WorldWideScience

Sample records for darht ii accelerator

  1. Tuning the DARHT Axis-II linear induction accelerator focusing

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. [Los Alamos National Laboratory

    2012-04-24

    Flash radiography of large hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories, and the Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos produces flash radiographs of large hydrodynamic experiments. Two linear induction accelerators (LIAs) make the bremsstrahlung radiographic source spots for orthogonal views of each test. The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. The 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by kicking them out of a longer pulse that has a 1.6-{mu}s flattop. The Axis-II injector, LIA, kicker, and downstream transport (DST) to the bremsstrahlung converter are described. Adjusting the magnetic focusing and steering elements to optimize the electron-beam transport through an LIA is often called 'tuning.' As in all high-current LIAs, the focusing field is designed to be as close to that of the ideal continuous solenoid as physically possible. In ideal continuous solenoidal transport a smoothly varying beam size can easily be found for which radial forces balance, and the beam is said to be 'matched' to the focusing field. A 'mismatched' beam exhibits unwanted oscillations in size, which are a source of free energy that contributes to emittance growth. This is undesirable, because in the absence of beam-target effects, the radiographic spot size is proportional to the emittance. Tuning the Axis-II LIA is done in two steps. First, the solenoidal focusing elements are set to values designed to provide a matched beam with little or no envelope oscillations, and little or no beam-breakup (BBU) instability growth. Then, steering elements are adjusted to minimize the motion of the centroid of a well-centered beam at the LIA exit. This article only describes the design of the tune for the focusing solenoids. The DARHT Axis-II LIA was required to be re-tuned after installing an

  2. Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator

    International Nuclear Information System (INIS)

    Ekdahl, Carl A.; Abeyta, Epifanio O.; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A.; Garnett, Robert; Harrison, James F.; Johnson, Jeffrey B.; Jacquez, Edward B.; Mccuistian, Brian T.; Montoya, Nicholas A.; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M.; Seitz, Gerald; Schulze, Martin; Bender, Howard A.; Broste, William B.; Carlson, Carl A.; Frayer, Daniel K.; Johnson, Douglas E.; Tom, C.Y.; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu-Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C.; Watson, Jim; Weir, John; Genoni, Thomas; Toma, Carsten

    2009-01-01

    The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 (micro)s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.

  3. DARHT-II Downstream Transport Beamline

    International Nuclear Information System (INIS)

    Westenskow, G A; Bertolini, L R; Duffy, P T; Paul, A C

    2001-01-01

    This paper describes the mechanical design of the downstream beam transport line for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT II) Facility. The DARHT-II project is a collaboration between LANL, LBNL and LLNL. DARHT II is a 18.4-MeV, 2000-Amperes, 2-(micro)sec linear induction accelerator designed to generate short bursts of x-rays for the purpose of radiographing dense objects. The downstream beam transport line is approximately 22-meter long region extending from the end of the accelerator to the bremsstrahlung target. Within this proposed transport line there are 12 conventional solenoid, quadrupole and dipole magnets; as well as several specialty magnets, which transport and focus the beam to the target and to the beam dumps. There are two high power beam dumps, which are designed to absorb 80-kJ per pulse during accelerator start-up and operation. Aspects of the mechanical design of these elements are presented

  4. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1992-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. We will summarized measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters will also be presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  5. Technology demonstration for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Downing, J.; Moir, D.; Caporaso, G.; Chen, Y.J.

    1993-01-01

    The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two 16-MeV, 3-kA Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. Technology demonstration of the key accelerator sub-systems is underway at the DARHT Integrated Test Stand (ITS), which will produce a 6-MeV, 3-kA, 60-ns flattop electron beam. The authors summarize measurements of ITS injector, pulsed-power, and accelerator cell performance. Time-resolved measurements of the electron beam parameters are also presented. These measurements indicate that the DARHT accelerator design is sufficiently advanced to provide the high quality electron beams required for radiography with sub-millimeter spatial resolution

  6. Cell design for the DARHT linear induction accelerators

    International Nuclear Information System (INIS)

    Burns, M.; Allison, P.; Earley, L.; Liska, D.; Mockler, C.; Ruhe, J.; Tucker, H.; Walling, L.

    1991-01-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility will employ two linear induction accelerators to produce intense, bremsstrahlung x- ray pulses for flash radiography. The accelerator cell design for a 3- kA, 16--20 MeV, 60-ns flattop, high-brightness electron beam is presented. The cell is optimized for high-voltage stand-off while also minimizing the its transverse impedance. Measurements of high- voltage and rf characteristics are summarized. 7 refs., 5 figs

  7. DARHT-II Injector Transients and the Ferrite Damper

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  8. RF generation in the DARHT Axis-II beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-05-03

    We have occasionally observed radio-frequency (RF) electromagnetic signals in the downstream transport (DST) of the second axis linear induction accelerator (LIA) at the dual-axis radiographic hydrodynamic testing (DARHT) facility. We have identified and eliminated some of the sources by eliminating the offending cavities. However, we still observe strong RF in the range 1 GHz t0 2 GHz occurring late in the {approx}2-{micro}s pulse that can be excited or prevented by varying the downstream tune. The narrow frequency width (<0.5%) and near exponential growth at the dominant frequency is indicative of a beam-cavity interaction, and electro-magnetic simulations of cavity structure show a spectrum rich in resonances in the observed frequency range. However, the source of beam produced RF in the cavity resonance frequency range has not been identified, and it has been the subject of much speculation, ranging from beam-plasma or beam-ion instabilities to unstable cavity coupling.

  9. PARALLEL MEASUREMENT AND MODELING OF TRANSPORT IN THE DARHT II BEAMLINE ON ETA II

    International Nuclear Information System (INIS)

    Chambers, F W; Raymond, B A; Falabella, S; Lee, B S; Richardson, R A; Weir, J T; Davis, H A; Schultze, M E

    2005-01-01

    To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model is coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach

  10. DARHT Axis-I Diode Simulations II: Geometrical Scaling

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl A. Jr. [Los Alamos National Laboratory

    2012-06-14

    Flash radiography of large hydrodynamic experiments driven by high explosives is a venerable diagnostic technique in use at many laboratories. Many of the largest hydrodynamic experiments study mockups of nuclear weapons, and are often called hydrotests for short. The dual-axis radiography for hydrodynamic testing (DARHT) facility uses two electron linear-induction accelerators (LIA) to produce the radiographic source spots for perpendicular views of a hydrotest. The first of these LIAs produces a single pulse, with a fixed {approx}60-ns pulsewidth. The second axis LIA produces as many as four pulses within 1.6-{micro}s, with variable pulsewidths and separation. There are a wide variety of hydrotest geometries, each with a unique radiographic requirement, so there is a need to adjust the radiographic dose for the best images. This can be accomplished on the second axis by simply adjusting the pulsewidths, but is more problematic on the first axis. Changing the beam energy or introducing radiation attenuation also changes the spectrum, which is undesirable. Moreover, using radiation attenuation introduces significant blur, increasing the effective spot size. The dose can also be adjusted by changing the beam kinetic energy. This is a very sensitive method, because the dose scales as the {approx}2.8 power of the energy, but it would require retuning the accelerator. This leaves manipulating the beam current as the best means for adjusting the dose, and one way to do this is to change the size of the cathode. This method has been proposed, and is being tested. This article describes simulations undertaken to develop scaling laws for use as design tools in changing the Axis-1 beam current by changing the cathode size.

  11. Transvers Impedance Measurements of the Modified DARHT-2 Accelerator Cell Design

    International Nuclear Information System (INIS)

    Briggs, Dick; Waldron, Will

    2005-01-01

    The DARHT-2 accelerator cells have been redesigned to make their high voltage performance more robust. At the outset of the DARHT-2 development program about 8 years ago, an extensive campaign was mounted to minimize the transverse impedance of the original cell design. Since the initial spec on the machine was a beam current of 4 kA, the control of beam-breakup (BBU) amplification with a 2 microsecond pulse length was considered to be one the most critical issues in the design. Even after advances in detector technology allowed the beam current requirement to be lowered to 2 kA, the goal for the standard cell impedance was kept at ∼300 ohms/meter to allow for the possibility of future beam current upgrades to 4 kA without any modifications in the cells. The results of this campaign to minimize the transverse impedance are described in detail in Reference 1. After several iterations in the design of ferrite dampers and the anode finger stock shape, the measured (peak) impedance of the original standard cell was determined to be about 280 ohms/meter. (As a reference point, the measured impedance of the DARHT-1 cell is about 880 ohms/meter). This impedance provided such a wide safety margin against BBU amplification at 2 kA that it was felt that the cell redesign could focus on voltage holding without any detailed considerations of impacts on the transverse impedance. Now that a baseline design for the DARHT-2 cell has been established and tested, however, it was felt that a measurement of its impedance would be prudent. The results of these impedance measurements are presented in this note. The objective was mainly to do a ''quick check'' to ensure that there were no surprises, and to provide an estimate of the BBU frequencies and growth rates to the experimental test program

  12. Linear induction accelerators at the Los Alamos National Laboratory DARHT facility

    International Nuclear Information System (INIS)

    Nath, Subrata

    2010-01-01

    The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory consists of two linear induction accelerators at right angles to each other. The First Axis, operating since 1999, produces a nominal 20-MeV, 2-kA single beam-pulse with 60-nsec width. In contrast, the DARHT Second Axis, operating since 2008, produces up to four pulses in a variable pulse format by slicing micro-pulses out of a longer ∼1.6-microseconds (flat-top) pulse of nominal beam-energy and -current of 17 MeV and 2 kA respectively. Bremsstrahlung x-rays, shining on a hydro-dynamical experimental device, are produced by focusing the electron beam-pulses onto a high-Z target. Variable pulse-formats allow for adjustment of the pulse-to-pulse doses to record a time sequence of x-ray images of the explosively driven imploding mock device. Herein, we present a sampling of the numerous physics and engineering aspects along with the current status of the fully operational dual axes capability. First successful simultaneous use of both the axes for a hydrodynamic experiment was achieved in 2009.

  13. Emittance growth in the DARHT Axis-II Downstream Transport

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Martin E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-14

    Using a particle-in-cell (PIC) code, we investigated the possibilities for emittance growth through the quadrupole magnets of the system used to transport the high-current electron beam from an induction accelerator to the bremsstrahlung converter target used for flash radiography. We found that even highly mismatched beams exhibited little emittance growth (< 6%), which we attribute to softening of their initial hard edge current distributions. We also used this PIC code to evaluate the accuracy of emittance measurements using a solenoid focal scan following the quadrupole magnets. If the beam is round after the solenoids, the simulations indicate that the measurement is highly accurate, but it is substantially inaccurate for elliptical beams

  14. Proposed inductive voltage adder based accelerator concepts for the second axis of DARHT

    International Nuclear Information System (INIS)

    Smith, D.L.; Johnson, D.L.; Boyes, J.D.

    1997-01-01

    As participants in the Technology Options Study for the second axis of the Dual Axis Radiographic HydroTest (DARHT) facility located at Los Alamos National Laboratories, the authors have considered several accelerator concepts based on the Inductive Voltage Adder (IVA) technology that is being used successfully at Sandia on the SABRE and HERMES-III facilities. The challenging accelerator design requirements for the IVA approach include: ≥12-MeV beam energy; ∼60-ns electrical pulse width; ≤40-kA electron beam current; ∼1-mm diameter e-beam; four pulses on the same axis or as close as possible to that axis; and an architecture that fits within the existing building envelope. To satisfy these requirements the IVA concepts take a modular approach. The basic idea is built upon a conservative design for eight ferromagnetically isolated 2-MV cavities that are driven by two 3 to 4-Ω water dielectric pulse forming lines (PFLs) synchronized with laser triggered gas switches. The 100-Ω vacuum magnetically insulated transmission line (MITL) would taper to a needle cathode that produces the electron beam(s). After considering many concepts the authors narrowed their study to the following options: (A) Four independent single pulse drivers powering four single pulse diodes; (B) Four series adders with interleaved cavities feeding a common MITL and diode; (C) Four stages of series PFLs, isolated from each other by triggered spark gap switches, with single-point feeds to a common adder, MITL, and diode; and (D) Isolated PFLs with multiple-feeds to a common adder using spark gap switches in combination with saturable magnetic cores to isolate the non-energized lines. The authors will discuss these options in greater detail identifying the challenges and risks associated with each

  15. Time-dependent beam focusing at the DARHT-II injector diode

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.; Fawley, W.; Yu, S.

    1999-01-01

    The injector for the second axis of the Dual-Axis Radiographic Hydrotest Facility (DARHT) is being designed and constructed at LBNL. The injector consists of a single gap diode extracting 2(micro)s, 2kA, 3.2 MeV electron beam from a 6.5 inches diameter thermionic dispenser cathode. The injector is powered through a ceramic column by a Marx generator. We also investigated the possibility of extracting a beam current of 4 kA. The focusing system for the electron beam consists of a Pierce electrostatic focusing electrode at the cathode and three solenoidal focusing magnets positioned between the anode and induction accelerator input. The off-energy components (beam-head) during the 400 ns energy rise time are overfocused, leading to beam envelope mismatch and growth resulting in the possibility of beam hitting the accelerator tube walls. The anode focusing magnets can be tuned to avoid the beam spill in the 2kA case. To allow beam-head control for the 4kA case we are considering the introduction of time-varying magnetic focusing field along the accelerator axis generated by a single-loop solenoid magnet positioned in the anode beam tube. We will present the beam-head dynamics calculations as well as the solenoid design and preliminary feasibility test results

  16. The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Morneau, Rachel Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-09

    The U.S. Stockpile Stewardship Program [1] is designed to sustain and evaluate the nuclear weapons stockpile while foregoing underground nuclear tests. The maintenance of a smaller, aging U.S. nuclear weapons stockpile without underground testing requires complex computer calculations [14]. These calculations in turn need to be verified and benchmarked [14]. A wide range of research facilities have been used to test and evaluate nuclear weapons while respecting the Comprehensive Nuclear Test-Ban Treaty (CTBT) [2]. Some of these facilities include the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z machine at Sandia National Laboratories, and the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory. This research will focus largely on DARHT (although some information from Cygnus and the Los Alamos Microtron may be used in this research) by modeling it and comparing to experimental data. DARHT is an electron accelerator that employs high-energy flash x-ray sources for imaging hydro-tests. This research proposes to address some of the issues crucial to understanding DARHT Axis II and the analysis of the radiographic images produced. Primarily, the nature of scatter at DARHT will be modeled and verified with experimental data. It will then be shown that certain design decisions can be made to optimize the scatter field for hydrotest experiments. Spectral effects will be briefly explored to determine if there is any considerable effect on the density reconstruction caused by changes in the energy spectrum caused by target changes. Finally, a generalized scatter model will be made using results from MCNP that can be convolved with the direct transmission of an object to simulate the scatter of that object at the detector plane. The region in which with this scatter model is appropriate will be explored.

  17. DARHT: INTEGRATION OF AUTHORIZATION BASIS REQUIREMENTS AND WORKER SAFETY

    International Nuclear Information System (INIS)

    MC CLURE, D. A.; NELSON, C. A.; BOUDRIE, R. L.

    2001-01-01

    This document describes the results of consensus agreements reached by the DARHT Safety Planning Team during the development of the update of the DARHT Safety Analysis Document (SAD). The SAD is one of the Authorization Basis (AB) Documents required by the Department prior to granting approval to operate the DARHT Facility. The DARHT Safety Planning Team is lead by Mr. Joel A. Baca of the Department of Energy Albuquerque Operations Office (DOE/AL). Team membership is drawn from the Department of Energy Albuquerque Operations Office, the Department of Energy Los Alamos Area Office (DOE/LAAO), and several divisions of the Los Alamos National Laboratory. Revision 1 of the DARHT SAD had been written as part of the process for gaining approval to operate the Phase 1 (First Axis) Accelerator. Early in the planning stage for the required update of the SAD for the approval to operate both Phase 1 and Phase 2 (First Axis and Second Axis) DARHT Accelerator, it was discovered that a conflict existed between the Laboratory approach to describing the management of facility and worker safety

  18. Beam-dynamics codes used at DARHT

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-01

    Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.

  19. DARHT 2 kA Cathode Development

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    value). We reexamined all the components in the cathode region and eliminated those parts that were suspected to be potential sources of contamination, e.g., feed-throughs with zinc coating. Finally, we considered a change in the cathode type, by using a different combination of impregnation and coating. Since the ETA-II accelerator at LLNL used a 12.5 cm diameter 311XW (barium oxide doped with scandium and coated with a osmium-tungsten thin film) cathode and emitted 2200A of beam current (i.e. 18 A/cm{sup 2}), it was reasonable to assume that DARHT can adopt this type of cathode to produce 2 kA (i.e., 10A/cm{sup 2}). However, it was later found that the 311XW has a higher radiation heat loss than the 612M and therefore resulted in a maximum operating temperature (as limited by filament damage) below that required to produce the high current. With the evidence provided by systematic emission tests using quarter-inch size cathodes, we confirmed that the 311XM (doped with scandium and has a osmium-ruthenium (M) coating) had the best combination of low work function and low radiation heat loss. Subsequently a 6.5-inch diameter 311XM cathode was installed in DARHT and 2 kA beam current was obtained on June 14, 2007. In testing the quarter-inch size cathode, we found that the beam current was sensitive to the partial pressure of various gases in the vacuum chamber. Furthermore, there was a hysteresis effect on the emission as a function of temperature. The phenomenon suggested that the work function of the cathode was dependent on the dynamic equilibrium between the diffusion of the impregnated material to the surface and the contamination rate from the surrounding gas. Water vapor was found to be the worst contaminant amongst the various gases that we have tested. Our data showed that the required vacuum for emitting at 10 A/cm{sup 2} is in the low 10{sup -8} Torr range.

  20. DARHT 2 kA Cathode Development

    International Nuclear Information System (INIS)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-01-01

    all the components in the cathode region and eliminated those parts that were suspected to be potential sources of contamination, e.g., feed-throughs with zinc coating. Finally, we considered a change in the cathode type, by using a different combination of impregnation and coating. Since the ETA-II accelerator at LLNL used a 12.5 cm diameter 311XW (barium oxide doped with scandium and coated with a osmium-tungsten thin film) cathode and emitted 2200A of beam current (i.e. 18 A/cm 2 ), it was reasonable to assume that DARHT can adopt this type of cathode to produce 2 kA (i.e., 10A/cm 2 ). However, it was later found that the 311XW has a higher radiation heat loss than the 612M and therefore resulted in a maximum operating temperature (as limited by filament damage) below that required to produce the high current. With the evidence provided by systematic emission tests using quarter-inch size cathodes, we confirmed that the 311XM (doped with scandium and has a osmium-ruthenium (M) coating) had the best combination of low work function and low radiation heat loss. Subsequently a 6.5-inch diameter 311XM cathode was installed in DARHT and 2 kA beam current was obtained on June 14, 2007. In testing the quarter-inch size cathode, we found that the beam current was sensitive to the partial pressure of various gases in the vacuum chamber. Furthermore, there was a hysteresis effect on the emission as a function of temperature. The phenomenon suggested that the work function of the cathode was dependent on the dynamic equilibrium between the diffusion of the impregnated material to the surface and the contamination rate from the surrounding gas. Water vapor was found to be the worst contaminant amongst the various gases that we have tested. Our data showed that the required vacuum for emitting at 10 A/cm 2 is in the low 10 -8 Torr range

  1. Shot H3837: Darht's First Dual-Axis Explosive Experiment

    Science.gov (United States)

    Mendez, Jacob; McNeil, Wendy Vogan; Harsh, James; Hull, Lawrence

    2011-06-01

    Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic HydroTest (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II. Since the days of the Manhattan Project, penetrating radiography with multiple frames from different viewing angles has remained a high-profile goal at the Laboratory. H3837 is merely the beginning of a bright future for two-axis penetrating radiography.

  2. Plasma wave accelerator. II

    International Nuclear Information System (INIS)

    Mori, W.; Joshi, C.; Dawson, J.M.

    1982-01-01

    It was shown that the insertion of a cross magnetic field prevents the particles from getting out of phase with the electric field of the plasma wave in the beat wave accelerator scheme. Thus, using a CO 2 laser, n/sub c//n/sub e/ = (ω 0 /ω/sub p/) 2 approx. 35, and a 300 kG magnetic field, electrons can be (in principle) accelerated to 100 GeV in 2 meters. For comparison without the magnetic field, the same energies may be obtained in a n/sub c//n/sub e/ approx. 10 5 plasma over a distance of 100 meters

  3. ETA-II accelerator upgrades

    International Nuclear Information System (INIS)

    Nilson, D.G.; Deadrick, F.J.; Hibbs, S.M.; Sampayan, S.E.; Petersen, D.E.

    1991-09-01

    We discuss recent improvements to the ETA-II linear induction electron accelerator. The accelerator's cells have been carefully reconditioned to raise the maximum accelerating gap voltage from approximately 100 kV to 125 kV. Insulators of Rexolite plastic in a new ''zero-gap'' arrangement replaced the alumina originals after several alternative materials were investigated. A new multi-cable current feed system will be used to eliminate pulse reflection interactions encountered in earlier experiments. Improved alignment fixtures have been installed to help minimize beam perturbation due to poorly aligned intercell magnets between 10-cell groups. A stretched wire alignment technique (SWAT) has been utilized to enhance overall magnetic alignment, and to characterize irreducible alignment errors. These changes are in conjunction with an expansion of the accelerator from a 20-cell to a 60-cell configuration. When completed, the upgraded accelerator is expected to deliver 2.5 kA of electron beam current at 7.5 MeV in bursts of up to fifty 70-ns pulses at a 5-kHz repetition rate. A 5.5-meter-long wiggler will convert the energy into 3-GW microwave pulses at 140 GHz for plasma heating experiments in the Microwave Tokamak Experiment (MTX)

  4. The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Morneau, Rachel Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-09

    This report describes the US Stockpile Stewardship Program which is meant to sustain and evaluate nuclear weapon stockpile with no underground nuclear tests. This research will focus on DARHT, the Dual Axis Radiographic Hydrodynamic Test facility.

  5. DARHT Multi-intelligence Seismic and Acoustic Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Garrison Nicole [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Van Buren, Kendra Lu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-21

    The purpose of this report is to document the analysis of seismic and acoustic data collected at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory for robust, multi-intelligence decision making. The data utilized herein is obtained from two tri-axial seismic sensors and three acoustic sensors, resulting in a total of nine data channels. The goal of this analysis is to develop a generalized, automated framework to determine internal operations at DARHT using informative features extracted from measurements collected external of the facility. Our framework involves four components: (1) feature extraction, (2) data fusion, (3) classification, and finally (4) robustness analysis. Two approaches are taken for extracting features from the data. The first of these, generic feature extraction, involves extraction of statistical features from the nine data channels. The second approach, event detection, identifies specific events relevant to traffic entering and leaving the facility as well as explosive activities at DARHT and nearby explosive testing sites. Event detection is completed using a two stage method, first utilizing signatures in the frequency domain to identify outliers and second extracting short duration events of interest among these outliers by evaluating residuals of an autoregressive exogenous time series model. Features extracted from each data set are then fused to perform analysis with a multi-intelligence paradigm, where information from multiple data sets are combined to generate more information than available through analysis of each independently. The fused feature set is used to train a statistical classifier and predict the state of operations to inform a decision maker. We demonstrate this classification using both generic statistical features and event detection and provide a comparison of the two methods. Finally, the concept of decision robustness is presented through a preliminary analysis where

  6. Suppressing beam-centroid motion in a long-pulse linear induction accelerator

    Directory of Open Access Journals (Sweden)

    Carl Ekdahl

    2011-12-01

    Full Text Available The second axis of the dual-axis radiography of hydrodynamic testing (DARHT facility produces up to four radiographs within an interval of 1.6  μs. It does this by slicing four micropulses out of a 2-μs long electron beam pulse and focusing them onto a bremsstrahlung converter target. The 1.8-kA beam pulse is created by a dispenser cathode diode and accelerated to more than 16 MeV by the unique DARHT Axis-II linear induction accelerator (LIA. Beam motion in the accelerator would be a problem for multipulse flash radiography. High-frequency motion, such as from beam-breakup (BBU instability, would blur the individual spots. Low-frequency motion, such as produced by pulsed-power variation, would produce spot-to-spot differences. In this article, we describe these sources of beam motion, and the measures we have taken to minimize it. Using the methods discussed, we have reduced beam motion at the accelerator exit to less than 2% of the beam envelope radius for the high-frequency BBU, and less than 1/3 of the envelope radius for the low-frequency sweep.

  7. Plasma opening switch experiments on the Particle Beam Accelerator II

    International Nuclear Information System (INIS)

    Sweeney, M.A.; McDaniel, D.H.; Mendel, C.W.; Rochau, G.E.; Moore, W.B.S.; Mowrer, G.R.; Simpson, W.W.; Zagar, D.M.; Grasser, T.; McDougal, C.D.

    1989-01-01

    Plasma opening switch (POS) experiments have been done since 1986 on the PBFA-II ion beam accelerator to develop a rugged POS that will open rapidly ( 80%) into a high impedance (> 10 ohm) load. In a recent series of experiments on PBFA II, the authors have developed and tested three different switch designs that use magnetic fields to control and confine the injected plasma. All three configurations couple current efficiently to a 5-ohm electron beam diode. In this experimental series, the PBFA-II Delta Series, more extensive diagnostics were used than in previous switch experiments on PBFA II or on the Blackjack 5 accelerator at Maxwell Laboratories. Data from the experiments with these three switch designs is presented

  8. Kr II laser-induced fluorescence for measuring plasma acceleration.

    Science.gov (United States)

    Hargus, W A; Azarnia, G M; Nakles, M R

    2012-10-01

    We present the application of laser-induced fluorescence of singly ionized krypton as a diagnostic technique for quantifying the electrostatic acceleration within the discharge of a laboratory cross-field plasma accelerator also known as a Hall effect thruster, which has heritage as spacecraft propulsion. The 728.98 nm Kr II transition from the metastable 5d(4)D(7/2) to the 5p(4)P(5/2)(∘) state was used for the measurement of laser-induced fluorescence within the plasma discharge. From these measurements, it is possible to measure velocity as krypton ions are accelerated from near rest to approximately 21 km/s (190 eV). Ion temperature and the ion velocity distributions may also be extracted from the fluorescence data since available hyperfine splitting data allow for the Kr II 5d(4)D(7/2)-5p(4)P(5/2)(∘) transition lineshape to be modeled. From the analysis, the fluorescence lineshape appears to be a reasonable estimate for the relatively broad ion velocity distributions. However, due to an apparent overlap of the ion creation and acceleration regions within the discharge, the distributed velocity distributions increase ion temperature determination uncertainty significantly. Using the most probable ion velocity as a representative, or characteristic, measure of the ion acceleration, overall propellant energy deposition, and effective electric fields may be calculated. With this diagnostic technique, it is possible to nonintrusively characterize the ion acceleration both within the discharge and in the plume.

  9. SMILE a new version for the RADLAC II linear accelerator

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Shope, S.L.; Frost, C.A.; Pankuch, P.J.; Turman, B.N.; Ramirez, J.J.; Prestwich, K.R.

    1991-01-01

    The authors present here the SMILE modification of the RADLAC II accelerator which enabled them to produce high quality 12-14 MV, 100 kA beams. The modification of replacing the 40-kA 4-MV beam injector, magnetic vacuum transport and accelerating gaps by a long cathode shank which adds up the voltages of the 8 pulse forming lines. The beam now is produced at the end of the accelerator and is free of all the possible instabilities associated with accelerating gaps and magnetic vacuum transport. Annular beams with β perpendicular ≤ 0.1 and radius r b ≤ 2 cm are routinely obtained and extracted from a small magnetically immersed foilless electron diode. Results of the experimental evaluation are presented and compared with design parameters and numerical simulation predictions

  10. Demonstration of two-beam acceleration in CTF II

    CERN Document Server

    Bossart, Rudolf; Carron, G; Chanudet, M; Chautard, F; Delahaye, J P; Godot, J C; Hutchins, S; Kamber, I; Martínez, C; Suberlucq, Guy; Tenenbaum, P G; Thorndahl, L; Valentini, M; Wilson, Ian H; Wuensch, Walter

    1999-01-01

    The second phase of the Compact LInear Collider (CLIC) Test Facility (CTF II) at CERN has demon-strated the feasibility of two-beam acceleration at 30 GHz using a high-charge drive beam, running paral lel to the main beam, as the RF power source. To date accelerating gradients of 59 MV/m at 30 GHz have been achieved. In CTF II, the two beams are generated by 3 GHz RF photo-injectors and are acceler ated in 3 GHz linacs, before injection into the 30 GHz modules. The drive beam linac has to accelerate a 16 ns long train of 48 bunches, each with a nominal charge of 13.4 nC. To cope with the very su bstantial beam-loading special accelerating structures are used (running slightly off the bunch repetition frequency). A magnetic chicane compresses the bunches to less than 5 ps fwhm, this is needed for efficient 30 GHz power generation. The 30 GHz modules are fully-engineered representative sections of CLIC, they include a 30 GHz decelerator for the drive beam, a 30 GHz accelerator for the main beam, high resolution...

  11. Plasma opening switch development for the Particle Beam Fusion Accelerator II (PBFA II)

    International Nuclear Information System (INIS)

    Stinnett, R.W.; McDaniel, D.H.; Rochau, G.E.

    1987-01-01

    The authors conducted plasma opening switch (POS) experiments on Sandia National Laboratories' new Particle Beam Fusin Accelerator II (PBFA II) (12 MV, 100 TW, 50 ns), on the Supermite accelerator (2 MV, 2 TW, 50 ns) and on the Naval Research Laboratory's Gamble II accelerator (1.8 MV, 1.6 TW, 70 ns). The POS systems on the PBFA II and Supermite accelerators use a newly developed flashboard plasma source to provide the plasma necessary to conduct the large (> 1 MA) currents produced byu these accelerators. In the Supermite experiments, the plasma opening switch conducted currents up to 1 MA before opening in less than 10 ns into an electron beam load. These experiments achieved significant voltage gain relative to the voltage across a matched load. In experiments on Gamble II, power gains of up to 1.7 were achieved using a POS in a strongly coaxial geometry (r/sub outer//r/sub inner/ = 2) with a large magnetic field at the cathode. The POS system on PBFA II is unique because of its size and voltage. This POS system is designed to conduct over 6 MA before opening. In present experiments it has conducted currents of 4-5 MA for over 50 ns

  12. PROTO-II: a short pulse water insulated accelerator

    International Nuclear Information System (INIS)

    Martin, T.H.; VanDevender, J.P.; Johnson, D.L.; McDaniel, D.H.; Aker, M.

    1975-01-01

    A new accelerator, designated Proto-II, is presently under construction at Sandia Laboratories. Proto-II will have a nominal output of 100 kJ into a two-sided diode at a voltage of 1.5 MV and a total current of over 6 MA for 24 ns. This accelerator will be utilized for electron beam fusion experiments and for pulsed power and developmental studies leading to a proposed further factor of five scale-up in power. The design of Proto-II is based upon recent water switching developments and represents a 10-fold extrapolation of those results. Initial testing of Proto-II is scheduled to begin in 1976. Proto-II power flow starts with eight Marx generators which charge 16 water-insulated storage capacitors. Eight triggered, 3 MV, SF 6 gas-insulated switches next transfer the energy through oil-water interfaces into the first stage of 16 parallel lines. Next, the 16 first stages transfer their energy into the pulse forming lines and fast switching sections.The energy is then delivered to two converging, back-to-back, disk-shaped transmission line. Two back-to-back diodes then form the electron beams which are focused onto a common anode

  13. Status of the LCLS-II Accelerating Cavity Production

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Ed [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Marhauser, Frank [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Fitzpatrick, Jarrod A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Preble, Joe [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wilson, Katherine M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Grimm, C. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Burrill, Andrew B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gonnella, Daniel [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-05-01

    Cavity serial production for the LCLS-II 4 GeV CM SRF linac has started. A quantity of 266 accelerating cavities has been ordered from two industrial vendors. Jefferson Laboratory leads the cavity procurement activities for the project and has successfully transferred the Nitrogen-Doping process to the industrial partners in the initial phase, which is now being applied for the production cavities. We report on the results from vendor qualification and the status of the cavity production for LCLS-II.

  14. Accelerator studies at cooler rings TARN and TARN II

    International Nuclear Information System (INIS)

    Katayama, Takeshi.

    1992-07-01

    Two ion cooler rings, TARN and TARN II were constructed and operated from 1975 to 1992 at the Institute for Nuclear Study, Univ. of Tokyo, for mainly accelerator studies concerning the beam accumulation, acceleration and cooling. The main subjects performed in these facilities were; 1) beam stacking in transverse and longitudinal phase spaces, 2) stochastic momentum cooling, 3) electron cooling, 4) synchrotron acceleration and 5) slow beam extraction. In the present paper, typical experimental results on these subjects, arc described as well as the basic physical idea underlying these experimental results. The technical details are out of scope of the present paper. They can be found in the other papers refered in the concerned section in the text. (author)

  15. Accelerator Physics Challenges for the NSLS-II Project

    Energy Technology Data Exchange (ETDEWEB)

    Krinsky,S.

    2009-05-04

    The NSLS-II is an ultra-bright synchrotron light source based upon a 3-GeV storage ring with a 30-cell (15 super-period) double-bend-achromat lattice with damping wigglers used to lower the emittance below 1 nm. In this paper, we discuss the accelerator physics challenges for the design including: optimization of dynamic aperture; estimation of Touschek lifetime; achievement of required orbit stability; and analysis of ring impedance and collective effects.

  16. LAFD: TA-15 DARHT Firefighter Facility Familiarization Tour, OJT 53044, Revision 0.2

    Energy Technology Data Exchange (ETDEWEB)

    Rutherford, Victor Stephen [Los Alamos National Laboratory; Priestley, Terry B. [Los Alamos National Laboratory; Maestas, Marvin Manuel [Los Alamos National Laboratory

    2016-03-17

    The Los Alamos National Laboratory (LANL or the Lab) will conduct familiarization tours for the Los Alamos County Fire Department (LAFD) at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility, TA-15-0312. The purpose of these tours is to orient LAFD firefighters to the DARHT facility layout and hazards. This document provides information and figures to supplement the familiarization tours. The document will be distributed to the trainees at the time of the familiarization tour. A checklist (Attachment A) has also been developed to ensure that all required information is consistently presented to LAFD personnel during the familiarization tours.

  17. Run II of the LHC: The Accelerator Science

    Science.gov (United States)

    Redaelli, Stefano

    2015-04-01

    In 2015 the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) starts its Run II operation. After the successful Run I at 3.5 TeV and 4 TeV in the 2010-2013 period, a first long shutdown (LS1) was mainly dedicated to the consolidation of the LHC magnet interconnections, to allow the LHC to operate at its design beam energy of 7 TeV. Other key accelerator systems have also been improved to optimize the performance reach at higher beam energies. After a review of the LS1 activities, the status of the LHC start-up progress is reported, addressing in particular the status of the LHC hardware commissioning and of the training campaign of superconducting magnets that will determine the operation beam energy in 2015. Then, the plans for the Run II operation are reviewed in detail, covering choice of initial machine parameters and strategy to improve the Run II performance. Future prospects of the LHC and its upgrade plans are also presented.

  18. Beam control in the ETA-II linear induction accelerator

    International Nuclear Information System (INIS)

    Chen, Y.J.

    1992-01-01

    Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-II induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused by a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 2π. (Author) 5 figs., 11 refs

  19. Simulation of PEP-II Accelerator Backgrounds Using TURTLE

    CERN Document Server

    Barlow, Roger J; Kozanecki, Witold; Majewski, Stephanie; Roudeau, Patrick; Stocchi, Achille

    2005-01-01

    We present studies of accelerator-induced backgrounds in the BaBar detector at the SLAC B-Factory, carried out using a modified version ofthe DECAY TURTLE simulation package. Lost-particle backgrounds in PEP-II are dominated by a combination of beam-gas bremstrahlung, beam-gas Coulomb scattering, radiative-Bhabha events and beam-beam blow-up. The radiation damage and detector occupancy caused by the associated electromagnetic shower debris can limit the usable luminosity. In order to understand and mitigate such backgrounds, we have performed a full programme of beam-gas and luminosity-background simulations, that include the effects of the detector solenoidal field, detailed modelling of limiting apertures in both collider rings, and optimization of the betatron collimation scheme in the presence of large transverse tails.

  20. Secondary Electron Emission Yields from PEP-II Accelerator Materials

    International Nuclear Information System (INIS)

    Kirby, Robert E.

