectable.

  4. On Dark Energy and the Observed Smooth Transition from Deceleration to an Accelerating Expansion Of Our Big Bang Universe

    Science.gov (United States)

    Greyber, Howard D.

    2010-01-01

    My Strong Magnetic Field model (SMF) for the Origin of Magnetic Fields at Combination Time analyzes this first-order transition in the Big Bang Model, (Astro-ph0509223), an age of about 400,000 years. SMF exploits facts about the rapid Spinodal Decomposition instability and other facts from plasma physics, that determine the morphology and dynamics of our universe. This leads to a unique Supercluster topology with all the mass, visible and invisible, on the shell of an ellipsoid surrounding an extremely high vacuum void. SMF assumes, in accord with Einstein's theory of general relativity's Lambda term (1918), that there exists a finite "cosmological" constant of energy (ees), representing the negative pressure/repulsive gravitational force associated with every unit volume of empty space. However, over billions of years, the force of attractive gravity from all the matter, visible and invisible, on the Supercluster shell, dramatically reduced the density of particles in the Supercluster's central high vacuum region. Thus, eventually, the ees repulsive gravity force overcame any attractive gravity in the Supercluster's huge central region and an accelerating expansion of the Supercluster began. The region where the ees repulsive gravity force dominates is perhaps what the WMAP satellite authors have termed "Dark Energy". Our Big Bang universe probably has similar Superclusters with voids everywhere in the universe, as astronomers have suggested, thus producing the observed quite smooth transition to an accelerating expansion of our entire Big Bang universe. This matches what two independent, international groups of astronomers both separately observed and concluded in 1998.

  5. Exploring the role of axions and other WISPs in the dark universe

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, Andreas

    2012-10-18

    Axions and other very weakly interacting slim particles (WISPs) may be non-thermally produced in the early universe and survive as constituents of the dark universe. We describe their theoretical motivation and their phenomenology. A huge region in parameter space spanned by their couplings to photons and their masses can give rise to the observed cold dark matter abundance. A wide range of experiments - direct dark matter searches exploiting microwave cavities, searches for solar axions or WISPs, and lightshining-through-a-wall searches - can probe large parts of this parameter space in the foreseeable future.

  6. Exploring the role of axions and other WISPs in the dark universe

    International Nuclear Information System (INIS)

    Ringwald, Andreas

    2012-01-01

    Axions and other very weakly interacting slim particles (WISPs) may be non-thermally produced in the early universe and survive as constituents of the dark universe. We describe their theoretical motivation and their phenomenology. A huge region in parameter space spanned by their couplings to photons and their masses can give rise to the observed cold dark matter abundance. A wide range of experiments - direct dark matter searches exploiting microwave cavities, searches for solar axions or WISPs, and lightshining-through-a-wall searches - can probe large parts of this parameter space in the foreseeable future.

  7. Dynamics of dark energy models and centre manifolds

    International Nuclear Information System (INIS)

    Böhmer, Christian G.; Chan, Nyein; Lazkoz, Ruth

    2012-01-01

    We analyse dark energy models where self-interacting three-forms or phantom fields drive the accelerated expansion of the Universe. The dynamics of such models is often studied by rewriting the cosmological field equations in the form of a system of autonomous differential equations, or simply a dynamical system. Properties of these systems are usually studied via linear stability theory. In situations where this method fails, for instance due to the presence of zero eigenvalues in the Jacobian, centre manifold theory can be applied. We present a concise introduction and show explicitly how to use this theory in two concrete examples.

  8. Observational constraints on tachyonic chameleon dark energy model

    Science.gov (United States)

    Banijamali, A.; Bellucci, S.; Fazlpour, B.; Solbi, M.

    2018-03-01

    It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.

  9. Quantum fate of singularities in a dark-energy dominated universe

    International Nuclear Information System (INIS)

    Bouhmadi-Lopez, Mariam; Kiefer, Claus; Sandhoefer, Barbara; Moniz, Paulo Vargas

    2009-01-01

    Classical models for dark energy can exhibit a variety of singularities, many of which occur for scale factors much bigger than the Planck length. We address here the issue of whether some of these singularities, the big freeze and the big demarrage, can be avoided in quantum cosmology. We use the framework of quantum geometrodynamics. We restrict our attention to a class of models whose matter content can be described by a generalized Chaplygin gas and be represented by a scalar field with an appropriate potential. Employing the DeWitt criterion that the wave function be zero at the classical singularity, we show that a class of solutions to the Wheeler-DeWitt equation fulfilling this condition can be found. These solutions thus avoid the classical singularity. We discuss the reasons for the remaining ambiguity in fixing the solution.

