WorldWideScience

Sample records for dantrolene binding sequence

  1. [3H]Azidodantrolene photoaffinity labeling, synthetic domain peptides and monoclonal antibody reactivity identify the dantrolene binding sequence on RyR1

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Pletzer, Kalanethee; Yamamoto, Takeshi; Bhat, Manju B.; Ma, Jianjie; Ikemoto, Noriaki; Jimenez, Leslie S.; Morimoto, Hiromi; Williams, Philip G.; Parness, Jerome

    2002-06-14

    Dantrolene is a drug that suppresses intracellular Ca2+ release from sarcoplasmic reticulum in normal skeletal muscle and is used as a therapeutic agent in individuals susceptible to malignant hyperthermia. Though its precise mechanism of action has not been elucidated, we have identified the N-terminal region (amino acids 1-1400) of the skeletal muscle isoform of the ryanodine receptor (RyR1), the primary Ca2+ release channel in sarcoplasmic reticulum, as a molecular target for dantrolene using the photoaffinity analog [3H]azidodantrolene(1). Here, we demonstrate that heterologously expressed RyR1 retains its capacity to be specifically labeled with [3H]azidodantrolene,indicating that muscle specific factors are not required for this ligand-receptor interaction. Synthetic domain peptides of RyR1, previously shown to affect RyR1 function in vitro and in vivo, were exploited as potential drug binding site mimics and used in photoaffinity labeling experiments. Only DP1 and DP1-2, peptide s containing the amino acid sequence corresponding to RyR1 residues 590-609, were specifically labeled by [3H]azidodantrolene. A monoclonal anti-RyR1 antibody which recognizes RyR1 and its 1400 amino acid N-terminal fragment, recognizes DP1 and DP1-2 in both Western blots and immunoprecipitation assays, and specifically inhibits [3H]azidodantrolene photolabeling of RyR1 and its N-terminal fragment in sarcoplasmic reticulum. Our results indicate that synthetic domain peptides can mimic a native, ligand binding conformation in vitro, and that the dantrolene binding site and the epitope for the monoclonal antibody on RyR1 are equivalent and composed of amino-acids 590-609.

  2. Compound list: dantrolene [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available dantrolene DTL 00119 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Human/i...n_vitro/dantrolene.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vi...tro/dantrolene.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liv...er/Single/dantrolene.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/arch

  3. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2011-11-01

    Full Text Available Abstract Background Huntington's disease (HD is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs. Our group has previously demonstrated that calcium (Ca2+ signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128. Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2 and spinocerebellar ataxia 3 (SCA3 mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. Results The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Conclusions Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that Ryan

  4. Dantrolene is neuroprotective in Huntington's disease transgenic mouse model.

    Science.gov (United States)

    Chen, Xi; Wu, Jun; Lvovskaya, Svetlana; Herndon, Emily; Supnet, Charlene; Bezprozvanny, Ilya

    2011-11-25

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSNs). Our group has previously demonstrated that calcium (Ca2+) signaling is abnormal in MSNs from the yeast artificial chromosome transgenic mouse model of HD (YAC128). Moreover, we demonstrated that deranged intracellular Ca2+ signaling sensitizes YAC128 MSNs to glutamate-induced excitotoxicity when compared to wild type (WT) MSNs. In previous studies we also observed abnormal neuronal Ca2+ signaling in neurons from spinocerebellar ataxia 2 (SCA2) and spinocerebellar ataxia 3 (SCA3) mouse models and demonstrated that treatment with dantrolene, a ryanodine receptor antagonist and clinically relevant Ca2+ signaling stabilizer, was neuroprotective in experiments with these mouse models. The aim of the current study was to evaluate potential beneficial effects of dantrolene in experiments with YAC128 HD mouse model. The application of caffeine and glutamate resulted in increased Ca2+ release from intracellular stores in YAC128 MSN cultures when compared to WT MSN cultures. Pre-treatment with dantrolene protected YAC128 MSNs from glutamate excitotoxicty, with an effective concentration of 100 nM and above. Feeding dantrolene (5 mg/kg) twice a week to YAC128 mice between 2 months and 11.5 months of age resulted in significantly improved performance in the beam-walking and gait-walking assays. Neuropathological analysis revealed that long-term dantrolene feeding to YAC128 mice significantly reduced the loss of NeuN-positive striatal neurons and reduced formation of Httexp nuclear aggregates. Our results support the hypothesis that deranged Ca2+ signaling plays an important role in HD pathology. Our data also implicate the RyanRs as a potential therapeutic target for the treatment of HD and demonstrate that RyanR inhibitors and Ca2+ signaling stabilizers such as

  5. Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.

    Science.gov (United States)

    Rassier, D E; MacIntosh, B R

    2000-04-01

    In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.

  6. Antiarrhythmic Effects of Dantrolene in Patients with Catecholaminergic Polymorphic Ventricular Tachycardia and Replication of the Responses Using iPSC Models.

    Directory of Open Access Journals (Sweden)

    Kirsi Penttinen

    Full Text Available Catecholaminergic polymorphic ventricular tachycardia (CPVT is a highly malignant inherited arrhythmogenic disorder. Type 1 CPVT (CPVT1 is caused by cardiac ryanodine receptor (RyR2 gene mutations resulting in abnormal calcium release from sarcoplasmic reticulum. Dantrolene, an inhibitor of sarcoplasmic Ca(2+ release, has been shown to rescue this abnormal Ca(2+ release in vitro. We assessed the antiarrhythmic efficacy of dantrolene in six patients carrying various RyR2 mutations causing CPVT. The patients underwent exercise stress test before and after dantrolene infusion. Dantrolene reduced the number of premature ventricular complexes (PVCs on average by 74% (range 33-97 in four patients with N-terminal or central mutations in the cytosolic region of the RyR2 protein, while dantrolene had no effect in two patients with mutations in or near the transmembrane domain. Induced pluripotent stem cells (iPSCs were generated from all the patients and differentiated into spontaneously beating cardiomyocytes (CMs. The antiarrhythmic effect of dantrolene was studied in CMs after adrenaline stimulation by Ca(2+ imaging. In iPSC derived CMs with RyR2 mutations in the N-terminal or central region, dantrolene suppressed the Ca(2+ cycling abnormalities in 80% (range 65-97 of cells while with mutations in or near the transmembrane domain only in 23 or 32% of cells. In conclusion, we demonstrate that dantrolene given intravenously shows antiarrhythmic effects in a portion of CPVT1 patients and that iPSC derived CM models replicate these individual drug responses. These findings illustrate the potential of iPSC models to individualize drug therapy of inherited diseases.Trial Registration: EudraCT Clinical Trial Registry 2012-005292-14.

  7. Forecasting gastrointestinal precipitation and oral pharmacokinetics of dantrolene in dogs using an in vitro precipitation testing coupled with in silico modeling and simulation.

    Science.gov (United States)

    Kambayashi, Atsushi; Dressman, Jennifer B

    2017-10-01

    The aim of the current research was to determine the precipitation kinetics of dantrolene sodium using canine biorelevant in vitro testing and to model the precipitation kinetics by appropriately coupling the data with an in silico tool adapted for dogs. The precipitation profiles of dantrolene sodium solutions were obtained with the in vitro paddle apparatus at a revolution rate of 50rpm. The in silico prediction tool was designed using STELLA software and the predicted plasma concentration profiles of dantrolene using the in vitro precipitation data were compared with the observed in vivo pharmacokinetics in beagle dogs. The plasma profiles of dantrolene, which served as a model weakly acidic drug which precipitates in the upper gastrointestinal tract, was successfully predicted using the in vitro precipitation testing coupled with the in silico modeling and simulation approach. The approach was subsequently used to forecast the effect of pharmaceutical excipients (HPMC/PG) on the ability of the drug to supersaturate in the gut and the resulting pharmacokinetics. The agreement of the simulated pharmacokinetics with the observed values confirms the ability of canine biorelevant media to predict oral performance of enhanced dosage forms in dogs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Directory of Open Access Journals (Sweden)

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  9. Thermodynamics of sequence-specific binding of PNA to DNA

    DEFF Research Database (Denmark)

    Ratilainen, T; Holmén, A; Tuite, E

    2000-01-01

    For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes) and seq......For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes...

  10. Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm

    KAUST Repository

    Wong, Ka Chun

    2011-02-05

    Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.

  11. Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm

    KAUST Repository

    Wong, Ka Chun; Peng, Chengbin; Wong, Manhon; Leung, Kwongsak

    2011-01-01

    Protein-DNA bindings are essential activities. Understanding them forms the basis for further deciphering of biological and genetic systems. In particular, the protein-DNA bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) play a central role in gene transcription. Comprehensive TF-TFBS binding sequence pairs have been found in a recent study. However, they are in one-to-one mappings which cannot fully reflect the many-to-many mappings within the bindings. An evolutionary algorithm is proposed to learn generalized representations (many-to-many mappings) from the TF-TFBS binding sequence pairs (one-to-one mappings). The generalized pairs are shown to be more meaningful than the original TF-TFBS binding sequence pairs. Some representative examples have been analyzed in this study. In particular, it shows that the TF-TFBS binding sequence pairs are not presumably in one-to-one mappings. They can also exhibit many-to-many mappings. The proposed method can help us extract such many-to-many information from the one-to-one TF-TFBS binding sequence pairs found in the previous study, providing further knowledge in understanding the bindings between TFs and TFBSs. © 2011 Springer-Verlag.

  12. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins.

    Directory of Open Access Journals (Sweden)

    Hilal Kazan

    2010-07-01

    Full Text Available Metazoan genomes encode hundreds of RNA-binding proteins (RBPs. These proteins regulate post-transcriptional gene expression and have critical roles in numerous cellular processes including mRNA splicing, export, stability and translation. Despite their ubiquity and importance, the binding preferences for most RBPs are not well characterized. In vitro and in vivo studies, using affinity selection-based approaches, have successfully identified RNA sequence associated with specific RBPs; however, it is difficult to infer RBP sequence and structural preferences without specifically designed motif finding methods. In this study, we introduce a new motif-finding method, RNAcontext, designed to elucidate RBP-specific sequence and structural preferences with greater accuracy than existing approaches. We evaluated RNAcontext on recently published in vitro and in vivo RNA affinity selected data and demonstrate that RNAcontext identifies known binding preferences for several control proteins including HuR, PTB, and Vts1p and predicts new RNA structure preferences for SF2/ASF, RBM4, FUSIP1 and SLM2. The predicted preferences for SF2/ASF are consistent with its recently reported in vivo binding sites. RNAcontext is an accurate and efficient motif finding method ideally suited for using large-scale RNA-binding affinity datasets to determine the relative binding preferences of RBPs for a wide range of RNA sequences and structures.

  13. Using TESS to predict transcription factor binding sites in DNA sequence.

    Science.gov (United States)

    Schug, Jonathan

    2008-03-01

    This unit describes how to use the Transcription Element Search System (TESS). This Web site predicts transcription factor binding sites (TFBS) in DNA sequence using two different kinds of models of sites, strings and positional weight matrices. The binding of transcription factors to DNA is a major part of the control of gene expression. Transcription factors exhibit sequence-specific binding; they form stronger bonds to some DNA sequences than to others. Identification of a good binding site in the promoter for a gene suggests the possibility that the corresponding factor may play a role in the regulation of that gene. However, the sequences transcription factors recognize are typically short and allow for some amount of mismatch. Because of this, binding sites for a factor can typically be found at random every few hundred to a thousand base pairs. TESS has features to help sort through and evaluate the significance of predicted sites.

  14. Methylene blue binding to DNA with alternating AT base sequence: minor groove binding is favored over intercalation.

    Science.gov (United States)

    Rohs, Remo; Sklenar, Heinz

    2004-04-01

    The results presented in this paper on methylene blue (MB) binding to DNA with AT alternating base sequence complement the data obtained in two former modeling studies of MB binding to GC alternating DNA. In the light of the large amount of experimental data for both systems, this theoretical study is focused on a detailed energetic analysis and comparison in order to understand their different behavior. Since experimental high-resolution structures of the complexes are not available, the analysis is based on energy minimized structural models of the complexes in different binding modes. For both sequences, four different intercalation structures and two models for MB binding in the minor and major groove have been proposed. Solvent electrostatic effects were included in the energetic analysis by using electrostatic continuum theory, and the dependence of MB binding on salt concentration was investigated by solving the non-linear Poisson-Boltzmann equation. We find that the relative stability of the different complexes is similar for the two sequences, in agreement with the interpretation of spectroscopic data. Subtle differences, however, are seen in energy decompositions and can be attributed to the change from symmetric 5'-YpR-3' intercalation to minor groove binding with increasing salt concentration, which is experimentally observed for the AT sequence at lower salt concentration than for the GC sequence. According to our results, this difference is due to the significantly lower non-electrostatic energy for the minor groove complex with AT alternating DNA, whereas the slightly lower binding energy to this sequence is caused by a higher deformation energy of DNA. The energetic data are in agreement with the conclusions derived from different spectroscopic studies and can also be structurally interpreted on the basis of the modeled complexes. The simple static modeling technique and the neglect of entropy terms and of non-electrostatic solute

  15. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available Many pathogenic microorganisms evade host immunity through extensive sequence variability in a protein region targeted by protective antibodies. In spite of the sequence variability, a variable region commonly retains an important ligand-binding function, reflected in the presence of a highly conserved sequence motif. Here, we analyze the limits of sequence divergence in a ligand-binding region by characterizing the hypervariable region (HVR of Streptococcus pyogenes M protein. Our studies were focused on HVRs that bind the human complement regulator C4b-binding protein (C4BP, a ligand that confers phagocytosis resistance. A previous comparison of C4BP-binding HVRs identified residue identities that could be part of a binding motif, but the extended analysis reported here shows that no residue identities remain when additional C4BP-binding HVRs are included. Characterization of the HVR in the M22 protein indicated that two relatively conserved Leu residues are essential for C4BP binding, but these residues are probably core residues in a coiled-coil, implying that they do not directly contribute to binding. In contrast, substitution of either of two relatively conserved Glu residues, predicted to be solvent-exposed, had no effect on C4BP binding, although each of these changes had a major effect on the antigenic properties of the HVR. Together, these findings show that HVRs of M proteins have an extraordinary capacity for sequence divergence and antigenic variability while retaining a specific ligand-binding function.

  16. The decorin sequence SYIRIADTNIT binds collagen type I

    DEFF Research Database (Denmark)

    Kalamajski, Sebastian; Aspberg, Anders; Oldberg, Ake

    2007-01-01

    Decorin belongs to the small leucine-rich repeat proteoglycan family, interacts with fibrillar collagens, and regulates the assembly, structure, and biomechanical properties of connective tissues. The decorin-collagen type I-binding region is located in leucine-rich repeats 5-6. Site......-directed mutagenesis of this 54-residue-long collagen-binding sequence identifies Arg-207 and Asp-210 in leucine-rich repeat 6 as crucial for the binding to collagen. The synthetic peptide SYIRIADTNIT, which includes Arg-207 and Asp-210, inhibits the binding of full-length recombinant decorin to collagen in vitro....... These collagen-binding amino acids are exposed on the exterior of the beta-sheet-loop structure of the leucine-rich repeat. This resembles the location of interacting residues in other leucine-rich repeat proteins....

  17. DNA sequence+shape kernel enables alignment-free modeling of transcription factor binding.

    Science.gov (United States)

    Ma, Wenxiu; Yang, Lin; Rohs, Remo; Noble, William Stafford

    2017-10-01

    Transcription factors (TFs) bind to specific DNA sequence motifs. Several lines of evidence suggest that TF-DNA binding is mediated in part by properties of the local DNA shape: the width of the minor groove, the relative orientations of adjacent base pairs, etc. Several methods have been developed to jointly account for DNA sequence and shape properties in predicting TF binding affinity. However, a limitation of these methods is that they typically require a training set of aligned TF binding sites. We describe a sequence + shape kernel that leverages DNA sequence and shape information to better understand protein-DNA binding preference and affinity. This kernel extends an existing class of k-mer based sequence kernels, based on the recently described di-mismatch kernel. Using three in vitro benchmark datasets, derived from universal protein binding microarrays (uPBMs), genomic context PBMs (gcPBMs) and SELEX-seq data, we demonstrate that incorporating DNA shape information improves our ability to predict protein-DNA binding affinity. In particular, we observe that (i) the k-spectrum + shape model performs better than the classical k-spectrum kernel, particularly for small k values; (ii) the di-mismatch kernel performs better than the k-mer kernel, for larger k; and (iii) the di-mismatch + shape kernel performs better than the di-mismatch kernel for intermediate k values. The software is available at https://bitbucket.org/wenxiu/sequence-shape.git. rohs@usc.edu or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  18. Sequence walkers: a graphical method to display how binding proteins interact with DNA or RNA sequences | Center for Cancer Research

    Science.gov (United States)

    A graphical method is presented for displaying how binding proteins and other macromolecules interact with individual bases of nucleotide sequences. Characters representing the sequence are either oriented normally and placed above a line indicating favorable contact, or upside-down and placed below the line indicating unfavorable contact. The positive or negative height of each letter shows the contribution of that base to the average sequence conservation of the binding site, as represented by a sequence logo.

  19. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    Science.gov (United States)

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of

  20. A statistical model for investigating binding probabilities of DNA nucleotide sequences using microarrays.

    Science.gov (United States)

    Lee, Mei-Ling Ting; Bulyk, Martha L; Whitmore, G A; Church, George M

    2002-12-01

    There is considerable scientific interest in knowing the probability that a site-specific transcription factor will bind to a given DNA sequence. Microarray methods provide an effective means for assessing the binding affinities of a large number of DNA sequences as demonstrated by Bulyk et al. (2001, Proceedings of the National Academy of Sciences, USA 98, 7158-7163) in their study of the DNA-binding specificities of Zif268 zinc fingers using microarray technology. In a follow-up investigation, Bulyk, Johnson, and Church (2002, Nucleic Acid Research 30, 1255-1261) studied the interdependence of nucleotides on the binding affinities of transcription proteins. Our article is motivated by this pair of studies. We present a general statistical methodology for analyzing microarray intensity measurements reflecting DNA-protein interactions. The log probability of a protein binding to a DNA sequence on an array is modeled using a linear ANOVA model. This model is convenient because it employs familiar statistical concepts and procedures and also because it is effective for investigating the probability structure of the binding mechanism.

  1. Sequence2Vec: A novel embedding approach for modeling transcription factor binding affinity landscape

    KAUST Repository

    Dai, Hanjun

    2017-07-26

    Motivation: An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Results: Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model (HMM) which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these HMMs into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA data sets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods.

  2. The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences.

    Directory of Open Access Journals (Sweden)

    Fabian König

    Full Text Available The monoclonal antibody S9.6 is a widely-used tool to purify, analyse and quantify R-loop structures in cells. A previous study using the surface plasmon resonance technology and a single-chain variable fragment (scFv of S9.6 showed high affinity (0.6 nM for DNA-RNA and also a high affinity (2.7 nM for RNA-RNA hybrids. We used the microscale thermophoresis method allowing surface independent interaction studies and electromobility shift assays to evaluate additional RNA-DNA hybrid sequences and to quantify the binding affinities of the S9.6 antibody with respect to distinct sequences and their GC-content. Our results confirm high affinity binding to previously analysed sequences, but reveals that binding affinities are highly sequence specific. Our study presents R-loop sequences that independent of GC-content and in different sequence variations exhibit either no binding, binding affinities in the micromolar range and as well high affinity binding in the nanomolar range. Our study questions the usefulness of the S9.6 antibody in the quantitative analysis of R-loop sequences in vivo.

  3. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    Directory of Open Access Journals (Sweden)

    TIJANA SAVIC

    2006-02-01

    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  4. The hydrophobic core of twin-arginine signal sequences orchestrates specific binding to Tat-pathway related chaperones.

    Directory of Open Access Journals (Sweden)

    Anitha Shanmugham

    Full Text Available Redox enzyme maturation proteins (REMPs bind pre-proteins destined for translocation across the bacterial cytoplasmic membrane via the twin-arginine translocation system and enable the enzymatic incorporation of complex cofactors. Most REMPs recognize one specific pre-protein. The recognition site usually resides in the N-terminal signal sequence. REMP binding protects signal peptides against degradation by proteases. REMPs are also believed to prevent binding of immature pre-proteins to the translocon. The main aim of this work was to better understand the interaction between REMPs and substrate signal sequences. Two REMPs were investigated: DmsD (specific for dimethylsulfoxide reductase, DmsA and TorD (specific for trimethylamine N-oxide reductase, TorA. Green fluorescent protein (GFP was genetically fused behind the signal sequences of TorA and DmsA. This ensures native behavior of the respective signal sequence and excludes any effects mediated by the mature domain of the pre-protein. Surface plasmon resonance analysis revealed that these chimeric pre-proteins specifically bind to the cognate REMP. Furthermore, the region of the signal sequence that is responsible for specific binding to the corresponding REMP was identified by creating region-swapped chimeric signal sequences, containing parts of both the TorA and DmsA signal sequences. Surprisingly, specificity is not encoded in the highly variable positively charged N-terminal region of the signal sequence, but in the more similar hydrophobic C-terminal parts. Interestingly, binding of DmsD to its model substrate reduced membrane binding of the pre-protein. This property could link REMP-signal peptide binding to its reported proofreading function.

  5. In vitro effects of oxytocin, acepromazine, detomidine, xylazine, butorphanol, terbutaline, isoproterenol, and dantrolene on smooth and skeletal muscles of the equine esophagus.

    Science.gov (United States)

    Wooldridge, Anne A; Eades, Susan C; Hosgood, Giselle L; Moore, Rustin M

    2002-12-01

    To characterize the in vitro effects of oxytocin, acepromazine, xylazine, butorphanol, detomidine, dantrolene, isoproterenol, and terbutaline on skeletal and smooth muscle from the equine esophagus. 14 adult horses without digestive tract disease. Circular and longitudinal strips from the skeletal and smooth muscle of the esophagus were suspended in tissue baths, connected to force-displacement transducers interfaced with a physiograph, and electrical field stimulation was applied. Cumulative concentration-response curves were generated for oxytocin, acepromazine, xylazine, detomidine, butorphanol, isoproterenol, terbutaline, and dantrolene. Mean maximum twitch amplitude for 3 contractions/min was recorded and compared with predrug-vehicle values for the skeletal muscle segments, and area under the curve (AUC) for 3 contractions/min was compared with predrug-vehicle values for the smooth muscle segments. No drugs caused a significant change in skeletal muscle response. In smooth muscle, isoproterenol, terbutaline, and oxytocin significantly reduced AUC in a concentration-dependent manner. Maximum reduction in AUC was 69% at 10(-4) M for isoproterenol, 63% at 10(-6) M for terbutaline, and 64% at 10(-4) M for oxytocin. Isoproterenol, terbutaline, and oxytocin cause relaxation of the smooth muscle portion of the esophagus. The clinical relaxant effects on the proximal portion of the esophagus reported of drugs such as oxytocin, detomidine, and acepromazine may be the result of centrally mediated mechanisms.

  6. A machine learning approach for the identification of odorant binding proteins from sequence-derived properties

    Directory of Open Access Journals (Sweden)

    Suganthan PN

    2007-09-01

    Full Text Available Abstract Background Odorant binding proteins (OBPs are believed to shuttle odorants from the environment to the underlying odorant receptors, for which they could potentially serve as odorant presenters. Although several sequence based search methods have been exploited for protein family prediction, less effort has been devoted to the prediction of OBPs from sequence data and this area is more challenging due to poor sequence identity between these proteins. Results In this paper, we propose a new algorithm that uses Regularized Least Squares Classifier (RLSC in conjunction with multiple physicochemical properties of amino acids to predict odorant-binding proteins. The algorithm was applied to the dataset derived from Pfam and GenDiS database and we obtained overall prediction accuracy of 97.7% (94.5% and 98.4% for positive and negative classes respectively. Conclusion Our study suggests that RLSC is potentially useful for predicting the odorant binding proteins from sequence-derived properties irrespective of sequence similarity. Our method predicts 92.8% of 56 odorant binding proteins non-homologous to any protein in the swissprot database and 97.1% of the 414 independent dataset proteins, suggesting the usefulness of RLSC method for facilitating the prediction of odorant binding proteins from sequence information.

  7. Sequence specificity and biological consequences of drugs that bind covalently in the minor groove of DNA

    International Nuclear Information System (INIS)

    Hurley, L.H.; Needham-VanDevanter, D.R.

    1986-01-01

    DNA ligands which bind within the minor groove of DNA exhibit varying degrees of sequence selectivity. Factors which contribute to nucleotide sequence recognition by minor groove ligands have been extensively investigated. Electrostatic interactions, ligand and DNA dehydration energies, hydrophobic interactions and steric factors all play significant roles in sequence selectivity in the minor groove. Interestingly, ligand recognition of nucleotide sequence in the minor groove does not involve significant hydrogen bonding. This is in sharp contrast to cellular enzyme and protein recognition of nucleotide sequence, which is achieved in the major groove via specific hydrogen bond formation between individual bases and the ligand. The ability to read nucleotide sequence via hydrogen bonding allows precise binding of proteins to specific DNA sequences. Minor groove ligands examined to date exhibit a much lower sequence specificity, generally binding to a subset of possible sequences, rather than a single sequence. 19 refs., 7 figs

  8. Defining the plasticity of transcription factor binding sites by Deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria.

    Directory of Open Access Journals (Sweden)

    Oscar Harari

    2010-07-01

    Full Text Available Transcriptional regulators recognize specific DNA sequences. Because these sequences are embedded in the background of genomic DNA, it is hard to identify the key cis-regulatory elements that determine disparate patterns of gene expression. The detection of the intra- and inter-species differences among these sequences is crucial for understanding the molecular basis of both differential gene expression and evolution. Here, we address this problem by investigating the target promoters controlled by the DNA-binding PhoP protein, which governs virulence and Mg(2+ homeostasis in several bacterial species. PhoP is particularly interesting; it is highly conserved in different gamma/enterobacteria, regulating not only ancestral genes but also governing the expression of dozens of horizontally acquired genes that differ from species to species. Our approach consists of decomposing the DNA binding site sequences for a given regulator into families of motifs (i.e., termed submotifs using a machine learning method inspired by the "Divide & Conquer" strategy. By partitioning a motif into sub-patterns, computational advantages for classification were produced, resulting in the discovery of new members of a regulon, and alleviating the problem of distinguishing functional sites in chromatin immunoprecipitation and DNA microarray genome-wide analysis. Moreover, we found that certain partitions were useful in revealing biological properties of binding site sequences, including modular gains and losses of PhoP binding sites through evolutionary turnover events, as well as conservation in distant species. The high conservation of PhoP submotifs within gamma/enterobacteria, as well as the regulatory protein that recognizes them, suggests that the major cause of divergence between related species is not due to the binding sites, as was previously suggested for other regulators. Instead, the divergence may be attributed to the fast evolution of orthologous target

  9. Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo

    International Nuclear Information System (INIS)

    Grossmann, Michael E.; Madden, Benjamin J.; Gao, Fan; Pang, Yuan-Ping; Carpenter, John E.; McCormick, Daniel; Young, Charles Y.F.

    2004-01-01

    Heat shock protein 70 (Hsp70) binds peptide and has several functions that include protein folding, protein trafficking, and involvement with immune function. However, endogenous Hsp70-binding peptides had not previously been identified. Therefore, we eluted and identified several hundred endogenously bound peptides from Hsp70 using liquid chromatography ion trap mass spectrophotometry (LC-ITMS). Our work shows that the peptides are capable of binding Hsp70 as previously described. They are generally 8-26 amino acids in length and correspond to specific regions of many proteins. Through computationally assisted analysis of peptides eluted from Hsp70 we determined variable amino acid sequences, including a 5 amino acid core sequence that Hsp70 favorably binds. We also developed a computer algorithm that predicts Hsp70 binding within proteins. This work helps to define what peptides are bound by Hsp70 in vivo and suggests that Hsp70 facilitates peptide selection by aiding a funneling mechanism that is flexible but allows only a limited number of peptides to be processed

  10. A putative carbohydrate-binding domain of the lactose-binding Cytisus sessilifolius anti-H(O) lectin has a similar amino acid sequence to that of the L-fucose-binding Ulex europaeus anti-H(O) lectin.

    Science.gov (United States)

    Konami, Y; Yamamoto, K; Osawa, T; Irimura, T

    1995-04-01

    The complete amino acid sequence of a lactose-binding Cytisus sessilifolius anti-H(O) lectin II (CSA-II) was determined using a protein sequencer. After digestion of CSA-II with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSA-II with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid sequence of a putative carbohydrate-binding domain of CSA-II was found to be similar to those of several anti-H(O) leguminous lectins, especially to that of the L-fucose-binding Ulex europaeus lectin I (UEA-I).

  11. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    Directory of Open Access Journals (Sweden)

    Xiaoxia Yang

    Full Text Available Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  12. SNBRFinder: A Sequence-Based Hybrid Algorithm for Enhanced Prediction of Nucleic Acid-Binding Residues.

    Science.gov (United States)

    Yang, Xiaoxia; Wang, Jia; Sun, Jun; Liu, Rong

    2015-01-01

    Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.

  13. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng

    2014-12-03

    Background Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. Results In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We propose a combination technique to reduce the effects of different sliding residue windows in the process of encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site predictor. Conclusions Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares favorably with the state-of-the-art protein-ligand binding site prediction methods.

  14. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Amy L Bauer

    2010-11-01

    Full Text Available An important step in understanding gene regulation is to identify the DNA binding sites recognized by each transcription factor (TF. Conventional approaches to prediction of TF binding sites involve the definition of consensus sequences or position-specific weight matrices and rely on statistical analysis of DNA sequences of known binding sites. Here, we present a method called SiteSleuth in which DNA structure prediction, computational chemistry, and machine learning are applied to develop models for TF binding sites. In this approach, binary classifiers are trained to discriminate between true and false binding sites based on the sequence-specific chemical and structural features of DNA. These features are determined via molecular dynamics calculations in which we consider each base in different local neighborhoods. For each of 54 TFs in Escherichia coli, for which at least five DNA binding sites are documented in RegulonDB, the TF binding sites and portions of the non-coding genome sequence are mapped to feature vectors and used in training. According to cross-validation analysis and a comparison of computational predictions against ChIP-chip data available for the TF Fis, SiteSleuth outperforms three conventional approaches: Match, MATRIX SEARCH, and the method of Berg and von Hippel. SiteSleuth also outperforms QPMEME, a method similar to SiteSleuth in that it involves a learning algorithm. The main advantage of SiteSleuth is a lower false positive rate.

  15. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Thiel, Philipp; Krüger, Jens; Kleusch, Christian; Kohlbacher, Oliver; Lahaye, Thomas

    2015-11-16

    Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  17. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng; Hu, ShanShan; Zhang, Jun; Gao, Xin; Li, Jinyan; Xia, Junfeng; Wang, Bing

    2015-01-01

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  18. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    KAUST Repository

    Lee, Seung-Joo

    2010-03-28

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5\\'-TGGTC-3\\') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain. The Author(s) 2010. Published by Oxford University Press.

  19. Two sequence motifs from HIF-1α bind to the DNA-binding site of p53

    OpenAIRE

    Hansson, Lars O.; Friedler, Assaf; Freund, Stefan; Rüdiger, Stefan; Fersht, Alan R.

    2002-01-01

    There is evidence that hypoxia-inducible factor-1α (HIF-1α) interacts with the tumor suppressor p53. To characterize the putative interaction, we mapped the binding of the core domain of p53 (p53c) to an array of immobilized HIF-1α-derived peptides and found two peptide-sequence motifs that bound to p53c with micromolar affinity in solution. One sequence was adjacent to and the other coincided with the two proline residues of the oxygen-dependent degradation domain (P402 and P564) that act as...

  20. Interactions of Chromatin Context, Binding Site Sequence Content, and Sequence Evolution in Stress-Induced p53 Occupancy and Transactivation

    OpenAIRE

    Su, Dan; Wang, Xuting; Campbell, Michelle R.; Song, Lingyun; Safi, Alexias; Crawford, Gregory E.; Bell, Douglas A.

    2015-01-01

    Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, ...

  1. Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data.

    Science.gov (United States)

    Palumbo, Michael J; Newberg, Lee A

    2010-07-01

    The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).

  2. Importance of the Sequence-Directed DNA Shape for Specific Binding Site Recognition by the Estrogen-Related Receptor

    Directory of Open Access Journals (Sweden)

    Kareem Mohideen-Abdul

    2017-06-01

    Full Text Available Most nuclear receptors (NRs bind DNA as dimers, either as hetero- or as homodimers on DNA sequences organized as two half-sites with specific orientation and spacing. The dimerization of NRs on their cognate response elements (REs involves specific protein–DNA and protein–protein interactions. The estrogen-related receptor (ERR belongs to the steroid hormone nuclear receptor (SHR family and shares strong similarity in its DNA-binding domain (DBD with that of the estrogen receptor (ER. In vitro, ERR binds with high affinity inverted repeat REs with a 3-bps spacing (IR3, but in vivo, it preferentially binds to single half-site REs extended at the 5′-end by 3 bp [estrogen-related response element (ERREs], thus explaining why ERR was often inferred as a purely monomeric receptor. Since its C-terminal ligand-binding domain is known to homodimerize with a strong dimer interface, we investigated the binding behavior of the isolated DBDs to different REs using electrophoretic migration, multi-angle static laser light scattering (MALLS, non-denaturing mass spectrometry, and nuclear magnetic resonance. In contrast to ER DBD, ERR DBD binds as a monomer to EREs (IR3, such as the tff1 ERE-IR3, but we identified a DNA sequence composed of an extended half-site embedded within an IR3 element (embedded ERRE/IR3, where stable dimer binding is observed. Using a series of chimera and mutant DNA sequences of ERREs and IR3 REs, we have found the key determinants for the binding of ERR DBD as a dimer. Our results suggest that the sequence-directed DNA shape is more important than the exact nucleotide sequence for the binding of ERR DBD to DNA as a dimer. Our work underlines the importance of the shape-driven DNA readout mechanisms based on minor groove recognition and electrostatic potential. These conclusions may apply not only to ERR but also to other members of the SHR family, such as androgen or glucocorticoid, for which a strong well-conserved half

  3. Location analysis for the estrogen receptor-α reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements

    Science.gov (United States)

    Mason, Christopher E.; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M.; Kallen, Roland G.; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B.

    2010-01-01

    Location analysis for estrogen receptor-α (ERα)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERα-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: ERE sequence. We demonstrate that ∼50% of all ERα-bound loci do not have a discernable ERE and show that most ERα-bound EREs are not perfect consensus EREs. Approximately one-third of all ERα-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERα-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERα binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers. PMID:20047966

  4. Location analysis for the estrogen receptor-alpha reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements.

    Science.gov (United States)

    Mason, Christopher E; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M; Kallen, Roland G; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B

    2010-04-01

    Location analysis for estrogen receptor-alpha (ERalpha)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERalpha-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: ERE sequence. We demonstrate that approximately 50% of all ERalpha-bound loci do not have a discernable ERE and show that most ERalpha-bound EREs are not perfect consensus EREs. Approximately one-third of all ERalpha-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERalpha-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERalpha binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers.

  5. Sequence-specific DNA binding by MYC/MAX to low-affinity non-E-box motifs.

    Directory of Open Access Journals (Sweden)

    Michael Allevato

    Full Text Available The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX bind Enhancer box (E-box DNA elements (CANNTG and have the greatest affinity for the canonical MYC E-box (CME CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo. Here, in order to identify potential additional non-canonical binding sites for MYC/MAX, we employed high throughput in vitro protein-binding microarrays, along with electrophoretic mobility-shift assays and bioinformatic analyses of MYC-bound genomic loci in vivo. We identified all hexameric motifs preferentially bound by MYC/MAX in vitro, which include the low-affinity non-E-box sequence AACGTT, and found that the vast majority (87% of MYC-bound genomic sites in a human B cell line contain at least one of the top 21 motifs bound by MYC:MAX in vitro. We further show that high MYC/MAX concentrations are needed for specific binding to the low-affinity sequence AACGTT in vitro and that elevated MYC levels in vivo more markedly increase the occupancy of AACGTT sites relative to CME sites, especially at distal intergenic and intragenic loci. Hence, MYC binds diverse DNA motifs with a broad range of affinities in a sequence-specific and dose-dependent manner, suggesting that MYC overexpression has more selective effects on the tumor transcriptome than previously thought.

  6. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.

    Science.gov (United States)

    Raghav, Sunil Kumar; Deplancke, Bart

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.

  7. Prediction of Carbohydrate-Binding Proteins from Sequences Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Seizi Someya

    2010-01-01

    Full Text Available Carbohydrate-binding proteins are proteins that can interact with sugar chains but do not modify them. They are involved in many physiological functions, and we have developed a method for predicting them from their amino acid sequences. Our method is based on support vector machines (SVMs. We first clarified the definition of carbohydrate-binding proteins and then constructed positive and negative datasets with which the SVMs were trained. By applying the leave-one-out test to these datasets, our method delivered 0.92 of the area under the receiver operating characteristic (ROC curve. We also examined two amino acid grouping methods that enable effective learning of sequence patterns and evaluated the performance of these methods. When we applied our method in combination with the homology-based prediction method to the annotated human genome database, H-invDB, we found that the true positive rate of prediction was improved.

  8. In situ detection of a heat-shock regulatory element binding protein using a soluble short synthetic enhancer sequence

    Energy Technology Data Exchange (ETDEWEB)

    Harel-Bellan, A; Brini, A T; Farrar, W L [National Cancer Institute, Frederick, MD (USA); Ferris, D K [Program Resources, Inc., Frederick, MD (USA); Robin, P [Institut Gustave Roussy, Villejuif (France)

    1989-06-12

    In various studies, enhancer binding proteins have been successfully absorbed out by competing sequences inserted into plasmids, resulting in the inhibition of the plasmid expression. Theoretically, such a result could be achieved using synthetic enhancer sequences not inserted into plasmids. In this study, a double stranded DNA sequence corresponding to the human heat shock regulatory element was chemically synthesized. By in vitro retardation assays, the synthetic sequence was shown to bind specifically a protein in extracts from the human T cell line Jurkat. When the synthetic enhancer was electroporated into Jurkat cells, not only the enhancer was shown to remain undegraded into the cells for up to 2 days, but also its was shown to bind intracellularly a protein. The binding was specific and was modulated upon heat shock. Furthermore, the binding protein was shown to be of the expected molecular weight by UV crosslinking. However, when the synthetic enhancer element was co-electroporated with an HSP 70-CAT reporter construct, the expression of the reporter plasmid was consistently enhanced in the presence of the exogenous synthetic enhancer.

  9. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.S.; Prakash, L. (Univ. of Rochester School of Medicine, NY (USA)); Weber, S. (Kodak Research Park, Rochester, NY (USA))

    1988-07-25

    The RAD18 gene of Saccharomyces cerevisiae is required for postreplication repair of UV damaged DNA. The authors have isolated the RAD18 gene, determined its nucleotide sequence and examined if deletion mutations of this gene show different or more pronounced phenotypic effects than the previously described point mutations. The RAD18 gene open reading frame encodes a protein of 487 amino acids, with a calculated molecular weight of 55,512. The RAD18 protein contains three potential zinc finger domains for nucleic acid binding, and a putative nucleotide binding sequence that is present in many proteins that bind and hydrolyze ATP. The DNA binding and nucleotide binding activities could enable the RAD18 protein to bind damaged sites in the template DNA with high affinity. Alternatively, or in addition, RAD18 protein may be a transcriptional regulator. The RAD18 deletion mutation resembles the previously described point mutations in its effects on viability, DNA repair, UV mutagenesis, and sporulation.

  10. Screening the sequence selectivity of DNA-binding molecules using a gold nanoparticle-based colorimetric approach.

    Science.gov (United States)

    Hurst, Sarah J; Han, Min Su; Lytton-Jean, Abigail K R; Mirkin, Chad A

    2007-09-15

    We have developed a novel competition assay that uses a gold nanoparticle (Au NP)-based, high-throughput colorimetric approach to screen the sequence selectivity of DNA-binding molecules. This assay hinges on the observation that the melting behavior of DNA-functionalized Au NP aggregates is sensitive to the concentration of the DNA-binding molecule in solution. When short, oligomeric hairpin DNA sequences were added to a reaction solution consisting of DNA-functionalized Au NP aggregates and DNA-binding molecules, these molecules may either bind to the Au NP aggregate interconnects or the hairpin stems based on their relative affinity for each. This relative affinity can be measured as a change in the melting temperature (Tm) of the DNA-modified Au NP aggregates in solution. As a proof of concept, we evaluated the selectivity of 4',6-diamidino-2-phenylindone (an AT-specific binder), ethidium bromide (a nonspecific binder), and chromomycin A (a GC-specific binder) for six sequences of hairpin DNA having different numbers of AT pairs in a five-base pair variable stem region. Our assay accurately and easily confirmed the known trends in selectivity for the DNA binders in question without the use of complicated instrumentation. This novel assay will be useful in assessing large libraries of potential drug candidates that work by binding DNA to form a drug/DNA complex.

  11. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  12. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes. Results Variable loop 3 (V3) of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, ...

  13. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  14. RCK: accurate and efficient inference of sequence- and structure-based protein-RNA binding models from RNAcompete data.

    Science.gov (United States)

    Orenstein, Yaron; Wang, Yuhao; Berger, Bonnie

    2016-06-15

    Protein-RNA interactions, which play vital roles in many processes, are mediated through both RNA sequence and structure. CLIP-based methods, which measure protein-RNA binding in vivo, suffer from experimental noise and systematic biases, whereas in vitro experiments capture a clearer signal of protein RNA-binding. Among them, RNAcompete provides binding affinities of a specific protein to more than 240 000 unstructured RNA probes in one experiment. The computational challenge is to infer RNA structure- and sequence-based binding models from these data. The state-of-the-art in sequence models, Deepbind, does not model structural preferences. RNAcontext models both sequence and structure preferences, but is outperformed by GraphProt. Unfortunately, GraphProt cannot detect structural preferences from RNAcompete data due to the unstructured nature of the data, as noted by its developers, nor can it be tractably run on the full RNACompete dataset. We develop RCK, an efficient, scalable algorithm that infers both sequence and structure preferences based on a new k-mer based model. Remarkably, even though RNAcompete data is designed to be unstructured, RCK can still learn structural preferences from it. RCK significantly outperforms both RNAcontext and Deepbind in in vitro binding prediction for 244 RNAcompete experiments. Moreover, RCK is also faster and uses less memory, which enables scalability. While currently on par with existing methods in in vivo binding prediction on a small scale test, we demonstrate that RCK will increasingly benefit from experimentally measured RNA structure profiles as compared to computationally predicted ones. By running RCK on the entire RNAcompete dataset, we generate and provide as a resource a set of protein-RNA structure-based models on an unprecedented scale. Software and models are freely available at http://rck.csail.mit.edu/ bab@mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by

  15. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  16. Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25

    International Nuclear Information System (INIS)

    Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko; Sugiyama, Hironobu; Takahashi, Hisaaki; Tanaka, Junya

    2006-01-01

    Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, a cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25

  17. Genome-wide identification and characterization of Notch transcription complex-binding sequence paired sites in leukemia cells

    Science.gov (United States)

    Severson, Eric; Arnett, Kelly L.; Wang, Hongfang; Zang, Chongzhi; Taing, Len; Liu, Hudan; Pear, Warren S.; Liu, X. Shirley; Blacklow, Stephen C.; Aster, Jon C.

    2018-01-01

    Notch transcription complexes (NTCs) drive target gene expression by binding to two distinct types of genomic response elements, NTC monomer-binding sites and sequence-paired sites (SPSs) that bind NTC dimers. SPSs are conserved and are linked to the Notch-responsiveness of a few genes, but their overall contribution to Notch-dependent gene regulation is unknown. To address this issue, we determined the DNA sequence requirements for NTC dimerization using a fluorescence resonance energy transfer (FRET) assay, and applied insights from these in vitro studies to Notch-“addicted” leukemia cells. We find that SPSs contribute to the regulation of approximately a third of direct Notch target genes. While originally described in promoters, SPSs are present mainly in long-range enhancers, including an enhancer containing a newly described SPS that regulates HES5. Our work provides a general method for identifying sequence-paired sites in genome-wide data sets and highlights the widespread role of NTC dimerization in Notch-transformed leukemia cells. PMID:28465412

  18. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The HIV surface glycoprotein gp120 (SU, gp120) and the Plasmodium vivax Duffy binding protein (PvDBP) bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM). Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infectio...

  19. Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis

    Science.gov (United States)

    Collin-Hansen, C.; Andersen, R. A.; Steinnes, E.

    2003-05-01

    A Cd-binding protein was isolated from the popular edible mushroom Boletus edulis, which is a hyperaccumulator of both Cd and Hg. Wild-growing samples of B. edulis were collected from soils rich in Cd. Cd radiotracer was added to the crude protein preparation obtained from ethanol precipitation of heat-treated cytosol. Proteins were then further separated in two consecutive steps; gel filtration and anion exchange chromatography. In both steps the Cd radiotracer profile showed only one distinct peak, which corresponded well with the profiles of endogenous Cd obtained by atomic absorption spectrophotometry (AAS). Concentrations of the essential elements Cu and Zn were low in the protein fractions high in Cd. N-terminal sequencing performed on the Cd-binding protein fractions revealed a protein with a novel amino acid sequence, which contained aromatic amino acids as well as proline. Both the N-terminal sequencing and spectrofluorimetric analysis with EDTA and ABD-F (4-aminosulfonyl-7-fluoro-2, 1, 3-benzoxadiazole) failed to detect cysteine in the Cd-binding fractions. These findings conclude that the novel protein does not belong to the metallothionein family. The results suggest a role for the protein in Cd transport and storage, and they are of importance in view of toxicology and food chemistry, but also for environmental protection.

  20. GenProBiS: web server for mapping of sequence variants to protein binding sites.

    Science.gov (United States)

    Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka

    2017-07-03

    Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    Science.gov (United States)

    Tsai, Zing Tsung-Yeh; Shiu, Shin-Han; Tsai, Huai-Kuang

    2015-08-01

    Transcription factor (TF) binding is determined by the presence of specific sequence motifs (SM) and chromatin accessibility, where the latter is influenced by both chromatin state (CS) and DNA structure (DS) properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy) that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  2. Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast.

    Directory of Open Access Journals (Sweden)

    Zing Tsung-Yeh Tsai

    2015-08-01

    Full Text Available Transcription factor (TF binding is determined by the presence of specific sequence motifs (SM and chromatin accessibility, where the latter is influenced by both chromatin state (CS and DNA structure (DS properties. Although SM, CS, and DS have been used to predict TF binding sites, a predictive model that jointly considers CS and DS has not been developed to predict either TF-specific binding or general binding properties of TFs. Using budding yeast as model, we found that machine learning classifiers trained with either CS or DS features alone perform better in predicting TF-specific binding compared to SM-based classifiers. In addition, simultaneously considering CS and DS further improves the accuracy of the TF binding predictions, indicating the highly complementary nature of these two properties. The contributions of SM, CS, and DS features to binding site predictions differ greatly between TFs, allowing TF-specific predictions and potentially reflecting different TF binding mechanisms. In addition, a "TF-agnostic" predictive model based on three DNA "intrinsic properties" (in silico predicted nucleosome occupancy, major groove geometry, and dinucleotide free energy that can be calculated from genomic sequences alone has performance that rivals the model incorporating experiment-derived data. This intrinsic property model allows prediction of binding regions not only across TFs, but also across DNA-binding domain families with distinct structural folds. Furthermore, these predicted binding regions can help identify TF binding sites that have a significant impact on target gene expression. Because the intrinsic property model allows prediction of binding regions across DNA-binding domain families, it is TF agnostic and likely describes general binding potential of TFs. Thus, our findings suggest that it is feasible to establish a TF agnostic model for identifying functional regulatory regions in potentially any sequenced genome.

  3. Visual Statistical Learning Works after Binding the Temporal Sequences of Shapes and Spatial Positions

    Directory of Open Access Journals (Sweden)

    Osamu Watanabe

    2011-05-01

    Full Text Available The human visual system can acquire the statistical structures in temporal sequences of object feature changes, such as changes in shape, color, and its combination. Here we investigate whether the statistical learning for spatial position and shape changes operates separately or not. It is known that the visual system processes these two types of information separately; the spatial information is processed in the parietal cortex, whereas object shapes and colors are detected in the temporal pathway, and, after that, we perceive bound information in the two streams. We examined whether the statistical learning operates before or after binding the shape and the spatial information by using the “re-paired triplet” paradigm proposed by Turk-Browne, Isola, Scholl, and Treat (2008. The result showed that observers acquired combined sequences of shape and position changes, but no statistical information in individual sequence was obtained. This finding suggests that the visual statistical learning works after binding the temporal sequences of shapes and spatial structures and would operate in the higher-order visual system; this is consistent with recent ERP (Abla & Okanoya, 2009 and fMRI (Turk-Browne, Scholl, Chun, & Johnson, 2009 studies.

  4. The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain.

    Science.gov (United States)

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Gunzburg, Menachem J; Sivakumaran, Andrew; Yoon, Je-Hyun; Angulo, Jesús; Persson, Cecilia; Gorospe, Myriam; Karlsson, B Göran; Wilce, Jacqueline A; Díaz-Moreno, Irene

    2014-01-01

    T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations.

  5. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.

    Directory of Open Access Journals (Sweden)

    Michal Brylinski

    2014-09-01

    Full Text Available Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4-9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.

  6. The PRC2-binding long non-coding RNAs in human and mouse genomes are associated with predictive sequence features

    Science.gov (United States)

    Tu, Shiqi; Yuan, Guo-Cheng; Shao, Zhen

    2017-01-01

    Recently, long non-coding RNAs (lncRNAs) have emerged as an important class of molecules involved in many cellular processes. One of their primary functions is to shape epigenetic landscape through interactions with chromatin modifying proteins. However, mechanisms contributing to the specificity of such interactions remain poorly understood. Here we took the human and mouse lncRNAs that were experimentally determined to have physical interactions with Polycomb repressive complex 2 (PRC2), and systematically investigated the sequence features of these lncRNAs by developing a new computational pipeline for sequences composition analysis, in which each sequence is considered as a series of transitions between adjacent nucleotides. Through that, PRC2-binding lncRNAs were found to be associated with a set of distinctive and evolutionarily conserved sequence features, which can be utilized to distinguish them from the others with considerable accuracy. We further identified fragments of PRC2-binding lncRNAs that are enriched with these sequence features, and found they show strong PRC2-binding signals and are more highly conserved across species than the other parts, implying their functional importance.

  7. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.