    2000-01-01

    The PEP-II B-Factory at SLAC operates with aluminum alloy and copper vacuum chambers, having design positron and electron beam currents of 2 and 1 A, respectively. Titanium nitride coating of the aluminum vacuum chamber in the arcs of the positron ring is needed in order to reduce undesirable electron-cloud effects. The total secondary electron emission yield of TiN-coated aluminum alloy has been measured after samples of beam chamber material were exposed to air and again after electron-beam bombardment, as a function of incident electron beam angle and energy. The results may be used to simulate and better understand electron-cloud effects under actual operating conditions. We also present yield measurements for other accelerator materials because new surface effects are expected to arise as beam currents increase. Copper, in particular, is growing in popularity for its good thermal conductivity and self-radiation-shielding properties. The effect of electron bombardment, ''conditioning'', on the yield of TiN and copper is shown

  1. Trak Investigation of Focusing Electrode Geometries for the DARHT Axis-I Diode

    Energy Technology Data Exchange (ETDEWEB)

    Kallas, Nicholas Dimitrious [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-15

    An investigation was carried out on the effects of different cathode shroud geometries of the DARHT Axis-1 diode using the Trak ray tracing software. Pierce angles of 20, 30, 45, 60, and 67.5 degrees were investigated. For each geometry the current density with respect to radial position will be presented as it evolves in the longitudinal direction. In addition the emittances for each geometry are compared and this information is used to determine the optimal geometry from the selected angles. These results are compared to the baseline geometry currently employed at DARHT of a simple 2.5mm recessed velvet cathode. Of the selected angles it was found that 45 degrees produced the lowest normalized emittance value, whereas 60 degrees produced the most uniform current density profile at 1cm away from the emission surface. For the purpose of this investigation the effects of the bucking coil and solenoid around the hollow anode of the DARHT Axis I injector are neglected.

  2. A Shot Parameter Specification Subsystem for automated control of PBFA [Particle Beam Fusion Accelerator] II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The Shot Parameter Specification Subsystem (SPSS) is an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II) by the Control Monitor (C/M) Software Development Team. This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III at the Simulation Technology Laboratory. This system is expected to meet the demands of most future machine changes

  3. PBFA [Particle Beam Fusion Accelerator] II: The pulsed power characterization phase

    International Nuclear Information System (INIS)

    Martin, T.H.; Turman, B.N.; Goldstein, S.A.

    1987-01-01

    The Particle Beam Fusion Accelerator II, PBFA II, is now the largest pulsed power device in operation. This paper summarizes its first year and a half of operation for the Department of Energy (DOE) Inertial Confinement Fusion (ICF) program. Thirty-six separate modules provide 72 output pulses that combine to form a 100 TW output pulse at the accelerator center. PBFA II was successfully test fired for the first time on December 11, 1985. This test completed the construction phase (Phase 1) within the expected schedule and budget. The accelerator checkout phase then started (Phase 2). The first priority during checkout was to bring the Phase 1 subsystems into full operation. The accelerator was first tested to determine overall system performance. Next, subsystems that were not performing adequately were modified. The accelerator is now being used for ion diode studies. 32 refs

  4. Analysis of beam feedback loops of RF acceleration system at TARN II

    International Nuclear Information System (INIS)

    Katayama, Takeshi.

    1992-08-01

    Two beam-feedback-loops are prepared for the frequency control of RF acceleration system at cooler-synchrotron TARN II. One is the phase-loop and the other the radial-position-loop. In the present paper, the effects of these loops on the beam dynamics in the synchrotron are studied on the basis of Laplace transformation approach as well as the numerical values for the synchrotron acceleration at TARN II. (author)

  5. Baseline concentrations of radionuclides and heavy metals in soils and vegetation around the DARHT facility: Construction phase (1997). Progress report

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Haagenstad, H.T.; Naranjo, L. Jr.

    1998-06-01

    As part of the Department of Energy's Mitigation Action Plan for the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL), baseline concentrations of radionuclides ( 3 H, 137 Cs, 90 Sr, 238 Pu, 239,240 Pu, 241 Am, and tot U) and heavy metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl) in soil, sediment, and vegetation (overstory and understory) around the DARHT facility during the construction phase in 1997 were determined. Most radionuclides and heavy metals in soils, sediments, and vegetation, with the exception of 90 Sr in soils and sediments, were within upper (95%) limit background concentrations. Although the levels of 90 Sr in soils and sediments around the DARHT facility were higher than background, they were below LANL screening action levels ( -1 dry) and are of no concern

  6. Baseline concentrations of radionuclides and heavy metals in soils and vegetation around the DARHT facility: Construction phase (1996)

    International Nuclear Information System (INIS)

    Fresquez, P.R.; Haagenstad, H.T.; Naranjo, L. Jr.

    1997-04-01

    As part of the Department of Energy's Mitigation Action Plan for the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility at Los Alamos National Laboratory (LANL), baseline concentrations of radionuclides ( 3 H, 137 Cs, 90 Sr, 238 Pu, 239 Pu, 241 Am, total U), and heavy metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se and Tl) in soil, sediment, and vegetation (overstory and understory) around the DARHT facility during the construction phase in 1996 were determined. Also, U and Be concentrations in soil samples collected in 1993 from within the proposed DARHT facility area are reported. Most radionuclides in soils, sediments, and vegetation were within current background and/or long-term regional statistical reference levels

  7. The design of the accelerating gaps for the linear induction accelerator RADLAC II

    International Nuclear Information System (INIS)

    Shope, S.L.; Mazarakis, M.G.; Miller, R.B.; Poukey, J.W.

    1987-01-01

    In high current (50 kA) linear induction accelerators, the accelerating gaps can excite large radial oscillations. A gap was designed that minimized the radial oscillations and reduced potential depressions. The envelope equation predicted radial oscillation amplitudes of 1 mm which agreed with experimental measurements

  8. Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-08-26

    Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.

  9. Status of the ISAC-II Accelerator at TRIUMF

    CERN Document Server

    Laxdal, Robert E; Bricault, Pierre; Bylinskii, Iouri; Fong, Ken; Marchetto, Marco; Mitra, Amiya K; Poirier, Roger L; Rawnsley, William R; Schmor, Paul; Sekachev, Igor; Stanford, Guy; Stinson, Glen; Zviagintsev, Vladimir

    2005-01-01

    A heavy ion superconducting linac is being installed at TRIUMF to increase the final energy of radioactive beams at ISAC. A first stage of 20MV consisting of five medium beta cryomodules each with four quarter wave bulk niobium cavities and a superconducting solenoid is being installed with initial beam commissioning scheduled for Dec. 2005. The initial cryomodule has met cryogenic and rf performance specifications. In addition we have demonstrated acceleration of alpha particles in an off-line test. A 500W refrigerator system has been installed and commissioned in Jan. 2005 with cold distribution due for commissioning in Sept. 2005. A transfer beamline from the ISAC accelerator and beam transport to a first experimental station are being installed. The status of the project will be presented.

  10. COMPANIONS TO NEARBY STARS WITH ASTROMETRIC ACCELERATION. II

    International Nuclear Information System (INIS)

    Tokovinin, Andrei; Hartung, Markus; Hayward, Thomas L.

    2013-01-01

    Hipparcos astrometric binaries were observed with the NICI adaptive optics system at Gemini-S, completing the work of Paper I. Among the 65 F, G, and K dwarfs within 67 pc of the Sun studied here, we resolve 18 new subarcsecond companions, remeasure 7 known astrometric pairs, and establish the physical nature of yet another 3 wider companions. The 107 astrometric binaries targeted at Gemini so far have 38 resolved companions with separations under 3''. Modeling shows that bright enough companions with separations on the order of an arcsecond can perturb the Hipparcos astrometry when they are not accounted for in the data reduction. However, the resulting bias of parallax and proper motion is generally below formal errors and such companions cannot produce fake acceleration. This work contributes to the multiplicity statistics of nearby dwarfs by bridging the gap between spectroscopic and visual binaries and by providing estimates of periods and mass ratios for many astrometric binaries.

  11. Bird Surveys at DARHT Before and During Operations: Comparison of Species Abundance and Composition and Trace Element Uptake

    Energy Technology Data Exchange (ETDEWEB)

    P. R. Fresquez, D. C. Keller, C. D. Hathcock

    2007-11-30

    The Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility Mitigation Action Plan specifies the comparison of baseline conditions in biotic and abiotic media with those collected after operations have started. Operations at DARHT at Los Alamos National Laboratory started in 2000. In this study, the abundance and composition of birds collected near the DARHT facility from 2003 through 2006 were determined and compared to a preoperational period (1999). In addition, the levels of radionuclides and other inorganic chemicals in birds were compared to regional statistical reference levels (RSRLs). The number and diversity of bird species generally increased over preoperational levels with the greatest number of birds (412) and species (46) occurring in 2005. The most common bird species collected regardless of time periods were the chipping sparrow (Spizella passerina), the Virginia's warbler (Vermivora virginiae), the western bluebird (Sialia mexicana), the broad-tailed hummingbird (Selasphorus platycercus), the sage sparrow (Amphispiza belli), and the western tanager (Piranga ludoviciana). Most radionuclides, with the exception of uranium-234 and uranium-238, in (whole body) birds collected after operations began were either not detected or below RSRLs. Uranium-234 and uranium-238 concentrations in a few samples were far below screening levels and do not pose a potential unacceptable dose to the birds. In contrast, many inorganic chemicals, particularly arsenic and silver, in birds collected before and after operations began were in higher concentrations than RSRLs. Because birds (skin plus feathers) collected in the years before operations began contained higher levels of arsenic and silver than RSRLs and because there was no evidence of these metals in soil and sediment directly around the DARHT facility, the elevated levels of these metals in birds during early operations are probably not related to DARHT operations. Arsenic and silver in birds, however

  12. DEVELOPING THE PHYSICS DESIGN FOR NDCX-II, A UNIQUE PULSE-COMPRESSING ION ACCELERATOR

    International Nuclear Information System (INIS)

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.

    2009-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at ∼ + ions to ∼1 ns while accelerating it to 3-4 MeV over ∼15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.

  13. Accelerated degradation of the D2 protein of photosystem II under ultraviolet radiation

    International Nuclear Information System (INIS)

    Jansen, M.A.K.; Edelman, M.; Greenberg, B.M.; Gaba, V.

    1996-01-01

    The D2 protein of photosystem II is relatively stable in vivo under photosynthetic active radiation, but its degradation accelerates under UVB radiation. Little is known about accelerated D2 protein degradation. We characterized wavelength dependence and sensitivity toward photosystem II inhibitors. The in vivo D2 degradation spectrum resembles the pattern for the rapidly turning over D1 protein of photosystem II, with rates being maximal in the UVB region. We propose that D2 degradation, like D1 degradation, is activated by distinct photosensitizers in the UVB and visible regions of the spectrum. In both wavelength regions, photosystem II inhibitors that are known to be targeted to the D1 protein affect D2 degradation. This suggests that degradation of the two proteins is coupled, D2 degradation being influenced by events occurring at the Q B niche on the D1 protein. (Author)

  14. A shot parameter specification subsystem for automated control of PBFA II accelerator shots

    International Nuclear Information System (INIS)

    Spiller, J.L.

    1987-01-01

    The author reports on the shot parameter specification subsystem (SPSS), an integral part of the automatic control system developed for the Particle Beam Fusion Accelerator II (PBFA II). This system has been designed to fully utilize the accelerator by tailoring shot parameters to the needs of the experimenters. The SPSS is the key to this flexibility. Automatic systems will be required on many pulsed power machines for the fastest turnaround, the highest reliability, and most cost effective operation. These systems will require the flexibility and the ease of use that is part of the SPSS. The author discusses how the PBFA II control system has proved to be an effective modular system, flexible enough to meet the demands of both the fast track construction of PBFA II and the control needs of Hermes III. This system is expected to meet the demands of most future machine changes

  15. Garden hose separation of gaseous isotopes. Part II. Supersonic accelerations

    International Nuclear Information System (INIS)

    Wang, C.G.; Davis, A.G.M.

    1979-01-01

    A mechanical process for separating gaseous mixtures according to their respective molecular weights, by a variation of the time-of-flight process, is proposed. The separative apparatus consists of several sets of nozzle-deflector combinations surrounded by a stationary collector housed in an evacuated chamber. From a rotating supersonic nozzle, a contiguous plurality of successive groups of molecules is ejected to form a continuous stream of the mixture. The molecules of each group of molecules are allowed to accelerate for a predetermined period of time following their supersonic expansion, thereby allowing each group of molecules to form a generally spherical configuration, the outer radius of which will be enriched in molecules of lighter mass, relative to lesser radii. A deflector means co-rotating with the nozzle is used to deflect molecules that have been allowed to move for the predetermined period of time in accordance with their expansion velocities, from at least one desired portion of the stream, and a stationary collector means is disposed to receive the deflected molecules. The estimated separative work produced from such a unit is about the same or better than that of a modern giant diffuser of similar dimensions. However, with an essentially empty chamber, the unit capital cost as well as the energy required is competitive with any of the well-known methods, mechanical or otherwise

  16. Saturne II: characteristics of the proton beam, field qualities and corrections, acceleration of the polarized protons

    International Nuclear Information System (INIS)

    Laclare, J.-L.

    1978-01-01

    Indicated specifications of Saturne II are summed up: performance of the injection system, quality of the guidance field (magnetic measurements and multipolar corrections), transverse and longitudinal instabilities, characteristics of the beam stored in the machine and of the extracted beam. The problem of depolarization along the acceleration cycle is briefly discussed (1 or 2% between injection and 3 GeV) [fr

  17. Preliminary Conceptual Design Report for the FACET-II Project at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Mark [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-04-22

    Plasma wakefield acceleration has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider is the focus of FACET, a National User Facility at SLAC. The existing FACET National User Facility uses part of SLAC’s two-mile-long linear accelerator to generate high-density beams of electrons and positrons. FACET-II is a new test facility to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. It is the only facility in the world with high energy positron beams. FACET-II provides a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique. It will synergistically pursue accelerator science that is vital to the future of both advanced acceleration techniques for High Energy Physics, ultra-high brightness beams for Basic Energy Science, and novel radiation sources for a wide variety of applications. The design parameters for FACET-II are set by the requirements of the plasma wakefield experimental program. To drive the plasma wakefield requires a high peak current, in excess of 10kA. To reach this peak current, the electron and positron design bunch size is 10μ by 10μ transversely with a bunch length of 10μ. This is more than 200 times better than what has been achieved at the existing FACET. The beam energy is 10 GeV, set by the Linac length available and the repetition rate is up to 30 Hz. The FACET-II project is scheduled to be constructed in three major stages. Components of the project discussed in detail include the following: electron injector, bunch compressors and linac, the positron system, the Sector 20 sailboat and W chicanes

  18. Design considerations for a time-resolved tomographic diagnostic at DARHT

    International Nuclear Information System (INIS)

    Morris I. Kaufman, Daniel Frayer, Wendi Dreesen, Douglas Johnson, Alfred Meidinger

    2006-01-01

    An instrument has been developed to acquire time-resolved tomographic data from the electron beam at the DARHT [Dual-Axis Radiographic Hydrodynamic Test] facility at Los Alamos National Laboratory. The instrument contains four optical lines of sight that view a single tilted object. The lens design optically integrates along one optical axis for each line of sight. These images are relayed via fiber optic arrays to streak cameras, and the recorded streaks are used to reconstruct the original two-dimensional data. Installation of this instrument into the facility requires automation of both the optomechanical adjustments and calibration of the instrument in a constrained space. Additional design considerations include compound tilts on the object and image planes

  19. Baseline concentrations of radionuclides and heavy metals in soils and vegetation around the DARHT facility: Construction phase (1997). Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Fresquez, P.R.; Haagenstad, H.T.; Naranjo, L. Jr.

    1998-06-01

    As part of the Department of Energy`s Mitigation Action Plan for the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL), baseline concentrations of radionuclides ({sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and {sup tot}U) and heavy metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl) in soil, sediment, and vegetation (overstory and understory) around the DARHT facility during the construction phase in 1997 were determined. Most radionuclides and heavy metals in soils, sediments, and vegetation, with the exception of {sup 90}Sr in soils and sediments, were within upper (95%) limit background concentrations. Although the levels of {sup 90}Sr in soils and sediments around the DARHT facility were higher than background, they were below LANL screening action levels (<4.4 pCi g{sup {minus}1} dry) and are of no concern.

  20. RESULTS OF ACCELERATED LIFE TESTING OF LCLS-II CAVITY TUNER MOTOR

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Daly, Edward F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pischalnikov, Yuriy [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2018-04-01

    An Accelerated Life Test (ALT) of the Phytron stepper motor used in the LCLS-II cavity tuner has been conducted at JLab. Since the motor will reside inside the cryomodule, any failure would lead to a very costly and arduous repair. As such, the motor was tested for the equivalent of 30 lifetimes before being approved for use in the production cryomodules. The 9-cell LCLS-II cavity is simulated by disc springs with an equivalent spring constant. Plots of the motor position vs. tuner position ' measured via an installed linear variable differential transformer (LVDT) ' are used to measure motor motion. The titanium spindle was inspected for loss of lubrication. The motor passed the ALT, and is set to be installed in the LCLS-II cryomodules.

  1. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  2. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    Science.gov (United States)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  3. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, Nicholas Bryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, John Oliver [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Coleman, Joshua Eugene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.

  4. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy.

    Science.gov (United States)

    Galán, María; Varona, Saray; Guadall, Anna; Orriols, Mar; Navas, Miquel; Aguiló, Silvia; de Diego, Alicia; Navarro, María A; García-Dorado, David; Rodríguez-Sinovas, Antonio; Martínez-González, José; Rodriguez, Cristina

    2017-09-01

    Lysyl oxidase (LOX) controls matrix remodeling, a key process that underlies cardiovascular diseases and heart failure; however, a lack of suitable animal models has limited our knowledge with regard to the contribution of LOX to cardiac dysfunction. Here, we assessed the impact of LOX overexpression on ventricular function and cardiac hypertrophy in a transgenic LOX (TgLOX) mouse model with a strong cardiac expression of human LOX. TgLOX mice exhibited high expression of the transgene in cardiomyocytes and cardiofibroblasts, which are associated with enhanced LOX activity and H 2 O 2 production and with cardiofibroblast reprogramming. LOX overexpression promoted an age-associated concentric remodeling of the left ventricle and impaired diastolic function. Furthermore, LOX transgenesis aggravated angiotensin II (Ang II)-induced cardiac hypertrophy and dysfunction, which triggered a greater fibrotic response that was characterized by stronger collagen deposition and cross-linking and high expression of fibrotic markers. In addition, LOX transgenesis increased the Ang II-induced myocardial inflammatory infiltrate, exacerbated expression of proinflammatory markers, and decreased that of cardioprotective factors. Mechanistically, LOX overexpression enhanced oxidative stress and potentiated the Ang II-mediated cardiac activation of p38 MAPK while reducing AMPK activation. Our findings suggest that LOX induces an age-dependent disturbance of diastolic function and aggravates Ang II-induced hypertrophy, which provides novel insights into the role of LOX in cardiac performance.-Galán, M., Varona, S., Guadall, A., Orriols, M., Navas, M., Aguiló, S., de Diego, A., Navarro, M. A., García-Dorado, D., Rodríguez-Sinovas, A., Martínez-González, J., Rodriguez, C. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. © FASEB.

  5. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    International Nuclear Information System (INIS)

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-01-01

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at ∼1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of ∼50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  6. Improvement of PEP-II Linear Optics with a MIA-Derived Virtual Accelerator

    International Nuclear Information System (INIS)

    Cerio, B.; Colgate U.

    2006-01-01

    In several past studies, model independent analysis, in conjunction with a virtual accelerator model, has been successful in improving PEP-II linear geometric optics. In many cases, optics improvement yielded an increase in machine luminosity. In this study, an updated characterization of linear optics is presented. With the PEP-II beam position monitor (BPM) system, four independent beam centroid orbits were extracted and used to determine phase advances and linear Green's functions among BPM locations. A magnetic lattice model was then constructed with a singular value decomposition-enhanced least-square fitting of phase advances and Green's functions, which are functions of quadrupole strengths, sextupole feed-downs, as well as BPM errors, to the corresponding measured quantities. The fitting process yielded a machine model that matched the measured linear optics of the real machine and was therefore deemed the virtual accelerator. High beta beat, as well as linear coupling, was observed in both LER and HER of the virtual accelerator. Since there was higher beta beating in LER, focus was shifted to the improvement of this ring. By adjusting select quadrupoles of the virtual LER and fitting the resulting beta functions and phase advances to those of the desired lattice, the average beta beat of the virtual machine was effectively reduced. The new magnet configuration was dialed into LER on August 10, 2006, and beta beat was reduced by a factor of three. After fine tuning HER to match the improved LER for optimal collision, a record peak luminosity of 12.069 x 10 33 cm -2 s -1 was attained on August 16, 2006

  7. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry

    Directory of Open Access Journals (Sweden)

    Tariq eSiddique

    2014-03-01

    Full Text Available Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae and Desulfobulbaceae and Archaea (Methanolinea/Methanoregula and Methanosaeta transformed FeIII minerals in MFT to amorphous FeII minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O and goethite (α-FeOOH were the dominant FeIII minerals in MFT. The formation of amorphous iron sulfide (FeS and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy. These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  8. Microbially-accelerated consolidation of oil sands tailings. Pathway II: solid phase biogeochemistry.

    Science.gov (United States)

    Siddique, Tariq; Kuznetsov, Petr; Kuznetsova, Alsu; Li, Carmen; Young, Rozlyn; Arocena, Joselito M; Foght, Julia M

    2014-01-01

    Consolidation of clay particles in aqueous tailings suspensions is a major obstacle to effective management of oil sands tailings ponds in northern Alberta, Canada. We have observed that microorganisms indigenous to the tailings ponds accelerate consolidation of mature fine tailings (MFT) during active metabolism by using two biogeochemical pathways. In Pathway I, microbes alter porewater chemistry to indirectly increase consolidation of MFT. Here, we describe Pathway II comprising significant, direct and complementary biogeochemical reactions with MFT mineral surfaces. An anaerobic microbial community comprising Bacteria (predominantly Clostridiales, Synergistaceae, and Desulfobulbaceae) and Archaea (Methanolinea/Methanoregula and Methanosaeta) transformed Fe(III) minerals in MFT to amorphous Fe(II) minerals during methanogenic metabolism of an added organic substrate. Synchrotron analyses suggested that ferrihydrite (5Fe2O3. 9H2O) and goethite (α-FeOOH) were the dominant Fe(III) minerals in MFT. The formation of amorphous iron sulfide (FeS) and possibly green rust entrapped and masked electronegative clay surfaces in amended MFT. Both Pathways I and II reduced the surface charge potential (repulsive forces) of the clay particles in MFT, which aided aggregation of clays and formation of networks of pores, as visualized using cryo-scanning electron microscopy (SEM). These reactions facilitated the egress of porewater from MFT and increased consolidation of tailings solids. These results have large-scale implications for management and reclamation of oil sands tailings ponds, a burgeoning environmental issue for the public and government regulators.

  9. Preliminary research results for generation and application of high power ion beams on FLASh II accelerator

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; He Xiaoping; Sun Jianfeng; Peng Jianchang; Tang Junping; Ren Shuqing; Ouyang Xiaoping; Zhang Guoguang; Huang Jianjun; Yang Li; Wang Haiyang; Li Jingya; Li Hongyu

    2004-01-01

    Preliminary results for the generation and application of the high power ion beam (HPIB) on the FLASH II accelerator are reported. The structure and principle of the pinch reflex ion beam diode are introduced. The equation of parapotential flow is corrected for the reduction of diode A-K gap due to the motion of cathode and anode plasma. The HPIB peak current of ∼160 kA is obtained with a peak energy of ∼500 keV. Experimental investigations of generating 6-7 MeV quasi-monoenergetic pulsed γ-rays with high power ion (proton) beams striking 19 F target are presented. In addition, the results of the thermal-mechanical effects on the material irradiated with HPIB, which are applied to the simulation of 1 keV black body radiation x-rays, are also discussed

  10. Low inductance diode design on the Proto II accelerator for imploding plasma loads

    International Nuclear Information System (INIS)

    Hsing, W.W.; Coats, R.; McDaniel, D.H.; Spielman, R.B.

    1985-01-01

    A new water transmission line convolute, single piece insulator, and double disk feed has been designed and tested on the .125 ohm, 10 TW Proto II accelerator. The water transmission lines have a 5 cm gap to eliminate any water arcing. A two-dimensional magnetic field code was used to calculate the convolute inductance. The authors used an acrylic insulator as well as a single piece, laminated polycarbonate insulator. They have been successfully tested at over 90% of the Shipman criteria for classical insulator breakdown, although the laminations in the polycarbonate insulator failed after a few shots. The anode and cathode each have two pieces and are held together mechanically. The vacuum MITL tapers to a 3 mm minimum gap. The total inductance is 8.4 nH for gas puff loads and 7.8 nH for imploding foil loads

  11. Modification of the PROTO-II accelerator power flow for multi-purpose use

    International Nuclear Information System (INIS)

    Wright, T.P.; McDaniel, D.H.; Stinnett, R.W.

    1985-01-01

    PROTO-II is a nominal 10 TW, 320 kJ accelerator which has been used to study imploding plasma physics for the last few years. The machine has been modified to make it useful as a bremsstrahlung radiation source and to lower the inductance for better energy coupling to gas puff loads. The triplate water transmission line has been converted to a 4-line horizontal 8-plate transformer section feeding a 4-layer insulator stack, using a multiple rod crossover network. Hinged plates allow a constant impedance transmission line for gas puff applications and make a 2:1 impedance transformer for bremsstrahlung applications. For Gas Puff operation, vertical MITLs connect the 4-layer stack to the load. For bremsstrahlung operation, conical MITL plates connect each of the four lines to feed one side of a 2-cathode ring electron beam diode. Circuit simulations of the power flow predict up to 270 kJ of energy at 1.0 MV into the Gas Puff diode and up to 230 kJ at 1.5 MV into the electron beam diode. Accelerator performance under the new configuration is discussed

  12. Aberrations and Emittance Growth in the DARHT 2nd Axis Downstream Transport

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Martin E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-24

    The emittance of the DARHT 2nd Axis has been inferred from solenoid scans performed in the downstream transport (DST) region using a short kicked pulse. The beam spot size is measured by viewing optical transition radiation (OTR) in the near field as a function of the field (current) of a solenoid magnet (S4). The imaging station containing the OTR target is located about 100 cm downstream of the solenoid magnet. The emittance is then inferred using a beam optics code such as LAMDA or XTR by fitting the data to initial conditions upstream of the S4 solenoid magnet. The initial conditions are the beam size, beam convergence and emittance. The beam energy and current are measured. In preparation for a solenoid scan, the magnets upstream of the solenoid are adjusted to produce a round beam with no beam losses due to scraping in the beam tube. This is different from the standard tune in which the beam tune is adjusted to suppress the effects of ions and rf in the septum dump. In this standard tune, approximately 10% of the beam is lost due to scraping as the beam enters the small 3.75” ID beam tube after the septum. The normalized emittance inferred from recent solenoid scans typically ranges from 600 to 800 π(mm-mrad). This larger beam size increases the sensitivity to any non-linear fields in the Collins quadrupoles that are mounted along the small diameter beam tube. The primary magnet used to adjust the beam size in this region is the S3 solenoid magnet. Measurements made of the beam shape as the beam size was decreased showed significant structure consistent with non-linear fields. Using the measured magnetic fields in the Collins quadrupoles including higher order multipoles, the beam transport through the Collins quadrupoles is simulated and compared to the observed OTR images. The simulations are performed using the beam optics codes TRANSPORT [1] and TURTLE [2]. Estimates of the emittance growth and beam losses are made as a function of the S3

  13. Low inductance diode design on the Proto II accelerator for imploding plasma loads

    International Nuclear Information System (INIS)

    Hsing, W.W.; Coats, R.; McDaniel, D.H.; Spielman, R.B.

    1985-01-01

    A new water transmission line convolute, single piece insulator, and double disk feed has been designed and tested on the .125 ohm, 10 TW Proto II accelerator. The water transmission lines have a 5 cm gap to eliminate any water arcing. A two-dimensional magnetic field code was used to calculate the convolute inductance. We used an acrylic insulator as well as a single piece, laminated polycarbonate insulator. They have been succuessfully tested at over 90% of the Shipman criteria for classical insulator breakdown, although the laminations in the polycarbonate insulator failed after a few shots. The anode and cathode each have two pieces and are held together mechanically. The vacuum MITL tapers to a 3 mm minimum gap. The total inductance is 8.4 nH for gas puff loads and 7.8 nH for imploding foil loads. Out of a forward-going energy of 290 kJ, 175 kJ has been delivered past the insulator, and 100 kJ has been successfully delivered to the load

  14. Phase II trial of proton beam accelerated partial breast irradiation in breast cancer

    International Nuclear Information System (INIS)

    Chang, Ji Hyun; Lee, Nam Kwon; Kim, Ja Young; Kim, Yeon-Joo; Moon, Sung Ho; Kim, Tae Hyun; Kim, Joo-Young; Kim, Dae Yong; Cho, Kwan Ho; Shin, Kyung Hwan

    2013-01-01

    Background and purpose: Here, we report the results of our phase II, prospective study of proton beam accelerated partial breast irradiation (PB-APBI) in patients with breast cancer after breast conserving surgery (BCS). Materials and methods: Thirty patients diagnosed with breast cancer were treated with PB-APBI using a single-field proton beam or two fields after BCS. The treatment dose was 30 cobalt gray equivalent (CGE) in six CGE fractions delivered once daily over five consecutive working days. Results: All patients completed PB-APBI. The median follow-up time was 59 months (range: 43–70 months). Of the 30 patients, none had ipsilateral breast recurrence or regional or distant metastasis, and all were alive at the last follow-up. Physician-evaluated toxicities were mild to moderate, except in one patient who had severe wet desquamation at 2 months that was not observed beyond 6 months. Qualitative physician cosmetic assessments of good or excellent were noted in 83% and 80% of the patients at the end of PB-APBI and at 2 months, respectively, and decreased to 69% at 3 years. A good or excellent cosmetic outcome was noted in all patients treated with a two-field proton beam at any follow-up time point except for one. For all patients, the mean percentage breast retraction assessment (pBRA) value increased significantly during the follow-up period (p = 0.02); however, it did not increase in patients treated with two-field PB-APBI (p = 0.3). Conclusions: PB-APBI consisting of 30 CGE in six CGE fractions once daily for five consecutive days can be delivered with excellent disease control and tolerable skin toxicity to properly selected patients with early-stage breast cancer. Multiple-field PB-APBI may achieve a high rate of good-to-excellent cosmetic outcomes. Additional clinical trials with larger patient groups are needed

  15. Detection of Second Sound in He-II for Thermal Quench Mapping of Superconducting Radio Frequency Accelerating Cavities

    OpenAIRE

    Stegmaier, Tobias; Grohmann, Steffen; Kind, Matthias; Furci, Hernán; Koettig, Torsten; Peters, Benedikt

    2018-01-01

    The development of future particle accelerators requires intensive testing of superconducting radio frequency cavities with different sizes and geometries. Non-contact thermometry quench localisation techniques proved to be beneficial for the localisation of surface defects that can originate a quench (sudden loss of superconducting state). These techniques are based on the detection of second sound in helium II. Transition Edge Sensors (TES) are highly sensitive thin film thermometers with f...

  16. A Framework for a General Purpose Intelligent Control System for Particle Accelerators. Phase II Final Report

    International Nuclear Information System (INIS)

    Westervelt, Robert; Klein, William; Kroupa, Michael; Olsson, Eric; Rothrock, Rick

    1999-01-01

    Vista Control Systems, Inc. has developed a portable system for intelligent accelerator control. The design is general in scope and is thus configurable to a wide range of accelerator facilities and control problems. The control system employs a multi-layer organization in which knowledge-based decision making is used to dynamically configure lower level optimization and control algorithms

  17. ELECTRON ACCELERATION BY CASCADING RECONNECTION IN THE SOLAR CORONA. II. RESISTIVE ELECTRIC FIELD EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.; Gan, W.; Liu, S. [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Büchner, J.; Bárta, M., E-mail: zhou@mps.mpg.de, E-mail: liusm@pmo.ac.cn, E-mail: buechner@mps.mpg.de [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2016-08-20

    We investigate electron acceleration by electric fields induced by cascading reconnections in current sheets trailing coronal mass ejections via a test particle approach in the framework of the guiding-center approximation. Although the resistive electric field is much weaker than the inductive electric field, the electron acceleration is still dominated by the former. Anomalous resistivity η is switched on only in regions where the current carrier’s drift velocity is large enough. As a consequence, electron acceleration is very sensitive to the spatial distribution of the resistive electric fields, and electrons accelerated in different segments of the current sheet have different characteristics. Due to the geometry of the 2.5-dimensional electromagnetic fields and strong resistive electric field accelerations, accelerated high-energy electrons can be trapped in the corona, precipitating into the chromosphere or escaping into interplanetary space. The trapped and precipitating electrons can reach a few MeV within 1 s and have a very hard energy distribution. Spatial structure of the acceleration sites may also introduce breaks in the electron energy distribution. Most of the interplanetary electrons reach hundreds of keV with a softer distribution. To compare with observations of solar flares and electrons in solar energetic particle events, we derive hard X-ray spectra produced by the trapped and precipitating electrons, fluxes of the precipitating and interplanetary electrons, and electron spatial distributions.

  18. Initial Assessment of Electron and X-Ray Production and Charge Exchange in the NDCX-II Accelerator

    International Nuclear Information System (INIS)

    Cohen, R.H.

    2010-01-01

    The purpose of this note is to provide initial assessments of some atomic physics effects for the accelerator section of NDCX-II. There are several effects we address: the production of electrons associated with loss of beam ions to the walls, the production of electrons associated with ionization of background gas, the possibly resultant production of X-rays when these electrons hit bounding surfaces, and charge exchange of beam ions on background gas. The results presented here are based on a number of caveats that will be stated below, which we will attempt to remove in the near future.

  19. Detection of Second Sound in He-II for Thermal Quench Mapping of Superconducting Radio Frequency Accelerating Cavities

    CERN Document Server

    Stegmaier, Tobias; Kind, Matthias; Furci, Hernán; Koettig, Torsten; Peters, Benedikt

    The development of future particle accelerators requires intensive testing of superconducting radio frequency cavities with different sizes and geometries. Non-contact thermometry quench localisation techniques proved to be beneficial for the localisation of surface defects that can originate a quench (sudden loss of superconducting state). These techniques are based on the detection of second sound in helium II. Transition Edge Sensors (TES) are highly sensitive thin film thermometers with fast time response. In the present work, their capability as a thermal quench mapping device for superconducting radio frequency cavities is proven experimentally by detecting second sound waves emitted by SMD heaters in a He-II bath at saturated vapour pressure. A characterisation of the sensors at steady bath temperatures was conducted to calculate the thermal sensitivity. An intense metallurgical study of gold-tin TES with different compositions revealed important relations between the superconducting behaviour and the ...

  20. ''SMILE'': A Self Magnetically Insulated Transmission LinE adder for the 8-stage RADLAC II accelerator

    International Nuclear Information System (INIS)

    Mazarakis, M.G.; Poukey, J.W.; Shope, S.L.; Frost, C.A.; Turman, B.N.; Ramirez, J.J.; Prestwich, K.R.; Pankuch, P.J.

    1991-01-01

    The RADLAC II Self Magnetically Insulated Transmission LinE ''SMILE'' is a coaxial wave guide structure that is composed of two regions: (a) a 9.5-m voltage adder and (b) a 3-m long extension section. The adder section provides for the addition of the input voltages from the individual water-dielectric pulse forming line feeds. The extension section isolates the adder from the magnetically immersed foilless diode electron source load and efficiently transports the pulsed power out from the deionized water tank of the device. The SMILE modification of the RADLAC II accelerator enabled us to produce high quality beams of up to 14 MV, 100 kA. The design and the experimental evaluation of SMILE will be presented and compared with numerical simulation predictions. 12 refs., 9 figs., 1 tab

  1. Radiation vulcanization of natural rubber latex with low energy accelerator-II

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Md. Emdadul; Makuuchi, Keizo; Ikeda, Kenichi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Mitomo, Hiroshi [Gunma Univ., Faculty of Engineering, Dept. of Biological and Chemical Engineering, Kiryu, Gunma (Japan)

    2002-03-01

    The natural rubber latex (NRL) was radiation vulcanized under a low energy electron accelerator. Accelerating voltage and maximum beam current of this accelerator are 250 kV and 10 mA respectively. Irradiation was carried out in a reaction vessel with constant stirring. The capacity of the vessel is 18 liters. Radiation vulcanization accelerators (RVA) were normal butyl acrylate (n-BA) and nonane-diol-diacrylate (NDDA). NDDA has no bad smell like that of n-BA. 20 minutes irradiation time is enough to vulcanize 14 liters of latex when 5 phr RVA (both types) are used. Maximum of {approx}30 MPa tensile strength was obtained with 5 phr NDD-A. However the remained NDDA is difficult to remove due to high molecular weight. Water-extractable proteins content was determined in dipped films for various leaching conditions without and with additive (polyvinyl alcohol, PVA). Water extractable proteins content is reduced to {<=} 41 by adding 5 phr PVA and leaching for 8 hours. The tackiness of the dipped films is reduced to 0.1 from 9 gf by mixing 6 phr PVA with the irradiated latex. Hand gloves (surgical and examination) were successfully produced from the irradiated latex. (author)

  2. Electron Acceleration by Cascading Reconnection in the Solar Corona. II. Resistive Electric Field Effects

    Czech Academy of Sciences Publication Activity Database

    Zhou, X.; Büchner, J.; Bárta, Miroslav; Gan, W.; Liu, S.