  10. New holographic dark energy model with constant bulk viscosity in modified f(R,T) gravity theory

    Science.gov (United States)

    Srivastava, Milan; Singh, C. P.

    2018-06-01

    The aim of this paper is to study new holographic dark energy (HDE) model in modified f(R,T) gravity theory within the framework of a flat Friedmann-Robertson-Walker model with bulk viscous matter content. It is thought that the negative pressure caused by the bulk viscosity can play the role of dark energy component, and drive the accelerating expansion of the universe. This is the motive of this paper to observe such phenomena with bulk viscosity. In the specific model f(R,T)=R+λ T, where R is the Ricci scalar, T the trace of the energy-momentum tensor and λ is a constant, we find the solution for non-viscous and viscous new HDE models. We analyze new HDE model with constant bulk viscosity, ζ =ζ 0= const. to explain the present accelerated expansion of the universe. We classify all possible scenarios (deceleration, acceleration and their transition) with possible positive and negative ranges of λ over the constraint on ζ 0 to analyze the evolution of the universe. We obtain the solutions of scale factor and deceleration parameter, and discuss the evolution of the universe. We observe the future finite-time singularities of type I and III at a finite time under certain constraints on λ . We also investigate the statefinder and Om diagnostics of the viscous new HDE model to discriminate with other existing dark energy models. In late time the viscous new HDE model approaches to Λ CDM model. We also discuss the thermodynamics and entropy of the model and find that it satisfies the second law of thermodynamics.

  11. Low CMB quadrupole from dark energy isocurvature perturbations

    International Nuclear Information System (INIS)

    Gordon, Christopher; Hu, Wayne

    2004-01-01

    We explicate the origin of the temperature quadrupole in the adiabatic dark energy model and explore the mechanism by which scale invariant isocurvature dark energy perturbations can lead to its sharp suppression. The model requires anticorrelated curvature and isocurvature fluctuations and is favored by the Wilkinson Microwave Anisotropy Probe data at about the 95% confidence level in a flat scale invariant model. In an inflationary context, the anticorrelation may be established if the curvature fluctuations originate from a variable decay rate of the inflaton; such models however tend to overpredict gravitational waves. This isocurvature model can in the future be distinguished from alternatives involving a reduction in large scale power or modifications to the sound speed of the dark energy through the polarization and its cross correlation with the temperature. The isocurvature model retains the same polarization fluctuations as its adiabatic counterpart but reduces the correlated temperature fluctuations. We present a pedagogical discussion of dark energy fluctuations in a quintessence and k-essence context in the Appendix

  12. Reconstructing an f(R) model from holographic dark energy: using the observational evidence

    International Nuclear Information System (INIS)

    Saaidi, Kh; Aghamohammadi, A

    2012-01-01

    We investigate the correspondence relation between f(R) gravity and an interacting holographic dark energy (HDE). By obtaining the conditions needed for some observational evidence such as positive acceleration expansion of the Universe, crossing the phantom divide line and validity of the thermodynamics second law in an interacting HDE model and corresponding it with the f(R) model of gravity, we find a viable f(R) model that can explain the present Universe. We also obtain the explicit evolutionary forms of the corresponding scalar field, potential and scale factor of the Universe. (paper)

  13. DESTINY, The Dark Energy Space Telescope

    Science.gov (United States)

    Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod

    2007-01-01

    We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.

  14. Dust of dark energy

    International Nuclear Information System (INIS)

    Lim, Eugene A.; Sawicki, Ignacy; Vikman, Alexander

    2010-01-01

    We introduce a novel class of field theories where energy always flows along timelike geodesics, mimicking in that respect dust, yet which possess non-zero pressure. This theory comprises two scalar fields, one of which is a Lagrange multiplier enforcing a constraint between the other's field value and derivative. We show that this system possesses no wave-like modes but retains a single dynamical degree of freedom. Thus, the sound speed is always identically zero on all backgrounds. In particular, cosmological perturbations reproduce the standard behaviour for hydrodynamics in the limit of vanishing sound speed. Using all these properties we propose a model unifying Dark Matter and Dark Energy in a single degree of freedom. In a certain limit this model exactly reproduces the evolution history of ΛCDM, while deviations away from the standard expansion history produce a potentially measurable difference in the evolution of structure