    Directory of Open Access Journals (Sweden)

    Caselle Michele

    2007-09-01

    Full Text Available Abstract Background Specific binding of proteins to DNA is one of the most common ways gene expression is controlled. Although general rules for the DNA-protein recognition can be derived, the ambiguous and complex nature of this mechanism precludes a simple recognition code, therefore the prediction of DNA target sequences is not straightforward. DNA-protein interactions can be studied using computational methods which can complement the current experimental methods and offer some advantages. In the present work we use physical effective potentials to evaluate the DNA-protein binding affinities for the λ repressor-DNA complex for which structural and thermodynamic experimental data are available. Results The binding free energy of two molecules can be expressed as the sum of an intermolecular energy (evaluated using a molecular mechanics forcefield, a solvation free energy term and an entropic term. Different solvation models are used including distance dependent dielectric constants, solvent accessible surface tension models and the Generalized Born model. The effect of conformational sampling by Molecular Dynamics simulations on the computed binding energy is assessed; results show that this effect is in general negative and the reproducibility of the experimental values decreases with the increase of simulation time considered. The free energy of binding for non-specific complexes, estimated using the best energetic model, agrees with earlier theoretical suggestions. As a results of these analyses, we propose a protocol for the prediction of DNA-binding target sequences. The possibility of searching regulatory elements within the bacteriophage λ genome using this protocol is explored. Our analysis shows good prediction capabilities, even in absence of any thermodynamic data and information on the naturally recognized sequence. Conclusion This study supports the conclusion that physics-based methods can offer a completely complementary

  8. Sequence-Based Prediction of RNA-Binding Proteins Using Random Forest with Minimum Redundancy Maximum Relevance Feature Selection

    Directory of Open Access Journals (Sweden)

    Xin Ma

    2015-01-01

    Full Text Available The prediction of RNA-binding proteins is one of the most challenging problems in computation biology. Although some studies have investigated this problem, the accuracy of prediction is still not sufficient. In this study, a highly accurate method was developed to predict RNA-binding proteins from amino acid sequences using random forests with the minimum redundancy maximum relevance (mRMR method, followed by incremental feature selection (IFS. We incorporated features of conjoint triad features and three novel features: binding propensity (BP, nonbinding propensity (NBP, and evolutionary information combined with physicochemical properties (EIPP. The results showed that these novel features have important roles in improving the performance of the predictor. Using the mRMR-IFS method, our predictor achieved the best performance (86.62% accuracy and 0.737 Matthews correlation coefficient. High prediction accuracy and successful prediction performance suggested that our method can be a useful approach to identify RNA-binding proteins from sequence information.

  9. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences.

    Science.gov (United States)

    Niraj, Joshi; Caron, Marie-Christine; Drapeau, Karine; Bérubé, Stéphanie; Guitton-Sert, Laure; Coulombe, Yan; Couturier, Anthony M; Masson, Jean-Yves

    2017-08-21

    Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. The FA pathway consists of at least 21 FANC genes (FANCA-FANCV), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA interstrand crosslinks. After DNA damage, FANCD2 is monoubiquitinated and accumulates on chromatin. FANCD2 plays a central role in the FA pathway, using yet unidentified DNA binding regions. By using synthetic peptide mapping and DNA binding screen by electromobility shift assays, we found that FANCD2 bears two major DNA binding domains predominantly consisting of evolutionary conserved lysine residues. Furthermore, one domain at the N-terminus of FANCD2 bears also nuclear localization sequences for the protein. Mutations in the bifunctional DNA binding/NLS domain lead to a reduction in FANCD2 monoubiquitination and increase in mitomycin C sensitivity. Such phenotypes are not fully rescued by fusion with an heterologous NLS, which enable separation of DNA binding and nuclear import functions within this domain that are necessary for FANCD2 functions. Collectively, our results enlighten the importance of DNA binding and NLS residues in FANCD2 to activate an efficient FA pathway. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Identification of metal ion binding sites based on amino acid sequences.

    Science.gov (United States)

    Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

  11. A ChIP-Seq benchmark shows that sequence conservation mainly improves detection of strong transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Tony Håndstad

    Full Text Available BACKGROUND: Transcription factors are important controllers of gene expression and mapping transcription factor binding sites (TFBS is key to inferring transcription factor regulatory networks. Several methods for predicting TFBS exist, but there are no standard genome-wide datasets on which to assess the performance of these prediction methods. Also, it is believed that information about sequence conservation across different genomes can generally improve accuracy of motif-based predictors, but it is not clear under what circumstances use of conservation is most beneficial. RESULTS: Here we use published ChIP-seq data and an improved peak detection method to create comprehensive benchmark datasets for prediction methods which use known descriptors or binding motifs to detect TFBS in genomic sequences. We use this benchmark to assess the performance of five different prediction methods and find that the methods that use information about sequence conservation generally perform better than simpler motif-scanning methods. The difference is greater on high-affinity peaks and when using short and information-poor motifs. However, if the motifs are specific and information-rich, we find that simple motif-scanning methods can perform better than conservation-based methods. CONCLUSIONS: Our benchmark provides a comprehensive test that can be used to rank the relative performance of transcription factor binding site prediction methods. Moreover, our results show that, contrary to previous reports, sequence conservation is better suited for predicting strong than weak transcription factor binding sites.

  12. Primary and secondary structural determinants in the receptor binding sequence β-(38-57) from human luteinizing hormone

    International Nuclear Information System (INIS)

    Keutmann, H.T.; Charlesworth, M.C.; Kitzmann, K.; Mason, K.A.; Johnson, L.; Ryan, R.J.

    1988-01-01

    The intercysteine loop sequence 38-57 in the β subunit has been shown to be a determinant for expression of biological activity in human lutropin (hLH) and choriogonadotropin (hCG). Together with other sequences, the 38-57 region may contribute to a multicomponent receptor binding domain in hLH/hCG. Because the structural features influencing activity in this important region are not easy to evaluate in the full-length subunit, the authors have used analogues of hLHβ-(38-57) prepared by solid-phase synthesis. The peptides were tested for inhibition of 125 I-labeled hCG binding to rat ovarian membrane receptors. Secondary structure was analyzed by circular dichroism (CD) and by reactivity with antibodies to the native 38-57 peptide. An analogue lacking the 38-57 disulfide linkage retained 20% receptor binding and full immunoreactivity. Far-ultraviolet CD profiles were essentially identical with those of the disulfide-intact peptide; a transition from 10% to 30% α-helix in 90% trifluoroethanol was characteristic of both. The peptide thus appears not to require the disulfide bridge to retain a looped conformation with amphipathic secondary structure. An essential positive charge at position 43 was shown by complete loss of activity upon substitution of Asp or Ala for the Arg found in all known species of LH. These results indicate that the 38-57 sequence is a relatively rigid and structurally autonomous region, not merely a series of residues constrained passively into a loop by a disulfide linkage. It includes segments of ordered structure, probably including both amphipathic helical and turn sequences. Evidence from studies of other hormones suggests that this region may be important to binding and specificity in the glycoprotein hormones as a group

  13. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites

    KAUST Repository

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2015-01-01

    With the prevalence of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) technology, massive ChIP-Seq data has been accumulated. The ChIP-Seq technology measures the genome-wide occupancy of DNA-binding proteins in vivo. It is well-known that different DNA-binding protein occupancies may result in a gene being regulated in different conditions (e.g. different cell types). To fully understand a gene's function, it is essential to develop probabilistic models on multiple ChIP-Seq profiles for deciphering the gene transcription causalities. In this work, we propose and describe two probabilistic models. Assuming the conditional independence of different DNA-binding proteins' occupancies, the first method (SignalRanker) is developed as an intuitive method for ChIP-Seq genome-wide signal profile inference. Unfortunately, such an assumption may not always hold in some gene regulation cases. Thus, we propose and describe another method (FullSignalRanker) which does not make the conditional independence assumption. The proposed methods are compared with other existing methods on ENCODE ChIP-Seq datasets, demonstrating its regression and classification ability. The results suggest that FullSignalRanker is the best-performing method for recovering the signal ranks on the promoter and enhancer regions. In addition, FullSignalRanker is also the best-performing method for peak sequence classification. We envision that SignalRanker and FullSignalRanker will become important in the era of next generation sequencing. FullSignalRanker program is available on the following website: http://www.cs.toronto.edu/∼wkc/FullSignalRanker/ © 2015 IEEE.

  14. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites

    KAUST Repository

    Wong, Ka-Chun

    2015-04-20

    With the prevalence of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) technology, massive ChIP-Seq data has been accumulated. The ChIP-Seq technology measures the genome-wide occupancy of DNA-binding proteins in vivo. It is well-known that different DNA-binding protein occupancies may result in a gene being regulated in different conditions (e.g. different cell types). To fully understand a gene\\'s function, it is essential to develop probabilistic models on multiple ChIP-Seq profiles for deciphering the gene transcription causalities. In this work, we propose and describe two probabilistic models. Assuming the conditional independence of different DNA-binding proteins\\' occupancies, the first method (SignalRanker) is developed as an intuitive method for ChIP-Seq genome-wide signal profile inference. Unfortunately, such an assumption may not always hold in some gene regulation cases. Thus, we propose and describe another method (FullSignalRanker) which does not make the conditional independence assumption. The proposed methods are compared with other existing methods on ENCODE ChIP-Seq datasets, demonstrating its regression and classification ability. The results suggest that FullSignalRanker is the best-performing method for recovering the signal ranks on the promoter and enhancer regions. In addition, FullSignalRanker is also the best-performing method for peak sequence classification. We envision that SignalRanker and FullSignalRanker will become important in the era of next generation sequencing. FullSignalRanker program is available on the following website: http://www.cs.toronto.edu/∼wkc/FullSignalRanker/ © 2015 IEEE.

  15. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    Science.gov (United States)

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  16. Predicting protein-ATP binding sites from primary sequence through fusing bi-profile sampling of multi-view features

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Nan

    2012-05-01

    Full Text Available Abstract Background Adenosine-5′-triphosphate (ATP is one of multifunctional nucleotides and plays an important role in cell biology as a coenzyme interacting with proteins. Revealing the binding sites between protein and ATP is significantly important to understand the functionality of the proteins and the mechanisms of protein-ATP complex. Results In this paper, we propose a novel framework for predicting the proteins’ functional residues, through which they can bind with ATP molecules. The new prediction protocol is achieved by combination of sequence evolutional information and bi-profile sampling of multi-view sequential features and the sequence derived structural features. The hypothesis for this strategy is single-view feature can only represent partial target’s knowledge and multiple sources of descriptors can be complementary. Conclusions Prediction performances evaluated by both 5-fold and leave-one-out jackknife cross-validation tests on two benchmark datasets consisting of 168 and 227 non-homologous ATP binding proteins respectively demonstrate the efficacy of the proposed protocol. Our experimental results also reveal that the residue structural characteristics of real protein-ATP binding sites are significant different from those normal ones, for example the binding residues do not show high solvent accessibility propensities, and the bindings prefer to occur at the conjoint points between different secondary structure segments. Furthermore, results also show that performance is affected by the imbalanced training datasets by testing multiple ratios between positive and negative samples in the experiments. Increasing the dataset scale is also demonstrated useful for improving the prediction performances.

  17. Structural Conservation Despite Huge Sequence Diversity Allows EPCR Binding by the PfEMP1 Family Implicated in Severe Childhood Malaria

    DEFF Research Database (Denmark)

    Lau, Clinton K.Y.; Turner, Louise; Jespersen, Jakob S.

    2015-01-01

    with severe childhood malaria. We combine crystal structures of CIDRa1:EPCR complexes with analysis of 885 CIDRa1 sequences, showing that the EPCR-binding surfaces of CIDRa1 domains are conserved in shape and bonding potential, despite dramatic sequence diversity. Additionally, these domains mimic features...... of the natural EPCR ligand and can block this ligand interaction. Using peptides corresponding to the EPCR-binding region, antibodies can be purified from individuals in malaria-endemic regions that block EPCR binding of diverse CIDRa1 variants. This highlights the extent to which such a surface protein family......The PfEMP1 family of surface proteins is central for Plasmodium falciparum virulence and must retain the ability to bind to host receptors while also diversifying to aid immune evasion. The interaction between CIDRa1 domains of PfEMP1 and endothelial protein C receptor (EPCR) is associated...

  18. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  19. Frequency and organization of papA homologous DNA sequences among uropathogenic digalactoside-binding Escherichia coli strains.

    OpenAIRE

    Denich, K; Craiu, A; Rugo, H; Muralidhar, G; O'Hanley, P

    1991-01-01

    The frequency of selected papA DNA sequences among 89 digalactoside-binding, uropathogenic Escherichia coli strains was evaluated with 12 different synthetic 15-base probes corresponding to papA genes from four digalactoside-binding piliated recombinant strains (HU849, 201B, and 200A). The papA probes encode amino acids which are common at the carboxy terminus of all strains, adjacent to the proximal portion of the intramolecular disulfide loop of strain 210B, or predicted to constitute the t...

  20. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    International Nuclear Information System (INIS)

    Adámik, Matej; Bažantová, Pavla; Navrátilová, Lucie; Polášková, Alena; Pečinka, Petr; Holaňová, Lucie; Tichý, Vlastimil; Brázdová, Marie

    2015-01-01

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed

  1. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    Energy Technology Data Exchange (ETDEWEB)

    Adámik, Matej [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Bažantová, Pavla [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava (Czech Republic); Navrátilová, Lucie; Polášková, Alena [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Pečinka, Petr [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava (Czech Republic); Holaňová, Lucie [Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242 Brno (Czech Republic); Tichý, Vlastimil [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Brázdová, Marie, E-mail: maruska@ibp.cz [Institute of Biophysics, Academy of Science of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno (Czech Republic); Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého 1/3, 61242 Brno (Czech Republic)

    2015-01-02

    Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt, which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.

  2. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron

    International Nuclear Information System (INIS)

    Li, K.; Cai, R.; Dai, B.B.; Zhang, X.Q.; Wang, H.J.; Ge, S.F.; Xu, W.R.; Lu, J.

    2007-01-01

    Special AT-rich binding protein 1 (SATB1), a cell type-specific nuclear matrix attachment region (MAR) DNA-binding protein, tethers to a specific DNA sequence and regulates gene expression through chromatin remodeling and HDAC (histone deacetylase complex) recruitment. In this study, a SATB1 eukaryotic expression plasmid was transfected into the human erythroleukemia K562 cell line and individual clones that stably over-expressed the SATB1 protein were isolated. Microarray analysis revealed that hundreds of genes were either up- or down-regulated in the SATB1 over-expressing K562 cell lines. One of these was the extra-cellular matrix glycoprotein, SPARC (human secreted protein acidic and rich in cysteine). siRNA knock-down of SATB1 also reduced SPARC expression, which was consistent with elevated SPARC levels in the SATB1 over-expressing cell line. Bioinformatics software Mat-inspector showed that a 17 bp DNA sequence in the third intron of SPARC possessed a high potential for SATB1 binding; a finding confirmed by Chromatin immunoprecipitation (ChIP) with anti-SATB1 antibody. Our results show for the first time that forced-expression of SATB1 in K562 cells triggers SPARC up-regulation by binding to a 17 bp DNA sequence in the third intron

  3. A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Hansen, Freja Herborg; Sørensen, Gunnar

    2013-01-01

    believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different dopamine transporter knock-in mice with disrupted PDZ-binding motifs (dopamine transporter-AAA and dopamine transporter+Ala) are characterized by dramatic loss of dopamine......The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequence...... transporter expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from dopamine transporter-AAA mice, we find markedly reduced dopamine transporter surface levels and evidence for enhanced constitutive internalization...

  4. Characterization of upstream sequences of the LIM2 gene that bind developmentally regulated and lens-specific proteins

    Institute of Scientific and Technical Information of China (English)

    HSU Heng; Robert L. CHURCH

    2004-01-01

    During lens development, lens epithelial cells differentiate into fiber cells. To date, four major lens fiber cell intrinsic membrane proteins (MIP) ranging in size from 70 kD to 19 kD have been characterized. The second most abundant lens fiber cell intrinsic membrane protein is MP19. This protein probably is involved with lens cell communication and relates with cataractogenesis. The aim of this research is to characterize upstream sequences of the MP19 (also called LIM2) gene that bind developmentally regulated and lens-specific proteins. We have used the gel mobility assays and corresponding competition experiments to identify and characterize cis elements within approximately 500 bases of LIM2 upstream sequences. Our studies locate the positions of some cis elements, including a "CA" repeat, a methylation Hha I island, an FnuD II site, an Ap1 and an Ap2 consensus sequences, and identify some specific cis elements which relate to lens-specific transcription of LIM2. Our experiments also preliminarily identify trans factors which bind to specific cis elements of the LIM2 promoter and/or regulate transcription of LIM2. We conclude that developmental regulation and coordination of the MP 19 gene in ocular lens fiber cells is controlled by the presence of specific cis elements that bind regulatory trans factors that affect LIM2 gene expression. DNA methylation is one mechanism of controlling LIM2 gene expression during lens development.

  5. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  6. Integrated analysis of RNA-binding protein complexes using in vitro selection and high-throughput sequencing and sequence specificity landscapes (SEQRS).

    Science.gov (United States)

    Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T

    2017-04-15

    RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. C-terminal low-complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding.

    Science.gov (United States)

    Kushwaha, Ambuj K; Grove, Anne

    2013-01-24

    Ku protein is an integral component of the NHEJ (non-homologous end-joining) pathway of DSB (double-strand break) repair. Both eukaryotic and prokaryotic Ku homologues have been characterized and shown to bind DNA ends. A unique feature of Mycobacterium smegmatis Ku is its basic C-terminal tail that contains several lysine-rich low-complexity PAKKA repeats that are absent from homologues encoded by obligate parasitic mycobacteria. Such PAKKA repeats are also characteristic of mycobacterial Hlp (histone-like protein) for which they have been shown to confer the ability to appose DNA ends. Unexpectedly, removal of the lysine-rich extension enhances DNA-binding affinity, but an interaction between DNA and the PAKKA repeats is indicated by the observation that only full-length Ku forms multiple complexes with a short stem-loop-containing DNA previously designed to accommodate only one Ku dimer. The C-terminal extension promotes DNA end-joining by T4 DNA ligase, suggesting that the PAKKA repeats also contribute to efficient end-joining. We suggest that low-complexity lysine-rich sequences have evolved repeatedly to modulate the function of unrelated DNA-binding proteins.

  8. RStrucFam: a web server to associate structure and cognate RNA for RNA-binding proteins from sequence information.

    Science.gov (United States)

    Ghosh, Pritha; Mathew, Oommen K; Sowdhamini, Ramanathan

    2016-10-07

    RNA-binding proteins (RBPs) interact with their cognate RNA(s) to form large biomolecular assemblies. They are versatile in their functionality and are involved in a myriad of processes inside the cell. RBPs with similar structural features and common biological functions are grouped together into families and superfamilies. It will be useful to obtain an early understanding and association of RNA-binding property of sequences of gene products. Here, we report a web server, RStrucFam, to predict the structure, type of cognate RNA(s) and function(s) of proteins, where possible, from mere sequence information. The web server employs Hidden Markov Model scan (hmmscan) to enable association to a back-end database of structural and sequence families. The database (HMMRBP) comprises of 437 HMMs of RBP families of known structure that have been generated using structure-based sequence alignments and 746 sequence-centric RBP family HMMs. The input protein sequence is associated with structural or sequence domain families, if structure or sequence signatures exist. In case of association of the protein with a family of known structures, output features like, multiple structure-based sequence alignment (MSSA) of the query with all others members of that family is provided. Further, cognate RNA partner(s) for that protein, Gene Ontology (GO) annotations, if any and a homology model of the protein can be obtained. The users can also browse through the database for details pertaining to each family, protein or RNA and their related information based on keyword search or RNA motif search. RStrucFam is a web server that exploits structurally conserved features of RBPs, derived from known family members and imprinted in mathematical profiles, to predict putative RBPs from sequence information. Proteins that fail to associate with such structure-centric families are further queried against the sequence-centric RBP family HMMs in the HMMRBP database. Further, all other essential

  9. Ni(II) and Cu(II) binding with a 14-aminoacid sequence of Cap43 protein, TRSRSHTSEGTRSR.

    Science.gov (United States)

    Zoroddu, M A; Kowalik-Jankowska, T; Kozlowski, H; Salnikow, K; Costa, M

    2001-03-01

    The tetradecapeptide containing the 10 aminoacid repeated sequence on the C-terminus of the Ni(II)-induced Cap43 protein, was analyzed for Ni(II) and Cu(II) binding. A combined pH-metric and spectroscopic UV-VIS, EPR, CD and NMR study of Ni(II) and Cu(II) binding to the blocked CH3CO-Thr-Arg-Ser-Arg-Ser-His-Thr-Ser-Glu-Gly-Thr-Arg-Ser-Arg-NH2 (Ac-TRSRSHTSEGTRSR-Am) peptide, modeling a part of the C-terminal sequence of the Cap43 protein, revealed the formation of octahedral complexes involving imidazole nitrogen of histidine, at pH 5.5 and pH 7 for Cu(II) and Ni(II), respectively; a major square planar 4N-Ni(II) complex (about 100% at pH 9, log K* = -28.16) involving imidazole nitrogen of histidine and three deprotonated amide nitrogens of the backbone of the peptide was revealed; a 3N-Cu(II) complex (maximum about 70% at pH 7, log K*=-13.91) and a series of 4N-Cu(II) complexes starting at pH 5.5 (maximum about 90% at pH 8.7, log K* = -21.39 for CuH(-3)L), were revealed. This work supports the existence of a metal binding site at the COOH-terminal part of the Cap43 peptide.

  10. A tandem sequence motif acts as a distance-dependent enhancer in a set of genes involved in translation by binding the proteins NonO and SFPQ

    Directory of Open Access Journals (Sweden)

    Roepcke Stefan

    2011-12-01

    Full Text Available Abstract Background Bioinformatic analyses of expression control sequences in promoters of co-expressed or functionally related genes enable the discovery of common regulatory sequence motifs that might be involved in co-ordinated gene expression. By studying promoter sequences of the human ribosomal protein genes we recently identified a novel highly specific Localized Tandem Sequence Motif (LTSM. In this work we sought to identify additional genes and LTSM-binding proteins to elucidate potential regulatory mechanisms. Results Genome-wide analyses allowed finding a considerable number of additional LTSM-positive genes, the products of which are involved in translation, among them, translation initiation and elongation factors, and 5S rRNA. Electromobility shift assays then showed specific signals demonstrating the binding of protein complexes to LTSM in ribosomal protein gene promoters. Pull-down assays with LTSM-containing oligonucleotides and subsequent mass spectrometric analysis identified the related multifunctional nucleotide binding proteins NonO and SFPQ in the binding complex. Functional characterization then revealed that LTSM enhances the transcriptional activity of the promoters in dependency of the distance from the transcription start site. Conclusions Our data demonstrate the power of bioinformatic analyses for the identification of biologically relevant sequence motifs. LTSM and the here found LTSM-binding proteins NonO and SFPQ were discovered through a synergistic combination of bioinformatic and biochemical methods and are regulators of the expression of a set of genes of the translational apparatus in a distance-dependent manner.

  11. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals.

    Science.gov (United States)

    Rangachari, Vijayaraghavan; Marin, Vedrana; Bienkiewicz, Ewa A; Semavina, Maria; Guerrero, Luis; Love, John F; Murphy, John R; Logan, Timothy M

    2005-04-19

    The diphtheria toxin repressor (DtxR) is an Fe(II)-activated transcriptional regulator of iron homeostatic and virulence genes in Corynebacterium diphtheriae. DtxR is a two-domain protein that contains two structurally and functionally distinct metal binding sites. Here, we investigate the molecular steps associated with activation by Ni(II)Cl(2) and Cd(II)Cl(2). Equilibrium binding energetics for Ni(II) were obtained from isothermal titration calorimetry, indicating apparent metal dissociation constants of 0.2 and 1.7 microM for two independent sites. The binding isotherms for Ni(II) and Cd(II) exhibited a characteristic exothermic-endothermic pattern that was used to infer the metal binding sequence by comparing the wild-type isotherm with those of several binding site mutants. These data were complemented by measuring the distance between specific backbone amide nitrogens and the first equivalent of metal through heteronuclear NMR relaxation measurements. Previous studies indicated that metal binding affects a disordered to ordered transition in the metal binding domain. The coupling between metal binding and structure change was investigated using near-UV circular dichroism spectroscopy. Together, the data show that the first equivalent of metal is bound by the primary metal binding site. This binding orients the DNA binding helices and begins to fold the N-terminal domain. Subsequent binding at the ancillary site completes the folding of this domain and formation of the dimer interface. This model is used to explain the behavior of several mutants.

  12. Simplifying complex sequence information: a PCP-consensus protein binds antibodies against all four Dengue serotypes.

    Science.gov (United States)

    Bowen, David M; Lewis, Jessica A; Lu, Wenzhe; Schein, Catherine H

    2012-09-14

    Designing proteins that reflect the natural variability of a pathogen is essential for developing novel vaccines and drugs. Flaviviruses, including Dengue (DENV) and West Nile (WNV), evolve rapidly and can "escape" neutralizing monoclonal antibodies by mutation. Designing antigens that represent many distinct strains is important for DENV, where infection with a strain from one of the four serotypes may lead to severe hemorrhagic disease on subsequent infection with a strain from another serotype. Here, a DENV physicochemical property (PCP)-consensus sequence was derived from 671 unique sequences from the Flavitrack database. PCP-consensus proteins for domain 3 of the envelope protein (EdomIII) were expressed from synthetic genes in Escherichia coli. The ability of the purified consensus proteins to bind polyclonal antibodies generated in response to infection with strains from each of the four DENV serotypes was determined. The initial consensus protein bound antibodies from DENV-1-3 in ELISA and Western blot assays. This sequence was altered in 3 steps to incorporate regions of maximum variability, identified as significant changes in the PCPs, characteristic of DENV-4 strains. The final protein was recognized by antibodies against all four serotypes. Two amino acids essential for efficient binding to all DENV antibodies are part of a discontinuous epitope previously defined for a neutralizing monoclonal antibody. The PCP-consensus method can significantly reduce the number of experiments required to define a multivalent antigen, which is particularly important when dealing with pathogens that must be tested at higher biosafety levels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Design of a synthetic luminescent probe from a biomolecule binding domain: selective detection of AU-rich mRNA sequences.

    Science.gov (United States)

    Raibaut, Laurent; Vasseur, William; Shimberg, Geoffrey D; Saint-Pierre, Christine; Ravanat, Jean-Luc; Michel, Sarah L J; Sénèque, Olivier

    2017-02-01

    We report the design of a luminescent sensor based upon the zinc finger (ZF) protein TIS11d, that allows for the selective time-resolved detection of the UUAUUUAUU sequence of the 3'-untranslated region of messenger RNA. This sensor is composed of the tandem ZF RNA binding domain of TIS11d functionalized with a luminescent Tb 3+ complex on one of the ZFs and a sensitizing antenna on the other. This work provides the proof of principle that an RNA binding protein can be re-engineered as an RNA sensor and, more generally, that tunable synthetic luminescent probes for biomolecules can be obtained by modifying biomolecule-binding domains.

  14. Cytoplasmic protein binding to highly conserved sequences in the 3' untranslated region of mouse protamine 2 mRNA, a translationally regulated transcript of male germ cells

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Hecht, N.B.

    1991-01-01

    The expression of the protamines, the predominant nuclear proteins of mammalian spermatozoa, is regulated translationally during male germ-cell development. The 3' untranslated region (UTR) of protamine 1 mRNA has been reported to control its time of translation. To understand the mechanisms controlling translation of the protamine mRNAs, we have sought to identify cis elements of the 3' UTR of protamine 2 mRNA that are recognized by cytoplasmic factors. From gel retardation assays, two sequence elements are shown to form specific RNA-protein complexes. Protein binding sites of the two complexes were determined by RNase T1 mapping, by blocking the putative binding sites with antisense oligonucleotides, and by competition assays. The sequences of these elements, located between nucleotides + 537 and + 572 in protamine 2 mRNA, are highly conserved among postmeiotic translationally regulated nuclear proteins of the mammalian testis. Two closely linked protein binding sites were detected. UV-crosslinking studies revealed that a protein of about 18 kDa binds to one of the conserved sequences. These data demonstrate specific protein binding to a highly conserved 3' UTR of translationally regulated testicular mRNA

  15. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3.

    Science.gov (United States)

    Cotmore, S F; Christensen, J; Nüesch, J P; Tattersall, P

    1995-03-01

    A DNA fragment containing the minute virus of mice 3' replication origin was specifically coprecipitated in immune complexes containing the virally coded NS1, but not the NS2, polypeptide. Antibodies directed against the amino- or carboxy-terminal regions of NS1 precipitated the NS1-origin complexes, but antibodies directed against NS1 amino acids 284 to 459 blocked complex formation. Using affinity-purified histidine-tagged NS1 preparations, we have shown that the specific protein-DNA interaction is of moderate affinity, being stable in 0.1 M salt but rapidly lost at higher salt concentrations. In contrast, generalized (or nonspecific) DNA binding by NS1 could be demonstrated only in low salt. Addition of ATP or gamma S-ATP enhanced specific DNA binding by wild-type NS1 severalfold, but binding was lost under conditions which favored ATP hydrolysis. NS1 molecules with mutations in a critical lysine residue (amino acid 405) in the consensus ATP-binding site bound to the origin, but this binding could not be enhanced by ATP addition. DNase I protection assays carried out with wild-type NS1 in the presence of gamma S-ATP gave footprints which extended over 43 nucleotides on both DNA strands, from the middle of the origin bubble sequence to a position some 14 bp beyond the nick site. The DNA-binding site for NS1 was mapped to a 22-bp fragment from the middle of the 3' replication origin which contains the sequence ACCAACCA. This conforms to a reiterated motif (ACCA)2-3, which occurs, in more or less degenerate form, at many sites throughout the minute virus of mice genome (J. W. Bodner, Virus Genes 2:167-182, 1989). Insertion of a single copy of the sequence (ACCA)3 was shown to be sufficient to confer NS1 binding on an otherwise unrecognized plasmid fragment. The functions of NS1 in the viral life cycle are reevaluated in the light of this result.

  16. Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology.

    Science.gov (United States)

    Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil

    2014-09-07

    Due to the central roles of lipid binding proteins (LBPs) in many biological processes, sequence based identification of LBPs is of great interest. The major challenge is that LBPs are diverse in sequence, structure, and function which results in low accuracy of sequence homology based methods. Therefore, there is a need for developing alternative functional prediction methods irrespective of sequence similarity. To identify LBPs from non-LBPs, the performances of support vector machine (SVM) and neural network were compared in this study. Comprehensive protein features and various techniques were employed to create datasets. Five-fold cross-validation (CV) and independent evaluation (IE) tests were used to assess the validity of the two methods. The results indicated that SVM outperforms neural network. SVM achieved 89.28% (CV) and 89.55% (IE) overall accuracy in identification of LBPs from non-LBPs and 92.06% (CV) and 92.90% (IE) (in average) for classification of different LBPs classes. Increasing the number and the range of extracted protein features as well as optimization of the SVM parameters significantly increased the efficiency of LBPs class prediction in comparison to the only previous report in this field. Altogether, the results showed that the SVM algorithm can be run on broad, computationally calculated protein features and offers a promising tool in detection of LBPs classes. The proposed approach has the potential to integrate and improve the common sequence alignment based methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active...... related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein...... sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally...

  18. Sequence specific DNA binding by P53 is enhanced by ionizing radiation and is mediated via DNA-PK activity

    International Nuclear Information System (INIS)

    Kachnic, L.A.; Wunsch, H.; Mekeel, K.L.; De Frank, J.S.; Powell, S.N.

    1996-01-01

    Purpose: P53 is known to be involved in the cellular response to DNA damage. It mediates many of its effects by acting as a transcription factor via sequence-specific DNA binding. The half-life of p53 is prolonged following DNA damage, and this results in elevated levels of p53 for a period of 2-8 hours. The increase in p53 is often relatively small, but this produces significant stimulation of a downstream gene such as p21(WAF1/cip1). We investigated post-translational modification of p53 following ionizing radiation damage. Materials and Methods: The response of normal Balb-C mouse fibroblasts (FC) to ionizing radiation (IR, 8 Gy) was measured at 0,3,6,9 and 24 hours, by the levels of p53, p21, flow cytometry and the electrophoretic mobility shift assay (EMSA). EMSA utilized a 26 bp consensus sequence end-labeled oligonucleotide to measure sequence-specific p53 binding. P53 specificity was confirmed by an enhanced mobility shift (retardation) when using p53 antibody. Comparison was made with scid fibroblasts (FS) and FC cells transfected with a plasmid (CX3) containing mutant p53 (alanine-143) or infected with a retrovirus containing the E6 protein of human papilloma virus type 16. Results: The response of p53 to DNA damage shows a 3-fold increase at 3-6 hours, and was not significantly different between FC and FS. FC-CX3 showed detectable basal levels of p53, and a 2-fold further induction of p53 after IR. FC-E6 showed no detectable levels of p53 before or after IR. No induction of p21 or G1/S arrest was seen in FC-CX3 or FC-E6, as has been observed previously. The induction of p21 in FS cells was attenuated and delayed: a 2-3-fold increase seen maximally at 9 hours, compared with a 5-fold increase seen maximally at 3-6 hours in FC cells. The accumulation of cells at the G1/S junction after IR showed the same kinetics as p21 induction: the peak of cells in G1 occurs at 3-6 hours in FC, but not until 9-24 hours in FS. The response is reminiscent of that seen in

  19. Use of eluted peptide sequence data to identify the binding characteristics of peptides to the insulin-dependent diabetes susceptibility allele HLA-DQ8 (DQ 3.2).

    Science.gov (United States)

    Godkin, A; Friede, T; Davenport, M; Stevanovic, S; Willis, A; Jewell, D; Hill, A; Rammensee, H G

    1997-06-01

    HLA-DQ8 (A1*0301, B1*0302) and -DQ2 (A1*0501, B1*0201) are both associated with diseases such as insulin-dependent diabetes mellitus and coeliac disease. We used the technique of pool sequencing to look at the requirements of peptides binding to HLA-DQ8, and combined these data with naturally sequenced ligands and in vitro binding assays to describe a novel motif for HLA-DQ8. The motif, which has the same basic format as many HLA-DR molecules, consists of four or five anchor regions, in the positions from the N-terminus of the binding core of n, n + 3, n + 5/6 and n + 8, i.e. P1, P4, P6/7 and P9. P1 and P9 require negative or polar residues, with mainly aliphatic residues at P4 and P6/7. The features of the HLA-DQ8 motif were then compared to a pool sequence of peptides eluted from HLA-DQ2. A consensus motif for the binding of a common peptide which may be involved in disease pathogenesis is described. Neither of the disease-associated alleles HLA-DQ2 and -DQ8 have Asp at position 57 of the beta-chain. This Asp, if present, may form a salt bridge with an Arg at position 79 of the alpha-chain and so alter the binding specificity of P9. HLA-DQ2 and -DQ8 both appear to prefer negatively charged amino acids at P9. In contrast, HLA-DQ7 (A1*0301, B1*0301), which is not associated with diabetes, has Asp at beta 57, allowing positively charged amino acids at P9. This analysis of the sequence features of DQ-binding peptides suggests molecular characteristics which may be useful to predict epitopes involved in disease pathogenesis.

  20. Identification and positional distribution analysis of transcription factor binding sites for genes from the wheat fl-cDNA sequences.

    Science.gov (United States)

    Chen, Zhen-Yong; Guo, Xiao-Jiang; Chen, Zhong-Xu; Chen, Wei-Ying; Wang, Ji-Rui

    2017-06-01

    The binding sites of transcription factors (TFs) in upstream DNA regions are called transcription factor binding sites (TFBSs). TFBSs are important elements for regulating gene expression. To date, there have been few studies on the profiles of TFBSs in plants. In total, 4,873 sequences with 5' upstream regions from 8530 wheat fl-cDNA sequences were used to predict TFBSs. We found 4572 TFBSs for the MADS TF family, which was twice as many as for bHLH (1951), B3 (1951), HB superfamily (1914), ERF (1820), and AP2/ERF (1725) TFs, and was approximately four times higher than the remaining TFBS types. The percentage of TFBSs and TF members showed a distinct distribution in different tissues. Overall, the distribution of TFBSs in the upstream regions of wheat fl-cDNA sequences had significant difference. Meanwhile, high frequencies of some types of TFBSs were found in specific regions in the upstream sequences. Both TFs and fl-cDNA with TFBSs predicted in the same tissues exhibited specific distribution preferences for regulating gene expression. The tissue-specific analysis of TFs and fl-cDNA with TFBSs provides useful information for functional research, and can be used to identify relationships between tissue-specific TFs and fl-cDNA with TFBSs. Moreover, the positional distribution of TFBSs indicates that some types of wheat TFBS have different positional distribution preferences in the upstream regions of genes.

  1. Structural determinants of alpha-bungarotoxin binding to the sequence segment 181-200 of the muscle nicotinic acetylcholine receptor α subunit: Effects of cysteine/cystine modification and species-specific amino acid substitution

    International Nuclear Information System (INIS)

    McLane, K.E.; Wu, Xiadong; Diethelm, B.; Conti-Tronconi, B.M.

    1991-01-01

    The sequence segment 181-200 of the Torpedo nicotinic acetylcholine receptor (nAChR) αsubunit forms a binding site for α-bungarotoxin (α-BTX). Synthetic peptides corresponding to the homologous sequences of human, calf, mouse, chicken, frog, and cobra muscle nAChR α1 subunits were tested for their ability to bind 125 I-α-BTX, and differences in α-BTX affinity were determined by using solution (IC 50 s) and solid-phase (K d s) assays. Panels of overlapping peptides corresponding to the complete α1 subunit of mouse and human were also tested for α-BTX binding, but other sequence segments forming the α-BTX site were not consistently detectable. The role of a putative vicinal disulfide bound between Cys-192 and -193, relative to the Torpedo sequence, was determined by modifying the peptides with sulfhydryl reagents. Reduction and alkylation of the peptides decreased α-BTX binding, whereas oxidation of the peptides had little effect. These results indicate that while the adjacent cysteines are likely to be involved in forming the toxin/α1-subunit interface a vicinal disulfide bound was not required for α-BTX binding

  2. GuiTope: an application for mapping random-sequence peptides to protein sequences.

    Science.gov (United States)

    Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert

    2012-01-03

    Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.

  3. GuiTope: an application for mapping random-sequence peptides to protein sequences

    Directory of Open Access Journals (Sweden)

    Halperin Rebecca F

    2012-01-01

    Full Text Available Abstract Background Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. Results GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. Conclusions GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.

  4. Elucidation of the sequence selective binding mode of the DNA minor groove binder adozelesin, by high-field 1H NMR and restrained molecular dynamics

    International Nuclear Information System (INIS)

    Cameron, L.

    1999-01-01

    Adozelesin (formerly U73-975, The Upjohn Co.) is a covalent, minor-groove binding analogue of the antitumour antibiotic (+)CC-1065. Adozelesin consists of a cyclopropapyrroloindole alkylating sub-unit identical to (+)CC-1065, plus indole and benzofuran sub-units which replace the more complex pyrroloindole B and C sub-units, respectively, of (+)CC-1065. Adozelesin is a clinically important drug candidate, since it does not contain the ethylene bridge moieties on the B and C sub-units which are thought to be responsible for the unusual delayed hepatotoxicity exhibited by (+)CC-1065. Sequencing techniques identified two consensus sequences for adozelesin binding as p(dA) and 5'(T/A)(T/A)T-A*(C/G)G. This suggests that adozelesin spans a total of five base-pairs and shows a preference for A=T base-pair rich sequences, thus avoiding steric crowding around the exocyclic NH 2 of guanine and a wide minor groove. In this project, the covalent modification of two DNA sequences, i.e. 5'd(CGTAAGCGCTTA*CG) 2 and 5'-d(CGAAAAA*CGG)· 5'-d(CCGTTTTTCG), by adozelesin was examined by high-field NMR and restrained molecular mechanics and dynamics. Previous studies of minor groove binding drugs, using techniques as diverse as NMR, X-ray crystallography and molecular modelling, indicate that the incorporation of a guanine into the consensus sequence sterically hinders binding and, more importantly, produces a wider minor groove which is a 'slack' fit for the ligand. The aim of this investigation was to provide an insight into the sequence selective binding of adozelesin to 5'-AAAAA*CG and 5'-GCTTA*CG. The 1 H NMR data revealed that, in both cases, β-helical structure and Watson-Crick base-pairing was maintained on adduct formation. The 5'-GCTTA*CG adduct displayed significant distortion of the guanine base on the non-covalently modified strand. This distortion resulted from an amalgamation of two factors. Firstly, the presence of a strong hydrogen-bond between the amide linker of the

  5. Nonparametric combinatorial sequence models.

    Science.gov (United States)

    Wauthier, Fabian L; Jordan, Michael I; Jojic, Nebojsa

    2011-11-01

    This work considers biological sequences that exhibit combinatorial structures in their composition: groups of positions of the aligned sequences are "linked" and covary as one unit across sequences. If multiple such groups exist, complex interactions can emerge between them. Sequences of this kind arise frequently in biology but methodologies for analyzing them are still being developed. This article presents a nonparametric prior on sequences which allows combinatorial structures to emerge and which induces a posterior distribution over factorized sequence representations. We carry out experiments on three biological sequence families which indicate that combinatorial structures are indeed present and that combinatorial sequence models can more succinctly describe them than simpler mixture models. We conclude with an application to MHC binding prediction which highlights the utility of the posterior distribution over sequence representations induced by the prior. By integrating out the posterior, our method compares favorably to leading binding predictors.

  6. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    Science.gov (United States)

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  7. Effects of dantrolene and its derivatives on Ca2+ release from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Hosoya, Takamitsu; Aoyama, Hiroshi; Kihara, Yasutaka; Suzuki, Masaaki; Endo, Makoto

    2001-01-01

    We analysed the effect of dantrolene (Dan) and five newly synthesized derivatives (GIFs) on Ca2+ release from the sarcoplasmic reticulum (SR) of mouse skeletal muscle.In intact muscles, GIF-0185 reduced the size of twitch contraction induced by electrical stimulation to the same extent as Dan. GIF-0082, an azido-functionalized Dan derivative, also inhibited twitch contraction, although the extent of inhibition was less than that of Dan and of GIF-0185.In skinned fibres, Dan inhibited Ca2+-induced Ca2+ release (CICR) under Mg2+-free conditions at room temperature. In contrast, GIF-0082 and GIF-0185 showed no inhibitory effect on CICR under the same conditions.Dan-induced inhibition of CICR was not affected by the presence of GIF-0082, whereas it was diminished in the presence of GIF-0185.GIF-0082 and GIF-0185 significantly inhibited clofibric acid (Clof)-induced Ca2+ release, as did Dan.Several Dan derivatives other than GIF-0082 and GIF-0185 showed an inhibitory effect on twitch tension but not on the CICR mechanism. All of these derivatives inhibited Clof-induced Ca2+ release.The magnitudes of inhibition of Clof-induced Ca2+ release by all Dan derivatives were well correlated with those of twitch inhibition. This supports the notion that the mode of Clof-induced opening of the RyR-Ca2+ release channel may be similar to that of physiological Ca2+ release (PCR).These results indicate that the difference in opening modes of the RyR-Ca2+ release channel is recognized by certain Dan derivatives. PMID:11606312

  8. Null alleles and sequence variations at primer binding sites of STR loci within multiplex typing systems.

    Science.gov (United States)

    Yao, Yining; Yang, Qinrui; Shao, Chengchen; Liu, Baonian; Zhou, Yuxiang; Xu, Hongmei; Zhou, Yueqin; Tang, Qiqun; Xie, Jianhui

    2018-01-01

    Rare variants are widely observed in human genome and sequence variations at primer binding sites might impair the process of PCR amplification resulting in dropouts of alleles, named as null alleles. In this study, 5 cases from routine paternity testing using PowerPlex ® 21 System for STR genotyping were considered to harbor null alleles at TH01, FGA, D5S818, D8S1179, and D16S539, respectively. The dropout of alleles was confirmed by using alternative commercial kits AGCU Expressmarker 22 PCR amplification kit and AmpFℓSTR ® . Identifiler ® Plus Kit, and sequencing results revealed a single base variation at the primer binding site of each STR locus. Results from the collection of previous reports show that null alleles at D5S818 were frequently observed in population detected by two PowerPlex ® typing systems and null alleles at D19S433 were mostly observed in Japanese population detected by two AmpFℓSTR™ typing systems. Furthermore, the most popular mutation type appeared the transition from C to T with G to A, which might have a potential relationship with DNA methylation. Altogether, these results can provide helpful information in forensic practice to the elimination of genotyping discrepancy and the development of primer sets. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Full trans-activation mediated by the immediate-early protein of equine herpesvirus 1 requires a consensus TATA box, but not its cognate binding sequence.

    Science.gov (United States)

    Kim, Seong K; Shakya, Akhalesh K; O'Callaghan, Dennis J

    2016-01-04

    The immediate-early protein (IEP) of equine herpesvirus 1 (EHV-1) has extensive homology to the IEP of alphaherpesviruses and possesses domains essential for trans-activation, including an acidic trans-activation domain (TAD) and binding domains for DNA, TFIIB, and TBP. Our data showed that the IEP directly interacted with transcription factor TFIIA, which is known to stabilize the binding of TBP and TFIID to the TATA box of core promoters. When the TATA box of the EICP0 promoter was mutated to a nonfunctional TATA box, IEP-mediated trans-activation was reduced from 22-fold to 7-fold. The IEP trans-activated the viral promoters in a TATA motif-dependent manner. Our previous data showed that the IEP is able to repress its own promoter when the IEP-binding sequence (IEBS) is located within 26-bp from the TATA box. When the IEBS was located at 100 bp upstream of the TATA box, IEP-mediated trans-activation was very similar to that of the minimal IE(nt -89 to +73) promoter lacking the IEBS. As the distance from the IEBS to the TATA box decreased, IEP-mediated trans-activation progressively decreased, indicating that the IEBS located within 100 bp from the TATA box sequence functions as a distance-dependent repressive element. These results indicated that IEP-mediated full trans-activation requires a consensus TATA box of core promoters, but not its binding to the cognate sequence (IEBS). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Full trans–activation mediated by the immediate–early protein of equine herpesvirus 1 requires a consensus TATA box, but not its cognate binding sequence

    Science.gov (United States)

    Kim, Seong K.; Shakya, Akhalesh K.; O'Callaghan, Dennis J.

    2015-01-01

    The immediate-early protein (IEP) of equine herpesvirus 1 (EHV-1) has extensive homology to the IEP of alphaherpesviruses and possesses domains essential for trans-activation, including an acidic trans-activation domain (TAD) and binding domains for DNA, TFIIB, and TBP. Our data showed that the IEP directly interacted with transcription factor TFIIA, which is known to stabilize the binding of TBP and TFIID to the TATA box of core promoters. When the TATA box of the EICP0 promoter was mutated to a nonfunctional TATA box, IEP-mediated trans-activation was reduced from 22-fold to 7-fold. The IEP trans-activated the viral promoters in a TATA motif-dependent manner. Our previous data showed that the IEP is able to repress its own promoter when the IEP-binding sequence (IEBS) is located within 26-bp from the TATA box. When the IEBS was located at 100 bp upstream of the TATA box, IEP-mediated trans-activation was very similar to that of the minimal IE(nt −89 to +73) promoter lacking the IEBS. As the distance from the IEBS to the TATA box decreased, IEP-mediated trans-activation progressively decreased, indicating that the IEBS located within 100 bp from the TATA box sequence functions as a distance-dependent repressive element. These results indicated that IEP-mediated full trans-activation requires a consensus TATA box of core promoters, but not its binding to the cognate sequence (IEBS). PMID:26541315

  11. Molecular Identification and Sequencing of Mannose Binding Protein (MBP Gene of Acanthamoeba palestinensis

    Directory of Open Access Journals (Sweden)

    M Rezaeian

    2010-02-01

    Full Text Available "nBackground: Acanthamoeba keratitis develops by pathogenic Acanthamoeba such as A. pal­es­tinen­sis. Indeed this species is one of the known causative agents of amoebic keratitis in Iran. Mannose Binding Protein (MBP is the main pathogenicity factors for developing this sight threatening disease. We aimed to characterize MBP gene in pathogenic Acanthamoeba isolates such as A. palestinensis."nMethods: This experimental research was performed in the School of Public Health, Tehran University of Medical Sciences, Tehran, Iran during 2007-2008.  A. palestinensis was grown on 2% non-nutrient agar overlaid with Escherichia coli. DNA extraction was performed using phenol-chloroform method. PCR reaction and amplification were done using specific primer pairs of MBP. The amplified fragment were purified and sequenced. Finally, the obtained fragment was deposited in the gene data bank."nResults: A 900 bp PCR-product was recovered after PCR reaction. Sequence analysis of the purified PCR product revealed a gene with 943 nucleotides. Homology analysis of the ob­tained sequence showed 81% similarity with the available MBP gene in the gene data bank. The fragment was deposited in the gene data bank under accession number EU678895"nConclusion: MBP is known as the most important factor in Acanthamoeba pathogenesis cas­cade. Therefore, characterization of this gene can aid in developing better therapeutic agents and even immunization of high-risk people.

  12. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  13. Structure and Sequence Search on Aptamer-Protein Docking

    Science.gov (United States)

    Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie

    2015-03-01

    Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.

  14. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element.

    Science.gov (United States)

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-07-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5'-NNCCAC-3' and 5'-GCGMGN'N'-3' (M:A or C; N and N' form Watson-Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences.

  15. Aspirin and salicylate bind to immunoglobulin heavy chain binding protein (BiP) and inhibit its ATPase activity in human fibroblasts.

    Science.gov (United States)

    Deng, W G; Ruan, K H; Du, M; Saunders, M A; Wu, K K

    2001-11-01

    Salicylic acid (SA), an endogenous signaling molecule of plants, possesses anti-inflammatory and anti-neoplastic actions in human. Its derivative, aspirin, is the most commonly used anti-inflammatory and analgesic drug. Aspirin and sodium salicylate (salicylates) have been reported to have multiple pharmacological actions. However, it is unclear whether they bind to a cellular protein. Here, we report for the first time the purification from human fibroblasts of a approximately 78 kDa salicylate binding protein with sequence identity to immunoglobulin heavy chain binding protein (BiP). The Kd values of SA binding to crude extract and to recombinant BiP were 45.2 and 54.6 microM, respectively. BiP is a chaperone protein containing a polypeptide binding site recognizing specific heptapeptide sequence and an ATP binding site. A heptapeptide with the specific sequence displaced SA binding in a concentration-dependent manner whereas a control heptapeptide did not. Salicylates inhibited ATPase activity stimulated by this specific heptapeptide but did not block ATP binding or induce BiP expression. These results indicate that salicylates bind specifically to the polypeptide binding site of BiP in human cells that may interfere with folding and transport of proteins important in inflammation.