    2016-01-01

    Roč. 827, č. 2 (2016), 94/1-94/14 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : acceleration of particles * magnetic reconnection * magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  3. Ion-hose instability in a long-pulse linear induction accelerator

    Directory of Open Access Journals (Sweden)

    Thomas C. Genoni

    2003-03-01

    Full Text Available The ion-hose instability is a transverse electrostatic instability which occurs on electron beams in the presence of a low-density ion channel. It is a phenomenon quite similar to the interaction between electron clouds and proton or positron beams in high-energy accelerators and storage rings. In the DARHT-2 accelerator, the 2-kA, 2-μs beam pulse produces an ion channel through impact ionization of the residual background gas (10^{-7}–10^{-6}   torr. A calculation of the linear growth by Briggs indicates that the instability could be strong enough to affect the radiographic application of DARHT, which requires that transverse oscillations be small compared to the beam radius. We present semianalytical theory and 3D particle-in-cell simulations (using the Lsp code of the linear and nonlinear growth of the instability, including the effects of the temporal change in the ion density and spatially decreasing beam radius. We find that the number of e-foldings experienced by a given beam slice is given approximately by an analytic expression using the local channel density at the beam slice. Hence, in the linear regime, the number of e-foldings increases linearly from head to tail of the beam pulse since it is proportional to the ion density. We also find that growth is strongly suppressed by nonlinear effects at relatively small oscillation amplitudes of the electron beam. This is because the ion oscillation amplitude is several times larger than that of the beam, allowing nonlinear effects to come into play. An analogous effect has recently been noted in electron-proton instabilities in high-energy accelerators and storage rings. For DARHT-2 parameters, we find that a pressure of ≤1.5×10^{-7}   torr is needed to keep the transverse beam oscillation amplitude less than about 20% of the rms beam radius.

  4. Quality control of photosystem II: lipid peroxidation accelerates photoinhibition under excessive illumination.

    Directory of Open Access Journals (Sweden)

    Tiffanie Chan

    Full Text Available Environmental stresses lower the efficiency of photosynthesis and sometimes cause irreversible damage to plant functions. When spinach thylakoids and Photosystem II membranes were illuminated with excessive visible light (100-1,000 µmol photons m(-1 s(-1 for 10 min at either 20°C or 30°C, the optimum quantum yield of Photosystem II decreased as the light intensity and temperature increased. Reactive oxygen species and endogenous cationic radicals produced through a photochemical reaction at and/or near the reaction center have been implicated in the damage to the D1 protein. Here we present evidence that lipid peroxidation induced by the illumination is involved in the damage to the D1 protein and the subunits of the light-harvesting complex of Photosystem II. This is reasoned from the results that considerable lipid peroxidation occurred in the thylakoids in the light, and that lipoxygenase externally added in the dark induced inhibition of Photosystem II activity in the thylakoids, production of singlet oxygen, which was monitored by electron paramagnetic resonance spin trapping, and damage to the D1 protein, in parallel with lipid peroxidation. Modification of the subunits of the light-harvesting complex of Photosystem II by malondialdehyde as well as oxidation of the subunits was also observed. We suggest that mainly singlet oxygen formed through lipid peroxidation under light stress participates in damaging the Photosystem II subunits.

  5. Preliminary research results for the generation and diagnostics of high power ion beams on FLASH II accelerator

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Sun Jianfeng; He Xiaoping; Tang Junping; Wang Haiyang; Li Jingya; Ren Shuqing; Ouyang Xiaoping; Zhang Guoguang; Li Hongyu

    2004-01-01

    The preliminary experimental results of the generation and diagnostics of high-power ion beams on FLASH II accelerator are reported. The high-power ion beams presently are being produced in a pinched diode. The method for enhancing the ratio of ion to electron current is to increase the electron residing time by pinching the electron flow. Furthermore, electron beam pinching can be combined with electron reflexing to achieve ion beams with even higher efficiency and intensity. The anode plasma is generated by anode foil bombarded with electron and anode foil surface flashover. In recent experiments on FLASH II accelerator, ion beams have been produced with a current of 160 kA and an energy of 500 keV corresponding to an ion beam peak power of about 80 GW. The ion number and current of high power ion beams were determined by monitoring delayed radioactivity from nuclear reactions induced in a 12 C target by the proton beams. The prompt γ-rays and diode Bremsstrahlung X-rays were measured with a PIN semi-conductor detector and a plastic scintillator detector. The current density distribution of ion beam was measured with a biased ion collector array. The ion beams were also recorded with a CR-39 detector. (authors)

  6. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris [SLAC National Accelerator Lab., Menlo Park, CA (United States); et al.

    2013-06-26

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.

  7. The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design

    CERN Document Server

    Adolphsen, Chris; Barish, Barry; Buesser, Karsten; Burrows, Philip; Carwardine, John; Clark, Jeffrey; Durand, Helene Mainaud; Dugan, Gerry; Elsen, Eckhard; Enomoto, Atsushi; Foster, Brian; Fukuda, Shigeki; Gai, Wei; Gastal, Martin; Geng, Rongli; Ginsburg, Camille; Guiducci, Susanna; Harrison, Mike; Hayano, Hitoshi; Kershaw, Keith; Kubo, Kiyoshi; Kuchler, Victor; List, Benno; Liu, Wanming; Michizono, Shinichiro; Nantista, Christopher; Osborne, John; Palmer, Mark; Paterson, James McEwan; Peterson, Thomas; Phinney, Nan; Pierini, Paolo; Ross, Marc; Rubin, David; Seryi, Andrei; Sheppard, John; Solyak, Nikolay; Stapnes, Steinar; Tauchi, Toshiaki; Toge, Nobu; Walker, Nicholas; Yamamoto, Akira; Yokoya, Kaoru

    2013-01-01

    The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carried out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to incr...

  8. An absolute dose determination of helical tomotherapy accelerator, TomoTherapy High-Art II

    International Nuclear Information System (INIS)

    Bailat, Claude J.; Buchillier, Thierry; Pachoud, Marc; Moeckli, Raphaeel; Bochud, Francois O.

    2009-01-01

    Purpose: A helical tomotherapy accelerator presents a dosimetric challenge because, to this day, there is no internationally accepted protocol for the determination of the absolute dose. Because of this reality, we investigated the different alternatives for characterizing and measuring the absolute dose of such an accelerator. We tested several dosimetric techniques with various metrological traceabilities as well as using a number of phantoms in static and helical modes. Methods: Firstly, the relationship between the reading of ionization chambers and the absorbed dose is dependent on the beam quality value of the photon beam. For high energy photons, the beam quality is specified by the tissue phantom ratio (TPR 20,10 ) and it is therefore necessary to know the TPR 20,10 to calculate the dose delivered by a given accelerator. This parameter is obtained through the ratio of the absorbed dose at 20 and 10 cm depths in water and was measured in the particular conditions of the tomotherapy accelerator. Afterward, measurements were performed using the ionization chamber (model A1SL) delivered as a reference instrument by the vendor. This chamber is traceable in absorbed dose to water in a Co-60 beam to a water calorimeter of the American metrology institute (NIST). Similarly, in Switzerland, each radiotherapy department is directly traceable to the Swiss metrology institute (METAS) in absorbed dose to water based on a water calorimeter. For our research, this traceability was obtained by using an ionization chamber traceable to METAS (model NE 2611A), which is the secondary standard of our institute. Furthermore, in order to have another fully independent measurement method, we determined the dose using alanine dosimeters provided by and traceable to the British metrology institute (NPL); they are calibrated in absorbed dose to water using a graphite calorimeter. And finally, we wanted to take into account the type of chamber routinely used in clinical practice and

  9. Giessen polarization facility. II. 1. 2 MeV tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W; Ulbricht, J; Berg, H; Keiner, P; Krause, H H; Schmidt, R; Clausnitzer, G [Giessen Univ. (Germany, F.R.). Strahlenzentrum

    1977-06-15

    A small pressure insulated tandem accelerator with 600 kV terminal voltage was constructed for the application of a polarized ion source of the Lambshift type: thin carbon foils or gas stripping is used for the charge exchange in the high voltage terminal. The calculated ion optical properties were realized in the construction; transmission and energy resolution are sufficient to obtain high intensity polarized beams on target (maximum 0.6..mu..A protons with P=0.75 ) for precision polarization experiments in the 0.2-1.2 MeV energy region.

  10. Modeling Lost-Particle Accelerator Backgrounds in PEP-II Using LPTURTLE

    CERN Document Server

    Fieguth, Theodore; Kozanecki, Witold

    2005-01-01

    Background studies during the design, construction, commissioning, operation and improvement of BaBar and PEP-II have been greatly influenced by results from a program referred to as LPTURTLE (Lost Particle TURTLE a modified version of Decay TURTLE) which was originally conceived for the purpose of studying gas background for SLC. This venerable program is still in use today. We describe its use, capabilities and improvements and refer to current results now being applied to BaBar.

  11. System modelling to support accelerated fuel transfer rate at EBR-II

    International Nuclear Information System (INIS)

    Imel, G.R.; Houshyar, A.; Planchon, H.P.; Cutforth, D.C.

    1995-01-01

    The Experimental Breeder Reactor-II (EBR-II) ia a 62.5 MW(th) liquid metal reactor operated by Argonne National Laboratory for The United States Department of Energy. The reactor is located near Idaho Falls, Idaho at the Argonne-West site (ANL-W). Full power operation was achieved in 1964,- the reactor operated continuously since that time until October 1994 in a variety of configurations depending on the programmatic mission. A three year program was initiated in October, 1993 to replace the 330 depleted uranium blanket subassemblies (S/As) with stainless steel reflectors. It was intended to operate the reactor during the three year blanket unloading program, followed by about a half year of driver fuel unloading. However, in the summer of 1994, Congress dictacted that EBR-II be shut down October 1, and complete defueling without operation. To assist in the planning for resources needed for this defueling campaign, a mathematical model of the fuel handling sequence was developed utilizing the appropriate reliability factors and inherent mm constraints of each stage of the process. The model allows predictions of transfer rates under different scenarios. Additionally, it has facilitated planning of maintenance activities, as well as optimization of resources regarding manpower and modification effort. The model and its application is described in this paper

  12. Experimental Observations of In-Situ Secondary Electron Yield Reduction in the PEP-II Particle Accelerator Beam Line

    International Nuclear Information System (INIS)

    Pivi, Mauro

    2010-01-01

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under the effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R and D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.

  13. Preliminary results of phase I/II study of simultaneous modulated accelerated (SMART) for nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hong; Lee, Sang Wook; Back, Geum Mun [College of Medicine, University of Ulsan, Asan Medical Center, Seoul (Korea, Republic of)] (and others)

    2006-03-15

    To present preliminary results of intensity-modulated radiotherapy (IMRT) using the simultaneous modulated accelerated radiation therapy (SMART) boost technique in patients with nasopharyngeal carcinoma (NPC). Twenty patients who underwent IMRT for non-metastatic NPC at the Asan Medical Center between September 2001 and December 2003 were prospectively evaluated. IMRT was delivered using the 'step and shoot' SMART technique at prescribed doses of 72 Gy (2.4 Gy/day) to the gross tumor volume (GTV), 60 Gy (2 Gy/day) to the clinical target volume (CTV) and metastatic nodal station, and 46 Gy (2 Gy/day) to the clinically negative neck region. Eighteen patients also received concurrent chemotherapy using cisplatin once per week. The median follow-up period was 27 months. Nineteen patients completed the treatment without interruption; the remaining patient interrupted treatment for 2 weeks owing to severe pharyngitis and malnutrition. Five patients (25%) had RTOG grade 3 mucositis, whereas nine (45%) had grade 3 pharyngitis. Seven patients (35%) lost more than 10% of their pretreatment weight, whereas 11 (55%) required intravenous fluids and/or tube feeding. There was no grade 3 or 4 chronic xerostomia. All patients showed complete response. Two patients had distant metastases and loco-regional recurrence, respectively. IMRT using the SMART boost technique allows parotid sparing, as shown clinically and by dosimetry, and may also be more effective biologically. A larger population of patients and a longer follow-up period are needed to evaluate ultimate tumor control and late toxicity.

  14. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  15. An accelerated dose escalation with a grass pollen allergoid is safe and well-tolerated: a randomized open label phase II trial.

    Science.gov (United States)

    Chaker, A M; Al-Kadah, B; Luther, U; Neumann, U; Wagenmann, M

    2015-01-01

    The number of injections in the dose escalation of subcutaneous immunotherapy (SCIT) is small for some currently used hypoallergenic allergoids, but can still be inconvenient to patients and can impair compliance. The aim of this trial was to compare safety and tolerability of an accelerated to the conventional dose escalation scheme of a grass pollen allergoid. In an open label phase II trial, 122 patients were 1:1 randomized for SCIT using a grass pollen allergoid with an accelerated dose escalation comprising only 4 weekly injections (Group I) or a conventional dose escalation including 7 weekly injections (Group II). Safety determination included the occurrence of local and systemic adverse events. Tolerability was assessed by patients and physicians. Treatment-related adverse events were observed in 22 (36.1 %) patients in Group I and 15 (24.6 %) in Group II. Local reactions were reported by 18 patients in Group I and 11 in Group II. Five Grade 1 systemic reactions (WAO classification) were observed in Group I and 2 in Group II. Grade 2 reactions occurred 3 times in Group I and 2 times in Group II. Tolerability was rated as "good" or "very good" by 53 (86.9 %) patients in Group I and 59 (100 %) in Group II by investigators. Forty-eight patients in Group I (80.0 %) and 54 in Group II (91.5 %) rated tolerability as "good" or "very good". The dose escalation of a grass pollen allergoid can be accelerated with safety and tolerability profiles comparable to the conventional dose escalation.

  16. Radiation containment at a 1 MW high energy electron accelerator: Status of LCLS-II radiation physics design

    Directory of Open Access Journals (Sweden)

    Leitner M. Santana

    2017-01-01

    Full Text Available LCLS-II will add a 4 GeV, 1 MHz, SCRF electron accelerator in the first 700 meters of the SLAC 2-mile Linac, as well as adjustable gap polarized undulators in the down-beam electron lines, to produce tunable, fully coherent X-rays in programmable bunch patterns. This facility will work in unison with the existing Linac Coherent Light Source, which uses the legacy copper cavities in the last third of the linac to deliver electrons between 2 and 17 GeV to an undulator line. The upgrade plan includes new beam lines, five stages of state of the art collimation that shall clean the high-power beam well up-beam of the radio-sensitive undulators, and new electron and photon beam dumps. This paper describes the challenges encountered to define efficient measures to protect machine, personnel, public and the environment from the potentially destructive power of the beam, while maximizing the reuse of existing components and infrastructure, and allowing for complex operational modes.

  17. Phase II trial of 3D-conformal accelerated partial breast irradiation: Lessons learned from patients and physicians’ evaluation

    International Nuclear Information System (INIS)

    Azoury, Fares; Heymann, Steve; Acevedo, Catalina; Spielmann, Marc; Vielh, Philippe; Garbay, Jean-Rémi; Taghian, Alphonse G.; Marsiglia, Hugo; Bourgier, Céline

    2012-01-01

    Introduction: The present study prospectively reported both physicians’ and patients’ assessment for toxicities, cosmetic assessment and patients’ satisfaction after 3D-conformal accelerated partial breast irradiation (APBI). Materials and Methods: From October 2007 to September 2009, 30 early breast cancer patients were enrolled in a 3D-conformal APBI Phase II trial (40 Gy/10 fractions/5 days). Treatment related toxicities and cosmetic results were assessed by both patients and physicians at each visit (at 1, 2, 6 months, and then every 6 months). Patient satisfaction was also scored. Results: After a median follow-up of 27.7 months, all patients were satisfied with APBI treatment, regardless of cosmetic results or late adverse events. Good/excellent cosmetic results were noticed by 80% of patients versus 92% of cases by radiation oncologists. Breast pain was systematically underestimated by physicians (8–20% vs. 16.6–26.2%; Kappa coefficient KC = 0.16–0.44). Grade 1 and 2 fibrosis and/or breast retraction occurred in 7–12% of patients and were overestimated by patients (KC = 0.14–0.27). Conclusions: Present results have shown discrepancies between patient and physician assessments. In addition to the assessment of efficacy and toxicity after 3D-conformal APBI, patients’ cosmetic results consideration and satisfaction should be also evaluated.

  18. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M. [Kanzelhoehe Observatory-IGAM, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Vrsnak, B. [Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kaciceva 26, HR-10000 Zagreb (Croatia)

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

  19. Non-thermal electron acceleration in low Mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xinyi; Narayan, Ramesh [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Sironi, Lorenzo [NASA Einstein Postdoctoral Fellow. (United States)

    2014-12-10

    Electron acceleration to non-thermal energies is known to occur in low Mach number (M{sub s} ≲ 5) shocks in galaxy clusters and solar flares, but the electron acceleration mechanism remains poorly understood. Using two-dimensional (2D) particle-in-cell (PIC) plasma simulations, we showed in Paper I that electrons are efficiently accelerated in low Mach number (M{sub s} = 3) quasi-perpendicular shocks via a Fermi-like process. The electrons bounce between the upstream region and the shock front, with each reflection at the shock resulting in energy gain via shock drift acceleration. The upstream scattering is provided by oblique magnetic waves that are self-generated by the electrons escaping ahead of the shock. In the present work, we employ additional 2D PIC simulations to address the nature of the upstream oblique waves. We find that the waves are generated by the shock-reflected electrons via the firehose instability, which is driven by an anisotropy in the electron velocity distribution. We systematically explore how the efficiency of wave generation and of electron acceleration depend on the magnetic field obliquity, the flow magnetization (or equivalently, the plasma beta), and the upstream electron temperature. We find that the mechanism works for shocks with high plasma beta (≳ 20) at nearly all magnetic field obliquities, and for electron temperatures in the range relevant for galaxy clusters. Our findings offer a natural solution to the conflict between the bright radio synchrotron emission observed from the outskirts of galaxy clusters and the low electron acceleration efficiency usually expected in low Mach number shocks.

  20. Recent advances in kicker pulser technology for linear induction accelerators

    International Nuclear Information System (INIS)

    Chen, Y. J.; Cook, E.; Davis, B.; Dehope, W. J.; Yen, B.

    1999-01-01

    Recent progress in the development and understanding of linear induction accelerator have produced machines with 10s of MeV of beam energy and multi-kiloampere currents. Near-term machines, such as DARHT-2, are envisioned with microsecond pulselengths. Fast beam kickers, based on cylindrical electromagnetic stripline structures, will permit effective use of these extremely high-energy beams in an increasing number of applications. In one application, radiography, kickers were an essential element in resolving temporal evolution of hydrodynamic events by cleaving out individual pulses from long, microsecond beams. Advanced schemes are envisioned where these individual pulses are redirected through varying length beam lines and suitably recombined for stereographic imaging or tomographic reconstruction. Recent advances in fast kickers and their pulsed power technology are described. Kicker pulsers based on both planar triode and all solid-state componentry are discussed and future development plans are presented

  1. Preoperative hyperfractionated accelerated radiotherapy and radical surgery in advanced head and neck cancer: A prospective phase II study

    International Nuclear Information System (INIS)

    Lindholm, Paula; Valavaara, Ritva; Aitasalo, Kalle; Kulmala, Jarmo; Laine, Juhani; Elomaa, Liisa; Sillanmaeki, Lauri; Minn, Heikki; Grenman, Reidar

    2006-01-01

    Background and purpose: To evaluate whether preoperative hyperfractionated accelerated radiotherapy (RT) combined with major radical surgery is feasible and successful in the treatment of advanced primary head and neck cancer. Patients and methods: Ninety four patients with histologically confirmed head and neck squamous cell cancer (HNSCC) in the oral cavity (41/96; 43%), supraglottis (14/96; 15%), glottis (5/96; 5%), oropharynx (16/96; 17%), nasal cavity/paranasal sinuses (8/96; 8%), nasopharynx (3/96; 3%), hypopharynx (7/96; 7%) and two (2%) with unknown primary tumour and large cervical lymph nodes entered into the study. 21/96 patients (22%) had stage II, 17/96 (18%) stage III and 58/96 patients (60%) stage IV disease. The patients received preoperative hyperfractionated RT 1.6 Gy twice a day, 5 days a week to a median tumour dose of 63 Gy with a planned break for 11 days (median) after the median dose of 37 Gy. Then, after a median of 27 days the patients underwent major radical surgery of the primary tumour and metastatic lymph nodes including reconstructions with pedicled or microvascular free flaps when indicated as a part of the scheduled therapy. 12/96 patients had only ipsilateral or bilateral neck dissections. Results: After a median follow-up time of 37.2 mos 77/96 (80.2%) patients had complete locoregional control. All but 2 patients had complete histological remission after surgery. 40/96 pts were alive without disease, two of them after salvage surgery. 32/96 patients had relapsed; 15 had locoregional and 13 distant relapses, 4 patients relapsed both locoregionally and distantly. Fifty patients have died; 29 with locoregional and/or distant relapse, eight patients died of second malignancy, and 19 had intercurrent diseases. Disease-specific and overall survival at 3 years was 67.7 and 51%, respectively. Acute grade three mucosal reactions were common, but transient and tolerable. Late grade 3-4 adverse effects were few. Conclusions: Preoperative

  2. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1993-01-01

    The authors have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (Intense Microwave, Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT), and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA, 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. The authors summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  3. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  4. Safety training and safe operating procedures written for PBFA [Particle Beam Fusion Accelerator] II and applicable to other pulsed power facilities

    International Nuclear Information System (INIS)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards

  5. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  6. The Plasma Window: A Windowless High Pressure-Vacuum Interface for Various Accelerator Applications

    International Nuclear Information System (INIS)

    Hershcovitch, A. I.; Johnson, E. D.; Lanza, R. C.

    1999-01-01

    The Plasma Window is a stabilized plasma arc used as an interface between accelerator vacuum and pressurized targets. There is no solid material introduced into the beam and thus it is also capable of transmitting particle beams and electromagnetic radiation with low loss and of sustaining high beam currents without damage. Measurements on a prototype system with a 3 mm diameter opening have shown that pressure differences of more than 2.5 atmospheres can be sustained with an input pressure of ∼ 10 -6 Torr. The system is capable of scaling to higher-pressure differences and larger apertures. Various plasma window applications for synchrotron light sources, high power lasers, internal targets, high current accelerators such as the HAWK, ATW, APT, DARHT, spallation sources, as well as for a number of commercial applications, is discussed

  7. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...

  8. Weekly bi-fractionated 40 Gy three-dimensional conformational accelerated partial irradiation of breast: results of a phase II French pilot study

    International Nuclear Information System (INIS)

    Bourgier, C.; Pichenot, C.; Verstraet, R.; Heymann, S.; Biron, B.; Delaloge, S.; Garbay, J.R.; Marsiglia, H.; Bourhis, J.; Taghian, A.; Marsiglia, H.

    2010-01-01

    The authors report the first French experience of three-dimensional conformational and accelerated partial irradiation of breast. Twenty five patients have been concerned by this phase II trial. The prescribed total dose was 40 Gy, was delivered over 5 days in two daily fractions. Irradiation was performed with two 6 MV tangential mini-beams and a 6-22 MeV front electron beams. The planning target volume coverage was very good. Toxicity has been assessed. Healthy tissues (heart, lungs) are considerably protected. The acute and late toxicity is correct. Short communication

  9. Engineering survey planning for the alignment of a particle accelerator: part II. Design of a reference network and measurement strategy

    Science.gov (United States)

    Junqueira Leão, Rodrigo; Raffaelo Baldo, Crhistian; Collucci da Costa Reis, Maria Luisa; Alves Trabanco, Jorge Luiz

    2018-03-01

    The building blocks of particle accelerators are magnets responsible for keeping beams of charged particles at a desired trajectory. Magnets are commonly grouped in support structures named girders, which are mounted on vertical and horizontal stages. The performance of this type of machine is highly dependent on the relative alignment between its main components. The length of particle accelerators ranges from small machines to large-scale national or international facilities, with typical lengths of hundreds of meters to a few kilometers. This relatively large volume together with micrometric positioning tolerances make the alignment activity a classical large-scale dimensional metrology problem. The alignment concept relies on networks of fixed monuments installed on the building structure to which all accelerator components are referred. In this work, the Sirius accelerator is taken as a case study, and an alignment network is optimized via computational methods in terms of geometry, densification, and surveying procedure. Laser trackers are employed to guide the installation and measure the girders’ positions, using the optimized network as a reference and applying the metric developed in part I of this paper. Simulations demonstrate the feasibility of aligning the 220 girders of the Sirius synchrotron to better than 0.080 mm, at a coverage probability of 95%.

  10. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    OBJECTIVES: High-salt diet likely elevates blood pressure (BP), thus increasing the risk of cardiovascular events. We hypothesized that a high-salt diet plays a critical role in subjects whose renin-angiotensin systems cannot adjust to variable salt intake, rendering them more susceptible...... to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...... used urinary isoprostane as a marker for oxidative stress. RESULTS: Although high-salt diet per se did not affect plaque extension, high salt combined with Ang II increased plaque area significantly in both the aorta and the innominate artery as compared with Ang II or salt alone (P

  11. Chimeric Feline Coronaviruses That Encode Type II Spike Protein on Type I Genetic Background Display Accelerated Viral Growth and Altered Receptor Usage▿

    Science.gov (United States)

    Tekes, Gergely; Hofmann-Lehmann, Regina; Bank-Wolf, Barbara; Maier, Reinhard; Thiel, Heinz-Jürgen; Thiel, Volker

    2010-01-01

    Persistent infection of domestic cats with feline coronaviruses (FCoVs) can lead to a highly lethal, immunopathological disease termed feline infectious peritonitis (FIP). Interestingly, there are two serotypes, type I and type II FCoVs, that can cause both persistent infection and FIP, even though their main determinant of host cell tropism, the spike (S) protein, is of different phylogeny and displays limited sequence identity. In cell culture, however, there are apparent differences. Type II FCoVs can be propagated to high titers by employing feline aminopeptidase N (fAPN) as a cellular receptor, whereas the propagation of type I FCoVs is usually difficult, and the involvement of fAPN as a receptor is controversial. In this study we have analyzed the phenotypes of recombinant FCoVs that are based on the genetic background of type I FCoV strain Black but encode the type II FCoV strain 79-1146 S protein. Our data demonstrate that recombinant FCoVs expressing a type II FCoV S protein acquire the ability to efficiently use fAPN for host cell entry and corroborate the notion that type I FCoVs use another main host cell receptor. We also observed that recombinant FCoVs display a large-plaque phenotype and, unexpectedly, accelerated growth kinetics indistinguishable from that of type II FCoV strain 79-1146. Thus, the main phenotypic differences for type I and type II FCoVs in cell culture, namely, the growth kinetics and the efficient usage of fAPN as a cellular receptor, can be attributed solely to the FCoV S protein. PMID:19906918

  12. Accelerated regression of brain metastases in patients receiving whole brain radiation and the topoisomerase II inhibitor, lucanthone

    International Nuclear Information System (INIS)

    Rowe, John D. del; Bello, Jacqueline; Mitnick, Robin; Sood, Brij; Filippi, Christopher; Moran, Justin Ph.D.; Freeman, Katherine; Mendez, Frances; Bases, Robert

    1999-01-01

    Purpose: To determine if lucanthone crossed the blood-brain barrier in experimental animals; and to determine accelerated tumor regression of human brain metastases treated jointly with lucanthone and whole brain radiation. Methods and Materials: The organ distribution of 3 H lucanthone in mice and 125 I lucanthone in rats was determined to learn if lucanthone crossed the blood-brain barrier. Size determinations were made of patients' brain metastases from magnetic resonance images or by computed tomography before and after treatment with 30 Gy whole brain radiation alone or with lucanthone. Results: The time course of lucanthone's distribution in brain was identical to that in muscle and heart after intraperitoneal or intravenous administration in experimental animals. Lucanthone, therefore, readily crossed the blood-brain barrier in experimental animals. Conclusion: Compared with radiation alone, the tumor regression in patients with brain metastases treated with lucanthone and radiation was accelerated, approaching significance using a permutation test at p = 0.0536

  13. THE MATRYOSHKA RUN. II. TIME-DEPENDENT TURBULENCE STATISTICS, STOCHASTIC PARTICLE ACCELERATION, AND MICROPHYSICS IMPACT IN A MASSIVE GALAXY CLUSTER

    International Nuclear Information System (INIS)

    Miniati, Francesco

    2015-01-01

    We use the Matryoshka run to study the time-dependent statistics of structure-formation-driven turbulence in the intracluster medium of a 10 15 M ☉ galaxy cluster. We investigate the turbulent cascade in the inner megaparsec for both compressional and incompressible velocity components. The flow maintains approximate conditions of fully developed turbulence, with departures thereof settling in about an eddy-turnover time. Turbulent velocity dispersion remains above 700 km s –1 even at low mass accretion rate, with the fraction of compressional energy between 10% and 40%. The normalization and the slope of the compressional turbulence are susceptible to large variations on short timescales, unlike the incompressible counterpart. A major merger occurs around redshift z ≅ 0 and is accompanied by a long period of enhanced turbulence, ascribed to temporal clustering of mass accretion related to spatial clustering of matter. We test models of stochastic acceleration by compressional modes for the origin of diffuse radio emission in galaxy clusters. The turbulence simulation model constrains an important unknown of this complex problem and brings forth its dependence on the elusive microphysics of the intracluster plasma. In particular, the specifics of the plasma collisionality and the dissipation physics of weak shocks affect the cascade of compressional modes with strong impact on the acceleration rates. In this context radio halos emerge as complex phenomena in which a hierarchy of processes acting on progressively smaller scales are at work. Stochastic acceleration by compressional modes implies statistical correlation of radio power and spectral index with merging cores distance, both testable in principle with radio surveys

  14. Accelerated radiation therapy for locally advanced squamous cell carcinomas of the oral cavity and oropharynx selected according to tumor cell kinetics--a phase II multicenter study

    International Nuclear Information System (INIS)

    Antognoni, Paolo; Bignardi, Mario; Cazzaniga, L. Franco; Poli, A. Marisa; Richetti, Antonella; Bossi, Alberto; Rampello, Giuseppina; Barbera, Fernando; Soatti, Carlo; Bardelli, Donata; Giordano, Monica; Danova, Marco

    1996-01-01

    Purpose: A Phase II multicenter trial testing an accelerated regimen of radiotherapy in locally advanced and inoperable cancers of the head and neck, in patients selected on the basis of 5-bromo-2-deoxyuridine/DNA flow cytometry-derived tumor potential doubling time (T pot ). Methods and Materials: From September 1992 to September 1993, 23 patients consecutively diagnosed to have locally advanced, inoperable carcinomas of the oral cavity and the oropharynx, with T pot of ≤5 days, received an accelerated radiotherapy regimen (AF) based on a modification of the concomitant boost technique: 2 Gy/fraction once a day, delivered 5 days a week up to 26 Gy, followed by 2 Gy/fraction twice a day, with a 6-h interval, one of the two fractions being delivered as a concomitant boost to reduced fields, up to 66 Gy total dose (off-cord reduction at 46 Gy), shortening the overall treatment time to 4.5 weeks. A contemporary control group of 46 patients with T pot of >5 days or unknown was treated with conventional fractionation (CF): 2 Gy/fraction once a day, 5 days a week, up to 66 Gy in 6.5 weeks, with fields shrinkage after 46 Gy. Results: All patients completed the accelerated regimen according to protocol and in the prescribed overall treatment time. Immediate tolerance was fairly good: 65% of the patients in the AF group experienced Grade 3 mucositis vs. 45% in the CF group (p = n.s.). Symptoms related to mucosal reactions seemed to persist longer in AF than in CF patients. The crude proportion of mild (Grades 1 and 2) late effects on skin (p < 0.01) and salivary glands (p < 0.05) was higher in AF than in CF patients, although these reactions did not exceed the limits of tolerance. Three patients in the AF and 1 in the CF arm experienced a late Grade 4 bone complication. Actuarial estimates of severe (Grades 3 and 4) late complications showed a 2-year hazard of 33.3% in the AF arm and 49.7% in CF (p = NS). The actuarial 2-year local control rate of the AF patients was 49

  15. The mechanical design and fabrication of 162.5 MHz buncher for China accelerator driven sub-critical system injector II

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Hai Hua; Li, Youtang [Lanzhou University of Technology, Lanzhou (China); He, Yuan; Zhang, Bin; Huang, Shichun; Yuan, Chenzhang; Jia, Huan; Zhang, Shenghu [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China)

    2017-08-15

    A buncher is one of the main pieces of equipment in the medium energy beam transport line (MEBT) for China accelerator driven sub-critical system (C-ADS) Injector II. To focus the beam longitudinally and match the beam for the acceptance of the superconducting linac section, two room temperature quarter wave resonator (QWR) bunchers with frequency of 162.5 MHz have been designed as parts of the MEBT. According to the beam transmission matching of the MEBT and the geometric parameters requirements of bunchers, the unique mechanical structure and the main processing technology of buncher cavities and their couplers and tuners are described in this paper. The fabrication of bunchers and their parts have been completed and tested at high power, the test results agree well with the design requirements. These bunchers work well for about two years in Institute of Modern Physics, Chinese Academy of Sciences.

  16. The mechanical design and fabrication of 162.5 MHz buncher for China accelerator driven sub-critical system injector II

    Directory of Open Access Journals (Sweden)

    Haihua Niu

    2017-08-01

    Full Text Available A buncher is one of the main pieces of equipment in the medium energy beam transport line (MEBT for China accelerator driven sub-critical system (C-ADS Injector II. To focus the beam longitudinally and match the beam for the acceptance of the superconducting linac section, two room temperature quarter wave resonator (QWR bunchers with frequency of 162.5 MHz have been designed as parts of the MEBT. According to the beam transmission matching of the MEBT and the geometric parameters requirements of bunchers, the unique mechanical structure and the main processing technology of buncher cavities and their couplers and tuners are described in this paper. The fabrication of bunchers and their parts have been completed and tested at high power, the test results agree well with the design requirements. These bunchers work well for about two years in Institute of Modern Physics, Chinese Academy of Sciences.

  17. Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments

    Directory of Open Access Journals (Sweden)

    Kenji Nakajima

    2017-11-01

    Full Text Available The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex (J-PARC, is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

  18. A phase ii study of concurrent accelerated hyperfractionated radiotherapy and carboplatin/oral etoposide for elderly patients with stage iii non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Jeremic, Branislav; Shibamoto, Yuta; Milicic, Biljana; Milisavljevic, Slobodan; Nikolic, Nebojsa; Dagovic, Aleksandar; Aleksandrovic, Jasna; Radosavljevic-Asic, Gordana

    1999-01-01

    Purpose: To investigate feasibility, toxicity, and efficacy of accelerated hyperfractionated radiation therapy and concurrent carboplatin/oral etoposide in elderly (> 70 years) patients with stage III non-small-cell lung cancer. Methods and Materials: Between January 1988 and June 1993, a total of 58 patients entered a phase II study. Carboplatin (400 mg/m 2 ) was given intravenously on days 1 and 29, and etoposide (50 mg/m 2 ) was given orally on days 1-21 and 29-42. Accelerated hyperfractionated radiotherapy was administered starting on day 1, with a total dose of 51 Gy in 34 fractions over 3.5 weeks. Results: In 55 evaluable patients, the complete response rate was 27% and the overall response rate was 65%. For the 55 patients, the median survival time was 10 months, and the 1-, 2-, and 5-year survival rates were 45%, 24%, and 9.1%, respectively. The median time until relapse was 8 months and the 1-, 2-, and 5-year relapse-free survival rates were 45%, 20%, and 9.1%, respectively. The median time to local recurrence was 14 months and the 5-year local control rate was 13%; the median time to distant metastasis was 18 months and the 5-year distant metastasis-free rate was 15%. Hematological, esophageal, and bronchopulmonary acute grade 3 or 4 toxicities were observed in 22%, 7%, and 4% of the patients, respectively. There was no grade 5 toxicity or late grade ≥ 3 toxicity. Conclusion: Concurrent accelerated hyperfractionated radiotherapy and carboplatin/oral etoposide produced relatively low and acceptable toxicity. The survival results appeared to be comparable to those obtained in nonelderly patients with stage III non-small-cell lung cancer treated by full-dose radiation

  19. The influence of zinc(II) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(II) accelerates exchange in higher dielectric environments.