  15. Studying dark matter haloes with weak lensing

    NARCIS (Netherlands)

    Velander, Malin Barbro Margareta

    2012-01-01

    Our Universe is comprised not only of normal matter but also of unknown components: dark matter and dark energy. This Thesis recounts studies of dark matter haloes, using a technique known as weak gravitational lensing, in order to learn more about the nature of these dark components. The haloes

  16. New limits on coupled dark energy model after Planck 2015

    Science.gov (United States)

    Li, Hang; Yang, Weiqiang; Wu, Yabo; Jiang, Ying

    2018-06-01

    We used the Planck 2015 cosmic microwave background anisotropy, baryon acoustic oscillation, type-Ia supernovae, redshift-space distortions, and weak gravitational lensing to test the model parameter space of coupled dark energy. We assumed the constant and time-varying equation of state parameter for dark energy, and treated dark matter and dark energy as the fluids whose energy transfer was proportional to the combined term of the energy densities and equation of state, such as Q = 3 Hξ(1 +wx) ρx and Q = 3 Hξ [ 1 +w0 +w1(1 - a) ] ρx, the full space of equation of state could be measured when we considered the term (1 +wx) in the energy exchange. According to the joint observational constraint, the results showed that wx = - 1.006-0.027+0.047 and ξ = 0.098-0.098>+0.026 for coupled dark energy with a constant equation of state, w0 = -1.076-0.076+0.085, w1 = - 0.069-0.319+0.361, and ξ = 0.210-0.210+0.048 for a variable equation of state. We did not get any clear evidence for the coupling in the dark fluids at 1 σ region.

  17. A power-law coupled three-form dark energy model

    Science.gov (United States)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He

    2018-02-01

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.

  18. A power-law coupled three-form dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)

    2018-02-15

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω{sub m0} and the present three-form field κX{sub 0} gives stringent constraints on the coupling constant, -0.017 < λ < 0.047 (2σ confidence level), by which we present the model's applicable parameter range. (orig.)

  19. Generalized dark energy interactions with multiple fluids

    Energy Technology Data Exchange (ETDEWEB)

    De Bruck, Carsten van; Mifsud, Jurgen [Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Mimoso, José P.; Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: jpmimoso@fc.ul.pt, E-mail: njnunes@fc.ul.pt [Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, PT1749-016 Lisboa (Portugal)

    2016-11-01

    In the search for an explanation for the current acceleration of the Universe, scalar fields are the most simple and useful tools to build models of dark energy. This field, however, must in principle couple with the rest of the world and not necessarily in the same way to different particles or fluids. We provide the most complete dynamical system analysis to date, consisting of a canonical scalar field conformally and disformally coupled to both dust and radiation. We perform a detailed study of the existence and stability conditions of the systems and comment on constraints imposed on the disformal coupling from Big-Bang Nucleosynthesis and given current limits on the variation of the fine-structure constant.

  20. Dynamical analysis for a vector-like dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Landim, Ricardo C.G. [Instituto de Fisica, Universidade de Sao Paulo, Departamento de Fisica-Matematica, Sao Paulo, SP (Brazil)

    2016-09-15

    In this paper we perform a dynamical analysis for a vector field as a candidate for the dark energy, in the presence of a barotropic fluid. The vector is one component of the so-called cosmic triad, which is a set of three identical copies of an abelian field pointing mutually in orthogonal directions. In order to generalize the analysis, we also assumed the interaction between dark energy and the barotropic fluid, with a phenomenological coupling. Both matter and dark energy eras can be successfully described by the critical points, indicating that the dynamical system theory is a viable tool to analyze asymptotic states of such cosmological models. (orig.)

  1. Modified Holographic Ricci Dark Energy in Chameleon Brans–Dicke Cosmology and Its Thermodynamic Consequence

    International Nuclear Information System (INIS)

    Jawad, A.; Chattopadhyay, S.; Bhattacharya, S.; Pasqua, A.

    2015-01-01

    The objective of this paper is to discuss the Chameleon Brans–Dicke gravity with non-minimally matter coupling of scalar field. We take modified Holographic Ricci dark energy model in this gravity with its energy density in interaction with energy density of cold dark matter. We assume power-law ansatz for scale factor and scalar field to discuss potential as well as coupling functions in the evolving universe. These reconstructed functions are plotted versus scalar field and time for different values of power component of scale factor n. We observe that potential and coupling functions represent increasing behavior, in particular, consistent results for a specific value of n. Finally, we have examined validity of the generalized second law of thermodynamics and we have observed its validity for all values of n. (paper)

  2. Symmetron dark energy in laboratory experiments.

    Science.gov (United States)

    Upadhye, Amol

    2013-01-18

    The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.