  16. Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin.

    Science.gov (United States)

    Rooijakkers, Bart J M; Ikonen, Martina S; Linder, Markus B

    2018-01-01

    Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.

  17. Fungal-type carbohydrate binding modules from the coccolithophore Emiliania huxleyi show binding affinity to cellulose and chitin.

    Directory of Open Access Journals (Sweden)

    Bart J M Rooijakkers

    Full Text Available Six fungal-type cellulose binding domains were found in the genome of the coccolithophore Emiliania huxleyi and cloned and expressed in Escherichia coli. Sequence comparison indicate high similarity to fungal cellulose binding domains, raising the question of why these domains exist in coccolithophores. The proteins were tested for binding with cellulose and chitin as ligands, which resulted in the identification of two functional carbohydrate binding modules: EHUX2 and EHUX4. Compared to benchmark fungal cellulose binding domain Cel7A-CBM1 from Trichoderma reesei, these proteins showed slightly lower binding to birch and bacterial cellulose, but were more efficient chitin binders. Finally, a set of cellulose binding domains was created based on the shuffling of one well-functioning and one non-functional domain. These were characterized in order to get more information of the binding domain's sequence-function relationship, indicating characteristic differences between the molecular basis of cellulose versus chitin recognition. As previous reports have showed the presence of cellulose in coccoliths and here we find functional cellulose binding modules, a possible connection is discussed.

  18. Importance of length and sequence order on magnesium binding to surface-bound oligonucleotides studied by second harmonic generation and atomic force microscopy.

    Science.gov (United States)

    Holland, Joseph G; Geiger, Franz M

    2012-06-07

    The binding of magnesium ions to surface-bound single-stranded oligonucleotides was studied under aqueous conditions using second harmonic generation (SHG) and atomic force microscopy (AFM). The effect of strand length on the number of Mg(II) ions bound and their free binding energy was examined for 5-, 10-, 15-, and 20-mers of adenine and guanine at pH 7, 298 K, and 10 mM NaCl. The binding free energies for adenine and guanine sequences were calculated to be -32.1(4) and -35.6(2) kJ/mol, respectively, and invariant with strand length. Furthermore, the ion density for adenine oligonucleotides did not change as strand length increased, with an average value of 2(1) ions/strand. In sharp contrast, guanine oligonucleotides displayed a linear relationship between strand length and ion density, suggesting that cooperativity is important. This data gives predictive capabilities for mixed strands of various lengths, which we exploit for 20-mers of adenines and guanines. In addition, the role sequence order plays in strands of hetero-oligonucleotides was examined for 5'-A(10)G(10)-3', 5'-(AG)(10)-3', and 5'-G(10)A(10)-3' (here the -3' end is chemically modified to bind to the surface). Although the free energy of binding is the same for these three strands (averaged to be -33.3(4) kJ/mol), the total ion density increases when several guanine residues are close to the 3' end (and thus close to the solid support substrate). To further understand these results, we analyzed the height profiles of the functionalized surfaces with tapping-mode atomic force microscopy (AFM). When comparing the average surface height profiles of the oligonucleotide surfaces pre- and post- Mg(II) binding, a positive correlation was found between ion density and the subsequent height decrease following Mg(II) binding, which we attribute to reductions in Coulomb repulsion and strand collapse once a critical number of Mg(II) ions are bound to the strand.

  19. G quadruplex-based FRET probes with the thrombin-binding aptamer (TBA) sequence designed for the efficient fluorometric detection of the potassium ion.

    Science.gov (United States)

    Nagatoishi, Satoru; Nojima, Takahiko; Galezowska, Elzbieta; Juskowiak, Bernard; Takenaka, Shigeori

    2006-11-01

    The dual-labeled oligonucleotide derivative, FAT-0, carrying 6- carboxyfluorescein (FAM) and 6-carboxytetramethylrhodamine (TAMRA) labels at the 5' and 3' termini of the thrombin-binding aptamer (TBA) sequence 5'-GGT TGG TGT GGT TGG-3', and its derivatives, FAT-n (n=3, 5, and 7) with a spacer at the 5'-end of a TBA sequence of T(m)A (m=2, 4, and 6) have been designed and synthesized. These fluorescent probes were developed for monitoring K(+) concentrations in living organisms. Circular dichroism, UV-visible absorption, and fluorescence studies revealed that all FAT-n probes could form intramolecular tetraplex structures after binding K(+). Fluorescence resonance energy transfer and quenching results are discussed taking into account dye-dye contact interactions. The relationship between the fluorescence behavior of the probes and the spacer length in FAT-n was studied in detail and is discussed.

  20. The N-terminal of a heparin-binding sperm membrane mitogen possess lectin-like sequence

    International Nuclear Information System (INIS)

    Mor, Visesato; Chatterjee, Tapati

    2007-01-01

    Glycosaminoglycans like heparin and heparin sulfate in follicular fluid induce changes in the intracellular environment during the spermatozoal functional maturation. We previously reported the isolation, purification and partial characterization of a heparin binding sperm membrane protein (HBSM). In the present study, the amino acids analysis provided evidence of a single sequence, which suggest the homogeneity of the purified HBSM. Fourteen amino acids- 1 A D T I V A V E L D T Y P N 14 -correspond to the amino terminal sequence of Concanavalin A (Con A) and contain 45.2% carbohydrate by weight. HBSM possess mitogenic property on lymphocytes with comparable magnitude to the well-known mitogen; Con A, inducing 83% radiolabel thymidine incorporation in growing lymphocytes. Unlike Con A, there was no agglutination of cell by HBSM upto 5 ng/ml concentration. Interestingly, we found that heparin and chondroitin sulfate-conjugated HBSM inhibit the proliferative activity. Similar effect was also found with an in-house isolate sulfated glycans; G-I (28% sulfate). In contrast, there was no inhibition by the desulfated form; G-ID. Altogether, our data suggest that the mechanism of cell proliferative pathway may be different for HBSM and Con A

  1. An intact sequence-specific DNA-binding domain is required for human cytomegalovirus-mediated sequestration of p53 and may promote in vivo binding to the viral genome during infection

    International Nuclear Information System (INIS)

    Rosenke, Kyle; Samuel, Melanie A.; McDowell, Eric T.; Toerne, Melissa A.; Fortunato, Elizabeth A.

    2006-01-01

    The p53 protein is stabilized during infection of primary human fibroblasts with human cytomegalovirus (HCMV). However, the p53 in HCMV-infected cells is unable to activate its downstream targets. HCMV accomplishes this inactivation, at least in part, by sequestering p53 into viral replication centers within the cell's nucleus soon after they are established. In order to better understand the interplay between HCMV and p53 and the mechanism of sequestration, we constructed a panel of mutant p53-GFP fusion constructs for use in transfection/infection experiments. These mutants affected several post-translational modification sites and several sites within the central sequence-specific DNA-binding domain of the protein. Two categories of p53 sequestration were observed when the mutant constructs were transfected into primary fibroblasts and then infected at either high or low multiplicity. The first category, including all of the post-translational modification mutants, showed sequestration comparable to a wild-type (wt) control, while the second category, mutants affecting the DNA-binding core, were not specifically sequestered above control GFP levels. This suggested that the DNA-binding ability of the protein was required for sequestration. When the HCMV genome was analyzed for p53 consensus binding sites, 21 matches were found, which localized either to the promoters or the coding regions of viral proteins involved in DNA replication and processing as well as structural proteins. An analysis of in vivo binding to these identified sites via chromatin immunoprecipitation assays revealed differential binding to several of the sites over the course of infection

  2. Characterization of the Organic Component of Low-Molecular-Weight Chromium-Binding Substance and Its Binding of Chromium123

    Science.gov (United States)

    Chen, Yuan; Watson, Heather M.; Gao, Junjie; Sinha, Sarmistha Halder; Cassady, Carolyn J.; Vincent, John B.

    2011-01-01

    Chromium was proposed to be an essential element over 50 y ago and was shown to have therapeutic potential in treating the symptoms of type 2 diabetes; however, its mechanism of action at a molecular level is unknown. One chromium-binding biomolecule, low-molecular weight chromium-binding substance (LMWCr or chromodulin), has been found to be biologically active in in vitro assays and proposed as a potential candidate for the in vivo biologically active form of chromium. Characterization of the organic component of LMWCr has proven difficult. Treating bovine LMWCr with trifluoroacetic acid followed by purification on a graphite powder micro-column generates a heptapeptide fragment of LMWCr. The peptide sequence of the fragment was analyzed by MS and tandem MS (MS/MS and MS/MS/MS) using collision-induced dissociation and post-source decay. Two candidate sequences, pEEEEGDD and pEEEGEDD (where pE is pyroglutamate), were identified from the MS/MS experiments; additional tandem MS suggests the sequence is pEEEEGDD. The N-terminal glutamate residues explain the inability to sequence LMWCr by the Edman method. Langmuir isotherms and Hill plots were used to analyze the binding constants of chromic ions to synthetic peptides similar in composition to apoLMWCr. The sequence pEEEEGDD was found to bind 4 chromic ions per peptide with nearly identical cooperativity and binding constants to those of apoLMWCr. This work should lead to further studies elucidating or eliminating a potential role for LMWCr in treating the symptoms of type 2 diabetes and other conditions resulting from improper carbohydrate and lipid metabolism. PMID:21593351

  3. PROCARB: A Database of Known and Modelled Carbohydrate-Binding Protein Structures with Sequence-Based Prediction Tools

    Directory of Open Access Journals (Sweden)

    Adeel Malik

    2010-01-01

    Full Text Available Understanding of the three-dimensional structures of proteins that interact with carbohydrates covalently (glycoproteins as well as noncovalently (protein-carbohydrate complexes is essential to many biological processes and plays a significant role in normal and disease-associated functions. It is important to have a central repository of knowledge available about these protein-carbohydrate complexes as well as preprocessed data of predicted structures. This can be significantly enhanced by tools de novo which can predict carbohydrate-binding sites for proteins in the absence of structure of experimentally known binding site. PROCARB is an open-access database comprising three independently working components, namely, (i Core PROCARB module, consisting of three-dimensional structures of protein-carbohydrate complexes taken from Protein Data Bank (PDB, (ii Homology Models module, consisting of manually developed three-dimensional models of N-linked and O-linked glycoproteins of unknown three-dimensional structure, and (iii CBS-Pred prediction module, consisting of web servers to predict carbohydrate-binding sites using single sequence or server-generated PSSM. Several precomputed structural and functional properties of complexes are also included in the database for quick analysis. In particular, information about function, secondary structure, solvent accessibility, hydrogen bonds and literature reference, and so forth, is included. In addition, each protein in the database is mapped to Uniprot, Pfam, PDB, and so forth.

  4. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells

    Czech Academy of Sciences Publication Activity Database

    Adámik, Matěj; Bažantová, Pavla; Navrátilová, Lucie; Polášková, Alena; Pečinka, Petr; Holanová, L.; Tichý, Vlastimil; Brázdová, Marie

    2015-01-01

    Roč. 456, č. 1 (2015), s. 29-34 ISSN 0006-291X R&D Projects: GA ČR(CZ) GA13-36108S Institutional support: RVO:68081707 Keywords : p53 protein family * Sequence-specific DNA binding * Heavy metals Subject RIV: BO - Biophysics Impact factor: 2.371, year: 2015

  5. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  6. The carbohydrate-binding module (CBM)-like sequence is crucial for rice CWA1/BC1 function in proper assembly of secondary cell wall materials.

    Science.gov (United States)

    Sato, Kanna; Ito, Sachiko; Fujii, Takeo; Suzuki, Ryu; Takenouchi, Sachi; Nakaba, Satoshi; Funada, Ryo; Sano, Yuzou; Kajita, Shinya; Kitano, Hidemi; Katayama, Yoshihiro

    2010-11-01

    We recently reported that the cwa1 mutation disturbed the deposition and assembly of secondary cell wall materials in the cortical fiber of rice internodes. Genetic analysis revealed that cwa1 is allelic to bc1, which encodes glycosylphosphatidylinositol (GPI)-anchored COBRA-like protein with the highest homology to Arabidopsis COBRA-like 4 (COBL4) and maize Brittle Stalk 2 (Bk2). Our results suggested that CWA1/BC1 plays a role in assembling secondary cell wall materials at appropriate sites, enabling synthesis of highly ordered secondary cell wall structure with solid and flexible internodes in rice. The N-terminal amino acid sequence of CWA1/BC1, as well as its orthologs (COBL4, Bk2) and other BC1-like proteins in rice, shows weak similarity to a family II carbohydrate-binding module (CBM2) of several bacterial cellulases. To investigate the importance of the CBM-like sequence of CWA1/BC1 in the assembly of secondary cell wall materials, Trp residues in the CBM-like sequence, which is important for carbohydrate binding, were substituted for Val residues and introduced into the cwa1 mutant. CWA1/BC1 with the mutated sequence did not complement the abnormal secondary cell walls seen in the cwa1 mutant, indicating that the CBM-like sequence is essential for the proper function of CWA1/BC1, including assembly of secondary cell wall materials.

  7. Functional analysis of bipartite begomovirus coat protein promoter sequences

    International Nuclear Information System (INIS)

    Lacatus, Gabriela; Sunter, Garry

    2008-01-01

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters

  8. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E.; Korgsdam, A.-M.; Jørgensen, H.F.

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  9. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space.

    Science.gov (United States)

    Stegemann, Björn; Klebe, Gerhard

    2012-02-01

    Small molecules are recognized in protein-binding pockets through surface-exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein-ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise to unexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein-cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein-binding pockets, and the local folding patterns next to the cofactor-binding site. State-of-the-art clustering techniques have been applied to group the different protein-cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Copyright © 2011 Wiley Periodicals, Inc.

  10. An overview of the prediction of protein DNA-binding sites.

    Science.gov (United States)

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-03-06

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  11. Photoaffinity analogues of methotrexate as folate antagonist binding probes. 1. Photoaffinity labeling of murine L1210 dihydrofolate reductase and amino acid sequence of the binding region

    International Nuclear Information System (INIS)

    Price, E.M.; Smith, P.L.; Klein, T.E.; Freisheim, J.H.

    1987-01-01

    N/sup α/-(4-Amino-4-deoxy-10-methylpteroyl)-N/sup epsilon/-(4-azido-5-[ 125 I]iodosalicylyl)-L-lysine, a photoaffinity analogue of methotrexate, is only 2-fold less potent than methotrexate in the inhibition of murine L1210 dihydrofolate reductase. Irradiation of the enzyme in the presence of an equimolar concentration of the 125 I-labeled analogue ultimately leads to an 8% incorporation of the photoprobe. A 100-fold molar excess of methotrexate essentially blocks this incorporation. Cyanogen bromide digestion of the labeled enzyme, followed by high-pressure liquid chromatography purification of the generated peptides, indicates that greater than 85% of the total radioactivity is incorporated into a single cyanogen bromide peptide. Sequence analysis revealed this peptide to be residues 53-111, with a majority of the radioactivity centered around residues 63-65 (Lys-Asn-Arg). These data demonstrate that the photoaffinity analogue specifically binds to dihydrofolate reductase and covalently modifies the enzyme following irradiation and is therefore a photolabeling agent useful for probing the inhibitor binding domain of the enzyme

  12. Genome-wide identification, sequence characterization, and protein-protein interaction properties of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat family members in Solanum lycopersicum.

    Science.gov (United States)

    Zhu, Yunye; Huang, Shengxiong; Miao, Min; Tang, Xiaofeng; Yue, Junyang; Wang, Wenjie; Liu, Yongsheng

    2015-06-01

    One hundred DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family genes were identified in the S. lycopersicum genome. The DWD genes encode proteins presumably functioning as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. These findings provide candidate genes and a research platform for further gene functionality and molecular breeding study. A subclass of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family proteins has been demonstrated to function as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. However, little information is available about the cognate subfamily genes in tomato (S. lycopersicum). In this study, based on the recently released tomato genome sequences, 100 tomato genes encoding DWD proteins that potentially interact with DDB1 were identified and characterized, including analyses of the detailed annotations, chromosome locations and compositions of conserved amino acid domains. In addition, a phylogenetic tree, which comprises of three main groups, of the subfamily genes was constructed. The physical interaction between tomato DDB1 and 14 representative DWD proteins was determined by yeast two-hybrid and co-immunoprecipitation assays. The subcellular localization of these 14 representative DWD proteins was determined. Six of them were localized in both nucleus and cytoplasm, seven proteins exclusively in cytoplasm, and one protein either in nucleus and cytoplasm, or exclusively in cytoplasm. Comparative genomic analysis demonstrated that the expansion of these subfamily members in tomato predominantly resulted from two whole-genome triplication events in the evolution history.

  13. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  14. Chromatin immunoprecipitation to analyze DNA binding sites of HMGA2.

    Directory of Open Access Journals (Sweden)

    Nina Winter

    Full Text Available BACKGROUND: HMGA2 is an architectonic transcription factor abundantly expressed during embryonic and fetal development and it is associated with the progression of malignant tumors. The protein harbours three basically charged DNA binding domains and an acidic protein binding C-terminal domain. DNA binding induces changes of DNA conformation and hence results in global overall change of gene expression patterns. Recently, using a PCR-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment procedure two consensus sequences for HMGA2 binding have been identified. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation chromatin immunoprecipitation (ChIP experiments and bioinformatic methods were used to analyze if these binding sequences can be verified on chromatin of living cells as well. CONCLUSION: After quantification of HMGA2 protein in different cell lines the colon cancer derived cell line HCT116 was chosen for further ChIP experiments because of its 3.4-fold higher HMGA2 protein level. 49 DNA fragments were obtained by ChIP. These fragments containing HMGA2 binding sites have been analyzed for their AT-content, location in the human genome and similarities to sequences generated by a SELEX study. The sequences show a significantly higher AT-content than the average of the human genome. The artificially generated SELEX sequences and short BLAST alignments (11 and 12 bp of the ChIP fragments from living cells show similarities in their organization. The flanking regions are AT-rich, whereas a lower conservation is present in the center of the sequences.

  15. Position specific variation in the rate of evolution intranscription factor binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  16. TIA-1 RRM23 binding and recognition of target oligonucleotides.

    Science.gov (United States)

    Waris, Saboora; García-Mauriño, Sofía M; Sivakumaran, Andrew; Beckham, Simone A; Loughlin, Fionna E; Gorospe, Myriam; Díaz-Moreno, Irene; Wilce, Matthew C J; Wilce, Jacqueline A

    2017-05-05

    TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.

    Directory of Open Access Journals (Sweden)

    Christine R Langlois

    2016-11-01

    Full Text Available Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid.

  18. Development of a strategy to functionalize a dextrin-based hydrogel for animal cell cultures using a starch-binding module fused to RGD sequence

    Directory of Open Access Journals (Sweden)

    Gama Miguel

    2008-10-01

    Full Text Available Abstract Background Several approaches can be used to functionalize biomaterials, such as hydrogels, for biomedical applications. One of the molecules often used to improve cells adhesion is the peptide Arg-Gly-Asp (RGD. The RGD sequence, present in several proteins from the extra-cellular matrix (ECM, is a ligand for integrin-mediated cell adhesion; this sequence was recognized as a major functional group responsible for cellular adhesion. In this work a bi-functional recombinant protein, containing a starch binding module (SBM and RGD sequence was used to functionalize a dextrin-based hydrogel. The SBM, which belongs to an α-amylase from Bacillus sp. TS-23, has starch (and dextrin, depolymerized starch affinity, acting as a binding molecule to adsorb the RGD sequence to the hydrogel surface. Results The recombinant proteins SBM and RGD-SBM were cloned, expressed, purified and tested in in vitro assays. The evaluation of cell attachment, spreading and proliferation on the dextrin-based hydrogel surface activated with recombinant proteins were performed using mouse embryo fibroblasts 3T3. A polystyrene cell culture plate was used as control. The results showed that the RGD-SBM recombinant protein improved, by more than 30%, the adhesion of fibroblasts to dextrin-based hydrogel. In fact, cell spreading on the hydrogel surface was observed only in the presence of the RGD-SBM. Conclusion The fusion protein RGD-SBM provides an efficient way to functionalize the dextrin-based hydrogel. Many proteins in nature that hold a RGD sequence are not cell adhesive, probably due to the conformation/accessibility of the peptide. We therefore emphasise the successful expression of a bi-functional protein with potential for different applications.

  19. Structural Fingerprints of Transcription Factor Binding Site Regions

    Directory of Open Access Journals (Sweden)

    Peter Willett

    2009-03-01

    Full Text Available Fourier transforms are a powerful tool in the prediction of DNA sequence properties, such as the presence/absence of codons. We have previously compiled a database of the structural properties of all 32,896 unique DNA octamers. In this work we apply Fourier techniques to the analysis of the structural properties of human chromosomes 21 and 22 and also to three sets of transcription factor binding sites within these chromosomes. We find that, for a given structural property, the structural property power spectra of chromosomes 21 and 22 are strikingly similar. We find common peaks in their power spectra for both Sp1 and p53 transcription factor binding sites. We use the power spectra as a structural fingerprint and perform similarity searching in order to find transcription factor binding site regions. This approach provides a new strategy for searching the genome data for information. Although it is difficult to understand the relationship between specific functional properties and the set of structural parameters in our database, our structural fingerprints nevertheless provide a useful tool for searching for function information in sequence data. The power spectrum fingerprints provide a simple, fast method for comparing a set of functional sequences, in this case transcription factor binding site regions, with the sequences of whole chromosomes. On its own, the power spectrum fingerprint does not find all transcription factor binding sites in a chromosome, but the results presented here show that in combination with other approaches, this technique will improve the chances of identifying functional sequences hidden in genomic data.

  20. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.

    Science.gov (United States)

    Ozaki, Haruka; Iwasaki, Wataru

    2016-08-01

    As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Science.gov (United States)

    Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.

  2. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  3. Cloning of cDNA sequences encoding cowpea (Vigna unguiculata) vicilins: Computational simulations suggest a binding mode of cowpea vicilins to chitin oligomers.

    Science.gov (United States)

    Rocha, Antônio J; Sousa, Bruno L; Girão, Matheus S; Barroso-Neto, Ito L; Monteiro-Júnior, José E; Oliveira, José T A; Nagano, Celso S; Carneiro, Rômulo F; Monteiro-Moreira, Ana C O; Rocha, Bruno A M; Freire, Valder N; Grangeiro, Thalles B

    2018-05-27

    Vicilins are 7S globulins which constitute the major seed storage proteins in leguminous species. Variant vicilins showing differential binding affinities for chitin have been implicated in the resistance and susceptibility of cowpea to the bruchid Callosobruchus maculatus. These proteins are members of the cupin superfamily, which includes a wide variety of enzymes and non-catalytic seed storage proteins. The cupin fold does not share similarity with any known chitin-biding domain. Therefore, it is poorly understood how these storage proteins bind to chitin. In this work, partial cDNA sequences encoding β-vignin, the major component of cowpea vicilins, were obtained from developing seeds. Three-dimensional molecular models of β-vignin showed the characteristic cupin fold and computational simulations revealed that each vicilin trimer contained 3 chitin-binding sites. Interaction models showed that chito-oligosaccharides bound to β-vignin were stabilized mainly by hydrogen bonds, a common structural feature of typical carbohydrate-binding proteins. Furthermore, many of the residues involved in the chitin-binding sites of β-vignin are conserved in other 7S globulins. These results support previous experimental evidences on the ability of vicilin-like proteins from cowpea and other leguminous species to bind in vitro to chitin as well as in vivo to chitinous structures of larval C. maculatus midgut. Copyright © 2018. Published by Elsevier B.V.

  4. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  5. Preliminary screening and identification of the hepatocarcinoma cell-binding peptide

    International Nuclear Information System (INIS)

    Zhu Xiaohua; Wu Hua

    2004-01-01

    Objective: To explore the feasibility of screening and isolating homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide library and to develop a new peptide which may be potentially used as targeting delivery carrier in the biological targeted diagnosis or therapy for liver cancer. Methods: A 12-mer peptide phage display library was used to screen and isolate peptides that bind to human hepatocarcinoma cells, and four rounds of subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones for human hepatocarcinoma cells were determined with enzyme-linked immunosorbent assay (ELISA) and compared with that to human liver cell and other tumor cells of different tissue origins, respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced through DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide, WH16, was determined with competitive inhibition test. Results: After four rounds of panning, the phages that were bound to and internalized in human hepatocarcinoma cells were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages for hepatocarcinoma cells. 56.67%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif . Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, that strongly support that cellular binding of the phage is mediated through its displayed peptide, and WH16 can also bind to HepG2. Conclusions: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide

  6. Preliminary screening and identification of the hepatocarcinoma cell-binding peptide

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohua, Zhu; Hua, Wu [Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan (China)

    2004-12-15

    Objective: To explore the feasibility of screening and isolating homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide library and to develop a new peptide which may be potentially used as targeting delivery carrier in the biological targeted diagnosis or therapy for liver cancer. Methods: A 12-mer peptide phage display library was used to screen and isolate peptides that bind to human hepatocarcinoma cells, and four rounds of subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones for human hepatocarcinoma cells were determined with enzyme-linked immunosorbent assay (ELISA) and compared with that to human liver cell and other tumor cells of different tissue origins, respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced through DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide, WH16, was determined with competitive inhibition test. Results: After four rounds of panning, the phages that were bound to and internalized in human hepatocarcinoma cells were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages for hepatocarcinoma cells. 56.67%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif . Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, that strongly support that cellular binding of the phage is mediated through its displayed peptide, and WH16 can also bind to HepG2. Conclusions: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display random peptide

  7. Cell-cycle-specific interaction of nuclear DNA-binding proteins with a CCAAT sequence from the human thymidine kinase gene

    International Nuclear Information System (INIS)

    Knight, G.B.; Gudas, J.M.; Pardee, A.B.

    1987-01-01

    Induction of thymidine kinase parallels the onset of DNA synthesis. To investigate the transcriptional regulation of the thymidine kinase gene, the authors have examined whether specific nuclear factors interact in a cell-cycle-dependent manner with sequences upstream of this gene. Two inverted CCAAT boxes near the transcriptional initiation sites were observed to form complexes with nuclear DNA-binding proteins. The nature of the complexes changes dramatically as the cells approach DNA synthesis and correlates well with the previously reported transcriptional increase of the thymidine kinase gene

  8. Accurate and sensitive quantification of protein-DNA binding affinity.

    Science.gov (United States)

    Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F; Crocker, Justin; Loker, Ryan E; Martini, Gabriella D; Laptenko, Oleg; Freed-Pastor, William A; Prives, Carol; Stern, David L; Mann, Richard S; Bussemaker, Harmen J

    2018-04-17

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. Copyright © 2018 the Author(s). Published by PNAS.

  9. Absence of zero-temperature transmission rate of a double-chain tight-binding model for DNA with random sequence of nucleotides in thermodynamic limit

    International Nuclear Information System (INIS)

    Xiong Gang; Wang, X.R.

    2005-01-01

    The zero-temperature transmission rate spectrum of a double-chain tight-binding model for real DNA is calculated. It is shown that a band of extended-like states exists only for finite chain length with strong inter-chain coupling. While the whole spectrum tends to zero in thermodynamic limit, regardless of the strength of inter-chain coupling. It is also shown that a more faithful model for real DNA with periodic sugar-phosphate chains in backbone structures can be mapped into the above simple double-chain tight-binding model. Combined with above results, the transmission rate of real DNA with long random sequence of nucleotides is expected to be poor

  10. Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction

    International Nuclear Information System (INIS)

    Asano, K.; Asano, A.

    1988-01-01

    Specificity of the binding of sterols and related compounds with purified F-protein (fusion protein) of the HVJ (Sendai virus) was studied by binding competition with [ 3 H] cholesterol. Requirement for cholesterol or the A/B ring trans structure and nonrequirement for the 3-hydroxyl group were found in this binding. Binding of 125 I-labeled Z-Phe-Tyr, an inhibitory peptide of viral membrane-cell membrane fusion, was studied by using purified proteins and virions. F-Protein and virions showed a specific binding with the peptide, whereas the result was negative with hemagglutinin and neuraminidase protein. Thermolysin-truncated F-protein (an F-protein derivative deprived of a 2.5-kDa fragment from the N-terminal of the F 1 subunit and without fusogenic activity) exhibited a considerably diminished binding ability both to cholesterol and to inhibitory peptides. Therefore, the N-terminal hydrophobic sequence that was previously assigned as fusogenic seems to be the binding site of these molecules. In support of this, the binding of cholesterol with F-protein was inhibited by Z-Phe-Tyr and other fusion inhibitory peptides, whereas it was not affected with non-fusion-inhibitory Z-Gly-Phe. These results are discussed in relation to the notion that the binding of the N-terminal portion of the F 1 subunit of F-protein with cholesterol in the target cell membranes facilitiates the fusion reaction

  11. In vitro site selection of a consensus binding site for the Drosophila melanogaster Tbx20 homolog midline.

    Directory of Open Access Journals (Sweden)

    Nima Najand

    Full Text Available We employed in vitro site selection to identify a consensus binding sequence for the Drosophila melanogaster Tbx20 T-box transcription factor homolog Midline. We purified a bacterially expressed T-box DNA binding domain of Midline, and used it in four rounds of precipitation and polymerase-chain-reaction based amplification. We cloned and sequenced 54 random oligonucleotides selected by Midline. Electromobility shift-assays confirmed that 27 of these could bind the Midline T-box. Sequence alignment of these 27 clones suggests that Midline binds as a monomer to a consensus sequence that contains an AGGTGT core. Thus, the Midline consensus binding site we define in this study is similar to that defined for vertebrate Tbx20, but differs from a previously reported Midline binding sequence derived through site selection.

  12. Limits of transforming competence of SV40 nuclear and cytoplasmic large T mutants with altered Rb binding sequences.

    Science.gov (United States)

    Tedesco, D; Fischer-Fantuzzi, L; Vesco, C

    1993-03-01

    Multiple amino acid substitutions were introduced into the SV40 large T region that harbors the retinoblastoma protein (Rb) binding site and the nuclear transport signal, changing either one or both of these determinants. Mutant activities were examined in a set of assays allowing different levels of transforming potential to be distinguished; phenotypic changes in established and pre-crisis rat embryo fibroblasts (REFs) were detected under isogenic cell conditions, and comparisons made with other established rodent cells. The limit of the transforming ability of mutants with important substitutions in the Rb binding site fell between two transformation levels of the same established rat cells. Such cells could be induced to form dense foci but not agar colonies (their parental pre-crises REFs, as expected, were untransformed either way). Nonetheless, agar colony induction was possible in other cell lines, such as mouse NIH3T3 and (for one of the mutants) rat F2408. All these mutants efficiently immortalized pre-crisis REFs. The transforming ability of cytoplasmic mutants appeared to depend on the integrity of the Rb-binding sequence to approximately the same extent as that of the wild-type large T, although evidence of in vivo Rb-cytoplasmic large T complexes was not found. The presence or absence of small t was critical when the transforming task of mutants was near the limit of their abilities.

  13. The differences in heparin binding for the C-terminal basic-sequence-rich peptides of HPV-16 and HPV-18 capsid protein L1

    International Nuclear Information System (INIS)

    Sun Jian; Yu Jisheng; Yu Zhiwu; Zha Xiao; Wu Yuqing

    2012-01-01

    Graphial abstract: The differences in heparin binding for the C-terminal basic-sequence-rich peptides of HPV-16 and HPV-18 capsid protein L1. Highlights: ► Several driving forces contribute to the interaction between heparin and peptides. ► C-terminal of HPV L1 is a potential candidate for the attachment to host cells. ► The C-terminal peptides of HPV-16 and -18 L1 have different heparin-binding. ► The different heparin-binding provides an explanation for the distinct prevalences. - Abstract: The high-risk types of human papillomaviruses (HPV) HPV-16 and -18 are the predominant types associated with cervical cancer. HPV-16 and -18 account for about 50% and 20%, respectively, of cervical cancers worldwide. While the reason and molecular mechanism of the distinct prevalence and distributions between them remain poorly understood, the binding affinity of cell surface receptor with capsid proteins, especially L1, may be involved. We examined heparin binding with two synthetic peptides corresponding to the 14 amino acid C-terminal peptides of HPV-16 and -18 L1 with the goal of comparing the equivalent residues in different HPV types. Using isothermal titration calorimetry (ITC) and static right-angle light scattering (SLS), we determined the binding constant K, reaction enthalpy ΔH, and other thermodynamic parameters in the interaction. Especially, we assessed the role of specific residues in binding with heparin by comparing the NMR spectra of free and heparin-bound peptides.

  14. Thioredoxin binding site of phosphoribulokinase overlaps the catalytic site

    International Nuclear Information System (INIS)

    Porter, M.A.; Hartman, F.C.

    1986-01-01

    The ATP-regulatory binding site of phosphoribulokinase was studied using bromoacetylethanolamine phosphate (BrAcNHEtOP). BrAcNHEtOP binds to the active-regulatory binding site of the protein. Following trypsin degradation of the labeled protein, fragments were separated by HPLC and sequenced. (DT)

  15. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Directory of Open Access Journals (Sweden)

    Kari A Dilley

    Full Text Available Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV, and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV. Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR activation.

  16. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Science.gov (United States)

    Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B; Lorenzi, Hernan; Basler, Christopher F; Shabman, Reed S

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.

  17. A duplex DNA-gold nanoparticle probe composed as a colorimetric biosensor for sequence-specific DNA-binding proteins.

    Science.gov (United States)

    Ahn, Junho; Choi, Yeonweon; Lee, Ae-Ree; Lee, Joon-Hwa; Jung, Jong Hwa

    2016-03-21

    Using duplex DNA-AuNP aggregates, a sequence-specific DNA-binding protein, SQUAMOSA Promoter-binding-Like protein 12 (SPL-12), was directly determined by SPL-12-duplex DNA interaction-based colorimetric actions of DNA-Au assemblies. In order to prepare duplex DNA-Au aggregates, thiol-modified DNA 1 and DNA 2 were attached onto the surface of AuNPs, respectively, by the salt-aging method and then the DNA-attached AuNPs were mixed. Duplex-DNA-Au aggregates having the average size of 160 nm diameter and the maximum absorption at 529 nm were able to recognize SPL-12 and reached the equivalent state by the addition of ∼30 equivalents of SPL-12 accompanying a color change from red to blue with a red shift of the maximum absorption at 570 nm. As a result, the aggregation size grew to about 247 nm. Also, at higher temperatures of the mixture of duplex-DNA-Au aggregate solution and SPL-12, the equivalent state was reached rapidly. On the contrary, in the control experiment using Bovine Serum Albumin (BSA), no absorption band shift of duplex-DNA-Au aggregates was observed.

  18. UPF201 Archaeal Specific Family Members Reveals Structural Similarity to RNA-Binding Proteins but Low Likelihood for RNA-Binding Function

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K.N.; Swaminathan, S.; Burley, S. K.

    2008-12-11

    We have determined X-ray crystal structures of four members of an archaeal specific family of proteins of unknown function (UPF0201; Pfam classification: DUF54) to advance our understanding of the genetic repertoire of archaea. Despite low pairwise amino acid sequence identities (10-40%) and the absence of conserved sequence motifs, the three-dimensional structures of these proteins are remarkably similar to one another. Their common polypeptide chain fold, encompassing a five-stranded antiparallel {beta}-sheet and five {alpha}-helices, proved to be quite unexpectedly similar to that of the RRM-type RNA-binding domain of the ribosomal L5 protein, which is responsible for binding the 5S- rRNA. Structure-based sequence alignments enabled construction of a phylogenetic tree relating UPF0201 family members to L5 ribosomal proteins and other structurally similar RNA binding proteins, thereby expanding our understanding of the evolutionary purview of the RRM superfamily. Analyses of the surfaces of these newly determined UPF0201 structures suggest that they probably do not function as RNA binding proteins, and that this domain specific family of proteins has acquired a novel function in archaebacteria, which awaits experimental elucidation.

  19. Calcium-dependent binding of Escherichia coli alpha-hemolysin to erythrocytes

    International Nuclear Information System (INIS)

    Boehm, D.F.

    1989-01-01

    Alpha hemolysin (AH), a protein secreted by certain strains of Escherichia coli, causes lysis of erythrocytes (RBCs) and is cytotoxic for other cells. The primary structure of AH contains an eight amino acid sequence tandemly repeated 13 times near the C-terminus. These repeated sequences are essential for hemolytic activity. AH also requires an unknown modification by an accessory protein, Hly C, for hemolytic activity. The role of calcium in the interaction of Ah with RBCs was investigated using recombinant strains which produced active and inactive forms of the toxin. Hemolytic activity was calcium-dependent. Osmotic protection experiments and immunoblots of SDS-PAGE separated proteins from washed, toxin-treated RBCs showed that the binding of active AH to RBCs was calcium-dependent. Binding of active AH to RBCs increased the calcium permeability of RBC membranes and resulted in changes in membrane protein profiles. The changes in membrane proteins did not cause the lysis of the cells. These results were consistent with a mechanism of lysis involving the formation of cation-selective pores in the membranes of target cells. 45 Ca-autoradiography of the recombinant hemolysins separated by SDS-PAGE and transferred to nitrocellulose showed that active AH bound calcium. The domain involved in binding calcium was identified as the tandemly repeated sequences since a deletion hemolysin missing 11 of the 13 repeated sequences did not bind calcium. This deletion hemolysin was non-hemolytic and did not bind to RBC membranes. Hemolysin lacking the Hly C modification was also non-hemolytic and did not bind to RBC membranes. This unmodified AH contained the repeated sequences and bound calcium as efficiently as active AH

  20. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    Science.gov (United States)

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  1. Preliminary screening and identification of the peptide binding to hepatocarcinoma cell

    International Nuclear Information System (INIS)

    Zhu Xiaohua; Wu Ha

    2004-01-01

    Objective: The present study was performed to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide library with the purpose of developing a new peptide which may be potentially used as target delivery carrier in the biological target diagnosis or therapy for liver cancer. Methods: A peptide 12-mer phage display library was used to screen and isolate peptide that bind to human hepatocarcinoma cell, and four rounds subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones to human hepatocarcinoma cell were determined with ELISA and compared with human liver cell and other tumor cells of different tissue origins respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced though DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide WH16 was determined with competitive inhibition test. Results: After four rounds panning, the phages that bound to and internalized in human hepatocarcinoma cell were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages to hepatpcarcinoma cells 56.57%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif. Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, which strongly support that cellular binding of phage is mediated though its displayed peptide and WH16 can also bind to HepG2. Conclusion: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide libraries. The sequence of peptide that can bind to

  2. Preliminary screening and identification of the peptide binding to hepatocarcinoma cell

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohua, Zhu; Ha, Wu [Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2004-07-01

    Objective: The present study was performed to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide library with the purpose of developing a new peptide which may be potentially used as target delivery carrier in the biological target diagnosis or therapy for liver cancer. Methods: A peptide 12-mer phage display library was used to screen and isolate peptide that bind to human hepatocarcinoma cell, and four rounds subtractive panning were carried out with the human hepatocarcinoma cell line HepG2 as the target. The affinities of selected phage clones to human hepatocarcinoma cell were determined with ELISA and compared with human liver cell and other tumor cells of different tissue origins respectively. In addition, the binding site in the tumor cells was observed with immunofluorescence analysis under confocal light microscopy. The amino acid sequences of phages that bind HepG2 specifically were deduced though DNA sequencing. Based on the results of DNA sequence, a 16-mer peptide (WH16) was designed and synthesized. Binding ability of the new peptide WH16 was determined with competitive inhibition test. Results: After four rounds panning, the phages that bound to and internalized in human hepatocarcinoma cell were isolated. ELISA and immunofluorescence analysis confirmed the affinity of these phages to hepatpcarcinoma cells 56.57%(17/30) of the isolated phages displayed repeated sequence FLLEPHLMDTSM, and FLEP was defined as conservative motif. Binding of the selected phage to HepG2 cells was inhibited by synthesized peptide WH16, which strongly support that cellular binding of phage is mediated though its displayed peptide and WH16 can also bind to HepG2. Conclusion: It is feasible to screen and isolate homing peptides that bind specifically, or preferentially, to hepatocarcinoma cells using phage display of random peptide libraries. The sequence of peptide that can bind to

  3. Context influences on TALE-DNA binding revealed by quantitative profiling.

    Science.gov (United States)

    Rogers, Julia M; Barrera, Luis A; Reyon, Deepak; Sander, Jeffry D; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L

    2015-06-11

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE-DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000-20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE-DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design.

  4. Context influences on TALE–DNA binding revealed by quantitative profiling

    Science.gov (United States)

    Rogers, Julia M.; Barrera, Luis A.; Reyon, Deepak; Sander, Jeffry D.; Kellis, Manolis; Joung, J Keith; Bulyk, Martha L.

    2015-01-01

    Transcription activator-like effector (TALE) proteins recognize DNA using a seemingly simple DNA-binding code, which makes them attractive for use in genome engineering technologies that require precise targeting. Although this code is used successfully to design TALEs to target specific sequences, off-target binding has been observed and is difficult to predict. Here we explore TALE–DNA interactions comprehensively by quantitatively assaying the DNA-binding specificities of 21 representative TALEs to ∼5,000–20,000 unique DNA sequences per protein using custom-designed protein-binding microarrays (PBMs). We find that protein context features exert significant influences on binding. Thus, the canonical recognition code does not fully capture the complexity of TALE–DNA binding. We used the PBM data to develop a computational model, Specificity Inference For TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved TALE design. PMID:26067805

  5. Studies on the digitalis binding site in Na, K-ATPase

    International Nuclear Information System (INIS)

    Ahmed, K.; McParland, R.; Becker, R.; From, A.; Schimerlik, M.; Fullerton, D.S.

    1986-01-01

    Na, K-ATPase is believed to be the receptor for digitalis glycosides. The authors have previously documented that C17 side group of the cardenolide molecule is crucial to α subunit receptor binding. They have attempted to identify the structure of this binding site by labelling the enzyme with a 3 H-labelled photoactive probe localized in the C17 side group of the genin molecule. 3 H-α-subunit was purified and subjected to tryptic digestion. The digest was fractionated by gel filtration on Sephadex G-100. Fractions containing 3 H-labelled peptide were pooled and rechromatographed. The central peak fractions of 3 H-peptide were pooled, analyzed by SDS-PAGE, and subjected to amino acid sequence analysis. The tryptic peptide containing the 3 H-probe showed considerable sequence heterogeneity. Comparison of the sequence data with the published cDNA-based α-subunit sequence revealed that this peptide material was indeed a mixture of two tryptic peptides of nearly identical size containing the sequences from residue 68 through residue 146, and residues 263 through 342. The latter peptide contains the sequence ... glu tyr thr try leu glu ... speculated by Shull et al. as a possible ouabain binding site

  6. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    Science.gov (United States)

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  7. Simultaneous Binding of Hybrid Molecules Constructed with Dual DNA-Binding Components to a G-Quadruplex and Its Proximal Duplex.

    Science.gov (United States)

    Asamitsu, Sefan; Obata, Shunsuke; Phan, Anh Tuân; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2018-03-20

    A G-quadruplex (quadruplex) is a nucleic acid secondary structure adopted by guanine-rich sequences and is considered to be relevant to various pharmacological and biological contexts. Although a number of researchers have endeavored to discover and develop quadruplex-interactive molecules, poor ligand designability originating from topological similarity of the skeleton of diverse quadruplexes has remained a bottleneck for gaining specificity for individual quadruplexes. This work reports on hybrid molecules that were constructed with dual DNA-binding components, a cyclic imidazole/lysine polyamide (cIKP), and a hairpin pyrrole/imidazole polyamide (hPIP), with the aim toward specific quadruplex targeting by reading out the local duplex DNA sequence adjacent to designated quadruplexes in the genome. By means of circular dichroism (CD), fluorescence resonance energy transfer (FRET), surface plasmon resonance (SPR), and NMR techniques, we showed the dual and simultaneous recognition of the respective segment via hybrid molecules, and the synergistic and mutual effect of each binding component that was appropriately linked on higher binding affinity and modest sequence specificity. Monitoring quadruplex and duplex imino protons of the quadruplex/duplex motif titrated with hybrid molecules clearly revealed distinct features of the binding of hybrid molecules to the respective segments upon their simultaneous recognition. A series of the systematic and detailed binding assays described here showed that the concept of simultaneous recognition of quadruplex and its proximal duplex by hybrid molecules constructed with the dual DNA-binding components may provide a new strategy for ligand design, enabling targeting of a large variety of designated quadruplexes at specific genome locations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Novel nonphosphorylated peptides with conserved sequences selectively bind to Grb7 SH2 domain with affinity comparable to its phosphorylated ligand.

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    Full Text Available The Grb7 (growth factor receptor-bound 7 protein, a member of the Grb7 protein family, is found to be highly expressed in such metastatic tumors as breast cancer, esophageal cancer, liver cancer, etc. The src-homology 2 (SH2 domain in the C-terminus is reported to be mainly involved in Grb7 signaling pathways. Using the random peptide library, we identified a series of Grb7 SH2 domain-binding nonphosphorylated peptides in the yeast two-hybrid system. These peptides have a conserved GIPT/K/N sequence at the N-terminus and G/WD/IP at the C-terminus, and the region between the N-and C-terminus contains fifteen amino acids enriched with serines, threonines and prolines. The association between the nonphosphorylated peptides and the Grb7 SH2 domain occurred in vitro and ex vivo. When competing for binding to the Grb7 SH2 domain in a complex, one synthesized nonphosphorylated ligand, containing the twenty-two amino acid-motif sequence, showed at least comparable affinity to the phosphorylated ligand of ErbB3 in vitro, and its overexpression inhibited the proliferation of SK-BR-3 cells. Such nonphosphorylated peptides may be useful for rational design of drugs targeted against cancers that express high levels of Grb7 protein.

  9. Global Mapping of Transcription Factor Binding Sites by Sequencing Chromatin Surrogates: a Perspective on Experimental Design, Data Analysis, and Open Problems.

    Science.gov (United States)

    Wei, Yingying; Wu, George; Ji, Hongkai

    2013-05-01

    Mapping genome-wide binding sites of all transcription factors (TFs) in all biological contexts is a critical step toward understanding gene regulation. The state-of-the-art technologies for mapping transcription factor binding sites (TFBSs) couple chromatin immunoprecipitation (ChIP) with high-throughput sequencing (ChIP-seq) or tiling array hybridization (ChIP-chip). These technologies have limitations: they are low-throughput with respect to surveying many TFs. Recent advances in genome-wide chromatin profiling, including development of technologies such as DNase-seq, FAIRE-seq and ChIP-seq for histone modifications, make it possible to predict in vivo TFBSs by analyzing chromatin features at computationally determined DNA motif sites. This promising new approach may allow researchers to monitor the genome-wide binding sites of many TFs simultaneously. In this article, we discuss various experimental design and data analysis issues that arise when applying this approach. Through a systematic analysis of the data from the Encyclopedia Of DNA Elements (ENCODE) project, we compare the predictive power of individual and combinations of chromatin marks using supervised and unsupervised learning methods, and evaluate the value of integrating information from public ChIP and gene expression data. We also highlight the challenges and opportunities for developing novel analytical methods, such as resolving the one-motif-multiple-TF ambiguity and distinguishing functional and non-functional TF binding targets from the predicted binding sites. The online version of this article (doi:10.1007/s12561-012-9066-5) contains supplementary material, which is available to authorized users.

  10. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  11. Tetrodotoxin- and tributyltin-binding abilities of recombinant pufferfish saxitoxin and tetrodotoxin binding proteins of Takifugu rubripes.

    Science.gov (United States)

    Satone, Hina; Nonaka, Shohei; Lee, Jae Man; Shimasaki, Yohei; Kusakabe, Takahiro; Kawabata, Shun-Ichiro; Oshima, Yuji

    2017-01-01

    We investigated the ability of recombinant pufferfish saxitoxin and tetrodotoxin binding protein types 1 and 2 of Takifugu rubripes (rTrub.PSTBP1 and rTrub.PSTBP2) to bind to tetrodotoxin (TTX) and tributyltin. Both rTrub.PSTBPs bound to tributyltin in an ultrafiltration binding assay but lost this ability on heat denaturation. In contrast, only rTrub.PSTBP2 bound to TTX even heat denaturation. This result suggests that the amino acid sequence of PSTBP2 may be contributed for its affinity for TTX. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Modeling ChIP sequencing in silico with applications.

    Directory of Open Access Journals (Sweden)

    Zhengdong D Zhang

    2008-08-01

    Full Text Available ChIP sequencing (ChIP-seq is a new method for genomewide mapping of protein binding sites on DNA. It has generated much excitement in functional genomics. To score data and determine adequate sequencing depth, both the genomic background and the binding sites must be properly modeled. To develop a computational foundation to tackle these issues, we first performed a study to characterize the observed statistical nature of this new type of high-throughput data. By linking sequence tags into clusters, we show that there are two components to the distribution of tag counts observed in a number of recent experiments: an initial power-law distribution and a subsequent long right tail. Then we develop in silico ChIP-seq, a computational method to simulate the experimental outcome by placing tags onto the genome according to particular assumed distributions for the actual binding sites and for the background genomic sequence. In contrast to current assumptions, our results show that both the background and the binding sites need to have a markedly nonuniform distribution in order to correctly model the observed ChIP-seq data, with, for instance, the background tag counts modeled by a gamma distribution. On the basis of these results, we extend an existing scoring approach by using a more realistic genomic-background model. This enables us to identify transcription-factor binding sites in ChIP-seq data in a statistically rigorous fashion.

  13. Exploration of the effect of sequence variations located inside the binding pocket of HIV-1 and HIV-2 proteases.

    Science.gov (United States)

    Triki, Dhoha; Billot, Telli; Visseaux, Benoit; Descamps, Diane; Flatters, Delphine; Camproux, Anne-Claude; Regad, Leslie

    2018-04-10

    HIV-2 protease (PR2) is naturally resistant to most FDA (Food and Drug Administration)-approved HIV-1 protease inhibitors (PIs), a major antiretroviral class. In this study, we compared the PR1 and PR2 binding pockets extracted from structures complexed with 12 ligands. The comparison of PR1 and PR2 pocket properties showed that bound PR2 pockets were more hydrophobic with more oxygen atoms and fewer nitrogen atoms than PR1 pockets. The structural comparison of PR1 and PR2 pockets highlighted structural changes induced by their sequence variations and that were consistent with these property changes. Specifically, substitutions at residues 31, 46, and 82 induced structural changes in their main-chain atoms that could affect PI binding in PR2. In addition, the modelling of PR1 mutant structures containing V32I and L76M substitutions revealed a cooperative mechanism leading to structural deformation of flap-residue 45 that could modify PR2 flexibility. Our results suggest that substitutions in the PR1 and PR2 pockets can modify PI binding and flap flexibility, which could underlie PR2 resistance against PIs. These results provide new insights concerning the structural changes induced by PR1 and PR2 pocket variation changes, improving the understanding of the atomic mechanism of PR2 resistance to PIs.