    Science.gov (United States)

    Kurian, Roby; Bruce, Mitchell R M; Bruce, Alice E; Amar, François G

    2015-08-01

    QM/MM studies were performed to explore the energetics of exchange reactions of glutathione disulfide (GSSG) and the active site of thioredoxin [Cys32-Gly33-Pro34-Cys35] with and without zinc(II), in vacuum and solvated models. The activation energy for exchange, in the absence of zinc, is 29.7 kcal mol(-1) for the solvated model. This is 3.3 kcal mol(-1) higher than the activation energy for exchange in the gas phase, due to ground state stabilization of the active site Cys-32 thiolate in a polar environment. In the presence of zinc, the activation energy for exchange is 4.9 kcal mol(-1) lower than in the absence of zinc (solvated models). The decrease in activation energy is attributed to stabilization of the charge-separated transition state, which has a 4-centered, cyclic arrangement of Zn-S-S-S with an estimated dipole moment of 4.2 D. A difference of 4.9 kcal mol(-1) in activation energy would translate to an increase in rate by a factor of about 4000 for zinc-assisted thiol-disulfide exchange. The calculations are consistent with previously reported experimental results, which indicate that metal-thiolate, disulfide exchange rates increase as a function of solvent dielectric. This trend is opposite to that observed for the influence of the dielectric environment on the rate of thiol-disulfide exchange in the absence of metal. The results suggest a dynamic role for zinc in thiol-disulfide exchange reactions, involving accessible cysteine sites on proteins, which may contribute to redox regulation and mechanistic pathways during oxidative stress.

  20. Preliminary results of a phase I/II study of simultaneous modulated accelerated radiotherapy for nondisseminated nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lee, Sang-wook; Back, Geum Mun; Yi, Byong Yong; Choi, Eun Kyung; Ahn, Seung Do; Shin, Seong Soo; Kim, Jung-hun; Kim, Sang Yoon; Lee, Bong-Jae; Nam, Soon Yuhl; Choi, Seung-Ho; Kim, Seung-Bae; Park, Jin-hong; Lee, Kang Kyoo; Park, Sung Ho; Kim, Jong Hoon

    2006-01-01

    Purpose: To present preliminary results of intensity-modulated radiotherapy (IMRT) with the simultaneous modulated accelerated radiotherapy (SMART) boost technique in patients with nasopharyngeal carcinoma (NPC). Methods and Materials: Twenty patients who underwent IMRT for nondisseminated NPC at the Asan Medical Center between September 2001 and December 2003 were prospectively evaluated. Intensity-modulated radiotherapy was delivered with the 'step and shoot' SMART technique at prescribed doses of 72 Gy (2.4 Gy/day) to the gross tumor volume, 60 Gy (2 Gy/day) to the clinical target volume and metastatic nodal station, and 46 Gy (2 Gy/day) to the clinically negative neck region. Eighteen patients also received cisplatin once per week. Results: The median follow-up period was 27 months. Nineteen patients completed the treatment without interruption; the remaining patient interrupted treatment for 2 weeks owing to severe pharyngitis and malnutrition. Five patients (25%) had Radiation Therapy Oncology Group Grade 3 mucositis, whereas 9 (45%) had Grade 3 pharyngitis. Seven patients (35%) lost more than 10% of their pretreatment weight, whereas 11 (55%) required intravenous fluids and/or tube feeding. There was no Grade 3 or 4 xerostomia. All patients showed complete response. Two patients had distant metastases and locoregional recurrence, respectively. Conclusion: Intensity-modulated radiotherapy with the SMART boost technique allows parotid sparing, as shown clinically and by dosimetry, and might also be more effective biologically. A larger population of patients and a longer follow-up period are needed to evaluate ultimate tumor control and late toxicity

  1. Virtual Accelerator for Accelerator Optics Improvement

    CERN Document Server

    Yan Yi Ton; Decker, Franz Josef; Ecklund, Stanley; Irwin, John; Seeman, John; Sullivan, Michael K; Turner, J L; Wienands, Ulrich

    2005-01-01

    Through determination of all quadrupole strengths and sextupole feed-downs by fitting quantities derivable from precision orbit measurement, one can establish a virtual accelerator that matches the real accelerator optics. These quantities (the phase advances, the Green's functions, and the coupling eigen-plane ellipses tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a model-independent analysis (MIA). Instead of trying to identify magnet errors, a limited number of quadrupoles are chosen for optimized strength adjustment to improve the virtual accelerator optics and then applied to the real accelerator accordingly. These processes have been successfully applied to PEP-II rings for beta beating fixes, phase and working tune adjustments, and linear coupling reduction to improve PEP-II luminosity.

  2. Proteomic data show an increase in autoantibodies and alpha-fetoprotein and a decrease in apolipoprotein A-II with time in sera from senescence-accelerated mice

    Energy Technology Data Exchange (ETDEWEB)

    Guo, S.J. [Beijing Institute of Pharmacology and Toxicology, Beijing (China); Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Qi, C.H.; Zhou, W.X.; Zhang, Y.X. [Beijing Institute of Pharmacology and Toxicology, Beijing (China); Zhang, X.M.; Wang, J.; Wang, H.X. [National Center of Biomedical Analysis, Beijing (China)

    2013-04-12

    We evaluated changes in levels by comparing serum proteins in senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by 2-dimensional electrophoresis combined with mass spectrometry. Five protein spots were present in all SAMP8 serum samples, but only appeared in SAMR1 samples at 15 months of age except for spot 3, which also showed a slight expression in SAMR1-12 m sera. Two proteins decreased in the sera from SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8 sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413), chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase (32C2-A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4 antibody, which inhibits T cell proliferation. We found that M-T413 RNA level was significantly enhanced in splenocytes from SAMP8-2 m mice. This agreed with serum M-T413 protein alterations and a strikingly lower blood CD4{sup +} T cell count in SAMP8 mice when compared to the age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413 protein volume. Age-related changes in serum proteins favored an increase in autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II, which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may serve as candidate biomarkers for early aging.

  3. Proteomic data show an increase in autoantibodies and alpha-fetoprotein and a decrease in apolipoprotein A-II with time in sera from senescence-accelerated mice

    International Nuclear Information System (INIS)

    Guo, S.J.; Qi, C.H.; Zhou, W.X.; Zhang, Y.X.; Zhang, X.M.; Wang, J.; Wang, H.X.

    2013-01-01

    We evaluated changes in levels by comparing serum proteins in senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by 2-dimensional electrophoresis combined with mass spectrometry. Five protein spots were present in all SAMP8 serum samples, but only appeared in SAMR1 samples at 15 months of age except for spot 3, which also showed a slight expression in SAMR1-12 m sera. Two proteins decreased in the sera from SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8 sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413), chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase (32C2-A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4 antibody, which inhibits T cell proliferation. We found that M-T413 RNA level was significantly enhanced in splenocytes from SAMP8-2 m mice. This agreed with serum M-T413 protein alterations and a strikingly lower blood CD4 + T cell count in SAMP8 mice when compared to the age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413 protein volume. Age-related changes in serum proteins favored an increase in autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II, which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may serve as candidate biomarkers for early aging

  4. Theoretical problems in accelerator physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following research on accelerators: computational methods; higher order mode suppression in accelerators structures; overmoded waveguide components and application to SLED II and power transport; rf sources; accelerator cavity design for a B factory asymmetric collider; and photonic band gap cavities

  5. Acceleration of radioactive ions

    International Nuclear Information System (INIS)

    Laxdal, R.E.

    2003-01-01

    There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented

  6. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  7. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  8. [Accelerated partial breast irradiation with image-guided intensity-modulated radiotherapy following breast-conserving surgery - preliminary results of a phase II clinical study].

    Science.gov (United States)

    Mészáros, Norbert; Major, Tibor; Stelczer, Gábor; Zaka, Zoltán; Mózsa, Emõke; Fodor, János; Polgár, Csaba

    2015-06-01

    The purpose of the study was to implement accelerated partial breast irradiation (APBI) by means of image-guided intensity-modulated radiotherapy (IG-IMRT) following breast-conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive (St I-II) breast cancer who underwent BCS were enrolled in our phase II prospective study. Postoperative APBI was given by means of step and shoot IG-IMRT using 4 to 5 fields to a total dose of 36.9 Gy (9×4.1 Gy) using a twice-a-day fractionation. Before each fraction, series of CT images were taken from the region of the target volume using a kV CT on-rail mounted in the treatment room. An image fusion software was used for automatic image registration of the planning and verification CT images. Patient set-up errors were detected in three directions (LAT, LONG, VERT), and inaccuracies were adjusted by automatic movements of the treatment table. Breast cancer related events, acute and late toxicities, and cosmetic results were registered and analysed. At a median follow-up of 24 months (range 12-44) neither locoregional nor distant failure was observed. Grade 1 (G1), G2 erythema, G1 oedema, and G1 and G2 pain occurred in 21 (35%), 2 (3.3%), 23 (38.3%), 6 (10%) and 2 (3.3%) patients, respectively. No G3-4 acute side effects were detected. Among late radiation side effects G1 pigmentation, G1 fibrosis, and G1 fat necrosis occurred in 5 (8.3%), 7 (11.7%), and 2 (3.3%) patients, respectively. No ≥G2 late toxicity was detected. Excellent and good cosmetic outcome was detected in 45 (75%) and 15 (25%) patients. IG-IMRT is a reproducible and feasible technique for the delivery of APBI following conservative surgery for the treatment of low-risk, early-stage invasive breast carcinoma. Preliminary results are promising, early radiation side effects are minimal, and cosmetic results are excellent.

  9. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  10. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  11. Concurrent hyperfractionated accelerated radiotherapy with 5-FU and once weekly cisplatin in locally advanced head and neck cancer. The 10-year results of a prospective phase II trial

    Energy Technology Data Exchange (ETDEWEB)

    Budach, V.; Boehmer, D.; Badakhshi, H.; Jahn, U.; Stromberger, C. [Campus Virchow Klinikum, Charite Universitaetsmedizin Berlin, Department for Radiooncology, Clinic for Radiooncology, Berlin (Germany); Becker, E.T. [Charite Universitaetsmedizin, Department of Otorhinolaryngology, Berlin (Germany); Wernecke, K.D. [Sostana Statistics GmbH, Charite Universitaetsmedizin Berlin, Berlin (Germany)

    2014-03-15

    In this study, the acute toxicity and long-term outcome of a hyperfractionated accelerated chemoradiation regimen with cisplatin/5-fluorouracil (5-FU) in patients with locally advanced squamous cell carcinomas of head and neck were evaluated. From 2000-2002, 38 patients with stage III (5.3 %) and stage IV (94.7 %) head and neck cancer were enrolled in a phase II study. Patients received hyperfractionated-accelerated radiotherapy with 72 Gy in 15 fractions of 2 Gy followed by 1.4 Gy twice daily with concurrent, continuous infusion 5-FU of 600 mg/m{sup 2} on days 1-5 and 6 cycles of weekly cisplatin (30 mg/m{sup 2}). Acute toxicities (CTCAEv2.0), locoregional control (LRC), metastases-free (MFS), and overall survival (OS) were analyzed and exploratively compared with the ARO 95-06 trial. Median follow-up was 11.4 years (95 % CI 8.6-14.2) and mean dose 71.6 Gy. Of the patients, 82 % had 6 (n = 15) or 5 (n = 16) cycles of cisplatin, 5 and 2 patients received 4 and 3 cycles, respectively. Grade 3 anemia, leukopenia, and thrombocytopenia were observed in 15.8, 15.8, and 2.6 %, respectively. Grade 3 mucositis in 50 %, grade 3 and 4 dysphagia in 55 and 13 %. The 2-, 5-, and 10-year LRC was 65, 53.6, and 48.2 %, the MFS was 77.5, 66.7, and 57.2 % and the OS 59.6, 29.2, and 15 %, respectively. Chemoradiation with 5-FU and cisplatin seems feasible and superior in terms of LRC and OS to the ARO 95-06C-HART arm at 2 years. However, this did not persist at the 5- and 10-year follow-ups. (orig.) [German] Untersuchung der Akuttoxizitaet und des Langzeitueberlebens einer hyperfraktioniert-akzelerierten simultanen Radiochemotherapie mit Cisplatin/5-Fluorouracil (5-FU) bei Patienten mit lokal fortgeschrittenen Kopf-Hals-Tumoren. Von 2000 bis 2002 wurden 38 Patienten mit Plattenepithelkarzinomen der Kopf-Hals-Region im Stadium III (5,3 %) und IV (94,7 %) eingeschlossen. Es erfolgte eine simultane hyperfraktionierte akzelerierte Radiochemotherapie mit 72 Gy in 15 Fraktionen a 2 Gy

  12. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  13. A multi-institutional phase II study of hyperfractionated accelerated radiation therapy for unresectable non-small cell lung cancer: initial report of ECOG 4593

    International Nuclear Information System (INIS)

    Tannehill, Scott P.; Froseth, Carrie; Wagner, Henry; Petereit, Dan P.; Mehta, Minesh P.

    1996-01-01

    Purpose: To assess the feasibility, acute toxicity, response and survival in a trial of hyperfractionated accelerated radiation therapy for unresectable locally advanced non-small cell lung cancer (NSCLC) using a t.i.d. regimen 5 days a week in an 8 hour schedule. Materials and Methods: Thirty patients (pts) from 6 institutions were enrolled in this pilot trial. Pt characteristics: 24 male, 6 female; median age 67 yrs (range 47-84); ECOG PS 0 in 22 pts, 1 in 8 pts; weight loss >5% in 7 pts. Stage was II (inoperable) in 1 pt, IIIA in 12 pts, and IIIB in 17 pts. Radiation therapy (total 57.6 Gy/36 fx) encompassing gross disease and draining lymphatics to 36 Gy (1.5 Gy b.i.d., 8 hours apart) with daily off-cord concomitant boost to 21.6 Gy (1.8 Gy 4 hours after first fraction) was given over 12 treatment days (15 elapsed days). Results: (28(30)) (93%) pts completed radiation therapy on schedule without toxicity-related treatment interruptions. Two pts did not complete radiation therapy; 1 due to in-field progression and 1 due to fatal acute gastric bleed unrelated to therapy. Two additional pts died in the first 6 weeks: 1 due to a presumed acute cardiovascular event and another due to complications of pre-existing cardiovascular disease. The major treatment-related toxicities were esophagitis in 6 pts (18%: 5 Grade 3 and 1 Grade 4) scored using a study specific esophagitis grading tool and 2 grade 3 dermatitis, in a total of 6 pts. Only 1 pt (3%) required hospitalization for IV hydration (Grade 4 esophagitis). Median weight loss at 6 weeks was 3 kg. Response data are pending in 2 pts and unavailable in 2 due to early death. Of the remaining 26 pts, local response analysis showed CR in 4, PR in 14, stable in 7 and progressive disease in 1 for an overall response rate of (18(26)) (69%). With a median potential follow-up of 13 months, the median survival has not yet been reached. The 1-yr actuarial survival is 63%. Exclusion of the 3 pts experiencing early death (in

  14. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.

    1991-01-01

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  15. Accelerated partial breast irradiation with external beam three-dimensional conformal radiotherapy. Five-year results of a prospective phase II clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Mozsa, Emoeke [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Landesklinikum Wiener Neustadt, Department of Radiooncology and Radiotherapy, Wiener Neustadt (Austria); Meszaros, Norbert; Major, Tibor; Froehlich, Georgina; Stelczer, Gabor; Fodor, Janos; Polgar, Csaba [National Institute of Oncology, Centre of Radiotherapy, Budapest (Hungary); Sulyok, Zoltan [National Institute of Oncology, Centre of Surgery, Budapest (Hungary)

    2014-05-15

    The aim of this study was to report the 5-year results of accelerated partial breast irradiation (APBI) using external beam three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2011, 44 patients with low-risk, stage I-II breast cancer underwent breast-conserving surgery. Postoperative APBI was given by means of 3D-CRT using three to five non-coplanar fields. The total dose of APBI was 36.9 Gy (nine fractions of 4.1 Gy b.i.d.). The mean follow-up time was 58.2 months for surviving patients. Survival results, side effects, and cosmetic results were assessed. One (2.3 %) local recurrence was observed, for a 5-year actuarial rate of 3.7 %. Neither regional nor distant failure was observed. Two patients died of internal disease. The 5-year disease-free, cancer-specific, and overall survival rates were 96.3, 100, and 95.1 %, respectively. Acute side effects included grade 1 (G1) erythema in 75 %, G1 parenchymal induration in 46 %, and G1 pain in 46 % of patients. No G2 or higher acute side effect occurred. Late side effects included G1, G2, and G3 fibrosis in 44, 7, and 2 % of patients, respectively, G1 skin pigmentation in 12 %, and G1 pain in 2 %. Asymptomatic fat necrosis occurred in 14 %. Cosmetic results were rated excellent or good in 86 % of cases by the patients themselves and 84 % by the physicians. The 5-year local tumor control, toxicity profile, and cosmetic results of APBI delivered with external beam 3D-CRT are encouraging and comparable to other APBI series. (orig.) [German] Evaluation der 5-Jahres-Ergebnisse bezueglich Ueberleben, Tumorkontrolle, Nebenwirkungen und Kosmetik nach Teilbrustbestrahlung (APBI) mittels 3-D-konformaler, akzelerierter Radiotherapie (3D-CRT). Zwischen 2006 und 2011 wurden 44 Patienten mit Brustkrebs im Stadium I-II und niedrigem Risikoprofil brusterhaltend operiert. Die adjuvante, 3-D-konformale APBI wurde mittels 3-5 nonkoplanarer Feldern durchgefuehrt. Die Gesamtdosis betrug 36,9 Gy bei 9 -mal 4,1 Gy b.i.d.. Nach

  16. Phase I/II Study Evaluating Early Tolerance in Breast Cancer Patients Undergoing Accelerated Partial Breast Irradiation Treated With the MammoSite Balloon Breast Brachytherapy Catheter Using a 2-Day Dose Schedule

    International Nuclear Information System (INIS)

    Wallace, Michelle; Martinez, Alvaro; Mitchell, Christina; Chen, Peter Y.; Ghilezan, Mihai; Benitez, Pamela; Brown, Eric; Vicini, Frank

    2010-01-01

    Purpose: Initial Phase I/II results using balloon brachytherapy to deliver accelerated partial breast irradiation (APBI) in 2 days in patients with early-stage breast cancer are presented. Materials and Methods: Between March 2004 and August 2007, 45 patients received adjuvant radiation therapy after lumpectomy with balloon brachytherapy in a Phase I/II trial delivering 2800 cGy in four fractions of 700 cGy. Toxicities were evaluated using the National Cancer Institute Common Toxicity Criteria for Adverse Events v3.0 scale and cosmesis was documented at ≥6 months. Results: The median age was 66 years (range, 48-83) and median skin spacing was 12 mm (range, 8-24). The median follow-up was 11.4 months (5.4-48 months) with 21 patients (47%) followed ≥1 year, 11 (24%) ≥2 years, and 7 (16%) ≥3 years. At <6 months (n = 45), Grade II toxicity rates were 9% radiation dermatitis, 13% breast pain, 2% edema, and 2% hyperpigmentation. Grade III breast pain was reported in 13% (n = 6). At ≥6 months (n = 43), Grade II toxicity rates were: 2% radiation dermatitis, 2% induration, and 2% hypopigmentation. Grade III breast pain was reported in 2%. Infection was 13% (n = 6) at <6 months and 5% (n = 2) at ≥6 months. Persistent seroma ≥6 months was 30% (n = 13). Fat necrosis developed in 4 cases (2 symptomatic). Rib fractures were seen in 4% (n = 2). Cosmesis was good/excellent in 96% of cases. Conclusions: Treatment with balloon brachytherapy using a 2-day dose schedule resulted acceptable rates of Grade II/III chronic toxicity rates and similar cosmetic results observed with a standard 5-day accelerated partial breast irradiation schedule.

  17. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  18. Avaliação de bis(4-metilfenilditiocarbimatozincato(II de tetrabutilamônio como acelerador em composições de borracha natural Evaluation of tetrabutyl ammonium bis(4-methylphenyldithiocarbimatozincate(II as accelerator in natural rubber (NR compounds

    Directory of Open Access Journals (Sweden)

    Roberta M. Mariano

    2008-01-01

    Full Text Available Neste trabalho a substância ZNIBU [bis(4-metilfenilditiocarbimatozincato(II de tetrabutilamônio] foi usada em formulações de borracha natural (NR e o seu efeito como acelerador de vulcanização foi investigado. As composições, vulcanizadas com a substância em questão, foram submetidas a testes mecânicos e os resultados comparados com os de outras composições vulcanizadas com os aceleradores comerciais CBS (N-ciclohexil-2-benzotiazol-2-sulfenamida, TMTD (dissulfeto de tetrametiltiuram e MBTS (dissulfeto de benzotiazol. Propriedades como dureza, resiliência e densidade foram avaliadas em presença ou não da carga negro de fumo.The acceleration potential of ZNIBU [tetrabutyl ammonium bis(4-methylphenyldithiocarbimatozincate(II] in the vulcanization process of natural rubber compounds was investigated. The vulcanized compounds were tested for hardness, resilience and density and compared with those vulcanized with commercial accelerators such as CBS (N-cyclohexyl-2-benzothiazolesulphenamide, TMTD (tetramethyl thiuram disulphide and MBTS (dibenzothiazole disulphide. The new accelerator tested was found to be too slow for a commercial application, but its properties were similar to those of other accelerators.

  19. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    International Nuclear Information System (INIS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Le Roux, Jakobus A.; Webb, Gary M.; Malandraki, Olga E.

    2016-01-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  20. Report of the joint seminar on heavy-ion nuclear physics and nuclear chemistry in the energy region of tandem accelerators (II)

    International Nuclear Information System (INIS)

    1986-04-01

    A meeting of the second joint seminar on Heavy-Ion Nuclear Physics and Nuclear Chemistry in the Energy Region of Tandem Accelerators was held after an interval of two years at the Tokai Research Establishment of the JAERI, for three days from January 9 to 11, 1986. In the seminar, about 70 nuclear physicists and nuclear chemists of JAERI and other Institutes participated, and 38 papers were presented. These include general reviews and topical subjects which have been developed intensively in recent years, as well as the new results obtained by using the JAERI tandem accelerator. This report is a collection of the papers presented to the seminar. (author)

  1. Implementation of image-guided intensity-modulated accelerated partial breast irradiation. Three-year results of a phase II clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Meszaros, Norbert; Major, Tibor; Stelczer, Gabor; Zaka, Zoltan; Takacsi-Nagy, Zoltan; Fodor, Janos; Polgar, Csaba [National Institute of Oncology, Center of Radiotherapy, Budapest (Hungary); Mozsa, Emoke [National Institute of Oncology, Center of Radiotherapy, Budapest (Hungary); Landesklinikum, Department of Radiooncology and Radiotherapy, Wiener Neustadt (Austria); Pukancsik, David [National Institute of Oncology, Department of Breast and Sarcoma Surgery, Budapest (Hungary)

    2017-01-15

    To report 3-year results of accelerated partial breast irradiation (APBI) using image-guided intensity-modulated radiotherapy (IG-IMRT) following breast conserving surgery (BCS) for low-risk early invasive breast cancer. Between July 2011 and March 2014, 60 patients with low-risk early invasive breast cancer underwent BCS and were enrolled in this phase II prospective study. The total dose was 36.9 Gy (9 fractions of 4.1 Gy, two fractions/day). Patient setup errors were detected in LAT, LONG and VERT directions. Local tumour control, survival results, early and late side effects and cosmetic outcome were assessed. At a median follow-up of 39 months, all patients were alive and neither locoregional nor distant failure occurred. One contralateral breast cancer and two new primary malignancies outside the breast were observed. No grade (G) 3-4 acute toxicity was detected. G1 and G2 erythema occurred in 21 (35%) and 2 (3.3%) patients, respectively; while G1 oedema was observed in 23 (38.8%) cases. G1 and G2 pain was reported by 6 (10%) and 2 (3.3%) patients, respectively. Among the late radiation side effects, G1 pigmentation or telangiectasia, G1 fibrosis and G1 asymptomatic fat necrosis occurred in 10 (16.7%), 7 (11.7%) and 3 (5%) patients, respectively. No ≥ G2 late toxicity was detected. Cosmetic outcome was excellent in 43 (71.7%) and good in 17 (28.3%) patients. IG-IMRT is a reproducible and feasible technique for delivery of external beam APBI following BCS for treatment of low-risk, early-stage invasive breast carcinoma. In order to avoid toxicity, image guidance performed before each radiation fraction is necessary to minimize the PTV. Three-year results are promising, early and late radiation side-effects are minimal, and cosmetic results are excellent to good. (orig.) [German] Evaluierung der 3-Jahres-Ergebnisse der Teilbrustbestrahlung (APBI) mittels bildgefuehrter intensitaetsmodulierter Strahlentherapie (IG-IMRT) nach brusterhaltender Operation (BCS

  2. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  3. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  4. Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB.

    Science.gov (United States)

    Reinecke, Kirstin; Lucius, Ralph; Reinecke, Alexander; Rickert, Uta; Herdegen, Thomas; Unger, Thomas

    2003-11-01

    The AT2 receptor regulates several functions of nerve cells, e.g., ionic fluxes, cell differentiation, and axonal regeneration, but also modulates programmed cell death. We tested the hypothesis that angiotensin II (ANG II) via its AT2 receptor not only promotes regeneration but also functional recovery after sciatic nerve crush in adult rats. ANG II (10(-7), 10(-9), 10(-11) M) applied locally via osmotic minipumps promoted functional recovery with maximal effects after the lowest concentration. The toe spread distance as a parameter for re-innervation after 20 days was significantly (Pelectrical stimulation (return of sensorimotor function) was reduced to 14.6 days vs. 17.9 days in the control group (PSchwann cells. Histological criteria, morphometric analyses, and electron microscopy confirmed the functional data. These results are the first to present direct evidence for an involvement of the AT2 receptor and NF-kappaB in peripheral nerve regeneration.

  5. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  6. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  7. RECIRCULATING ACCELERATION

    International Nuclear Information System (INIS)

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  8. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  9. Soiling of building envelope surfaces and its effect on solar reflectance – Part II: Development of an accelerated aging method for roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Sleiman, Mohamad [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kirchstetter, Thomas W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Berdahl, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gilbert, Haley E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quelen, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Marlot, Lea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Preble, Chelsea V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Chen, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Montalbano, Amandine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rosseler, Olivier [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Akbari, Hashem [Concordia Univ., Montreal (Canada); Levinson, Ronnen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Destaillats, Hugo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-09

    Highly reflective roofs can decrease the energy required for building air conditioning, help mitigate the urban heat island effect, and slow global warming. However, these benefits are diminished by soiling and weathering processes that reduce the solar reflectance of most roofing materials. Soiling results from the deposition of atmospheric particulate matter and the growth of microorganisms, each of which absorb sunlight. Weathering of materials occurs with exposure to water, sunlight, and high temperatures. This study developed an accelerated aging method that incorporates features of soiling and weathering. The method sprays a calibrated aqueous soiling mixture of dust minerals, black carbon, humic acid, and salts onto preconditioned coupons of roofing materials, then subjects the soiled coupons to cycles of ultraviolet radiation, heat and water in a commercial weatherometer. Three soiling mixtures were optimized to reproduce the site-specific solar spectral reflectance features of roofing products exposed for 3 years in a hot and humid climate (Miami, Florida); a hot and dry climate (Phoenix, Arizona); and a polluted atmosphere in a temperate climate (Cleveland, Ohio). A fourth mixture was designed to reproduce the three-site average values of solar reflectance and thermal emittance attained after 3 years of natural exposure, which the Cool Roof Rating Council (CRRC) uses to rate roofing products sold in the US. This accelerated aging method was applied to 25 products₋single ply membranes, factory and field applied coatings, tiles, modified bitumen cap sheets, and asphalt shingles₋and reproduced in 3 days the CRRC's 3-year aged values of solar reflectance. In conclusion, this accelerated aging method can be used to speed the evaluation and rating of new cool roofing materials.

  10. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    Science.gov (United States)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  11. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  12. Advanced Accelerators for Medical Applications

    Science.gov (United States)

    Uesaka, Mitsuru; Koyama, Kazuyoshi

    We review advanced accelerators for medical applications with respect to the following key technologies: (i) higher RF electron linear accelerator (hereafter “linac”); (ii) optimization of alignment for the proton linac, cyclotron and synchrotron; (iii) superconducting magnet; (iv) laser technology. Advanced accelerators for medical applications are categorized into two groups. The first group consists of compact medical linacs with high RF, cyclotrons and synchrotrons downsized by optimization of alignment and superconducting magnets. The second group comprises laser-based acceleration systems aimed of medical applications in the future. Laser plasma electron/ion accelerating systems for cancer therapy and laser dielectric accelerating systems for radiation biology are mentioned. Since the second group has important potential for a compact system, the current status of the established energy and intensity and of the required stability are given.

  13. Future accelerators in Japan

    International Nuclear Information System (INIS)

    Toge, Nobu

    1993-01-01

    This paper presents a brief report on the present status of future accelerator projects at the National Laboratory for High Energy Physics (KEK), Japan. The KEK laboratory has been successfully operating the TRISTAN accelerator complex since 1986. It consists of a 2.5 GeV electron/positron linac, an 8 GeV Accumulation Ring (AR) and a 29 GeV Main Ring (MR). Concurrently with this operation, in response to recommendations by the Japanese High Energy Physics Committee, survey studies have been continued on new accelerator facilities at KEK. They have two major future projects, namely, the asymmetric e + e - B-factory based on TRISTAN (TRISTAN-II) and the Japan Linear Collider (JLC). The purpose of this paper is to outline those research activities and to present an update on their status

  14. A phase II study of hyperfractionated accelerated radiotherapy (HART) after induction cisplatin (CDDP) and vinorelbine (VNR) for stage III Non-small-cell lung cancer (NSCLC)

    International Nuclear Information System (INIS)

    Ishikura, Satoshi; Ohe, Yuichiro; Nihei, Keiji; Kubota, Kaoru; Kakinuma, Ryutaro; Ohmatsu, Hironobu; Goto, Koichi; Niho, Seiji; Nishiwaki, Yutaka; Ogino, Takashi

    2005-01-01

    Purpose: The purpose was to assess the feasibility and efficacy of hyperfractionated accelerated radiotherapy (HART) after induction chemotherapy for Stage III non-small-cell lung cancer. Methods and materials: Treatment consisted of 2 cycles of cisplatin 80 mg/m 2 on Day 1 and vinorelbine 25 mg/m 2 on Days 1 and 8 every 3 weeks followed by HART, 3 times a day (1.5, 1.8, 1.5 Gy, 4-h interval) for a total dose of 57.6 Gy. Results: Thirty patients were eligible. Their median age was 64 years (range, 46-73 years), 24 were male, 6 were female, 8 had performance status (PS) 0, 22 had PS 1, 9 had Stage IIIA, and 21 had Stage IIIB. All but 1 patient completed the treatment. Common grade ≥3 toxicities during the treatment included neutropenia, 25; infection, 5; esophagitis, 5; and radiation pneumonitis, 3. The overall response rate was 83%. The median survival was 24 months (95% confidence interval [CI], 13-34 months), and the 2-year overall survival was 50% (95% CI, 32-68%). The median progression-free survival was 10 months (95% CI, 8-20 months). Conclusion: Hyperfractionated accelerated radiotherapy after induction of cisplatin and vinorelbine was feasible and promising. Future investigation employing dose-intensified radiotherapy in combination with chemotherapy is needed

  15. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  16. Electron accelerator

    International Nuclear Information System (INIS)

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  17. Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov–Fokker–Planck–Ampère system, part II: Collisional aspects

    Energy Technology Data Exchange (ETDEWEB)

    Taitano, William T., E-mail: taitano@lanl.gov; Knoll, Dana A.; Chacón, Luis

    2015-03-01

    In this study, we extend the moment-based acceleration algorithm for the charge, momentum, and energy conserving Vlasov–Ampère discretization developed in Ref. [1] by including a reduced Fokker–Planck operator. We propose an energy conserving discretization for the Fokker–Planck collision operator. We show by numerical experiment that the new algorithm 1) efficiently converges the nonlinearly coupled Vlasov–Fokker–Planck–Ampère system, and 2) accurately steps over stiff time-scales such as the inverse electron plasma frequency, and the electron–electron collision time-scale. We demonstrate that discrete energy conservation is critical to eliminate numerical heating issues when strong density gradients exist.

  18. Accelerated growth of oxide film on aluminium alloys under steam: Part II: Effects of alloy chemistry and steam vapour pressure on corrosion and adhesion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Bordo, Kirill; Jellesen, Morten Stendahl

    2015-01-01

    The steam treatment of aluminium alloys with varying vapour pressure of steamresulted in the growth of aluminium oxyhydroxide films of thickness range between 450 - 825nm. The surface composition, corrosion resistance, and adhesion of the produced films was characterised by XPS, potentiodynamic p...... of the vapour pressure of the steam. The accelerated corrosion and adhesion tests on steam generated oxide films with commercial powder coating verified that the performance of the oxide coating is highly dependent on the vapour pressure of the steam....... polarization, acetic acid salt spray, filiform corrosion test, and tape test. The oxide films formed by steam treatment showed good corrosion resistance in NaCl solution by significantly reducing anodic and cathodic activities. The pitting potential of the surface treated with steam was a function...

  19. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  20. Acceleration theorems

    International Nuclear Information System (INIS)

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  1. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  2. Accelerator development at Bates

    International Nuclear Information System (INIS)

    Sargent, C.P.

    1983-01-01

    The past year has seen the completion of a major expansion of the Bates Accelerator Laboratory. A second experimental hall, South Hall, and several magnetic spectrometers have been constructed. The accelerator's maximum energy has been raised from 400 to 750 MeV by means of beam recirculation. A current two-year project for the fabrication of an additional RF transmitter plus a 30% increase in RF peak power capability will increase energy further to ca. 1 GeV. During the same period pulse-to-pulse beam sharing between the high-resolution spectrometer area and South Hall will become available. In January 1981 the Laboratory submitted their ''Proposal for a Long-Range Expansion Program'' to DOE-NSF. The proposed development consists of three stages. Stage I calls for the addition of a pulse stretcher ring to furnish a CW beam to the South Hall beam lines. Additional experimental space for internal target experiments and photon tagging research are also included. Stage II increases the accelerator energy to 2.1 GeV (at 140 microamps) by means of a five-pass head-to-tail recirculator. Stage III is, at this time, a plan rather than a proposal. It increases accelerator energy to 4 GeV by extending the accelerator length and power and adds another pulse stretcher ring and three new experimental areas for the higher energy work. This paper discusses each of these stages in detail and recommends their funding and scheduling

  3. Acceleration of curing period of pastrami manufactured from buffalo meat: II-Fatty acids, amino acids, nutritional value and sensory evaluation

    Directory of Open Access Journals (Sweden)

    Ibrahim, Hayam M.A.