  3. Holographic dark energy: Quantum correlations against thermodynamical description

    International Nuclear Information System (INIS)

    Horvat, R.

    2008-01-01

    Classical and quantum entropic properties of holographic dark energy (HDE) are considered in view of the fact that its entropy is far more restrictive than the entropy of a black hole of the same size. In cosmological settings (in which HDE is promoted to a plausible candidate for being the dark energy of the universe), HDE should be viewed as a combined state composed of the event horizon and the stuff inside the horizon. By any interaction of the subsystems, the horizon and the interior become entangled, raising thereby a possibility that their quantum correlations be responsible for the almost purity of the combined state. Under this circumstances, the entanglement entropy is almost the same for both subsystems, being also of the same order as the thermal (coarse grained) entropy of the interior or the horizon. In the context of thermodynamics, however, only additive coarse grained entropies matter, so we use these entropies to test the generalized second law (GSL) of gravitational thermodynamics in this framework. While we find that the original Li's model passes the GSL test for a special choice of parameters, in a saturated model with the choice for the IR cutoff in the form of the Hubble parameter, the GSL always breaks down

  4. Proceedings of workshop on dark matter and the structure of the universe

    International Nuclear Information System (INIS)

    Sasaki, Misao

    1989-10-01

    The workshop on 'Dark matter and the structure of the universe' was held from January 29 to February 1, 1989 at the Research Institute for Theoretical Physics, Hiroshima University. It aimed at clarifying the basic theoretical problems of the dark matter and the structure of the universe, and gaining inspiration on the direction of future research. In the first half of the workshop, the observed data on the large scale structure were critically reviewed, and some new ideas and theoretical frameworks which relate the actual cosmological structure to the observable quantities were presented. In the second half of the workshop, the various possible matters being proposed for the dark matter were examined in the light of both observed (or experimental) data and theoretical predictions. The speakers in the workshop gave well prepared, stimulative talks, and made it possible for the participants to have fruitful and constructive discussions. The workshop was supported partially by the Grant in Aid for Scientific Research, Ministry of Education, and by the Research Institute for Theoretical Physics, Hiroshima University. In this report, eight presentations on observational and theoretical cosmology and ten on dark matter and galaxy formation are collected. (K.I.)

  5. Disordered locality as an explanation for the dark energy

    International Nuclear Information System (INIS)

    Prescod-Weinstein, Chanda; Smolin, Lee

    2009-01-01

    We discuss a novel explanation of the dark energy as a manifestation of macroscopic nonlocality coming from quantum gravity, as proposed by Markopoulou [F. Markopoulou (private communication)]. It has been previously suggested that in a transition from an early quantum geometric phase of the Universe to a low temperature phase characterized by an emergent spacetime metric, locality might have been 'disordered'. This means that there is a mismatch of micro-locality, as determined by the microscopic quantum dynamics and macro-locality as determined by the classical metric that governs the emergent low energy physics. In this paper we discuss the consequences for cosmology by studying a simple extension of the standard cosmological models with disordered locality. We show that the consequences can include a naturally small vacuum energy.

  6. Searching for sterile neutrinos in dynamical dark energy cosmologies

    Science.gov (United States)

    Feng, Lu; Zhang, Jing-Fei; Zhang, Xin

    2018-05-01

    We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff energy properties could significantly influence the constraint limits of sterile neutrino parameters.

  7. A more general interacting model of holographic dark energy

    International Nuclear Information System (INIS)

    Yu Fei; Zhang Jingfei; Lu Jianbo; Wang Wei; Gui Yuanxing

    2010-01-01

    So far, there have been no theories or observational data that deny the presence of interaction between dark energy and dark matter. We extend naturally the holographic dark energy (HDE) model, proposed by Granda and Oliveros, in which the dark energy density includes not only the square of the Hubble scale, but also the time derivative of the Hubble scale to the case with interaction and the analytic forms for the cosmic parameters are obtained under the specific boundary conditions. The various behaviors concerning the cosmic expansion depend on the introduced numerical parameters which are also constrained. The more general interacting model inherits the features of the previous ones of HDE, keeping the consistency of the theory.

  8. The DarkSide-50 Experiment: Electron Recoil Calibrations and A Global Energy Variable

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, Brianne Rae [Hawaii U.