  14. Massively Parallel Interrogation of Aptamer Sequence, Structure and Function

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N O; Tok, J B; Tarasow, T M

    2008-02-08

    Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. Methodology/Principal Findings. High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and interchip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  15. Massively parallel interrogation of aptamer sequence, structure and function.

    Directory of Open Access Journals (Sweden)

    Nicholas O Fischer

    Full Text Available BACKGROUND: Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. METHODOLOGY/PRINCIPAL FINDINGS: High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and inter-chip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. CONCLUSION AND SIGNIFICANCE: The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  16. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment

    DEFF Research Database (Denmark)

    Carrasco Pro, S.; Zimic, M.; Nielsen, Morten

    2014-01-01

    of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available...... of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train...

  17. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  18. Global analysis of small molecule binding to related protein targets.

    Directory of Open Access Journals (Sweden)

    Felix A Kruger

    2012-01-01

    Full Text Available We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.

  19. Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naïve Bayes.

    Directory of Open Access Journals (Sweden)

    Wangchao Lou

    Full Text Available Developing an efficient method for determination of the DNA-binding proteins, due to their vital roles in gene regulation, is becoming highly desired since it would be invaluable to advance our understanding of protein functions. In this study, we proposed a new method for the prediction of the DNA-binding proteins, by performing the feature rank using random forest and the wrapper-based feature selection using forward best-first search strategy. The features comprise information from primary sequence, predicted secondary structure, predicted relative solvent accessibility, and position specific scoring matrix. The proposed method, called DBPPred, used Gaussian naïve Bayes as the underlying classifier since it outperformed five other classifiers, including decision tree, logistic regression, k-nearest neighbor, support vector machine with polynomial kernel, and support vector machine with radial basis function. As a result, the proposed DBPPred yields the highest average accuracy of 0.791 and average MCC of 0.583 according to the five-fold cross validation with ten runs on the training benchmark dataset PDB594. Subsequently, blind tests on the independent dataset PDB186 by the proposed model trained on the entire PDB594 dataset and by other five existing methods (including iDNA-Prot, DNA-Prot, DNAbinder, DNABIND and DBD-Threader were performed, resulting in that the proposed DBPPred yielded the highest accuracy of 0.769, MCC of 0.538, and AUC of 0.790. The independent tests performed by the proposed DBPPred on completely a large non-DNA binding protein dataset and two RNA binding protein datasets also showed improved or comparable quality when compared with the relevant prediction methods. Moreover, we observed that majority of the selected features by the proposed method are statistically significantly different between the mean feature values of the DNA-binding and the non DNA-binding proteins. All of the experimental results indicate that

  20. Binding properties of SUMO-interacting motifs (SIMs) in yeast.

    Science.gov (United States)

    Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich

    2015-03-01

    Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.

  1. Recent improvements to Binding MOAD: a resource for protein–ligand binding affinities and structures

    Science.gov (United States)

    Ahmed, Aqeel; Smith, Richard D.; Clark, Jordan J.; Dunbar, James B.; Carlson, Heather A.

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein–ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23 269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  2. Screening and Initial Binding Assessment of Fumonisin B1 Aptamers

    Directory of Open Access Journals (Sweden)

    Maria C. DeRosa

    2010-11-01

    Full Text Available Fumonisins are mycotoxins produced by Fusarium verticillioides and F. proliferatum, fungi that are ubiquitous in corn (maize. Insect damage and some other environmental conditions result in the accumulation of fumonisins in corn-based products worldwide. Current methods of fumonisin detection rely on the use of immunoaffinity columns and high-performance liquid chromatography (HPLC. The use of aptamers offers a good alternative to the use of antibodies in fumonisin cleanup and detection due to lower costs and improved stability. Aptamers are single-stranded oligonucleotides that are selected using Systematic Evolution of Ligands by EXponential enrichment (SELEX for their ability to bind to targets with high affinity and specificity. Sequences obtained after 18 rounds of SELEX were screened for their ability to bind to fumonisin B1. Six unique sequences were obtained, each showing improved binding to fumonisin B1 compared to controls. Sequence FB1 39 binds to fumonisin with a dissociation constant of 100 ± 30 nM and shows potential for use in fumonisin biosensors and solid phase extraction columns.

  3. DNA binding specificity of the basic-helix-loop-helix protein MASH-1.

    Science.gov (United States)

    Meierhan, D; el-Ariss, C; Neuenschwander, M; Sieber, M; Stackhouse, J F; Allemann, R K

    1995-09-05

    Despite the high degree of sequence similarity in their basic-helix-loop-helix (BHLH) domains, MASH-1 and MyoD are involved in different biological processes. In order to define possible differences between the DNA binding specificities of these two proteins, we investigated the DNA binding properties of MASH-1 by circular dichroism spectroscopy and by electrophoretic mobility shift assays (EMSA). Upon binding to DNA, the BHLH domain of MASH-1 underwent a conformational change from a mainly unfolded to a largely alpha-helical form, and surprisingly, this change was independent of the specific DNA sequence. The same conformational transition could be induced by the addition of 20% 2,2,2-trifluoroethanol. The apparent dissociation constants (KD) of the complexes of full-length MASH-1 with various oligonucleotides were determined from half-saturation points in EMSAs. MASH-1 bound as a dimer to DNA sequences containing an E-box with high affinity KD = 1.4-4.1 x 10(-14) M2). However, the specificity of DNA binding was low. The dissociation constant for the complex between MASH-1 and the highest affinity E-box sequence (KD = 1.4 x 10(-14) M2) was only a factor of 10 smaller than for completely unrelated DNA sequences (KD = approximately 1 x 10(-13) M2). The DNA binding specificity of MASH-1 was not significantly increased by the formation of an heterodimer with the ubiquitous E12 protein. MASH-1 and MyoD displayed similar binding site preferences, suggesting that their different target gene specificities cannot be explained solely by differential DNA binding. An explanation for these findings is provided on the basis of the known crystal structure of the BHLH domain of MyoD.

  4. Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences.

    Directory of Open Access Journals (Sweden)

    Alexander M Sevy

    2015-07-01

    Full Text Available Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a 'single state' design (SSD paradigm. Multi-specificity design (MSD, on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON. The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design "promiscuous", polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes.

  5. A Sequence in the loop domain of hepatitis C virus E2 protein identified in silico as crucial for the selective binding to human CD81.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Chang

    Full Text Available Hepatitis C virus (HCV is a species-specific pathogenic virus that infects only humans and chimpanzees. Previous studies have indicated that interactions between the HCV E2 protein and CD81 on host cells are required for HCV infection. To determine the crucial factors for species-specific interactions at the molecular level, this study employed in silico molecular docking involving molecular dynamic simulations of the binding of HCV E2 onto human and rat CD81s. In vitro experiments including surface plasmon resonance measurements and cellular binding assays were applied for simple validations of the in silico results. The in silico studies identified two binding regions on the HCV E2 loop domain, namely E2-site1 and E2-site2, as being crucial for the interactions with CD81s, with the E2-site2 as the determinant factor for human-specific binding. Free energy calculations indicated that the E2/CD81 binding process might follow a two-step model involving (i the electrostatic interaction-driven initial binding of human-specific E2-site2, followed by (ii changes in the E2 orientation to facilitate the hydrophobic and van der Waals interaction-driven binding of E2-site1. The sequence of the human-specific, stronger-binding E2-site2 could serve as a candidate template for the future development of HCV-inhibiting peptide drugs.

  6. Conversion of MyoD to a Neurogenic Factor: Binding Site Specificity Determines Lineage

    Directory of Open Access Journals (Sweden)

    Abraham P. Fong

    2015-03-01

    Full Text Available MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a “shared” E-box sequence (CAGCTG and a “private” sequence (CAGGTG or CAGATG, respectively. To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.

  7. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  8. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  9. LigandRFs: random forest ensemble to identify ligand-binding residues from sequence information alone

    KAUST Repository

    Chen, Peng; Huang, Jianhua Z; Gao, Xin

    2014-01-01

    Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in computational prediction

  10. HIV protein sequence hotspots for crosstalk with host hub proteins.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2. We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.

  11. The primary structure of fatty-acid-binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family.

    Science.gov (United States)

    Medzihradszky, K F; Gibson, B W; Kaur, S; Yu, Z H; Medzihradszky, D; Burlingame, A L; Bass, N M

    1992-02-01

    The primary structure of a fatty-acid-binding protein (FABP) isolated from the liver of the nurse shark (Ginglymostoma cirratum) was determined by high-performance tandem mass spectrometry (employing multichannel array detection) and Edman degradation. Shark liver FABP consists of 132 amino acids with an acetylated N-terminal valine. The chemical molecular mass of the intact protein determined by electrospray ionization mass spectrometry (Mr = 15124 +/- 2.5) was in good agreement with that calculated from the amino acid sequence (Mr = 15121.3). The amino acid sequence of shark liver FABP displays significantly greater similarity to the FABP expressed in mammalian heart, peripheral nerve myelin and adipose tissue (61-53% sequence similarity) than to the FABP expressed in mammalian liver (22% similarity). Phylogenetic trees derived from the comparison of the shark liver FABP amino acid sequence with the members of the mammalian fatty-acid/retinoid-binding protein gene family indicate the initial divergence of an ancestral gene into two major subfamilies: one comprising the genes for mammalian liver FABP and gastrotropin, the other comprising the genes for mammalian cellular retinol-binding proteins I and II, cellular retinoic-acid-binding protein myelin P2 protein, adipocyte FABP, heart FABP and shark liver FABP, the latter having diverged from the ancestral gene that ultimately gave rise to the present day mammalian heart-FABP, adipocyte FABP and myelin P2 protein sequences. The sequence for intestinal FABP from the rat could be assigned to either subfamily, depending on the approach used for phylogenetic tree construction, but clearly diverged at a relatively early evolutionary time point. Indeed, sequences proximately ancestral or closely related to mammalian intestinal FABP, liver FABP, gastrotropin and the retinoid-binding group of proteins appear to have arisen prior to the divergence of shark liver FABP and should therefore also be present in elasmobranchs

  12. Nuclear Trafficking of the Rabies Virus Interferon Antagonist P-Protein Is Regulated by an Importin-Binding Nuclear Localization Sequence in the C-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Caitlin L Rowe

    Full Text Available Rabies virus P-protein is expressed as five isoforms (P1-P5 which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP-recognised nuclear localization sequence in the N-terminal region (N-NLS, the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES. However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2, and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P

  13. Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120.

    Science.gov (United States)

    deCamp, Allan C; Rolland, Morgane; Edlefsen, Paul T; Sanders-Buell, Eric; Hall, Breana; Magaret, Craig A; Fiore-Gartland, Andrew J; Juraska, Michal; Carpp, Lindsay N; Karuna, Shelly T; Bose, Meera; LePore, Steven; Miller, Shana; O'Sullivan, Annemarie; Poltavee, Kultida; Bai, Hongjun; Dommaraju, Kalpana; Zhao, Hong; Wong, Kim; Chen, Lennie; Ahmed, Hasan; Goodman, Derrick; Tay, Matthew Z; Gottardo, Raphael; Koup, Richard A; Bailer, Robert; Mascola, John R; Graham, Barney S; Roederer, Mario; O'Connell, Robert J; Michael, Nelson L; Robb, Merlin L; Adams, Elizabeth; D'Souza, Patricia; Kublin, James; Corey, Lawrence; Geraghty, Daniel E; Frahm, Nicole; Tomaras, Georgia D; McElrath, M Juliana; Frenkel, Lisa; Styrchak, Sheila; Tovanabutra, Sodsai; Sobieszczyk, Magdalena E; Hammer, Scott M; Kim, Jerome H; Mullins, James I; Gilbert, Peter B

    2017-01-01

    Although the HVTN 505 DNA/recombinant adenovirus type 5 vector HIV-1 vaccine trial showed no overall efficacy, analysis of breakthrough HIV-1 sequences in participants can help determine whether vaccine-induced immune responses impacted viruses that caused infection. We analyzed 480 HIV-1 genomes sampled from 27 vaccine and 20 placebo recipients and found that intra-host HIV-1 diversity was significantly lower in vaccine recipients (P ≤ 0.04, Q-values ≤ 0.09) in Gag, Pol, Vif and envelope glycoprotein gp120 (Env-gp120). Furthermore, Env-gp120 sequences from vaccine recipients were significantly more distant from the subtype B vaccine insert than sequences from placebo recipients (P = 0.01, Q-value = 0.12). These vaccine effects were associated with signatures mapping to CD4 binding site and CD4-induced monoclonal antibody footprints. These results suggest either (i) no vaccine efficacy to block acquisition of any viral genotype but vaccine-accelerated Env evolution post-acquisition; or (ii) vaccine efficacy against HIV-1s with Env sequences closest to the vaccine insert combined with increased acquisition due to other factors, potentially including the vaccine vector.

  14. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures.

    Science.gov (United States)

    Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Cytosine methylation does not affect binding of transcription factor Sp1

    International Nuclear Information System (INIS)

    Harrington, M.A.; Jones, P.A.; Imagawa, M.; Karin, M.

    1988-01-01

    DNA methylation may be a component of a multilevel control mechanism that regulates eukaryotic gene expression. The authors used synthetic oligonucleotides to investigate the effect of cytosine methylation on the binding of the transcription factor Sp1 to its target sequence (a G+C-rich sequence known as a GC box). Concatemers of double-stranded 14-mers containing a GC box successfully competed with the human metallothionein IIA promoter for binding to Sp1 in DNase I protection experiments. The presence of 5-methylcytosine in the CpG sequence of the GC box did not influence Sp1 binding. The result was confirmed using double-stranded 20-mers containing 16 base pairs of complementary sequence. Electrophoretic gel retardation analysis of annealed 28-mers containing a GC box incubated with an Sp1-containing HeLa cell nuclear extract demonstrated the formation of DNA-protein complexes; formation of these complexes was not inhibited when an oligomer without a GC box was used as a competitor. Once again, the presence of a 5-methylcytosine residue in the GC box did not influence the binding of the protein to DNA. The results therefore preclude a direct effect of cytosine methylation on Sp1-DNA interactions

  16. Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: Relationship with DNA binding affinity and cytotoxicity

    International Nuclear Information System (INIS)

    Capranico, G.; Kohn, K.W.; Pommier, Y.; Zunino, F.

    1990-01-01

    Topoisomerase II mediated double-strand breaks produced by anthracycline analogues were studied in SV40 DNA. The compounds included doxorubicin, daunorubicin, two doxorubicin stereoisomers (4'-epimer and β-anomer), and five chromophore-modified derivatives, with a wide range of cytotoxic activity and DNA binding affinity. Cleavage of 32 P-end-labeled DNA fragments was visualized by autoradiography of agarose and polyacrylamide gels. Structure-activity relationships indicated that alterations in the chromophore structure greatly affected drug action on topoisomerase II. In particular, removal of substituents on position 4 of the D ring resulted in more active inducers of cleavage with lower DNA binding affinity. The stereochemistry between the sugar and the chromophore was also essential for activity. All the active anthracyclines induced a single region of prominent cleavage in the entire SV40 DNA, which resulted from a cluster of sites between nucleotides 4237 and 4294. DNA cleavage intensity patterns exhibited differences among analogues and were also dependent upon drug concentration. Intensity at a given site dependent on both stimulatory and suppressive effects depending upon drug concentration and DNA sequence. A good correlation was found between cytotoxicity and intensity of topoisomerase II mediated DNA breakage

  17. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors

    KAUST Repository

    Li, Lixin

    2013-07-01

    Transcription activator-like effectors (TALEs) from Xanthomonas sp. have been used as customizable DNA-binding modules for genome-engineering applications. Ralstonia solanacearum TALE-like proteins (RTLs) exhibit similar structural features to TALEs, including a central DNA-binding domain composed of 35 amino acid-long repeats. Here, we characterize the RTLs and show that they localize in the plant cell nucleus, mediate DNA binding, and might function as transcriptional activators. RTLs have a unique DNA-binding architecture and are enriched in repeat variable di-residues (RVDs), which determine repeat DNA-binding specificities. We determined the DNA-binding specificities for the RVD sequences ND, HN, NP, and NT. The RVD ND mediates highly specific interactions with C nucleotide, HN interacts specifically with A and G nucleotides, and NP binds to C, A, and G nucleotides. Moreover, we developed a highly efficient repeat assembly approach for engineering RTL effectors. Taken together, our data demonstrate that RTLs are unique DNA-targeting modules that are excellent alternatives to be tailored to bind to user-selected DNA sequences for targeted genomic and epigenomic modifications. These findings will facilitate research concerning RTL molecular biology and RTL roles in the pathogenicity of Ralstonia spp. © 2013 The Author.

  18. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle

    2010-01-01

    fold enhanced, presumably due to the Ca2+-induced conformational change affecting the conformation of the Zn2+-binding site. The inhibition mechanism was non-competitive both in the absence and presence of Ca2+. Comparisons of sequences and structures suggested several possible sites for zinc binding...

  19. Definition of IgG- and albumin-binding regions of streptococcal protein G.

    Science.gov (United States)

    Akerström, B; Nielsen, E; Björck, L

    1987-10-05

    Protein G, the immunoglobin G-binding surface protein of group C and G streptococci, also binds serum albumin. The albumin-binding site on protein G is distinct from the immunoglobulin G-binding site. By mild acid hydrolysis of the papain-liberated protein G fragment (35 kDa), a 28-kDa fragment was produced which retained full immunoglobulin G-binding activity (determined by Scatchard plotting) but had lost all albumin-binding capacity. A protein G (65 kDa), isolated after cloning and expression of the protein G gene in Escherichia coli, had comparable affinity to immunoglobulin G (5-10 X 10(10)M-1), but much higher affinity to albumin than the 35- and 28-kDa protein G fragments (31, 2.6, and 0 X 10(9)M-1, respectively). The amino-terminal amino acid sequences of the 65-, 35-, and 28-kDa fragments allowed us to exactly locate the three fragments in an overall sequence map of protein G, based on the partial gene sequences published by Guss et al. (Guss, B., Eliasson, M., Olsson, A., Uhlen, M., Frej, A.-K., Jörnvall, H., Flock, J.-I., and Lindberg, M. (1986) EMBO J. 5, 1567-1575) and Fahnestock et al. (Fahnestock, S. R., Alexander, P., Nagle, J., and Filpula, D. (1986) J. Bacteriol. 167, 870-880). In this map could then be deduced the location of three homologous albumin-binding regions and three homologous immunoglobulin G-binding regions.

  20. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    International Nuclear Information System (INIS)

    Westberg, Johan A.; Jiang, Ji; Andersson, Leif C.

    2011-01-01

    Highlights: → Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. → Central iron atom of heme and cysteine-114 of STC1 are essential for binding. → STC1 binds Fe 2+ and Fe 3+ heme. → STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys 114 as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H 2 O 2 induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  1. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, Patricia A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  2. Identification of distant drug off-targets by direct superposition of binding pocket surfaces.

    Science.gov (United States)

    Schumann, Marcel; Armen, Roger S

    2013-01-01

    Correctly predicting off-targets for a given molecular structure, which would have the ability to bind a large range of ligands, is both particularly difficult and important if they share no significant sequence or fold similarity with the respective molecular target ("distant off-targets"). A novel approach for identification of off-targets by direct superposition of protein binding pocket surfaces is presented and applied to a set of well-studied and highly relevant drug targets, including representative kinases and nuclear hormone receptors. The entire Protein Data Bank is searched for similar binding pockets and convincing distant off-target candidates were identified that share no significant sequence or fold similarity with the respective target structure. These putative target off-target pairs are further supported by the existence of compounds that bind strongly to both with high topological similarity, and in some cases, literature examples of individual compounds that bind to both. Also, our results clearly show that it is possible for binding pockets to exhibit a striking surface similarity, while the respective off-target shares neither significant sequence nor significant fold similarity with the respective molecular target ("distant off-target").

  3. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    OpenAIRE

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly ...

  4. Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE – binding linear epitopes of allergens

    Directory of Open Access Journals (Sweden)

    Peijnenburg Ad ACM

    2002-12-01

    Full Text Available Abstract Background Transgenic proteins expressed by genetically modified food crops are evaluated for their potential allergenic properties prior to marketing, among others by identification of short identical amino acid sequences that occur both in the transgenic protein and allergenic proteins. A strategy is proposed, in which the positive outcomes of the sequence comparison with a minimal length of six amino acids are further screened for the presence of potential linear IgE-epitopes. This double track approach involves the use of literature data on IgE-epitopes and an antigenicity prediction algorithm. Results Thirty-three transgenic proteins have been screened for identities of at least six contiguous amino acids shared with allergenic proteins. Twenty-two transgenic proteins showed positive results of six- or seven-contiguous amino acids length. Only a limited number of identical stretches shared by transgenic proteins (papaya ringspot virus coat protein, acetolactate synthase GH50, and glyphosate oxidoreductase and allergenic proteins could be identified as (part of potential linear epitopes. Conclusion Many transgenic proteins have identical stretches of six or seven amino acids in common with allergenic proteins. Most identical stretches are likely to be false positives. As shown in this study, identical stretches can be further screened for relevance by comparison with linear IgE-binding epitopes described in literature. In the absence of literature data on epitopes, antigenicity prediction by computer aids to select potential antibody binding sites that will need verification of IgE binding by sera binding tests. Finally, the positive outcomes of this approach warrant further clinical testing for potential allergenicity.

  5. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer.

    Science.gov (United States)

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2017-08-05

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus, is not an aptamer and cannot be used neither for in vivo nor in situ analysis of dopamine in the presence of structurally related neurotransmitters. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects

    Science.gov (United States)

    2009-01-01

    Background Insect odorant binding proteins (OBPs) and chemosensory proteins (CSPs) play an important role in chemical communication of insects. Gene discovery of these proteins is a time-consuming task. In recent years, expressed sequence tags (ESTs) of many insect species have accumulated, thus providing a useful resource for gene discovery. Results We have developed a computational pipeline to identify OBP and CSP genes from insect ESTs. In total, 752,841 insect ESTs were examined from 54 species covering eight Orders of Insecta. From these ESTs, 142 OBPs and 177 CSPs were identified, of which 117 OBPs and 129 CSPs are new. The complete open reading frames (ORFs) of 88 OBPs and 123 CSPs were obtained by electronic elongation. We randomly chose 26 OBPs from eight species of insects, and 21 CSPs from four species for RT-PCR validation. Twenty two OBPs and 16 CSPs were confirmed by RT-PCR, proving the efficiency and reliability of the algorithm. Together with all family members obtained from the NCBI (OBPs) or the UniProtKB (CSPs), 850 OBPs and 237 CSPs were analyzed for their structural characteristics and evolutionary relationship. Conclusions A large number of new OBPs and CSPs were found, providing the basis for deeper understanding of these proteins. In addition, the conserved motif and evolutionary analysis provide some new insights into the evolution of insect OBPs and CSPs. Motif pattern fine-tune the functions of OBPs and CSPs, leading to the minor difference in binding sex pheromone or plant volatiles in different insect Orders. PMID:20034407

  7. Molecular dynamics simulations shed light on the enthalpic and entropic driving forces that govern the sequence specific recognition between netropsin and DNA.

    Science.gov (United States)

    Dolenc, Jozica; Gerster, Sarah; van Gunsteren, Wilfred F

    2010-09-02

    With the aim to gain a better understanding of the various driving forces that govern sequence specific DNA minor groove binding, we performed a thermodynamic analysis of netropsin binding to an AT-containing and to a set of six mixed AT/GC-containing binding sequences in the DNA minor groove. The relative binding free energies obtained using molecular dynamics simulations and free energy calculations show significant variations with the binding sequence. While the introduction of a GC base pair in the middle or close to the middle of the binding site is unfavorable for netropsin binding, a GC base pair at the end of the binding site appears to have no negative influence on the binding. The results of the structural and energetic analyses of the netropsin-DNA complexes reveal that the differences in the calculated binding affinities cannot be explained solely in terms of netropsin-DNA hydrogen-bonding or interaction energies. In addition, solvation effects and entropic contributions to the relative binding free energy provide a more complete picture of the various factors determining binding. Analysis of the relative binding entropy indicates that its magnitude is highly sequence-dependent, with the ratio |TDeltaDeltaS|/|DeltaDeltaH| ranging from 0.07 for the AAAGA to 1.7 for the AAGAG binding sequence, respectively.

  8. Peptide binding specificity of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Sandhu, N.; Duus, K.; Jorgensen, C.S.

    2007-01-01

    Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composit......Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length...... than 5 amino acids showed binding and a clear correlation with hydrophobicity was demonstrated for oligomers of different hydrophobic amino acids. Insertion of hydrophilic amino acids in a hydrophobic sequence diminished or abolished binding. In conclusion our results show that calreticulin has...

  9. New scoring schema for finding motifs in DNA Sequences

    Directory of Open Access Journals (Sweden)

    Nowzari-Dalini Abbas

    2009-03-01

    Full Text Available Abstract Background Pattern discovery in DNA sequences is one of the most fundamental problems in molecular biology with important applications in finding regulatory signals and transcription factor binding sites. An important task in this problem is to search (or predict known binding sites in a new DNA sequence. For this reason, all subsequences of the given DNA sequence are scored based on an scoring function and the prediction is done by selecting the best score. By assuming no dependency between binding site base positions, most of the available tools for known binding site prediction are designed. Recently Tomovic and Oakeley investigated the statistical basis for either a claim of dependence or independence, to determine whether such a claim is generally true, and they presented a scoring function for binding site prediction based on the dependency between binding site base positions. Our primary objective is to investigate the scoring functions which can be used in known binding site prediction based on the assumption of dependency or independency in binding site base positions. Results We propose a new scoring function based on the dependency between all positions in biding site base positions. This scoring function uses joint information content and mutual information as a measure of dependency between positions in transcription factor binding site. Our method for modeling dependencies is simply an extension of position independency methods. We evaluate our new scoring function on the real data sets extracted from JASPAR and TRANSFAC data bases, and compare the obtained results with two other well known scoring functions. Conclusion The results demonstrate that the new approach improves known binding site discovery and show that the joint information content and mutual information provide a better and more general criterion to investigate the relationships between positions in the TFBS. Our scoring function is formulated by simple

  10. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain.

    Directory of Open Access Journals (Sweden)

    Claudia Alvarez-Carreño

    Full Text Available The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes.Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role.Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the

  11. Systematic search for the Cra-binding promoters using genomic SELEX system.

    Science.gov (United States)

    Shimada, Tomohiro; Fujita, Nobuyuki; Maeda, Michihisa; Ishihama, Akira

    2005-09-01

    Cra (or FruR), a global transcription factor with both repression and activation activities, controls a large number of the genes for glycolysis and gluconeogenesis. To get insights into the entire network of transcription regulation of the E. coli genome by Cra, we isolated a set of Cra-binding sequences using an improved method of genomic SELEX. From the DNA sequences of 97 independently isolated DNA fragments by SELEX, the Cra-binding sequences were identified in a total of ten regions on the E. coli genome, including promoters of six known genes and four hitherto-unidentified genes. All six known promoters are repressed by Cra, but none of the activation-type promoters were cloned after two cyles of SELEX, because the Cra-binding affinity to the repression-type promoters is higher than the activation-type promoters, as determined by the quantitative gel shift assay. Of a total of four newly identified Cra-binding sequences, two are associated with promoter regions of the gapA (glyceraldehyde 3-phosphate dehydrogenase) and eno (enolase) genes, both involved in sugar metabolism. The regulation of newly identified genes by Cra was confirmed by the in vivo promoter strength assay using a newly developed TFP (two-fluorescent protein) vector for promoter assay or by in vitro transcription assay in the presence of Cra protein.

  12. Sequence characteristics required for cooperative binding and efficient in vivo titration of the replication initiator protein DnaA in E. coli

    DEFF Research Database (Denmark)

    Hansen, Flemming G.; Christensen, Bjarke Bak; Atlung, Tove

    2007-01-01

    Plasmids carrying the mioC promoter region, which contains two DnaA boxes, R5 and R6 with one misfit to the consensus TT(A)/(T)TNCACA, are as efficient in in vivo titration of the DnaA protein as plasmids carrying a replication-inactivated oriC region with its eight DnaA boxes. Three additional Dna......A boxes around the promoter proximal R5 DnaA box were identified and shown by mutational analysis to be necessary for the cooperative binding of DnaA required for titration. These four DnaA boxes are located in the same orientation and with a spacing of two or three base-pairs. The cooperative binding...... was eliminated by insertion of half a helical turn between any of the DnaA boxes. Titration strongly depends on the presence and orientation of the promoter distal R6 DnaA box located 104 bp upstream of the R5 box as well as neighbouring sequences downstream of R6. Titration depends on the integrity of a 43 bp...

  13. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Johan A., E-mail: johan.westberg@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Jiang, Ji, E-mail: ji.jiang@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Andersson, Leif C., E-mail: leif.andersson@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland)

    2011-06-03

    Highlights: {yields} Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. {yields} Central iron atom of heme and cysteine-114 of STC1 are essential for binding. {yields} STC1 binds Fe{sup 2+} and Fe{sup 3+} heme. {yields} STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys{sup 114} as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H{sub 2}O{sub 2} induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  14. Selection of staphylococcal enterotoxin B (SEB)-binding peptide using phage display technology

    International Nuclear Information System (INIS)

    Soykut, Esra Acar; Dudak, Fahriye Ceyda; Boyaci, Ismail Hakki

    2008-01-01

    In this study, peptides were selected to recognize staphylococcal enterotoxin B (SEB) which cause food intoxication and can be used as a biological war agent. By using commercial M13 phage library, single plaque isolation of 38 phages was done and binding affinities were investigated with phage-ELISA. The specificities of the selected phage clones showing high affinity to SEB were checked by using different protein molecules which can be found in food samples. Furthermore, the affinities of three selected phage clones were determined by using surface plasmon resonance (SPR) sensors. Sequence analysis was realized for three peptides showing high binding affinity to SEB and WWRPLTPESPPA, MNLHDYHRLFWY, and QHPQINQTLYRM amino acid sequences were obtained. The peptide sequence with highest affinity to SEB was synthesized with solid phase peptide synthesis technique and thermodynamic constants of the peptide-SEB interaction were determined by using isothermal titration calorimetry (ITC) and compared with those of antibody-SEB interaction. The binding constant of the peptide was determined as 4.2 ± 0.7 x 10 5 M -1 which indicates a strong binding close to that of antibody

  15. A role for carbohydrate recognition in mammalian sperm-egg binding

    International Nuclear Information System (INIS)

    Clark, Gary F.

    2014-01-01

    Highlights: • Mammalian sperm-egg binding as a carbohydrate dependent species recognition event. • The role of carbohydrate recognition in human, mouse and pig sperm-egg binding. • Historical perspective and future directions for research focused on gamete binding. - Abstract: Mammalian fertilization usually requires three sequential cell–cell interactions: (i) initial binding of sperm to the specialized extracellular matrix coating the egg known as the zona pellucida (ZP); (ii) binding of sperm to the ZP via the inner acrosomal membrane that is exposed following the induction of acrosomal exocytosis; and (iii) adhesion of acrosome-reacted sperm to the plasma membrane of the egg cell, enabling subsequent fusion of these gametes. The focus of this review is on the initial binding of intact sperm to the mammalian ZP. Evidence collected over the past fifty years has confirmed that this interaction relies primarily on the recognition of carbohydrate sequences presented on the ZP by lectin-like egg binding proteins located on the plasma membrane of sperm. There is also evidence that the same carbohydrate sequences that mediate binding also function as ligands for lectins on lymphocytes that can inactivate immune responses, likely protecting the egg and the developing embryo up to the stage of blastocyst hatching. The literature related to initial sperm-ZP binding in the three major mammalian models (human, mouse and pig) is discussed. Historical perspectives and future directions for research related to this aspect of gamete adhesion are also presented

  16. A role for carbohydrate recognition in mammalian sperm-egg binding

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Gary F., E-mail: clarkgf@health.missouri.edu

    2014-08-01

    Highlights: • Mammalian sperm-egg binding as a carbohydrate dependent species recognition event. • The role of carbohydrate recognition in human, mouse and pig sperm-egg binding. • Historical perspective and future directions for research focused on gamete binding. - Abstract: Mammalian fertilization usually requires three sequential cell–cell interactions: (i) initial binding of sperm to the specialized extracellular matrix coating the egg known as the zona pellucida (ZP); (ii) binding of sperm to the ZP via the inner acrosomal membrane that is exposed following the induction of acrosomal exocytosis; and (iii) adhesion of acrosome-reacted sperm to the plasma membrane of the egg cell, enabling subsequent fusion of these gametes. The focus of this review is on the initial binding of intact sperm to the mammalian ZP. Evidence collected over the past fifty years has confirmed that this interaction relies primarily on the recognition of carbohydrate sequences presented on the ZP by lectin-like egg binding proteins located on the plasma membrane of sperm. There is also evidence that the same carbohydrate sequences that mediate binding also function as ligands for lectins on lymphocytes that can inactivate immune responses, likely protecting the egg and the developing embryo up to the stage of blastocyst hatching. The literature related to initial sperm-ZP binding in the three major mammalian models (human, mouse and pig) is discussed. Historical perspectives and future directions for research related to this aspect of gamete adhesion are also presented.

  17. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    Science.gov (United States)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  18. Gephyrin-binding peptides visualize postsynaptic sites and modulate neurotransmission

    DEFF Research Database (Denmark)

    Maric, Hans Michael; Hausrat, Torben Johann; Neubert, Franziska

    2017-01-01

    is associated with perturbation of the basic physiological action. Here we pursue a fundamentally different approach, by instead targeting the intracellular receptor-gephyrin interaction. First, we defined the gephyrin peptide-binding consensus sequence, which facilitated the development of gephyrin super......-binding peptides and later effective affinity probes for the isolation of native gephyrin. Next, we demonstrated that fluorescent super-binding peptides could be used to directly visualize inhibitory postsynaptic sites for the first time in conventional and super-resolution microscopy. Finally, we demonstrate...

  19. Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation

    International Nuclear Information System (INIS)

    Sahijdak, W.M.; Yang, Chin-Rang; Zuckerman, J.S.; Meyers, M.; Boothman, D.A.

    1994-01-01

    We analyzed alterations in transcription factor binding to specific, known promoter DNA consensus sequences between irradiated and unirradiated radioresistant human melanoma (U1-Mel) cells. The goal of this study was to begin to investigate which transcription factors and DNA-binding sites are responsible for the induction of specific transcripts and proteins after ionizing radiation. Transcription factor binding was observed using DNA band-shift assays and oligonucleotide competition analyses. Confluence-arrested U1-Mel cells were irradiated (4.5 Gy) and harvested at 4 h. Double-stranded oligonucleotides containing known DNA-binding consensus sites for specific transcription factors were used. Increased DNA binding activity after ionizing radiation was noted with oligonucleotides containing the CREB, NF-kB and Sp1 consensus sites. No changes in protein binding to AP-1, AP-2, AP-3, or CTF/NF1, GRE or Oct-1 consensus sequences were noted. X-ray activation of select transcription factors, which bind certain consensus sites in promoters, may cause specific induction or repression of gene transcription. 22 refs., 2 figs

  20. Targeting and tracing of specific DNA sequences with dTALEs in living cells

    Science.gov (United States)

    Thanisch, Katharina; Schneider, Katrin; Morbitzer, Robert; Solovei, Irina; Lahaye, Thomas; Bultmann, Sebastian; Leonhardt, Heinrich

    2014-01-01

    Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation. PMID:24371265

  1. Targeting and tracing of specific DNA sequences with dTALEs in living cells.

    Science.gov (United States)

    Thanisch, Katharina; Schneider, Katrin; Morbitzer, Robert; Solovei, Irina; Lahaye, Thomas; Bultmann, Sebastian; Leonhardt, Heinrich

    2014-04-01

    Epigenetic regulation of gene expression involves, besides DNA and histone modifications, the relative positioning of DNA sequences within the nucleus. To trace specific DNA sequences in living cells, we used programmable sequence-specific DNA binding of designer transcription activator-like effectors (dTALEs). We designed a recombinant dTALE (msTALE) with variable repeat domains to specifically bind a 19-bp target sequence of major satellite DNA. The msTALE was fused with green fluorescent protein (GFP) and stably expressed in mouse embryonic stem cells. Hybridization with a major satellite probe (3D-fluorescent in situ hybridization) and co-staining for known cellular structures confirmed in vivo binding of the GFP-msTALE to major satellite DNA present at nuclear chromocenters. Dual tracing of major satellite DNA and the replication machinery throughout S-phase showed co-localization during mid to late S-phase, directly demonstrating the late replication timing of major satellite DNA. Fluorescence bleaching experiments indicated a relatively stable but still dynamic binding, with mean residence times in the range of minutes. Fluorescently labeled dTALEs open new perspectives to target and trace DNA sequences and to monitor dynamic changes in subnuclear positioning as well as interactions with functional nuclear structures during cell cycle progression and cellular differentiation.

  2. Simultaneous fluorescence light-up and selective multicolor nucleobase recognition based on sequence-dependent strong binding of berberine to DNA abasic site.

    Science.gov (United States)

    Wu, Fei; Shao, Yong; Ma, Kun; Cui, Qinghua; Liu, Guiying; Xu, Shujuan

    2012-04-28

    Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. This journal is © The Royal Society of Chemistry 2012

  3. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.; Salzberg, Steven L.; Rubin, Gerald M.; Eisen, Michael B.; Celniker, SusanE.

    2004-08-06

    The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.

  4. RNA binding specificity of Ebola virus transcription factor VP30.

    Science.gov (United States)

    Schlereth, Julia; Grünweller, Arnold; Biedenkopf, Nadine; Becker, Stephan; Hartmann, Roland K

    2016-09-01

    The transcription factor VP30 of the non-segmented RNA negative strand Ebola virus balances viral transcription and replication. Here, we comprehensively studied RNA binding by VP30. Using a novel VP30:RNA electrophoretic mobility shift assay, we tested truncated variants of 2 potential natural RNA substrates of VP30 - the genomic Ebola viral 3'-leader region and its complementary antigenomic counterpart (each ∼155 nt in length) - and a series of other non-viral RNAs. Based on oligonucleotide interference, the major VP30 binding region on the genomic 3'-leader substrate was assigned to the internal expanded single-stranded region (∼ nt 125-80). Best binding to VP30 was obtained with ssRNAs of optimally ∼ 40 nt and mixed base composition; underrepresentation of purines or pyrimidines was tolerated, but homopolymeric sequences impaired binding. A stem-loop structure, particularly at the 3'-end or positioned internally, supports stable binding to VP30. In contrast, dsRNA or RNAs exposing large internal loops flanked by entirely helical arms on both sides are not bound. Introduction of a 5´-Cap(0) structure impaired VP30 binding. Also, ssDNAs bind substantially weaker than isosequential ssRNAs and heparin competes with RNA for binding to VP30, indicating that ribose 2'-hydroxyls and electrostatic contacts of the phosphate groups contribute to the formation of VP30:RNA complexes. Our results indicate a rather relaxed RNA binding specificity of filoviral VP30, which largely differs from that of the functionally related transcription factor of the Paramyxoviridae which binds to ssRNAs as short as 13 nt with a preference for oligo(A) sequences.

  5. Functional display of platelet-binding VWF fragments on filamentous bacteriophage.

    Directory of Open Access Journals (Sweden)

    Andrew Yee

    Full Text Available von Willebrand factor (VWF tethers platelets to sites of vascular injury via interaction with the platelet surface receptor, GPIb. To further define the VWF sequences required for VWF-platelet interaction, a phage library displaying random VWF protein fragments was screened against formalin-fixed platelets. After 3 rounds of affinity selection, DNA sequencing of platelet-bound clones identified VWF peptides mapping exclusively to the A1 domain. Aligning these sequences defined a minimal, overlapping segment spanning P1254-A1461, which encompasses the C1272-C1458 cystine loop. Analysis of phage carrying a mutated A1 segment (C1272/1458A confirmed the requirement of the cystine loop for optimal binding. Four rounds of affinity maturation of a randomly mutagenized A1 phage library identified 10 and 14 unique mutants associated with enhanced platelet binding in the presence and absence of botrocetin, respectively, with 2 mutants (S1370G and I1372V common to both conditions. These results demonstrate the utility of filamentous phage for studying VWF protein structure-function and identify a minimal, contiguous peptide that bind to formalin-fixed platelets, confirming the importance of the VWF A1 domain with no evidence for another independently platelet-binding segment within VWF. These findings also point to key structural elements within the A1 domain that regulate VWF-platelet adhesion.

  6. Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Sangmin Seo

    2018-01-01

    Full Text Available We propose a novel method that predicts binding of G-protein coupled receptors (GPCRs and ligands. The proposed method uses hub and cycle structures of ligands and amino acid motif sequences of GPCRs, rather than the 3D structure of a receptor or similarity of receptors or ligands. The experimental results show that these new features can be effective in predicting GPCR-ligand binding (average area under the curve [AUC] of 0.944, because they are thought to include hidden properties of good ligand-receptor binding. Using the proposed method, we were able to identify novel ligand-GPCR bindings, some of which are supported by several studies.

  7. Predicting DNA binding proteins using support vector machine with hybrid fractal features.

    Science.gov (United States)

    Niu, Xiao-Hui; Hu, Xue-Hai; Shi, Feng; Xia, Jing-Bo

    2014-02-21

    DNA-binding proteins play a vitally important role in many biological processes. Prediction of DNA-binding proteins from amino acid sequence is a significant but not fairly resolved scientific problem. Chaos game representation (CGR) investigates the patterns hidden in protein sequences, and visually reveals previously unknown structure. Fractal dimensions (FD) are good tools to measure sizes of complex, highly irregular geometric objects. In order to extract the intrinsic correlation with DNA-binding property from protein sequences, CGR algorithm, fractal dimension and amino acid composition are applied to formulate the numerical features of protein samples in this paper. Seven groups of features are extracted, which can be computed directly from the primary sequence, and each group is evaluated by the 10-fold cross-validation test and Jackknife test. Comparing the results of numerical experiments, the group of amino acid composition and fractal dimension (21-dimension vector) gets the best result, the average accuracy is 81.82% and average Matthew's correlation coefficient (MCC) is 0.6017. This resulting predictor is also compared with existing method DNA-Prot and shows better performances. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.

  8. A peek into tropomyosin binding and unfolding on the actin filament.

    Directory of Open Access Journals (Sweden)

    Abhishek Singh

    Full Text Available BACKGROUND: Tropomyosin is a prototypical coiled coil along its length with subtle variations in structure that allow interactions with actin and other proteins. Actin binding globally stabilizes tropomyosin. Tropomyosin-actin interaction occurs periodically along the length of tropomyosin. However, it is not well understood how tropomyosin binds actin. PRINCIPAL FINDINGS: Tropomyosin's periodic binding sites make differential contributions to two components of actin binding, cooperativity and affinity, and can be classified as primary or secondary sites. We show through mutagenesis and analysis of recombinant striated muscle alpha-tropomyosins that primary actin binding sites have a destabilizing coiled-coil interface, typically alanine-rich, embedded within a non-interface recognition sequence. Introduction of an Ala cluster in place of the native, more stable interface in period 2 and/or period 3 sites (of seven increased the affinity or cooperativity of actin binding, analysed by cosedimentation and differential scanning calorimetry. Replacement of period 3 with period 5 sequence, an unstable region of known importance for cooperative actin binding, increased the cooperativity of binding. Introduction of the fluorescent probe, pyrene, near the mutation sites in periods 2 and 3 reported local instability, stabilization by actin binding, and local unfolding before or coincident with dissociation from actin (measured using light scattering, and chain dissociation (analyzed using circular dichroism. CONCLUSIONS: This, and previous work, suggests that regions of tropomyosin involved in binding actin have non-interface residues specific for interaction with actin and an unstable interface that is locally stabilized upon binding. The destabilized interface allows residues on the coiled-coil surface to obtain an optimal conformation for interaction with actin by increasing the number of local substates that the side chains can sample. We suggest

  9. Binding polarity of RPA to telomeric sequences and influence of G-quadruplex stability.

    Science.gov (United States)

    Safa, Layal; Delagoutte, Emmanuelle; Petruseva, Irina; Alberti, Patrizia; Lavrik, Olga; Riou, Jean-François; Saintomé, Carole

    2014-08-01

    Replication protein A (RPA) is a single-stranded DNA binding protein that plays an essential role in telomere maintenance. RPA binds to and unfolds G-quadruplex (G4) structures formed in telomeric DNA, thus facilitating lagging strand DNA replication and telomerase activity. To investigate the effect of G4 stability on the interactions with human RPA (hRPA), we used a combination of biochemical and biophysical approaches. Our data revealed an inverse relationship between G4 stability and ability of hRPA to bind to telomeric DNA; notably small G4 ligands that enhance G4 stability strongly impaired G4 unfolding by hRPA. To gain more insight into the mechanism of binding and unfolding of telomeric G4 structures by RPA, we carried out photo-crosslinking experiments to elucidate the spatial arrangement of the RPA subunits along the DNA strands. Our results showed that RPA1 and RPA2 are arranged from 5' to 3' along the unfolded telomeric G4, as already described for unstructured single-stranded DNA, while no contact is possible with RPA3 on this short oligonucleotide. In addition, these data are compatible with a 5' to 3' directionality in G4 unfolding by hRPA. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. The Adenovirus Type 3 Dodecahedron's RGD Loop Comprises an HSPG Binding Site That Influences Integrin Binding

    Directory of Open Access Journals (Sweden)

    E. Gout

    2010-01-01

    Full Text Available Human type 3 adenovirus dodecahedron (a virus like particle made of twelve penton bases features the ability to enter cells through Heparan Sulphate Proteoglycans (HSPGs and integrins interaction and is used as a versatile vector to deliver DNA or proteins. Cryo-EM reconstruction of the pseudoviral particle with Heparan Sulphate (HS oligosaccharide shows an extradensity on the RGD loop. A set of mutants was designed to study the respective roles of the RGD sequence (RGE mutant and of a basic sequence located just downstream. Results showed that the RGE mutant binding to the HS deficient CHO-2241 cells was abolished and unexpectedly, mutation of the basic sequence (KQKR to AQAS dramatically decreased integrin recognition by the viral pseudoparticle. This basic sequence is thus involved in integrin docking, showing a close interplay between HSPGs and integrin receptors.

  11. Gamma reactivation using the spongy effect of KLF1-binding site sequence: an approach in gene therapy for beta-thalassemia

    Science.gov (United States)

    Heydari, Nasrin; Shariati, Laleh; Khanahmad, Hossein; Hejazi, Zahra; Shahbazi, Mansoureh; Salehi, Mansoor

    2016-01-01

    Objective(s): β-thalassemia is one of the most common genetic disorders in the world. As one of the promising treatment strategies, fetal hemoglobin (Hb F) can be induced. The present study was an attempt to reactivate the γ-globin gene by introducing a gene construct containing KLF1 binding sites to the K562 cell line. Materials and Methods: A plasmid containing a 192 bp sequence with two repeats of KLF1 binding sites on β-globin and BCL11A promoters was constructed and used to transfect the K562 cell line. Positive selection was performed under treatment with 150 μg/ml hygromycin B. The remaining cells were expanded and harvested on day 28, and genomic DNA was extracted. The PCR was carried out to verify insertion of DNA fragment to the genome of K562 cells. The cells were differentiated with 15 μg/ml cisplatin. Flowcytometry was performed to identify erythroid differentiation by detection of CD235a+ cells. Real-time RT-PCR was performed to evaluate γ-globin expression in the transfected cells. Results: A 1700 bp fragment was observed on agarose gel as expected and insertion of DNA fragment to the genome of K562 cells was verified. Totally, 84% of cells were differentiated. The transfected cells significantly increased γ-globin expression after differentiation compared to untransfected ones. Conclusion: The findings demonstrate that the spongy effect of KLF1-binding site on BCL11A and β-globin promoters can induce γ-globin expression in K562 cells. This novel strategy can be promising for the treatment of β-thalassemia and sickle cell disease. PMID:27872702

  12. CONREAL web server: identification and visualization of conserved transcription factor binding sites

    NARCIS (Netherlands)

    Berezikov, E.; Guryev, V.; Cuppen, E.

    2005-01-01

    The use of orthologous sequences and phylogenetic footprinting approaches have become popular for the recognition of conserved and potentially functional sequences. Several algorithms have been developed for the identification of conserved transcription factor binding sites (TFBSs), which are

  13. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    Science.gov (United States)

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  14. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Yun, Ji-Hye; Lee, Won Kyung; Kim, Heeyoun; Kim, Eunhee; Cheong, Chaejoon; Cho, Myeon Haeng; Lee, Weontae

    2014-01-01

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2 1–64 ) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2 1–64 and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences

  15. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  16. TmiRUSite and TmiROSite scripts: searching for mRNA fragments with miRNA binding sites with encoded amino acid residues

    OpenAIRE

    Berillo, Olga; Régnier, Mireille; Ivashchenko, Anatoly

    2014-01-01

    microRNAs are small RNA molecules that inhibit the translation of target genes. microRNA binding sites are located in the untranslated regions as well as in the coding domains. We describe TmiRUSite and TmiROSite scripts developed using python as tools for the extraction of nucleotide sequences for miRNA binding sites with their encoded amino acid residue sequences. The scripts allow for retrieving a set of additional sequences at left and at right from the binding site. The scripts presents ...

  17. An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes

    International Nuclear Information System (INIS)

    Evans, T.; Reitman, M.; Felsenfeld, G.