    2001-04-01

    Full Text Available Upon accelerating the curing period of pastrami (dry cured meat prepared from buffalo lean round muscles using heat treatment (~71ºC internally, the results indicated that: the peroxide and thiobarbituric acid (TBA values increased with increasing the aging period. Percentage of the released free fatty acids was 1.21 after heat treatment and increased gradually to reach 1.47 after hanging in air at room temperature for drying and complete curing up to 6 days. The major saturated and unsaturated fatty acids in all of the pastrami samples were palmitic (16:0, oleic (18:1 and linoleic (18:2 fatty acids. The main three identified polyunsaturated fatty acids (linoleic, linolenic and arachidonic were of high percentages in the accelerated cured samples than in the control one. The ratio of the unsaturated: saturated fatty acids was similar in either the heat treated (1.28:1 and the control (1.27: 1 pastrami samples. Similar findings were found for the ratio of total essential amino acids (EAAS: total amino acids (AAS. The Essential Amino Acids Index (EAAI that possesses higher percentage for the heat treated sample than that for the control one proved the higher biological acceptance of the heat accelerated cured pastrami sample. The predicted protein efficiency ratio (PER of all the investigated samples reached more than 2.42 of casein. Sensory evaluation of the pastrami sample processed to an internal temperature of ~71ºC proved by the panelists to be of attractive color, more tasty, of good characteristic odor and more tender than the control samples which were prepared and cured for 3 weeks without using heat treatment.En relación a la aceleración del período de cura del pastrami (carne curada en seco preparada a partir de carne magra de búfalo usando un tratamiento térmico (~71ºC internamente, los resultados indicaron que los valores de peróxido y ácido tiobarbitúrico (TBA aumentaron con el envejecimiento. El porcentaje de

  4. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  5. Randomised controlled trial evaluating the efficacy of wrap therapy for wound healing acceleration in patients with NPUAP stage II and III pressure ulcer

    Science.gov (United States)

    Mizuhara, Akihiro; Oonishi, Sandai; Takeuchi, Kensuke; Suzuki, Masatsune; Akiyama, Kazuhiro; Kobayashi, Kazuyo; Matsunaga, Kayoko

    2012-01-01

    Objectives To evaluate if ‘wrap therapy’ using food wraps, which is widely used in Japanese clinical sites, is not inferior when compared to guideline adhesion treatments. Design Multicentre, prospective, randomised, open, blinded endpoint clinical trial. Setting 15 hospitals in Japan. Patients 66 older patients with new National Pressure Ulcer Advisory Panel stage II or III pressure ulcers. Interventions Of these 66 patients, 31 were divided into the conventional treatment guidelines group and 35 into the wrap therapy group. Main outcome measures The primary end point was the period until the pressure ulcers were cured. The secondary end point was a comparison of the speed of change in the Pressure Ulcer Scale for Healing score. Results 64 of the 66 patients were analysed. The estimated mean period until healing was 57.5 days (95% CI 45.2 to 69.8) in the control group as opposed to 59.8 days (95% CI 49.7 to 69.9) in the wrap therapy group. By the extent of pressure ulcer infiltration, the mean period until healing was 16.0 days (95% CI 8.1 to 23.9) in the control group as opposed to 18.8 days (95% CI 10.3 to 27.2) in the wrap therapy group with National Pressure Ulcer Advisory Panel stage II ulcers, and 71.8 days (95% CI 61.4 to 82.3) as opposed to 63.2 days (95% CI 53.0 to 73.4), respectively, with stage III ulcers. There is no statistical significance in difference in Pressure Ulcer Scale for Healing scores. Conclusions It might be possible to consider wrap therapy as an alternative choice in primary care settings as a simple and inexpensive dressing care. Clinical Trial registration UMIN Clinical Trials Registry UMIN000002658. Summary protocol is available on https://upload.umin.ac.jp/cgi-bin/ctr/ctr.cgi?function=brows&action=brows&type=detail&recptno=R000003235&admin=0&language=J PMID:22223842

  6. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  7. CNSTN Accelerator

    International Nuclear Information System (INIS)

    Habbassi, Afifa; Trabelsi, Adel

    2010-01-01

    This project give a big idea about the measurement of the linear accelerator in the CNSTN. During this work we control dose distribution for different product. For this characterisation we have to make an installation qualification ,operational qualification,performance qualification and of course for every step we have to control temperature and the dose ,even the distribution of the last one.

  8. Accelerators course

    CERN Multimedia

    CERN. Geneva HR-RFA; Métral, E

    2006-01-01

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges

  9. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Operations of the SuperHILAC, the Bevatron/Bevalac, and the 184-inch Synchrocyclotron during the period from October 1977 to September 1978 are discussed. These include ion source development, accelerator facilities, the Heavy Ion Spectrometer System, and Bevelac biomedical operations

  10. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  11. Accelerator update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  12. DART-bid: dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily. High local control in early stage (I/II) non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Zehentmayr, Franz; Wurstbauer, Karl; Deutschmann, Heinz; Sedlmayer, Felix; Fussl, Christoph; Kopp, Peter; Dagn, Karin; Fastner, Gerd; Porsch, Peter; Studnicka, Michael

    2015-01-01

    While surgery is considered standard of care for early stage (I/II), non-small-cell lung cancer (NSCLC), radiotherapy is a widely accepted alternative for medically unfit patients or those who refuse surgery. International guidelines recommend several treatment options, comprising stereotactic body radiation therapy (SBRT) for small tumors, conventional radiotherapy ≥ 60 Gy for larger sized especially centrally located lesions or continuous hyperfractionated accelerated RT (CHART). This study presents clinical outcome and toxicity for patients treated with a dose-differentiated accelerated schedule using 1.8 Gy bid (DART-bid). Between April 2002 and December 2010, 54 patients (median age 71 years, median Karnofsky performance score 70 %) were treated for early stage NSCLC. Total doses were applied according to tumor diameter: 73.8 Gy for 6 cm. The median follow-up was 28.5 months (range 2-108 months); actuarial local control (LC) at 2 and 3 years was 88 %, while regional control was 100 %. There were 10 patients (19 %) who died of the tumor, and 18 patients (33 %) died due to cardiovascular or pulmonary causes. A total of 11 patients (20 %) died intercurrently without evidence of progression or treatment-related toxicity at the last follow-up, while 15 patients (28 %) are alive. Acute esophagitis ≤ grade 2 occurred in 7 cases, 2 patients developed grade 2 chronic pulmonary fibrosis. DART-bid yields high LC without significant toxicity. For centrally located and/or large (> 5 cm) early stage tumors, where SBRT is not feasible, this method might serve as radiotherapeutic alternative to present treatment recommendations, with the need of confirmation in larger cohorts. (orig.) [de

  13. Particle accelerator physics

    CERN Document Server

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  14. Aggressive simultaneous radiochemotherapy with cisplatin and paclitaxel in combination with accelerated hyperfractionated radiotherapy in locally advanced head and neck tumors. Results of a phase I-II trial

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnt, T.; Pigorsch, S.; Pelz, T.; Haensgen, G.; Dunst, J. [Dept. of Radiotherapy, Martin Luther Univ., Halle (Germany); Becker, A. [Dept. of Radiotherapy, Martin Luther Univ., Halle (Germany); Dept. of Radiotherapy, Municipial Hospital, Dessau (Germany); Bloching, M.; Passmann, M. [Dept. of Head and Neck Surgery, Martin Luther Univ., Halle (Germany); Lotterer, E. [Dept. of Internal Medicine I, Martin Luther Univ., Halle (Germany)

    2003-10-01

    We have tested a very aggressive combination protocol with cisplatin and escalated paclitaxel in combination with accelerated hyperfractionated radiotherapy to assess the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), overall toxicity, and response rate. Patients and Methods: The trial recruited 24 patients (21 males, three females, mean age 57 years) treated at our department from 1998 through 2001. Irradiation was administered in daily doses of 2 Gy up to 30 Gy followed by 1.4 Gy twice daily up to 70.6 Gy to the primary tumor and involved nodes and 51 Gy to the clinically negative regional nodes. The chemotherapy schedule included cisplatin in a fixed dose of 20 mg/m{sup 2} on days 1-5 and 29-33 and paclitaxel at increasing dose levels of 20, 25, 30 mg/m{sup 2} twice weekly over the whole treatment time. Patients were recruited in cohorts of three to six, and the MTD was reached if two out of six patients in one cohort developed DLT. DLT was defined as any grade 4 toxicity or any grade 3 toxicity requiring treatment interruption or unplanned hospitalization or any grade 3 neurotoxicity. We recruited mainly patients with large tumors for this protocol; all patients were stage IV, and the mean tumor volume (primary + metastases) amounted to 72 {+-} 61 cm{sup 3}. The mean follow-up was 30 months (range 4-39 months). Results: One early death (peritonitis and sepsis a t day 10) occurred, and 23 patients were evaluable for acute toxicity and response. The MTD of paclitaxel was reached at the third dose level (30 mg/m{sup 2} paclitaxel twice weekly). The DLT was severe mucositis grade 3 (n = 1) and skin erythema grade 4 (n = 2). After determining the MTD, another 14 patients were treated at the recommended dose level of paclitaxel with 25 mg/m{sup 2} twice weekly. In summary, 13/23 patients (57%) developed grade 3 and 10/23 (43%) grade 2 mucositis. Two patients (9%) had grade 4, five (22%) grade 3, and 16 (69%) grade 2 dermatitis. One patient died at day 30

  15. Aggressive simultaneous radiochemotherapy with cisplatin and paclitaxel in combination with accelerated hyperfractionated radiotherapy in locally advanced head and neck tumors. Results of a phase I-II trial

    International Nuclear Information System (INIS)

    Kuhnt, T.; Pigorsch, S.; Pelz, T.; Haensgen, G.; Dunst, J.; Becker, A.; Bloching, M.; Passmann, M.; Lotterer, E.

    2003-01-01

    We have tested a very aggressive combination protocol with cisplatin and escalated paclitaxel in combination with accelerated hyperfractionated radiotherapy to assess the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), overall toxicity, and response rate. Patients and Methods: The trial recruited 24 patients (21 males, three females, mean age 57 years) treated at our department from 1998 through 2001. Irradiation was administered in daily doses of 2 Gy up to 30 Gy followed by 1.4 Gy twice daily up to 70.6 Gy to the primary tumor and involved nodes and 51 Gy to the clinically negative regional nodes. The chemotherapy schedule included cisplatin in a fixed dose of 20 mg/m 2 on days 1-5 and 29-33 and paclitaxel at increasing dose levels of 20, 25, 30 mg/m 2 twice weekly over the whole treatment time. Patients were recruited in cohorts of three to six, and the MTD was reached if two out of six patients in one cohort developed DLT. DLT was defined as any grade 4 toxicity or any grade 3 toxicity requiring treatment interruption or unplanned hospitalization or any grade 3 neurotoxicity. We recruited mainly patients with large tumors for this protocol; all patients were stage IV, and the mean tumor volume (primary + metastases) amounted to 72 ± 61 cm 3 . The mean follow-up was 30 months (range 4-39 months). Results: One early death (peritonitis and sepsis a t day 10) occurred, and 23 patients were evaluable for acute toxicity and response. The MTD of paclitaxel was reached at the third dose level (30 mg/m 2 paclitaxel twice weekly). The DLT was severe mucositis grade 3 (n = 1) and skin erythema grade 4 (n = 2). After determining the MTD, another 14 patients were treated at the recommended dose level of paclitaxel with 25 mg/m 2 twice weekly. In summary, 13/23 patients (57%) developed grade 3 and 10/23 (43%) grade 2 mucositis. Two patients (9%) had grade 4, five (22%) grade 3, and 16 (69%) grade 2 dermatitis. One patient died at day 30 of neutropenic infection

  16. Feasibility of accelerated radiotherapy (AR) using a concomitant boost for the treatment of unresectable non-small cell lung cancer (NSCLC): a phase II study

    International Nuclear Information System (INIS)

    Kumar, Parvesh; Wan, Jim; Paig, Camilo U.; Kun, Larry E.; Niell, H. Barry

    1996-01-01

    Purpose/Objective: The feasibility of AR using a concomitant boost in the treatment of unresectable NSCLC was prospectively tested in a phase II study. Materials and Methods: Twenty patients were enrolled to the protocol between 11/90 and 5/93. Stage distribution was as follows: Medically inoperable stage I = 5 (T 1 = 1, T 2 = 4), stage IIIA = 1, and stage IIIA(N 2 ) = 14. Planned AR delivered a total dose of 65 Gy in 45 fractions over five weeks using a 'field within a field technique'. The large field (day 1, a.m.) encompassed the primary lesion and adjacent lymph nodes to 45 Gy at 1.8 Gy/fraction (fx). A CT planned small field (day 8, >6 hours apart in p.m.) included only the primary lesion and overt nodal disease to 20 Gy at 1.0 Gy/fx. Doses were not corrected for lung inhomogeneity. Results: Median age of the 20 male enrolled patients was 68 years (range = 42-80 years). Eighteen (90%) of 20 patients completed the planned AR without any interruptions in therapy. One patient experienced a 4 day interruption due to tumor related obstructive pneumonia while the other patient missed 2 days secondary to non-treatment related small bowel obstruction. No incidence of grade ≥3 esophagitis was observed. One patient experienced pneumonitis within the radiation portal 1 month post-RT which response d to corticosteroid therapy; otherwise, no late sequelae were observed. The median total delivered dose was 65 Gy (range 64.0-65.4). At a minimum follow-up interval of 30 months, the 2-year Kaplan-Meier and median survival are 15% and 13.4 months, respectively for all 20 patients. Conclusion: AR using a concomitant boost to 65 Gy in 5 weeks for unresectable NSCLC is feasible with minimal acute or long term toxicity. Median survival in our study was similar to the chemo radiation arms of CALGB 8433 and RTOG 8808 protocols. Protocols which combine AR with chemotherapy should be explored for unresectable NSCLC

  17. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...

  18. Experience with the functional assessment of cancer therapy-lung (FACT-L) in ECOG 4593, a phase II hyperfractionated accelerated radiation therapy (HART) trial

    International Nuclear Information System (INIS)

    Mehta, M.P.; Adak, S.; Wagner, H.; Cella, D.

    1997-01-01

    PURPOSE: To gain experience in measuring quality of life (QOL) using the FACT-L in patients (pt) with non small cell lung cancer (NSCLC) treated with an altered fractionation regimen, HART, in a Phase II, multiinstitutional ECOG trial. MATERIALS AND METHODS: Version 2 of FACT-L, with 43 questions in 6 subscale categories (8 physical well-being, 8 social/family well-being, 3 relationship with doctor, 6 emotional well-being, 8 functional well-being, 10 lung cancer symptoms), available in English, Spanish and French, was administered by data managers and filled out by pts, independent of physician presence or input. The HART trial enrolled 30 pts, and FACT-L was administered at baseline (tp 1), treatment completion (tp 2) and 4 weeks following therapy (tp 3). (35(43)) FACT-L items were designed to yield a total QOL score with higher values reflective of better QOL; in addition, a FACT-L trial outcome index (TOI) was computed (TOI = physical score + functional score + lung cancer related score), and is considered the most relevant clinical QOL measure. RESULTS: The FACT-L completion rates were: tp 1 - (30(30)) (100%), tp 2 - (29(30)) (97%) and tp 3 - (24(30)) (80%); the mean scores at various time points are summarized in the table below and indicate that FACT-L is responsive to changes over time. The differences in subscales and total scores can be used as a measure of change in QOL resulting from treatment; statistically significant change was noted from baseline to tp 2 for physical, emotional and functional well-being; and from baseline to tp 3 for emotional well-being. The change in TOI score was also evaluated as a function of response and toxicity grade, and no clear association emerged. When assessed as a function of survival (at the time of this analysis, (5(30)) pt were alive, with median survival of 56 weeks), the degradation in QOL was most severe for pt who died early; the mean change in TOI from baseline to tp 3 for pt dying in the first 25 weeks, 25

  19. Accelerated Innovation Pilot

    Science.gov (United States)

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  20. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  1. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  2. Accelerating networks

    International Nuclear Information System (INIS)

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  3. Displacement of cryomodule in CADS injector II

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jiandong; Zhang, Bin; Wang, Fengfeng; Wan, Yuqin; Sun, Guozhen; Yao, Junjie; Zhang, Juihui; He, Yuan [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics

    2017-06-15

    As Cryomodule can easily reduce higher power consumption and length of an accelerator and the accelerator can be operated more continuously. The Chinese academy of sciences institute of modern physics is developing an accelerator driven subcritical system (CADS) Injector II. Cryomodules are extremely complex systems, and their design optimization is strongly dependent on the accelerator application for which they are intended.

  4. DART-bid: dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily. High local control in early stage (I/II) non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zehentmayr, Franz; Wurstbauer, Karl; Deutschmann, Heinz; Sedlmayer, Felix [Landeskrankenhaus Salzburg, Univ.-Klinik fuer Radiotherapie und Radio-Onkologie, Univ.-Klinikum der Paracelsus Medizinischen Privatuniversitaet, Salzburg (Austria); Paracelsus Medizinische Privatuniversitaet, Institute for Research and Development of Advanced Radiation Technologies (radART), Salzburg (Austria); Fussl, Christoph; Kopp, Peter; Dagn, Karin; Fastner, Gerd [Landeskrankenhaus Salzburg, Univ.-Klinik fuer Radiotherapie und Radio-Onkologie, Univ.-Klinikum der Paracelsus Medizinischen Privatuniversitaet, Salzburg (Austria); Porsch, Peter; Studnicka, Michael [Landeskrankenhaus Salzburg, Univ.-Klinik fuer Pneumologie, Univ.-Klinikum der Paracelsus Medizinischen Privatuniversitaet, Salzburg (Austria)

    2014-09-23

    While surgery is considered standard of care for early stage (I/II), non-small-cell lung cancer (NSCLC), radiotherapy is a widely accepted alternative for medically unfit patients or those who refuse surgery. International guidelines recommend several treatment options, comprising stereotactic body radiation therapy (SBRT) for small tumors, conventional radiotherapy ≥ 60 Gy for larger sized especially centrally located lesions or continuous hyperfractionated accelerated RT (CHART). This study presents clinical outcome and toxicity for patients treated with a dose-differentiated accelerated schedule using 1.8 Gy bid (DART-bid). Between April 2002 and December 2010, 54 patients (median age 71 years, median Karnofsky performance score 70 %) were treated for early stage NSCLC. Total doses were applied according to tumor diameter: 73.8 Gy for < 2.5 cm, 79.2 Gy for 2.5-4.5 cm, 84.6 Gy for 4.5-6 cm, 90 Gy for > 6 cm. The median follow-up was 28.5 months (range 2-108 months); actuarial local control (LC) at 2 and 3 years was 88 %, while regional control was 100 %. There were 10 patients (19 %) who died of the tumor, and 18 patients (33 %) died due to cardiovascular or pulmonary causes. A total of 11 patients (20 %) died intercurrently without evidence of progression or treatment-related toxicity at the last follow-up, while 15 patients (28 %) are alive. Acute esophagitis ≤ grade 2 occurred in 7 cases, 2 patients developed grade 2 chronic pulmonary fibrosis. DART-bid yields high LC without significant toxicity. For centrally located and/or large (> 5 cm) early stage tumors, where SBRT is not feasible, this method might serve as radiotherapeutic alternative to present treatment recommendations, with the need of confirmation in larger cohorts. (orig.) [German] Die Standardbehandlung fuer nichtkleinzellige Bronchialkarzinome (NSCLC) im Stadium I/II ist die Operation, wobei Radiotherapie fuer Patienten, die nicht operabel sind oder die Operation ablehnen, als Alternative

  5. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  6. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  7. Accelerators and the Accelerator Community

    International Nuclear Information System (INIS)

    Malamud, Ernest; Sessler, Andrew

    2008-01-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process

  8. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  9. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  10. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  11. Hyperfractionated accelerated radiation therapy plus cetuximab plus cisplatin chemotherapy in locally advanced inoperable squamous cell carcinoma of the head and neck. Final 5-year results of a phase II study

    Energy Technology Data Exchange (ETDEWEB)

    Kuhnt, Thomas [University of Leipzig, Department of Imaging and Radiation Medicine, Clinic of Radiooncology, Leipzig (Germany); Schreiber, Andreas [Private Praxis for Radio Oncology Dresden, Dresden (Germany); Pirnasch, Anett [University of Rostock, Department of Radiation Oncology, Rostock (Germany); Hautmann, Matthias G. [University of Regensburg, Department of Radiotherapy, Regensburg (Germany); Hass, Peter [Otto von Guericke University of Magdeburg, Department of Radiotherapy, Magdeburg (Germany); Sieker, Frank P. [Martin Luther University of Halle-Wittenberg, Department of Radiotherapy, Halle (Saale) (Germany); Engenhart-Cabillic, Rita [Philipps University Marburg, Department of Radiotherapy, Marburg (Germany); Richter, Michael [Coordination Centre for Clinical Trials Halle, Halle (Saale) (Germany); Dellas, Kathrin; Dunst, Juergen [University of Kiel, Department of Radiation Oncology, Kiel (Germany)

    2017-09-15

    Cetuximab (CET) is a potent inhibitor of the epidermal growth factor receptor and has been shown to have activity in squamous cell carcinoma of the head and neck (SCCHN). We conducted a single-arm phase II trial of a combination therapy comprising cisplatin (CIS), CET and hyperfractionated accelerated radiotherapy (HART). Patients with UICC stage III or IVA/B, M0 SCCHN were enrolled and treated with an initial dose of CET (400 mg/m{sup 2}) and then with a weekly dosage of 250 mg/m{sup 2} during HART. HART was started with a prescribed dosage of 2.0 Gy per day for 3 weeks, followed by 1.4 Gy twice daily to a total dose of 70.6 Gy to the gross tumour volume. CIS (40 mg/m{sup 2}) was administered weekly (days 1, 8, 15, 22, 29 and 36). The primary objective of the phase II study was to determine the 2-year progression-free survival (PFS). Between November 2007 and November 2010, a total of 74 patients were enrolled in the study, of whom 65 were evaluable (83% were men). Median age was 56 years (range 37-69 years). An Oropharyngeal primary tumour was diagnosed in 49%, T4a,b in 65% and N2/3 in 96% of the patients. Of these patients, 85% were smokers or ex-smokers. Complete remission (CR) was observed in 23 patients (35%). The most common toxicity grade was ≥3, including mucositis (58%) and dysphagia (52%). The 2- and 5-year overall survival rates were 64 and 41%, the 2- and 5-year PFS rates were 45 and 32%, and the 2- and 5-year locoregional control rates were 47 and 33%, respectively. The combination of weekly CIS with HART plus CET is a feasible regimen for these unfavourable smoking-induced cancers. However, the parallel US study (RTOG 0522) showed no advantage of the enhanced triple therapy compared to chemoradiotherapy alone. (orig.) [German] Cetuximab (CET) ist ein potenter Inhibitor des epidermalen Wachstumsfaktor-Rezeptors, der schon bei Plattenepithelkarzinomen des Kopf-Hals-Bereichs (SCCHN) Wirkung gezeigt hat. Wir fuehrten eine prospektive, einarmige Phase-II

  12. Late Toxicity and Patient Self-Assessment of Breast Appearance/Satisfaction on RTOG 0319: A Phase 2 Trial of 3-Dimensional Conformal Radiation Therapy-Accelerated Partial Breast Irradiation Following Lumpectomy for Stages I and II Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chafe, Susan, E-mail: susan.chafe@albertahealthservices.ca [Department of Radiation Oncology, Cross Cancer Institute-University of Alberta, Edmonton, Alberta (Canada); Moughan, Jennifer [Department of Radiation Oncology, RTOG Statistical Center, Philadelphia, Pennsylvania (United States); McCormick, Beryl [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Pass, Helen [Womens' Breast Center, Stamford Hospital, Stamford, Connecticut (United States); Rabinovitch, Rachel [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Arthur, Douglas W. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Petersen, Ivy [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); White, Julia [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Vicini, Frank A. [Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, Michigan (United States)

    2013-08-01

    Purpose: Late toxicities and cosmetic analyses of patients treated with accelerated partial breast irradiation (APBI) on RTOG 0319 are presented. Methods and Materials: Patients with stages I to II breast cancer ≤3 cm, negative margins, and ≤3 positive nodes were eligible. Patients received three-dimensional conformal external beam radiation therapy (3D-CRT; 38.5 Gy in 10 fractions twice daily over 5 days). Toxicity and cosmesis were assessed by the patient (P), the radiation oncologist (RO), and the surgical oncologist (SO) at 3, 6, and 12 months from the completion of treatment and then annually. National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, was used to grade toxicity. Results: Fifty-two patients were evaluable. Median follow-up was 5.3 years (range, 1.7-6.4 years). Eighty-two percent of patients rated their cosmesis as good/excellent at 1 year, with rates of 64% at 3 years. At 3 years, 31 patients were satisfied with the treatment, 5 were not satisfied but would choose 3D-CRT again, and none would choose standard radiation therapy. The worst adverse event (AE) per patient reported as definitely, probably, or possibly related to radiation therapy was 36.5% grade 1, 50% grade 2, and 5.8% grade 3 events. Grade 3 AEs were all skin or musculoskeletal-related. Treatment-related factors were evaluated to potentially establish an association with observed toxicity. Surgical bed volume, target volume, the number of beams used, and the use of bolus were not associated with late cosmesis. Conclusions: Most patients enrolled in RTOG 0319 were satisfied with their treatment, and all would choose to have the 3D-CRT APBI again.

  13. Test accelerator for linear collider

    International Nuclear Information System (INIS)

    Takeda, S.; Akai, K.; Akemoto, M.; Araki, S.; Hayano, H.; Hugo, T.; Ishihara, N.; Kawamoto, T.; Kimura, Y.; Kobayashi, H.; Kubo, T.; Kurokawa, S.; Matsumoto, H.; Mizuno, H.; Odagiri, J.; Otake, Y.; Sakai, H.; Shidara, T.; Shintake, T.; Suetake, M.; Takashima, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yamamoto, N.; Yokoya, K.; Yoshida, M.; Yoshioka, M.; Yamaoka, Y.

    1989-01-01

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  14. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  15. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  16. Computing at Belle II

    International Nuclear Information System (INIS)

    Kuhr, Thomas

    2012-01-01

    Belle II, a next-generation B-factory experiment, will search for new physics effects in a data sample about 50 times larger than the one collected by its predecessor, the Belle experiment. To match the advances in accelerator and detector technology, the computing system and the software have to be upgraded as well. The Belle II computing model is presented and an overview of the distributed computing system and the offline software framework is given.

  17. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: hnuhu2000@yahoo.com. ABSTRACT. The manganese (II), cobalt (II), nickel (II) and .... water and common organic solvents, but are readily soluble in acetone. The molar conductance measurement [Table 3] of the complex compounds in.

  18. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  19. Optimization of negative ion accelerators

    International Nuclear Information System (INIS)

    Pamela, J.

    1991-01-01

    We have started to study negative ion extraction and acceleration systems in view of designing a 1 MeV D - accelerator. This study is being made with a two-Dimensional code that has been specifically developed in our laboratory and validated by comparison to three sets of experimental data. We believe that the criteria for negative ion accelerator design optimization should be: (i) to provide the best optics; (ii) to reduce the power load on the extraction grid; (iii) to allow operation with low electric fields in order to reduce the problem of breakdowns. We show some results of optics calculations performed for two systems that will be operational in the next months: the CEA-JAERI collaboration at Cadarache and the european DRAGON experiment at Culham. Extrapolations to higher energies of 500 to 1100 keV have also been conducted. All results indicate that the overall accelerator length, whatever be the number of gaps, is constrained by space charge effects (Child-Langmuir). We have combined this constraint with high-voltage hold-off empirical laws. As a result, it appears that accelerating 10 mA/cm 2 of D - at 1 MeV with good optics, as required for NET or ITER, is close to the expected limit of high-voltage hold-off

  20. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    Science.gov (United States)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall

  1. Preliminary PBFA II design

    International Nuclear Information System (INIS)

    Johnson, D.L.; VanDevender, J.P.; Martin, T.H.

    1980-01-01

    The upgrade of Sandia National Laboratories particle beam fusion accelerator, PBFA I, to PBFA II presents several interesting and challenging pulsed power design problems. PBFA II requires increasing the PBFA I output parameters from 2 MV, 30 TW, 1 MJ to 4 MV, 100 TW, 3.5 MJ with the constraint of using much of the same PBFA I hardware. The increased PBFA II output will be obtained by doubling the number of modules (from 36 to 72), increasing the primary energy storage (from 4 MJ to 15 MJ), lowering the pulse forming line (PFL) output impedance, and adding a voltage doubling network

  2. Accelerators of future generation

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1983-01-01

    A brief review of the prospects of development of various of types accelerator over next 10 to 15 years is given. The following directions are considered: superhign energy proton accelerators and storage rings, electron-positron colliding beams, heavy ion accelerators, medium energy, high-current proton accelerators superhigh power particle beams (electrons light- and heavy ions) for inertial fusion

  3. Future accelerator technology

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes

  4. Future HEP Accelerators: The US Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Pushpalatha [Fermilab; Shiltsev, Vladimir [Fermilab

    2015-11-02

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed and are currently under consideration for the medium- and long-term future programs of accelerator-based HEP research. In this paper, we briefly review the post-LHC energy frontier options, both for lepton and hadron colliders in various regions of the world, as well as possible future intensity frontier accelerator facilities.

  5. A microwave inverse Cerenkov Accelerator (MICA)

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    1999-01-01

    The objective of this Phase II SBIR research program was to complete the final design originated during Phase I for a prototype Microwave Inverse Cerenkov Accelerator (MICA), to fabricate the-prototype MICA, and to test its performance as an electron accelerator. This report contains details of the design, predictions of accelerator performance, results of cold tests on the MICA structure, and details of the installation of MICA on the Yale Beam Physics Laboratory 6-MeV beamline. Discussion of future work is also included

  6. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  7. Two-pulse acceleration for BEPCII injector linac

    International Nuclear Information System (INIS)

    Pei Shilun; Wang Shuhong; Lu Weibin

    2007-01-01

    In order to double the injection rate of positron beam from the linac to the storage ring of BEPC II, a two-pulse generation and acceleration scheme has been proposed. The two-pulse simulation by programs including LIAR, PARMELA, EGUN and TRANSPORT is described first and the method is applied in the beam dynamics studies of BEPC II linac. The experiment of two-pulse acceleration was performed in BEPC II linac and some preliminary results are obtained, which provides a good reference for further upgrading of BEPC II injector linac. (authors)

  8. Computer programs in accelerator physics

    International Nuclear Information System (INIS)

    Keil, E.

    1984-01-01

    Three areas of accelerator physics are discussed in which computer programs have been applied with much success: i) single-particle beam dynamics in circular machines, i.e. the design and matching of machine lattices; ii) computations of electromagnetic fields in RF cavities and similar objects, useful for the design of RF cavities and for the calculation of wake fields; iii) simulation of betatron and synchrotron oscillations in a machine with non-linear elements, e.g. sextupoles, and of bunch lengthening due to longitudinal wake fields. (orig.)

  9. Folded tandem ion accelerator facility at Trombay

    Indian Academy of Sciences (India)

    In the present system, negative ion beams extracted from the SNICS-II source are pre- accelerated up to 150 keV. ..... of PCs with a front-end interface using CAMAC instrumentation and uses QNX real time operating system. There are large ...

  10. Other people's accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-06-15

    The first report from the Washington Accelerator Conference concentrated on news from the particle physics centres. But the bulk of the Conference covered the use of accelerators in other fields, underlining this valuable spinoff from particle physics.

  11. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  12. The electron accelerator Ridgetron

    International Nuclear Information System (INIS)

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  13. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  14. Unified accelerator libraries

    International Nuclear Information System (INIS)

    Malitsky, Nikolay; Talman, Richard

    1997-01-01

    A 'Universal Accelerator Libraries' (UAL) environment is described. Its purpose is to facilitate program modularity and inter-program and inter-process communication among heterogeneous programs. The goal ultimately is to facilitate model-based control of accelerators

  15. YEREVAN: Acceleration workshop

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Sponsored by the Yerevan Physics Institute in Armenia, a Workshop on New Methods of Charged Particle Acceleration in October near the Nor Amberd Cosmic Ray Station attracted participants from most major accelerator centres in the USSR and further afield

  16. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    Southworth, Brian

    1991-01-01

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  17. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  18. Vp x B acceleration

    International Nuclear Information System (INIS)

    Sugihara, Ryo.

    1987-05-01

    A unique particle acceleration by an electrostatic (ES) wave, a magnetosonic shock wave as well as an electromagnetic (EM) wave is reviewed. The principle of the acceleration is that when a charged particle is carried across an external magnetic field the charge feels a DC field (the Lorentz force) and is accelerated. The theory for the ES wave acceleration is experimentally verified thought it is semi-quantitative. The shock acceleration is extensively studied theoretically and in a particle simulation method and the application is extended to phenomena in interplanetary space. The EM wave acceleration is based on a trapping in a moving neutral sheet created by the wave magnetic field and the external magnetic field, and the particle can be accelerated indefinitely. A brief sketch on a slow-wave-structure for this acceleration will be given. (author)

  19. Accelerator-timing system

    International Nuclear Information System (INIS)

    Timmer, E.; Heine, E.

    1985-01-01

    Along the NIKHEF accelerator in Amsterdam (Netherlands), at several places a signal is needed for the sychronisation of all devices with the acceleration process. In this report, basic principles and arrangements of this timing system are described

  20. Linear accelerator: A concept

    Science.gov (United States)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  1. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  2. Accelerators at school

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  3. Accelerators at school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required.

  4. Accelerators for Medicine

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This lecture will review the different applications of particle accelerators to the medical field, from cancer treatment with beams of accelerator-produced particles (photons, electrons, protons, ions and neutrons) to the generation of radioactive isotopes used in medical diagnostics, in cancer therapy and in the new domain of theragnostics. For each application will be outlined the state of the art, the potential, and the accelerator challenges to be faced to meet the increasing demand for therapeutic procedures based on accelerators.

  5. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  6. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  7. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  8. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Barbalat, O.

    1994-01-01

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  9. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  10. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  11. Accelerators and Dinosaurs

    CERN Multimedia

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  12. Far field acceleration

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail

  13. MAFF–The Munich accelerator for fission fragments

    Indian Academy of Sciences (India)

    Research reactors; linear accelerator; beam transport; particle sources and targets; ion sources. Abstract. At the new high flux reactor FRM-II in Munich the accelerator MAFF (Munich accelerator for fission fragments) is under design. In the high neutron flux of 1014 n/cm2 s up to 1014 neutron-rich fission fragments per ...

  14. The First Two Electron Linear Accelerators in South Mrica

    African Journals Online (AJOL)

    gap oscillator and transmission lines to accelerate particles in a straight line. In 1928, Wideroe in Germany success- fully applied the resonance principle to accelerate potas- sium ions to 50 kV with an applied voltage of 25 kV. Technical advances resulting from the development of radar during World War II made possible ...

  15. MAFF – The Munich accelerator for fission fragments

    Indian Academy of Sciences (India)

    CERN, Genf, Switzerland. Abstract. At the new high flux reactor FRM-II in Munich the accelerator MAFF (Munich accel- erator for fission ..... 16th Int. Conf. on the Application of Accelerators in Research and Industry,. CAARI 2000, Denton, Texas. [12] M Cavenago, Rev. Sci. Instrum. 71, 663 (2000). [13] H-J Maier et al, Nucl.

  16. Wandering accelerators throughout my life (1)

    International Nuclear Information System (INIS)

    Nakai, Kozi

    2009-01-01

    My wanderings about accelerators started being stimulated by nuclear physics activities of the Kikuchi Laboratory in Osaka University. When the university was founded in 1931, President Nagaoka put emphasis on the nuclear physics programs and called Professor Kikuchi to establish a center of nuclear physics. Since then the laboratory successfully cultivated the new field through studies of the neutron-nucleus interactions with a Cockcroft-Walton accelerator, the beta-decay study with a Cyclotron before the World-War II. Those accelerators were all home made, including the second cyclotron built after the war. Through such experimental programs, the Kikuchi Laboratory brought up many talented physicists in accelerator and nuclear science. (author)

  17. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  18. Notes on Laser Acceleration

    International Nuclear Information System (INIS)

    Tajima, T.

    2008-01-01

    This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies

  19. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  20. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  1. Accelerations in Flight

    Science.gov (United States)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  2. Accelerators for energy

    International Nuclear Information System (INIS)

    Inoue, Makoto

    2000-01-01

    A particle accelerator is a device to consume energy but not to produce it. Then, the titled accelerator seems to mean an accelerator for using devices related to nuclear energy. For an accelerator combined to nuclear fissionable fuel, neutron sources are D-T type, (gamma, n) reaction using electron beam type spallation type, and so forth. At viewpoints of powers of incident beam and formed neutron, a spallation type source using high energy proton is told to be effective but others have some advantages by investigation on easy operability, easy construction, combustion with target, energy and directivity of neutron, and so forth. Here were discussed on an accelerator for research on accelerator driven energy system by dividing its researching steps, and on kind, energy, beam intensity, and so forth of an accelerator suitable for it. And, space electric charge effect at beam propagation direction controlled by beam intensity of cyclotron was also commented. (G.K.)