    2017-01-01

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds is done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introduc- ing radioactive sources into or near the detector in a joint eort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in mul- tiple calibration campaigns with both neutron and sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of calibration sources by constructing a global energy variable which takes into account the anti- correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted decay spectrum of 39Ar against 39Ar decay data collected in the early days of DarkSide-50 while it was lled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict

  9. Radiative inflation and dark energy

    International Nuclear Information System (INIS)

    Di Bari, Pasquale; King, Stephen F.; Luhn, Christoph; Merle, Alexander; Schmidt-May, Angnis

    2011-01-01

    We propose a model based on radiative symmetry breaking that combines inflation with dark energy and is consistent with the Wilkinson Microwave Anisotropy Probe 7-year regions. The radiative inflationary potential leads to the prediction of a spectral index 0.955 S < or approx. 0.967 and a tensor to scalar ratio 0.142 < or approx. r < or approx. 0.186, both consistent with current data but testable by the Planck experiment. The radiative symmetry breaking close to the Planck scale gives rise to a pseudo Nambu-Goldstone boson with a gravitationally suppressed mass which can naturally play the role of a quintessence field responsible for dark energy. Finally, we present a possible extra dimensional scenario in which our model could be realized.

  10. On the tracks of the invisible universe

    International Nuclear Information System (INIS)

    Springel, V.

    2014-01-01

    In the universe the ordinary matter occupies only a minute place (5%) compared to 2 other components: dark energy and dark matter. Dark matter is useful to explain two facts, first the galaxies and the clusters of galaxies are moving faster than expected and secondly the acknowledged presence of tiny fluctuations of temperature in the diffused cosmological background. For its part, dark energy explains why the universe is steadily expanding. Dark matter seems to be omnipresent in the universe, at any time between early universe and now, and at any scale (cosmological or galactic). Despite important technological efforts, hypothetical constituents of dark matter like supersymmetric particles or axions have never been detected directly so far. The MOND theory, proposed in 1983 relies on changes in the gravitation interaction to explain the rotation spin of galaxies. As for dark energy, one thing that puzzles scientists is that the densities of dark matter and dark energy are of the same order of magnitude which might imply interaction between them. The Euclid satellite that will be launched in 2020, will bring information on the universe expansion by measuring the red-shift of more than 100 million galaxies, the results will certainly help for better understanding dark energy. (A.C.)

  11. The traces of anisotropic dark energy in light of Planck

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Wilmar; Kunz, Martin [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 Quai Ernest Ansermet, 1211 Genève 4 (Switzerland); Hollenstein, Lukas, E-mail: wilmar.cardona@unige.ch, E-mail: lukas.hollenstein@zhaw.ch, E-mail: martin.kunz@unige.ch [IAS Institute of Applied Simulation, ZHAW Zurich University of Applied Sciences, Grüental, PO Box, 8820 Wädenswil (Switzerland)

    2014-07-01

    We study a dark energy model with non-zero anisotropic stress, either linked to the dark energy density or to the dark matter density. We compute approximate solutions that allow to characterise the behaviour of the dark energy model and to assess the stability of the perturbations. We also determine the current limits on such an anisotropic stress from the cosmic microwave background data by the Planck satellite, and derive the corresponding constraints on the modified growth parameters like the growth index, the effective Newton's constant and the gravitational slip.

  12. Neutrino mass, dark energy, and the linear growth factor

    International Nuclear Information System (INIS)

    Kiakotou, Angeliki; Lahav, Ofer; Elgaroey, Oystein

    2008-01-01

    We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities f ν =Ω ν /Ω m , but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;f ν ,w,Ω DE )≅[1-A(k)Ω DE f ν +B(k)f ν 2 -C(k)f ν 3 ]Ω m α (z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J. 511, 5 (1999)] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/∼lahav/nu m atter p ower.f].