    1988-01-01

    The authors have identified a protein present only in erythroid cells that binds to two adjacent sites within an enhancer region of the chicken β-globin locus. Mutation of the sites, so that binding by the factor can no longer be detected in vitro, leads to a loss of enhancing ability, assayed by transient expression in primary erythrocytes. Binding sites for the erythroid-specific factor (Eryf1) are found within regulatory regions for all chicken globin genes. A strong Eryf1 binding site is also present within the enhancer of at least one human globin gene, and proteins from human erythroid cells (but not HeLa cells) bind to both the chicken and the human sites

  18. Transcription factor binding sites prediction based on modified nucleosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad Talebzadeh

    Full Text Available In computational methods, position weight matrices (PWMs are commonly applied for transcription factor binding site (TFBS prediction. Although these matrices are more accurate than simple consensus sequences to predict actual binding sites, they usually produce a large number of false positive (FP predictions and so are impoverished sources of information. Several studies have employed additional sources of information such as sequence conservation or the vicinity to transcription start sites to distinguish true binding regions from random ones. Recently, the spatial distribution of modified nucleosomes has been shown to be associated with different promoter architectures. These aligned patterns can facilitate DNA accessibility for transcription factors. We hypothesize that using data from these aligned and periodic patterns can improve the performance of binding region prediction. In this study, we propose two effective features, "modified nucleosomes neighboring" and "modified nucleosomes occupancy", to decrease FP in binding site discovery. Based on these features, we designed a logistic regression classifier which estimates the probability of a region as a TFBS. Our model learned each feature based on Sp1 binding sites on Chromosome 1 and was tested on the other chromosomes in human CD4+T cells. In this work, we investigated 21 histone modifications and found that only 8 out of 21 marks are strongly correlated with transcription factor binding regions. To prove that these features are not specific to Sp1, we combined the logistic regression classifier with the PWM, and created a new model to search TFBSs on the genome. We tested the model using transcription factors MAZ, PU.1 and ELF1 and compared the results to those using only the PWM. The results show that our model can predict Transcription factor binding regions more successfully. The relative simplicity of the model and capability of integrating other features make it a superior method

  19. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    International Nuclear Information System (INIS)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-01-01

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  20. DNA-binding specificity and molecular functions of NAC transcription factors

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi Asschenfeldt; Lo Leggio, Leila

    2005-01-01

    The family of NAC (NAM/ATAF1,2/CUC2) transcription factors has been implicated in a wide range of plant processes, but knowledge on the DNA-binding properties of the family is limited. Using a reiterative selection procedure on random oligonucleotides, we have identified consensus binding sites....... Furthermore, NAC protein binding to the CaMV 35S promoter was shown to depend on sequences similar to the consensus of the selected oligonucleotides. Electrophoretic mobility shift assays demonstrated that NAC proteins bind DNA as homo- or heterodimers and that dimerization is necessary for stable DNA binding....... The ability of NAC proteins to dimerize and to bind DNAwas analysed by structure-based mutagenesis. This identified two salt bridge-forming residues essential for NAC protein dimerization. Alteration of basic residues in a loop region containing several highly conserved residues abolished DNA binding. Thus...

  1. Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy.

    Science.gov (United States)

    Matkovich, Scot J; Dorn, Gerald W

    2015-01-01

    MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicate purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses.

  2. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways.

    Science.gov (United States)

    Fantl, W J; Escobedo, J A; Martin, G A; Turck, C W; del Rosario, M; McCormick, F; Williams, L T

    1992-05-01

    The receptor for platelet-derived growth factor (PDGF) binds two proteins containing SH2 domains, GTPase activating protein (GAP) and phosphatidylinositol 3-kinase (PI3-kinase). The sites on the receptor that mediate this interaction were identified by using phosphotyrosine-containing peptides representing receptor sequences to block specifically binding of either PI3-kinase or GAP. These results suggested that PI3-kinase binds two phosphotyrosine residues, each located in a 5 aa motif with an essential methionine at the fourth position C-terminal to the tyrosine. Point mutations at these sites caused a selective elimination of PI3-kinase binding and loss of PDGF-stimulated DNA synthesis. Mutation of the binding site for GAP prevented the receptor from associating with or phosphorylating GAP, but had no effect on PI3-kinase binding and little effect on DNA synthesis. Therefore, GAP and PI3-kinase interact with the receptor by binding to different phosphotyrosine-containing sequence motifs.

  3. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.

    Science.gov (United States)

    Silvas, Tania V; Hou, Shurong; Myint, Wazo; Nalivaika, Ellen; Somasundaran, Mohan; Kelch, Brian A; Matsuo, Hiroshi; Kurt Yilmaz, Nese; Schiffer, Celia A

    2018-05-14

    The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.

  4. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR.

    Science.gov (United States)

    Miyazaki, Saori; Sato, Yutaka; Asano, Tomoya; Nagamura, Yoshiaki; Nonomura, Ken-Ichi

    2015-10-01

    Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.

  5. De novo design and engineering of functional metal and porphyrin-binding protein domains

    Science.gov (United States)

    Everson, Bernard H.

    In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.

  6. Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin.

    Science.gov (United States)

    Bensing, Barbara A; Loukachevitch, Lioudmila V; McCulloch, Kathryn M; Yu, Hai; Vann, Kendra R; Wawrzak, Zdzislaw; Anderson, Spencer; Chen, Xi; Sullam, Paul M; Iverson, T M

    2016-04-01

    Streptococcus sanguinisis a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets.S. sanguinisexpresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Lindemose, Søren; Jensen, Michael Krogh; de Velde, Jan Van

    2014-01-01

    regulatory networks of 12 NAC transcription factors. Our data offer specific single-base resolution fingerprints for most TFs studied and indicate that NAC DNA-binding specificities might be predicted from their DNA-binding domain's sequence. The developed methodology, including the application......Target gene identification for transcription factors is a prerequisite for the systems wide understanding of organismal behaviour. NAM-ATAF1/2-CUC2 (NAC) transcription factors are amongst the largest transcription factor families in plants, yet limited data exist from unbiased approaches to resolve...... the DNA-binding preferences of individual members. Here, we present a TF-target gene identification workflow based on the integration of novel protein binding microarray data with gene expression and multi-species promoter sequence conservation to identify the DNA-binding specificities and the gene...

  8. Unexpected DNA affinity and sequence selectivity through core rigidity in guanidinium-based minor groove binders.

    Science.gov (United States)

    Nagle, Padraic S; McKeever, Caitriona; Rodriguez, Fernando; Nguyen, Binh; Wilson, W David; Rozas, Isabel

    2014-09-25

    In this paper we report the design and biophysical evaluation of novel rigid-core symmetric and asymmetric dicationic DNA binders containing 9H-fluorene and 9,10-dihydroanthracene cores as well as the synthesis of one of these fluorene derivatives. First, the affinity toward particular DNA sequences of these compounds and flexible core derivatives was evaluated by means of surface plasmon resonance and thermal denaturation experiments finding that the position of the cations significantly influence the binding strength. Then their affinity and mode of binding were further studied by performing circular dichroism and UV studies and the results obtained were rationalized by means of DFT calculations. We found that the fluorene derivatives prepared have the ability to bind to the minor groove of certain DNA sequences and intercalate to others, whereas the dihydroanthracene compounds bind via intercalation to all the DNA sequences studied here.

  9. Crystallographic structure and substrate-binding interactions of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri.

    Science.gov (United States)

    Balan, Andrea; Santacruz-Pérez, Carolina; Moutran, Alexandre; Ferreira, Luís Carlos Souza; Neshich, Goran; Gonçalves Barbosa, João Alexandre Ribeiro

    2008-02-01

    In Xanthomonas axonopodis pv. citri (Xac or X. citri), the modA gene codes for a periplasmic protein (ModA) that is capable of binding molybdate and tungstate as part of the ABC-type transporter required for the uptake of micronutrients. In this study, we report the crystallographic structure of the Xac ModA protein with bound molybdate. The Xac ModA structure is similar to orthologs with known three-dimensional structures and consists of two nearly symmetrical domains separated by a hinge region where the oxyanion-binding site lies. Phylogenetic analysis of different ModA orthologs based on sequence alignments revealed three groups of molybdate-binding proteins: bacterial phytopathogens, enterobacteria and soil bacteria. Even though the ModA orthologs are segregated into different groups, the ligand-binding hydrogen bonds are mostly conserved, except for Archaeglobus fulgidus ModA. A detailed discussion of hydrophobic interactions in the active site is presented and two new residues, Ala38 and Ser151, are shown to be part of the ligand-binding pocket.

  10. Binding of Signal Recognition Particle Gives Ribosome/Nascent Chain Complexes a Competitive Advantage in Endoplasmic Reticulum Membrane Interaction

    Science.gov (United States)

    Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.

    1998-01-01

    Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994

  11. Location analysis for the estrogen receptor-? reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements

    OpenAIRE

    Mason, Christopher E.; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M.; Kallen, Roland G.; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B.

    2010-01-01

    Location analysis for estrogen receptor-? (ER?)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ER?-bound loci and quantify the incidence of ERE sequences under two stringencies of detection:

  12. Nucleic acids encoding phloem small RNA-binding proteins and transgenic plants comprising them

    Science.gov (United States)

    Lucas, William J.; Yoo, Byung-Chun; Lough, Tony J.; Varkonyi-Gasic, Erika

    2007-03-13

    The present invention provides a polynucleotide sequence encoding a component of the protein machinery involved in small RNA trafficking, Cucurbita maxima phloem small RNA-binding protein (CmPSRB 1), and the corresponding polypeptide sequence. The invention also provides genetic constructs and transgenic plants comprising the polynucleotide sequence encoding a phloem small RNA-binding protein to alter (e.g., prevent, reduce or elevate) non-cell autonomous signaling events in the plants involving small RNA metabolism. These signaling events are involved in a broad spectrum of plant physiological and biochemical processes, including, for example, systemic resistance to pathogens, responses to environmental stresses, e.g., heat, drought, salinity, and systemic gene silencing (e.g., viral infections).

  13. Consensus of sample-balanced classifiers for identifying ligand-binding residue by co-evolutionary physicochemical characteristics of amino acids

    KAUST Repository

    Chen, Peng

    2013-01-01

    Protein-ligand binding is an important mechanism for some proteins to perform their functions, and those binding sites are the residues of proteins that physically bind to ligands. So far, the state-of-the-art methods search for similar, known structures of the query and predict the binding sites based on the solved structures. However, such structural information is not commonly available. In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. Due to the highly imbalanced samples between the ligand-binding sites and non ligand-binding sites, we constructed several balanced data sets, for each of which a random forest (RF)-based classifier was trained. The ensemble of these RF classifiers formed a sequence-based protein-ligand binding site predictor. Experimental results on CASP9 targets demonstrated that our method compared favorably with the state-of-the-art. © Springer-Verlag Berlin Heidelberg 2013.

  14. Characterization of in vivo DNA-binding events of plant transcription factors by ChIP-seq

    NARCIS (Netherlands)

    Mourik, Van Hilda; Muiño, J.M.; Pajoro, Alice; Angenent, G.C.; Kaufmann, Kerstin

    2015-01-01

    Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) is a powerful technique for genome-wide identification of in vivo binding sites of DNA-binding proteins. The technique had been used to study many DNA-binding proteins in a broad variety of species. The basis of the

  15. BSSF: a fingerprint based ultrafast binding site similarity search and function analysis server

    Directory of Open Access Journals (Sweden)

    Jiang Hualiang

    2010-01-01

    Full Text Available Abstract Background Genome sequencing and post-genomics projects such as structural genomics are extending the frontier of the study of sequence-structure-function relationship of genes and their products. Although many sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel methods to extract relevant information from sequences and structures and to infer the functions of newly identified genes by genomics technology. Results Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function, which enables researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical Z-score function scheme to judge the similarity between the query and database items, even if their similarities are only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments to study the query proteins. Conclusions This ultrafast web-based system will not only help researchers interested in drug design and structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list from database searching.

  16. Identification of the DNA-Binding Domains of Human Replication Protein A That Recognize G-Quadruplex DNA

    Directory of Open Access Journals (Sweden)

    Aishwarya Prakash

    2011-01-01

    Full Text Available Replication protein A (RPA, a key player in DNA metabolism, has 6 single-stranded DNA-(ssDNA- binding domains (DBDs A-F. SELEX experiments with the DBDs-C, -D, and -E retrieve a 20-nt G-quadruplex forming sequence. Binding studies show that RPA-DE binds preferentially to the G-quadruplex DNA, a unique preference not observed with other RPA constructs. Circular dichroism experiments show that RPA-CDE-core can unfold the G-quadruplex while RPA-DE stabilizes it. Binding studies show that RPA-C binds pyrimidine- and purine-rich sequences similarly. This difference between RPA-C and RPA-DE binding was also indicated by the inability of RPA-CDE-core to unfold an oligonucleotide containing a TC-region 5′ to the G-quadruplex. Molecular modeling studies of RPA-DE and telomere-binding proteins Pot1 and Stn1 reveal structural similarities between the proteins and illuminate potential DNA-binding sites for RPA-DE and Stn1. These data indicate that DBDs of RPA have different ssDNA recognition properties.

  17. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    International Nuclear Information System (INIS)

    Teif, Vladimir B; Rippe, Karsten

    2010-01-01

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibria measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical-mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.

  18. Efficient computation of optimal oligo-RNA binding.

    Science.gov (United States)

    Hodas, Nathan O; Aalberts, Daniel P

    2004-01-01

    We present an algorithm that calculates the optimal binding conformation and free energy of two RNA molecules, one or both oligomeric. This algorithm has applications to modeling DNA microarrays, RNA splice-site recognitions and other antisense problems. Although other recent algorithms perform the same calculation in time proportional to the sum of the lengths cubed, O((N1 + N2)3), our oligomer binding algorithm, called bindigo, scales as the product of the sequence lengths, O(N1*N2). The algorithm performs well in practice with the aid of a heuristic for large asymmetric loops. To demonstrate its speed and utility, we use bindigo to investigate the binding proclivities of U1 snRNA to mRNA donor splice sites.

  19. Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin*♦

    Science.gov (United States)

    Bensing, Barbara A.; Loukachevitch, Lioudmila V.; McCulloch, Kathryn M.; Yu, Hai; Vann, Kendra R.; Wawrzak, Zdzislaw; Anderson, Spencer; Chen, Xi; Sullam, Paul M.; Iverson, T. M.

    2016-01-01

    Streptococcus sanguinis is a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets. S. sanguinis expresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site. PMID:26833566

  20. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  1. PASTA in Penicillin Binding Proteins and Serine/Threonine Kinases: A Recipe of Structural, Dynamic and Binding Properties.

    Science.gov (United States)

    Calvanese, Luisa; Falcigno, Lucia; Squeglia, Flavia; D'Auria, Gabriella; Berisio, Rita

    2017-11-24

    Penicillin binding proteins (PBPs) and Serine Threonine kinases (STPKs) are two classes of bacterial enzymes whose involvement in a series of vital processes in bacterial growth and division is well assessed. Many PBPs and STPKs show linked an ancillary domain named PASTA, whose functional role is not completely deciphered so far. It has been proposed that PASTAs are sensor modules that by binding opportune ligands (i.e. muropeptides) activate the cognate proteins to their functions. However, based on recent data, the sensor annotation sounds true for PASTA from STPKs, and false for PASTA from PBPs. Different PASTA domains, belonging or not to different protein classes, sharing or not appreciable sequence identities, always show identical folds. This survey of the structural, binding and dynamic properties of PASTA domains pursues the reasons why identical topologies may turn in different roles. Amino acid compositions, total charges and distribution of the hydrophobic/hydrophilic patches on the surface, significantly vary among PASTAs from STPKs and PBPs and appear to correlate with different functions. A possible criterion to discriminate between PASTA modules of STPKs or PBPs solely based on their sequences is proposed. Possibly reflecting different species as well as functional roles and evolutionary profile, our routine represents a fast even though approximate method to distinguish between PASTA belonging to different classes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Minor-Groove Binding Drugs: Where Is the Second Hoechst 33258 Molecule?

    KAUST Repository

    Fornander, Louise H.; Wu, Lisha; Billeter, Martin; Lincoln, Per; Nordé n, Bengt

    2013-01-01

    Hoechst 33258 binds with high affinity into the minor groove of AT-rich sequences of double-helical DNA. Despite extensive studies of this and analogous DNA binding molecules, there still remains uncertainty concerning the interactions when multiple ligand molecules are accommodated within close distance. Albeit not of direct concern for most biomedical applications, which are at low drug concentrations, interaction studies for higher drug binding are important as they can give fundamental insight into binding mechanisms and specificity, including drug self-stacking interactions that can provide base-sequence specificity. Using circular dichroism (CD), isothermal titration calorimetry (ITC), and proton nuclear magnetic resonance (1H NMR), we examine the binding of Hoechst 33258 to three oligonucleotide duplexes containing AT regions of different lengths: [d(CGCGAATTCGCG)]2 (A2T2), [d(CGCAAATTTGCG)]2 (A3T 3), and [d(CGAAAATTTTCG)]2 (A4T4). We find similar binding geometries in the minor groove for all oligonucleotides when the ligand-to-duplex ratio is less than 1:1. At higher ratios, a second ligand can be accommodated in the minor groove of A4T4 but not A2T2 or A3T3. We conclude that the binding of the second Hoechst to A4T4 is not cooperative and that the molecules are sitting with a small separation apart, one after the other, and not in a sandwich structure as previously proposed. © 2013 American Chemical Society.

  3. Minor-Groove Binding Drugs: Where Is the Second Hoechst 33258 Molecule?

    KAUST Repository

    Fornander, Louise H.

    2013-05-16

    Hoechst 33258 binds with high affinity into the minor groove of AT-rich sequences of double-helical DNA. Despite extensive studies of this and analogous DNA binding molecules, there still remains uncertainty concerning the interactions when multiple ligand molecules are accommodated within close distance. Albeit not of direct concern for most biomedical applications, which are at low drug concentrations, interaction studies for higher drug binding are important as they can give fundamental insight into binding mechanisms and specificity, including drug self-stacking interactions that can provide base-sequence specificity. Using circular dichroism (CD), isothermal titration calorimetry (ITC), and proton nuclear magnetic resonance (1H NMR), we examine the binding of Hoechst 33258 to three oligonucleotide duplexes containing AT regions of different lengths: [d(CGCGAATTCGCG)]2 (A2T2), [d(CGCAAATTTGCG)]2 (A3T 3), and [d(CGAAAATTTTCG)]2 (A4T4). We find similar binding geometries in the minor groove for all oligonucleotides when the ligand-to-duplex ratio is less than 1:1. At higher ratios, a second ligand can be accommodated in the minor groove of A4T4 but not A2T2 or A3T3. We conclude that the binding of the second Hoechst to A4T4 is not cooperative and that the molecules are sitting with a small separation apart, one after the other, and not in a sandwich structure as previously proposed. © 2013 American Chemical Society.

  4. Hydroxyapatite-binding peptides for bone growth and inhibition

    Science.gov (United States)

    Bertozzi, Carolyn R [Berkeley, CA; Song, Jie [Shrewsbury, MA; Lee, Seung-Wuk [Walnut Creek, CA

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  5. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  6. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces.

    Science.gov (United States)

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2014-01-15

    Traditional and high-throughput techniques for determining transcription factor (TF) binding specificities are generating large volumes of data of uneven quality, which are scattered across individual databases. FootprintDB integrates some of the most comprehensive freely available libraries of curated DNA binding sites and systematically annotates the binding interfaces of the corresponding TFs. The first release contains 2422 unique TF sequences, 10 112 DNA binding sites and 3662 DNA motifs. A survey of the included data sources, organisms and TF families was performed together with proprietary database TRANSFAC, finding that footprintDB has a similar coverage of multicellular organisms, while also containing bacterial regulatory data. A search engine has been designed that drives the prediction of DNA motifs for input TFs, or conversely of TF sequences that might recognize input regulatory sequences, by comparison with database entries. Such predictions can also be extended to a single proteome chosen by the user, and results are ranked in terms of interface similarity. Benchmark experiments with bacterial, plant and human data were performed to measure the predictive power of footprintDB searches, which were able to correctly recover 10, 55 and 90% of the tested sequences, respectively. Correctly predicted TFs had a higher interface similarity than the average, confirming its diagnostic value. Web site implemented in PHP,Perl, MySQL and Apache. Freely available from http://floresta.eead.csic.es/footprintdb.

  7. A urokinase receptor-associated protein with specific collagen binding properties

    DEFF Research Database (Denmark)

    Behrendt, N; Jensen, O N; Engelholm, L H

    2000-01-01

    membrane-bound lectin with hitherto unknown function. The human cDNA was cloned and sequenced. The protein, designated uPARAP, is a member of the macrophage mannose receptor protein family and contains a putative collagen-binding (fibronectin type II) domain in addition to 8 C-type carbohydrate recognition...... domains. It proved capable of binding strongly to a single type of collagen, collagen V. This collagen binding reaction at the exact site of plasminogen activation on the cell may lead to adhesive functions as well as a contribution to cellular degradation of collagen matrices....

  8. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    Science.gov (United States)

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-04-15

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  9. Brain calbindin-D28k and an Mr 29,000 calcium binding protein in cerebellum are different but related proteins: Evidence obtained from sequence analysis by tandem mass spectroscopy

    International Nuclear Information System (INIS)

    Gabrielides, C.; Christakos, S.; McCormack, A.L.; Hunt, D.F.

    1991-01-01

    A calcium binding protein of M r 29,000 which cross-reacts with antibodies raised against chick calbindin-D 28k was previously reported to be present in rat cerebellum. It was suggested that the M r 29,000 protein represents another form of calbindin-D 28k . In the authors laboratory they were able to identify M r 28,000 and 29,000 proteins in rat, human, and chick cerebellum by their ability to bind 45 Ca in a 45 Ca blot assay. Two calcium binding proteins of M r 27,680 and 29,450 were isolated from rat cerebelli by the use of gel permeation chromatography and preparative gel electrophoresis. After reverse-phase high-performance liquid chromatography (HPLC) the proteins were sequenced. Sequence analysis by tandem mass spectrometry indicated only 52% identity between the rat cerebellar M r 28,000 and 29,000 proteins. Thus they are not different forms of the same protein, as previously suggested. Eighty-nine percent identity was observed between the rate cerebellar M r 29,000 protein and chick calretinin. The difference in identity between the rat cerebellar M r 29,000 protein and chick calretinin may be due to species differences, and thus this protein is most likely rat calretinin. These results suggest either posttranscriptional regulation of calretinin in cerebellum or species differences. The study also suggests that previous immunocytochemical mapping for calbindin using antisera which cross-reacted with both proteins detected brain regions that expressed not only calbindin but also calretinin or a calretinin-like protein

  10. An odorant-binding protein as a new allergen from Siberian hamster (Phodopus sungorus).

    Science.gov (United States)

    Torres, J A; Pastor-Vargas, C; de las Heras, M; Vivanco, F; Cuesta, Javier; Sastre, J

    2012-01-01

    A case of anaphylaxis following a bite from a Siberian hamster (SH; Phodopus sungorus) is described. Skin prick tests with hair, urine and salivary gland extracts from SH were positive, while the tests were negative for hair extracts from other rodents. IgE immunoblotting with the patient serum revealed 3 IgE-binding bands of about 18, 21 and 23 kDa. When the patient's serum was preincubated with rabbit, mouse and gerbil hair extracts, no inhibition of the 3 SH IgE-binding bands was demonstrated. Proteins extracted from the 3 bands were analyzed by N-terminal sequencing and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry, and peptides were sequenced. IgE-binding bands were identified as being an odorant-binding protein belonging to the lipocalin family. Analysis of the 3 IgE-binding bands found in the hair, urine and salivary glands of SH showed a new allergenic protein lacking cross-reactivity with allergens from other rodents. The 3 bands likely correspond to isoforms of a single allergen. Copyright © 2011 S. Karger AG, Basel.

  11. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins

    OpenAIRE

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their func...

  12. Sequence-specific 1H NMR assignments, secondary structure, and location of the calcium binding site in the first epidermal growth factor like domain of blood coagulation factor IX

    International Nuclear Information System (INIS)

    Huang, L.H.; Cheng, H.; Sweeney, W.V.; Pardi, A.; Tam, J.P.

    1991-01-01

    Factor IX is a blood clotting protein that contains three regions, including a γ-carboxyglutamic acid (Gla) domain, two tandemly connected epidermal growth factor like (EGF-like) domains, and a serine protease region. The protein exhibits a high-affinity calcium binding site in the first EGF0like domain, in addition to calcium binding in the Gla domain. The first EGF-like domain, factor IX (45-87), has been synthesized. Sequence-specific resonance assignment of the peptide has been made by using 2D NMR techniques, and its secondary structure has been determined. The protein is found to have two antiparallel β-sheets, and preliminary distance geometry calculations indicate that the protein has two domains, separated by Trp 28 , with the overall structure being similar to that of EGF. An NMR investigation of the calcium-bound first EGF-like domain indicates the presence and location of a calcium binding site involving residues on both strands of one of the β-sheets as well as the N-terminal region of the peptide. These results suggest that calcium binding in the first EGF-like domain could induce long-range (possibly interdomain) conformational changes in factor IX, rather than causing structural alterations in the EGF-like domain itself

  13. Evidence for multiple major histocompatibility class II X-box binding proteins.

    OpenAIRE

    Celada, A; Maki, R

    1989-01-01

    The X box is a loosely conserved DNA sequence that is located upstream of all major histocompatibility class II genes and is one of the cis-acting regulatory elements. Despite the similarity between all X-box sequences, each promoter-proximal X box in the mouse appears to bind a separate nuclear factor.

  14. Novel ZnO-binding peptides obtained by the screening of a phage display peptide library

    Energy Technology Data Exchange (ETDEWEB)

    Golec, Piotr [Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology (affiliated with the University of Gdansk) (Poland); Karczewska-Golec, Joanna [University of Gdansk and Medical University of Gdansk, Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology (Poland); Los, Marcin; Wegrzyn, Grzegorz, E-mail: wegrzyn@biotech.univ.gda.pl [University of Gdansk, Department of Molecular Biology (Poland)

    2012-11-15

    Zinc oxide (ZnO) is a semiconductor compound with a potential for wide use in various applications, including biomaterials and biosensors, particularly as nanoparticles (the size range of ZnO nanoparticles is from 2 to 100 nm, with an average of about 35 nm). Here, we report isolation of novel ZnO-binding peptides, by screening of a phage display library. Interestingly, amino acid sequences of the ZnO-binding peptides reported in this paper and those described previously are significantly different. This suggests that there is a high variability in sequences of peptides which can bind particular inorganic molecules, indicating that different approaches may lead to discovery of different peptides of generally the same activity (e.g., binding of ZnO) but having various detailed properties, perhaps crucial under specific conditions of different applications.

  15. DNA binding properties of the small cascade subunit Csa5.

    Directory of Open Access Journals (Sweden)

    Michael Daume

    Full Text Available CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.

  16. Inverted repeats in the promoter as an autoregulatory sequence for TcrX in Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Bhattacharya, Monolekha; Das, Amit Kumar

    2011-01-01

    Highlights: ► The regulatory sequences recognized by TcrX have been identified. ► The regulatory region comprises of inverted repeats segregated by 30 bp region. ► The mode of binding of TcrX with regulatory sequence is unique. ► In silico TcrX–DNA docked model binds one of the inverted repeats. ► Both phosphorylated and unphosphorylated TcrX binds regulatory sequence in vitro. -- Abstract: TcrY, a histidine kinase, and TcrX, a response regulator, constitute a two-component system in Mycobacterium tuberculosis. tcrX, which is expressed during iron scarcity, is instrumental in the survival of iron-dependent M. tuberculosis. However, the regulator of tcrX/Y has not been fully characterized. Crosslinking studies of TcrX reveal that it can form oligomers in vitro. Electrophoretic mobility shift assays (EMSAs) show that TcrX recognizes two regions in the promoter that are comprised of inverted repeats separated by ∼30 bp. The dimeric in silico model of TcrX predicts binding to one of these inverted repeat regions. Site-directed mutagenesis and radioactive phosphorylation indicate that D54 of TcrX is phosphorylated by H256 of TcrY. However, phosphorylated and unphosphorylated TcrX bind the regulatory sequence with equal efficiency, which was shown with an EMSA using the D54A TcrX mutant.

  17. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium

    International Nuclear Information System (INIS)

    Myre, Michael A.; O'Day, Danton H.

    2005-01-01

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD ( 171 EDVSRFIKGKLLQKQQKIYKDLERF 195 ) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48 KKSYQDPEIIAHSRPRK 64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48 EF 49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48 EF 49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium

  18. Sequence analysis of serum albumins reveals the molecular evolution of ligand recognition properties.

    Science.gov (United States)

    Fanali, Gabriella; Ascenzi, Paolo; Bernardi, Giorgio; Fasano, Mauro

    2012-01-01

    Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.

  19. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Ji-Hye [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Won Kyung [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Heeyoun [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Eunhee; Cheong, Chaejoon [Magnetic Resonance Team, Korea Basic Science Institute (KBSI), Ochang, Chungbuk 363-883 (Korea, Republic of); Cho, Myeon Haeng [Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Weontae, E-mail: wlee@spin.yonsei.ac.kr [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2014-09-26

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.

  20. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    Science.gov (United States)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  1. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  2. Sequence of a cDNA encoding turtle high mobility group 1 protein.

    Science.gov (United States)

    Zheng, Jifang; Hu, Bi; Wu, Duansheng

    2005-07-01

    In order to understand sequence information about turtle HMG1 gene, a cDNA encoding HMG1 protein of the Chinese soft-shell turtle (Pelodiscus sinensis) was amplified by RT-PCR from kidney total RNA, and was cloned, sequenced and analyzed. The results revealed that the open reading frame (ORF) of turtle HMG1 cDNA is 606 bp long. The ORF codifies 202 amino acid residues, from which two DNA-binding domains and one polyacidic region are derived. The DNA-binding domains share higher amino acid identity with homologues sequences of chicken (96.5%) and mammalian (74%) than homologues sequence of rainbow trout (67%). The polyacidic region shows 84.6% amino acid homology with the equivalent region of chicken HMG1 cDNA. Turtle HMG1 protein contains 3 Cys residues located at completely conserved positions. Conservation in sequence and structure suggests that the functions of turtle HMG1 cDNA may be highly conserved during evolution. To our knowledge, this is the first report of HMG1 cDNA sequence in any reptilian.

  3. Mechanistic insights into phosphoprotein-binding FHA domains.

    Science.gov (United States)

    Liang, Xiangyang; Van Doren, Steven R

    2008-08-01

    [Structure: see text]. FHA domains are protein modules that switch signals in diverse biological pathways by monitoring the phosphorylation of threonine residues of target proteins. As part of the effort to gain insight into cellular avoidance of cancer, FHA domains involved in the cellular response to DNA damage have been especially well-characterized. The complete protein where the FHA domain resides and the interaction partners determine the nature of the signaling. Thus, a key biochemical question is how do FHA domains pick out their partners from among thousands of alternatives in the cell? This Account discusses the structure, affinity, and specificity of FHA domains and the formation of their functional structure. Although FHA domains share sequence identity at only five loop residues, they all fold into a beta-sandwich of two beta-sheets. The conserved arginine and serine of the recognition loops recognize the phosphorylation of the threonine targeted. Side chains emanating from loops that join beta-strand 4 with 5, 6 with 7, or 10 with 11 make specific contacts with amino acids of the ligand that tailor sequence preferences. Many FHA domains choose a partner in extended conformation, somewhat according to the residue three after the phosphothreonine in sequence (pT + 3 position). One group of FHA domains chooses a short carboxylate-containing side chain at pT + 3. Another group chooses a long, branched aliphatic side chain. A third group prefers other hydrophobic or uncharged polar side chains at pT + 3. However, another FHA domain instead chooses on the basis of pT - 2, pT - 3, and pT + 1 positions. An FHA domain from a marker of human cancer instead chooses a much longer protein fragment that adds a beta-strand to its beta-sheet and that presents hydrophobic residues from a novel helix to the usual recognition surface. This novel recognition site and more remote sites for the binding of other types of protein partners were predicted for the entire family

  4. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain.

    Science.gov (United States)

    de Lange, Orlando; Wolf, Christina; Dietze, Jörn; Elsaesser, Janett; Morbitzer, Robert; Lahaye, Thomas

    2014-06-01

    The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2016-01-01

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  6. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  7. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif

    Directory of Open Access Journals (Sweden)

    Grishin Nick V

    2009-01-01

    Full Text Available Abstract Background Argonaute (Ago proteins interact with small regulatory RNAs to mediate gene regulatory pathways. A recent report by Kiriakidou et al. 1 describes an MC sequence region identified in Ago2 that displays similarity to the cap-binding motif in translation initiation factor 4E (eIF4E. In a cap-bound eIF4E structure, two important aromatic residues of the motif stack on either side of a 7-methylguanosine 5'-triphosphate (m7Gppp base. The corresponding Ago2 aromatic residues (F450 and F505 were hypothesized to perform the same cap-binding function. However, the detected similarity between the MC sequence and the eIF4E cap-binding motif was questionable. Results A number of sequence-based and structure-based bioinformatics methods reveal the reported similarity between the Ago2 MC sequence region and the eIF4E cap-binding motif to be spurious. Alternatively, the MC sequence region is confidently assigned to the N-terminus of the Ago piwi module, within the mid domain of experimentally determined prokaryotic Ago structures. Confident mapping of the Ago2 MC sequence region to the piwi mid domain results in a homology-based structure model that positions the identified aromatic residues over 20 Å apart, with one of the aromatic side chains (F450 contributing instead to the hydrophobic core of the domain. Conclusion Correct functional prediction based on weak sequence similarity requires substantial evolutionary and structural support. The evolutionary context of the Ago mid domain suggested by multiple sequence alignment is limited to a conserved hydrophobicity profile required for the fold and a motif following the MC region that binds guide RNA. Mapping of the MC sequence to the mid domain structure reveals Ago2 aromatics that are incompatible with eIF4E-like mRNA cap-binding, yet display some limited local structure similarities that cause the chance sequence match to eIF4E. Reviewers This article was reviewed by Arcady Mushegian

  8. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  9. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  10. Prediction of small molecule binding property of protein domains with Bayesian classifiers based on Markov chains.

    Science.gov (United States)

    Bulashevska, Alla; Stein, Martin; Jackson, David; Eils, Roland

    2009-12-01

    Accurate computational methods that can help to predict biological function of a protein from its sequence are of great interest to research biologists and pharmaceutical companies. One approach to assume the function of proteins is to predict the interactions between proteins and other molecules. In this work, we propose a machine learning method that uses a primary sequence of a domain to predict its propensity for interaction with small molecules. By curating the Pfam database with respect to the small molecule binding ability of its component domains, we have constructed a dataset of small molecule binding and non-binding domains. This dataset was then used as training set to learn a Bayesian classifier, which should distinguish members of each class. The domain sequences of both classes are modelled with Markov chains. In a Jack-knife test, our classification procedure achieved the predictive accuracies of 77.2% and 66.7% for binding and non-binding classes respectively. We demonstrate the applicability of our classifier by using it to identify previously unknown small molecule binding domains. Our predictions are available as supplementary material and can provide very useful information to drug discovery specialists. Given the ubiquitous and essential role small molecules play in biological processes, our method is important for identifying pharmaceutically relevant components of complete proteomes. The software is available from the author upon request.

  11. Comparative studies of vertebrate scavenger receptor class B type 1: a high-density lipoprotein binding protein

    Directory of Open Access Journals (Sweden)

    Holmes RS

    2012-06-01

    Full Text Available Roger S Holmes,1,2 Laura A Cox11Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; 2School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, AustraliaAbstract: Scavenger receptor class B type 1 protein (SCARB1 plays an essential role in cholesterol homeostasis and functions in binding high density lipoprotein cholesterol (HDL in liver and other tissues of the body. SCARB1 also functions in lymphocyte homeostasis and in the uptake of hepatitis C virus (HCV by the liver. A genetic deficiency of this protein results in autoimmune disorders and significant changes in blood cholesterol phenotype. Comparative SCARB1 amino acid sequences and structures and SCARB1 gene locations were examined using data from several vertebrate genome projects. Vertebrate SCARB1 sequences shared 50%–99% identity as compared with 28%–31% sequence identities with other CD36-like superfamily members, ie, SCARB2 and SCARB3 (also called CD36. At least eight N-glycosylation sites were conserved among most of the vertebrate SCARB1 proteins examined. Sequence alignments, key amino acid residues, and conserved predicted secondary structures were also studied, including: cytoplasmic, transmembrane, and exoplasmic sequences; conserved N-terminal and C-terminal transmembrane glycines which participate in oligomer formation; conserved cystine disulfides and a free SH residue which participates in lipid transport; carboxyl terminal PDZ-binding domain sequences (Ala507-Arg/Lys508-Leu509; and 30 conserved proline and 18 conserved glycine residues, which may contribute to short loop formation within the exoplasmic HDL-binding sequence. Vertebrate SCARB1 genes usually contained 12 coding exons. The human SCARB1 gene contained CpG islands, micro RNA binding sites, and several transcription factor binding sites (including PPARG which may contribute to the high level (13.7 times

  12. Small GTP-binding proteins in human endothelial cells

    NARCIS (Netherlands)

    de Leeuw, H. P.; Koster, P. M.; Calafat, J.; Janssen, H.; van Zonneveld, A. J.; van Mourik, J. A.; Voorberg, J.

    1998-01-01

    Small GTP-binding proteins of the Ras superfamily control an extensive number of intracellular events by alternating between GDP- and GTP-bound conformation. The presence of members of this protein family was examined in human umbilical vein endothelial cells employing RT-PCR. Sequence analysis of

  13. Using structure to inform carbohydrate binding module function

    NARCIS (Netherlands)

    Abbott, D. Wade; Lammerts van Bueren, Alicia

    2014-01-01

    Generally, non-catalytic carbohydrate binding module (CBM) specificity has been shown to parallel the catalytic activity of the carbohydrate active enzyme (CAZyme) module it is appended to. With the rapid expansion in metagenomic sequence space for the potential discovery of new CBMs in addition to

  14. Impact of germline and somatic missense variations on drug binding sites.

    Science.gov (United States)

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  15. A versatile non-radioactive assay for DNA methyltransferase activity and DNA binding

    Science.gov (United States)

    Frauer, Carina; Leonhardt, Heinrich

    2009-01-01

    We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity. PMID:19129216

  16. Stereochemical determinants of C-terminal specificity in PDZ peptide-binding domains: a novel contribution of the carboxylate-binding loop.

    Science.gov (United States)

    Amacher, Jeanine F; Cushing, Patrick R; Bahl, Christopher D; Beck, Tobias; Madden, Dean R

    2013-02-15

    PDZ (PSD-95/Dlg/ZO-1) binding domains often serve as cellular traffic engineers, controlling the localization and activity of a wide variety of binding partners. As a result, they play important roles in both physiological and pathological processes. However, PDZ binding specificities overlap, allowing multiple PDZ proteins to mediate distinct effects on shared binding partners. For example, several PDZ domains bind the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), an epithelial ion channel mutated in CF. Among these binding partners, the CFTR-associated ligand (CAL) facilitates post-maturational degradation of the channel and is thus a potential therapeutic target. Using iterative optimization, we previously developed a selective CAL inhibitor peptide (iCAL36). Here, we investigate the stereochemical basis of iCAL36 specificity. The crystal structure of iCAL36 in complex with the CAL PDZ domain reveals stereochemical interactions distributed along the peptide-binding cleft, despite the apparent degeneracy of the CAL binding motif. A critical selectivity determinant that distinguishes CAL from other CFTR-binding PDZ domains is the accommodation of an isoleucine residue at the C-terminal position (P(0)), a characteristic shared with the Tax-interacting protein-1. Comparison of the structures of these two PDZ domains in complex with ligands containing P(0) Leu or Ile residues reveals two distinct modes of accommodation for β-branched C-terminal side chains. Access to each mode is controlled by distinct residues in the carboxylate-binding loop. These studies provide new insights into the primary sequence determinants of binding motifs, which in turn control the scope and evolution of PDZ interactomes.

  17. Metal binding proteins, recombinant host cells and methods

    Science.gov (United States)

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  18. RNA sequencing based analysis of the spleen transcriptome following the infectious bronchitis virus infection of chickens selected for different mannose-binding lectin serum concentrations

    DEFF Research Database (Denmark)

    Hamzic, Edin; Kjærup, Rikke Brødsgaard; Mach, Núria

    2016-01-01

    in strategies to control IB. To this end, two chicken lines, selected for high and low serum concentration of mannose-binding lectin (MBL), a soluble pattern recognition receptor, were studied. In total, 32 animals from each line (designated L10H for high and L10L for low MBL serum concentration) were used....... Sixteen birds from each line were infected with IBV on day 1 and birds were euthanized at 1 week and 3 weeks post infection, 8 uninfected controls and 8 infected birds from each line at each occasion. RNA sequencing was performed on spleen samples from all 64 birds used in the experiment. Differential...

  19. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    Science.gov (United States)

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes

    DEFF Research Database (Denmark)

    Peng, Xu; Brügger, Kim; Shen, Biao

    2003-01-01

    terminally modified and corresponds to SSO454, an open reading frame of previously unassigned function. It binds specifically to DNA fragments carrying double and single repeat sequences, binding on one side of the repeat structure, and producing an opening of the opposite side of the DNA structure. It also...... recognizes both main families of repeat sequences in S. solfataricus. The recombinant protein, expressed in Escherichia coli, showed the same binding properties to the SRSR repeat as the native one. The SSO454 protein exhibits a tripartite internal repeat structure which yields a good sequence match...... with a helix-turn-helix DNA-binding motif. Although this putative motif is shared by other archaeal proteins, orthologs of SSO454 were only detected in species within the Sulfolobus genus and in the closely related Acidianus genus. We infer that the genus-specific protein induces an opening of the structure...

  1. Use of synthetic peptide libraries for the H-2Kd binding motif identification.

    Science.gov (United States)

    Quesnel, A; Casrouge, A; Kourilsky, P; Abastado, J P; Trudelle, Y

    1995-01-01

    To identify Kd-binding peptides, an approach based on small peptide libraries has been developed. These peptide libraries correspond to all possible single-amino acid variants of a particular Kd-binding peptide, SYIPSAEYI, an analog of the Plasmodium berghei 252-260 antigenic peptide SYIPSAEKI. In the parent sequence, each position is replaced by all the genetically encoded amino acids (except cysteine). The multiple analog syntheses are performed either by the Divide Couple and Recombine method or by the Single Resin method and generate mixtures containing 19 peptides. The present report deals with the synthesis, the purification, the chemical characterization by amino acid analysis and electrospray mass spectrometry (ES-MS), and the application of such mixtures in binding tests with a soluble, functionally empty, single-chain H-2Kd molecule denoted SC-Kd. For each mixture, bound peptides were eluted and analyzed by sequencing. Since the binding tests were realized in noncompetitive conditions, our results show that a much broader set of peptides bind to Kd than expected from previous studies. This may be of practical importance when looking for low affinity peptides such as tumor peptides capable of eliciting protective immune response.

  2. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase

    Science.gov (United States)

    Morellet, Nelly; Li, Xianghong; Wieninger, Silke A; Taylor, Jennifer L; Bischerour, Julien; Moriau, Séverine; Lescop, Ewen; Bardiaux, Benjamin; Mathy, Nathalie; Assrir, Nadine; Bétermier, Mireille; Nilges, Michael; Hickman, Alison B; Dyda, Fred; Craig, Nancy L; Guittet, Eric

    2018-01-01

    Abstract The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure–function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5′-TGCGT-3′/3′-ACGCA-5′ motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity. PMID:29385532

  3. Convolutional neural network architectures for predicting DNA–protein binding

    Science.gov (United States)

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  4. Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): Identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42

    International Nuclear Information System (INIS)

    Shinjo, K.; Koland, J.G.; Hart, M.J.; Narasimhan, V.; Cerione, R.A.; Johnson, D.I.; Evans, T.

    1990-01-01

    The authors have isolated cDNA clones from a human placental library that code for a low molecular weight GTP-binding protein originally designated G p (also called G25K). This identification is based on comparisons with the available peptide sequences for the purified human G p protein and the use of two highly specific anti-peptide antibodies. The predicted amino acid sequence of the protein is very similar to those of various members of the ras superfamily of low molecular weight GTP-binding proteins, including the N-, Ki-, and Ha-ras proteins (30-35% identical), the rho proteins and the rac proteins. The highest degree of sequence identity (80%) is found with the Saccharomyces cerevisiae cell division-cycle protein CDC42. The human placental gene, which they designate CDC42Hs, complements the cdc42-1 mutation in S. cerevisiae, which suggests that this GTP-binding protein is the human homolog of the yeast protein

  5. Escherichia coli Peptide Binding Protein OppA Has a Preference for Positively Charged Peptides

    NARCIS (Netherlands)

    Klepsch, M. M.; Kovermann, M.; Löw, C.; Balbach, J.; Permentier, H. P.; Fusetti, F.; de Gier, J. W.; Gier, Jan-Willem de; Slotboom, D. J.; Berntsson, R. P. -A.

    2011-01-01

    The Escherichia coli peptide binding protein OppA is an essential component of the oligopeptide transporter Opp. Based on studies on its orthologue from Salmonella typhimurium, it has been proposed that OppA binds peptides between two and five amino acids long, with no apparent sequence selectivity.

  6. F-Type Lectins: A Highly Diversified Family of Fucose-Binding Proteins with a Unique Sequence Motif and Structural Fold, Involved in Self/Non-Self-Recognition

    Directory of Open Access Journals (Sweden)

    Gerardo R. Vasta

    2017-11-01

    Full Text Available The F-type lectin (FTL family is one of the most recent to be identified and structurally characterized. Members of the FTL family are characterized by a fucose recognition domain [F-type lectin domain (FTLD] that displays a novel jellyroll fold (“F-type” fold and unique carbohydrate- and calcium-binding sequence motifs. This novel lectin family comprises widely distributed proteins exhibiting single, double, or greater multiples of the FTLD, either tandemly arrayed or combined with other structurally and functionally distinct domains, yielding lectin subunits of pleiotropic properties even within a single species. Furthermore, the extraordinary variability of FTL sequences (isoforms that are expressed in a single individual has revealed genetic mechanisms of diversification in ligand recognition that are unique to FTLs. Functions of FTLs in self/non-self-recognition include innate immunity, fertilization, microbial adhesion, and pathogenesis, among others. In addition, although the F-type fold is distinctive for FTLs, a structure-based search revealed apparently unrelated proteins with minor sequence similarity to FTLs that displayed the FTLD fold. In general, the phylogenetic analysis of FTLD sequences from viruses to mammals reveals clades that are consistent with the currently accepted taxonomy of extant species. However, the surprisingly discontinuous distribution of FTLDs within each taxonomic category suggests not only an extensive structural/functional diversification of the FTLs along evolutionary lineages but also that this intriguing lectin family has been subject to frequent gene duplication, secondary loss, lateral transfer, and functional co-option.

  7. Biophysical and structural considerations for protein sequence evolution

    Directory of Open Access Journals (Sweden)

    Grahnen Johan A

    2011-12-01

    Full Text Available Abstract Background Protein sequence evolution is constrained by the biophysics of folding and function, causing interdependence between interacting sites in the sequence. However, current site-independent models of sequence evolutions do not take this into account. Recent attempts to integrate the influence of structure and biophysics into phylogenetic models via statistical/informational approaches have not resulted in expected improvements in model performance. This suggests that further innovations are needed for progress in this field. Results Here we develop a coarse-grained physics-based model of protein folding and binding function, and compare it to a popular informational model. We find that both models violate the assumption of the native sequence being close to a thermodynamic optimum, causing directional selection away from the native state. Sampling and simulation show that the physics-based model is more specific for fold-defining interactions that vary less among residue type. The informational model diffuses further in sequence space with fewer barriers and tends to provide less support for an invariant sites model, although amino acid substitutions are generally conservative. Both approaches produce sequences with natural features like dN/dS Conclusions Simple coarse-grained models of protein folding can describe some natural features of evolving proteins but are currently not accurate enough to use in evolutionary inference. This is partly due to improper packing of the hydrophobic core. We suggest possible improvements on the representation of structure, folding energy, and binding function, as regards both native and non-native conformations, and describe a large number of possible applications for such a model.

  8. The application of strand invasion phenomenon, directed by peptide nucleic acid (PNA) and single-stranded DNA binding protein (SSB) for the recognition of specific sequences of human endogenous retroviral HERV-W family.

    Science.gov (United States)

    Machnik, Grzegorz; Bułdak, Łukasz; Ruczyński, Jarosław; Gąsior, Tomasz; Huzarska, Małgorzata; Belowski, Dariusz; Alenowicz, Magdalena; Mucha, Piotr; Rekowski, Piotr; Okopień, Bogusław

    2017-05-01

    The HERV-W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV-W-derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin-1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV-W members is highly desirable. A peptide nucleic acid (PNA)-mediated technique for the discrimination between multiple sclerosis-associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis-associated retrovirus (MSRV) template, shows high selective potential. Single-stranded DNA binding protein facilitates the PNA-mediated, sequence-specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single-stranded DNA-specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV-W env sequences have been evaluated. We believe that PNA/single-stranded DNA binding protein-based application has the potential to selectively discriminate particular HERV-W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho-neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto-immunologic background (psoriasis and lupus erythematosus). Copyright © 2016 John Wiley & Sons, Ltd.

  9. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  10. Polar bear hemoglobin and human Hb A0: same 2,3-diphosphoglycerate binding site but asymmetry of the binding?

    Science.gov (United States)

    Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J

    2002-11-01

    Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.

  11. WeederH: an algorithm for finding conserved regulatory motifs and regions in homologous sequences

    Directory of Open Access Journals (Sweden)

    Pesole Graziano

    2007-02-01

    Full Text Available Abstract Background This work addresses the problem of detecting conserved transcription factor binding sites and in general regulatory regions through the analysis of sequences from homologous genes, an approach that is becoming more and more widely used given the ever increasing amount of genomic data available. Results We present an algorithm that identifies conserved transcription factor binding sites in a given sequence by comparing it to one or more homologs, adapting a framework we previously introduced for the discovery of sites in sequences from co-regulated genes. Differently from the most commonly used methods, the approach we present does not need or compute an alignment of the sequences investigated, nor resorts to descriptors of the binding specificity of known transcription factors. The main novel idea we introduce is a relative measure of conservation, assuming that true functional elements should present a higher level of conservation with respect to the rest of the sequence surrounding them. We present tests where we applied the algorithm to the identification of conserved annotated sites in homologous promoters, as well as in distal regions like enhancers. Conclusion Results of the tests show how the algorithm can provide fast and reliable predictions of conserved transcription factor binding sites regulating the transcription of a gene, with better performances than other available methods for the same task. We also show examples on how the algorithm can be successfully employed when promoter annotations of the genes investigated are missing, or when regulatory sites and regions are located far away from the genes.

  12. Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Roxbury, Daniel

    It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation

  13. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.

    Directory of Open Access Journals (Sweden)

    Monica M Horvath

    2007-07-01

    Full Text Available The p53 tumor suppressor is a sequence-specific pleiotropic transcription factor that coordinates cellular responses to DNA damage and stress, initiating cell-cycle arrest or triggering apoptosis. Although the human p53 binding site sequence (or response element [RE] is well characterized, some genes have consensus-poor REs that are nevertheless both necessary and sufficient for transactivation by p53. Identification of new functional gene regulatory elements under these conditions is problematic, and evolutionary conservation is often employed. We evaluated the comparative genomics approach for assessing evolutionary conservation of putative binding sites by examining conservation of 83 experimentally validated human p53 REs against mouse, rat, rabbit, and dog genomes and detected pronounced conservation differences among p53 REs and p53-regulated pathways. Bona fide NRF2 (nuclear factor [erythroid-derived 2]-like 2 nuclear factor and NFkappaB (nuclear factor of kappa light chain gene enhancer in B cells binding sites, which direct oxidative stress and innate immunity responses, were used as controls, and both exhibited high interspecific conservation. Surprisingly, the average p53 RE was not significantly more conserved than background genomic sequence, and p53 REs in apoptosis genes as a group showed very little conservation. The common bioinformatics practice of filtering RE predictions by 80% rodent sequence identity would not only give a false positive rate of approximately 19%, but miss up to 57% of true p53 REs. Examination of interspecific DNA base substitutions as a function of position in the p53 consensus sequence reveals an unexpected excess of diversity in apoptosis-regulating REs versus cell-cycle controlling REs (rodent comparisons: p < 1.0 e-12. While some p53 REs show relatively high levels of conservation, REs in many genes such as BAX, FAS, PCNA, CASP6, SIVA1, and P53AIP1 show little if any homology to rodent sequences. This

  14. MicroRNA-target binding structures mimic microRNA duplex structures in humans.

    Directory of Open Access Journals (Sweden)

    Xi Chen

    Full Text Available Traditionally, researchers match a microRNA guide strand to mRNA sequences using sequence comparisons to predict its potential target genes. However, many of the predictions can be false positives due to limitations in sequence comparison alone. In this work, we consider the association of two related RNA structures that share a common guide strand: the microRNA duplex and the microRNA-target binding structure. We have analyzed thousands of such structure pairs and found many of them share high structural similarity. Therefore, we conclude that when predicting microRNA target genes, considering just the microRNA guide strand matches to gene sequences may not be sufficient--the microRNA duplex structure formed by the guide strand and its companion passenger strand must also be considered. We have developed software to translate RNA binding structure into encoded representations, and we have also created novel automatic comparison methods utilizing such encoded representations to determine RNA structure similarity. Our software and methods can be utilized in the other RNA secondary structure comparisons as well.

  15. Drosophila TDP-43 RNA-Binding Protein Facilitates Association of Sister Chromatid Cohesion Proteins with Genes, Enhancers and Polycomb Response Elements.

    Directory of Open Access Journals (Sweden)

    Amanda Swain

    2016-09-01

    Full Text Available The cohesin protein complex mediates sister chromatid cohesion and participates in transcriptional control of genes that regulate growth and development. Substantial reduction of cohesin activity alters transcription of many genes without disrupting chromosome segregation. Drosophila Nipped-B protein loads cohesin onto chromosomes, and together Nipped-B and cohesin occupy essentially all active transcriptional enhancers and a large fraction of active genes. It is unknown why some active genes bind high levels of cohesin and some do not. Here we show that the TBPH and Lark RNA-binding proteins influence association of Nipped-B and cohesin with genes and gene regulatory sequences. In vitro, TBPH and Lark proteins specifically bind RNAs produced by genes occupied by Nipped-B and cohesin. By genomic chromatin immunoprecipitation these RNA-binding proteins also bind to chromosomes at cohesin-binding genes, enhancers, and Polycomb response elements (PREs. RNAi depletion reveals that TBPH facilitates association of Nipped-B and cohesin with genes and regulatory sequences. Lark reduces binding of Nipped-B and cohesin at many promoters and aids their association with several large enhancers. Conversely, Nipped-B facilitates TBPH and Lark association with genes and regulatory sequences, and interacts with TBPH and Lark in affinity chromatography and immunoprecipitation experiments. Blocking transcription does not ablate binding of Nipped-B and the RNA-binding proteins to chromosomes, indicating transcription is not required to maintain binding once established. These findings demonstrate that RNA-binding proteins help govern association of sister chromatid cohesion proteins with genes and enhancers.

  16. Tension-induced binding of semiflexible biopolymers

    Science.gov (United States)

    Benetatos, Panayotis; von der Heydt, Alice; Zippelius, Annette

    2015-03-01

    We investigate theoretically the effect of polymer tension on the collective behaviour of reversible cross-links. We use a model of two parallel-aligned, weakly-bending wormlike chains with a regularly spaced sequence of binding sites subjected to a tensile force. Reversible cross-links attach and detach at the binding sites with an affinity controlled by a chemical potential. In a mean-field approach, we calculate the free energy of the system and we show the emergence of a free energy barrier which controls the reversible (un)binding. The tension affects the conformational entropy of the chains which competes with the binding energy of the cross-links. This competition gives rise to a sudden increase in the fraction of bound sites as the polymer tension increases. The force-induced first-order transition in the number of cross-links implies a sudden force-induced stiffening of the effective stretching modulus of the polymers. This mechanism may be relevant to the formation and stress-induced strengthening of stress fibers in the cytoskeleton. We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) via grant SFB-937/A1.

  17. Tension-induced binding of semiflexible biopolymers

    International Nuclear Information System (INIS)

    Benetatos, Panayotis; Heydt, Alice von der; Zippelius, Annette

    2014-01-01

    We investigate theoretically the effect of polymer tension on the collective behavior of reversibly binding cross-links. For this purpose, we employ a model of two weakly bending wormlike chains aligned in parallel by a tensile force, with a sequence of inter-chain binding sites regularly spaced along the contours. Reversible cross-links attach and detach at the sites with an affinity controlled by a chemical potential. In a mean-field approach, we calculate the free energy of the system and find the emergence of a free-energy barrier which controls the reversible (un)binding. The tension affects the conformational entropy of the chains which competes with the binding energy of the cross-links. This competition gives rise to a sudden increase in the fraction of bound sites as the tension increases. We show that this transition is related to the cross-over between weak and strong localization of a directed polymer in a pinning potential. The cross-over to the strongly bound state can be interpreted as a mechanism for force-stiffening which exceeds the capabilities of single-chain elasticity and thus available only to reversibly cross-linked polymers. (paper)

  18. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    International Nuclear Information System (INIS)

    Poulin, Kathy L.; Tong, Grace; Vorobyova, Olga; Pool, Madeline; Kothary, Rashmi; Parks, Robin J.

    2011-01-01

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: → We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. → Cre/loxP recombination was used to modify the adenovirus genome. → A targeting ligand present on capsid protein IX was removed or replaced using recombination. → Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  19. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein.

    Science.gov (United States)

    Morea, Edna G O; Viviescas, Maria Alejandra; Fernandes, Carlos A H; Matioli, Fabio F; Lira, Cristina B B; Fernandez, Maribel F; Moraes, Barbara S; da Silva, Marcelo S; Storti, Camila B; Fontes, Marcos R M; Cano, Maria Isabel N

    2017-11-01

    Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. LCalA is the first reported calmodulin that binds in vivo telomeric DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enhanced peptide nucleic acid binding to supercoiled DNA: possible implications for DNA "breathing" dynamics

    DEFF Research Database (Denmark)

    Bentin, T; Nielsen, Peter E.

    1996-01-01

    The influence of DNA topology on peptide nucleic acid (PNA) binding was studied. Formation of sequence-specific PNA2/dsDNA (double-stranded DNA) complexes was monitored by a potassium permanganate probing/primer extension assay. At low ionic strengths, the binding of PNA was 2-3 times more...

  1. Increased mRNA expression of a laminin-binding protein in human colon carcinoma: Complete sequence of a full-length cDNA encoding the protein

    International Nuclear Information System (INIS)

    Yow, Hsiukang; Wong, Jau Min; Chen, Hai Shiene; Lee, C.; Steele, G.D. Jr.; Chen, Lanbo

    1988-01-01

    Reliable markers to distinguish human colon carcinoma from normal colonic epithelium are needed particularly for poorly differentiated tumors where no useful marker is currently available. To search for markers the authors constructed cDNA libraries from human colon carcinoma cell lines and screened for clones that hybridize to a greater degree with mRNAs of colon carcinomas than with their normal counterparts. Here they report one such cDNA clone that hybridizes with a 1.2-kilobase (kb) mRNA, the level of which is ∼9-fold greater in colon carcinoma than in adjacent normal colonic epithelium. Blot hybridization of total RNA from a variety of human colon carcinoma cell lines shows that the level of this 1.2-kb mRNA in poorly differentiated colon carcinomas is as high as or higher than that in well-differentiated carcinomas. Molecular cloning and complete sequencing of cDNA corresponding to the full-length open reading frame of this 1.2-kb mRNA unexpectedly show it to contain all the partial cDNA sequence encoding 135 amino acid residues previously reported for a human laminin receptor. The deduced amino acid sequence suggests that this putative laminin-binding protein from human colon carcinomas consists of 295 amino acid residues with interesting features. There is an unusual C-terminal 70-amino acid segment, which is trypsin-resistant and highly negatively charged

  2. Crystal structure and DNA binding of the homeodomain of the stem cell transcription factor Nanog.

    Science.gov (United States)

    Jauch, Ralf; Ng, Calista Keow Leng; Saikatendu, Kumar Singh; Stevens, Raymond C; Kolatkar, Prasanna R

    2008-02-22

    The transcription factor Nanog is an upstream regulator in early mammalian development and a key determinant of pluripotency in embryonic stem cells. Nanog binds to promoter elements of hundreds of target genes and regulates their expression by an as yet unknown mechanism. Here, we report the crystal structure of the murine Nanog homeodomain (HD) and analysis of its interaction with a DNA element derived from the Tcf3 promoter. Two Nanog amino acid pairs, unique among HD sequences, appear to affect the mechanism of nonspecific DNA recognition as well as maintain the integrity of the structural scaffold. To assess selective DNA recognition by Nanog, we performed electrophoretic mobility shift assays using a panel of modified DNA binding sites and found that Nanog HD preferentially binds the TAAT(G/T)(G/T) motif. A series of rational mutagenesis experiments probing the role of six variant residues of Nanog on its DNA binding function establish their role in affecting binding affinity but not binding specificity. Together, the structural and functional evidence establish Nanog as a distant member of a Q50-type HD despite having considerable variation at the sequence level.

  3. Crystal Structure and DNA Binding of the Homeodomain of the Stem Cell Transcription Factor Nanog

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, Ralf; Ng, Calista Keow Leng; Saikatendu, Kumar Singh; Stevens, Raymond C.; Kolatkar, Prasanna R. (GI-Singapore); (Scripps)

    2010-02-08

    The transcription factor Nanog is an upstream regulator in early mammalian development and a key determinant of pluripotency in embryonic stem cells. Nanog binds to promoter elements of hundreds of target genes and regulates their expression by an as yet unknown mechanism. Here, we report the crystal structure of the murine Nanog homeodomain (HD) and analysis of its interaction with a DNA element derived from the Tcf3 promoter. Two Nanog amino acid pairs, unique among HD sequences, appear to affect the mechanism of nonspecific DNA recognition as well as maintain the integrity of the structural scaffold. To assess selective DNA recognition by Nanog, we performed electrophoretic mobility shift assays using a panel of modified DNA binding sites and found that Nanog HD preferentially binds the TAAT(G/T)(G/T) motif. A series of rational mutagenesis experiments probing the role of six variant residues of Nanog on its DNA binding function establish their role in affecting binding affinity but not binding specificity. Together, the structural and functional evidence establish Nanog as a distant member of a Q50-type HD despite having considerable variation at the sequence level.

  4. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I.

    Science.gov (United States)

    Sabbatini, A; Bombardieri, S; Migliorini, P

    1993-05-01

    SmD is one of the small nuclear ribonucleoproteins frequently targeted by autoantibodies in systemic lupus erythematosus. We isolated and characterized the antibodies present in lupus sera that are specific for the C-terminal region of SmD (sequence 95-119). This region is highly homologous to sequence 35-58 of the EBNA I antigen, one of the nuclear antigens induced by infection with Epstein-Barr virus. Antibodies affinity purified over a peptide 95-119 column were able to recognize this sequence in the context of the whole SmD molecule, as they reacted with blotted recombinant SmD. Anti-SmD 95-119 antibodies bound also the EBNA I 35-58 peptide and detected the EBNA I molecule in a total cell extract from Epstein-Barr virus-infected lines. A population of anti-SmD antibodies is, therefore, able to bind an epitope shared by the autoantigen and the viral antigen EBNA I. To investigate the involvement of this shared epitope in the generation of anti-SmD antibodies, we immunized mice with the EBNA I 35-58 peptide. Sera from immunized animals displayed the same pattern of reactivity of spontaneously produced anti-SmD antibodies. They reacted in fact with the EBNA peptide as well as with SmD 95-119 and recombinant SmD. These data suggest that molecular mimicry may play a role in the induction of anti-SmD autoantibodies.

  5. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    Science.gov (United States)

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2017-03-17

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. MARs Wars: heterogeneity and clustering of DNA-binding domains in the nuclear matrix

    Directory of Open Access Journals (Sweden)

    Ioudinkova E. S.

    2009-12-01

    Full Text Available Aim. CO326 is a chicken nuclear scaffold/matrix attachment region (MAR associated with the nuclear matrix in several types of chicken cells. It contains a binding site for a sequence-specific DNA-binding protein, F326. We have studied its interaction with the nuclear matrix. Methods. We have used an in vitro MAR assay with isolated matrices from chicken HD3 cells. Results. We have found that an oligonucleotide binding site for the F326 inhibits binding of the CO326 to the nuclear matrix. At the same time, the binding of heterologous MARs is enhanced. Conclusions. Taken together, these data suggest that there exist several classes of MARs and MAR-binding domains and that the MAR-binding proteins may be clustered in the nuclear matrix.

  7. The best and the brightest: exploiting tryptophan-sensitized Tb(3+) luminescence to engineer lanthanide-binding tags.

    Science.gov (United States)

    Martin, Langdon J; Imperiali, Barbara

    2015-01-01

    Consider the lanthanide metals, comprising lanthanum through lutetium. Lanthanides form stable cations with a +3 charge, and these ions exhibit a variety of useful physical properties (long-lifetime luminescence, paramagnetism, anomalous X-ray scattering) that are amenable to studies of biomolecules. The absence of lanthanide ions in living systems means that background signals are generally a nonissue; however, to exploit the advantageous properties it is necessary to engineer a robust lanthanide-binding sequence that can be appended to any macromolecules of interest. To this end, the luminescence produced by tryptophan-sensitized Tb(3+) has been used as a selection marker for peptide sequences that avidly chelate these ions. A combinatorial split-and-pool library that uses two orthogonal linkers-one that is cleaved for selection and one that is cleaved for sequencing and characterization-has been used to develop lanthanide-binding tags (LBTs): peptides of 15-20 amino acids with low-nM affinity for Tb(3+). Further validating the success of this screen, knowledge about LBTs has enabled the introduction of a lanthanide-binding loop in place of one of the four native calcium-binding loops within the protein calcineurin B.

  8. Sequence- and interactome-based prediction of viral protein hotspots targeting host proteins: a case study for HIV Nef.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk.

  9. CLONING AND SEQUENCING OF THE GENE FOR A LACTOCOCCAL ENDOPEPTIDASE, AN ENZYME WITH SEQUENCE SIMILARITY TO MAMMALIAN ENKEPHALINASE

    NARCIS (Netherlands)

    Mierau, Igor; Tan, Paris S.T.; Haandrikman, Alfred J.; Kok, Jan; Leenhouts, Kees J.; Konings, Wil N.; Venema, Gerard

    The gene specifying an endopeptidase of Lactococcus lactis, named pepO, was cloned from a genomic library of L. lactis subsp. cremoris P8-247 in lambdaEMBL3 and was subsequently sequenced. pepO is probably the last gene of an operon encoding the binding-protein-dependent oligopeptide transport

  10. Prediction of nucleosome positioning based on transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Xianfu Yi

    Full Text Available BACKGROUND: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS: Here, the minimum redundancy maximum relevance (mRMR feature selection algorithm, the nearest neighbor algorithm (NNA, and the incremental feature selection (IFS method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.

  11. Atomic structure of nitrate-binding protein crucial for photosynthetic productivity

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Pakrasi, Himadri B.; Smith, Thomas J.

    2006-06-27

    Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of all aquatic food chains by fixing carbon and nitrogen into cellular biomass. The single most important nutrient for photosynthesis and growth is nitrate, which is severely limiting in many aquatic environments particularly the open ocean (1, 2). It is therefore not surprising that NrtA, the solute-binding component of the high-affinity nitrate ABC transporter, is the single-most abundant protein in the plasma membrane of these bacteria (3). Here we describe the first structure of a nitratespecific receptor, NrtA from Synechocystis sp. PCC 6803, complexed with nitrate and determined to a resolution of 1.5Å. NrtA is significantly larger than other oxyanionbinding proteins, representing a new class of transport proteins. From sequence alignments, the only other solute-binding protein in this class is CmpA, a bicarbonatebinding protein. Therefore, these organisms created a novel solute-binding protein for two of the most important nutrients; inorganic nitrogen and carbon. The electrostatic charge distribution of NrtA appears to force the protein off of the membrane while the flexible tether facilitates the delivery of nitrate to the membrane pore. The structure not only details the determinants for nitrate selectivity in NrtA, but also the bicarbonate specificity in CmpA. Nitrate and bicarbonate transport are regulated by the cytoplasmic proteins NrtC and CmpC, respectively. Interestingly, the residues lining the ligand binding pockets suggest that they both bind nitrate. This implies that the nitrogen and carbon uptake pathways are synchronized by intracellular nitrate and nitrite.3 The nitrate ABC transporter of cyanobacteria is composed of four polypeptides (Figure 1): a high-affinity periplasmic solute-binding lipoprotein (NrtA), an integral membrane permease (NrtB), a cytoplasmic ATPase (NrtD), and a unique ATPase/solute-binding fusion protein (Nrt

  12. Characterization of the dextran-binding domain in the glucan-binding protein C of Streptococcus mutans.

    Science.gov (United States)

    Takashima, Y; Fujita, K; Ardin, A C; Nagayama, K; Nomura, R; Nakano, K; Matsumoto-Nakano, M

    2015-10-01

    Streptococcus mutans produces multiple glucan-binding proteins (Gbps), among which GbpC encoded by the gbpC gene is known to be a cell-surface-associated protein involved in dextran-induced aggregation. The purpose of the present study was to characterize the dextran-binding domain of GbpC using bioinformatics analysis and molecular techniques. Bioinformatics analysis specified five possible regions containing molecular binding sites termed GB1 through GB5. Next, truncated recombinant GbpC (rGbpC) encoding each region was produced using a protein expression vector and five deletion mutant strains were generated, termed CDGB1 through CDGB5 respectively. The dextran-binding rates of truncated rGbpC that included the GB1, GB3, GB4 and GB5 regions in the upstream sequences were higher than that of the construct containing GB2 in the downstream region. In addition, the rates of dextran-binding for strains CDGB4 and CD1, which was entire gbpC deletion mutant, were significantly lower than for the other strains, while those of all other deletion mutants were quite similar to that of the parental strain MT8148. Biofilm structures formed by CDGB4 and CD1 were not as pronounced as that of MT8148, while those formed by other strains had greater density as compared to that of CD1. Our results suggest that the dextran-binding domain may be located in the GB4 region in the interior of the gbpC gene. Bioinformatics analysis is useful for determination of functional domains in many bacterial species. © 2015 The Society for Applied Microbiology.

  13. Isoforms of the major peanut allergen Ara h 2: IgE binding in children with peanut allergy.

    Science.gov (United States)

    Hales, Belinda J; Bosco, Anthony; Mills, Kristina L; Hazell, Lee A; Loh, Richard; Holt, Patrick G; Thomas, Wayne R

    2004-10-01

    The major peanut allergen Ara h 2 consists of two isoforms, namely Ara h 2.0101 and Ara h 2.0201. The recently identified Ara h 2.0201 isoform contains an extra 12 amino acids including an extra copy of the reported immunodominant epitope DPYSPS. This study aimed to evaluate the IgE binding of the two Ara h 2 isoforms. Ten clones of Ara h 2 were sequenced to assess the relative frequency of the Ara h 2 isoforms and to identify whether there was further variation in the Ara h 2 sequence. IgE binding to Ara h 2.0101 and Ara h 2.0201 was measured for 70 peanut-allergic children using an IgE DELFIA assay to quantitate specific IgE binding. A competition assay was used to measure whether Ara h 2.0201 contained IgE epitopes other than those found for Ara h 2.0101. The original Ara h 2.0101 sequence was found for 6/10 clones and Ara h 2.0201 was found for 2/10 clones. Ara h 2.0201 had the expected insertion of 12 amino acids as well as substitutions at positions 40 (40G) and 142 (142E). Two new isoforms were identified as different polymorphisms of position 142. One Ara h 2.01 clone (Ara h 2.0102) contained 142E and one Ara h 2.02 clone (Ara h 2.0202) contained 142D. A polymorphism that was previously identified by other investigators at position 77 (77Q or 77R) was not found for any of the 10 sequences. Although the level of IgE binding to Ara h 2.0201 of individual patients was frequently higher than the binding to Ara h 2.0101 (p originally sequenced Ara h 2.0101 isoform and contains other IgE specificities.

  14. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae

    Science.gov (United States)

    Zhang, S.; Lockshin, C.; Herbert, A.; Winter, E.; Rich, A.

    1992-01-01

    A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.

  15. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    Directory of Open Access Journals (Sweden)

    Ronne Hans

    2008-11-01

    Full Text Available Abstract Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context.

  16. THE USE OF DEDICATED PEPTIDE LIBRARIES PERMITS THE DISCOVERY OF HIGH-AFFINITY BINDING PEPTIDES

    NARCIS (Netherlands)

    DEKOSTER, HS; AMONS, R; BENCKHUIJSEN, WE; FEIJLBRIEF, M; SCHELLEKENS, GA; DRIJFHOUT, JW

    1995-01-01

    The motif for peptide binding to monoclonal antibody mAb A16, which is known to be directed against glycoprotein D of Herpes simplex virus type 1, was determined using two dedicated peptide libraries. As a starting point for this study we used an A-16 binding lead sequence, which had previously been

  17. Transcriptional blockages in a cell-free system by sequence-selective DNA alkylating agents.

    Science.gov (United States)

    Ferguson, L R; Liu, A P; Denny, W A; Cullinane, C; Talarico, T; Phillips, D R

    2000-04-14

    There is considerable interest in DNA sequence-selective DNA-binding drugs as potential inhibitors of gene expression. Five compounds with distinctly different base pair specificities were compared in their effects on the formation and elongation of the transcription complex from the lac UV5 promoter in a cell-free system. All were tested at drug levels which killed 90% of cells in a clonogenic survival assay. Cisplatin, a selective alkylator at purine residues, inhibited transcription, decreasing the full-length transcript, and causing blockage at a number of GG or AG sequences, making it probable that intrastrand crosslinks are the blocking lesions. A cyclopropylindoline known to be an A-specific alkylator also inhibited transcription, with blocks at adenines. The aniline mustard chlorambucil, that targets primarily G but also A sequences, was also effective in blocking the formation of full-length transcripts. It produced transcription blocks either at, or one base prior to, AA or GG sequences, suggesting that intrastrand crosslinks could again be involved. The non-alkylating DNA minor groove binder Hoechst 33342 (a bisbenzimidazole) blocked formation of the full-length transcript, but without creating specific blockage sites. A bisbenzimidazole-linked aniline mustard analogue was a more effective transcription inhibitor than either chlorambucil or Hoechst 33342, with different blockage sites occurring immediately as compared with 2 h after incubation. The blockages were either immediately prior to AA or GG residues, or four to five base pairs prior to such sites, a pattern not predicted from in vitro DNA-binding studies. Minor groove DNA-binding ligands are of particular interest as inhibitors of gene expression, since they have the potential ability to bind selectively to long sequences of DNA. The results suggest that the bisbenzimidazole-linked mustard does cause alkylation and transcription blockage at novel DNA sites. in addition to sites characteristic of

  18. Conservation of the LexA repressor binding site in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Khan Feroz

    2008-03-01

    Full Text Available The LexA protein is a transcriptional repressor of the bacterial SOS DNA repair system, which comprises a set of DNA repair and cellular survival genes that are induced in response to DNA damage. Its varied DNA binding motifs have been characterized and reported in the Escherichia coli, Bacillus subtilis, rhizobia family members, marine magnetotactic bacterium, Salmonella typhimurium and recently in Mycobacterium tuberculosis and this motifs information has been used in our theoretical analysis to detect its novel regulated genes in radio-resistant Deinococcus radiodurans genome. This bacterium showed presence of SOS-box like consensus sequence in the upstream sequences of 3166 genes with >60% motif score similarity percentage (MSSP on both strands. Attempts to identify LexA-binding sites and the composition of the putative SOS regulon in D. radiodurans have been unsuccessful so far. To resolve the problem we performed theoretical analysis with modifications on reported data set of genes related to DNA repair (61 genes, stress response (145 genes and some unusual predicted operons (21 clusters. Expression of some of the predicted SOS-box regulated operon members then was examined through the previously reported microarray data which confirm the expression of only single predicted operon i.e. DRB0143 (AAA superfamily NTPase related to 5-methylcytosine specific restriction enzyme subunit McrB and DRB0144 (homolog of the McrC subunit of the McrBC restriction modification system. The methodology involved weight matrix construction through CONSENSUS algorithm using information of conserved upstream sequences of eight known genes including dinB, tagC, lexA, recA, uvrB, yneA of B. subtilis while lexA and recA of D. radiodurans through phylogenetic footprinting method and later detection of similar conserved SOS-box like LexA binding motifs through both RSAT & PoSSuMsearch programs. The resultant DNA consensus sequence had highly conserved 14 bp SOS

  19. Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study

    Directory of Open Access Journals (Sweden)

    Nathaniel G. N. Milton

    2010-01-01

    Full Text Available The diabetes-associated human islet amyloid polypeptide (IAPP is a 37-amino-acid peptide that forms fibrils in vitro and in vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ and prion protein (PrP fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KD of 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.

  20. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.

    Science.gov (United States)

    Wieczorek, Anna; McHenry, Charles S

    2006-05-05

    The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.

  1. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    International Nuclear Information System (INIS)

    Hempe, J.M.; Cousins, R.J.

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient

  2. TmiRUSite and TmiROSite scripts: searching for mRNA fragments with miRNA binding sites with encoded amino acid residues.

    Science.gov (United States)

    Berillo, Olga; Régnier, Mireille; Ivashchenko, Anatoly

    2014-01-01

    microRNAs are small RNA molecules that inhibit the translation of target genes. microRNA binding sites are located in the untranslated regions as well as in the coding domains. We describe TmiRUSite and TmiROSite scripts developed using python as tools for the extraction of nucleotide sequences for miRNA binding sites with their encoded amino acid residue sequences. The scripts allow for retrieving a set of additional sequences at left and at right from the binding site. The scripts presents all received data in table formats that are easy to analyse further. The predicted data finds utility in molecular and evolutionary biology studies. They find use in studying miRNA binding sites in animals and plants. TmiRUSite and TmiROSite scripts are available for free from authors upon request and at https: //sites.google.com/site/malaheenee/downloads for download.

  3. RNA-binding properties and mapping of the RNA-binding domain from the movement protein of Prunus necrotic ringspot virus.

    Science.gov (United States)

    Herranz, M Carmen; Pallás, Vicente

    2004-03-01

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is involved in intercellular virus transport. In this study, putative RNA-binding properties of the PNRSV MP were studied. The PNRSV MP was produced in Escherichia coli using an expression vector. Electrophoretic mobility shift assays (EMSAs) using DIG-labelled riboprobes demonstrated that PNRSV MP bound ssRNA cooperatively without sequence specificity. Two different ribonucleoprotein complexes were found to be formed depending on the molar MP : PNRSV RNA ratio. The different responses of the complexes to urea treatment strongly suggested that they have different structural properties. Deletion mutagenesis followed by Northwestern analysis allowed location of a nucleic acid binding domain to aa 56-88. This 33 aa RNA-binding motif is the smallest region delineated among members of the family Bromoviridae for which RNA-binding properties have been demonstrated. This domain is highly conserved within all phylogenetic subgroups previously described for PNRSV isolates. Interestingly, the RNA-binding domain described here and the one described for Alfamovirus are located at the N terminus of their corresponding MPs, whereas similar domains previously characterized in members of the genera Bromovirus and Cucumovirus are present at the C terminus, strongly reflecting their corresponding phylogenetic relationships. The evolutionary implications of this observation are discussed.

  4. Determining physical constraints in transcriptional initiationcomplexes using DNA sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shultzaberger, Ryan K.; Chiang, Derek Y.; Moses, Alan M.; Eisen,Michael B.

    2007-07-01

    Eukaryotic gene expression is often under the control ofcooperatively acting transcription factors whose binding is limited bystructural constraints. By determining these structural constraints, wecan understand the "rules" that define functional cooperativity.Conversely, by understanding the rules of binding, we can inferstructural characteristics. We have developed an information theory basedmethod for approximating the physical limitations of cooperativeinteractions by comparing sequence analysis to microarray expressiondata. When applied to the coordinated binding of the sulfur amino acidregulatory protein Met4 by Cbf1 and Met31, we were able to create acombinatorial model that can correctly identify Met4 regulatedgenes.

  5. Chameleon sequences in neurodegenerative diseases.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to "helix to strand (HE)", "helix to coil (HC)" and "strand to coil (CE)" alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Chameleon sequences in neurodegenerative diseases

    International Nuclear Information System (INIS)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Salari, Ali

    2016-01-01

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.

  7. Chameleon sequences in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Bahramali, Golnaz [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Goliaei, Bahram, E-mail: goliaei@ut.ac.ir [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Minuchehr, Zarrin, E-mail: minuchehr@nigeb.ac.ir [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of); Salari, Ali [Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran (Iran, Islamic Republic of)

    2016-03-25

    Chameleon sequences can adopt either alpha helix sheet or a coil conformation. Defining chameleon sequences in PDB (Protein Data Bank) may yield to an insight on defining peptides and proteins responsible in neurodegeneration. In this research, we benefitted from the large PDB and performed a sequence analysis on Chameleons, where we developed an algorithm to extract peptide segments with identical sequences, but different structures. In order to find new chameleon sequences, we extracted a set of 8315 non-redundant protein sequences from the PDB with an identity less than 25%. Our data was classified to “helix to strand (HE)”, “helix to coil (HC)” and “strand to coil (CE)” alterations. We also analyzed the occurrence of singlet and doublet amino acids and the solvent accessibility in the chameleon sequences; we then sorted out the proteins with the most number of chameleon sequences and named them Chameleon Flexible Proteins (CFPs) in our dataset. Our data revealed that Gly, Val, Ile, Tyr and Phe, are the major amino acids in Chameleons. We also found that there are proteins such as Insulin Degrading Enzyme IDE and GTP-binding nuclear protein Ran (RAN) with the most number of chameleons (640 and 405 respectively). These proteins have known roles in neurodegenerative diseases. Therefore it can be inferred that other CFP's can serve as key proteins in neurodegeneration, and a study on them can shed light on curing and preventing neurodegenerative diseases.

  8. Structural insights and ab initio sequencing within the DING proteins family

    International Nuclear Information System (INIS)

    Elias, Mikael; Liebschner, Dorothee; Gotthard, Guillaume; Chabriere, Eric

    2011-01-01

    DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated

  9. Structural insights and ab initio sequencing within the DING proteins family

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Mikael, E-mail: mikael.elias@weizmann.ac.il [Weizmann Institute of Science, Rehovot (Israel); Liebschner, Dorothee [CRM2, Nancy Université (France); Gotthard, Guillaume; Chabriere, Eric [AFMB, Université Aix-Marseille II (France)

    2011-01-01

    DING proteins constitute a recently discovered protein family that is ubiquitous in eukaryotes. The structural insights and the physiological involvements of these intriguing proteins are hereby deciphered. DING proteins constitute an intriguing family of phosphate-binding proteins that was identified in a wide range of organisms, from prokaryotes and archae to eukaryotes. Despite their seemingly ubiquitous occurrence in eukaryotes, their encoding genes are missing from sequenced genomes. Such a lack has considerably hampered functional studies. In humans, these proteins have been related to several diseases, like atherosclerosis, kidney stones, inflammation processes and HIV inhibition. The human phosphate binding protein is a human representative of the DING family that was serendipitously discovered from human plasma. An original approach was developed to determine ab initio the complete and exact sequence of this 38 kDa protein by utilizing mass spectrometry and X-ray data in tandem. Taking advantage of this first complete eukaryotic DING sequence, a immunohistochemistry study was undertaken to check the presence of DING proteins in various mice tissues, revealing that these proteins are widely expressed. Finally, the structure of a bacterial representative from Pseudomonas fluorescens was solved at sub-angstrom resolution, allowing the molecular mechanism of the phosphate binding in these high-affinity proteins to be elucidated.

  10. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leder, Verena [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lummer, Martina [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Tegeler, Kathrin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Humpert, Fabian [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lewinski, Martin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Schüttpelz, Mark [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Staiger, Dorothee, E-mail: dorothee.staiger@uni-bielefeld.de [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany)

    2014-10-10

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R{sup 49} abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K{sub d} value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R{sup 49} that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding.

  11. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Leder, Verena; Lummer, Martina; Tegeler, Kathrin; Humpert, Fabian; Lewinski, Martin; Schüttpelz, Mark; Staiger, Dorothee

    2014-01-01

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R 49 abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K d value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R 49 that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding

  12. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Science.gov (United States)

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  13. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Mihaly Varadi

    Full Text Available Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  14. In silico detection of sequence variations modifying transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Malin C Andersen

    2008-01-01

    Full Text Available Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers. The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation.

  15. In Silico Detection of Sequence Variations Modifying Transcriptional Regulation

    Science.gov (United States)

    Andersen, Malin C; Engström, Pär G; Lithwick, Stuart; Arenillas, David; Eriksson, Per; Lenhard, Boris; Wasserman, Wyeth W; Odeberg, Jacob

    2008-01-01

    Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation. PMID:18208319

  16. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  17. Comprehensive Interrogation of Natural TALE DNA Binding Modules and Transcriptional Repressor Domains

    Science.gov (United States)

    Cong, Le; Zhou, Ruhong; Kuo, Yu-chi; Cunniff, Margaret; Zhang, Feng

    2012-01-01

    Transcription activator-like effectors (TALE) are sequence-specific DNA binding proteins that harbor modular, repetitive DNA binding domains. TALEs have enabled the creation of customizable designer transcriptional factors and sequence-specific nucleases for genome engineering. Here we report two improvements of the TALE toolbox for achieving efficient activation and repression of endogenous gene expression in mammalian cells. We show that the naturally occurring repeat variable diresidue (RVD) Asn-His (NH) has high biological activity and specificity for guanine, a highly prevalent base in mammalian genomes. We also report an effective TALE transcriptional repressor architecture for targeted inhibition of transcription in mammalian cells. These findings will improve the precision and effectiveness of genome engineering that can be achieved using TALEs. PMID:22828628

  18. Assessing high affinity binding to HLA-DQ2.5 by a novel peptide library based approach

    DEFF Research Database (Denmark)

    Jüse, Ulrike; Arntzen, Magnus; Højrup, Peter

    2011-01-01

    Here we report on a novel peptide library based method for HLA class II binding motif identification. The approach is based on water soluble HLA class II molecules and soluble dedicated peptide libraries. A high number of different synthetic peptides are competing to interact with a limited amount...... library. The eluted sequences fit very well with the previously described HLA-DQ2.5 peptide binding motif. This novel method, limited by library complexity and sensitivity of mass spectrometry, allows the analysis of several thousand synthetic sequences concomitantly in a simple water soluble format....

  19. A peptide-binding assay for the disease-associated HLA-DQ8 molecule

    DEFF Research Database (Denmark)

    Straumfors, A; Johansen, B H; Vartdal, F

    1998-01-01

    The study of peptide binding to HLA class II molecules has mostly concentrated on DR molecules. Since many autoimmune diseases show a primary association to particular DQ molecules rather than DR molecules, it is also important to study the peptide-binding properties of DQ molecules. Here we repo......-affinity binders, whereas peptides derived from myelin basic protein were among the low-affinity binders. The sequence of the high-affinity peptides conformed with a previously published peptide-binding motif of DQ8.......The study of peptide binding to HLA class II molecules has mostly concentrated on DR molecules. Since many autoimmune diseases show a primary association to particular DQ molecules rather than DR molecules, it is also important to study the peptide-binding properties of DQ molecules. Here we report...

  20. Identification of carbohydrate-binding domains in the attachment proteins of type 1 and type 3 reoviruses.

    Science.gov (United States)

    Chappell, J D; Duong, J L; Wright, B W; Dermody, T S

    2000-09-01

    The reovirus attachment protein, sigma1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The sigma1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of sigma1 that binds cell surface carbohydrate. Chimeric and truncated sigma1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-sigma1 antibodies, and oligomerization indicates that the chimeric and truncated sigma1 proteins are properly folded. To assess carbohydrate binding, recombinant sigma1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated sigma1 proteins, the sialic acid-binding domain of type 3 sigma1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted beta-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of sigma1 protein purified from virions. In contrast, the homologous region of T1L sigma1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 sigma1 tail. Furthermore, our findings indicate that T1L and T3D sigma1 proteins contain different arrangements of receptor-binding

  1. Effect of ATRX and G-Quadruplex Formation by the VNTR Sequence on α-Globin Gene Expression.

    Science.gov (United States)

    Li, Yue; Syed, Junetha; Suzuki, Yuki; Asamitsu, Sefan; Shioda, Norifumi; Wada, Takahito; Sugiyama, Hiroshi

    2016-05-17

    ATR-X (α-thalassemia/mental retardation X-linked) syndrome is caused by mutations in chromatin remodeler ATRX. ATRX can bind the variable number of tandem repeats (VNTR) sequence in the promoter region of the α-globin gene cluster. The VNTR sequence, which contains the potential G-quadruplex-forming sequence CGC(GGGGCGGGG)n , is involved in the downregulation of α-globin expression. We investigated G-quadruplex and i-motif formation in single-stranded DNA and long double-stranded DNA. The promoter region without the VNTR sequence showed approximately twofold higher luciferase activity than the promoter region harboring the VNTR sequence. G-quadruplex stabilizers hemin and TMPyP4 reduced the luciferase activity, whereas expression of ATRX led to a recovery in reporter activity. Our results demonstrate that stable G-quadruplex formation by the VNTR sequence downregulates the expression of α-globin genes and that ATRX might bind to and resolve the G-quadruplex. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats☆

    Science.gov (United States)

    Marzo, Mar; Liu, Danxu; Ruiz, Alfredo; Chalmers, Ronald

    2013-01-01

    Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity. PMID:23648487

  3. Identification of multiple binding sites for the THAP domain of the Galileo transposase in the long terminal inverted-repeats.

    Science.gov (United States)

    Marzo, Mar; Liu, Danxu; Ruiz, Alfredo; Chalmers, Ronald

    2013-08-01

    Galileo is a DNA transposon responsible for the generation of several chromosomal inversions in Drosophila. In contrast to other members of the P-element superfamily, it has unusually long terminal inverted-repeats (TIRs) that resemble those of Foldback elements. To investigate the function of the long TIRs we derived consensus and ancestral sequences for the Galileo transposase in three species of Drosophilids. Following gene synthesis, we expressed and purified their constituent THAP domains and tested their binding activity towards the respective Galileo TIRs. DNase I footprinting located the most proximal DNA binding site about 70 bp from the transposon end. Using this sequence we identified further binding sites in the tandem repeats that are found within the long TIRs. This suggests that the synaptic complex between Galileo ends may be a complicated structure containing higher-order multimers of the transposase. We also attempted to reconstitute Galileo transposition in Drosophila embryos but no events were detected. Thus, although the limited numbers of Galileo copies in each genome were sufficient to provide functional consensus sequences for the THAP domains, they do not specify a fully active transposase. Since the THAP recognition sequence is short, and will occur many times in a large genome, it seems likely that the multiple binding sites within the long, internally repetitive, TIRs of Galileo and other Foldback-like elements may provide the transposase with its binding specificity. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  4. The conserved Tarp actin binding domain is important for chlamydial invasion.

    Directory of Open Access Journals (Sweden)

    Travis J Jewett

    2010-07-01

    Full Text Available The translocated actin recruiting phosphoprotein (Tarp is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  5. Low nucleosome occupancy is encoded around functional human transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Daenen Floris

    2008-07-01

    Full Text Available Abstract Background Transcriptional regulation of genes in eukaryotes is achieved by the interactions of multiple transcription factors with arrays of transcription factor binding sites (TFBSs on DNA and with each other. Identification of these TFBSs is an essential step in our understanding of gene regulatory networks, but computational prediction of TFBSs with either consensus or commonly used stochastic models such as Position-Specific Scoring Matrices (PSSMs results in an unacceptably high number of hits consisting of a few true functional binding sites and numerous false non-functional binding sites. This is due to the inability of the models to incorporate higher order properties of sequences including sequences surrounding TFBSs and influencing the positioning of nucleosomes and/or the interactions that might occur between transcription factors. Results Significant improvement can be expected through the development of a new framework for the modeling and prediction of TFBSs that considers explicitly these higher order sequence properties. It would be particularly interesting to include in the new modeling framework the information present in the nucleosome positioning sequences (NPSs surrounding TFBSs, as it can be hypothesized that genomes use this information to encode the formation of stable nucleosomes over non-functional sites, while functional sites have a more open chromatin configuration. In this report we evaluate the usefulness of the latter feature by comparing the nucleosome occupancy probabilities around experimentally verified human TFBSs with the nucleosome occupancy probabilities around false positive TFBSs and in random sequences. Conclusion We present evidence that nucleosome occupancy is remarkably lower around true functional human TFBSs as compared to non-functional human TFBSs, which supports the use of this feature to improve current TFBS prediction approaches in higher eukaryotes.

  6. The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both RNA sequence and structure.

    Science.gov (United States)

    Jaffrey, S R; Haile, D J; Klausner, R D; Harford, J B

    1993-09-25

    To assess the influence of RNA sequence/structure on the interaction RNAs with the iron-responsive element binding protein (IRE-BP), twenty eight altered RNAs were tested as competitors for an RNA corresponding to the ferritin H chain IRE. All changes in the loop of the predicted IRE hairpin and in the unpaired cytosine residue characteristically found in IRE stems significantly decreased the apparent affinity of the RNA for the IRE-BP. Similarly, alteration in the spacing and/or orientation of the loop and the unpaired cytosine of the stem by either increasing or decreasing the number of base pairs separating them significantly reduced efficacy as a competitor. It is inferred that the IRE-BP forms multiple contacts with its cognate RNA, and that these contacts, acting in concert, provide the basis for the high affinity of this interaction.

  7. Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription.

    Science.gov (United States)

    Kamenova, Ivanka; Warfield, Linda; Hahn, Steven

    2014-08-01

    Most RNA polymerase (Pol) II promoters lack a TATA element, yet nearly all Pol II transcription requires TATA binding protein (TBP). While the TBP-TATA interaction is critical for transcription at TATA-containing promoters, it has been unclear whether TBP sequence-specific DNA contacts are required for transcription at TATA-less genes. Transcription factor IID (TFIID), the TBP-containing coactivator that functions at most TATA-less genes, recognizes short sequence-specific promoter elements in metazoans, but analogous promoter elements have not been identified in Saccharomyces cerevisiae. We generated a set of mutations in the yeast TBP DNA binding surface and found that most support growth of yeast. Both in vivo and in vitro, many of these mutations are specifically defective for transcription of two TATA-containing genes with only minor defects in transcription of two TATA-less, TFIID-dependent genes. TBP binds several TATA-less promoters with apparent high affinity, but our results suggest that this binding is not important for transcription activity. Our results are consistent with the model that sequence-specific TBP-DNA contacts are not important at yeast TATA-less genes and suggest that other general transcription factors or coactivator subunits are responsible for recognition of TATA-less promoters. Our results also explain why yeast TBP derivatives defective for TATA binding appear defective in activated transcription. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA.

    Science.gov (United States)

    Mori, Tetsuya; Saveliev, Sergei V; Xu, Yao; Stafford, Walter F; Cox, Michael M; Inman, Ross B; Johnson, Carl H

    2002-12-24

    KaiC from Synechococcus elongatus PCC 7942 (KaiC) is an essential circadian clock protein in cyanobacteria. Previous sequence analyses suggested its inclusion in the RecADnaB superfamily. A characteristic of the proteins of this superfamily is that they form homohexameric complexes that bind DNA. We show here that KaiC also forms ring complexes with a central pore that can be visualized by electron microscopy. A combination of analytical ultracentrifugation and chromatographic analyses demonstrates that these complexes are hexameric. The association of KaiC molecules into hexamers depends on the presence of ATP. The KaiC sequence does not include the obvious DNA-binding motifs found in RecA or DnaB. Nevertheless, KaiC binds forked DNA substrates. These data support the inclusion of KaiC into the RecADnaB superfamily and have important implications for enzymatic activity of KaiC in the circadian clock mechanism that regulates global changes in gene expression patterns.

  9. Sequence homology: A poor predictive value for profilins cross-reactivity

    Directory of Open Access Journals (Sweden)

    Pazouki Nazanin

    2005-09-01

    Full Text Available Summary Background Profilins are highly cross-reactive allergens which bind IgE antibodies of almost 20% of plant-allergic patients. This study is aimed at investigating cross-reactivity of melon profilin with other plant profilins and the role of the linear and conformational epitopes in human IgE cross-reactivity. Methods Seventeen patients with melon allergy were selected based on clinical history and a positive skin prick test to melon extract. Melon profilin has been cloned and expressed in E. coli. The IgE binding and cross-reactivity of the recombinant profilin were measured by ELISA and inhibition ELISA. The amino acid sequence of melon profilin was compared with other profilin sequences. A combination of chemical cleavage and immunoblotting techniques were used to define the role of conformational and linear epitopes in IgE binding. Comparative modeling was used to construct three-dimensional models of profilins and to assess theoretical impact of amino acid differences on conformational structure. Results Profilin was identified as a major IgE-binding component of melon. Alignment of amino acid sequences of melon profilin with other profilins showed the most identity with watermelon profilin. This melon profilin showed substantial cross-reactivity with the tomato, peach, grape and Cynodon dactylon (Bermuda grass pollen profilins. Cantaloupe, watermelon, banana and Poa pratensis (Kentucky blue grass displayed no notable inhibition. Our experiments also indicated human IgE only react with complete melon profilin. Immunoblotting analysis with rabbit polyclonal antibody shows the reaction of the antibody to the fragmented and complete melon profilin. Although, the well-known linear epitope of profilins were identical in melon and watermelon, comparison of three-dimensional models of watermelon and melon profilins indicated amino acid differences influence the electric potential and accessibility of the solvent-accessible surface of

  10. De-novo discovery of differentially abundant transcription factor binding sites including their positional preference.

    Science.gov (United States)

    Keilwagen, Jens; Grau, Jan; Paponov, Ivan A; Posch, Stefan; Strickert, Marc; Grosse, Ivo

    2011-02-10

    Transcription factors are a main component of gene regulation as they activate or repress gene expression by binding to specific binding sites in promoters. The de-novo discovery of transcription factor binding sites in target regions obtained by wet-lab experiments is a challenging problem in computational biology, which has not been fully solved yet. Here, we present a de-novo motif discovery tool called Dispom for finding differentially abundant transcription factor binding sites that models existing positional preferences of binding sites and adjusts the length of the motif in the learning process. Evaluating Dispom, we find that its prediction performance is superior to existing tools for de-novo motif discovery for 18 benchmark data sets with planted binding sites, and for a metazoan compendium based on experimental data from micro-array, ChIP-chip, ChIP-DSL, and DamID as well as Gene Ontology data. Finally, we apply Dispom to find binding sites differentially abundant in promoters of auxin-responsive genes extracted from Arabidopsis thaliana microarray data, and we find a motif that can be interpreted as a refined auxin responsive element predominately positioned in the 250-bp region upstream of the transcription start site. Using an independent data set of auxin-responsive genes, we find in genome-wide predictions that the refined motif is more specific for auxin-responsive genes than the canonical auxin-responsive element. In general, Dispom can be used to find differentially abundant motifs in sequences of any origin. However, the positional distribution learned by Dispom is especially beneficial if all sequences are aligned to some anchor point like the transcription start site in case of promoter sequences. We demonstrate that the combination of searching for differentially abundant motifs and inferring a position distribution from the data is beneficial for de-novo motif discovery. Hence, we make the tool freely available as a component of the open

  11. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation

    Energy Technology Data Exchange (ETDEWEB)

    Lafaye, Céline; Barbier, Ewa; Miscioscia, Audrey; Saint-Pierre, Christine [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France); Kraut, Alexandra; Couté, Yohann [Etude de la Dynamique des Protéomes, Biologie à Grande Echelle, UMR S_1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France); Plo, Isabelle [INSERM, U1009, Institut Gustave Roussy, Université Paris 11, 114 rue Edouard Vaillant, Villejuif F-94805 (France); Gasparutto, Didier; Ravanat, Jean-Luc [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France); Breton, Jean, E-mail: jean.breton@cea.fr [Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E_3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France)

    2014-03-28

    Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied this strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis.

  12. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation

    International Nuclear Information System (INIS)

    3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Lafaye, Céline; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Barbier, Ewa; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Miscioscia, Audrey; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Saint-Pierre, Christine; 1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Etude de la Dynamique des Protéomes, Biologie à Grande Echelle, UMR S1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" >Kraut, Alexandra; 1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Etude de la Dynamique des Protéomes, Biologie à Grande Echelle, UMR S1038 CEA/INSERM/UJF-Grenoble 1, iRTSV, 17 rue des Martyrs, Grenoble F-38054 (France))" >Couté, Yohann; Plo, Isabelle; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Gasparutto, Didier; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Ravanat, Jean-Luc; 3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" data-affiliation=" (Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique, UMR E3 CEA/UJF-Grenoble 1, INAC, 17 rue des Martyrs, Grenoble F-38054 (France))" >Breton, Jean

    2014-01-01

    Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied this strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis

  13. An effective approach for identification of in vivo protein-DNA binding sites from paired-end ChIP-Seq data

    Directory of Open Access Journals (Sweden)

    Wilson Zoe A

    2010-02-01

    Full Text Available Abstract Background ChIP-Seq, which combines chromatin immunoprecipitation (ChIP with high-throughput massively parallel sequencing, is increasingly being used for identification of protein-DNA interactions in vivo in the genome. However, to maximize the effectiveness of data analysis of such sequences requires the development of new algorithms that are able to accurately predict DNA-protein binding sites. Results Here, we present SIPeS (Site Identification from Paired-end Sequencing, a novel algorithm for precise identification of binding sites from short reads generated by paired-end solexa ChIP-Seq technology. In this paper we used ChIP-Seq data from the Arabidopsis basic helix-loop-helix transcription factor ABORTED MICROSPORES (AMS, which is expressed within the anther during pollen development, the results show that SIPeS has better resolution for binding site identification compared to two existing ChIP-Seq peak detection algorithms, Cisgenome and MACS. Conclusions When compared to Cisgenome and MACS, SIPeS shows better resolution for binding site discovery. Moreover, SIPeS is designed to calculate the mappable genome length accurately with the fragment length based on the paired-end reads. Dynamic baselines are also employed to effectively discriminate closely adjacent binding sites, for effective binding sites discovery, which is of particular value when working with high-density genomes.

  14. In silico studies on structure-function of DNA GCC- box binding domain of brassica napus DREB1 protein

    International Nuclear Information System (INIS)

    Qamarunnisa, S.; Hussain, M.

    2012-01-01

    DREB1 is a transcriptional factor, which selectively binds with the promoters of the genes involved in stress response in the plants. Homology of DREB protein and its binding element have been detected in the genome of many plants. However, only a few reports exist that discusses the binding properties of this protein with the gene (s) promoter. In the present study, we have undertaken studies exploring the structure-function relationship of Brassica napus DREB1. Multiple sequence alignment, protein homology modeling and intermolecular docking of GCC-box binding domain (GBD) of the said protein was carried out using atomic coordinates of GBD from Arabdiopsis thaliana and GCC-box containing DNA respectively. Similarities and/or identities in multiple, sequence alignment, particularly at the functionally important amino acids, strongly suggested the binding specificity of B. napus DREB1 to GCC-box. Similarly, despite 56% sequence homology, tertiary structures of both template and modeled protein were found to be extremely similar as indicated by root mean square deviation of 0.34 A. More similarities were established between GBD of both A. thaliana and B. napus DREB1 by conducting protein docking with the DNA containing GCC-box. It appears that both proteins interact through their beta-sheet with the major DNA groove including both nitrogen bases and phosphate and sugar moieties. Additionally, in most cases the interacting residues were also found to be identical. Briefly, this study attempts to elucidate the molecular basis of DREB1 interaction with its target sequence in the promoter. (author)

  15. Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis

    OpenAIRE

    SPRATT, BG; ZHANG, QY; JONES, DM; HUTCHISON, A; BRANNIGAN, JA; DOWSON, CG

    1989-01-01

    Non-beta-lactamase-producing, penicillin-resistant strains of Neisseria meningitidis produce altered forms of penicillin-binding protein 2 that have decreased affinity for penicillin. The sequence of the penicillin-binding protein 2 gene (penA) from a penicillin-resistant strain of N. meningitidis was compared to the sequence of the same gene from penicillin-sensitive strains and from penicillin-sensitive and penicillin-resistant strains of Neisseria gonorrhoeae. The penA genes from penicilli...

  16. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA.

    Directory of Open Access Journals (Sweden)

    Janet L Smith

    2015-05-01

    Full Text Available DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq. We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.

  17. Biochemical profiling of histone binding selectivity of the yeast bromodomain family.

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2010-01-01

    Full Text Available It has been shown that molecular interactions between site-specific chemical modifications such as acetylation and methylation on DNA-packing histones and conserved structural modules present in transcriptional proteins are closely associated with chromatin structural changes and gene activation. Unlike methyl-lysine that can interact with different protein modules including chromodomains, Tudor and MBT domains, as well as PHD fingers, acetyl-lysine (Kac is known thus far to be recognized only by bromodomains. While histone lysine acetylation plays a crucial role in regulation of chromatin-mediated gene transcription, a high degree of sequence variation of the acetyl-lysine binding site in the bromodomains has limited our understanding of histone binding selectivity of the bromodomain family. Here, we report a systematic family-wide analysis of 14 yeast bromodomains binding to 32 lysine-acetylated peptides derived from known major acetylation sites in four core histones that are conserved in eukaryotes.The histone binding selectivity of purified recombinant yeast bromodomains was assessed by using the native core histones in an overlay assay, as well as N-terminally biotinylated lysine-acetylated histone peptides spotted on streptavidin-coated nitrocellulose membrane in a dot blot assay. NMR binding analysis further validated the interactions between histones and selected bromodomain. Structural models of all yeast bromodomains were built using comparative modeling to provide insights into the molecular basis of their histone binding selectivity.Our study reveals that while not all members of the bromodomain family are privileged to interact with acetylated-lysine, identifiable sequence features from those that bind histone emerge. These include an asparagine residue at the C-terminus of the third helix in the 4-helix bundle, negatively charged residues around the ZA loop, and preponderance of aromatic amino acid residues in the binding pocket

  18. Extended HSR/CARD domain mediates AIRE binding to DNA

    Energy Technology Data Exchange (ETDEWEB)

    Maslovskaja, Julia, E-mail: julia.maslovskaja@ut.ee; Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-12-25

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.

  19. Extended HSR/CARD domain mediates AIRE binding to DNA

    International Nuclear Information System (INIS)

    Maslovskaja, Julia; Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-01-01

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.

  20. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    DEFF Research Database (Denmark)

    Portales-Casamar, Elodie; Thongjuea, Supat; Kwon, Andrew T

    2009-01-01

    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database...... to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature...

  1. Evaluation of simultaneous binding of Chromomycin A3 to the multiple sites of DNA by the new restriction enzyme assay.

    Science.gov (United States)

    Murase, Hirotaka; Noguchi, Tomoharu; Sasaki, Shigeki

    2018-06-01

    Chromomycin A3 (CMA3) is an aureolic acid-type antitumor antibiotic. CMA3 forms dimeric complexes with divalent cations, such as Mg 2+ , which strongly binds to the GC rich sequence of DNA to inhibit DNA replication and transcription. In this study, the binding property of CMA3 to the DNA sequence containing multiple GC-rich binding sites was investigated by measuring the protection from hydrolysis by the restriction enzymes, AccII and Fnu4HI, for the center of the CGCG site and the 5'-GC↓GGC site, respectively. In contrast to the standard DNase I footprinting method, the DNA substrates are fully hydrolyzed by the restriction enzymes, therefore, the full protection of DNA at all the cleavable sites indicates that CMA3 simultaneously binds to all the binding sites. The restriction enzyme assay has suggested that CMA3 has a high tendency to bind the successive CGCG sites and the CGG repeat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Triple helix-forming oligonucleotide corresponding to the polypyrimidine sequence in the rat alpha 1(I) collagen promoter specifically inhibits factor binding and transcription.

    Science.gov (United States)

    Kovacs, A; Kandala, J C; Weber, K T; Guntaka, R V

    1996-01-19

    Type I and III fibrillar collagens are the major structural proteins of the extracellular matrix found in various organs including the myocardium. Abnormal and progressive accumulation of fibrillar type I collagen in the interstitial spaces compromises organ function and therefore, the study of transcriptional regulation of this gene and specific targeting of its expression is of major interest. Transient transfection of adult cardiac fibroblasts indicate that the polypurine-polypyrimidine sequence of alpha 1(I) collagen promoter between nucleotides - 200 and -140 represents an overall positive regulatory element. DNase I footprinting and electrophoretic mobility shift assays suggest that multiple factors bind to different elements of this promoter region. We further demonstrate that the unique polypyrimidine sequence between -172 and -138 of the promoter represents a suitable target for a single-stranded polypurine oligonucleotide (TFO) to form a triple helix DNA structure. Modified electrophoretic mobility shift assays show that this TFO specifically inhibits the protein-DNA interaction within the target region. In vitro transcription assays and transient transfection experiments demonstrate that the transcriptional activity of the promoter is inhibited by this oligonucleotide. We propose that TFOs represent a therapeutic potential to specifically influence the expression of alpha 1(I) collagen gene in various disease states where abnormal type I collagen accumulation is known to occur.

  3. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Storrs, Richard Wood [Univ. of California, Berkeley, CA (United States)

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by 31P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 Å of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an α-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  4. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Storrs, R.W.

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by [sup 31]P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 [Angstrom] of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an [alpha]-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.

  5. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  6. The structure of Plasmodium vivax phosphatidylethanolamine-binding protein suggests a functional motif containing a left-handed helix

    International Nuclear Information System (INIS)

    Arakaki, Tracy; Neely, Helen; Boni, Erica; Mueller, Natasha; Buckner, Frederick S.; Van Voorhis, Wesley C.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Hol, Wim G. J.; Merritt, Ethan A.

    2007-01-01

    The crystal structure of a phosphatidylethanolamine-binding protein from P. vivax, a homolog of Raf-kinase inhibitor protein (RKIP), has been solved to a resolution of 1.3 Å. The inferred interaction surface near the anion-binding site is found to include a distinctive left-handed α-helix. The structure of a putative Raf kinase inhibitor protein (RKIP) homolog from the eukaryotic parasite Plasmodium vivax has been studied to a resolution of 1.3 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protozoan protein is topologically similar to previously studied members of the phosphatidylethanolamine-binding protein (PEBP) sequence family, but exhibits a distinctive left-handed α-helical region at one side of the canonical phospholipid-binding site. Re-examination of previously determined PEBP structures suggests that the P. vivax protein and yeast carboxypeptidase Y inhibitor may represent a structurally distinct subfamily of the diverse PEBP-sequence family

  7. MIPS: a calmodulin-binding protein of Gracilaria lemaneiformis under heat shock.

    Science.gov (United States)

    Zhang, Xuan; Zhou, Huiyue; Zang, Xiaonan; Gong, Le; Sun, Hengyi; Zhang, Xuecheng

    2014-08-01

    To study the Ca(2+)/Calmodulin (CaM) signal transduction pathway of Gracilaria lemaneiformis under heat stress, myo-inositol-1-phosphate synthase (MIPS), a calmodulin-binding protein, was isolated using the yeast two-hybrid system. cDNA and DNA sequences of mips were cloned from G. lemaneiformis by using 5'RACE and genome walking procedures. The MIPS DNA sequence was 2,067 nucleotides long, containing an open reading frame (ORF) of 1,623 nucleotides with no intron. The mips ORF was predicted to encode 540 amino acids, which included the conserved MIPS domain and was 61-67 % similar to that of other species. After analyzing the amino acid sequence of MIPS, the CaM-Binding Domain (CaMBD) was inferred to be at a site spanning from amino acid 212 to amino acid 236. The yeast two-hybrid results proved that MIPS can interact with CaM and that MIPS is a type of calmodulin-binding protein. Next, the expression of CaM and MIPS in wild-type G. lemaneiformis and a heat-tolerant G. lemaneiformis cultivar, "981," were analyzed using real-time PCR under a heat shock of 32 °C. The expression level displayed a cyclical upward trend. Compared with wild type, the CaM expression levels of cultivar 981 were higher, which might directly relate to its resistance to high temperatures. This paper indicates that MIPS and CaM may play important roles in the high-temperature resistance of G. lemaneiformis.

  8. Specific DNA-binding proteins and DNA sequences involved in steroid hormone regulation of gene expression

    International Nuclear Information System (INIS)

    Spelsberg, T.; Hora, J.; Horton, M.; Goldberger, A.; Littlefield, B.; Seelke, R.; Toyoda, H.

    1987-01-01

    Steroid hormones circulate in the blood and are taken by target cells via complexes with intracellular binding proteins termed receptors, that are hormone and tissue specific. Each receptor binds it specific steroid with very high affinity, having an equilibrium dissociation constant (K/sub d/) in the range of 10 -9 to 10 -10 M. Once bound by their specific steroid hormones, the steroid receptors undergo a conformational change which allows them to bind with high affinity to sites on chromatin, termed nuclear acceptor sites. There are estimated 5,000 to 10,000 of these sites expressed with an equal number not expressed (''masked'') in intact chromatin. The result of the binding to nuclear acceptor sites is an alteration of gene transcription or, in some cases, gene expression as measured by the changing levels of specific RNAs and proteins in that target tissue. Each steroid regulates specific effects on the RNA and protein profiles. The chronology of the above mechanism of action after injection of radiolabelled steroid as is follows: Steroid-receptor complex formation (1 minute), nuclear acceptor sites (2 minutes), effects on RNA synthesis (10 to 30 minutes), and finally the changing protein profiles via changes in protein synthesis and protein turnover (1 to 6 hours). Thus steroid receptors represent one of the first identified intracellular gene regulation proteins. The receptor molecules themselves are regulated by the presence or absence of the steroid molecule

  9. AbDesign: An algorithm for combinatorial backbone design guided by natural conformations and sequences.

    Science.gov (United States)

    Lapidoth, Gideon D; Baran, Dror; Pszolla, Gabriele M; Norn, Christoffer; Alon, Assaf; Tyka, Michael D; Fleishman, Sarel J

    2015-08-01

    Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function--essential to exert control over all polypeptide degrees of freedom--remains a critical challenge. Most previous attempts to design new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in five cases interface sequence identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within 1 Å root-mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity and specificity, is high compared to previous design studies. In designed anti-lysozyme antibodies, complementarity-determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody, potentially enhancing affinity and specificity. © 2015 Wiley Periodicals, Inc.

  10. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein.

    Science.gov (United States)

    Collins, James; van Pijkeren, Jan-Peter; Svensson, Lisbeth; Claesson, Marcus J; Sturme, Mark; Li, Yin; Cooney, Jakki C; van Sinderen, Douwe; Walker, Alan W; Parkhill, Julian; Shannon, Oonagh; O'Toole, Paul W

    2012-09-01

    The marketplace for probiotic foods is burgeoning, measured in billions of euro per annum. It is imperative, however, that all bacterial strains are fully assessed for human safety. The ability to bind fibrinogen is considered a potential pathogenicity trait that can lead to platelet aggregation, serious medical complications, and in some instances, death. Here we examined strains from species frequently used as probiotics for their ability to bind human fibrinogen. Only one strain (CCUG 47825), a Lactobacillus salivarius isolate from a case of septicaemia, was found to strongly adhere to fibrinogen. Furthermore, this strain was found to aggregate human platelets at a level comparable to the human pathogen Staphylococcus aureus. By sequencing the genome of CCUG 47825, we were able to identify candidate genes responsible for fibrinogen binding. Complementing the genetic analysis with traditional molecular microbiological techniques enabled the identification of the novel fibrinogen receptor, CCUG_2371. Although only strain CCUG 47825 bound fibrinogen under laboratory conditions, homologues of the novel fibrinogen binding gene CCUG_2371 are widespread among L. salivarius strains, maintaining their potential to bind fibrinogen if expressed. We highlight the fact that without a full genetic analysis of strains for human consumption, potential pathogenicity traits may go undetected. © 2012 Blackwell Publishing Ltd.

  11. Screening for sequence-specific RNA-BPs by comprehensive UV crosslinking

    Directory of Open Access Journals (Sweden)

    Le Meuth-Metzinger Valerie

    2002-06-01

    Full Text Available Abstract Background Specific cis-elements and the associated trans-acting factors have been implicated in the post-transcriptional regulation of gene expression. In the era of genome wide analyses identifying novel trans-acting factors and cis-regulatory elements is a step towards understanding coordinated gene expression. UV-crosslink analysis is a standard method used to identify RNA-binding proteins. Uridine is traditionally used to radiolabel substrate RNAs, however, proteins binding to cis-elments particularly uridine poor will be weakly or not detected. We evaluate here the possibility of using UV-crosslinking with RNA substrates radiolabeled with each of the four ribonucleotides as an approach for screening for novel sequence specific RNA-binding proteins. Results The radiolabeled RNA substrates were derived from the 3'UTRs of the cloned Eg and c-mos Xenopus laevis maternal mRNAs. Specific, but not identical, uv-crosslinking signals were obtained, some of which corresponded to already identified proteins. A signal for a novel 90 kDa protein was observed with the c-mos 3'UTR radiolabeled with both CTP and GTP but not with UTP. The binding site of the 90 kDa RNA-binding protein was localised to a 59-nucleotide portion of the c-mos 3'UTR. Conclusion That the 90 kDa signal was detected with RNAs radiolabeled with CTP or GTP but not UTP illustrates the advantage of radiolabeling all four nucleotides in a UV-crosslink based screen. This method can be used for both long and short RNAs and does not require knowledge of the cis-acting sequence. It should be amenable to high throughput screening for RNA binding proteins.

  12. Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity.

    Directory of Open Access Journals (Sweden)

    Lorenzo Asti

    2016-04-01

    Full Text Available The immune system has developed a number of distinct complex mechanisms to shape and control the antibody repertoire. One of these mechanisms, the affinity maturation process, works in an evolutionary-like fashion: after binding to a foreign molecule, the antibody-producing B-cells exhibit a high-frequency mutation rate in the genome region that codes for the antibody active site. Eventually, cells that produce antibodies with higher affinity for their cognate antigen are selected and clonally expanded. Here, we propose a new statistical approach based on maximum entropy modeling in which a scoring function related to the binding affinity of antibodies against a specific antigen is inferred from a sample of sequences of the immune repertoire of an individual. We use our inference strategy to infer a statistical model on a data set obtained by sequencing a fairly large portion of the immune repertoire of an HIV-1 infected patient. The Pearson correlation coefficient between our scoring function and the IC50 neutralization titer measured on 30 different antibodies of known sequence is as high as 0.77 (p-value 10-6, outperforming other sequence- and structure-based models.

  13. Sequence Dependencies of DNA Deformability and Hydration in the Minor Groove

    Science.gov (United States)

    Yonetani, Yoshiteru; Kono, Hidetoshi

    2009-01-01

    Abstract DNA deformability and hydration are both sequence-dependent and are essential in specific DNA sequence recognition by proteins. However, the relationship between the two is not well understood. Here, systematic molecular dynamics simulations of 136 DNA sequences that differ from each other in their central tetramer revealed that sequence dependence of hydration is clearly correlated with that of deformability. We show that this correlation can be illustrated by four typical cases. Most rigid basepair steps are highly likely to form an ordered hydration pattern composed of one water molecule forming a bridge between the bases of distinct strands, but a few exceptions favor another ordered hydration composed of two water molecules forming such a bridge. Steps with medium deformability can display both of these hydration patterns with frequent transition. Highly flexible steps do not have any stable hydration pattern. A detailed picture of this correlation demonstrates that motions of hydration water molecules and DNA bases are tightly coupled with each other at the atomic level. These results contribute to our understanding of the entropic contribution from water molecules in protein or drug binding and could be applied for the purpose of predicting binding sites. PMID:19686662

  14. Human T-cell leukemia virus type 1 Tax requires direct access to DNA for recruitment of CREB binding protein to the viral promoter.

    Science.gov (United States)

    Lenzmeier, B A; Giebler, H A; Nyborg, J K

    1998-02-01

    Efficient human T-cell leukemia virus type 1 (HTLV-1) replication and viral gene expression are dependent upon the virally encoded oncoprotein Tax. To activate HTLV-1 transcription, Tax interacts with the cellular DNA binding protein cyclic AMP-responsive element binding protein (CREB) and recruits the coactivator CREB binding protein (CBP), forming a nucleoprotein complex on the three viral cyclic AMP-responsive elements (CREs) in the HTLV-1 promoter. Short stretches of dG-dC-rich (GC-rich) DNA, immediately flanking each of the viral CREs, are essential for Tax recruitment of CBP in vitro and Tax transactivation in vivo. Although the importance of the viral CRE-flanking sequences is well established, several studies have failed to identify an interaction between Tax and the DNA. The mechanistic role of the viral CRE-flanking sequences has therefore remained enigmatic. In this study, we used high resolution methidiumpropyl-EDTA iron(II) footprinting to show that Tax extended the CREB footprint into the GC-rich DNA flanking sequences of the viral CRE. The Tax-CREB footprint was enhanced but not extended by the KIX domain of CBP, suggesting that the coactivator increased the stability of the nucleoprotein complex. Conversely, the footprint pattern of CREB on a cellular CRE lacking GC-rich flanking sequences did not change in the presence of Tax or Tax plus KIX. The minor-groove DNA binding drug chromomycin A3 bound to the GC-rich flanking sequences and inhibited the association of Tax and the Tax-CBP complex without affecting CREB binding. Tax specifically cross-linked to the viral CRE in the 5'-flanking sequence, and this cross-link was blocked by chromomycin A3. Together, these data support a model where Tax interacts directly with both CREB and the minor-groove viral CRE-flanking sequences to form a high-affinity binding site for the recruitment of CBP to the HTLV-1 promoter.

  15. Molecular cloning, expression analysis and sequence prediction of ...

    African Journals Online (AJOL)

    CCAAT/enhancer-binding protein beta as an essential transcriptional factor, regulates the differentiation of adipocytes and the deposition of fat. Herein, we cloned the whole open reading frame (ORF) of bovine C/EBPβ gene and analyzed its putative protein structures via DNA cloning and sequence analysis. Then, the ...

  16. Description of a cellulose-binding domain and a linker sequence from Aspergillus fungi

    NARCIS (Netherlands)

    Quentin, M; Ebbelaar, M; Derksen, J; Mariani, C; van der Valk, H

    A family I cellulose-binding domain (CBD) and a serine- and threonine-rich linker peptide were cloned from the fungi Aspergillus japonicus and Aspergillus aculeatus. A glutathione S-transferase (GST) fusion protein comprising GST and a peptide linker with the CBD fused to its C-terminus, was

  17. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Blicher, Thomas

    2007-01-01

    BACKGROUND: Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surp...... to provide new basic insights into HLA structure-function relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan....... surpassed 1500. Characterizing the specificity of each separately would be a major undertaking. PRINCIPAL FINDINGS: Here, we have drawn on a large database of known peptide-HLA-I interactions to develop a bioinformatics method, which takes both peptide and HLA sequence information into account...... successfully validate this method. We further demonstrate that the method can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly informative novel MHC molecules for future biochemical and functional analysis. CONCLUSIONS: Encompassing all...

  18. Identification and characterisation of the IgE-binding proteins 2S albumin and conglutin gamma in almond (Prunus dulcis) seeds.

    Science.gov (United States)

    Poltronieri, P; Cappello, M S; Dohmae, N; Conti, A; Fortunato, D; Pastorello, E A; Ortolani, C; Zacheo, G

    2002-06-01

    Almond proteins can cause severe anaphylactic reactions in susceptible individuals. The aim of this study was the identification of IgE-binding proteins in almonds and the characterisation of these proteins by N-terminal sequencing. Five sera were selected from individuals with a positive reaction to food challenge. Sodium dodecylsulphate-polyacrylamide gel electrophoresis and immunoblotting were performed on almond seed proteins. Purified IgE-binding proteins were tested for immunoblot inhibition with sera pre-incubated with extracts of hazelnut and walnut. N-terminal sequences of the 12-, 30- and 45-kD proteins were obtained. The 45- and 30-kD proteins shared the same N terminus, with 60% homology to the conglutin gamma heavy chain from lupine seed (Lupinus albus) and to basic 7S globulin from soybean (Glycine max). The sequences of the N-terminal 12-kD protein and of an internal peptide obtained by endoproteinase digestion showed good homology to 2S albumin from English walnut (Jug r 1). Immunoblot inhibition experiments were performed and IgE binding to almond 2S albumin and conglutin gamma was detected in the presence of cross-reacting walnut or hazelnut antigens. Two IgE-binding almond proteins were N-terminally sequenced and identified as almond 2S albumin and conglutin gamma. Localisation and conservation of IgE binding in a 6-kD peptide obtained by endoproteinase digestion of 2S albumin was shown. Copyright 2002 S. Karger AG, Basel

  19. Violation of an evolutionarily conserved immunoglobulin diversity gene sequence preference promotes production of dsDNA-specific IgG antibodies.

    Directory of Open Access Journals (Sweden)

    Aaron Silva-Sanchez

    Full Text Available Variability in the developing antibody repertoire is focused on the third complementarity determining region of the H chain (CDR-H3, which lies at the center of the antigen binding site where it often plays a decisive role in antigen binding. The power of VDJ recombination and N nucleotide addition has led to the common conception that the sequence of CDR-H3 is unrestricted in its variability and random in its composition. Under this view, the immune response is solely controlled by somatic positive and negative clonal selection mechanisms that act on individual B cells to promote production of protective antibodies and prevent the production of self-reactive antibodies. This concept of a repertoire of random antigen binding sites is inconsistent with the observation that diversity (DH gene segment sequence content by reading frame (RF is evolutionarily conserved, creating biases in the prevalence and distribution of individual amino acids in CDR-H3. For example, arginine, which is often found in the CDR-H3 of dsDNA binding autoantibodies, is under-represented in the commonly used DH RFs rearranged by deletion, but is a frequent component of rarely used inverted RF1 (iRF1, which is rearranged by inversion. To determine the effect of altering this germline bias in DH gene segment sequence on autoantibody production, we generated mice that by genetic manipulation are forced to utilize an iRF1 sequence encoding two arginines. Over a one year period we collected serial serum samples from these unimmunized, specific pathogen-free mice and found that more than one-fifth of them contained elevated levels of dsDNA-binding IgG, but not IgM; whereas mice with a wild type DH sequence did not. Thus, germline bias against the use of arginine enriched DH sequence helps to reduce the likelihood of producing self-reactive antibodies.

  20. Thyroid hormone receptor binds to a site in the rat growth hormone promoter required for induction by thyroid hormone

    International Nuclear Information System (INIS)

    Koenig, R.J.; Brent, G.A.; Warne, R.L.; Larsen, P.R.; Moore, D.D.

    1987-01-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. The authors have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. They show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor

  1. Cloning and sequence of the human adrenodoxin reductase gene

    International Nuclear Information System (INIS)

    Lin, Dong; Shi, Y.; Miller, W.L.

    1990-01-01

    Adrenodoxin reductase is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. The authors cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G+C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of housekeeping genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon

  2. Electrophoretic mobility shift assay reveals a novel recognition sequence for Setaria italica NAC protein.

    Science.gov (United States)

    Puranik, Swati; Kumar, Karunesh; Srivastava, Prem S; Prasad, Manoj

    2011-10-01

    The NAC (NAM/ATAF1,2/CUC2) proteins are among the largest family of plant transcription factors. Its members have been associated with diverse plant processes and intricately regulate the expression of several genes. Inspite of this immense progress, knowledge of their DNA-binding properties are still limited. In our recent publication,1 we reported isolation of a membrane-associated NAC domain protein from Setaria italica (SiNAC). Transactivation analysis revealed that it was a functionally active transcription factor as it could stimulate expression of reporter genes in vivo. Truncations of the transmembrane region of the protein lead to its nuclear localization. Here we describe expression and purification of SiNAC DNA-binding domain. We further report identification of a novel DNA-binding site, [C/G][A/T][T/A][G/C]TC[C/G][A/T][C/G][G/C] for SiNAC by electrophoretic mobility shift assay. The SiNAC-GST protein could bind to the NAC recognition sequence in vitro as well as to sequences where some bases had been reshuffled. The results presented here contribute to our understanding of the DNA-binding specificity of SiNAC protein.

  3. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.

    Science.gov (United States)

    Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar

    2017-01-01

    DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  4. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features

    Directory of Open Access Journals (Sweden)

    Rianon Zaman

    2017-01-01

    Full Text Available DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  5. Various Bee Pheromones Binding Affinity, Exclusive Chemosensillar Localization, and Key Amino Acid Sites Reveal the Distinctive Characteristics of Odorant-Binding Protein 11 in the Eastern Honey Bee, Apis cerana.

    Science.gov (United States)

    Song, Xin-Mi; Zhang, Lin-Ya; Fu, Xiao-Bin; Wu, Fan; Tan, Jing; Li, Hong-Liang

    2018-01-01

    Odorant-binding proteins (OBPs) are the critical elements responsible for binding and transporting odors and pheromones in the sensitive olfactory system in insects. Honey bees are representative social insects that have complex odorants and pheromone communication systems relative to solitary insects. Here, we first cloned and characterized OBP11 ( AcerOBP11 ), from the worker bees antennae of Eastern honey bee, Apis cerana . Based on sequence and phylogenetic analysis, most sequences homologous to AcerOBP11 belong to the typical OBPs family. The transcriptional expression profiles showed that AcerOBP11 was expressed throughout the developmental stages and highly specifically expressed in adult antennae. Using immunofluorescence localization, AcerOBP11 in worker bee's antennae was only localized in the sensilla basiconica (SB) near the fringe of each segment. Fluorescence ligand-binding assay showed that AcerOBP11 protein had strong binding affinity with the tested various bee pheromones components, including the main queen mandibular pheromones (QMPs), methyl p-hydroxybenzoate (HOB), and ( E )-9-oxo-2-decanoic acid (9-ODA), alarm pheromone (n-hexanol), and worker pheromone components. AcerOBP11 also had strong binding affinity to plant volatiles, such as 4-Allylveratrole. Based on the docking and site-directed mutagenesis, two key amino acid residues (Ile97 and Ile140) were involved in the binding of AcerOBP11 to various bee pheromones. Taken together, we identified that AcerOBP11 was localized in a single type of antennal chemosensilla and had complex ligand-binding properties, which confer the dual-role with the primary characteristics of sensing various bee pheromones and secondary characteristics of sensing general odorants. This study not only prompts the theoretical basis of OBPs-mediated bee pheromones recognition of honey bee, but also extends the understanding of differences in pheromone communication between social and solitary insects.

  6. Various Bee Pheromones Binding Affinity, Exclusive Chemosensillar Localization, and Key Amino Acid Sites Reveal the Distinctive Characteristics of Odorant-Binding Protein 11 in the Eastern Honey Bee, Apis cerana

    Directory of Open Access Journals (Sweden)

    Xin-Mi Song

    2018-04-01

    Full Text Available Odorant-binding proteins (OBPs are the critical elements responsible for binding and transporting odors and pheromones in the sensitive olfactory system in insects. Honey bees are representative social insects that have complex odorants and pheromone communication systems relative to solitary insects. Here, we first cloned and characterized OBP11 (AcerOBP11, from the worker bees antennae of Eastern honey bee, Apis cerana. Based on sequence and phylogenetic analysis, most sequences homologous to AcerOBP11 belong to the typical OBPs family. The transcriptional expression profiles showed that AcerOBP11 was expressed throughout the developmental stages and highly specifically expressed in adult antennae. Using immunofluorescence localization, AcerOBP11 in worker bee's antennae was only localized in the sensilla basiconica (SB near the fringe of each segment. Fluorescence ligand-binding assay showed that AcerOBP11 protein had strong binding affinity with the tested various bee pheromones components, including the main queen mandibular pheromones (QMPs, methyl p-hydroxybenzoate (HOB, and (E-9-oxo-2-decanoic acid (9-ODA, alarm pheromone (n-hexanol, and worker pheromone components. AcerOBP11 also had strong binding affinity to plant volatiles, such as 4-Allylveratrole. Based on the docking and site-directed mutagenesis, two key amino acid residues (Ile97 and Ile140 were involved in the binding of AcerOBP11 to various bee pheromones. Taken together, we identified that AcerOBP11 was localized in a single type of antennal chemosensilla and had complex ligand-binding properties, which confer the dual-role with the primary characteristics of sensing various bee pheromones and secondary characteristics of sensing general odorants. This study not only prompts the theoretical basis of OBPs-mediated bee pheromones recognition of honey bee, but also extends the understanding of differences in pheromone communication between social and solitary insects.

  7. Human TFDP3, a novel DP protein, inhibits DNA binding and transactivation by E2F

    DEFF Research Database (Denmark)

    Qiao, Huan; Di Stefano, Luisa; Tian, Chan

    2006-01-01

    The two known DP proteins, TFDP1 and -2, bind E2Fs to form heterodimers essential for high affinity DNA binding and efficient transcriptional activation/repression. Here we report the identification of a new member of the DP family, human TFDP3. Despite the high degree of sequence similarity, TFD...

  8. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations.

    Directory of Open Access Journals (Sweden)

    Xuelu Huan

    Full Text Available The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD, which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J-K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity

  9. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    Science.gov (United States)

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  10. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha -actinin-2, is required for myoblast fusion

    DEFF Research Database (Denmark)

    Galliano, M F; Huet, C; Frygelius, J

    2000-01-01

    ADAM12 belongs to the transmembrane metalloprotease ADAM ("a disintegrin and metalloprotease") family. ADAM12 has been implicated in muscle cell differentiation and fusion, but its precise function remains unknown. Here, we show that ADAM12 is dramatically up-regulated in regenerated, newly formed...... of differentiation. Using the yeast two-hybrid screen, we found that the muscle-specific alpha-actinin-2 strongly binds to the cytoplasmic tail of ADAM12. In vitro binding assays with GST fusion proteins confirmed the specific interaction. The major binding site for alpha-actinin-2 was mapped to a short sequence...... in a dominant negative fashion by inhibiting fusion of C2C12 cells, whereas expression of a cytosolic ADAM12 lacking the major alpha-actinin-2 binding site had no effect on cell fusion. Our results suggest that interaction of ADAM12 with alpha-actinin-2 is important for ADAM12 function....

  11. Discovering approximate-associated sequence patterns for protein-DNA interactions

    KAUST Repository

    Chan, Tak Ming

    2010-12-30

    Motivation: The bindings between transcription factors (TFs) and transcription factor binding sites (TFBSs) are fundamental protein-DNA interactions in transcriptional regulation. Extensive efforts have been made to better understand the protein-DNA interactions. Recent mining on exact TF-TFBS-associated sequence patterns (rules) has shown great potentials and achieved very promising results. However, exact rules cannot handle variations in real data, resulting in limited informative rules. In this article, we generalize the exact rules to approximate ones for both TFs and TFBSs, which are essential for biological variations. Results: A progressive approach is proposed to address the approximation to alleviate the computational requirements. Firstly, similar TFBSs are grouped from the available TF-TFBS data (TRANSFAC database). Secondly, approximate and highly conserved binding cores are discovered from TF sequences corresponding to each TFBS group. A customized algorithm is developed for the specific objective. We discover the approximate TF-TFBS rules by associating the grouped TFBS consensuses and TF cores. The rules discovered are evaluated by matching (verifying with) the actual protein-DNA binding pairs from Protein Data Bank (PDB) 3D structures. The approximate results exhibit many more verified rules and up to 300% better verification ratios than the exact ones. The customized algorithm achieves over 73% better verification ratios than traditional methods. Approximate rules (64-79%) are shown statistically significant. Detailed variation analysis and conservation verification on NCBI records demonstrate that the approximate rules reveal both the flexible and specific protein-DNA interactions accurately. The approximate TF-TFBS rules discovered show great generalized capability of exploring more informative binding rules. © The Author 2010. Published by Oxford University Press. All rights reserved.

  12. A two-step recognition of signal sequences determines the translocation efficiency of proteins.

    Science.gov (United States)

    Belin, D; Bost, S; Vassalli, J D; Strub, K

    1996-02-01

    The cytosolic and secreted, N-glycosylated, forms of plasminogen activator inhibitor-2 (PAI-2) are generated by facultative translocation. To study the molecular events that result in the bi-topological distribution of proteins, we determined in vitro the capacities of several signal sequences to bind the signal recognition particle (SRP) during targeting, and to promote vectorial transport of murine PAI-2 (mPAI-2). Interestingly, the six signal sequences we compared (mPAI-2 and three mutated derivatives thereof, ovalbumin and preprolactin) were found to have the differential activities in the two events. For example, the mPAI-2 signal sequence first binds SRP with moderate efficiency and secondly promotes the vectorial transport of only a fraction of the SRP-bound nascent chains. Our results provide evidence that the translocation efficiency of proteins can be controlled by the recognition of their signal sequences at two steps: during SRP-mediated targeting and during formation of a committed translocation complex. This second recognition may occur at several time points during the insertion/translocation step. In conclusion, signal sequences have a more complex structure than previously anticipated, allowing for multiple and independent interactions with the translocation machinery.

  13. Large-scale Identification of Expressed Sequence Tags (ESTs from Nicotianatabacum by Normalized cDNA Library Sequencing

    Directory of Open Access Journals (Sweden)

    Alvarez S Perez

    2014-12-01

    Full Text Available An expressed sequence tags (EST resource for tobacco plants (Nicotianatabacum was established using high-throughput sequencing of randomly selected clones from one cDNA library representing a range of plant organs (leaf, stem, root and root base. Over 5000 ESTs were generated from the 3’ ends of 8000 clones, analyzed by BLAST searches and categorized functionally. All annotated ESTs were classified into 18 functional categories, unique transcripts involved in energy were the largest group accounting for 831 (32.32% of the annotated ESTs. After excluding 2450 non-significant tentative unique transcripts (TUTs, 100 unique sequences (1.67% of total TUTs were identified from the N. tabacum database. In the array result two genes strongly related to the tobacco mosaic virus (TMV were obtained, one basic form of pathogenesis-related protein 1 precursor (TBT012G08 and ubiquitin (TBT087G01. Both of them were found in the variety Hongda, some other important genes were classified into two groups, one of these implicated in plant development like those genes related to a photosynthetic process (chlorophyll a-b binding protein, photosystem I, ferredoxin I and III, ATP synthase and a further group including genes related to plant stress response (ubiquitin, ubiquitin-like protein SMT3, glycine-rich RNA binding protein, histones and methallothionein. The interesting finding in this study is that two of these genes have never been reported before in N. tabacum (ubiquitin-like protein SMT3 and methallothionein. The array results were confirmed using quantitative PCR.

  14. Specific labeling of the thyroxine binding site in thyroxine-binding globulin: determination of the amino acid composition of a labeled peptide fragment isolated from a proteolytic digest of the derivatized protein.

    Science.gov (United States)

    Tabachnick, M; Perret, V

    1987-08-01

    [125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.

  15. The amino acid sequence of snapping turtle (Chelydra serpentina) ribonuclease

    NARCIS (Netherlands)

    Beintema, Jacob; Broos, Jaap; Meulenberg, Janneke; Schüller, Cornelis

    1985-01-01

    Snapping turtle (Chelydra serpentina) ribonuclease was isolated from pancreatic tissue. Turtle ribonuclease binds much more weakly to the affinity chromatography matrix used than mammalian ribonucleases. The amino acid sequence was determined from overlapping peptides obtained from three different

  16. The interaction properties of the human Rab GTPase family--comparative analysis reveals determinants of molecular binding selectivity.

    Directory of Open Access Journals (Sweden)

    Matthias Stein

    Full Text Available Rab GTPases constitute the largest subfamily of the Ras protein superfamily. Rab proteins regulate organelle biogenesis and transport, and display distinct binding preferences for effector and activator proteins, many of which have not been elucidated yet. The underlying molecular recognition motifs, binding partner preferences and selectivities are not well understood.Comparative analysis of the amino acid sequences and the three-dimensional electrostatic and hydrophobic molecular interaction fields of 62 human Rab proteins revealed a wide range of binding properties with large differences between some Rab proteins. This analysis assists the functional annotation of Rab proteins 12, 14, 26, 37 and 41 and provided an explanation for the shared function of Rab3 and 27. Rab7a and 7b have very different electrostatic potentials, indicating that they may bind to different effector proteins and thus, exert different functions. The subfamily V Rab GTPases which are associated with endosome differ subtly in the interaction properties of their switch regions, and this may explain exchange factor specificity and exchange kinetics.We have analysed conservation of sequence and of molecular interaction fields to cluster and annotate the human Rab proteins. The analysis of three dimensional molecular interaction fields provides detailed insight that is not available from a sequence-based approach alone. Based on our results, we predict novel functions for some Rab proteins and provide insights into their divergent functions and the determinants of their binding partner selectivity.

  17. Penicillin-binding proteins in Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2015-04-01

    Because some Actinobacteria, especially Streptomyces species, are β-lactam-producing bacteria, they have to have some self-resistant mechanism. The β-lactam biosynthetic gene clusters include genes for β-lactamases and penicillin-binding proteins (PBPs), suggesting that these are involved in self-resistance. However, direct evidence for the involvement of β-lactamases does not exist at the present time. Instead, phylogenetic analysis revealed that PBPs in Streptomyces are distinct in that Streptomyces species have much more PBPs than other Actinobacteria, and that two to three pairs of similar PBPs are present in most Streptomyces species examined. Some of these PBPs bind benzylpenicillin with very low affinity and are highly similar in their amino-acid sequences. Furthermore, other low-affinity PBPs such as SCLAV_4179 in Streptomyces clavuligerus, a β-lactam-producing Actinobacterium, may strengthen further the self-resistance against β-lactams. This review discusses the role of PBPs in resistance to benzylpenicillin in Streptomyces belonging to Actinobacteria.

  18. Interaction between TATA-Binding Protein (TBP and Multiprotein Bridging Factor-1 (MBF1 from the Filamentous Insect Pathogenic Fungus Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Chi Song

    Full Text Available TATA-binding protein (TBP is a ubiquitous component of eukaryotic transcription factors that acts to nucleate assembly and position pre-initiation complexes. Multiprotein bridging factor 1 (MBF1 is thought to interconnect TBP with gene specific transcriptional activators, modulating transcriptional networks in response to specific signal and developmental programs. The insect pathogen, Beauveria bassiana, is a cosmopolitan fungus found in most ecosystems where it acts as an important regulator of insect populations and can form intimate associations with certain plants. In order to gain a better understanding of the function of MBF1 in filamentous fungi, its interaction with TBP was demonstrated. The MBF1 and TBP homologs in B. bassiana were cloned and purified from a heterologous E. coli expression system. Whereas purified BbTBP was shown to be able to bind oligonucleotide sequences containing the TATA-motif (Kd ≈ 1.3 nM including sequences derived from the promoters of the B. bassiana chitinase and protease genes. In contrast, BbMBF1 was unable to bind to these same target sequences. However, the formation of a ternary complex between BbMBF1, BbTBP, and a TATA-containing target DNA sequence was seen in agarose gel electrophoretic mobility shift assays (EMSA. These data indicate that BbMBF1 forms direct interactions with BbTBP, and that the complex is capable of binding to DNA sequences containing TATA-motifs, confirming that BbTBP can link BbMBF1 to target sequences as part of the RNA transcriptional machinery in fungi.

  19. Designing sequence to control protein function in an EF-hand protein.

    Science.gov (United States)

    Bunick, Christopher G; Nelson, Melanie R; Mangahas, Sheryll; Hunter, Michael J; Sheehan, Jonathan H; Mizoue, Laura S; Bunick, Gerard J; Chazin, Walter J

    2004-05-19

    The extent of conformational change that calcium binding induces in EF-hand proteins is a key biochemical property specifying Ca(2+) sensor versus signal modulator function. To understand how differences in amino acid sequence lead to differences in the response to Ca(2+) binding, comparative analyses of sequence and structures, combined with model building, were used to develop hypotheses about which amino acid residues control Ca(2+)-induced conformational changes. These results were used to generate a first design of calbindomodulin (CBM-1), a calbindin D(9k) re-engineered with 15 mutations to respond to Ca(2+) binding with a conformational change similar to that of calmodulin. The gene for CBM-1 was synthesized, and the protein was expressed and purified. Remarkably, this protein did not exhibit any non-native-like molten globule properties despite the large number of mutations and the nonconservative nature of some of them. Ca(2+)-induced changes in CD intensity and in the binding of the hydrophobic probe, ANS, implied that CBM-1 does undergo Ca(2+) sensorlike conformational changes. The X-ray crystal structure of Ca(2+)-CBM-1 determined at 1.44 A resolution reveals the anticipated increase in hydrophobic surface area relative to the wild-type protein. A nascent calmodulin-like hydrophobic docking surface was also found, though it is occluded by the inter-EF-hand loop. The results from this first calbindomodulin design are discussed in terms of progress toward understanding the relationships between amino acid sequence, protein structure, and protein function for EF-hand CaBPs, as well as the additional mutations for the next CBM design.

  20. Binding to the DNA Minor Groove by Heterocyclic Dications: From AT Specific Monomers to GC Recognition with Dimers

    Science.gov (United States)

    Nanjunda, Rupesh; Wilson, W. David

    2012-01-01

    Compounds that bind in the DNA minor groove have provided critical information on DNA molecular recognition, they have found extensive uses in biotechnology and they are providing clinically useful drugs against diseases as diverse as cancer and sleeping sickness. This review focuses on the development of clinically useful heterocyclic diamidine minor groove binders. These compounds have shown us that the classical model for minor groove binding in AT DNA sequences must be expanded in several ways: compounds with nonstandard shapes can bind strongly to the groove, water can be directly incorporated into the minor groove complex in an interfacial interaction, and the compounds can form cooperative stacked dimers to recognize GC and mixed AT/GC base pair sequences. PMID:23255206

  1. Large-scale analysis of intrinsic disorder flavors and associated functions in the protein sequence universe.

    Science.gov (United States)

    Necci, Marco; Piovesan, Damiano; Tosatto, Silvio C E

    2016-12-01

    Intrinsic disorder (ID) in proteins has been extensively described for the last decade; a large-scale classification of ID in proteins is mostly missing. Here, we provide an extensive analysis of ID in the protein universe on the UniProt database derived from sequence-based predictions in MobiDB. Almost half the sequences contain an ID region of at least five residues. About 9% of proteins have a long ID region of over 20 residues which are more abundant in Eukaryotic organisms and most frequently cover less than 20% of the sequence. A small subset of about 67,000 (out of over 80 million) proteins is fully disordered and mostly found in Viruses. Most proteins have only one ID, with short ID evenly distributed along the sequence and long ID overrepresented in the center. The charged residue composition of Das and Pappu was used to classify ID proteins by structural propensities and corresponding functional enrichment. Swollen Coils seem to be used mainly as structural components and in biosynthesis in both Prokaryotes and Eukaryotes. In Bacteria, they are confined in the nucleoid and in Viruses provide DNA binding function. Coils & Hairpins seem to be specialized in ribosome binding and methylation activities. Globules & Tadpoles bind antigens in Eukaryotes but are involved in killing other organisms and cytolysis in Bacteria. The Undefined class is used by Bacteria to bind toxic substances and mediate transport and movement between and within organisms in Viruses. Fully disordered proteins behave similarly, but are enriched for glycine residues and extracellular structures. © 2016 The Protein Society.

  2. Specificity of the second binding protein of the peptide ABC-transporter (Dpp) of Lactococcus lactis IL1403

    NARCIS (Netherlands)

    Sanz, Y; Toldra, F; Renault, P; Poolman, B

    2003-01-01

    The genome sequence of Lactococcus lactis IL1403 revealed the presence of a putative peptide-binding protein-dependent ABC-transporter (Dpp). The genes for two peptide-binding proteins (dppA and dppP) precede the membrane components, which include two transmembrane protein genes (dppB and dppC) and

  3. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  4. In silico evidence for sequence-dependent nucleosome sliding

    Energy Technology Data Exchange (ETDEWEB)

    Lequieu, Joshua; Schwartz, David C.; de Pablo, Juan J.

    2017-10-18

    Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nudeosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces and the corresponding dynamics of nudeosome repositioning. The mechanism of nudeosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.

  5. Crystal structure of importin-{alpha} complexed with a classic nuclear localization sequence obtained by oriented peptide library screening

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, A.A.S.; Fontes, M.R.M. [UNESP, Universidade Estadual Paulista, Botucatu, SP (Brazil); Yang, S.N.Y. [University of Melbourne, Melbourne (Australia); Harris, J.M. [Queensland University of Technology, Brisbane (Australia); Jans, D.A. [Monash University, Clayton (Australia); Kobe, B. [University of Queensland, Brisbane, QU (Australia)

    2012-07-01

    Full text: Importin-{alpha} (Imp{alpha}) plays a role in the classical nuclear import pathway, binding to cargo proteins with activities in the nucleus. Different Imp{alpha} paralogs responsible for specific cargos can be found in a single organism. The cargos contain nuclear localization sequences (NLSs), which are characterized by one or two clusters of basic amino acids (monopartite and bipartite NLSs, respectively). In this work we present the crystal structure of Imp{alpha} from M. musculus (residues 70-529, lacking the auto inhibitory domain) bound to a NLS peptide (pepTM). The peptide corresponds to the optimal sequence obtained by an oriented peptide library experiment designed to probe the specificity of the major NLS binding site. The peptide library used five degenerate positions and identified the sequence KKKRR as the optimal sequence for binding to this site for mouse Imp{alpha} (70-529). The protein was obtained using an E. coli expression system and purified by affinity chromatography followed by an ion exchange chromatography. A single crystal of Imp{alpha} -pepTM complex was grown by the hanging drop method. The data were collected using the Synchrotron Radiation Source LNLS, Brazil and processed to 2.3. Molecular replacement techniques were used to determine the crystal structure. Electron density corresponding to the peptide was present in both major and minor binding sites The peptide is bound to Imp{alpha} similar as the simian virus 40 (SV40) large tumour (T)-antigen NLS. Binding assays confirmed that the peptide bound to Imp{alpha} with low nM affinities. This is the first time that structural information has been linked to an oriented peptide library screening approach for importin-{alpha}; the results will contribute to understanding of the sequence determinants of classical NLSs, and may help identify as yet unidentified classical NLSs in novel proteins. (author)

  6. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Wong, Hau-San

    2015-01-01

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  7. A Comparison Study for DNA Motif Modeling on Protein Binding Microarray

    KAUST Repository

    Wong, Ka-Chun

    2015-06-11

    Transcription Factor Binding Sites (TFBSs) are relatively short (5-15 bp) and degenerate. Identifying them is a computationally challenging task. In particular, Protein Binding Microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner; for instance, a typical PBM experiment can measure binding signal intensities of a protein to all possible DNA k-mers (k=810). Since proteins can often bind to DNA with different binding intensities, one of the major challenges is to build motif models which can fully capture the quantitative binding affinity data. To learn DNA motif models from the non-convex objective function landscape, several optimization methods are compared and applied to the PBM motif model building problem. In particular, representative methods from different optimization paradigms have been chosen for modeling performance comparison on hundreds of PBM datasets. The results suggest that the multimodal optimization methods are very effective for capturing the binding preference information from PBM data. In particular, we observe a general performance improvement using di-nucleotide modeling over mono-nucleotide modeling. In addition, the models learned by the best-performing method are applied to two independent applications: PBM probe rotation testing and ChIP-Seq peak sequence prediction, demonstrating its biological applicability.

  8. Refining the Results of a Classical SELEX Experiment by Expanding the Sequence Data Set of an Aptamer Pool Selected for Protein A

    OpenAIRE

    Regina Stoltenburg; Beate Strehlitz

    2018-01-01

    New, as yet undiscovered aptamers for Protein A were identified by applying next generation sequencing (NGS) to a previously selected aptamer pool. This pool was obtained in a classical SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiment using the FluMag-SELEX procedure followed by cloning and Sanger sequencing. PA#2/8 was identified as the only Protein A-binding aptamer from the Sanger sequence pool, and was shown to be able to bind intact cells of Staphylococcus aur...

  9. A lipid binding domain in sphingosine kinase 2

    International Nuclear Information System (INIS)

    Don, Anthony S.; Rosen, Hugh

    2009-01-01

    The lipid second messenger sphingosine 1-phosphate (S1P) is a critical mediator of cellular proliferation and survival signals, and is essential for vasculogenesis and neurogenesis. S1P formation is catalysed by sphingosine kinases 1 and 2 (Sphk1 and Sphk2). We have found that the endogenous glycolipid sulfatide (3-O-sulfogalactosylceramide) binds to and inhibits the activity of Sphk2 and the closely related ceramide kinase (Cerk), but not Sphk1. Using sulfatide as a probe, we mapped the lipid binding domain to the N-terminus of Sphk2 (residues 1-175), a region of sequence that is absent in Sphk1, but aligns with a pleckstrin homology domain in Cerk. Accordingly, Sphk2 bound to phosphatidylinositol monophosphates but not to abundant cellular phospholipids. Deleting the N-terminal domain reduced Sphk2 membrane localisation in cells. We have therefore identified a lipid binding domain in Sphk2 that is important for the enzyme's sub-cellular localisation.

  10. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  11. Properties of the periplasmic ModA molybdate-binding protein of Escherichia coli.

    Science.gov (United States)

    Rech, S; Wolin, C; Gunsalus, R P

    1996-02-02

    The modABCD operon, located at 17 min on the Escherichia coli chromosome, encodes the protein components of a high affinity molybdate uptake system. Sequence analysis of the modA gene (GenBank L34009) predicts that it encodes a periplasmic binding protein based on the presence of a leader-like sequence at its N terminus. To examine the properties of the ModA protein, the modA structural gene was overexpressed, and its product was purified. The ModA protein was localized to the periplasmic space of the cell, and it was released following a gentle osmotic shock. The N-terminal sequence of ModA confirmed that a leader region of 24 amino acids was removed upon export from the cell. The apparent size of ModA is 31.6 kDa as determined by gel sieve chromatography, whereas it is 22.5 kDa when examined by SDS-polyacrylamide gel electrophoresis. A ligand-dependent protein mobility shift assay was devised using a native polyacrylamide gel electrophoresis protocol to examine binding of molybdate and other anions to the ModA periplasmic protein. Whereas molybdate and tungstate were bound with high affinity (approximately 5 microM), sulfate, chromate, selenate, phosphate, and chlorate did not bind even when tested at 2 mM. A UV spectral assay revealed apparent Kd values of binding for molybdate and tungstate of 3 and 7 microM, respectively. Strains defective in the modA gene were unable to transport molybdate unless high levels of the anion were supplied in the medium. Therefore the modA gene product is essential for high affinity molybdate uptake by the cell. Tungstate interference of molybdate acquisition by the cell is apparently due in part to the high affinity of the ModA protein for this anion.

  12. Comparison of the ligand binding properties of two homologous rat apocellular retinol-binding proteins expressed in Escherichia coli.

    Science.gov (United States)

    Levin, M S; Locke, B; Yang, N C; Li, E; Gordon, J I

    1988-11-25

    Cellular retinol-binding protein (CRBP) and cellular retinol-binding protein II (CRBP II) are 132-residue cytosolic proteins which have 56% amino acid sequence identity and bind all-trans-retinol as their endogenous ligand. They belong to a family of cytoplasmic proteins which have evolved to bind distinct hydrophobic ligands. Their patterns of tissue-specific and developmental regulation are distinct. We have compared the ligand binding properties of rat apo-CRBP and apo-CRBP II that have been expressed in Escherichia coli. Several observations indicate that the E. coli-derived apoproteins are structurally similar to the native rat proteins: they co-migrate on isoelectric focusing gels; and when complexed with all-trans-retinol, their absorption and excitation/emission spectra are nearly identical to those of the authentic rat holoproteins. Comparative lifetime and acrylamide quenching studies suggest that there are differences in the conformations of apo-CRBP and apo-CRBP II. The interaction of E. coli-derived apo-CRBP and apo-CRBP II with a variety of retinoids was analyzed using spectroscopic techniques. Both apoproteins formed high affinity complexes with all-trans-retinol (K'd approximately 10 nM). In direct binding assays, all-trans-retinal bound to both apoproteins (K'd approximately 50 nM for CRBP; K'd approximately 90 nM for CRBP II). However, all-trans-retinal could displace all-trans-retinol bound to CRBP II but not to CRBP. These observations suggests that there is a specific yet distinct interaction between these two proteins and all-trans-retinal. Apo-CRBP and apo-CRBP II did not demonstrate significant binding to either retinoic acid or methyl retinoate, an uncharged derivative of all-trans-retinoic acid. This indicates that the carboxymethyl group of methyl retinoate cannot be sterically accommodated in their binding pockets and that failure to bind retinoic acid probably is not simply due to the negative charge of its C-15 carboxylate group

  13. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  14. Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum

    International Nuclear Information System (INIS)

    Leberer, E.; Charuk, J.H.M.; MacLennan, D.H.; Green, N.M.

    1989-01-01

    Antibody screening was used to isolate a cDNA encoding the 160-kDa glycoprotein of rabbit skeletal muscle sarcoplasmic reticulum. The cDNA is identical to that encoding the 53-kDa glycoprotein except that it contains an in-frame insertion of 1,308 nucleotides near its 5' end, apparently resulting from alternative splicing. The protein encoded by the cDNA would contain a 19-residue NH 2 -terminal signal sequence and a 453-residue COOH-terminal sequence identical to the 53-kDa glycoprotein. It would also contain a 436-amino acid insert between these sequences. This insert would be highly acidic, suggesting that it might bind Ca 2+ . The purified 160-kDa glycoprotein and the glycoprotein expressed in COS-1 cells transfected with cDNA encoding the 160-kDa glycoprotein were shown to bind 45 C 2+ in a gel overlay assay. The protein was shown to be located in the lumen of the sarcoplasmic reticulum and to be associated through Ca 2+ with the membrane. The authors propose that this lumenal Ca 2+ binding glycoprotein of the sarcoplasmic reticulum be designated sarcalumenin

  15. Generation of tumour-necrosis-factor-alpha-specific affibody molecules capable of blocking receptor binding in vitro.

    Science.gov (United States)

    Jonsson, Andreas; Wållberg, Helena; Herne, Nina; Ståhl, Stefan; Frejd, Fredrik Y

    2009-08-17

    Affibody molecules specific for human TNF-alpha (tumour necrosis factor-alpha) were selected by phage-display technology from a library based on the 58-residue Protein A-derived Z domain. TNF-alpha is a proinflammatory cytokine involved in several inflammatory diseases and, to this day, four TNF-alpha-blocking protein pharmaceuticals have been approved for clinical use. The phage selection generated 18 unique cysteine-free affibody sequences of which 12 were chosen, after sequence cluster analysis, for characterization as proteins. Biosensor binding studies of the 12 Escherichia coli-produced and IMAC (immobilized-metal-ion affinity chromatography)-purified affibody molecules revealed three variants that demonstrated the strongest binding to human TNF-alpha. These three affibody molecules were subjected to kinetic binding analysis and also tested for their binding to mouse, rat and pig TNF-alpha. For ZTNF-alpha:185, subnanomolar affinity (KD=0.1-0.5 nM) for human TNF-alpha was demonstrated, as well as significant binding to TNF-alpha from the other species. Furthermore, the binding site was found to overlap with the binding site for the TNF-alpha receptor, since this interaction could be efficiently blocked by the ZTNF-alpha:185 affibody. When investigating six dimeric affibody constructs with different linker lengths, and one trimeric construct, it was found that the inhibition of the TNF-alpha binding to its receptor could be further improved by using dimers with extended linkers and/or a trimeric affibody construct. The potential implication of the results for the future design of affibody-based reagents for the diagnosis of inflammation is discussed.

  16. Apples and oranges: avoiding different priors in Bayesian DNA sequence analysis

    Directory of Open Access Journals (Sweden)

    Posch Stefan

    2010-03-01

    Full Text Available Abstract Background One of the challenges of bioinformatics remains the recognition of short signal sequences in genomic DNA such as donor or acceptor splice sites, splicing enhancers or silencers, translation initiation sites, transcription start sites, transcription factor binding sites, nucleosome binding sites, miRNA binding sites, or insulator binding sites. During the last decade, a wealth of algorithms for the recognition of such DNA sequences has been developed and compared with the goal of improving their performance and to deepen our understanding of the underlying cellular processes. Most of these algorithms are based on statistical models belonging to the family of Markov random fields such as position weight matrix models, weight array matrix models, Markov models of higher order, or moral Bayesian networks. While in many comparative studies different learning principles or different statistical models have been compared, the influence of choosing different prior distributions for the model parameters when using different learning principles has been overlooked, and possibly lead to questionable conclusions. Results With the goal of allowing direct comparisons of different learning principles for models from the family of Markov random fields based on the same a-priori information, we derive a generalization of the commonly-used product-Dirichlet prior. We find that the derived prior behaves like a Gaussian prior close to the maximum and like a Laplace prior in the far tails. In two case studies, we illustrate the utility of the derived prior for a direct comparison of different learning principles with different models for the recognition of binding sites of the transcription factor Sp1 and human donor splice sites. Conclusions We find that comparisons of different learning principles using the same a-priori information can lead to conclusions different from those of previous studies in which the effect resulting from different

  17. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.

    Science.gov (United States)

    Liu, Sheng; Zibetti, Cristina; Wan, Jun; Wang, Guohua; Blackshaw, Seth; Qian, Jiang

    2017-07-27

    Computational prediction of transcription factor (TF) binding sites in different cell types is challenging. Recent technology development allows us to determine the genome-wide chromatin accessibility in various cellular and developmental contexts. The chromatin accessibility profiles provide useful information in prediction of TF binding events in various physiological conditions. Furthermore, ChIP-Seq analysis was used to determine genome-wide binding sites for a range of different TFs in multiple cell types. Integration of these two types of genomic information can improve the prediction of TF binding events. We assessed to what extent a model built upon on other TFs and/or other cell types could be used to predict the binding sites of TFs of interest. A random forest model was built using a set of cell type-independent features such as specific sequences recognized by the TFs and evolutionary conservation, as well as cell type-specific features derived from chromatin accessibility data. Our analysis suggested that the models learned from other TFs and/or cell lines performed almost as well as the model learned from the target TF in the cell type of interest. Interestingly, models based on multiple TFs performed better than single-TF models. Finally, we proposed a universal model, BPAC, which was generated using ChIP-Seq data from multiple TFs in various cell types. Integrating chromatin accessibility information with sequence information improves prediction of TF binding.The prediction of TF binding is transferable across TFs and/or cell lines suggesting there are a set of universal "rules". A computational tool was developed to predict TF binding sites based on the universal "rules".

  18. Dialects of the DNA Uptake Sequence in Neisseriaceae

    Science.gov (United States)

    Frye, Stephan A.; Nilsen, Mariann; Tønjum, Tone; Ambur, Ole Herman

    2013-01-01

    In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS), which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS–dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5′-CTG-3′ is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS–dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic transformation

  19. Dialects of the DNA uptake sequence in Neisseriaceae.

    Directory of Open Access Journals (Sweden)

    Stephan A Frye

    2013-04-01

    Full Text Available In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS, which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS-dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5'-CTG-3' is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS-dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic

  20. Crystal Structures of the Scaffolding Protein LGN Reveal the General Mechanism by Which GoLoco Binding Motifs Inhibit the Release of GDP from Gαi *

    Science.gov (United States)

    Jia, Min; Li, Jianchao; Zhu, Jinwei; Wen, Wenyu; Zhang, Mingjie; Wang, Wenning

    2012-01-01

    GoLoco (GL) motif-containing proteins regulate G protein signaling by binding to Gα subunit and acting as guanine nucleotide dissociation inhibitors. GLs of LGN are also known to bind the GDP form of Gαi/o during asymmetric cell division. Here, we show that the C-terminal GL domain of LGN binds four molecules of Gαi·GDP. The crystal structures of Gαi·GDP in complex with LGN GL3 and GL4, respectively, reveal distinct GL/Gαi interaction features when compared with the only high resolution structure known with GL/Gαi interaction between RGS14 and Gαi1. Only a few residues C-terminal to the conserved GL sequence are required for LGN GLs to bind to Gαi·GDP. A highly conserved “double Arg finger” sequence (RΨ(D/E)(D/E)QR) is responsible for LGN GL to bind to GDP bound to Gαi. Together with the sequence alignment, we suggest that the LGN GL/Gαi interaction represents a general binding mode between GL motifs and Gαi. We also show that LGN GLs are potent guanine nucleotide dissociation inhibitors. PMID:22952234

  1. Conserved residues and their role in the structure, function, and stability of acyl-coenzyme A binding protein

    DEFF Research Database (Denmark)

    Kragelund, B B; Poulsen, K; Andersen, K V

    1999-01-01

    In the family of acyl-coenzyme A binding proteins, a subset of 26 sequence sites are identical in all eukaryotes and conserved throughout evolution of the eukaryotic kingdoms. In the context of the bovine protein, the importance of these 26 sequence positions for structure, function, stability...

  2. Rational design of a conformation-switchable Ca2+- and Tb3+-binding protein without the use of multiple coupled metal-binding sites.

    Science.gov (United States)

    Li, Shunyi; Yang, Wei; Maniccia, Anna W; Barrow, Doyle; Tjong, Harianto; Zhou, Huan-Xiang; Yang, Jenny J

    2008-10-01

    Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.

  3. Characterization of monomeric DNA-binding protein Histone H1 in Leishmania braziliensis.

    Science.gov (United States)

    Carmelo, Emma; González, Gloria; Cruz, Teresa; Osuna, Antonio; Hernández, Mariano; Valladares, Basilio

    2011-08-01

    Histone H1 in Leishmania presents relevant differences compared to higher eukaryote counterparts, such as the lack of a DNA-binding central globular domain. Despite that, it is apparently fully functional since its differential expression levels have been related to changes in chromatin condensation and infectivity, among other features. The localization and the aggregation state of L. braziliensis H1 has been determined by immunolocalization, mass spectrometry, cross-linking and electrophoretic mobility shift assays. Analysis of H1 sequences from the Leishmania Genome Database revealed that our protein is included in a very divergent group of histones H1 that is present only in L. braziliensis. An antibody raised against recombinant L. braziliensis H1 recognized specifically that protein by immunoblot in L. braziliensis extracts, but not in other Leishmania species, a consequence of the sequence divergences observed among Leishmania species. Mass spectrometry analysis and in vitro DNA-binding experiments have also proven that L. braziliensis H1 is monomeric in solution, but oligomerizes upon binding to DNA. Finally, despite the lack of a globular domain, L. braziliensis H1 is able to form complexes with DNA in vitro, with higher affinity for supercoiled compared to linear DNA.

  4. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    Science.gov (United States)

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  5. Multiple DNA binding proteins contribute to timing of chromosome replication in E. coli

    DEFF Research Database (Denmark)

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. Dna...... replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology...... in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on ori...

  6. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  7. The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands

    Directory of Open Access Journals (Sweden)

    Breiteneder Heimo

    2008-10-01

    Full Text Available Abstract Background The major birch pollen allergen, Bet v 1, is a member of the ubiquitous PR-10 family of plant pathogenesis-related proteins. In recent years, a number of diverse plant proteins with low sequence similarity to Bet v 1 was identified. In addition, determination of the Bet v 1 structure revealed the existence of a large superfamily of structurally related proteins. In this study, we aimed to identify and classify all Bet v 1-related structures from the Protein Data Bank and all Bet v 1-related sequences from the Uniprot database. Results Structural comparisons of representative members of already known protein families structurally related to Bet v 1 with all entries of the Protein Data Bank yielded 47 structures with non-identical sequences. They were classified into eleven families, five of which were newly identified and not included in the Structural Classification of Proteins database release 1.71. The taxonomic distribution of these families extracted from the Pfam protein family database showed that members of the polyketide cyclase family and the activator of Hsp90 ATPase homologue 1 family were distributed among all three superkingdoms, while members of some bacterial families were confined to a small number of species. Comparison of ligand binding activities of Bet v 1-like superfamily members revealed that their functions were related to binding and metabolism of large, hydrophobic compounds such as lipids, hormones, and antibiotics. Phylogenetic relationships within the Bet v 1 family, defined as the group of proteins with significant sequence similarity to Bet v 1, were determined by aligning 264 Bet v 1-related sequences. A distance-based phylogenetic tree yielded a classification into 11 subfamilies, nine exclusively containing plant sequences and two subfamilies of bacterial proteins. Plant sequences included the pathogenesis-related proteins 10, the major latex proteins/ripening-related proteins subfamily, and

  8. Local sequence information in cellular retinoic acid-binding protein I: specific residue roles in beta-turns.

    Science.gov (United States)

    Rotondi, Kenneth S; Gierasch, Lila M

    2003-01-01

    We have recently shown that two of the beta-turns (III and IV) in the ten-stranded, beta-clam protein, cellular retinoic acid-binding protein I (CRABP I), are favored in short peptide fragments, arguing that they are encoded by local interactions (K. S. Rotondi and L. M. Gierasch, Biochemistry, 2003, Vol. 42, pp. 7976-7985). In this paper we examine these turns in greater detail to dissect the specific local interactions responsible for their observed native conformational biases. Conformations of peptides corresponding to the turn III and IV fragments were examined under conditions designed to selectively disrupt stabilizing interactions, using pH variation, chaotrope addition, or mutagenesis to probe specific side-chain influences. We find that steric constraints imposed by excluded volume effects between near neighbor residues (i,i+2), favorable polar (i,i+2) interactions, and steric permissiveness of glycines are the principal factors accounting for the observed native bias in these turns. Longer-range stabilizing interactions across the beta-turns do not appear to play a significant role in turn stability in these short peptides, in contrast to their importance in hairpins. Additionally, our data add to a growing number of examples of the 3:5 type I turn with a beta-bulge as a class of turns with high propensity to form locally defined structure. Current work is directed at the interplay between the local sequence information in the turns and more long-range influences in the mechanism of folding of this predominantly beta-sheet protein. Copyright 2004 Wiley Periodicals, Inc.

  9. Is the binding of visual features in working memory resource-demanding?

    Science.gov (United States)

    Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2006-05-01

    The episodic buffer component of working memory is assumed to play a role in the binding of features into chunks. A series of experiments compared memory for arrays of colors or shapes with memory for bound combinations of these features. Demanding concurrent verbal tasks were used to investigate the role of general attentional processes, producing load effects that were no greater on memory for feature combinations than for the features themselves. However, the binding condition was significantly less accurate with sequential rather than simultaneous presentation, especially for items earlier in the sequence. The findings are interpreted as evidence of a relatively automatic but fragile visual feature binding mechanism in working memory. Implications for the concept of an episodic buffer are discussed. 2006 APA, all rights reserved

  10. Antibody Binding Selectivity: Alternative Sets of Antigen Residues Entail High-Affinity Recognition.

    Directory of Open Access Journals (Sweden)

    Yves Nominé

    Full Text Available Understanding the relationship between protein sequence and molecular recognition selectivity remains a major challenge. The antibody fragment scFv1F4 recognizes with sub nM affinity a decapeptide (sequence 6TAMFQDPQER15 derived from the N-terminal end of human papilloma virus E6 oncoprotein. Using this decapeptide as antigen, we had previously shown that only the wild type amino-acid or conservative replacements were allowed at positions 9 to 12 and 15 of the peptide, indicating a strong binding selectivity. Nevertheless phenylalanine (F was equally well tolerated as the wild type glutamine (Q at position 13, while all other amino acids led to weaker scFv binding. The interfaces of complexes involving either Q or F are expected to diverge, due to the different physico-chemistry of these residues. This would imply that high-affinity binding can be achieved through distinct interfacial geometries. In order to investigate this point, we disrupted the scFv-peptide interface by modifying one or several peptide positions. We then analyzed the effect on binding of amino acid changes at the remaining positions, an altered susceptibility being indicative of an altered role in complex formation. The 23 starting variants analyzed contained replacements whose effects on scFv1F4 binding ranged from minor to drastic. A permutation analysis (effect of replacing each peptide position by all other amino acids except cysteine was carried out on the 23 variants using the PEPperCHIP® Platform technology. A comparison of their permutation patterns with that of the wild type peptide indicated that starting replacements at position 11, 12 or 13 modified the tolerance to amino-acid changes at the other two positions. The interdependence between the three positions was confirmed by SPR (Biacore® technology. Our data demonstrate that binding selectivity does not preclude the existence of alternative high-affinity recognition modes.

  11. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma1.

    Science.gov (United States)

    Chappell, J D; Gunn, V L; Wetzel, J D; Baer, G S; Dermody, T S

    1997-03-01

    The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.

  12. The fitness landscapes of cis-acting binding sites in different promoter and environmental contexts.

    Directory of Open Access Journals (Sweden)

    Ryan K Shultzaberger

    2010-07-01

    Full Text Available The biophysical nature of the interaction between a transcription factor and its target sequences in vitro is sufficiently well understood to allow for the effects of DNA sequence alterations on affinity to be predicted. But even in relatively simple in vivo systems, the complexities of promoter organization and activity have made it difficult to predict how altering specific interactions between a transcription factor and DNA will affect promoter output. To better understand this, we measured the relative fitness of nearly all Escherichia coli sigma(70 -35 binding sites in different promoter and environmental contexts by competing four randomized -35 promoter libraries controlling the expression of the tetracycline resistance gene (tetagainst each other in increasing concentrations of drug. We sequenced populations after competition to determine the relative enrichment of each -35 sequence. We observed a consistent relationship between the frequency of recovery of each -35 binding site and its predicted affinity for sigma(70 that varied depending on the sequence context of the promoter and drug concentration. Overall the relative fitness of each promoter could be predicted by a simple thermodynamic model of transcriptional regulation, in which the rate of transcriptional initiation (and hence fitness is dependent upon the overall stability of the initiation complex, which in turn is dependent upon the energetic contributions of all sites within the complex. As implied by this model, a decrease in the free energy of association at one site could be compensated for by an increase in the binding energy at another to produce a similar output. Furthermore, these data show that a large and continuous range of transcriptional outputs can be accessed by merely changing the -35, suggesting that evolved or engineered mutations at this site could allow for subtle and precise control over gene expression.

  13. Complementation of a primer binding site-impaired murine leukemia virus-derived retroviral vector by a genetically engineered tRNA-like primer

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M; Lovmand, J

    1997-01-01

    , but not with a noncomplementary tRNA-like molecule. The engineered primer was shown to be involved in both the initiation of first-strand synthesis and second-strand transfer. These results provide an in vivo demonstration that the retroviral replication machinery may recognize sequence complementarity rather than actual primer...... binding site and 3' primer sequences. Use of mutated primer binding site vectors replicating via engineered primers may add additional control features to retroviral gene transfer technology....

  14. Topological disposition of the sequences -QRKIVE- and -KETYY in native (Na+ + K+)-ATPase

    International Nuclear Information System (INIS)

    Bayer, R.

    1990-01-01

    The dispositions with respect to the plane of the membrane of lysine-905 in the internal sequence -EQRKIVE- and of lysine-1012 in the carboxy-terminal sequence -RRPGGWVEKETYY of the α-polypeptide of sodium and potassium ion activated adenosinetriphosphatase have been determined. These lysines are found in peptides released from the intact α-polypeptide by the extracellular protease from Staphylococcus aureus strain V8 and by trypsin, respectively. Synthetic peptides containing terminal sequences of these were used to prepare polyclonal antibodies, which were then used to prepare immunoadsorbents directed against the respective peptides. Sealed, right-side-out membrane vesicles containing native (Na + + K + )-ATPase were labeled with pyridoxal phosphate and sodium [ 3 H]borohydride in the absence or presence of saponin. The labeled α-polypeptide was isolated from these vesicles and digested with appropriate proteases. The incorporation of radioactivity into the peptides binding to the immunoadsorbent directed against the sequence pyrERXIVE increased 3-fold int the presence of saponin as a result of the increased accessibility of this portion of the protein to the reagent when the vesicles were breached by saponin; hence, this sequence is located on the cytoplasmic face of the membrane. It was inferred that the carboxy-terminal sequence -KETYY is on the extracytoplasmic face since the incorporation of radioactivity into peptides binding to the immunoadsorbent directed against the sequence -ETYY did not change when the vesicles were breached with saponin

  15. Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides.

    Science.gov (United States)

    Yoga, Yano M K; Traore, Daouda A K; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R; Barker, Andrew; Leedman, Peter J; Wilce, Jacqueline A; Wilce, Matthew C J

    2012-06-01

    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5'-CCCTCCCT-3' DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5'-ACCCCA-3' DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad.

  16. Amino acids 16-275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA.

    Science.gov (United States)

    Mouw, M; Pintel, D J

    1998-11-10

    GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well. Copyright 1998 Academic Press.

  17. Yeast one-hybrid system used to identify the binding proteins for rat glutathione S-transferase P enhancer I.

    Science.gov (United States)

    Liao, Ming-Xiang; Liu, Dong-Yuan; Zuo, Jin; Fang, Fu-De

    2002-03-01

    To detect the trans-factors specifically binding to the strong enhancer element (GPEI) in the upstream of rat glutathione S-transferase P (GST-P) gene. Yeast one-hybrid system was used to screen rat lung MATCHMAKER cDNA library to identify potential trans-factors that can interact with core sequence of GPEI(cGPEI). Electrophoresis mobility shift assay (EMSA) was used to analyze the binding of transfactors to cGPEI. cDNA fragments coding for the C-terminal part of the transcription factor c-Jun and rat adenine nucleotide translocator (ANT) were isolated. The binding of c-Jun and ANT to GPEI core sequence were confirmed. Rat c-jun transcriptional factor and ANT may interact with cGPEI. They could play an important role in the induced expression of GST-P gene.

  18. dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi.

    Science.gov (United States)

    Parker, Greg S; Maity, Tuhin Subhra; Bass, Brenda L

    2008-12-26

    Double-stranded RNA (dsRNA)-binding proteins facilitate Dicer functions in RNA interference. Caenorhabditis elegans RDE-4 facilitates cleavage of long dsRNA to small interfering RNA (siRNA), while human trans-activation response RNA-binding protein (TRBP) functions downstream to pass siRNA to the RNA-induced silencing complex. We show that these distinct in vivo roles are reflected in in vitro binding properties. RDE-4 preferentially binds long dsRNA, while TRBP binds siRNA with an affinity that is independent of dsRNA length. These properties are mechanistically based on the fact that RDE-4 binds cooperatively, via contributions from multiple domains, while TRBP binds noncooperatively. Our studies offer a paradigm for how dsRNA-binding proteins, which are not sequence specific, discern dsRNA length. Additionally, analyses of the ability of RDE-4 deletion constructs and RDE-4/TRBP chimeras to reconstitute Dicer activity suggest RDE-4 promotes activity using its dsRNA-binding motif 2 to bind dsRNA, its linker region to interact with Dicer, and its C-terminus for Dicer activation.

  19. Regulation and function of the CD3¿ DxxxLL motif: a binding site for adaptor protein-1 and adaptor protein-2 in vitro

    DEFF Research Database (Denmark)

    Dietrich, J; Kastrup, J; Nielsen, B L

    1997-01-01

    /CD3gamma chimeras; and in vitro by binding CD3gamma peptides to clathrin-coated vesicle adaptor proteins (APs). We find that the CD3gamma D127xxxLL131/132 sequence represents one united motif for binding of both AP-1 and AP-2, and that this motif functions as an active sorting motif in monomeric CD4...... and for AP binding in vitro. Furthermore, we provide evidence indicating that phosphorylation of CD3gamma S126 in the context of the complete TCR induces a conformational change that exposes the DxxxLL sequence for AP binding. Exposure of the DxxxLL motif causes an increase in the TCR internalization rate...

  20. Sequence-specific protection of duplex DNA against restriction and methylation enzymes by pseudocomplementary PNAs

    DEFF Research Database (Denmark)

    Izvolsky, K I; Demidov, V V; Nielsen, P E

    2000-01-01

    I restriction endonuclease and dam methylase. The pcPNA-assisted protection against enzymatic methylation is more efficient when the PNA-binding site embodies the methylase-recognition site rather than overlaps it. We conclude that pcPNAs may provide the robust tools allowing to sequence-specifically manipulate...... DNA duplexes in a virtually sequence-unrestricted manner....

  1. Investigation of arc repressor DNA-binding specificity by comparative molecular dynamics simulations.

    Science.gov (United States)

    Song, Wei; Guo, Jun-Tao

    2015-01-01

    Transcription factors regulate gene expression through binding to specific DNA sequences. How transcription factors achieve high binding specificity is still not well understood. In this paper, we investigated the role of protein flexibility in protein-DNA-binding specificity by comparative molecular dynamics (MD) simulations. Protein flexibility has been considered as a key factor in molecular recognition, which is intrinsically a dynamic process involving fine structural fitting between binding components. In this study, we performed comparative MD simulations on wild-type and F10V mutant P22 Arc repressor in both free and complex conformations. The F10V mutant has lower DNA-binding specificity though both the bound and unbound main-chain structures between the wild-type and F10V mutant Arc are highly similar. We found that the DNA-binding motif of wild-type Arc is structurally more flexible than the F10V mutant in the unbound state, especially for the six DNA base-contacting residues in each dimer. We demonstrated that the flexible side chains of wild-type Arc lead to a higher DNA-binding specificity through forming more hydrogen bonds with DNA bases upon binding. Our simulations also showed a possible conformational selection mechanism for Arc-DNA binding. These results indicate the important roles of protein flexibility and dynamic properties in protein-DNA-binding specificity.

  2. Identification of Arsenic Direct-Binding Proteins in Acute Promyelocytic Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-11-01

    Full Text Available The identification of arsenic direct-binding proteins is essential for determining the mechanism by which arsenic trioxide achieves its chemotherapeutic effects. At least two cysteines close together in the amino acid sequence are crucial to the binding of arsenic and essential to the identification of arsenic-binding proteins. In the present study, arsenic binding proteins were pulled down with streptavidin and identified using a liquid chromatograph-mass spectrometer (LC-MS/MS. More than 40 arsenic-binding proteins were separated, and redox-related proteins, glutathione S-transferase P1 (GSTP1, heat shock 70 kDa protein 9 (HSPA9 and pyruvate kinase M2 (PKM2, were further studied using binding assays in vitro. Notably, PKM2 has a high affinity for arsenic. In contrast to PKM2, GSTP1and HSPA9 did not combine with arsenic directly in vitro. These observations suggest that arsenic-mediated acute promyelocytic leukaemia (APL suppressive effects involve PKM2. In summary, we identified several arsenic binding proteins in APL cells and investigated the therapeutic mechanisms of arsenic trioxide for APL. Further investigation into specific signal pathways by which PKM2 mediates APL developments may lead to a better understanding of arsenic effects on APL.

  3. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    Science.gov (United States)

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Identification of nucleic acid binding sites on translin-associated factor X (TRAX protein.

    Directory of Open Access Journals (Sweden)

    Gagan Deep Gupta

    Full Text Available Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity.

  5. Identification of Nucleic Acid Binding Sites on Translin-Associated Factor X (TRAX) Protein

    Science.gov (United States)

    Gupta, Gagan Deep; Kumar, Vinay

    2012-01-01

    Translin and TRAX proteins play roles in very important cellular processes such as DNA recombination, spatial and temporal expression of mRNA, and in siRNA processing. Translin forms a homomeric nucleic acid binding complex and binds to ssDNA and RNA. However, a mutant translin construct that forms homomeric complex lacking nucleic acid binding activity is able to form fully active heteromeric translin-TRAX complex when co-expressed with TRAX. A substantial progress has been made in identifying translin sites that mediate its binding activity, while TRAX was thought not to bind DNA or RNA on its own. We here for the first time demonstrate nucleic acid binding to TRAX by crosslinking radiolabeled ssDNA to heteromeric translin-TRAX complex using UV-laser. The TRAX and translin, photochemically crosslinked with ssDNA, were individually detected on SDS-PAGE. We mutated two motifs in TRAX and translin, designated B2 and B3, to help define the nucleic acid binding sites in the TRAX sequence. The most pronounced effect was observed in the mutants of B3 motif that impaired nucleic acid binding activity of the heteromeric complexes. We suggest that both translin and TRAX are binding competent and contribute to the nucleic acid binding activity. PMID:22427937

  6. H-2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element.

    Science.gov (United States)

    Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K

    1989-11-01

    Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.

  7. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to "Biased Opioids"?

    Science.gov (United States)

    Root-Bernstein, Robert; Turke, Miah; Subhramanyam, Udaya K Tiruttani; Churchill, Beth; Labahn, Joerg

    2018-01-17

    Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.

  8. Protein sequences bound to mineral surfaces persist into deep time

    DEFF Research Database (Denmark)

    Demarchi, Beatrice; Hall, Shaun; Roncal-Herrero, Teresa

    2016-01-01

    of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking protein diagenesis back in time we find consistent patterns of preservation, demonstrating authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2, the dominant proteins within the eggshell......, reveal that distinct domains bind to the mineral surface. It is the domain with the strongest calculated binding energy to the calcite surface that is selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides are 50 times older than any previously authenticated...

  9. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  10. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  11. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  12. LTRs of Endogenous Retroviruses as a Source of Tbx6 Binding Sites.

    Science.gov (United States)

    Yasuhiko, Yukuto; Hirabayashi, Yoko; Ono, Ryuichi

    2017-01-01

    Retrotransposons are abundant in mammalian genomes and can modulate the gene expression of surrounding genes by disrupting endogenous binding sites for transcription factors (TFs) or providing novel TFs binding sites within retrotransposon sequences. Here, we show that a (C/T)CACACCT sequence motif in ORR1A, ORR1B, ORR1C, and ORR1D, Long Terminal Repeats (LTRs) of MaLR endogenous retrovirus (ERV), is the direct target of Tbx6, an evolutionary conserved family of T-box TFs. Moreover, by comparing gene expression between control mice (Tbx6 +/-) and Tbx6-deficient mice (Tbx6 -/-), we demonstrate that at least four genes, Twist2, Pitx2, Oscp1 , and Nfxl1 , are down-regulated with Tbx6 deficiency. These results suggest that ORR1A, ORR1B, ORR1C and ORR1D may contribute to the evolution of mammalian embryogenesis.

  13. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry

    Science.gov (United States)

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...

  14. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    International Nuclear Information System (INIS)

    Thongekkaew, Jantaporn; Ikeda, Hiroko; Iefuji, Haruyuki

    2012-01-01

    Highlights: ► The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. ► The fusion enzyme was stable at 80 °C for 120-min. ► The fusion enzyme was responsible for cellulose-binding capacity. ► The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae (α factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS–PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 °C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.

  15. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    Energy Technology Data Exchange (ETDEWEB)

    Thongekkaew, Jantaporn, E-mail: jantaporn_25@yahoo.com [Department of Biological Science, Faculty of Science, Ubon-Ratchathani University, Warinchumrab, Ubon-Ratchathani 34190 (Thailand); Ikeda, Hiroko; Iefuji, Haruyuki [Application Research Division, National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima 739-0046 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.

  16. Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles

    NARCIS (Netherlands)

    Hennig, Sven; Kong, Geraldine; Mannen, Taro; Sadowska, Agata; Kobelke, Simon; Blythe, Amanda; Knott, Gavin J; Iyer, K Swaminathan; Ho, Diwei; Newcombe, Estella A; Hosoki, Kana; Goshima, Naoki; Kawaguchi, Tetsuya; Hatters, Danny; Trinkle-Mulcahy, Laura; Hirose, Tetsuro; Bond, Charles S; Fox, Archa H

    2015-01-01

    Prion-like domains (PLDs) are low complexity sequences found in RNA binding proteins associated with the neurodegenerative disorder amyotrophic lateral sclerosis. Recently, PLDs have been implicated in mediating gene regulation via liquid-phase transitions that drive ribonucleoprotein granule

  17. Formation of a Multiple Protein Complex on the Adenovirus Packaging Sequence by the IVa2 Protein▿

    OpenAIRE

    Tyler, Ryan E.; Ewing, Sean G.; Imperiale, Michael J.

    2007-01-01

    During adenovirus virion assembly, the packaging sequence mediates the encapsidation of the viral genome. This sequence is composed of seven functional units, termed A repeats. Recent evidence suggests that the adenovirus IVa2 protein binds the packaging sequence and is involved in packaging of the genome. Study of the IVa2-packaging sequence interaction has been hindered by difficulty in purifying the protein produced in virus-infected cells or by recombinant techniques. We report the first ...

  18. The Extracellular Heme-binding Protein HbpS from the Soil Bacterium Streptomyces reticuli Is an Aquo-cobalamin Binder*

    Science.gov (United States)

    Ortiz de Orué Lucana, Darío; Fedosov, Sergey N.; Wedderhoff, Ina; Che, Edith N.; Torda, Andrew E.

    2014-01-01

    The extracellular protein HbpS from Streptomyces reticuli interacts with iron ions and heme. It also acts in concert with the two-component sensing system SenS-SenR in response to oxidative stress. Sequence comparisons suggested that the protein may bind a cobalamin. UV-visible spectroscopy confirmed binding (Kd = 34 μm) to aquo-cobalamin (H2OCbl+) but not to other cobalamins. Competition experiments with the H2OCbl+-coordinating ligand CN− and comparison of mutants identified a histidine residue (His-156) that coordinates the cobalt ion of H2OCbl+ and substitutes for water. HbpS·Cobalamin lacks the Asp-X-His-X-X-Gly motif seen in some cobalamin binding enzymes. Preliminary tests showed that a related HbpS protein from a different species also binds H2OCbl+. Furthermore, analyses of HbpS-heme binding kinetics are consistent with the role of HbpS as a heme-sensor and suggested a role in heme transport. Given the high occurrence of HbpS-like sequences among Gram-positive and Gram-negative bacteria, our findings suggest a great functional versatility among these proteins. PMID:25342754

  19. Multiple POU-binding motifs, recognized by tissue-specific nuclear factors, are important for Dll1 gene expression in neural stem cells

    International Nuclear Information System (INIS)

    Nakayama, Kohzo; Nagase, Kazuko; Tokutake, Yuriko; Koh, Chang-Sung; Hiratochi, Masahiro; Ohkawara, Takeshi; Nakayama, Noriko

    2004-01-01

    We cloned the 5'-flanking region of the mouse homolog of the Delta gene (Dll1) and demonstrated that the sequence between nucleotide position -514 and -484 in the 5'-flanking region of Dll1 played a critical role in the regulation of its tissue-specific expression in neural stem cells (NSCs). Further, we showed that multiple POU-binding motifs, located within this short sequence of 30 bp, were essential for transcriptional activation of Dll1 and also that multiple tissue-specific nuclear factors recognized these POU-binding motifs in various combinations through differentiation of NSCs. Thus, POU-binding factors may play an important role in Dll1 expression in developing NSCs

  20. DNA Binding by the Ribosomal DNA Transcription Factor Rrn3 Is Essential for Ribosomal DNA Transcription*

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H.; Rothblum, Katrina; Schneider, David A.; Rothblum, Lawrence I.

    2013-01-01

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382–400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I. PMID:23393135

  1. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription.

    Science.gov (United States)

    Stepanchick, Ann; Zhi, Huijun; Cavanaugh, Alice H; Rothblum, Katrina; Schneider, David A; Rothblum, Lawrence I

    2013-03-29

    The human homologue of yeast Rrn3 is an RNA polymerase I-associated transcription factor that is essential for ribosomal DNA (rDNA) transcription. The generally accepted model is that Rrn3 functions as a bridge between RNA polymerase I and the transcription factors bound to the committed template. In this model Rrn3 would mediate an interaction between the mammalian Rrn3-polymerase I complex and SL1, the rDNA transcription factor that binds to the core promoter element of the rDNA. In the course of studying the role of Rrn3 in recruitment, we found that Rrn3 was in fact a DNA-binding protein. Analysis of the sequence of Rrn3 identified a domain with sequence similarity to the DNA binding domain of heat shock transcription factor 2. Randomization, or deletion, of the amino acids in this region in Rrn3, amino acids 382-400, abrogated its ability to bind DNA, indicating that this domain was an important contributor to DNA binding by Rrn3. Control experiments demonstrated that these mutant Rrn3 constructs were capable of interacting with both rpa43 and SL1, two other activities demonstrated to be essential for Rrn3 function. However, neither of these Rrn3 mutants was capable of functioning in transcription in vitro. Moreover, although wild-type human Rrn3 complemented a yeast rrn3-ts mutant, the DNA-binding site mutant did not. These results demonstrate that DNA binding by Rrn3 is essential for transcription by RNA polymerase I.

  2. An algorithm to find all palindromic sequences in proteins

    Indian Academy of Sciences (India)

    2013-01-20

    Jan 20, 2013 ... 1976; Karrer and Gall 1976; Vogt and Braun 1976) and (iii) in the formation of hairpin loops in the newly transcribed RNA. Palindromic sequences are observed in various classes of proteins like histones (Cheng et al. 1989), prion proteins (Sulkowski 1992; Kazim 1993),. DNA-binding proteins (Suzuki 1992; ...

  3. C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins.

    Science.gov (United States)

    Ramsey, Andrew J; Russell, Lance C; Chinkers, Michael

    2009-10-12

    Steroid-hormone-receptor maturation is a multi-step process that involves several TPR (tetratricopeptide repeat) proteins that bind to the maturation complex via the C-termini of hsp70 (heat-shock protein 70) and hsp90 (heat-shock protein 90). We produced a random T7 peptide library to investigate the roles played by the C-termini of the two heat-shock proteins in the TPR-hsp interactions. Surprisingly, phages with the MEEVD sequence, found at the C-terminus of hsp90, were not recovered from our biopanning experiments. However, two groups of phages were isolated that bound relatively tightly to HsPP5 (Homo sapiens protein phosphatase 5) TPR. Multiple copies of phages with a C-terminal sequence of LFG were isolated. These phages bound specifically to the TPR domain of HsPP5, although mutation studies produced no evidence that they bound to the domain's hsp90-binding groove. However, the most abundant family obtained in the initial screen had an aspartate residue at the C-terminus. Two members of this family with a C-terminal sequence of VD appeared to bind with approximately the same affinity as the hsp90 C-12 control. A second generation pseudo-random phage library produced a large number of phages with an LD C-terminus. These sequences acted as hsp70 analogues and had relatively low affinities for hsp90-specific TPR domains. Unfortunately, we failed to identify residues near hsp90's C-terminus that impart binding specificity to individual hsp90-TPR interactions. The results suggest that the C-terminal sequences of hsp70 and hsp90 act primarily as non-specific anchors for TPR proteins.

  4. Genomic sequence and organization of two members of a human lectin gene family

    International Nuclear Information System (INIS)

    Gitt, M.A.; Barondes, S.H.

    1991-01-01

    The authors have isolated and sequenced the genomic DNA encoding a human dimeric soluble lactose-binding lectin. The gene has four exons, and its upstream region contains sequences that suggest control by glucocorticoids, heat (environmental) shock, metals, and other factors. They have also isolated and sequenced three exons of the gene encoding another human putative lectin, the existence of which was first indicated by isolation of its cDNA. Comparisons suggest a general pattern of genomic organization of members of this lectin gene family

  5. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites

    DEFF Research Database (Denmark)

    Grey, Corinne; Clément, Julie A.J.; Buard, Jérôme

    2017-01-01

    In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed...

  6. Epitopes in α8β1 and other RGD-binding integrins delineate classes of integrin-blocking antibodies and major binding loops in α subunits.

    Science.gov (United States)

    Nishimichi, Norihisa; Kawashima, Nagako; Yokosaki, Yasuyuki

    2015-09-09

    Identification of epitopes for integrin-blocking monoclonal antibodies (mAbs) has aided our understanding of structure-function relationship of integrins. We mapped epitopes of chicken anti-integrin-α8-subunit-blocking mAbs by mutational analyses, examining regions that harboured all mapped epitopes recognized by mAbs against other α-subunits in the RGD-binding-integrin subfamily. Six mAbs exhibited blocking function, and these mAbs recognized residues on the same W2:41-loop on the top-face of the β-propeller. Loop-tips sufficiently close to W2:41 (face was identified as an additional component of the epitope of one antibody, clone YZ5. Binding sequences on the two loops were conserved in virtually all mammals, and that on W3:34 was also conserved in chickens. These indicate 1) YZ5 binds both top and bottom loops, and the binding to W3:34 is by interactions to conserved residues between immunogen and host species, 2) five other blocking mAbs solely bind to W2:41 and 3) the α8 mAbs would cross-react with most mammals. Comparing with the mAbs against the other α-subunits of RGD-integrins, two classes were delineated; those binding to "W3:34 and an top-loop", and "solely W2:41", accounting for 82% of published RGD-integrin-mAbs.

  7. Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.; Swiderska, A.; McGeehan, J. E.; Kneale, G. G., E-mail: geoff.kneale@port.ac.uk [University of Portsmouth, Portsmouth PO1 2DY (United Kingdom)

    2015-02-01

    The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class of controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.

  8. Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression

    International Nuclear Information System (INIS)

    Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.; Swiderska, A.; McGeehan, J. E.; Kneale, G. G.

    2015-01-01

    The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class of controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal

  9. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation

    DEFF Research Database (Denmark)

    Bruun, Gitte H; Doktor, Thomas K; Borch-Jensen, Jonas

    2016-01-01

    for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. RESULTS: Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing...... regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an i...... downstream of the 5' splice site can be blocked by SSOs to activate the exon. CONCLUSIONS: The hnRNP A1 binding map can be used to identify potential targets for SSO-based therapy. Moreover, together with the hnRNP A1 consensus binding motif, the binding map may be used to predict whether disease...

  10. kmer-SVM: a web server for identifying predictive regulatory sequence features in genomic data sets

    Science.gov (United States)

    Fletez-Brant, Christopher; Lee, Dongwon; McCallion, Andrew S.; Beer, Michael A.

    2013-01-01

    Massively parallel sequencing technologies have made the generation of genomic data sets a routine component of many biological investigations. For example, Chromatin immunoprecipitation followed by sequence assays detect genomic regions bound (directly or indirectly) by specific factors, and DNase-seq identifies regions of open chromatin. A major bottleneck in the interpretation of these data is the identification of the underlying DNA sequence code that defines, and ultimately facilitates prediction of, these transcription factor (TF) bound or open chromatin regions. We have recently developed a novel computational methodology, which uses a support vector machine (SVM) with kmer sequence features (kmer-SVM) to identify predictive combinations of short transcription factor-binding sites, which determine the tissue specificity of these genomic assays (Lee, Karchin and Beer, Discriminative prediction of mammalian enhancers from DNA sequence. Genome Res. 2011; 21:2167–80). This regulatory information can (i) give confidence in genomic experiments by recovering previously known binding sites, and (ii) reveal novel sequence features for subsequent experimental testing of cooperative mechanisms. Here, we describe the development and implementation of a web server to allow the broader research community to independently apply our kmer-SVM to analyze and interpret their genomic datasets. We analyze five recently published data sets and demonstrate how this tool identifies accessory factors and repressive sequence elements. kmer-SVM is available at http://kmersvm.beerlab.org. PMID:23771147

  11. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows

    Science.gov (United States)

    Lun, Aaron T.L.; Smyth, Gordon K.

    2016-01-01

    Chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq) is widely used to identify binding sites for a target protein in the genome. An important scientific application is to identify changes in protein binding between different treatment conditions, i.e. to detect differential binding. This can reveal potential mechanisms through which changes in binding may contribute to the treatment effect. The csaw package provides a framework for the de novo detection of differentially bound genomic regions. It uses a window-based strategy to summarize read counts across the genome. It exploits existing statistical software to test for significant differences in each window. Finally, it clusters windows into regions for output and controls the false discovery rate properly over all detected regions. The csaw package can handle arbitrarily complex experimental designs involving biological replicates. It can be applied to both transcription factor and histone mark datasets, and, more generally, to any type of sequencing data measuring genomic coverage. csaw performs favorably against existing methods for de novo DB analyses on both simulated and real data. csaw is implemented as a R software package and is freely available from the open-source Bioconductor project. PMID:26578583

  12. Identification of the segment of the catalytic subunit of (Na+,K+)ATPase containing the digitalis binding site.

    Science.gov (United States)

    Rossi, B; Ponzio, G; Lazdunski, M

    1982-01-01

    Digitalis compounds that are extensively used in the treatment of cardiovascular disorders are known to bind specifically at the extracellular side of (Na+,K+)ATPase. We have recently reported the synthesis of [3H]p- nitrophenyltriazene -ouabain, a derivative of ouabain, which specifically alkylates the catalytic chain of the (Na+,K+)ATPase at a defined region of the sequence. The peptidic segment involved in the binding of digitalis to (Na+,K+)ATPase has been located after mild trypsin treatment of the labeled enzyme. In the presence of 100 mM KCl, tryptic fragmentation results in two peptide fragments of mol. wt. 58 000 and 41 000, respectively. The radioactive probe labeled only the 41 000 fragment indicating that the digitalis binding site is located on the 41 000 domain situated at the N-terminal part of the sequence of the alpha-subunit. Images Fig. 1. Fig. 3. PMID:6329711

  13. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to “Biased Opioids”?

    Science.gov (United States)

    Turke, Miah; Subhramanyam, Udaya K. Tiruttani; Churchill, Beth; Labahn, Joerg

    2018-01-01

    Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists. PMID:29342106

  14. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to “Biased Opioids”?

    Directory of Open Access Journals (Sweden)

    Robert Root-Bernstein

    2018-01-01

    Full Text Available Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.

  15. Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard; Nix, David; Pollard, Daniel A.; Iyer, Venky N.; Hechmer, Aaron; Simirenko, Lisa; Stapleton, Mark; Luengo Hendriks, Cris L.; Chu, Hou Cheng; Ogawa, Nobuo; Inwood, William; Sementchenko, Victor; Beaton, Amy; Weiszmann, Richard; Celniker, Susan E.; Knowles, David W.; Gingeras, Tom; Speed, Terence P.; Eisen, Michael B.; Biggin, Mark D.

    2008-01-10

    Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early

  16. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung; Ryu, Tae Woo; Heo, Hyoungsam; Seo, Seungwon; Lee, Doheon; Hur, Cheolgoo

    2011-01-01

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  17. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung

    2011-04-30

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  18. A single, specific thymine mutation in the ComK-Binding site severely decreases binding and transcription activation by the competence transcription factor ComK of Bacillus subtilis

    NARCIS (Netherlands)

    Susanna, Kim A.; Mironczuk, Aleksandra M.; Smits, Wiep Klaas; Hamoen, Leendert W.; Kuipers, Oscar P.

    The competence transcription factor ComK plays a central role in competence development in Bacillus subtilis by activating the transcription of the K regulon. ComK-activated genes are characterized by the presence of a specific sequence to which ComK binds, a K-box, in their upstream DNA region.

  19. Interactions between the R2R3-MYB transcription factor, AtMYB61, and target DNA binding sites.

    Directory of Open Access Journals (Sweden)

    Michael B Prouse

    Full Text Available Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing. The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators.

  20. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also found...... in the proteasome subunit SpRpn2 and the anaphase-promoting complex/cyclosome (APC/C) subunit Cut4. The putative role of Pus1 as a factor involved in allocation of ubiquitinylated substrates for the proteasome is discussed....