  3. Information on Asse II

    International Nuclear Information System (INIS)

    2014-01-01

    The brochure published by BfS describes the actual situation of Asse II with respect to the debate on an interim storage and the status of the realization of a final repository search law. During the visit of the new environment minister Hendricks in the underground facility repository Asse II the issue interim storage site and the retrieval of the corroded casks with radioactive waste were discussed. The challenges for BFS include the acceleration of the retrieval process and the safety of the procedure.

  4. Copper (II) addition to accelerate lactic acid production from co-fermentation of food waste and waste activated sludge: Understanding of the corresponding metabolisms, microbial community and predictive functional profiling.

    Science.gov (United States)

    Ye, Tingting; Li, Xiang; Zhang, Ting; Su, Yinglong; Zhang, Wenjuan; Li, Jun; Gan, Yanfei; Zhang, Ai; Liu, Yanan; Xue, Gang

    2018-03-20

    Bio-refinery of food waste and waste activated sludge to high value-added chemicals, such as lactic acid, has attracted particular interest in recent years. In this paper, the effect of copper (II) dosing to the organic waste fermentation system on lactic acid production was evaluated, which proved to be a promising method to stimulate high yield of lactic acid (77.0% higher than blank) at dosage of 15 μM-Cu 2+ /g VSS. As mechanism study suggested, copper addition enhanced the activity of α-glycosidase and glycolysis, which increased the substrate for subsequent acidification; whereas, the high dosage (70 μM-Cu 2+ /g VSS) inhibited the conversion of lactic acid to VFA, thus stabilized lactic acid concentration. Microbial community study revealed that small amount of copper (II) at 15 μM/g VSS resulted in the proliferation of Lactobacillus to 82.6%, which mainly produced lactic acid. Finally, the variation of functional capabilities implied that the proposed homeostatic system II was activated at relatively low concentration of copper. Meanwhile, membrane transport function and carbohydrate metabolism were also strengthened. This study provides insights into the effect of copper (II) on the enhancement of lactic acid production from co-fermentation of food waste and waste activated sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  6. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  7. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  8. 2014 Accelerators meeting, Grenoble

    International Nuclear Information System (INIS)

    Lucotte, Arnaud; Lamy, Thierry; De Conto, Jean-Marie; Fontaine, Alain; Revol, Jean-Luc; Nadolski, Laurent S.; Kazamias, Sophie; Vretenar, Maurizio; Ferrando, Philippe; Laune, Bernard; Vedrine, Pierre

    2014-10-01

    The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Laboratory of subatomic physics and cosmology - LPSC-Grenoble (Lucotte, Arnaud; Lamy, Thierry); 2 - Presentation of the Accelerators division of the French Society of Physics (Fontaine, Alain; Revol, Jean-Luc); 3 - Presentation of Grenoble's master diplomas in Accelerator physics (Nadolski, Laurent S.); 4 - Presentation of Paris' master diplomas in big instruments (Kazamias, Sophie); 5 - Particle accelerators and European Union's projects (Vretenar, Maurizio); 6 - French research infrastructures (Ferrando, Philippe); 7 - Coordination of accelerators activity in France (Laune, Bernard; Vedrine, Pierre)

  9. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L; Duru, Ph; Koch, J M; Revol, J L; Van Vaerenbergh, P; Volpe, A M; Clugnet, K; Dely, A; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  10. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D.

    2002-01-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  11. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  12. Japan Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation

  13. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  14. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  15. Wake field accelerators

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered

  16. CONFERENCE: Computers and accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-01-15

    In September of last year a Conference on 'Computers in Accelerator Design and Operation' was held in West Berlin attracting some 160 specialists including many from outside Europe. It was a Europhysics Conference, organized by the Hahn-Meitner Institute with Roman Zelazny as Conference Chairman, postponed from an earlier intended venue in Warsaw. The aim was to bring together specialists in the fields of accelerator design, computer control and accelerator operation.

  17. Japan Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-11-15

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation.

  18. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The CERN Accelerator School (CAS) recently held its Advanced Accelerator Physics course in Greece on the island of Rhodes. Complementing the general course in Finland last year, this course was organized together with the University of Athens and NCSR. Demokritos. Accelerator specialists from Europe, CIS, Japan and USA followed two weeks of ''state-of-theart'' lectures designed to complete their education in the field

  19. Accelerator and RF system development for NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Callin, R.; Deruyter, H.; Early, R.; Fant, K.S.; Farkas, Z.D.; Fowkes, W.R.; Galloway, C.; Hoag, H.A.; Koontz, R.

    1993-01-01

    An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, pre-buncher, pre-accelerator, focussing elements, and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented

  20. Control Infrastructure for a Pulsed Ion Accelerator

    International Nuclear Information System (INIS)

    Persaud, A.; Regis, M. J.; Stettler, M. W.; Vytla, V. K.

    2016-01-01

    We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.

  1. Control Infrastructure for a Pulsed Ion Accelerator

    Science.gov (United States)

    Persaud, A.; Regis, M. J.; Stettler, M. W.; Vytla, V. K.

    2016-10-01

    We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.

  2. Applying the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barbalat, Oscar

    1989-12-15

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology.

  3. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  4. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  5. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  6. Interacting with accelerators

    International Nuclear Information System (INIS)

    Dasgupta, S.

    1994-01-01

    Accelerators are research machines which produce energetic particle beam for use as projectiles to effect nuclear reactions. These machines along with their services and facilities may occupy very large areas. The man-machine interface of accelerators has evolved with technological changes in the computer industry and may be partitioned into three phases. The present paper traces the evolution of man-machine interface from the earliest accelerators to the present computerized systems incorporated in modern accelerators. It also discusses the advantages of incorporating expert system technology for assisting operators. (author). 8 ref

  7. FFAGS for muon acceleration

    International Nuclear Information System (INIS)

    Berg, J. Scott; Kahn, Stephen; Palmer, Robert; Trbojevic, Dejan; Johnstone, Carol; Keil, Eberhard; Aiba, Masamitsu; Machida, Shinji; Mori, Yoshiharu; Ogitsu, Toru; Ohmori, Chihiro; Sessler, Andrew; Koscielniak, Shane

    2003-01-01

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed

  8. Accelerator-based BNCT.

    Science.gov (United States)

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  9. Applying the accelerator

    International Nuclear Information System (INIS)

    Barbalat, Oscar

    1989-01-01

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology

  10. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  11. Rapidly alternating combination of cisplatin-based chemotherapy and hyperfractionated accelerated radiotherapy in split course for Stage IIIA and Stage IIIB non-small cell lung cancer: results of a Phase I-II study by the GOTHA group

    Energy Technology Data Exchange (ETDEWEB)

    Alberto, P.; Mermillod, B. [Hopital Cantonal Geneve, Geneva (Switzerland); Mirimanoff, R.O.; Leyvraz, S.; Nagy-Mignotte, H.; Bolla, M.; Wellmann, D.; Moro, D.; Brambilla, E. [Hopital Cantonal Universitaire, Lausanne (Switzerland)

    1995-08-01

    The prognosis of stage III non-small cell lung cancer (NSCLC) can be improved by a combination of radiotherapy (RT) and chemotherapy (CT). In this study, the GOTHA group evaluated the feasibility, tolerance, tumour response, pattern of failure and effect on survival of a combination alternating accelerated hyperfractionated (AH) RT and CT in patients with tumour stage III NSCLC. Toxic effects were leucopenia, nausea and vomiting, mucositis, diarrhoea, alopecia and peripheral neuropathy. Alternating CT and AHRT, as used in this study, were well tolerated and allowed full dose delivery within less than 12 weeks. Initial response was not predictive of survival. The survival curve is encouraging and the 5 year survival is superior to the 5% generally observed with conventionally fractionated radiotherapy. (author).

  12. Copper (II)

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Valine (2 - amino - 3 – methylbutanoic acid), is a chemical compound containing .... Stability constant (Kf). Gibb's free energy. ) (. 1. −. ∆. Mol. JG. [CuL2(H2O)2] ... synthesis and characterization of Co(ii), Ni(ii), Cu (II), and Zn(ii) complexes with ...

  13. Primer on theory and operation of linear accelerators in radiation therapy

    International Nuclear Information System (INIS)

    Karzmark, C.J.; Morton, R.J.

    1981-12-01

    This primer is part of an educational package that also includes a series of 3 videotapes entitled Theory and Operation of Linear Accelerators in Radiation Therapy, Parts I, II, and III. This publication provides an overview of the components of the linear accelerator and how they function and interrelate. The auxiliary systems necessary to maintain the operation of the linear accelerator are also described

  14. Accelerators: radiation safety and regulatory compliance

    International Nuclear Information System (INIS)

    Bandyopadhyay, Tapas

    2013-01-01

    Growth of accelerators, both positive ions and electron, is very high in India. This may be because of the wide acceptance of these machines in the industrial purposes, medical uses, material science studies, upcoming ADSS facility and many other reasons. Most of cases for societal uses, accelerators have to be installed in the dense public domain. Accelerators for basic research and development purposes to be installed may in public domain or in isolated site. These accelerators are to be classified into different categories in terms of regulatory compliance. Radiation shield design, HVAC system required to be in place with design so that the dose and effluent discharge in the public domain is within a limit considering different pathways. INDUS I and II at Indore, K-130 and K500 machine at VECC, Pelletron at TIFR, IUAC, BARC, EBC at Mumbai are in operation. Apart from this accelerators, a series of medical accelerators in operation and yet to be operational which are generally producing PET isotopes for the diagnosis purposes. VECC is aiming to operate 30 MeV proton machine with about 500 μA beam current for the production of PET, SPECT isotopes for diagnosis purposes and also therapeutic use in near future. Detail requirement in terms of choice of sites, source term estimation for achieving optimum shield thickness, ventilation system, site layout and planning , radioactive effluent handling both gaseous and liquid, decommission aspects will be discussed. (author)

  15. Accelerator Modeling with MATLAB Accelerator Toolbox

    International Nuclear Information System (INIS)

    2002-01-01

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  16. Santa Fe Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 10th USA National Particle Accelerator Conference was hosted this year by the Los Alamos National Laboratory in Santa Fe from 21-23 March. It was a resounding success in emphasizing the ferment of activity in the accelerator field. About 900 people registered and about 500 papers were presented in invited and contributed talks and poster sessions

  17. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  18. CERN Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford.

  19. Accelerator for nuclear transmutation

    International Nuclear Information System (INIS)

    Schapira, J.P.

    1984-01-01

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program [fr

  20. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  1. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  2. Hamburg Accelerator Conference (2)

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Edmund J.N. [CERN Accelerator School (Switzerland)

    1992-11-15

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval.

  3. Charged particle accelerator

    International Nuclear Information System (INIS)

    Arakawa, Kazuo.

    1969-01-01

    An accelerator is disclosed having a device which permits the electrodes of an accelerator tube to be readily conditioned in an uncomplicated manner before commencing operation. In particle accelerators, it is necessary to condition the accelerator electrodes before a stable high voltage can be applied. Large current accelerators of the cockcroft-walton type require a complicated manual operation which entails applying to the electrodes a low voltage which is gradually increased to induce a vacuum discharge and then terminated. When the discharge attains an extremely low level, the voltage is again impressed and again raised to a high value in low current type accelerators, a high voltage power supply charges the electrodes once to induce discharge followed by reapplying the voltage when the vacuum discharge reaches a low level, according to which high voltage is automatically applied. This procedure, however, requires that the high voltage power supply be provided with a large internal resistance to limit the current to within several milliamps. The present invention connects a high voltage power supply and an accelerator tube through a discharge current limiting resistor wired in parallel with a switch. Initially, the switch is opened enabling the power supply to impress a voltage limited to a prescribed value by a suitably chosen resistor. Conditioning is effected by allowing the voltage between electrodes to increase and is followed by closing the switch through which high voltage is applied directly to the accelerator for operation. (K.J. Owens)

  4. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  5. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  6. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford

  7. Thoughts on accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1978-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  8. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  9. Thoughts of accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  10. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    Rowe, C.H.; Wilton, M.S. de.

    1979-01-01

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  11. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... uses microwave technology (similar to that used for radar) to accelerate electrons in a part of the accelerator called the "wave guide," then allows ... risk of accidental exposure is extremely low. top of page This page was ... No Please type your comment or suggestion into the following text ...

  12. Hamburg Accelerator Conference (2)

    International Nuclear Information System (INIS)

    Wilson, Edmund J.N.

    1992-01-01

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval

  13. Optimization of accelerator control

    International Nuclear Information System (INIS)

    Vasiljev, N.D.; Mozin, I.V.; Shelekhov, V.A.; Efremov, D.V.

    1992-01-01

    Expensive exploitation of charged particle accelerators is inevitably concerned with requirements of effectively obtaining of the best characteristics of accelerated beams for physical experiments. One of these characteristics is intensity. Increase of intensity is hindered by a number of effects, concerned with the influence of the volume charge field on a particle motion dynamics in accelerator's chamber. However, ultimate intensity, determined by a volume charge, is almost not achieved for the most of the operating accelerators. This fact is caused by losses of particles during injection, at the initial stage of acceleration and during extraction. These losses are caused by deviations the optimal from real characteristics of the accelerating and magnetic system. This is due to a number of circumstances, including technological tolerances on structural elements of systems, influence of measuring and auxiliary equipment and beam consumers' installations, placed in the closed proximity to magnets, and instability in operation of technological systems of accelerator. Control task consists in compensation of deviations of characteristics of magnetic and electric fields by optimal selection of control actions. As for technical means, automatization of modern accelerators allows to solve optimal control problems in real time. Therefore, the report is devoted to optimal control methods and experimental results. (J.P.N.)

  14. Accelerator breeder concept

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Fraser, J.S.; Garvey, P.M.

    1978-10-01

    The principal components and functions of an accelerator breeder are described. The role of the accelerator breeder as a possible long-term fissile production support facility for CANDU (Canada Deuterium Uranium) thorium advanced fuel cycles and the Canadian research and development program leading to such a facility are outlined. (author)

  15. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  16. Molecular ion acceleration using tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    In TIARA compound beam radiation system, cluster beams have been produced using 3 MV tandem accelerator (9SDH-2) to supply them to various radiation on injection experiments. Till now, productions of C{sub 2-8}, Si{sub 2-4} and O{sub 2} and their accelerations up to 6 MeV have been succeeded. This study aimed at production and acceleration of B{sub 2-4} and LiF. Anion clusters were produced using the conventional ion source of cesium sputter type. The proportions of atoms, molecules and clusters elicited from the ion source were varied depending on the material`s properties and the operating conditions of ion source such as sample temperature, sputter voltage and the shape of sample. The anion clusters were accelerated toward the high voltage terminal in the center of tandem accelerator, leading to cations through losing their electrons by the collision to N{sub 2} gas in a charge conversion cell at the terminal. Positively charged cluster ions could be obtained by modulating the pressure of N{sub 2} gas. Thus, B{sub 2} (64 nA), B{sub 3} (4.4 nA) and B{sub 4} (2.7 nA) have been produced and their maximum survival probabilities were higher than those of carbon or silicon clusters. In addition, the relationship between beam current and gas pressure was investigated for Bn (n = 2-4) and LiF. (M.N.)

  17. Plasma based accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  18. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  19. 2016 Accelerators meeting

    International Nuclear Information System (INIS)

    Spiro, Michel; Revol, Jean-Luc; Biarrotte, Jean-Luc; Napoly, Olivier; Jardin, Pascal; Chautard, Frederic; Thomas, Jean Charles; Petit, Eric

    2016-09-01

    The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Ganil - Grand accelerateur national d'ions lourds/Big national heavy-ion accelerator, Caen (Jardin, Pascal); 2 - Presentation of the Accelerators division of the French Society of Physics (Revol, Jean-Luc); 3 - Forward-looking and Prospective view (Napoly, Olivier); 4 - Accelerators at the National Institute of Nuclear and particle physics, situation, Forward-looking and Prospective view (Biarrotte, Jean-Luc); 5 - GANIL-SPIRAL2, missions and goals (Thomas, Jean Charles); 6 - The SPIRAL2 project (Petit, Eric)

  20. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  1. Standing wave accelerating structures

    International Nuclear Information System (INIS)

    Zavadtsev, A.A.; Zverev, B.V.; Sobepin, N.P.

    1984-01-01

    Accelerating ELA structures are considered and chosen for applied purposes of special designation. Accelerating structures with the standing wave are considered most effective for small size ELA. Designs and results of experimental investigation of two new accelerating structures are described. These are structures of the ''ring'' type with a decreased number of excitinq oscillation types and strucuture with transverse rods with a twice smaller transverse size as compared with the biperiodical structure with internal connection resonators. The accelerating biperiodical structures of the conventional type by the fact that the whole structure is not a linear chain of connected resonators, but a ring one. Model tests have shown that the homogeneous structure with transverse rods (STR) at the frequency of 2.8 GHz in the regime of the standing wave has an effective shunt resistance equalling 23 MOhm/m. It is shown that the small transverse size of biperiodic STR makes its application in logging linear electron accelerators

  2. An unofficial history of Japanese accelerators. Part 1

    International Nuclear Information System (INIS)

    Inoue, Makoto

    2004-01-01

    History of charged particle accelerators in Japan is reviewed. The nuclear reaction by an accelerator was observed first in 1934 at Taipei in Taiwan, which was a colony of Japan at that time. Before the world war II, three cyclotrons were built at Institute of Physics and Chemistry Research, Osaka University and Kyoto University. After the war, the cyclotrons were destroyed by the occupation army. The construction of accelerators was restarted at 1951, and synchrotrons, betatrons, Van de Graaff accelerators, Cockcroft-Walton accelerators as well as cyclotrons were built at various universities and institutes. To be operated and used by the nuclear physicists from all over Japan, a large-scale accelerator facility, Institute for Nuclear Study, was founded at University of Tokyo. (K.Y.)

  3. Classical mechanics and electromagnetism in accelerator physics

    CERN Document Server

    Stupakov, Gennady

    2018-01-01

    This self-contained textbook with exercises discusses a broad range of selected topics from classical mechanics and electromagnetic theory that inform key issues related to modern accelerators. Part I presents fundamentals of the Lagrangian and Hamiltonian formalism for mechanical systems, canonical transformations, action-angle variables, and then linear and nonlinear oscillators. The Hamiltonian for a circular accelerator is used to evaluate the equations of motion, the action, and betatron oscillations in an accelerator. From this base, we explore the impact of field errors and nonlinear resonances. This part ends with the concept of the distribution function and an introduction to the kinetic equation to describe large ensembles of charged particles and to supplement the previous single-particle analysis of beam dynamics. Part II focuses on classical electromagnetism and begins with an analysis of the electromagnetic field from relativistic beams, both in vacuum and in a resistive pipe. Plane electromagne...

  4. Accelerator/Experiment operations - FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Brice, S.; Conrad, J.; Denisov, D.; Ginther, G.; Holmes, S.; James, C.; Lee, W.; Louis, W.; Moore, C.; Plunkett, R.; Raja, R.; /Fermilab

    2006-10-01

    This Technical Memorandum (TM) summarizes the Fermilab accelerator and experiment operations for FY 2006. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the FY 2006 Run II at the Tevatron Collider, the MiniBooNE experiments running in the Booster Neutrino Beam in neutrino and antineutrino modes, MINOS using the Main Injector Neutrino Beam (NuMI), and SY 120 activities.

  5. Analyzing radial acceleration with a smartphone acceleration sensor

    Science.gov (United States)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  6. Collective ion acceleration

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  7. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  8. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  9. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  10. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  11. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  12. Accelerators 2010. Highlights and annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-10

    The following topics are dealt with: DESY II beam operation, DORIS III, PETRA III, FLASH, FLASH II, the European XFEL, a relativistic electron gun for atomic explorations, beam quality improvement, the international linear collider, new power supplies for DESY II, PETRA III power supplies, PETRA III beam position monitoring system, personnel safety, the FLASH refrigerator, the European XFEL-type RF waveguide distribution for FLASH, the FLASH injector low-level RF (LLRF) system upgrade, the precision RF field regulation at FLASH, ultrashort bunches at FLASH, the improved optical link design at FLASH, the accelerator module test facility, LLRF development for the European XFEL, the European XFEL cavities, niobium material for European-XFEL cavities, surface investigation on prototype cavities for the European XFEL, advances in large-grain resonators for superconducting RF technology, cavities for electron accelerator diagnostics in the European XFEL, temperature calculations for the European XFEL, electron interactions in free-electron lasers, achromatic and apochromatic beam transport, the DESY accelerator-idea market, new concepts for free-electron lasers. (HSI)

  13. Accelerators 2010. Highlights and annual report

    International Nuclear Information System (INIS)

    2011-01-01

    The following topics are dealt with: DESY II beam operation, DORIS III, PETRA III, FLASH, FLASH II, the European XFEL, a relativistic electron gun for atomic explorations, beam quality improvement, the international linear collider, new power supplies for DESY II, PETRA III power supplies, PETRA III beam position monitoring system, personnel safety, the FLASH refrigerator, the European XFEL-type RF waveguide distribution for FLASH, the FLASH injector low-level RF (LLRF) system upgrade, the precision RF field regulation at FLASH, ultrashort bunches at FLASH, the improved optical link design at FLASH, the accelerator module test facility, LLRF development for the European XFEL, the European XFEL cavities, niobium material for European-XFEL cavities, surface investigation on prototype cavities for the European XFEL, advances in large-grain resonators for superconducting RF technology, cavities for electron accelerator diagnostics in the European XFEL, temperature calculations for the European XFEL, electron interactions in free-electron lasers, achromatic and apochromatic beam transport, the DESY accelerator-idea market, new concepts for free-electron lasers. (HSI)

  14. New accelerator ideas

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow

  15. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  16. ACCELERATORS: School report

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-12-15

    The expanded 1987 US Particle Accelerator School, held at Fermilab from 20 July to 14 August, included two two-week sessions. In the first, 101 students covered three university-style courses, listed as upper-division University of Chicago physics, covering the fundamentals of particle beams, magnetic optics and acceleration; relativistic electronics; and high energy storage rings. The 180 participants in the second session profited from 24 short courses presented by experts and covering a wide variety of topics in the physics and technology of particle accelerators.

  17. Hadron accelerators in medicine

    International Nuclear Information System (INIS)

    Amaldi, U.

    1996-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  18. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  19. ACCELERATORS: School prizes

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  20. Accelerator Toolbox for MATLAB

    International Nuclear Information System (INIS)

    Terebilo, Andrei

    2001-01-01

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  1. RF linear accelerators

    CERN Document Server

    Wangler, Thomas P

    2008-01-01

    Thomas P. Wangler received his B.S. degree in physics from Michigan State University, and his Ph.D. degree in physics and astronomy from the University of Wisconsin. After postdoctoral appointments at the University of Wisconsin and Brookhaven National Laboratory, he joined the staff of Argonne National Laboratory in 1966, working in the fields of experimental high-energy physics and accelerator physics. He joined the Accelerator Technology Division at Los Alamos National Laboratory in 1979, where he specialized in high-current beam physics and linear accelerator design and technology. In 2007

  2. Auroral electron acceleration

    International Nuclear Information System (INIS)

    Bryant, D.A.

    1989-10-01

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  3. New accelerator ideas

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-05-15

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow.

  4. Advanced Accelerator Concepts

    Science.gov (United States)

    Siemann, Robert

    1998-04-01

    Current particle accelerators rely on conventional or superconducting radio frequency cavities to accelerate beams of protons or electrons for nuclear and particle research and for medical and materials science studies. New methods for achieving larger accelerating gradients have been proposed and are being studied. These include the use of high power lasers, laser driven plasmas, wake fields generated by intense low energy beams, and millimeter wavelength EM structures. The studies to date, and the prospects for practical applications of these new ideas will be discussed.

  5. Accelerators Spanish steps

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    In September, the CERN Accelerator School (CAS) held its third General Accelerator Physics Course, the venue this time being Salamanca, the oldest university in Spain. Spain, which rejoined CERN in 1982, now has a vigorous and steadily growing high energy physics community making substantial contributions to physics detector development and successfully involving Spanish industry. However the embryonic accelerator community cannot yet generate an equivalent level of activity, and this important channel for introducing new high technology into industry has yet to be fully exploited

  6. What is LAMPF II

    International Nuclear Information System (INIS)

    Thiessen, H.A.

    1982-08-01

    The present conception of LAMPF II is a high-intensity 16-GeV synchrotron injected by the LAMPF 800-MeV H - beam. The proton beam will be used to make secondary beams of neutrinos, muons, pions, kaons, antiprotons, and hyperons more intense than those of any existing or proposed accelerator. For example, by taking maximum advantage of a thick target, modern beam optics, and the LAMPF II proton beam, it will be possible to make a negative muon beam with nearly 100% duty factor and nearly 100 times the flux of the existing Stopped Muon Channel (SMC). Because the unique features of the proposed machine are most applicable to beams of the same momentum as LAMPF (that is, < 2 GeV/c), it may be possible to use most of the experimental areas and some of the auxiliary equipment, including spectrometers, with the new accelerator. The complete facility will provide improved technology for many areas of physics already available at LAMPF and will allow expansion of medium-energy physics to include kaons, antiprotons, and hyperons. When LAMPF II comes on line in 1990 LAMPF will have been operational for 18 years and a major upgrade such as this proposal will be reasonable and prudent

  7. What is LAMPF II

    Energy Technology Data Exchange (ETDEWEB)

    Thiessen, H.A.

    1982-08-01

    The present conception of LAMPF II is a high-intensity 16-GeV synchrotron injected by the LAMPF 800-MeV H/sup -/ beam. The proton beam will be used to make secondary beams of neutrinos, muons, pions, kaons, antiprotons, and hyperons more intense than those of any existing or proposed accelerator. For example, by taking maximum advantage of a thick target, modern beam optics, and the LAMPF II proton beam, it will be possible to make a negative muon beam with nearly 100% duty factor and nearly 100 times the flux of the existing Stopped Muon Channel (SMC). Because the unique features of the proposed machine are most applicable to beams of the same momentum as LAMPF (that is, < 2 GeV/c), it may be possible to use most of the experimental areas and some of the auxiliary equipment, including spectrometers, with the new accelerator. The complete facility will provide improved technology for many areas of physics already available at LAMPF and will allow expansion of medium-energy physics to include kaons, antiprotons, and hyperons. When LAMPF II comes on line in 1990 LAMPF will have been operational for 18 years and a major upgrade such as this proposal will be reasonable and prudent.

  8. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  9. Joint International Accelerator School

    CERN Multimedia

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  10. Future accelerators: physics issues

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1977-11-01

    High energy physics of the future using future accelerators is discussed. The proposed machines and instruments, physics issues and opportunities including brief sketches of outstanding recent results, and the way the proposed machines address these issues are considered. 42 references

  11. Compact particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo-Decanini, Juan M.

    2017-08-29

    A compact particle accelerator having an input portion configured to receive power to produce particles for acceleration, where the input portion includes a switch, is provided. In a general embodiment, a vacuum tube receives particles produced from the input portion at a first end, and a plurality of wafer stacks are positioned serially along the vacuum tube. Each of the plurality of wafer stacks include a dielectric and metal-oxide pair, wherein each of the plurality of wafer stacks further accelerate the particles in the vacuum tube. A beam shaper coupled to a second end of the vacuum tube shapes the particles accelerated by the plurality of wafer stacks into a beam and an output portion outputs the beam.

  12. The accelerator breeder

    International Nuclear Information System (INIS)

    Johansson, E.

    1986-01-01

    Interactions of high-energy particles with atomic nuclei, in particular heavy ones, leads to a strong emission of neutrons. Preferably these high-energy particles are protons or deuterons obtained from a linear accelerator. The neutrons emitted are utilized in the conversion of U238 to Pu239 or of Th232 to U233. The above is the basis of the accelerator breeder, a concept studied abroad in many variants. No such breeder has, however, so far been built, but there exists vast practical experience on the neutron production and on the linear accelerator. Some of the variants mentioned are described in the report, after a presentation of general characteristics for the particle-nucleus interaction and for the linear accelerator. (author)

  13. Accelerate Water Quality Improvement

    Science.gov (United States)

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  14. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  15. Wake field acceleration experiments

    International Nuclear Information System (INIS)

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics? I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs

  16. Accelerated test program

    Science.gov (United States)

    Ford, F. E.; Harkness, J. M.

    1977-01-01

    A brief discussion on the accelerated testing of batteries is given. The statistical analysis and the various aspects of the modeling that was done and the results attained from the model are also briefly discussed.

  17. SSC accelerator availability allocation

    International Nuclear Information System (INIS)

    Dixon, K.T.; Franciscovich, J.

    1991-03-01

    Superconducting Super Collider (SSC) operational availability is an area of major concern, judged by the Central Design Group to present such risk that use of modern engineering tools would be essential to program success. Experience has shown that as accelerator beam availability falls below about 80%, efficiency of physics experiments degrades rapidly due to inability to maintain adequate coincident accelerator and detector operation. For this reason, the SSC availability goal has been set at 80%, even though the Fermi National Accelerator Laboratory accelerator, with a fraction of the SSC's complexity, has only recently approached that level. This paper describes the allocation of the top-level goal to part-level reliability and maintainability requirements, and it gives the results of parameter sensitivity studies designed to help identify the best approach to achieve the needed system availability within funding and schedule constraints. 1 ref., 12 figs., 4 tabs

  18. IAE pulsed electrostatic accelerator

    International Nuclear Information System (INIS)

    Afanas'ev, V.P.; Ganzhelyuk, M.L.; Kozlov, L.D.; Koltypin, E.A.; Molchanov, Yu.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1976-01-01

    The modernized pulse electrostatic accelerator using the klystron ion grouping and the beam interruption system prior to acceleration is described. The accelerator is modernized in order to improve parameters of a current pulse and to decrease the background in the measurement room. The ion beam of needed dimensions is obtained with the help of a high-frequency source and a beam grouping and deflection system. The general view of the beam grouping and deflection system is shown. The ion beam forming process is considered in detail. The modernized electrostatic accelerator permits to obtain a pulse current with a pulse length of 1.5 ns and an amplitude of 1.5 - 2 μA. With the repetition frequency of 2 MHz, the average target current is about 6 μA

  19. Ionization front accelerator

    International Nuclear Information System (INIS)

    Olson, C.L.

    1975-01-01

    In a recently proposed linear collective accelerator, ions are accelerated in a steep, moving potential well created at the head of an intense relativistic electron beam. The steepness of the potential well and its motion are controlled by the external ionization of a suitable background gas. Calculations concerning optimum choices for the background gas and the ionization method are presented; a two-step photoionization process employing Cs vapor is proposed. In this process, a super-radiant light source is used to excite the gas, and a UV laser is used to photoionize the excited state. The appropriate line widths and coupled ionization growth rate equations are discussed. Parameter estimates are given for a feasibility experiment, for a 1 GeV proton accelerator, and for a heavy ion accelerator (50 MeV/nucleon uranium). (auth)

  20. HEAVY ION LINEAR ACCELERATOR

    Science.gov (United States)

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  1. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  2. Iteration and accelerator dynamics

    International Nuclear Information System (INIS)

    Peggs, S.

    1987-10-01

    Four examples of iteration in accelerator dynamics are studied in this paper. The first three show how iterations of the simplest maps reproduce most of the significant nonlinear behavior in real accelerators. Each of these examples can be easily reproduced by the reader, at the minimal cost of writing only 20 or 40 lines of code. The fourth example outlines a general way to iteratively solve nonlinear difference equations, analytically or numerically

  3. High energy medical accelerators

    International Nuclear Information System (INIS)

    Mandrillon, P.

    1990-01-01

    The treatment of tumours with charged particles, ranging from protons to 'light ions' (carbon, oxygen, neon), has many advantages, but up to now has been little used because of the absence of facilities. After the successful pioneering work carried out with accelerators built for physics research, machines dedicated to this new radiotherapy are planned or already in construction. These high energy medical accelerators are presented in this paper. (author) 15 refs.; 14 figs.; 8 tabs

  4. Vancouver Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-06-15

    Anyone who contends that particle physics is conducted in an ivory tower, not contributing to other fields of science or to humanity at large, should have attended the 1985 Particle Accelerator Conference in Vancouver. Over a thousand participants contributed 781 papers and only a fraction were actually related to accelerators for high energy physics. The majority of present developments are in the service of other fields of science, for alternative power sources, for medicine, for industrial applications, etc.

  5. A symmetrical rail accelerator

    International Nuclear Information System (INIS)

    Igenbergs, E.

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator

  6. Ion optics for accelerators

    International Nuclear Information System (INIS)

    Enge, H.A.

    1974-01-01

    A review is given of ion-optic devices used in particle accelerators, including electrostatic lenses, magnetic quadrupoles, and deflecting magnets. Tube focusing in dc accelerators is also treated, and a novel scheme for shaping the electrodes to produce strong focusing is described. The concepts of emittance (phase space) and emittance conservation are briefly discussed. Chromatic and spatial aberrations are introduced, and it is shown how they can be calculated and sometimes substantially reduced. Some examples are given

  7. An active particle accelerator

    International Nuclear Information System (INIS)

    Goldman, T.

    1991-01-01

    Although a static charge is difficult to maintain on macroscopic particles, it is straightforward to construct a small object with a regularly oscillating electric dipole moment. For objects of a given size, one may then construct an accelerator by appropriately matching the frequency and separations of an external array of electrodes to this size. Physically feasible size ranges, an accelerator design, and possible applications of such systems are discussed. 8 refs., 9 figs

  8. Vancouver Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Anyone who contends that particle physics is conducted in an ivory tower, not contributing to other fields of science or to humanity at large, should have attended the 1985 Particle Accelerator Conference in Vancouver. Over a thousand participants contributed 781 papers and only a fraction were actually related to accelerators for high energy physics. The majority of present developments are in the service of other fields of science, for alternative power sources, for medicine, for industrial applications, etc

  9. CEBAF Accelerator Achievements

    International Nuclear Information System (INIS)

    Chao, Y C; Drury, M; Hovater, C; Hutton, A; Krafft, G A; Poelker, M; Reece, C; Tiefenback, M

    2011-01-01

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  10. Collective field accelerator

    International Nuclear Information System (INIS)

    Luce, J.S.

    1978-01-01

    A collective field accelerator which operates with a vacuum diode and utilizes a grooved cathode and a dielectric anode that operates with a relativistic electron beam with a ν/γ of approx. 1, and a plurality of dielectric lenses having an axial magnetic field thereabout to focus the collectively accelerated electrons and ions which are ejected from the anode. The anode and lenses operate as unoptimized r-f cavities which modulate and focus the beam

  11. CEBAF: Accelerating cavities look good

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications.

  12. CEBAF: Accelerating cavities look good

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The first assembled pairs of superconducting accelerating cavities from German supplier Interatom for the Continuous Electron Beam Accelerator Facility, Newport News, Virginia, have exceeded performance specifications

  13. JAERI 20 MV tandem accelerator

    International Nuclear Information System (INIS)

    Tsukada, Kineo; Harada, Kichinosuke

    1977-01-01

    Accelerators have been developed as the experimental apparatuses for the studies on nuclei and elementary particles. One direction of the development is the acceleration of protons and electrons to more and more high energy, and another direction is the acceleration of heavy ions up to uranium to several MeV up to several hundreds MeV. However recently, accelerators are used as the useful tools for the studies in wider fields. There are electrostatic acceleration and high frequency acceleration in ion acceleration, and at present, super-large accelerators are high frequency acceleration type. In Japan Atomic Energy Research Institute, it was decided in 1975 to construct an electrostatic accelerator of tandem type in order to accelerate heavy ions. In case of the electrostatic acceleration, the construction is relatively simple, the acceleration of heavy ions is easy, the property of the ion beam is very good, and the energy is stable. Especially, the tandem type is convenient for obtaining high energy. The tandem accelerator of 20 MV terminal voltage was ordered from the National Electrostatics Corp., USA, and is expected to be completed in 1978. The significance of heavy ion acceleration in the development and research of atomic energy, tandem van de Graaff accelerators, the JAERI 20MV tandem accelerator, and the research project with this accelerator are described. (Kako, I.)

  14. APT accelerator technology

    International Nuclear Information System (INIS)

    Schneider, J. David

    1996-01-01

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  15. Laser wakefield acceleration

    International Nuclear Information System (INIS)

    Esarey, E.; Ting, A.; Sprangle, P.

    1989-01-01

    The laser wakefield accelerator (LWFA) is a novel plasma based electron acceleration scheme which utilizes a relativistic optical guiding mechanism for laser pulse propagation. In the LWFA, a short, high power, single frequency laser pulse is propagated through a plasma. As the laser pulse propagates, its radial and axial ponderomotive forces nonresonantly generate large amplitude plasma waves (wakefields) with a phase velocity equal to the group velocity of the pulse. A properly phased electron bunch may then be accelerated by the axial wakefield and focused by the transverse wakefield. Optical guiding of the laser pulse in the plasma is necessary in order to achieve high energies in a single stage of acceleration. At sufficiently high laser powers, optical guiding may be achieved through relativistic effects associated with the plasma electrons. Preliminary analysis indicates that this scheme may overcome some of the difficulties present in the plasma beat wave accelerator and in the plasma wakefield accelerator. Analytical and numerical calculations are presented which study both laser pulse propagation within a plasma as well as the subsequent generation of large amplitude plasma waves. In addition, the generation of large amplitude plasma waves in regimes where the plasma waves become highly nonlinear is examined

  16. Negative ion–gas reaction studies using ion guides and accelerator mass spectrometry II: S{sup −}, SO{sup −} and Cl{sup −} with NO{sub 2} and N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Eliades, J.A., E-mail: j.eliades@alum.utoronto.ca [Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Zhao, X.-L. [University of Ottawa, Department of Physics and Lalonde AMS Laboratory, 25 Templeton St., Ottawa, ON K1N 6N5 (Canada); Litherland, A.E. [University of Toronto, Department of Physics, 60 Saint George Street, Toronto, ON M5S 1A7 (Canada); Kieser, W.E. [University of Ottawa, Department of Physics and Lalonde AMS Laboratory, 25 Templeton St., Ottawa, ON K1N 6N5 (Canada)

    2015-10-15

    Currently analysis of {sup 36}Cl by accelerator mass spectrometry (AMS) requires large facilities for separation of the isobar {sup 36}S. Previously, it has been shown possible to suppress S{sup −} by >6 orders of magnitude at low energies in a prototype radio-frequency quadrupole (RFQ) instrument by ion reactions in NO{sub 2} gas in the injection line of an AMS system. Reaction products for the negative ions S{sup −}, SO{sup −} and Cl{sup −} with NO{sub 2}, and S{sup −} with N{sub 2}O, have been surveyed in order to understand isobar attenuation plateaus and the losses of analyte ions. Ion energies were at eV levels, but had a large initial energy spread of at least several eV. Under these conditions, the aggregate total S{sup −} and SO{sup −} cross sections in NO{sub 2} were estimated to be 6.6 × 10{sup −15} cm{sup 2} and 7.1 × 10{sup −15} cm{sup 2} respectively and the major reaction channel observed was electron transfer producing NO{sub 2}{sup −}. Other reaction products observed for S{sup −} were SO{sup −}, SO{sub 2}{sup −}, NS{sup −}, and NSO{sub 2}{sup −}. On the other hand, S{sup −}, SO{sup −} and NS{sup −} were found to be largely unreactive with N{sub 2}O despite the existence of some highly exothermic reaction channels. When Cl{sup −} was injected into NO{sub 2}, reaction products such as ClO{sup −} and NO{sub 2}{sup −} were observed only at low levels suggesting that larger Cl{sup −} transmissions should be possible with some RFQ design modifications. The ClO{sup −} reaction product had only a small attenuation under the experimental conditions, despite having near resonant electron affinity with NO{sub 2}.

  17. Photon acceleration in laser wakefield accelerators

    International Nuclear Information System (INIS)

    Trines, R. M. G. M.

    2007-01-01

    If the index of a refraction of a dispersive medium, such as a plasma, changes in time, it can be used to change the frequency of light propagating through the medium. This effect is called photon acceleration. It has been predicted in both theory and simulations, and also been demonstrated experimentally for the case of moving ionization fronts in gases (the so-called ionization blueshift) as well as for laser-driven wakefields.Here, we present studies of photon acceleration in laser-driven plasma wakefields. The unique spectral characteristics of this process will be discussed, to distinguish it from e.g. photon acceleration by ionization fronts, frequency domain interferometry or self-phase modulation. The dynamics of the photons in laser-wakefield interaction are studied through both regular particle-in-cell and wave-kinetic simulations. The latter approach provides a powerful, versatile, and easy-to-use method to track the propagation of individual spectral components, providing new insight into the physics of laser-plasma interaction. Theory, simulations and experimental results will be brought together to provide a full understanding of the dynamics of a laser pulse in its own wakefield.Even though the wave-kinetic approach mentioned above has mainly been developed for the description of laser-plasma interaction, it can be applied to a much wider range of fast wave-slow wave interaction processes: Langmuir waves-ion acoustic waves, drift waves-zonal flow, Rossby waves-zonal flow, or even photons-gravitational waves. Several recent results in these areas will be shown, often with surprising results

  18. Accelerator business in Japan expanding

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Accelerators have become to be used increasingly in Japan in such fields as medicine, physics research and industry. This has caused stiff competition for market share by the manufacturers of accelerators. Electron beam accelerators for industrial use provide an indispensable means for adding values to products, for example, electric cables with incombustible insulators. Linear accelerators for the nondestructive inspection of nuclear components have been widely installed at equipment manufacturing plants. Active efforts have been exerted to develop small synchrotron radiation accelerators for next generation electronic industry. Cyclotrons for producing short life radioisotopes for medical diagnosis and electron beam accelerators for radiation therapy are also used routinely. The suppliers of accelerators include the companies manufacturing heavy electric machinery, heavy machinery and the engineering division of steelmakers. Accelerator physics is being formed, but universities do not yet offer the course regarding accelerators. Accelerator use in Japan and the trend of accelerator manufacturers are reported. (K.I.)

  19. Beam transport through electrostatic accelerators and matching into post accelerators

    International Nuclear Information System (INIS)

    Larson, J.D.

    1986-01-01

    Ion beam transport through electrostatic acceleration is briefly reviewed. Topics discussed include injection, matching into the low-energy acceleration stage, matching from the terminal stripper into the high-energy stage, transport to a post accelerator, space charge, bunching isochronism, dispersion and charge selection. Beam transport plans for the proposed Vivitron accelerator are described. (orig.)

  20. ORNL pellet acceleration program

    International Nuclear Information System (INIS)

    Foster, C.A.; Milora, S.L.

    1978-01-01

    The Oak Ridge National Laboratory (ORNL) pellet fueling program is centered around developing equipment to accelerate large pellets of solidified hydrogen to high speeds. This equipment will be used to experimentally determine pellet-plasma interaction physics on contemporary tokamaks. The pellet experiments performed on the Oak Ridge Tokamak (ORMAK) indicated that much larger, faster pellets would be advantageous. In order to produce and accelerate pellets of the order of 1 to 6 mm in diameter, two apparatuses have been designed and are being constructed. The first will make H 2 pellets by extruding a filament of hydrogen and mechanically chopping it into pellets. The pellets formed will be mechanically accelerated with a high speed arbor to a speed of 950 m/sec. This technique may be extended to speeds up to 5000 m/sec, which makes it a prime candidate for a reactor fueling device. In the second technique, a hydrogen pellet will be formed, loaded into a miniature rifle, and accelerated by means of high pressure hydrogen gas. This technique should be capable of speeds of the order of 1000 m/sec. While this technique does not offer the high performance of the mechanical accelerator, its relative simplicity makes it attractive for near-term experiments

  1. High energy plasma accelerators

    International Nuclear Information System (INIS)

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ω 0 , kappa 0 and ω 1 , kappa 1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 10 18 cm -3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  2. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  3. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  4. Accelerators in Science and Technology

    CERN Document Server

    Kailas, S

    2002-01-01

    Accelerators built for basic research in frontier areas of science have become important and inevitable tools in many areas of science and technology. Accelerators are examples of science driven high technology development. Accelerators are used for a wide ranging applications, besides basic research. Accelerator based multidisciplinary research holds great promise

  5. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  6. Measurement of Electron Clouds in Large Accelerators by Microwave Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    De Santis, S.; Byrd, J.M.; /LBL, Berkeley; Caspers, F.; /CERN; Krasnykh, A.; /SLAC; Kroyer, T.; /CERN; Pivi, M.T.F.; /SLAC; Sonnad, K.G.; /LBL, Berkeley

    2008-03-19

    Clouds of low energy electrons in the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation at high currents. Furthermore, it is difficult to probe their density over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave transmitted over a section of the accelerator and used it to measure the average electron cloud density over a 50 m section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center.

  7. A study of diagnostics expert system for accelerator applications

    International Nuclear Information System (INIS)

    Tyagi, Y.; Banerji, Anil; Kotaiah, S.

    2003-01-01

    Knowledge based techniques are proving to be useful in a number of problem domains which typically requires human expertise. Expert systems employing knowledge based techniques are a recent product of artificial intelligence. Methods developed in the artificial intelligence area can be applied with success for certain classes of problems in accelerator. Accelerators are complex devices with thousands of components. The number of possible faults or problems that can appear is enormous. A diagnostics expert system can provide great help in finding and diagnosing problems in Indus-II accelerator sub-systems. (author)

  8. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  9. Need for accelerating electrons

    International Nuclear Information System (INIS)

    Kerst, D.W.

    1987-01-01

    Photons for nuclear disintegration experiments were not abundantly available in the early days of nuclear physics, whereas accelerated ions led the way. When electrons could be accelerated into the 20--30 MeV range, they found application not only to nuclear disintegration of the elements of the periodic table but also to x-ray radiography and to deep therapy. Energies of interest for probing nuclear structure by electron scattering and for meson production followed soon after. The elementary nature of the electron has now made it a valuable tool for present day particle physics; and the synchrotron radiation, which is an obstacle for some accelerating processes, has become a much sought after source of photons for experiments at atomic structure energies

  10. Artificial seismic acceleration

    Science.gov (United States)

    Felzer, Karen R.; Page, Morgan T.; Michael, Andrew J.

    2015-01-01

    In their 2013 paper, Bouchon, Durand, Marsan, Karabulut, 3 and Schmittbuhl (BDMKS) claim to see significant accelerating seismicity before M 6.5 interplate mainshocks, but not before intraplate mainshocks, reflecting a preparatory process before large events. We concur with the finding of BDMKS that their interplate dataset has significantly more fore- shocks than their intraplate dataset; however, we disagree that the foreshocks are predictive of large events in particular. Acceleration in stacked foreshock sequences has been seen before and has been explained by the cascade model, in which earthquakes occasionally trigger aftershocks larger than themselves4. In this model, the time lags between the smaller mainshocks and larger aftershocks follow the inverse power law common to all aftershock sequences, creating an apparent acceleration when stacked (see Supplementary Information).

  11. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  12. Incineration by accelerator

    International Nuclear Information System (INIS)

    Cribier, M.; FIoni, G.; Legrain, R.; Lelievre, F.; Leray, S.; Pluquet, A.; Safa, H.; Spiro, M.; Terrien, Y.; Veyssiere, Ch.

    1997-01-01

    The use MOX fuel allows to hope a stabilization of plutonium production around 500 tons for the French park. In return, the flow of minor actinides is increased to several tons. INCA (INCineration by Accelerator), dedicated instrument, would allow to transmute several tons of americium, curium and neptunium. It could be able to reduce nuclear waste in the case of stopping nuclear energy use. This project needs: a protons accelerator of 1 GeV at high intensity ( 50 m A), a window separating the accelerator vacuum from the reactor, a spallation target able to produce 30 neutrons by incident proton, an incineration volume where a part of fast neutrons around the target are recovered, and a thermal part in periphery with flows at 2.10 15 n/cm 2 .s; a chemical separation of elements burning in thermal (americium) from the elements needing a flow of fast neutrons. (N.C.)

  13. Universality of accelerating change

    Science.gov (United States)

    Eliazar, Iddo; Shlesinger, Michael F.

    2018-03-01

    On large time scales the progress of human technology follows an exponential growth trend that is termed accelerating change. The exponential growth trend is commonly considered to be the amalgamated effect of consecutive technology revolutions - where the progress carried in by each technology revolution follows an S-curve, and where the aging of each technology revolution drives humanity to push for the next technology revolution. Thus, as a collective, mankind is the 'intelligent designer' of accelerating change. In this paper we establish that the exponential growth trend - and only this trend - emerges universally, on large time scales, from systems that combine together two elements: randomness and amalgamation. Hence, the universal generation of accelerating change can be attained by systems with no 'intelligent designer'.

  14. Medical uses of accelerators

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1981-01-01

    A variety of particle accelerators have either potential or already demonstrated uses in connection with medically-related research, diagnosis, and treatment. For cancer radiotherapy, nuclear particles including protons, neutrons, heavy ions, and negative pi mesons have advantages compared to conventional radiations in terms of dose localization and/or biological effectiveness. Clinical evaluations of these particles are underway at a number of institutions. Accelerator-produced radionuclides are in widespread use for research and routine diagnostic purposes. Elemental analysis techniques with charged particles and neutrons are being applied to bone, blood, and other tissues. Finally, low-dose medical imaging can be accomplished with accelerated protons and heavy ions. The status and future of these programs are discussed

  15. JKJ accelerator timing system

    International Nuclear Information System (INIS)

    Ohmori, C.; Mori, Y.; Yoshii, M.; Yamamoto, M.

    2001-01-01

    The JKJ (JAERl-KEK Joint Project) accelerator complex consists of the linear accelerator, 3 GeV and 50 GeV synchrotrons. To minimize the beam loss during the beam transfer from the 3 GeV synchrotron to the 50 GeV one, the synchronization of the two RF system of the rings is very important. To reduce the background from the high and low momentum neutron, the neutron beam chopper will be employed. The 3 GeV RF will be also synchronized to the chopper timing when the beam goes to the neutron facility. The whole timing control system of these accelerators and chopper will be described. (author)

  16. Accelerators for therapy

    International Nuclear Information System (INIS)

    Pohlit, W.

    1994-01-01

    In the past decades circular and linear electron accelerators have been developed for clinical use in radiation therapy of tumors with the aim of achieving a high radiation dose in the tumor and as low as possible dose in the adjacent normal tissues. Today about one thousand accelerators are in medical use throughout the world and many hundred thousand patients are treated every day with accelerator-produced radiation. There exists, however, a large number of patients who cannot be treated satisfactorily in this way. New types of radiations such as neutrons, negative pions, protons and heavy ions were therefore tested recently. The clinical experience with these radiations and with new types of treatment procedures indicate that in future the use of a scanning beam of high energy protons might be optimal for the treatment of tumors. (orig.)

  17. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  18. Accelerator technology in tokamaks

    International Nuclear Information System (INIS)

    Kustom, R.L.

    1977-01-01

    This article presents the similarities in the technology required for high energy accelerators and tokamak fusion devices. The tokamak devices and R and D programs described in the text represent only a fraction of the total fusion program. The technological barriers to producing successful, economical tokamak fusion power plants are as many as the plasma physics problems to be overcome. With the present emphasis on energy problems in this country and elsewhere, it is very likely that fusion technology related R and D programs will vigorously continue; and since high energy accelerator technology has so much in common with fusion technology, more scientists from the accelerator community are likely to be attracted to fusion problems

  19. Accelerating the culture change!

    Science.gov (United States)

    Klunk, S W; Panetta, J; Wooten, J

    1996-11-01

    Exide Electronics, a major supplier of uninterruptible power system equipment, embarked on a journey of changing a culture to improve quality, enhance customer responsiveness, and reduce costs. This case study examines the evolution of change over a period of seven years, with particular emphasis on the most recent years, 1992 through 1995. The article focuses on the Raleigh plant operations and describes how each succeeding year built on the successes and fixed the shortcomings of the prior years to accelerate the culture change, including corrective action and continuous improvement processes, organizational structures, expectations, goals, achievements, and pitfalls. The real challenge to changing the culture was structuring a dynamic approach to accelerate change! The presentation also examines how the evolutionary process itself can be created and accelerated through ongoing communication, regular feedback of progress and goals, constant evaluation and direction of the process, and measuring and paying for performance.

  20. Studies of accelerated compact toruses

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1983-01-01

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  1. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  2. CERN: Accelerator school

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Jyvaskyla, a university town in central Finland, was the setting for last year's General Accelerator School organized by the CERN Accelerator School. Well over a hundred students - more than for some time - followed two weeks of lectures on a broad spectrum of accelerator topics, the first step en route to becoming the designers, builders and operators of the surprisingly large number of, accelerators of all kinds either built or planned throughout Europe and further afield. This was the fifth such school organized by CAS in a biennial cycle which alternates this introductory level with more advanced tuition. The next, advanced, school will be from 20 October - 1 November, hosted by Athens University on the Greek Island of Rhodes. (Application details will become available in Spring but would-be participants should already reserve the dates.) After Finland, the CAS caravan moved to Benalmadena near Malaga in Spain where, together with Seville University, they organized one of the joint US-CERN schools held every two years and focusing on frontier accelerator topics. This time the subject was electron-positron factories - machines for high luminosity experiments in phi, tau-charm, beauty and Z physics. Experts from both sides of the Atlantic and from Japan shared their knowledge with an equally representative audience and probed the many intensity related phenomena which must be mastered to reach design performance. A number of these topics will receive extended coverage in the next specialist CAS School which is a repeat - by public demand - of the highly successful radiofrequency course held in Oxford in 1991. This school will be in Capri, Italy, with the support of the University of Naples from 29 April to 5 May. Details and application forms are now available by e-mail (CASRF@CERNVM.CERN.CH), by fax (+41 22 7824836) or from Suzanne von Wartburg, CERN Accelerator School, 1211 Geneva 23, Switzerland

  3. Interfacing to accelerator instrumentation

    International Nuclear Information System (INIS)

    Shea, T.J.

    1995-01-01

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  4. Acceleration of polarized particles

    International Nuclear Information System (INIS)

    Buon, J.

    1992-05-01

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  5. Spallator - accelerator breeder

    International Nuclear Information System (INIS)

    Steinberg, M.

    1985-01-01

    The concept involves the use of spallation neutrons produced by interaction of a high energy proton (1 to 2 GeV) from a linear accelerator (LINAC) with a heavy metal target (uranium). The principal spallator concept is based on generating fissile fuel for use in LWR nuclear power plants. The spallator functions in conjunction with a reprocessing plant to regenerate and produce the Pu-239 or U-233 for fabrication into fresh LWR reactor fuel elements. Advances in proton accelerator technology has provided a solid base for predicting performance and optimizing the design of a reliable, continuous wave, high-current LINAC required by a fissile fuel production machine

  6. Accelerated cyclic corrosion tests

    Directory of Open Access Journals (Sweden)

    Prošek T.

    2016-06-01

    Full Text Available Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical phases. They are able to predict the material performance in service more correctly as documented on several examples. The use of NSS should thus be restricted for quality control.

  7. Electrostatic accelerator dielectrics

    International Nuclear Information System (INIS)

    Cooke, C.M.

    1989-05-01

    High voltage insulation problems in electrostatic accelerators are discussed. The aim of the analysis is to broaden the knowledge, highlight the characteristics of insulation technology and design strategies to improve use. The basic geometry of the insulation in accelerators is considered. A detailed description of each of the insulation regions is provided. The gas gap insulation of the terminal voltage is found to be sensitive to regions of high electric stress. In order to obtain satisfactory performance from solid support insulation, the attention is focused on the electric stress value and distribution. Potential subjects for discussion and further investigations are given

  8. Remarks on stochastic acceleration

    International Nuclear Information System (INIS)

    Graeff, P.

    1982-12-01

    Stochastic acceleration and turbulent diffusion are strong turbulence problems since no expansion parameter exists. Hence the problem of finding rigorous results is of major interest both for checking approximations and for reference models. Since we have found a way of constructing such models in the turbulent diffusion case the question of the extension to stochastic acceleration now arises. The paper offers some possibilities illustrated by the case of 'stochastic free fall' which may be particularly interesting in the context of linear response theory. (orig.)

  9. Monoenergetic laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    N. E. Andreev

    2000-02-01

    Full Text Available Three dimensional test particle simulations are applied to optimization of the plasma-channeled laser wakefield accelerator (LWFA operating in a weakly nonlinear regime. Electron beam energy spread, emittance, and luminosity depend upon the proportion of the electron bunch size to the plasma wavelength. This proportion tends to improve with the laser wavelength increase. We simulate a prospective two-stage ∼1GeV LWFA with controlled energy spread and emittance. The input parameters correspond to realistic capabilities of the BNL Accelerator Test Facility that features a picosecond-terawatt CO_{2} laser and a high-brightness electron gun.

  10. Photocathodes in accelerator applications

    International Nuclear Information System (INIS)

    Fraser, J.S.; Sheffield, R.L.; Gray, E.R.; Giles, P.M.; Springer, R.W.; Loebs, V.A.

    1987-01-01

    Some electron accelerator applications require bursts of short pulses at high microscopic repetition rates and high peak brightness. A photocathode, illuminated by a mode-locked laser, is well suited to filling this need. The intrinsic brightness of a photoemitter beam is high; experiments are under way at Los Alamos to study the brightness of short bunches with high space charge after acceleration. A laser-illuminated Cs 3 Sb photoemitter is located in the first rf cavity of an injector linac. Diagnostics include a pepper-pot emittance analyzer, a magnetic spectrometer, and a streak camera

  11. "Light sail" acceleration reexamined.

    Science.gov (United States)

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  12. 'Light Sail' Acceleration Reexamined

    International Nuclear Information System (INIS)

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-01-01

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for 'optimal' values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple 'light sail' model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  13. Accelerating time to benefit

    DEFF Research Database (Denmark)

    Svejvig, Per; Geraldi, Joana; Grex, Sara

    Despite the ubiquitous pressure for speed, our approaches to accelerate projects remain constrained to the old-fashioned understanding of the project as a vehicle to deliver products and services, not value. This article explores an attempt to accelerate time to benefit. We describe and deconstruct...... of the time. Although all cases valued speed and speed to benefit, and implemented most practices proposed by the methodology, only three of the five projects were more successful in decreasing time to speed. Based on a multi-case study comparison between these five different projects and their respective...

  14. An accelerator technology legacy

    International Nuclear Information System (INIS)

    Heighway, E.A.

    1994-01-01

    Accelerator technology has been a major beneficiary of the investment made over the last decade. It is the intention of this paper to provide the reader with a glimpse of the broad nature of those advances. Development has been on a broad front and this paper can highlight only a few of those. Two spin-off applications will be outlined -- a concept for a compact, active, beam probe for solar body exploration and the concept for an accelerator-driven transmutation system for energy production

  15. RTNS-II [Rotating Target Neutron Source II] operational summary

    International Nuclear Information System (INIS)

    Heikkinen, D.W.

    1988-09-01

    The Rotating Target Neutron Source II facility (RTNS-II) operated for over nine years. Its purpose was to provide high intensities of 14 MeV neutrons for materials studies in the fusion energy program. For the period from 1982-1987, the facility was supported by both the US (Department of Energy) and Japan (Ministry of Education, Culture, and Science). RTNS-II contains two accelerator-based neutron sources which use the T(d,n) 4 He reaction. In this paper, we will summarize the operational history of RTNS-II. Typical operating parameters are given. In addition, a brief description of the experimental program is presented. The current status and future options for the facility are discussed. 7 refs., 5 tabs

  16. Accelerators in the sky

    International Nuclear Information System (INIS)

    Setti, G.

    1977-01-01

    The author surveys the large body of evidence showing that there are very efficient mechanisms capable of accelerating particles to high energies under very different astrophysical conditions. The circumstances whereby huge amounts of relativistic and ultrarelativistic particles such as one finds in a) cosmic rays, b) supernova remnants and c) radio galaxies and quasars are produced are considered. (Auth.)

  17. Heavy ion accelerator GANIL

    International Nuclear Information System (INIS)

    1975-04-01

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream [fr

  18. Accelerating with industry

    International Nuclear Information System (INIS)

    Southworth, Brian

    1992-01-01

    At the end of March, Berlin was the scene of the third biennial European Particle Accelerator Conference (EPAC). It carried the usual news from the front-line machines in the high energy physics Laboratories and reports on progress with the latest technologies

  19. Two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Hopkins, D.B.

    1986-06-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field, induction accelerator units are placed periodically along the length of the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have a serious option for a 1 TeV x 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2π/3 mode structure which without preconditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m

  20. Hamburg Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Edmund J.N. [CERN Accelerator School (Switzerland)

    1992-10-15

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn.

  1. The Bevalac accelerator

    International Nuclear Information System (INIS)

    Dacal, A.

    1989-01-01

    Presented are the characteristics of the Bevatron and SuperHilac heavy ion accelerators in a very general manner. Some aspects of their application in the field of biological medicine and some of the interesting results obtained in experiments on nuclear physics are mentioned. (Author). 20 refs, 2 figs, 2 tabs

  2. Radioisotope Dating with Accelerators.

    Science.gov (United States)

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  3. The CERN accelerator complex

    CERN Multimedia

    Mobs, Esma Anais

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  4. The CERN accelerator complex

    CERN Multimedia

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  5. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  6. Ion sources for accelerators

    International Nuclear Information System (INIS)

    Alton, G.D.

    1974-01-01

    A limited review of low charge sate positive and negative ion sources suitable for accelerator use is given. A brief discussion is also given of the concepts underlying the formation and extraction of ion beams. Particular emphasis is placed on the technology of ion sources which use solid elemental or molecular compounds to produce vapor for the ionization process

  7. BNL accelerator plans

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1986-01-01

    The Brookhaven National Laboratory plan for high energy and heavy ion physics accelerator use for the next ten-year period is described. The two major initiatives are in the construction of the Relativistic Heavy Ion Collider and the upgrade of the Alternating Gradient Synchrotron to a ''Mini Kaon Factory''

  8. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  9. Accelerating with industry

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, Brian

    1992-06-15

    At the end of March, Berlin was the scene of the third biennial European Particle Accelerator Conference (EPAC). It carried the usual news from the front-line machines in the high energy physics Laboratories and reports on progress with the latest technologies.

  10. Accelerating News Issue 5

    CERN Document Server

    Szeberenyi, A

    2013-01-01

    In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.

  11. Next generation of accelerators

    International Nuclear Information System (INIS)

    Richter, B.

    1979-01-01

    Existing high-energy accelerators are reviewed, along with those under construction or being designed. Finally, some of the physics issues which go into setting machine parameters, and some of the features of the design of next generation electron and proton machines are discussed

  12. Cockroft Walton accelerator prototype

    International Nuclear Information System (INIS)

    Hutapea, Sumihar.

    1976-01-01

    Prototype of a Cockroft Walton generator using ceramic and plastic capacitors is discussed. Compared to the previous generator, the construction and components are much more improved. Pralon is used for the high voltage insulation column and plastic is used as a dielectric material for the high voltage capacitor. Cockroft Walton generator is used as a high tension supply for an accelerator. (author)

  13. Accelerated product development

    NARCIS (Netherlands)

    Langerak, F.; Seth, J.N.; Malhotra, N.K.

    2011-01-01

    Accelerated product development is a competitive strategy that seeks to reduce the development cycle time of new products. However, there has been little theoretical advancement and empirical model testing in the identification of the conditions under which cycle time reduction is appropriate, the

  14. The ATOMKI Accelerator Center

    International Nuclear Information System (INIS)

    Biri, S.; Kormany, Z.; Berzi, I.; Hunyadi, M.

    2009-01-01

    In 2009 a new division was established in our institute: the ATOMKI Accelerator Center (AAC). Before this time the facilities and staff of AAC belonged to other departments of the institute. The re-organization however, was necessary. It was understood that the translocation of all the accelerators into a centralized unit is advantageous in numerous fields. Here we just mention some of them. The submission of any instrumentation type proposal (EU or domestic) will be easier and has a higher chance to be supported. The organization and distribution of the beamtimes will be more equal and optimal. The usage of the maintenance and spare tools can became better and cheaper. The operating staff (cca. 20 person) can serve at more than one accelerator and the teams can help each other. The accelerator center actually became a fourth new basic unit of the institute besides the three traditional scientific divisions (see the Atomki homepage for the organization chart). The following six main facilities belong to the accelerator center: Cyclotron; VdG-5 accelerator; VdG-1 accelerator; ECR ion source; Isotope separator; Tandetron (under installation). In figure 1 the placements of these machines are shown in an artistic 3D map of the Atomki. The table 1 summarizes the main parameters of the accelerators. More detailed technical specification of the machines can be found in the new homepage of the center. In 2009 all the accelerators operated as scheduled, safely and without major breakdowns. After the experiences in the first months it can be concluded that the new center works well both for technical and human point of views. In the next sub-chapters the 2009 operation and development details of the individual accelerators are summarized. Cyclotron operation. The operation of the cyclotron in 2009 was concentrated to the usual 9 months; January, July and August were reserved for maintenance and holidays. The overall working time of the accelerator was 2009 hours; the time

  15. Wakeless triple soliton accelerator

    International Nuclear Information System (INIS)

    Mima, K.; Ohsuga, T.; Takabe, H.; Nishihara, K.; Tajima, T.; Zaidman, E.; Horton, W.

    1986-09-01

    We introduce and analyze the concept of a wakeless triple soliton accelerator in a plasma fiber. Under appropriate conditions the triple soliton with two electromagnetic and one electrostatic waves in the beat-wave resonance propagates with velocity c leaving no plasma wake behind, while the phase velocity of the electrostatic wave is made also c in the fiber

  16. Hamburg Accelerator Conference

    International Nuclear Information System (INIS)

    Wilson, Edmund J.N.

    1992-01-01

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn

  17. The CERN accelerator complex

    CERN Multimedia

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  18. Heavy Ion Acceleration at J-PARC

    Science.gov (United States)

    SATO, Susumu

    2018-02-01

    J-PARC, the Japan Proton Accelerator Research Complex, is an accelerator, which provides a high-intensity proton beam. Recently as a very attractive project, the acceleration of heavy ions produced by supplementary ion sources, called J-PARC-HI, is seriously contemplated by domestic as well as international communities. The planned facility would accelerate heavy ions up to U92+ with a beam energy 20 AGeV ( of 6.2 AGeV). The highlight of the J-PARC-HI project is its very high beam rate up to 1011 Hz, which will enable the study of very rare events. Taking advantage of this high intensity, J-PARC-HI will carry out frontier studies of new and rare observables in this energy region: (i) nuclear medium modification of chiral property of vector mesons through low-mass di-lepton signal, (ii) QCD critical pointcharacterization through event-by-event fluctuation signals of particle production, (iii) systematic measurements related to the equation of state through collective flow signal or two-particle momentum correlation signal, or (iv) the search of hyper nuclei with multi strangeness including or exceeding S = 3. The current plan of J-PARC-HI aims to carrying out the first experimental measurements in 2025.

  19. Relativity and accelerator engineering

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2017-09-01

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  20. Menopause accelerates biological aging

    Science.gov (United States)

    Levine, Morgan E.; Lu, Ake T.; Chen, Brian H.; Hernandez, Dena G.; Singleton, Andrew B.; Ferrucci, Luigi; Bandinelli, Stefania; Salfati, Elias; Manson, JoAnn E.; Quach, Austin; Kusters, Cynthia D. J.; Kuh, Diana; Wong, Andrew; Teschendorff, Andrew E.; Widschwendter, Martin; Ritz, Beate R.; Absher, Devin; Assimes, Themistocles L.; Horvath, Steve

    2016-01-01

    Although epigenetic processes have been linked to aging and disease in other systems, it is not yet known whether they relate to reproductive aging. Recently, we developed a highly accurate epigenetic biomarker of age (known as the “epigenetic clock”), which is based on DNA methylation levels. Here we carry out an epigenetic clock analysis of blood, saliva, and buccal epithelium using data from four large studies: the Women's Health Initiative (n = 1,864); Invecchiare nel Chianti (n = 200); Parkinson's disease, Environment, and Genes (n = 256); and the United Kingdom Medical Research Council National Survey of Health and Development (n = 790). We find that increased epigenetic age acceleration in blood is significantly associated with earlier menopause (P = 0.00091), bilateral oophorectomy (P = 0.0018), and a longer time since menopause (P = 0.017). Conversely, epigenetic age acceleration in buccal epithelium and saliva do not relate to age at menopause; however, a higher epigenetic age in saliva is exhibited in women who undergo bilateral oophorectomy (P = 0.0079), while a lower epigenetic age in buccal epithelium was found for women who underwent menopausal hormone therapy (P = 0.00078). Using genetic data, we find evidence of coheritability between age at menopause and epigenetic age acceleration in blood. Using Mendelian randomization analysis, we find that two SNPs that are highly associated with age at menopause exhibit a significant association with epigenetic age acceleration. Overall, our Mendelian randomization approach and other lines of evidence suggest that menopause accelerates epigenetic aging of blood, but mechanistic studies will be needed to dissect cause-and-effect relationships further. PMID:27457926

  1. Relativity and accelerator engineering

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Schenefeld (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-09-15

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  2. Wandering accelerators throughout my life (4)

    International Nuclear Information System (INIS)

    Nakai, Kozi

    2010-01-01

    My effort in the last stage of wandering about accelerator was to bridge the gap between nuclear and high-energy physics at the KEK-PS. Since the TRISTAN construction started, the KEK-PS has been opened to nuclear physics users. Among various possibilities, emphasis was placed on the hypernuclear experiments, K-decay experiments, and later, the long-base-line neutrino experiment (K2K), which were successfully carried out. Although the TRISTAN experiment was unable to find the top quark, the CP-test experiments at TRISTAN-II (KEKB) have proven the Kobayashi-Maskawa theory successfully. During the last three years of my tenure in KEK, I served as a science adviser to Minister of Education, and I was involved in international affairs of accelerator science. (author)

  3. Cryogenics for Particle Accelerators and Detectors

    CERN Document Server

    Lebrun, P; Vandoni, Giovanna; Wagner, U

    2002-01-01

    Cryogenics has become a key ancillary technology of particle accelerators and detectors, contributing to their sustained development over the last fifty years. Conversely, this development has produced new challenges and markets for cryogenics, resulting in a fruitful symbiotic relation which materialized in significant technology transfer and technical progress. This began with the use of liquid hydrogen and deuterium in the targets and bubble chambers of the 1950s, 1960s and 1970s. It developed more recently with increasing amounts of liquefied noble gases - mainly argon, but also krypton and even today xenon - in calorimeters. In parallel with these applications, the availability of practical type II superconductors from the early 1960s triggered the use of superconductivity in large spectrometer magnets - mostly driven by considerations of energy savings - and the corresponding development of helium cryogenics. It is however the generalized application of superconductivity in particle accelerators - RF ac...

  4. Acceleration of polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian snakes are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible. A similar scheme is being studied for the 800 GeV HERA proton accelerator

  5. Nonlinear dynamics in particle accelerators

    CERN Document Server

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  6. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  7. Limitations of heavy ion synchrotron acceleration for inertial fusion

    International Nuclear Information System (INIS)

    Berley, D.; Danby, G.T.

    1977-01-01

    The potential benefits from heavy ion inertial fusion motivate the rapid development of a program to test the principle. To define the program, accelerator parameters which have not hitherto been commonly considered must be studied interactively with basic questions of space charge limitations and charge exchange. Beam lifetime and power output efficiency may ultimately lead to a linear accelerator as the choice for an ignition device. For proof of principle, however, at power levels way beyond present inertial fusion experience, synchrotrons may have applicability at lower cost. The power and energy which can be delivered by the accelerating system to the reaction chamber are limited by space charge defocussing and intra beam charge exchange scattering, both of which are beam density dependent. These put constraints on linac injector energy, synchrotron aperture, synchrotron magnetic rigidity, acceleration time, ion species and charge to mass ratio. The accelerator system considered is classical. A linear accelerator injects into a synchrotron which accelerates the ion beam to the full energy delivered to the target. The maximum energy deliverable by a synchrotron is treated in section I. The targetting parameters and the energy gained through synchrotron acceleration completely determine the synchrotron aperture. These are discussed in sections II and III. The ion range in material is treated in section IV. The problem of intrabeam scattering is considered in section V. Finally, in section VI is a discussion of examples to meet specified goals

  8. Accelerator mass spectrometry at the Rossendorf 5 MV tandem accelerator

    International Nuclear Information System (INIS)

    Friedrich, M.; Buerger, W.; Curian, H.; Hartmann, B.; Hentschel, E.; Matthes, H.; Probst, W.; Seidel, M.; Turuc, S.; Hebert, D.; Rothe, T.; Stolz, W.

    1992-01-01

    The Rossendorf electrostatic accelerators (5 MV tandem accelerator and single ended 2 MV van de Graaff accelerator) are already used for ion beam analysis. The existing methods (RBS, PIXE, ERDA, NRA, nuclear microprobe and external beam) will be completed by introduction of Accelerator Mass Spectrometry (AMS). A short description of the Rossendorf AMS system is given and first experimental results are presented. (R.P.) 4 refs.; 6 figs

  9. SALOME: An Accelerator for the Practical Course in Accelerator Physics

    OpenAIRE

    Miltchev, Velizar; Riebesehl, Daniel; Roßbach, Jörg; Trunk, Maximilian; Stein, Oliver

    2014-01-01

    SALOME (Simple Accelerator for Learning Optics and the Manipulation of Electrons) is a short low energy linear electron accelerator built by the University of Hamburg. The goal of this project is to give the students the possibility to obtain hands-on experience with the basics of accelerator physics. In this contribution the layout of the device will be presented. The most important components of the accelerator will be discussed and an overview of the planned demonstration experiments will ...

  10. Mass spectrometry with accelerators.

    Science.gov (United States)

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  11. IFMIF accelerators design

    International Nuclear Information System (INIS)

    Mosnier, A.; Ratzinger, U.

    2008-01-01

    The IFMIF requirement for 250 mA current of deuteron beams at a nominal energy of 40 MeV is met by means of two identical continuous wave (CW) 175 MHz linear accelerators running in parallel, each delivering a 125 mA, 40 MeV deuteron beam to the common target. This approach allows to stay within the current capability of present RF linac technology while providing operational redundancy in case of failure of one of the linacs. Each linac comprises a sequence of acceleration and beam transport/matching stages. The ion source generates a 140 mA deuteron beam at 100 keV. A low energy beam transport (LEBT) transfers the deuteron beam from the source to a radio frequency quadrupole (RFQ) cavity. The RFQ bunches and accelerates the 125 mA beam to 5 MeV. The RFQ output beam is injected through a matching section into a drift-tube-linac (DTL) where it is accelerated to the final energy of 40 MeV. In the reference design, the final acceleration stage is a conventional Alvarez-type DTL with post-couplers operating at room temperature. Operation of both the RFQ and the DTL at the same relatively low frequency is essential for accelerating the high current deuteron beam with low beam loss. The primary concern of the IFMIF linacs is the minimization of beam losses, which could limit their availability and maintainability due to excessive activation of the linac and irradiation of the environment. A careful beam dynamics design is therefore needed from the source to the target to avoid the formation of particle halo that could finally be lost in the linac or transfer lines. A superconducting solution for the high energy portion of the linac using, for example, CH-structure or coaxial-type resonators, could offer some advantages, in particular the reduction of operational costs. Careful beam dynamics simulations and comparison tests with beam during the EVEDA phase are however necessary in order to fully assess the technical feasibility of such alternative solutions

  12. Recent progress in particle accelerators

    International Nuclear Information System (INIS)

    Cole, F.T.; Mills, F.E.

    1988-01-01

    Many accelerators have also been built for medical radiography and therapy. Electron accelerators for this application are available commercially, using the electrons directly or bremsstrahlung photons. Neutrons produced by accelerator beams have also been used for therapy with considerable success, and several proton accelerators built for physics research have been adapted for direct therapy with protons. The first proton accelerator specifically for therapy is now being built. Separate from what might be called conventional accelerator technology, an entirely new field utilizing very highly pulsed power has been developed, and beams of short pulses of thousands or millions of amperes peak current in the MeV energy range are now available. These beams have important applications in high-energy particle acceleration, controlled fusion, industrial treatment of materials, and possibly in food preservation. All of these accelerators make use of external fields of acceleration. There is also vigorous research into new methods of acceleration, in many schemes making use of the intense accelerating fields, generated by laser beams or by plasma states of matter. This research has not as yet made traditional kinds of accelerators outmoded, but many workers hope that early in the next century there will be practical new acceleration methods making use of these very high fields. These developments are discussed in detail

  13. Acceleration of 14C beams in electrostatic accelerators

    International Nuclear Information System (INIS)

    Rowton, L.J.; Tesmer, J.R.

    1981-01-01

    Operational problems in the production and acceleration of 14 C beams for nuclear structure research in Los Alamos National Laboratory's Van de Graaff accelerators are discussed. Methods for the control of contamination in ion sources, accelerators and personnel are described. Sputter source target fabrication techniques and the relative beam production efficiencies of various types of bound particulate carbon sputter source targets are presented

  14. Advanced ponderomotive description of electron acceleration in ICRF discharge initiation

    Directory of Open Access Journals (Sweden)

    Wauters Tom

    2017-01-01

    An example for plasma production by the TOMAS ICRF system is given. Following the described conditions it can be derived that plasma production is (i most efficient close to the antenna straps (few cm's where the field gradient and amplitude are large, and (ii that the lower frequency field accelerates electrons more easily for a given antenna voltage.

  15. Chemical Synthesis Accelerated by Paper Spray: The Haloform Reaction

    Science.gov (United States)

    Bain, Ryan M.; Pulliam, Christopher J.; Raab, Shannon A.; Cooks, R. Graham

    2016-01-01

    In this laboratory, students perform a synthetic reaction in two ways: (i) by traditional bulk-phase reaction and (ii) in the course of reactive paper spray ionization. Mass spectrometry (MS) is used both as an analytical method and a means of accelerating organic syntheses. The main focus of this laboratory exercise is that the same ionization…

  16. An embedded acceleration measurement capability for EXPRESS Rack Payloads

    International Nuclear Information System (INIS)

    Foster, William M. II; Sutliff, Thomas J.

    2000-01-01

    The International Space Station provides a microgravity environment allowing long duration studies to be made on phenomena masked by the presence of earth's gravitational effects. Studies are also enabled in areas requiring a substantial decrease in steady-state and vibratory acceleration environments. In anticipation microgravity science experiments being targeted for EXPRESS (EXpedite the PRocessing of Experiments to Space Station) Racks, a capability has been provided to simplify and conduct a consistent measurement of the microgravity environment for payloads. The Space Acceleration Measurement System-II (SAMS-II) project has collaborated with the EXPRESS Rack Project to embed an electronics unit within the four EXPRESS Racks equipped with Active Rack Isolation Systems (ARIS). Each SAMS-II unit provides a standardized means for payload acceleration measurements to be acquired. Access to this capability is via front panel connections similar to those of power, data and water cooling provided for EXPRESS payloads. Furthermore, an International Subrack Interface Standard (ISIS) drawer configuration has been developed to provide measurement capability to the non-ARIS equipped EXPRESS Racks, as well as to other ISIS-configured racks, for non-isolated experimental measurement needs. This paper describes the SAMS-II acceleration measurement capabilities provided to ISS users and, in particular, to the EXPRESS Rack community

  17. Adaptive control for accelerators

    International Nuclear Information System (INIS)

    Eaton, L.E.; Jachim, S.P.; Natter, E.F.

    1991-01-01

    This patent describes an adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity

  18. Commissioning the GTA accelerator

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-01-01

    The Ground Test Accelerator (GTA) is being used to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H - beam and then neutralizing it. The goal is to produce a 24 MeV, 50 mA device with a 2% duty factor. Specific features of the GTA -- injector, beam optics, rf linac structures, diagnostics, control and rf power systems are described. The first four steps in commissioning have been completed. The RFQ predicted and measured performances are in good agreement; however, the transmission is lower than specifications. Input emittance is larger than design specifications and increases the effects of image charge and multipoles. Displacement of steering magnets in either the horizontal or vertical plane caused beam displacements in both planes. It is suspected that quadrupole rotation is the cause of the coupled motion. 9 figs., 5 tabs., 11 refs

  19. Accelerator research studies

    International Nuclear Information System (INIS)

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks

  20. Adaptive control for accelerators

    Science.gov (United States)

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  1. Accelerator research studies

    International Nuclear Information System (INIS)

    1990-01-01

    This progress report for the Accelerator Research Studies program at the University of Maryland covers the second year (June 1, 1989 to May 31, 1990) of the current three-year contract period from June 1, 1988 to May 31, 1991, funded by the Department of Energy under Contract No. AC05-85ER40216. The research program is divided into three separate tasks, as follows: the study of Transport and Longitudinal Compression of Intense, High-Brightness Beams; the study of Collective Ion Acceleration by Intense Electron Beams and Pulse-Powered Plasma Focus; the study of Microwave Sources and Parameter Scaling for High-Frequency Linacs. This report consists of three sections in which the progress for each task is documented separately. An introduction and synopsis is presented at the beginning of the progress report for each task

  2. Review of ion accelerators

    International Nuclear Information System (INIS)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here

  3. Hardware Accelerated Simulated Radiography

    International Nuclear Information System (INIS)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-01-01

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists

  4. Review of accelerator instrumentation

    International Nuclear Information System (INIS)

    Pellegrin, J.L.

    1980-05-01

    Some of the problems associated with the monitoring of accelerator beams, particularly storage rings' beams, are reviewed along with their most common solutions. The various electrode structures used for the measurement of beam current, beam position, and the detection of the bunches' transverse oscillations, yield pulses with sub-nanosecond widths. The electronics for the processing of these short pulses involves wide band techniques and circuits usually not readily available from industry or the integrated circuit market: passive or active, successive integrations, linear gating, sample-and-hold circuits with nanosecond acquisition time, etc. This report also presents the work performed recently for monitoring the ultrashort beams of colliding linear accelerators or single-pass colliders. To minimize the beam emittance, the beam position must be measured with a high resolution, and digitized on a pulse-to-pulse basis. Experimental results obtained with the Stanford two-mile Linac single bunches are included

  5. Laser beam accelerator

    International Nuclear Information System (INIS)

    Tajima, T.; Dawson, J.M.

    1981-01-01

    Parallel intense photon (laser, microwave, etc.) beams /omega/sub //0, k/sub 0/ and /omega/sub //1, k/sub 1/ shone on a plasma with frequency separation equal to the plasma frequency /omega/sub //p is capable of accelerating plasma electrons to high energies in large flux. The photon beat excites through the forward Raman scattering large amplitude plasmons whose phase velocity is equal to (/omega/ /sub 0/-/omega/sub //1)/(k/sub 0/-k/sub 1/), close to c in an underdense plasma. The multiple forward Raman instability produces smaller and smaller frequency and group velocity of photons; thus the photons slow down in the plasma by emitting accelerated electrons (inverse Cherenkov process). 6 refs

  6. Commissioning the GTA accelerator

    International Nuclear Information System (INIS)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-01-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H - beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor

  7. accelerating cavity from LEP

    CERN Multimedia

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  8. Accelerator research studies

    International Nuclear Information System (INIS)

    1992-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks

  9. Accelerators for cancer therapy

    International Nuclear Information System (INIS)

    Lennox, Arlene J.

    2000-01-01

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy

  10. Ion accelerators for space

    International Nuclear Information System (INIS)

    Slobodrian, R.J.; Potvin, L.

    1991-01-01

    The main purpose of the accelerators is to allow ion implantation in space stations and their neighborhoods. There are several applications of interest immediately useful in such environment: as ion engines and thrusters, as implanters for material science and for hardening of surfaces (relevant to improve resistance to micrometeorite bombardment of exposed external components), production of man made alloys, etc. The microgravity environment of space stations allows the production of substances (crystalline and amorphous) under conditions unknown on earth, leading to special materials. Ion implantation in situ of those materials would thus lead uninterruptedly to new substances. Accelerators for space require special design. On the one hand it is possible to forego vacuum systems simplifying the design and operation but, on the other hand, it is necessary to pay special attention to heat dissipation. Hence it is necessary to construct a simulator in vacuum to properly test prototypes under conditions prevailing in space

  11. Acceleration of microparticle

    CERN Document Server

    Shibata, H

    2002-01-01

    A microparticle (dust) ion source has been installed at the high voltage terminal of the 3.75 MV single ended Van de Graaff electrostatic accelerator and a beam line for microparticle experiments has been build at High Fluence Irradiation Facility (HIT) of Research Center for Nuclear Science and Technology, the University of Tokyo. Microparticle acceleration has been successful in obtaining expected velocities of 1-20 km/s or more for micron or submicron sized particles. Development of in situ dust detectors and analyzers on board satellites and spacecraft in the expected mass and velocity range of micrometeoroids and investigation of hypervelocity impact phenomena by using time of flight mass spectrometry, impact flash or luminescence measurement and scanning electron or laser microscope observation for metals, ceramics, polymers and semiconductors bombarded by micron-sized particles were started three years ago. (author)

  12. Hadron beams and accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5. 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future

  13. ATLAS accelerator laboratory report

    International Nuclear Information System (INIS)

    Den Hartog, P.

    1986-01-01

    The operation of the ATLAS Accelerator is reported. Modifications are reported, including the installation of conductive tires for the Pelletron chain pulleys, installation of a new high frequency sweeper system at the entrance to the linac, and improvements to the rf drive ports of eight resonators to correct failures in the thermally conductive ceramic insulators. Progress is reported on the positive-ion injector upgrade for ATLAS. Also reported are building modifications and possible new uses for the tandem injector

  14. Accelerator simulation using computers

    International Nuclear Information System (INIS)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ''multi-track'' simulation and analysis code can be used for these applications

  15. Modulational effects in accelerators

    International Nuclear Information System (INIS)

    Satogata, T.

    1997-01-01

    We discuss effects of field modulations in accelerators, specifically those that can be used for operational beam diagnostics and beam halo control. In transverse beam dynamics, combined effects of nonlinear resonances and tune modulations influence diffusion rates with applied tune modulation has been demonstrated. In the longitudinal domain, applied RF phase and voltage modulations provide mechanisms for parasitic halo transport, useful in slow crystal extraction. Experimental experiences with transverse tune and RF modulations are also discussed

  16. Neutrino physics and accelerators

    International Nuclear Information System (INIS)

    Kaftanov, V.

    1978-01-01

    The history is described of experiments aimed at the study of direct neutrino-matter interactions conducted in the past twenty years. Experiments are outlined carried out with the objective of proving the existence of the intermediate W meson which had been predicted by the weak interaction theory. The methods of obtaining neutrino beams using accelerators and the detectors used are briefly shown. Also described are experiments to be conducted in the near future in different laboratories. (Z.J.)

  17. Hadron beams and accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5, 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future. copyright 1995 American Institute of Physics

  18. Future Accelerator Magnet Needs

    International Nuclear Information System (INIS)

    Devred, Arnaud; Gourlay, Stephen A.; Yamamoto, Akira

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R and D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb 3 Sn along with fabrication and cost issues are also discussed

  19. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  20. Introduction to Accelerators Physics

    International Nuclear Information System (INIS)

    Variola, A.

    2007-01-01

    This short course aims at giving to high energy physics students a preliminary introduction to accelerators basics. The arguments and the style were selected in this perspective. Consequently, topics such as the definition of beam parameters and luminosity were preferred to much more technical aspects. The calculation details were neglected to allow more important highlights on concepts and definitions. Some examples and exercises were suggested to summarize the different topics of the lessons

  1. Operation of the accelerator

    International Nuclear Information System (INIS)

    GANIL Team

    1992-01-01

    The operation of the GANIL accelerator during 1991 and the first half of 1992 is reported. Results obtained with new beams, metallic beams and the first tests with the new injector system using an ECR source installed on a 100 kV platform are also given. Statistics of operation and beam characteristics are presented. The computer control system is also discussed. (K.A.) 7 refs.; 3 figs.; 8 tabs

  2. Accelerating News Issue 3

    CERN Document Server

    Kahle, K; Tanguy, C; Wildner, E

    2012-01-01

    This summer saw CERN announce to a worldwide audience the discovery of a Higgs-like boson, so this issue takes a look at the machine behind the discovery, the LHC, as well as future plans for a possible Higgs factory in the form of LEP3. Looking ahead too are European strategies for particle physics and accelerator-based neutrino physics. In addition, taking stock of the work so far, HiLumi LHC and EuCARD showcase their latest results.

  3. Particle acceleration by pulsars

    International Nuclear Information System (INIS)

    Arons, Jonathan.

    1980-06-01

    The evidence that pulsars accelerate relativistic particles is reviewed, with emphasis on the γ-ray observations. The current state of knowledge of acceleration in strong waves is summarized, with emphasis on the inability of consistent theories to accelerate very high energy particles without converting too much energy into high energy photons. The state of viable models for pair creation by pulsars is summarized, with the conclusion that pulsars very likely lose rotational energy in winds instead of in superluminous strong waves. The relation of the pair creation models to γ-ray observations and to soft X-ray observations of pulsars is outlined, with the conclusion that energetically viable models may exist, but none have yet yielded useful agreement with the extant data. Some paths for overcoming present problems are discussed. The relation of the favored models to cosmic rays is discussed. It is pointed out that the pairs made by the models may have observable consequences for observation of positrons in the local cosmic ray flux and for observations of the 511 keV line from the interstellar medium. Another new point is that asymmetry of plasma supply from at least one of the models may qualitatively explain the gross asymmetry of the X-ray emission from the Crab nebula. It is also argued that acceleration of cosmic ray nuclei by pulsars, while energetically possible, can occur only at the boundary of the bubbles blown by the pulsars, if the cosmic ray composition is to be anything like that of the known source spectrum

  4. Basic accelerator optics

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    1985-01-01

    A complete derivation, from first principles, of the concepts and methods applied in linear accelerator and beamline optics will be presented. Particle motion and beam motion in systems composed of linear magnets, as well as weak and strong focusing and special insertions are treated in mathematically simple terms, and design examples for magnets and systems are given. This series of five lectures is intended to provide all the basic tools required for the design and operation of beam optical systems.

  5. Superconducting magnets for accelerators

    International Nuclear Information System (INIS)

    Denisov, Yu.N.

    1979-01-01

    Expediency of usage and possibilities arising in application of superconducting devices in magnetic systems of accelerators and experimental nuclear-physical devices are studied. Parameters of specific devices are given. It is emphasized that at the existing level of technological possibilities, construction and usage of superconducting magnetic systems in experimental nuclear physics should be thought of as possible, from the engineering, and expedient, from the economical viewpoints [ru

  6. Linear induction accelerator

    Science.gov (United States)

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  7. Laser-driven electron accelerators

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1981-01-01

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  8. Optimizing accelerator technology

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  9. Equipartitioning in linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1982-01-01

    Emittance growth has long been a concern in linear accelerators, as has the idea that some kind of energy balance, or equipartitioning, between the degrees of freedom, would ameliorate the growth. M. Prome observed that the average transverse and longitudinal velocity spreads tend to equalize as current in the channel is increased, while the sum of the energy in the system stays nearly constant. However, only recently have we shown that an equipartitioning requirement on a bunched injected beam can indeed produce remarkably small emittance growth. The simple set of equations leading to this condition are outlined. At the same time, Hofmann has investigated collective instabilities in transported beams and has identified thresholds and regions in parameter space where instabilities occur. Evidence is presented that shows transport system boundaries to be quite accurate in computer simulations of accelerating systems. Discussed are preliminary results of efforts to design accelerators that avoid parameter regions where emittance is affected by the instabilities identified by Hofmann. These efforts suggest that other mechanisms are present. The complicated behavior of the RFQ linac in this framework also is shown

  10. Equipartitioning in linear accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1981-01-01

    Emittance growth has long been a concern in linear accelerators, as has the idea that some kind of energy balance, or equipartitioning, between the degrees of freedom, would ameliorate the growth. M. Prome observed that the average transverse and longitudinal velocity spreads tend to equalize as current in the channel is increased, while the sum of the energy in the system stays nearly constant. However, only recently have we shown that an equipartitioning requirement on a bunched injected beam can indeed produce remarkably small emittance growth. The simple set of equations leading to this condition are outlined below. At the same time, Hofmann, using powerful analytical and computational methods, has investigated collective instabilities in transported beams and has identified thresholds and regions in parameter space where instabilities occur. This is an important generalization. Work that he will present at this conference shows that the results are essentially the same in r-z coordinates for transport systems, and evidence is presented that shows transport system boundaries to be quite accurate in computer simulations of accelerating systems also. Discussed are preliminary results of efforts to design accelerators that avoid parameter regions where emittance is affected by the instabilities identified by Hofmann. These efforts suggest that other mechanisms are present. The complicated behavior of the RFQ linac in this framework also is shown

  11. Laser driven particle acceleration

    International Nuclear Information System (INIS)

    Faure, J.

    2009-06-01

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  12. SSC accelerator physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Accelerator physicists at LBL began intensive work on the SSC in 1983, in support of the proposed 6.5-T magnet design, which, in turn, became reference design A during the Reference Designs Study. In that same study, LBL physicists formed the core of the accelerator physics group led by Fermilab's Don Edwards. In a period of only a few months, that group established preliminary parameters for a near-optimal design, produced conceptual designs based on three magnet types, addressed all significant beam lifetime and stability issues, and identified areas requiring further R and D. Since the conclusion of the Reference Designs Study, work has focused on the key SSC design issue, namely, single-particle stability in an imperfect magnetic field. At the end of fiscal 1984, much of the LBL accelerator physics group took its place in the SSC Central Design Group, whose headquarters at LBL will be the focus of nationwide SSC R and D efforts over the next several years

  13. The tandem betatron accelerator

    International Nuclear Information System (INIS)

    Keinigs, R.

    1991-01-01

    This paper reports that the tandem betatron is a compact, high-current induction accelerator that has the capability to accelerate electrons to an energy of order one gigavolt. Based upon the operating principle of a conventional betatron, the tandem betatron employs two synchronized induction cores operating 180 degrees out of phase. Embedded within the cores are the vacuum chambers, and these are connected by linear transport sections to allow for moving the beam back and forth between the two betatrons. The 180 degree phase shift between the core fluxes permits the circumvention of the flux swing constraint that limits the maximum energy gain of a conventional betatron. By transporting the beam between the synchronized cores, an electron can access more than one acceleration cycle, and thereby continue to gain energy. This added degree of freedom also permits a significant decrease in the size of the magnet system. Biasing coils provide independent control of the confining magnetic field. Provided that efficient beam switching can be performed, it appears feasible that a one gigavolt electron beam can be generated and confined. At this energy, a high current electron beam circulating in a one meter radius orbit could provide a very intense source of short wavelength (λ < 10 nm) synchrotron radiation. This has direct application to the emerging field of x-ray lithography. At more modest energies (10 MeV-30 MEV) a compact tandem betatron could be employed in the fields of medical radiation therapy, industrial radiography, and materials processing

  14. Turbulence and particle acceleration

    International Nuclear Information System (INIS)

    Scott, J.S.

    1975-01-01

    A model for the production of high energy particles in the supernova remnant Cas A is considered. The ordered expansion of the fast moving knots produce turbulent cells in the ambient interstellar medium. The turbulent cells act as magnetic scattering centers and charged particles are accelerated to large energies by the second order Fermi mechanism. Model predictions are shown to be consistent with the observed shape and time dependence of the radio spectrum, and with the scale size of magnetic field irregularities. Assuming a galactic supernova rate at 1/50 yr -1 , this mechanism is capable of producing the observed galactic cosmic ray flux and spectrum below 10 16 eV/nucleon. Several observed features of galactic cosmic rays are shown to be consistent with model predictions. A model for the objects known as radio tall galaxies is also presented. Independent blobs of magnetized plasma emerging from an active radio galaxy into an intracluster medium become turbulent due to Rayleigh--Taylor and Kelvin--Helmholz instabilities. The turbulence produces both in situ betatron and 2nd order Fermi accelerations. Predictions of the dependence of spectral index and flux on distance along the tail match observations well. Fitting provides values of physical parameters in the blobs. The relevance of this method of particle acceleration for the problem of the origin of x-ray emission in clusters of galaxies is discussed

  15. Accelerator mass spectrometry.

    Science.gov (United States)

    Hellborg, Ragnar; Skog, Göran

    2008-01-01

    In this overview the technique of accelerator mass spectrometry (AMS) and its use are described. AMS is a highly sensitive method of counting atoms. It is used to detect very low concentrations of natural isotopic abundances (typically in the range between 10(-12) and 10(-16)) of both radionuclides and stable nuclides. The main advantages of AMS compared to conventional radiometric methods are the use of smaller samples (mg and even sub-mg size) and shorter measuring times (less than 1 hr). The equipment used for AMS is almost exclusively based on the electrostatic tandem accelerator, although some of the newest systems are based on a slightly different principle. Dedicated accelerators as well as older "nuclear physics machines" can be found in the 80 or so AMS laboratories in existence today. The most widely used isotope studied with AMS is 14C. Besides radiocarbon dating this isotope is used in climate studies, biomedicine applications and many other fields. More than 100,000 14C samples are measured per year. Other isotopes studied include 10Be, 26Al, 36Cl, 41Ca, 59Ni, 129I, U, and Pu. Although these measurements are important, the number of samples of these other isotopes measured each year is estimated to be less than 10% of the number of 14C samples. Copyright 2008 Wiley Periodicals, Inc.

  16. Particle Accelerator Focus Automation

    Science.gov (United States)

    Lopes, José; Rocha, Jorge; Redondo, Luís; Cruz, João

    2017-08-01

    The Laboratório de Aceleradores e Tecnologias de Radiação (LATR) at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST) has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+) and proton (H+) beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  17. Electrostatic Plasma Accelerator (EPA)

    Science.gov (United States)

    Brophy, John R.; Aston, Graeme

    1995-01-01

    The application of electric propulsion to communications satellites, however, has been limited to the use of hydrazine thrusters with electric heaters for thrust and specific impulse augmentation. These electrothermal thrusters operate at specific impulse levels of approximately 300 s with heater powers of about 500 W. Low power arcjets (1-3 kW) are currently being investigated as a way to increase specific impulse levels to approximately 500 s. Ion propulsion systems can easily produce specific impulses of 3000 s or greater, but have yet to be applied to communications satellites. The reasons most often given for not using ion propulsion systems are their high level of overall complexity, low thrust with long burn times, and the difficulty of integrating the propulsion system into existing commercial spacecraft busses. The Electrostatic Plasma Accelerator (EPA) is a thruster concept which promises specific impulse levels between low power arcjets and those of the ion engine while retaining the relative simplicity of the arcjet. The EPA thruster produces thrust through the electrostatic acceleration of a moderately dense plasma. No accelerating electrodes are used and the specific impulse is a direct function of the applied discharge voltage and the propellant atomic mass.

  18. Particle Accelerator Focus Automation

    Directory of Open Access Journals (Sweden)

    Lopes José

    2017-08-01

    Full Text Available The Laboratório de Aceleradores e Tecnologias de Radiação (LATR at the Campus Tecnológico e Nuclear, of Instituto Superior Técnico (IST has a horizontal electrostatic particle accelerator based on the Van de Graaff machine which is used for research in the area of material characterization. This machine produces alfa (He+ and proton (H+ beams of some μA currents up to 2 MeV/q energies. Beam focusing is obtained using a cylindrical lens of the Einzel type, assembled near the high voltage terminal. This paper describes the developed system that automatically focuses the ion beam, using a personal computer running the LabVIEW software, a multifunction input/output board and signal conditioning circuits. The focusing procedure consists of a scanning method to find the lens bias voltage which maximizes the beam current measured on a beam stopper target, which is used as feedback for the scanning cycle. This system, as part of a wider start up and shut down automation system built for this particle accelerator, brings great advantages to the operation of the accelerator by turning it faster and easier to operate, requiring less human presence, and adding the possibility of total remote control in safe conditions.

  19. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  20. Collective focusing ion accelerator

    International Nuclear Information System (INIS)

    Goldin, F.J.

    1986-01-01

    The principal subject of this dissertation is the trapping confinement of pure electron plasmas in bumpy toroidal magnetic fields, with particular attention given to the trapping procedure and the behavior of the plasma during the final equilibrium. The most important aspects of the equilibrium studied were the qualitative nature of the plasma configuration and motion and its density, distribution and stability. The motivation for this study was that an unneutralized cloud of electrons contained in a toroidal system, sufficiently dense and stable, may serve to electrostatically focus ions (against centrifugal and self space charge forces) in a cyclic ion accelerator. Such an accelerator, known as a Collective Focusing Ion Accelerator (CFIA) could be far smaller than conventional designs (which use external magnetic fields directly to focus the ions) due to the smaller gyro-radium of an electron in a magnetic field of given strength. The electron cloud generally drifted poloidally at a finite radius from the toroidal minor axis. As this would preclude focusing ions with such clouds, damping this motion was investigated. Finite resistance in the normally perfectly conductive vessel wall did this. In further preparation for a working CFIA, additional experiments studied the effect of ions on the stability of the electron cloud

  1. Berkeley Proton Linear Accelerator

    Science.gov (United States)

    Alvarez, L. W.; Bradner, H.; Franck, J.; Gordon, H.; Gow, J. D.; Marshall, L. C.; Oppenheimer, F. F.; Panofsky, W. K. H.; Richman, C.; Woodyard, J. R.

    1953-10-13

    A linear accelerator, which increases the energy of protons from a 4 Mev Van de Graaff injector, to a final energy of 31.5 Mev, has been constructed. The accelerator consists of a cavity 40 feet long and 39 inches in diameter, excited at resonance in a longitudinal electric mode with a radio-frequency power of about 2.2 x 10{sup 6} watts peak at 202.5 mc. Acceleration is made possible by the introduction of 46 axial "drift tubes" into the cavity, which is designed such that the particles traverse the distance between the centers of successive tubes in one cycle of the r.f. power. The protons are longitudinally stable as in the synchrotron, and are stabilized transversely by the action of converging fields produced by focusing grids. The electrical cavity is constructed like an inverted airplane fuselage and is supported in a vacuum tank. Power is supplied by 9 high powered oscillators fed from a pulse generator of the artificial transmission line type.

  2. Heavy ion accelerating structure

    International Nuclear Information System (INIS)

    Pottier, Jacques.

    1977-01-01

    The heavy ion accelerating structure concerned in this invention is of the kind that have a resonance cavity inside which are located at least two longitudinal conducting supports electrically connected to the cavity by one of their ends in such a way that they are in quarter-wavelength resonance and in phase opposition. Slide tubes are electrically connected alternatively to one or the other of the two supports, they being electrically connected respectively to one or the other end of the side wall of the cavity. The feature of the structure is that it includes two pairs of supports symmetrically placed with respect to the centre line of the cavity, the supports of one pair fitted overhanging being placed symmetrically with respect to the centre line of the cavity, each slide tube being connected to the two supports of one pair. These support are connected to the slide wall of the cavity by an insulator located at their electrically free end. The accelerator structure composed of several structures placed end to end, the last one of which is fed by a high frequency field of adjustable amplitude and phase, enables a heavy ion linear accelerator to be built [fr

  3. Electron accelerators for environmental protection

    International Nuclear Information System (INIS)

    Zimek, Z.

    1998-01-01

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO 2 and NO x removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where

  4. Overview of accelerators in medicine

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1993-06-01

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field

  5. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  6. Resonance Control for Future Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Schappert, Warren [Fermilab

    2017-05-01

    Many of the next generation of particle accelerators (LCLS II, PIP II) are designed for relatively low beam loading. Low beam loading requirement means the cavities can operate with narrow bandwidths, minimizing capital and base operational costs of the RF power system. With such narrow bandwidths, however, cavity detuning from microphonics or dynamic Lorentz Force Detuning becomes a significant factor, and in some cases can significantly increase both the acquisition cost and the operational cost of the machine. In addition to the efforts to passive environmental detuning reduction (microphonics) active resonance control for the SRF cavities for next generation linear machine will be required. State of the art in the field of the SRF Cavity active resonance control and the results from the recent efforts at FNAL will be presented in this talk.

  7. Simulation of transition crossing in LAMPF II

    International Nuclear Information System (INIS)

    Warren, J.L.; Thiessen, H.A.

    1983-01-01

    LAMPF II is the proposed rapid-cycling synchrotron that will take 0.8-GeV protons from the LAMPF linear accelerator and raise them to 32 GeV. Early design models were based on a 60-Hz cycle with 10 13 protons to be accelerated per cycle. Any reasonable magnetic lattice results in the proton beam going through a phase transition. A general accelerator-simulation code that includes the effect of longitudinal space charge, ARCHSIM, has been used to study the transition in a typical achromatic lattice. The beam remains stable through the transition

  8. Accelerated Numerical Processing API Based on GPU Technology, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The recent performance increases in graphics processing units (GPUs) have made graphics cards an attractive platform for implementing computationally intense...

  9. Stochastic acceleration by hydromagnetic turbulence

    International Nuclear Information System (INIS)

    Kulsrud, R.M.

    1979-03-01

    A general theory for particle acceleration by weak hydromagnetic turbulence with a given spectrum of waves is described. Various limiting cases, corresponding to Fermi acceleration and magnetic pumping, are discussed and two numerical examples illustrating them are given. An attempt is made to show that the expression for the rate of Fermi acceleration is valid for finite amplitudes

  10. Damage limits of accelerator equipment

    CERN Document Server

    Rosell, Gemma

    2014-01-01

    Beam losses occur in particle accelerators for various reasons. The effect of lost particles on accelerator equipment becomes more severe with the increasing energies and intensities. The present study is focused on the damage potential of the proton beam as a function of particle energy and beam size. Injection and extraction energies of different accelerators at CERN were considered.

  11. ACCELERATORS: Nonlinear dynamics in Sardinia

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    In the last few years, two schools devoted to accelerator physics have been set up, one on either side of the Atlantic. The US School on High Energy Particle Accelerators has organized Summer Schools on the physics of particle accelerators, hosted by the major American Laboratories, each year since 1981

  12. New techniques for particle accelerators

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1990-06-01

    A review is presented of the new techniques which have been proposed for use in particle accelerators. Attention is focused upon those areas where significant progress has been made in the last two years--in particular, upon two-beam accelerators, wakefield accelerators, and plasma focusers. 26 refs., 5 figs., 1 tab

  13. ACCELERATORS: Nonlinear dynamics in Sardinia

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1985-05-15

    In the last few years, two schools devoted to accelerator physics have been set up, one on either side of the Atlantic. The US School on High Energy Particle Accelerators has organized Summer Schools on the physics of particle accelerators, hosted by the major American Laboratories, each year since 1981.

  14. High intensity circular proton accelerators

    International Nuclear Information System (INIS)

    Craddock, M.K.

    1987-12-01

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  15. Modern accelerators in ancient Rome

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    For the first time, the achievements and hopes of the broad European accelerator community were brought together in a European Particle Accelerator Conference, held in Rome in June. Ranging from the vast machines at CERN to the small medical accelerators operating in thousands of hospitals, the programme underlined how modern civilization has benefited from the ability to handle charged particle beams

  16. Modern accelerators in ancient Rome

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    For the first time, the achievements and hopes of the broad European accelerator community were brought together in a European Particle Accelerator Conference, held in Rome in June. Ranging from the vast machines at CERN to the small medical accelerators operating in thousands of hospitals, the programme underlined how modern civilization has benefited from the ability to handle charged particle beams.

  17. Industrial use of electron accelerators

    International Nuclear Information System (INIS)

    Tabata, Y.

    1980-01-01

    Use of accelerators in various fields of Japan is reviewed. The total number of accelerators in Japan and its relation with others fields, the number of accelerators for use in radiation processing, comparison between the use of low and high energy machines, etc... is done. (E.G.) [pt

  18. Landscape of Future Accelerators at the Energy and Intensity Frontier

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M. J. [Northern Illinois U.; Chattopadhyay, S. [Northern Illinois U.

    2016-11-21

    An overview is provided of the currently envisaged landscape of charged particle accelerators at the energy and intensity frontiers to explore particle physics beyond the standard model via 1-100 TeV-scale lepton and hadron colliders and multi-Megawatt proton accelerators for short- and long- baseline neutrino experiments. The particle beam physics, associated technological challenges and progress to date for these accelerator facilities (LHC, HL-LHC, future 100 TeV p-p colliders, Tev-scale linear and circular electron-positron colliders, high intensity proton accelerator complex PIP-II for DUNE and future upgrade to PIP-III) are outlined. Potential and prospects for advanced “nonlinear dynamic techniques” at the multi-MW level intensity frontier and advanced “plasma- wakefield-based techniques” at the TeV-scale energy frontier and are also described.

  19. A Components Database Design and Implementation for Accelerators and Detectors

    International Nuclear Information System (INIS)

    Chan, A.; Meyer, S.

    2011-01-01

    Many accelerator and detector systems being fabricated for the PEP-II Accelerator and BABAR Detector needed configuration control and calibration measurements tracked for their components. Instead of building a database for each distinct system, a Components Database was designed and implemented that can encompass any type of component and any type of measurement. In this paper we describe this database design that is especially suited for the engineering and fabrication processes of the accelerator and detector environments where there are thousands of unique component types. We give examples of information stored in the Components Database, which includes accelerator configuration, calibration measurements, fabrication history, design specifications, inventory, etc. The World Wide Web interface is used to access the data, and templates are available for international collaborations to collect data off-line.

  20. Particle acceleration by collective effects

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    Successful acceleration of protons and other ions has been achieved experimentally in this decade by a number of different collective methods. The attainment of very high accelerating fields has been established although so far the acceleration distance has been confined to only a few centimeters. Efforts are in progress to understand the accelerating mechanisms in detail and, as a result, to devise ways of extending considerably the acceleration distance. This paper is intended to review the current progress, expectations, and limitations of the different approaches. (author)