  13. Neutrinos, dark matter and the universe

    International Nuclear Information System (INIS)

    Stolarcyk, T.; Tran Thanh Van, J.; Vannucci, F.; Paris-7 Univ., 75

    1996-01-01

    The meeting was articulated around the general topic 'neutrinos, dark matter and the universe'. We have not yet succeeded in penetrating all of the neutrino's mysteries and in particular we still do not know its mass. Laboratory measurements involving beta disintegrations of Ni 63 , Re 187 , Xe 136 and tritium are being actively pursued by many teams. Astrophysical analyses have been led at neutrino observatories of Kamiokande, Baksan, IMB and the Mont-Blanc. But at the moment we can only give an upper limit of the neutrino mass. The problem of the 'missing' solar neutrinos cannot be dissociate from that of the neutrino mass and of the possible oscillation of one variety of neutrino into another. Dark matter shows up only through the effect of its gravitational field and at present we have no idea of its nature

  14. Nonparametric reconstruction of the dark energy equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin [Los Alamos National Laboratory; Holsclaw, Tracy [Los Alamos National Laboratory; Alam, Ujjaini [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Sanso, Bruno [UC SANTA CRUZ; Lee, Herbie [UC SANTA CRUZ

    2009-01-01

    The major aim of ongoing and upcoming cosmological surveys is to unravel the nature of dark energy. In the absence of a compelling theory to test, a natural approach is to first attempt to characterize the nature of dark energy in detail, the hope being that this will lead to clues about the underlying fundamental theory. A major target in this characterization is the determination of the dynamical properties of the dark energy equation of state w. The discovery of a time variation in w(z) could then lead to insights about the dynamical origin of dark energy. This approach requires a robust and bias-free method for reconstructing w(z) from data, which does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new non parametric reconstruction method for the dark energy equation of state based on Gaussian Process models. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demollstrate the power of the method on different sets of simulated supernova data. The GP model approach is very easily extended to include diverse cosmological probes.

  15. The Dark Energy Survey and Operations: Years 1 to 3

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, H. T. [Fermilab

    2016-01-01

    The Dark Energy Survey (DES) is an operating optical survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 5000 sq-degree wide field and 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES has completed its third observing season out of a nominal five. This paper describes DES “Year 1” (Y1) to “Year 3” (Y3), the strategy, an outline of the survey operations procedures, the efficiency of operations and the causes of lost observing time. It provides details about the quality of the first three season's data, and describes how we are adjusting the survey strategy in the face of the El Niño Southern Oscillation

  16. Dark matter as the Bose-Einstein condensation in loop quantum cosmology

    International Nuclear Information System (INIS)

    Atazadeh, K.; Mousavi, M.; Darabi, F.

    2016-01-01

    We consider the FLRW universe in a loop quantum cosmological model filled with radiation, baryonic matter (with negligible pressure), dark energy, and dark matter. The dark matter sector is supposed to be of Bose-Einstein condensate type. The Bose-Einstein condensation process in a cosmological context by supposing it as an approximate first-order phase transition, has already been studied in the literature. Here, we study the evolution of the physical quantities related to the early universe description such as the energy density, temperature, and scale factor of the universe, before, during, and after the condensation process. We also consider in detail the evolution era of the universe in a mixed normal-condensate dark matter phase. The behavior and time evolution of the condensate dark matter fraction is also analyzed. (orig.)

  17. Generalizing a unified model of dark matter, dark energy, and inflation with a noncanonical kinetic term

    International Nuclear Information System (INIS)

    De-Santiago, Josue; Cervantes-Cota, Jorge L.

    2011-01-01

    We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. D 79, 103517 (2009).] with a more general kinetic term that was proposed by Chimento in Phys. Rev. D 69, 123517 (2004). We demonstrate that the model is viable at the background and linear perturbation levels.

  18. Cosmological models with Gurzadyan-Xue dark energy

    International Nuclear Information System (INIS)

    Vereshchagin, G V; Yegorian, G

    2006-01-01

    The formula for dark energy density derived by Gurzadyan and Xue is the only formula which provides (without a free parameter) a value for dark energy density in remarkable agreement with current cosmological datasets, unlike numerous phenomenological scenarios where the corresponding value is postulated. This formula suggests the possibility of variation of physical constants such as the speed of light and the gravitational constant. Considering several cosmological models based on that formula and deriving the cosmological equations for each case, we show that in all models source terms appear in the continuity equation. So, on one hand, GX models make up a rich set covering a lot of currently proposed models of dark energy; on the other hand, they reveal hidden symmetries, with a particular role of the separatrix Ω m = 2/3, and link with the issue of the content of physical constants

  19. Observational constraints on variable equation of state parameters of dark matter and dark energy after Planck

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2014-10-01

    Full Text Available In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic, radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.

  20. Observational constraints on variable equation of state parameters of dark matter and dark energy after Planck

    International Nuclear Information System (INIS)

    Kumar, Suresh; Xu, Lixin

    2014-01-01

    In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch