WorldWideScience

Sample records for damage evaluation method

  1. Combination of Three Methods of Photo Voltaic Panels Damage Evaluation

    Directory of Open Access Journals (Sweden)

    Olšan T.

    2017-06-01

    Full Text Available In broken photovoltaic (PV cells the flow of electric current can be reduced in some places, which results in a lowered efficiency. In the present study, the damage of PV cells and panels was evaluated using three methods - electroluminescence, infrared camera imaging, and visual examination. The damage is detectable by all these methods which were presented and compared from the viewpoint of resolution, difficulty, and accuracy of monitoring the PV panels damage.

  2. Damage evaluation by a guided wave-hidden Markov model based method

    Science.gov (United States)

    Mei, Hanfei; Yuan, Shenfang; Qiu, Lei; Zhang, Jinjin

    2016-02-01

    Guided wave based structural health monitoring has shown great potential in aerospace applications. However, one of the key challenges of practical engineering applications is the accurate interpretation of the guided wave signals under time-varying environmental and operational conditions. This paper presents a guided wave-hidden Markov model based method to improve the damage evaluation reliability of real aircraft structures under time-varying conditions. In the proposed approach, an HMM based unweighted moving average trend estimation method, which can capture the trend of damage propagation from the posterior probability obtained by HMM modeling is used to achieve a probabilistic evaluation of the structural damage. To validate the developed method, experiments are performed on a hole-edge crack specimen under fatigue loading condition and a real aircraft wing spar under changing structural boundary conditions. Experimental results show the advantage of the proposed method.

  3. Evaluation of creep damage development by the replica method; Utvaerdering av krypskadeutveckling med replikmetoden

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan [Det Norske Veritas AB, Stockholm (Sweden); Roennholm, Markku [Fortum (Sweden)

    2002-04-01

    Creep damage development in high temperature components can be monitored by the replica method. Damage is classified and an experience based time period for safe operation is recommended where a re-inspection should be conducted. Original recommendations are still commonly used but there are also developed ones are mostly less conservative. A data base of more than 6000 replicas, collected from welded components in Swedish and Finnish power plants, has been evaluated with respect to damage development in the present project. The results are in general in good agreement to the existing developed recommendations for re-inspections. Important factors that should be considered for use of the recommendations are highlighted: Service history, Material, welding and heat treatment, Measure of pressure and temperature, System stresses, Geometrical stress concentrations, stress distributions, Design of components and welds, Creep crack growth, Starts and stops, Extent and performance of the replica method. These factors have been analysed with respect to the evaluated data resulting in comments to the existing recommendations. In addition, recommendations and conditions for a high reliability of the replica method are described. The comments and recommendations can be read in separate sections in the end of the report.

  4. Impact Damage Evaluation Method of Friction Disc Based on High-Speed Photography and Tooth-Root Stress Coupling

    International Nuclear Information System (INIS)

    Yin, L; Shao, Y M; Liu, J; Zheng, H L

    2015-01-01

    The stability of friction disc could be seriously affected by the tooth surface damage due to poor working conditions of the wet multi-disc brake in heavy trucks. There are few current works focused on the damage of the friction disc caused by torsion-vibration impacts. Hence, it is necessary to investigate its damage mechanisms and evaluation methods. In this paper, a damage mechanism description and evaluation method of a friction disc based on the high-speed photography and tooth-root stress coupling is proposed. According to the HighSpeed Photography, the collision process between the friction disc and hub is recorded, which can be used to determine the contact position and deformation. Combined with the strain-stress data obtained by the strain gauge at the place of the tooth-root, the impact force and property are studied. In order to obtain the evaluation method, the damage surface morphology data of the friction disc extracted by 3D Super Depth Digital Microscope (VH-Z100R) is compared with the impact force and property. The quantitative relationships between the amount of deformation and collision number are obtained using a fitting analysis method. The experimental results show that the damage of the friction disc can be evaluated by the proposed impact damage evaluation method based on the high-speed photography and tooth-root stress coupling. (paper)

  5. Nondestructive damage detection and evaluation technique for seismically damaged structures

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki; Kondoh, Masuo; Ohsumi, Michio

    1999-02-01

    The development of quantitative damage detection and evaluation technique, and damage detection technique for invisible damages of structures are required according to the lessons from the 1995 Hyogo-ken Nanbu earthquake. In this study, two quantitative damage sensing techniques for highway bridge structures are proposed. One method is to measure the change of vibration characteristics of the bridge structure. According to the damage detection test for damaged bridge column by shaking table test, this method can successfully detect the vibration characteristic change caused by damage progress due to increment excitations. The other method is to use self-diagnosis intelligent materials. According to the reinforced concrete beam specimen test, the second method can detect the damage by rupture of intelligent sensors, such as optical fiber or carbon fiber reinforced plastic rod.

  6. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  7. Enamel cracks evaluation - A method to predict tooth surface damage during the debonding.

    Science.gov (United States)

    Dumbryte, Irma; Jonavicius, Tomas; Linkeviciene, Laura; Linkevicius, Tomas; Peciuliene, Vytaute; Malinauskas, Mangirdas

    2015-01-01

    The objective of this in vitro study was to evaluate the effect of the enamel cracks on the tooth damage during the debonding. Measurements of the cracks characteristics (visibility, direction, length, and location) were performed utilizing a scanning electron microscopy (SEM) technique and mathematically derived formulas (x=h/30, l=n*x) before and following the removal of mechanically retained metal and ceramic brackets. The likelihood of having greater extent enamel defects was higher for the teeth with pronounced cracks (odds vatios, OR=3.728), increased when the crack was located in more than one zone of the tooth (OR=1.998), and the inclination did not exceed 30-45° (OR=0.505). Using ceramic brackets the risk of greater amount tooth structure defects raised 1.45 times (OR=1.450). Enamel crack showing all these characteristics at the beginning of the orthodontic treatment and the use of ceramic brackets might predispose to higher risk of greater extent tooth surface damage after the debonding by 20.4%.

  8. An Alternative Method of Evaluating 1540NM Exposure Laser Damage using an Optical Tissue Phantom

    National Research Council Canada - National Science Library

    Jindra, Nichole M; Figueroa, Manuel A; Rockwell, Benjamin A; Chavey, Lucas J; Zohner, Justin J

    2006-01-01

    An optical phantom was designed to physically and optically resemble human tissue, in an effort to provide an alternative for detecting visual damage resulting from inadvertent exposure to infrared lasers...

  9. Flash flood warning in mountainaious areas: using damages reports to evaluate the method at small ungauged catchments

    Science.gov (United States)

    Defrance, Dimitri; Javelle, Pierre; Ecrepont, Stéphane; Andreassian, Vazken

    2013-04-01

    In Europe, flash floods mainly occur in the Mediterranean area on small catchments with a short concentration time. Anticipating this kind of events is a major issue in order to reduce the resulting damages. But for many of the impacted catchments, no data are available to calibrate and evaluate hydrological models. In this context, the aims of this study is to develop and evaluate a warning method for the Southern French Alps. This area is of particular interest, because it regroups different hydrological regimes, from purely Mediterranean to purely Alpine influences. Two main issues should be addressed: - How to define the hydrological model and its parameterization for an application in an ungauged context? - How to evaluate the final results on 'real' ungauged catchments? The first issue is a classic one. Using a 'observed' data set (154 streamflow stations with catchment areas ranging from 5 to 1000 km² and distributed rainfall available on the 1997-2006 period), we developed a regional model specifically for the studied area. For this purpose, the AIGA method, initially developed for Mediterranean catchments was adapted, in order to take into account snowmelt and to produce baseflows. Then, different parameterizations were tested, derived from different simple regionalisation techniques: - the same parameters set for the whole area defined as the median of the local calibrated parameters; - the same technique as the previous case, but by considering different sub-areas, defined as "hydro-climatically" homogeneous by previous studies; - and finally the neighbour's method. The second issue is more original. Indeed, in most studies the final evaluation is done using gauged stations as they were 'ungauged', ie keeping the at-site discharge data only for validation ant not for calibration. The main disadvantage of this approach is that the evaluation is made at the scale of the gauged catchments, which are in general greater than the catchments impacted by flash

  10. Biodosimetric methods for the evaluation of radiation damage to the organism

    International Nuclear Information System (INIS)

    Kuna, P.; Navratil, L.; Siffnerova, H.; Singer, J.; Havranova, R.; Martinu, P.; Racek, J.; Scheinost, O.; Kantorova, E.; Beranek, L.

    2005-01-01

    The alterations of chromosomes of human lymphocytes are used as a quantitative and specific indicators of radiation injury as a 'biological dosimeter. In this study we applied 4 types of cytogenetic analysis and 5 parameters of oxidation-reduction system in total blood, erythrocytes and blood plasma for the estimation of the radiation damage to the organism in 4 groups of human beings in the region of South Bohemia and especially in the citizens living near to the Temelin nuclear power plant. No statistically significant changes were observed in the compared groups, when the different parameters of the oxidation-reduction system were tested in erythrocytes or blood plasma. The results suggest a consideration that in spite of the fact that the employees did not immediately work in the nuclear power plant control zone, their radiation burden was higher then that in controls. All these employees also resided et distance up to 25 km from the nuclear power plant. Our study demonstrated that changes concerning certain parameters of the oxidation-reduction system after the ionizing radiation action that were still described in experimental studies also occur in man. In future studies it would be desirable to consider their possible changes in the course of radiotherapy, depending on the radiation dose. Changes in employees of the nuclear power plant that show similar nature as those in patients after radiotherapy (SOD, GSHPx, MDA) are of interest. The authors studied changes of selected cytogenetic and oxidation-reduction system parameters in the human plasma and blood elements on three different groups of persons in association with ionizing radiation effects (patients after radiotherapy, employees of the Temelin Nuclear Power Plant, in vitro irradiated blood after taking samples from healthy donors and control group) and the demonstrated changes that justify planning of future studies. (authors)

  11. DNA damage in mouse and rat liver by caprolactam and benzoin, evaluated with three different methods.

    Science.gov (United States)

    Parodi, S; Abelmoschi, M L; Balbi, C; De Angeli, M T; Pala, M; Russo, P; Taningher, M; Santi, L

    1989-11-01

    Benzoin and caprolactam were examined for their capability of inducing alkaline DNA fragmentation in mouse and rat liver DNA after treatment in vivo. Three different methods were used. With the alkaline elution technique we measured an effect presumably related to the conformation of the DNA coil. With a viscometric and a fluorometric unwinding method we measured an effect presumably related to the number of unwinding points in DNA. For both compounds only the alkaline elution technique was clearly positive. The results suggest that both caprolactam and benzoin can induce an important change in the conformation of the DNA coil without inducing true breaks in DNA.

  12. Development of damage evaluation method on the brittle materials for constructions using microscopic structural dynamics and probability theory

    International Nuclear Information System (INIS)

    Arai, Taketoshi

    1997-01-01

    The conventional stress analysis evaluation of the ceramic apparatuses is due to a perfect model of continuous mechanical materials. Such approximate and simplified treatment is thought to be unsufficient with the following two reasons. At first, because of changes of materials mechanical properties with manufacturing conditions and presence of limit in experimentalismic understanding, establishment of quantitative guideline for improvement of materials and structures and general understanding of thermo-mechanical property change due to neutron radiation becomes difficult. The second, because of statistical change of mechanical property and others containing fracture condition at various loading types, judgement standard of conventional deterministic evaluation is apt to be conservative and causes inferior performance and economics of the constructions under their using conditions. Therefore, in this study, following two basic approaches are planned; 1) Preparation of material deformation and fracture model considering correlation between microscopic/mesoscopic damage and macroscopic behavior, and 2) Improvement of the finite element method calculation due to parallel treatment for soundness and reliability evaluation of the construction. (G.K.)

  13. Ensuring the long service life of unheated buildings. Evaluation methods to avoid moisture damage in unheated buildings

    Energy Technology Data Exchange (ETDEWEB)

    Viljanen, M.; Bergman, J.; Grabko, S.; Lu Xiaoshu; Yrjoelae, R.

    1999-07-01

    Buildings are normally designed according to an indoor temperature level of +20 deg C and to a certain ventilation rate, which depends on the activities in the building. When normal use has been interrupted and the building is left totally unheated, the indoor conditions will follow the outdoor conditions with a certain lag depending on the structures of the building and the amount of ventilation. The lowering of a room temperature increases the risk of mould and damage to structures. The research work was divided into the theoretical part and the field measurements. The objective of the research was to increase our knowledge of the thermal and moisture technical behaviour of unheated buildings, to determine the suitable methods for ensuring the preservation of buildings and their efficiency, and to develop guidelines for selecting different methods and maintenance of buildings. In the theoretical part of the research both analytical and numerical calculation programs were developed. The analytical method is based on the thermostability theory of a room and the numerical method on heat and moisture balance equations of the building. In the numerical calculation program HMTB finite difference and element methods were exploited. The accuracy of the calculation methods was compared with the field measurement results. The field measurements were carried out in eight buildings, which consisted of heated office buildings and unheated farm houses and museum buildings. The measurements were carried out during 1997 and 1998. The annual temperature range indoors in the unheated buildings was from -15 deg C to 27 deg C and the relative humidity range from 30% to 98%. In the heated buildings relative humidity was lower. The highest levels of relative humidity in the unheated buildings were in winter and in the heated buildings in autumn. The climatic differences between districts were great. Heavy rain periods increased the moisture level of indoor air by about 10 %. The risk

  14. New concept of damage evaluation method for core internal materials considering radiation induced stress relaxation (1). Experiments and modeling of radiation effects

    International Nuclear Information System (INIS)

    Miwa, Yukio; Kondo, Keietsu; Okubo, Nariaki; Kaji, Yoshiyuki; Tsukada, Takashi

    2009-01-01

    In order to build the new concept of material damage evaluation method, synergistic effect of radiation and residual stress on material degradation was estimated experimentally, and the effect of radiation induced stress relaxation on retardation of material degradation was observed. (author)

  15. Evaluation of fatigue damage induced by thermal striping in a T junction using the three dimensional coupling method and frequency response method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hye; Choi, Jae boong; Kim, Moon Ki [Sungkyunkwan Univ., Seoul (Korea, Republic of); Huh, Nam Su [Seoul Nat' l Univ., Seoul (Korea, Republic of); Lee, Jin Ho [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Thermal fatigue cracking induced by thermal stratification, cycling and striping have been observed in several PWR plants. Especially, thermal striping, the highly fluctuating thermal layer, became one of the significant problems, since it can cause un predicted high cycle thermal fatigue (HCTF) at piping systems. This problem are usually found in T junctions of energy cooling systems, where cold and hot flows with high level of turbulence mix together. Thermal striping can cause the networks of fatigue crack at the vicinity of weld parts and these cracks can propagate to significant depth in a relatively short time. Therefore, thermal striping and fatigue crack initiations should be predicted in advance to prevent the severe failure of piping systems. The final goal of this research is to develop a rational thermal and mechanical model considering thermohydraulic characteristics of thermal striping and an evaluation procedure to predict the initiation of thermal fatigue crack. As a first step, we evaluated the fatigue damage in a T junction using two widely used methods. Then, we analyzed the results of each method and conducted comparisons and verifications.

  16. Repair of damaged supraglottic airway devices: A novel method

    Directory of Open Access Journals (Sweden)

    Kapoor Dheeraj

    2010-06-01

    Full Text Available Abstract Damage of laryngeal mask airway and other supraglottic airway devices has always been a matter of concern. Although manufacturer recommends maximum 40 uses of LMA (and its congeners but damage before 40 uses needs to be evaluated. We hereby, describe a novel method of repair of supraglottic devices when damage occurs at mask inflation line or pilot balloon valve assembly.

  17. Advanced nondestructive evaluation for creep damage

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    As a result of operation at elevated temperatures, power plant components experience creep. Changes in metallurgical structure and microscopic cracking occur after periods of operation and lead to component failure. In order to detect the presence of creep and avoid creep-related failures, EPRI has just initiated a five year program entitled Advanced NDE for Creep Damage (RP 1856-7). The objective of this program is to develop NDE methods for detection and characterization of microscopic creep damage. Several NDE methods will be initially evaluated to determine their potential for detecting and characterizing such damage. These NDE methods include ultrasonics, eddy current, Barkhausen, positron annihilation, and thermal-wave imaging. A prototype system will be developed and tested for commercial applications in a follow-on project, utilizing characteristics of the best NDE method for creep detection. A brief description of the project and results of a theoretical investigation, to determine feasibility of ultrasonic NDE method, for detection of creep damage are presented

  18. Characterization and damage evaluation of advanced materials

    Science.gov (United States)

    Mitrovic, Milan

    Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested

  19. Padova Charter on personal injury and damage under civil-tort law : Medico-legal guidelines on methods of ascertainment and criteria of evaluation.

    Science.gov (United States)

    Ferrara, Santo Davide; Baccino, Eric; Boscolo-Berto, Rafael; Comandè, Giovanni; Domenici, Ranieri; Hernandez-Cueto, Claudio; Gulmen, Mete Korkut; Mendelson, George; Montisci, Massimo; Norelli, Gian Aristide; Pinchi, Vilma; Ranavaya, Mohammed; Shokry, Dina A; Sterzik, Vera; Vermylen, Yvo; Vieira, Duarte Nuno; Viel, Guido; Zoja, Riccardo

    2016-01-01

    Compensation for personal damage, defined as any pecuniary or non-pecuniary loss causally related to a personal injury under civil-tort law, is strictly based on the local jurisdiction and therefore varies significantly across the world. This manuscript presents the first "International Guidelines on Medico-Legal Methods of Ascertainment and Criteria of Evaluation of Personal Injury and Damage under Civil-Tort Law". This consensus document, which includes a step-by-step illustrated explanation of flow charts articulated in eight sequential steps and a comprehensive description of the ascertainment methodology and the criteria of evaluation, has been developed by an International Working Group composed of juridical and medico-legal experts and adopted as Guidelines by the International Academy of Legal Medicine (IALM).

  20. Selection of assessment methods for evaluating banana weevil Cosmopolites sordidus (Coleoptera: Curculionidae) damage on highland cooking banana (Musa spp., genome group AAA-EA).

    Science.gov (United States)

    Gold, C S; Ragama, P E; Coe, R; Rukazambuga, N D T M

    2005-04-01

    Cosmopolites sordidus (Germar) is an important pest on bananas and plantains. Population build-up is slow and damage becomes increasingly important in successive crop cycles (ratoons). Yield loss results from plant loss, mat disappearance and reduced bunch size. Damage assessment requires destructive sampling and is most often done on corms of recently harvested plants. A wide range of damage assessment methods exist and there are no agreed protocols. It is critical to know what types of damage best reflect C. sordidus pest status through their relationships with yield loss. Multiple damage assessment parameters (i.e. for the corm periphery, cortex and central cylinder) were employed in two yield loss trials and a cultivar-screening trial in Uganda. Damage to the central cylinder had a greater effect on plant size and yield loss than damage to the cortex or corm periphery. In some cases, a combined assessment of damage to the central cylinder and cortex showed a better relationship with yield loss than an assessment of the central cylinder alone. Correlation, logistic and linear regression analyses showed weak to modest correlations between damage to the corm periphery and damage to the central cylinder. Thus, damage to the corm periphery is not a strong predictor of the more important damage to the central cylinder. Therefore, C. sordidus damage assessment should target the central cylinder and cortex.

  1. Evaluation methods for corrosion damage of components in cooling systems of nuclear power plants by coupling analysis of corrosion and flow dynamics (1). Major targets and development strategies of the evaluation methods

    International Nuclear Information System (INIS)

    Naitoh, Masanori; Uchida, Shunsuke; Koshizuka, Seiichi; Ninokata, Hisashi; Hiranuma, Naoki; Dosaki, Koji; Nishida, Koji; Akiyama, Minoru; Saitoh, Hiroaki

    2008-01-01

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration and corrosion and their overlapping effects. In order to establish safe and reliable plant operation, future problems for structural materials should be predicted based on combined analyses of flow dynamics and corrosion and they should be mitigated before becoming serious issues for plant operation. Three approaches have been prepared for predicting future problems in structural materials: 1. Computer program packages for predicting future corrosion fatigue on structural materials, 2. Computer program packages for predicting future corrosion damage on structural materials, and 3. Computer program packages for predicting wall thinning caused by flow accelerated corrosion. General features of evaluation methods and their computer packages, technical innovations required for their development, and application plans for the developed approaches for plant operation are introduced in this paper. (author)

  2. Damage Analysis and Evaluation of High Strength Concrete Frame Based on Deformation-Energy Damage Model

    Directory of Open Access Journals (Sweden)

    Huang-bin Lin

    2015-01-01

    Full Text Available A new method of characterizing the damage of high strength concrete structures is presented, which is based on the deformation energy double parameters damage model and incorporates both of the main forms of damage by earthquakes: first time damage beyond destruction and energy consumption. Firstly, test data of high strength reinforced concrete (RC columns were evaluated. Then, the relationship between stiffness degradation, strength degradation, and ductility performance was obtained. And an expression for damage in terms of model parameters was determined, as well as the critical input data for the restoring force model to be used in analytical damage evaluation. Experimentally, the unloading stiffness was found to be related to the cycle number. Then, a correction for this changing was applied to better describe the unloading phenomenon and compensate for the shortcomings of structure elastic-plastic time history analysis. The above algorithm was embedded into an IDARC program. Finally, a case study of high strength RC multistory frames was presented. Under various seismic wave inputs, the structural damages were predicted. The damage model and correction algorithm of stiffness unloading were proved to be suitable and applicable in engineering design and damage evaluation of a high strength concrete structure.

  3. Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method.

    Science.gov (United States)

    Wang, Dongyao; He, Xiaodong; Xu, Zhonghai; Jiao, Weicheng; Yang, Fan; Jiang, Long; Li, Linlin; Liu, Wenbo; Wang, Rongguo

    2017-02-20

    Owing to high specific strength and designability, unidirectional carbon fiber reinforced polymer (UD-CFRP) has been utilized in numerous fields to replace conventional metal materials. Post machining processes are always required for UD-CFRP to achieve dimensional tolerance and assembly specifications. Due to inhomogeneity and anisotropy, UD-CFRP differs greatly from metal materials in machining and failure mechanism. To improve the efficiency and avoid machining-induced damage, this paper undertook to study the correlations between cutting parameters, fiber orientation angle, cutting forces, and cutting-induced damage for UD-CFRP laminate. Scanning acoustic microscopy (SAM) was employed and one-/two-dimensional damage factors were then created to quantitatively characterize the damage of the laminate workpieces. According to the 3D Hashin's criteria a numerical model was further proposed in terms of the finite element method (FEM). A good agreement between simulation and experimental results was validated for the prediction and structural optimization of the UD-CFRP.

  4. Method to reduce damage to backing plate

    Science.gov (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2001-01-01

    The present invention is a method for penetrating a workpiece using an ultra-short pulse laser beam without causing damage to subsequent surfaces facing the laser. Several embodiments are shown which place holes in fuel injectors without damaging the back surface of the sack in which the fuel is ejected. In one embodiment, pulses from an ultra short pulse laser remove about 10 nm to 1000 nm of material per pulse. In one embodiment, a plasma source is attached to the fuel injector and initiated by common methods such as microwave energy. In another embodiment of the invention, the sack void is filled with a solid. In one other embodiment, a high viscosity liquid is placed within the sack. In general, high-viscosity liquids preferably used in this invention should have a high damage threshold and have a diffusing property.

  5. Random accumulated damage evaluation under multiaxial fatigue loading conditions

    Directory of Open Access Journals (Sweden)

    V. Anes

    2015-07-01

    Full Text Available Multiaxial fatigue is a very important physical phenomenon to take into account in several mechanical components; its study is of utmost importance to avoid unexpected failure of equipment, vehicles or structures. Among several fatigue characterization tools, a correct definition of a damage parameter and a load cycle counting method under multiaxial loading conditions show to be crucial to estimate multiaxial fatigue life. In this paper, the SSF equivalent stress and the virtual cycle counting method are presented and discussed, regarding their physical foundations and their capability to characterize multiaxial fatigue damage under complex loading blocks. Moreover, it is presented their applicability to evaluate random fatigue damage.

  6. Damage evaluation system for materials used in fossil thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Sakai, Shinsuke [Tokyo Univ. (Japan); Tomita, Akira [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Koyama, Teruo [Babcock Hitachi K.K., Tokyo (Japan); Sakurai, Shigeo; Kawasaki, Yoshiya [Hitachi Ltd., Ibaraki (Japan)

    1998-11-01

    The summary of this research paper is as follows: The fundamental design of the damage evaluation system is carried out based on the basic concept. Prototype systems for boilers and turbines have been constructed: (a) Boiler: (I) Evaluation part: Outer surface of the primary pendant superheater tube; (II) Damage mode: Creep; (III) Damage evaluation method: Hardness measurement method; (b) Turbine: (I) Evaluation part: Inner surface at the center bore of high pressure turbine rotor; (II) Damage mode: Creep; (III) Damage evaluation method: Electric potential method. (orig./MM)

  7. Study on Damage Evaluation and Machinability of UD-CFRP for the Orthogonal Cutting Operation Using Scanning Acoustic Microscopy and the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Dongyao Wang

    2017-02-01

    Full Text Available Owing to high specific strength and designability, unidirectional carbon fiber reinforced polymer (UD-CFRP has been utilized in numerous fields to replace conventional metal materials. Post machining processes are always required for UD-CFRP to achieve dimensional tolerance and assembly specifications. Due to inhomogeneity and anisotropy, UD-CFRP differs greatly from metal materials in machining and failure mechanism. To improve the efficiency and avoid machining-induced damage, this paper undertook to study the correlations between cutting parameters, fiber orientation angle, cutting forces, and cutting-induced damage for UD-CFRP laminate. Scanning acoustic microscopy (SAM was employed and one-/two-dimensional damage factors were then created to quantitatively characterize the damage of the laminate workpieces. According to the 3D Hashin’s criteria a numerical model was further proposed in terms of the finite element method (FEM. A good agreement between simulation and experimental results was validated for the prediction and structural optimization of the UD-CFRP.

  8. Damage Degree Evaluation of Earthquake Area Using UAV Aerial Image

    Directory of Open Access Journals (Sweden)

    Jinhong Chen

    2016-01-01

    Full Text Available An Unmanned Aerial Vehicle (UAV system and its aerial image analysis method are developed to evaluate the damage degree of earthquake area. Both the single-rotor and the six-rotor UAVs are used to capture the visible light image of ground targets. Five types of typical ground targets are considered for the damage degree evaluation: the building, the road, the mountain, the riverway, and the vegetation. When implementing the image analysis, first the Image Quality Evaluation Metrics (IQEMs, that is, the image contrast, the image blur, and the image noise, are used to assess the imaging definition. Second, once the image quality is qualified, the Gray Level Cooccurrence Matrix (GLCM texture feature, the Tamura texture feature, and the Gabor wavelet texture feature are computed. Third, the Support Vector Machine (SVM classifier is employed to evaluate the damage degree. Finally, a new damage degree evaluation (DDE index is defined to assess the damage intensity of earthquake. Many experiment results have verified the correctness of proposed system and method.

  9. Evaluating In Vitro DNA Damage Using Comet Assay.

    Science.gov (United States)

    Lu, Yanxin; Liu, Yang; Yang, Chunzhang

    2017-10-11

    DNA damage is a common phenomenon for each cell during its lifespan, and is defined as an alteration of the chemical structure of genomic DNA. Cancer therapies, such as radio- and chemotherapy, introduce enormous amount of additional DNA damage, leading to cell cycle arrest and apoptosis to limit cancer progression. Quantitative assessment of DNA damage during experimental cancer therapy is a key step to justify the effectiveness of a genotoxic agent. In this study, we focus on a single cell electrophoresis assay, also known as the comet assay, which can quantify single and double-strand DNA breaks in vitro. The comet assay is a DNA damage quantification method that is efficient and easy to perform, and has low time/budget demands and high reproducibility. Here, we highlight the utility of the comet assay for a preclinical study by evaluating the genotoxic effect of olaparib/temozolomide combination therapy to U251 glioma cells.

  10. Evaluation and rehabilitation of corrosion damaged reinforced concrete structures

    International Nuclear Information System (INIS)

    Paul, I.S.

    1999-01-01

    For the last two decades, rehabilitation of corrosion damaged concrete structures has been one of the most important challenges faced by the construction industry throughout the world. The extent of the damage is significant in cold climates and also in hot and humid climates. In both cases, the corrosion is invariably initiated by ingress of salts into the concrete either from de-icing salts used on roads, or from salt-laden air, soils or ground water. However, there is a contrast in sites of distress in the two climatic regions mentioned above. In cold climates, where de-icing salts are used, the damage is generally to superstructures and is therefore visible, but in hot, humid coastal regions damage is primarily in the substructures and may not be so clearly apparent. This paper presents the corrosion mechanism in concrete deterioration, the methods of evaluation of the damaged structures, and rehabilitation strategies. A case history of a concrete rehabilitation project is included together with some lessons learned in rehabilitation of corrosion damaged structures. Recommendations are made for maintenance of concrete structures and a warning is issued that salt run-off from roads in cold climates may cause distress in below ground concrete structures, similar to structures in hot and humid climates with saline groundwater and soils. (author)

  11. Evaluation of fatigue-ratcheting damage of a pressurised elbow undergoing damage seismic inputs

    International Nuclear Information System (INIS)

    Dang Van, K.

    2000-01-01

    We present a simplified method to calculate the plastic ratchet of elbow-shaped pipes submitted to seismic loading and an internal pressure. This method is simplified in the sense that the value of the ratchet is obtained without the use of finite element method (FEM) calculations. Here we derive a formula and use it to evaluate the fatigue-ratcheting damage of an elbow. This approach is applicable to complex plastic response appropriately described by non-linear kinematics hardening, which is more realistic for stainless steel such as 316-L. (orig.)

  12. [A Method Research on Environmental Damage Assessment of a Truck Rollover Pollution Incident].

    Science.gov (United States)

    Cai, Feng; Zhao, Shi-ho; Chen, Gang-cai; Xian, Si-shu; Yang, Qing-ling; Zhou, Xian-jie; Yu, Hai

    2015-05-01

    With high occurrence of sudden water pollution incident, China faces an increasingly severe situation of water environment. In order to deter the acts of environmental pollution, ensure the damaged resources of environment can be restored and compensated, it is very critical to quantify the economic losses caused by the sudden water pollution incident. This paper took truck rollover pollution incidents in Chongqing for an example, established a set of evaluation method for quantifying the environmental damage, and then assessed the environmental damage by the method from four aspects, including the property damage, ecological environment and resources damages, the costs of administrative affairs in emergency disposal, and the costs of investigation and evaluation.

  13. Economical evaluation of damaged vacuum insulation panels in buildings

    Science.gov (United States)

    Kim, Y. M.; Lee, H. Y.; Choi, G. S.; Kang, J. S.

    2015-12-01

    In Korea, thermal insulation standard of buildings have been tightened annually to satisfy the passive house standard from the year 2009. The current domestic policies about disseminating green buildings are progressively conducted. All buildings should be the zero energy building in the year 2025, obligatorily. The method is applied to one of the key technologies for high-performance insulation for zero energy building. The vacuum insulation panel is an excellent high performance insulation. But thermal performance of damaged vacuum insulation panels is reduced significantly. In this paper, the thermal performance of damaged vacuum insulation panels was compared and analyzed. The measurement result of thermal performance depends on the core material type. The insulation of building envelope is usually selected by economic feasibility. To evaluate the economic feasibility of VIPs, the operation cost was analyzed by simulation according to the types and damaged ratio of VIPs

  14. 77 FR 4890 - Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance...

    Science.gov (United States)

    2012-02-01

    ...-AJ52, 2120-AJ51 Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance and Fatigue Evaluation for Metallic Structures; Correction AGENCY: Federal Aviation Administration... Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures'' (76 FR 74655), published December 1...

  15. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2016-12-15

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

  16. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    International Nuclear Information System (INIS)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu; Sunagawa, Takeyoshi

    2016-01-01

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy

  17. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  18. Evaluation of errors and limits of the 63-μm house-dust-fraction method, a surrogate to predict hidden moisture damage

    Directory of Open Access Journals (Sweden)

    Assadian Ojan

    2009-10-01

    Full Text Available Abstract Background The aim of this study is to analyze possible random and systematic measurement errors and to detect methodological limits of the previously established method. Findings To examine the distribution of random errors (repeatability standard deviation of the detection procedure, collective samples were taken from two uncontaminated rooms using a sampling vacuum cleaner, and 10 sub-samples each were examined with 3 parallel cultivation plates (DG18. In this two collective samples of new dust, the total counts of Aspergillus spp. varied moderately by 25 and 29% (both 9 cfu per plate. At an average of 28 cfu/plate, the total number varied only by 13%. For the evaluation of the influence of old dust, old and fresh dust samples were examined. In both cases with old dust, the old dust influenced the results indicating false positive results, where hidden moist was indicated but was not present. To quantify the influence of sand and sieving, 13 sites were sampled in parallel using the 63-μm- and total dust collection approaches. Sieving to 63-μm resulted in a more then 10-fold enrichment, due to the different quantity of inert sand in each total dust sample. Conclusion The major errors during the quantitative evaluation from house dust samples for mould fungi as reference values for assessment resulted from missing filtration, contamination with old dust and the massive influence of soil. If the assessment is guided by indicator genera, the percentage standard deviation lies in a moderate range.

  19. Analysis of factors influencing fire damage to concrete using nonlinear resonance vibration method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gang Kyu; Park, Sun Jong; Kwak, Hyo Gyoung [Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, KAIST, Daejeon (Korea, Republic of); Yim, Hong Jae [Dept. of Construction and Disaster Prevention Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2015-04-15

    In this study, the effects of different mix proportions and fire scenarios (exposure temperatures and post-fire-curing periods) on fire-damaged concrete were analyzed using a nonlinear resonance vibration method based on nonlinear acoustics. The hysteretic nonlinearity parameter was obtained, which can sensitively reflect the damage level of fire-damaged concrete. In addition, a splitting tensile strength test was performed on each fire-damaged specimen to evaluate the residual property. Using the results, a prediction model for estimating the residual strength of fire-damaged concrete was proposed on the basis of the correlation between the hysteretic nonlinearity parameter and the ratio of splitting tensile strength.

  20. Repair methods for damaged pipeline beyond diving depth

    OpenAIRE

    Mohammadi, Keramat

    2011-01-01

    Master's thesis in Offshore Technology Mechanical damage of a subsea pipeline is found as one of the most severe concern in management of pipeline integrity. The need to reach and bring the hydrocarbons from the fields located in deep and ultra-deep waters, imposes the need to improve the technologies and techniques in order to repair any unacceptable damage in pipeline. The main objective of this work is to investigate various methods for repairing a subsea pipeline that has been damaged ...

  1. Method development of damage detection in asymmetric buildings

    Science.gov (United States)

    Wang, Yi; Thambiratnam, David P.; Chan, Tommy H. T.; Nguyen, Andy

    2018-01-01

    Aesthetics and functionality requirements have caused most buildings to be asymmetric in recent times. Such buildings exhibit complex vibration characteristics under dynamic loads as there is coupling between the lateral and torsional components of vibration, and are referred to as torsionally coupled buildings. These buildings require three dimensional modelling and analysis. In spite of much recent research and some successful applications of vibration based damage detection methods to civil structures in recent years, the applications to asymmetric buildings has been a challenging task for structural engineers. There has been relatively little research on detecting and locating damage specific to torsionally coupled asymmetric buildings. This paper aims to compare the difference in vibration behaviour between symmetric and asymmetric buildings and then use the vibration characteristics for predicting damage in them. The need for developing a special method to detect damage in asymmetric buildings thus becomes evident. Towards this end, this paper modifies the traditional modal strain energy based damage index by decomposing the mode shapes into their lateral and vertical components and to form component specific damage indices. The improved approach is then developed by combining the modified strain energy based damage indices with the modal flexibility method which was modified to suit three dimensional structures to form a new damage indicator. The procedure is illustrated through numerical studies conducted on three dimensional five-story symmetric and asymmetric frame structures with the same layout, after validating the modelling techniques through experimental testing of a laboratory scale asymmetric building model. Vibration parameters obtained from finite element analysis of the intact and damaged building models are then applied into the proposed algorithms for detecting and locating the single and multiple damages in these buildings. The results

  2. APPLICATION OF THE SPERM CHROMATIN STRUCTURE ASSAY TO THE TEPLICE PROGRAM SEMEN STUDIES: A NEW METHOD FOR EVALUATING SPERM NUCLEAR CHROMATIN DAMAGE

    Science.gov (United States)

    ABSTRACTA measure of sperm chromatin integrity was added to the routine semen end points evaluated in the Teplice Program male reproductive health studies. To address the hypothesis that exposure to periods of elevated air pollution may be associated with abnormalities in sp...

  3. Musical Tone Law Method for the Structural Damage Detection

    Directory of Open Access Journals (Sweden)

    Weisong Yang

    2017-01-01

    Full Text Available Damage detection tests of inclined cables, steel pipes, spherical shells, and an actual cable-stayed bridge were conducted based on the proposed musical tone law method. The results show that the musical tone law method could be used in the damage detection of isotropic material structures with simple shape, like cables, pipes, plates, and shells. Having distinct spectral lines like a comb with a certain interval distribution rule is the main characteristic of the music tone law. Damage detection baseline could be established by quantizing the fitting relationship between modal orders and the corresponding frequency values. The main advantage of this method is that it could be used in the structural damage detection without vibration information of an intact structure as a reference.

  4. Evaluation of the Methods of portective Treatment against microbiological damages and prolonged antimicrobic protection of the interior and the equipment of space objects

    Science.gov (United States)

    Deshevaya, E.; Novikova, N.; Polycarpov, N.; Poddubko, S.; Shumilina, G.; Bragina, M.; Zarubina, K.; Tverskoy, V.; Akova, M. D.

    The researches which have been carried out onboard the orbital complex (? C) MIR, testify that environment of the manned space object may be considered as peculiar ecological niche for development of the microbial community generated by microorganisms of various physiological and taxonomic groups. As a result of vital activity of fungi during OC MIR operation zones of fungi growth on various elements of interior and equipment, cases of destruction of the materials and attributes of corrosion of metals were noted. Existing methods of development of microorganisms on a surface of constructional materials using sanitary treatment of the accessible surfaces with disinfectants, represent the big labour input for the crew. More radical solution of the problem is the development and use of methods of superficial modification of constructional materials and use of methods of superficial modification of constructional materials and treatment of their surface of varnish or paint, resistant to biocontamination and growth of the microorganisms. As a result of the conducted research, the following methods of protection of constructional materials against development of microorganisms were chosen: - fluorination, sylilition, radiating graft polymerization etc., resulting in formation of the functional groups having biocide action; For varnish and paint coverings - coverings on a basis stoichiometrical interpolymeric polyelectrolytic complexes, organosilicone coverings, etc. For testing of the biological effects of samples of the materials subjected to the different methods of surface modification, researches were carried out and experimental models of typical biodestructive processes of the constructional materials are developed considering microclimatic parameters of local zones (the increased temperature and humidity), resistance of the materials to the influence of fungi and increased radiating background influence. Biological testing testifying the efficiency of developed

  5. Applications of meshless methods for damage computations with finite strains

    International Nuclear Information System (INIS)

    Pan Xiaofei; Yuan Huang

    2009-01-01

    Material defects such as cavities have great effects on the damage process in ductile materials. Computations based on finite element methods (FEMs) often suffer from instability due to material failure as well as large distortions. To improve computational efficiency and robustness the element-free Galerkin (EFG) method is applied in the micro-mechanical constitute damage model proposed by Gurson and modified by Tvergaard and Needleman (the GTN damage model). The EFG algorithm is implemented in the general purpose finite element code ABAQUS via the user interface UEL. With the help of the EFG method, damage processes in uniaxial tension specimens and notched specimens are analyzed and verified with experimental data. Computational results reveal that the damage which takes place in the interior of specimens will extend to the exterior and cause fracture of specimens; the damage is a fast procedure relative to the whole tensing process. The EFG method provides more stable and robust numerical solution in comparing with the FEM analysis

  6. Experimental evaluation on the damages of different drilling modes to tight sandstone reservoirs

    Directory of Open Access Journals (Sweden)

    Gao Li

    2017-07-01

    Full Text Available The damages of different drilling modes to reservoirs are different in types and degrees. In this paper, the geologic characteristics and types of such damages were analyzed. Then, based on the relationship between reservoir pressure and bottom hole flowing pressure corresponding to different drilling modes, the experimental procedures on reservoir damages in three drilling modes (e.g. gas drilling, liquid-based underbalanced drilling and overbalanced drilling were designed. Finally, damage simulation experiments were conducted on the tight sandstone reservoir cores of the Jurassic Ahe Fm in the Tarim Basin and Triassic Xujiahe Fm in the central Sichuan Basin. It is shown that the underbalanced drilling is beneficial to reservoir protection because of its less damage on reservoir permeability, but it is, to some extent, sensitive to the stress and the empirical formula of stress sensitivity coefficient is obtained; and that the overbalanced drilling has more reservoir damages due to the invasion of solid and liquid phases. After the water saturation of cores rises to the irreducible water saturation, the decline of gas logging permeability speeds up and the damage degree of water lock increases. It is concluded that the laboratory experiment results of reservoir damage are accordant with the reservoir damage characteristics in actual drilling conditions. Therefore, this method reflects accurately the reservoir damage characteristics and can be used as a new experimental evaluation method on reservoir damage in different drilling modes.

  7. Fatigue damage evaluation method for the longitudinal welded joint of a FBR main vessel in the vicinity of the sodium surface

    International Nuclear Information System (INIS)

    Tanigawa, Masayuki; Shimokoshi, Minoru; Negishi, Hitoshi; Nagata, Takashi

    1990-01-01

    Metallurgical discontinuities are dominant in the fatigue strength reductions at the welded joints of vessels whose surfaces could be finished. In the welded joints of SUS 304 with TYPE 308 weld metal fatigue strength reductions are caused by strain concentrations as the result of the softening of the weld metal. A combination model of two elastic fully plastic materials is applicable to the structures under thermal stresses where displacements are self-controlled. Metallurgical discontinuities are represented by the difference of the yield strength. The longitudinal welded joint of a large FBR main vessel in the vicinity of the sodium surface was analyzed using this model under various conditions related to the design. Strain concentrations at the welded joint could be evaluated using the elastic follow-up model. The maximum value of the elastic follow-up parameter was 3.0 if the yield stress ratio of the weld metal to the base metal was not less than 0.8. (author)

  8. Use of simplified methods for predicting natural resource damages

    International Nuclear Information System (INIS)

    Loreti, C.P.; Boehm, P.D.; Gundlach, E.R.; Healy, E.A.; Rosenstein, A.B.; Tsomides, H.J.; Turton, D.J.; Webber, H.M.

    1995-01-01

    To reduce transaction costs and save time, the US Department of the Interior (DOI) and the National Oceanic and Atmospheric Administration (NOAA) have developed simplified methods for assessing natural resource damages from oil and chemical spills. DOI has proposed the use of two computer models, the Natural Resource Damage Assessment Model for Great Lakes Environments (NRDAM/GLE) and a revised Natural Resource Damage Assessment Model for Coastal and Marine Environments (NRDAM/CME) for predicting monetary damages for spills of oils and chemicals into the Great Lakes and coastal and marine environments. NOAA has used versions of these models to create Compensation Formulas, which it has proposed for calculating natural resource damages for oil spills of up to 50,000 gallons anywhere in the US. Based on a review of the documentation supporting the methods, the results of hundreds of sample runs of DOI's models, and the outputs of the thousands of model runs used to create NOAA's Compensation Formulas, this presentation discusses the ability of these simplified assessment procedures to make realistic damage estimates. The limitations of these procedures are described, and the need for validating the assumptions used in predicting natural resource injuries is discussed

  9. Damage detection in composite materials using Lamb wave methods

    Science.gov (United States)

    Kessler, Seth S.; Spearing, S. Mark; Soutis, Constantinos

    2002-04-01

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents part of an experimental and analytical survey of candidate methods for in situ damage detection of composite materials. Experimental results are presented for the application of Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Linear wave scans were performed on narrow laminated specimens and sandwich beams with various cores by monitoring the transmitted waves with piezoceramic sensors. Optimal actuator and sensor configurations were devised through experimentation, and various types of driving signal were explored. These experiments provided a procedure capable of easily and accurately determining the time of flight of a Lamb wave pulse between an actuator and sensor. Lamb wave techniques provide more information about damage presence and severity than previously tested methods (frequency response techniques), and provide the possibility of determining damage location due to their local response nature. These methods may prove suitable for structural health monitoring applications since they travel long distances and can be applied with conformable piezoelectric actuators and sensors that require little power.

  10. Assessment of Intralaminar Progressive Damage and Failure Analysis Using an Efficient Evaluation Framework

    Science.gov (United States)

    Hyder, Imran; Schaefer, Joseph; Justusson, Brian; Wanthal, Steve; Leone, Frank; Rose, Cheryl

    2017-01-01

    Reducing the timeline for development and certification for composite structures has been a long standing objective of the aerospace industry. This timeline can be further exacerbated when attempting to integrate new fiber-reinforced composite materials due to the large number of testing required at every level of design. computational progressive damage and failure analysis (PDFA) attempts to mitigate this effect; however, new PDFA methods have been slow to be adopted in industry since material model evaluation techniques have not been fully defined. This study presents an efficient evaluation framework which uses a piecewise verification and validation (V&V) approach for PDFA methods. Specifically, the framework is applied to evaluate PDFA research codes within the context of intralaminar damage. Methods are incrementally taken through various V&V exercises specifically tailored to study PDFA intralaminar damage modeling capability. Finally, methods are evaluated against a defined set of success criteria to highlight successes and limitations.

  11. The biospeckle method for early damage detection of fruits

    Science.gov (United States)

    Yan, Lei; Liu, Jiaxin; Men, Sen

    2017-07-01

    In the field of fruits damage assessment, biospeckle activity is considered relevant to quality properties of plants, such us damage, aging, or diseases. In this paper, biospeckle technique was applied to identify the early bruising of apples. Then a total of 50 undamaged apples were determined to be artificially bruised as samples. Three methods (Fujii, GD, and LSTCA) were used to extract effective information from these speckle images for measuring the intensity of biospeckle activity. The results showed that for all of three methods, the biospeckle activities of the undamaged areas in apple were similar; after the hit, the damaged area showed a lower biospeckle activity. It can be concluded that early bruising can be identified by biospeckle technique.

  12. Experimental evaluation of the primary damage process: neutron energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1979-01-01

    Experimental evaluation of the neutron energy dependnece of the primary damage stage depends upon a number of theoretical concepts. This state can only be observed after low- or perhaps ambient-temperature, low-fluence irradiations. The primary recoil energy spectrum, which determines the character of the displacement cascades, can be calculated if dosimetry has provided an accurate neutron spectrum. A review of experimental results relating neutron-energy effects shows that damage energy or damage energy cross section has often been a reliable correlation parameter for primary damage state experiments. However, the forthcoming emphasis on higher irradiation temperatures, more complex alloys and microstructural evolution has fostered a search for additional meaningful correlation parameters.

  13. Laboratory evaluation of resistance to moisture damage in asphalt mixtures

    Directory of Open Access Journals (Sweden)

    Ahmed Ebrahim Abu El-Maaty Behiry

    2013-09-01

    Full Text Available Moisture damage in asphalt mixtures refers to loss in strength and durability due to the presence of water. Egypt road network is showing severe deterioration such as raveling and stripping because the bond between aggregates and asphalt film is broken due to water intrusion. To minimize moisture damage, asphalt mixes are investigated to evaluate the effect of air voids, degree of saturation, media of attack and the conditioning period. Two medias of attack are considered and two anti-stripping additives are used (hydrated lime and Portland cement. The retained Marshall stability and tensile strength ratio are calculated to determine the resistance to moisture damage. The results showed that both lime and cement could increase Marshall stability, resilient modulus, tensile strength and resistance to moisture damage of mixtures especially at higher condition periods. Use of hydrated lime had better results than Portland cement.

  14. Nondestructive evaluation of creep-fatigue damage: an interim report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described

  15. An overview of modal-based damage identification methods

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Doebling, S.W. [Los Alamos National Lab., NM (United States). Engineering Analysis Group

    1997-09-01

    This paper provides an overview of methods that examine changes in measured vibration response to detect, locate, and characterize damage in structural and mechanical systems. The basic idea behind this technology is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause detectable changes in the modal properties. The motivation for the development of this technology is first provided. The methods are then categorized according to various criteria such as the level of damage detection provided, model-based vs. non-model-based methods and linear vs. nonlinear methods. This overview is limited to methods that can be adapted to a wide range of structures (i.e., are not dependent on a particular assumed model form for the system such as beam-bending behavior and methods and that are not based on updating finite element models). Next, the methods are described in general terms including difficulties associated with their implementation and their fidelity. Past, current and future-planned applications of this technology to actual engineering systems are summarized. The paper concludes with a discussion of critical issues for future research in the area of modal-based damage identification.

  16. Evaluation of environmental damage due to atmospheric pollution caused by power economy

    International Nuclear Information System (INIS)

    Burneikis, J.; Shtreimikiene, D.

    1996-01-01

    Methods to evaluate the environmental damage due to atmospheric pollution caused by power economy are presented. The products of burning fossil fuel (CO 2 , SO 2 , NO x and ashes) make the bulk of the pollutants that are being discharged into the atmosphere. To evaluate the damage caused by these pollutants an empirical method is suggested. The direct and analytical methods are used as a basis in collecting data for the empirical evaluation. All the three methods are described and empirical formulas suggested for calculating environmental damage due to burning fossil fuel in thermal power stations. The authors prove the necessity to change the present system of environmental taxes in Lithuania, which are purely symbolic. (author). 8 refs., 9 tabs

  17. Liability for oil spill damages: issues, methods, and examples

    International Nuclear Information System (INIS)

    Grigalunas, T.A.; Opaluch, J.J.; Diamantides, J.; Mazzotta, M.

    1998-01-01

    Liability is an important incentive-based instrument for preventing oil spills and provides a sustainable approach for restoring coastal resources injured by spills. However, the use of liability for environmental damages raises many challenges, including quantification of money measures of damages. In this article, case studies are used to illustrate the issues, methods, and challenges associated with assessing a range of damages, from those that can be measured relatively easily using market information to more 'esoteric', and much more difficult, cases involving non-market-valued losses. Also discussed are issues raised by the new national and international regulatory focus on restoration and by the simplified, compensatory formula used by some states. (author)

  18. Visual method for detecting critical damage in railway contact strips

    Science.gov (United States)

    Judek, S.; Skibicki, J.

    2018-05-01

    Ensuring an uninterrupted supply of power in the electric traction is vital for the safety of this important transport system. For this purpose, monitoring and diagnostics of the technical condition of the vehicle’s power supply elements are becoming increasingly common. This paper presents a new visual method for detecting contact strip damage, based on measurement and analysis of the movement of the overhead contact line (OCL) wire. A measurement system configuration with a 2D camera was proposed. The experimental method has shown that contact strips damage can be detected by transverse displacement signal analysis. It has been proven that the velocity signal numerically established on that basis has a comparable level in the case of identical damage, regardless of its location on the surface of the contact strip. The proposed method belongs to the group of contact-less measurements, so it does not require interference with the structure of the catenary network nor the mounting of sensors in its vicinity. Measurement of displacements of the contact wire in 2D space makes it possible to combine the functions of existing diagnostic stands assessing the correctness of the mean contact force control adjustment of the current collector with the elements of the contact strip diagnostics, which involves detecting their damage which may result in overhead contact line rupture.

  19. A Comparison of Vibration and Oil Debris Gear Damage Detection Methods Applied to Pitting Damage

    Science.gov (United States)

    Dempsey, Paula J.

    2000-01-01

    Helicopter Health Usage Monitoring Systems (HUMS) must provide reliable, real-time performance monitoring of helicopter operating parameters to prevent damage of flight critical components. Helicopter transmission diagnostics are an important part of a helicopter HUMS. In order to improve the reliability of transmission diagnostics, many researchers propose combining two technologies, vibration and oil monitoring, using data fusion and intelligent systems. Some benefits of combining multiple sensors to make decisions include improved detection capabilities and increased probability the event is detected. However, if the sensors are inaccurate, or the features extracted from the sensors are poor predictors of transmission health, integration of these sensors will decrease the accuracy of damage prediction. For this reason, one must verify the individual integrity of vibration and oil analysis methods prior to integrating the two technologies. This research focuses on comparing the capability of two vibration algorithms, FM4 and NA4, and a commercially available on-line oil debris monitor to detect pitting damage on spur gears in the NASA Glenn Research Center Spur Gear Fatigue Test Rig. Results from this research indicate that the rate of change of debris mass measured by the oil debris monitor is comparable to the vibration algorithms in detecting gear pitting damage.

  20. Contribution to the damage measurement of reinforced concrete buildings under seismic solicitations: proposal of an improvement for the evaluation of the damaging potential of a signal and of the damage for the girders structures: introduction to the reliability analysis of the damage in terms of the damaging potential of a seismic signal

    International Nuclear Information System (INIS)

    Naze, P.A.

    2004-12-01

    Building damage measurement during and after an earthquake remains an economical as well as technical stake as difficult to cope with as the problem it raises all the more because its importance depends on the field or the building function: civil, medical, military, nuclear... Even building ruin remains one of the most critical diagnosis to establish. Then since prediction of earthquake still remains impossible, foreseeing structural damages due to seismic motion has become a key point in earthquake engineering. This work aims at evaluating the relevance of classical seismic signal damaging potential indices and at proposing improvement of these indices in order to provide better prediction of structural damage due to earthquake. The first part supplies a non exhaustive state of the art of main Damaging Potential Indices IP and Damage Indices ID used in earthquake engineering. In the second part, IP/ID correlations results are analysed in order to evaluate IP relevance, to justify displacement based approach use (capacity spectrum method) for damage prediction and to make good the proposal for improvement of Damaging Potential Index. But studding seismic signal damaging potential is usually not enough to foresee damage firstly because scalar representation of damaging potential is not easy to link to physics reality and secondly because of damage scattering often observed for a single value of seismic signal damaging potential. In the same way, a single damage index value may correspond to very different structural damage states. Hence, this work carries on with a contribution to damage index reliability improvement, able to detect real structural damage appearance as well as to quantify this damage by associating the distance between one structural sate and the structural collapse, defined as an instability. (author)

  1. Automating the evaluation of flood damages: methodology and potential gains

    Science.gov (United States)

    Eleutério, Julian; Martinez, Edgar Daniel

    2010-05-01

    The evaluation of flood damage potential consists of three main steps: assessing and processing data, combining data and calculating potential damages. The first step consists of modelling hazard and assessing vulnerability. In general, this step of the evaluation demands more time and investments than the others. The second step of the evaluation consists of combining spatial data on hazard with spatial data on vulnerability. Geographic Information System (GIS) is a fundamental tool in the realization of this step. GIS software allows the simultaneous analysis of spatial and matrix data. The third step of the evaluation consists of calculating potential damages by means of damage-functions or contingent analysis. All steps demand time and expertise. However, the last two steps must be realized several times when comparing different management scenarios. In addition, uncertainty analysis and sensitivity test are made during the second and third steps of the evaluation. The feasibility of these steps could be relevant in the choice of the extent of the evaluation. Low feasibility could lead to choosing not to evaluate uncertainty or to limit the number of scenario comparisons. Several computer models have been developed over time in order to evaluate the flood risk. GIS software is largely used to realise flood risk analysis. The software is used to combine and process different types of data, and to visualise the risk and the evaluation results. The main advantages of using a GIS in these analyses are: the possibility of "easily" realising the analyses several times, in order to compare different scenarios and study uncertainty; the generation of datasets which could be used any time in future to support territorial decision making; the possibility of adding information over time to update the dataset and make other analyses. However, these analyses require personnel specialisation and time. The use of GIS software to evaluate the flood risk requires personnel with

  2. Statistical evaluation of characteristic SDDLV-induced stress resultants to discriminate between undamaged and damaged elements

    DEFF Research Database (Denmark)

    Hansen, Lasse Majgaard; Johansen, Rasmus Johan; Ulriksen, Martin Dalgaard

    2015-01-01

    of modified characteristic stress resultants, which are compared to a pre-defined tolerance value, without any thorough statistical evaluation. In the present paper, it is tested whether three widely-used statistical pattern-recognition-based damage-detection methods can provide an effective statistical...... evaluation of the characteristic stress resultants, hence facilitating general discrimination between damaged and undamaged elements. The three detection methods in question enable outlier analysis on the basis of, respectively, Euclidian distance, Hotelling’s statistics, and Mahalanobis distance. The study...... alternately to an undamaged reference model with known stiffness matrix, hereby, theoretically, yielding characteristic stress resultants approaching zero in the damaged elements. At present, the discrimination between potentially damaged elements and undamaged ones is typically conducted on the basis...

  3. A review of damage detection methods for wind turbine blades

    International Nuclear Information System (INIS)

    Li, Dongsheng; Song, Gangbing; Ren, Liang; Li, Hongnan; Ho, Siu-Chun M

    2015-01-01

    Wind energy is one of the most important renewable energy sources and many countries are predicted to increase wind energy portion of their whole national energy supply to about twenty percent in the next decade. One potential obstacle in the use of wind turbines to harvest wind energy is the maintenance of the wind turbine blades. The blades are a crucial and costly part of a wind turbine and over their service life can suffer from factors such as material degradation and fatigue, which can limit their effectiveness and safety. Thus, the ability to detect damage in wind turbine blades is of great significance for planning maintenance and continued operation of the wind turbine. This paper presents a review of recent research and development in the field of damage detection for wind turbine blades. Specifically, this paper reviews frequently employed sensors including fiber optic and piezoelectric sensors, and four promising damage detection methods, namely, transmittance function, wave propagation, impedance and vibration based methods. As a note towards the future development trend for wind turbine sensing systems, the necessity for wireless sensing and energy harvesting is briefly presented. Finally, existing problems and promising research efforts for online damage detection of turbine blades are discussed. (topical review)

  4. A risk assessment method for multi-site damage

    Science.gov (United States)

    Millwater, Harry Russell, Jr.

    This research focused on developing probabilistic methods suitable for computing small probabilities of failure, e.g., 10sp{-6}, of structures subject to multi-site damage (MSD). MSD is defined as the simultaneous development of fatigue cracks at multiple sites in the same structural element such that the fatigue cracks may coalesce to form one large crack. MSD is modeled as an array of collinear cracks with random initial crack lengths with the centers of the initial cracks spaced uniformly apart. The data used was chosen to be representative of aluminum structures. The structure is considered failed whenever any two adjacent cracks link up. A fatigue computer model is developed that can accurately and efficiently grow a collinear array of arbitrary length cracks from initial size until failure. An algorithm is developed to compute the stress intensity factors of all cracks considering all interaction effects. The probability of failure of two to 100 cracks is studied. Lower bounds on the probability of failure are developed based upon the probability of the largest crack exceeding a critical crack size. The critical crack size is based on the initial crack size that will grow across the ligament when the neighboring crack has zero length. The probability is evaluated using extreme value theory. An upper bound is based on the probability of the maximum sum of initial cracks being greater than a critical crack size. A weakest link sampling approach is developed that can accurately and efficiently compute small probabilities of failure. This methodology is based on predicting the weakest link, i.e., the two cracks to link up first, for a realization of initial crack sizes, and computing the cycles-to-failure using these two cracks. Criteria to determine the weakest link are discussed. Probability results using the weakest link sampling method are compared to Monte Carlo-based benchmark results. The results indicate that very small probabilities can be computed

  5. The modal surface interpolation method for damage localization

    Science.gov (United States)

    Pina Limongelli, Maria

    2017-05-01

    The Interpolation Method (IM) has been previously proposed and successfully applied for damage localization in plate like structures. The method is based on the detection of localized reductions of smoothness in the Operational Deformed Shapes (ODSs) of the structure. The IM can be applied to any type of structure provided the ODSs are estimated accurately in the original and in the damaged configurations. If the latter circumstance fails to occur, for example when the structure is subjected to an unknown input(s) or if the structural responses are strongly corrupted by noise, both false and missing alarms occur when the IM is applied to localize a concentrated damage. In order to overcome these drawbacks a modification of the method is herein investigated. An ODS is the deformed shape of a structure subjected to a harmonic excitation: at resonances the ODS are dominated by the relevant mode shapes. The effect of noise at resonance is usually lower with respect to other frequency values hence the relevant ODS are estimated with higher reliability. Several methods have been proposed to reliably estimate modal shapes in case of unknown input. These two circumstances can be exploited to improve the reliability of the IM. In order to reduce or eliminate the drawbacks related to the estimation of the ODSs in case of noisy signals, in this paper is investigated a modified version of the method based on a damage feature calculated considering the interpolation error relevant only to the modal shapes and not to all the operational shapes in the significant frequency range. Herein will be reported the comparison between the results of the IM in its actual version (with the interpolation error calculated summing up the contributions of all the operational shapes) and in the new proposed version (with the estimation of the interpolation error limited to the modal shapes).

  6. Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Dassios

    2013-01-01

    Full Text Available Infrared thermography (IRT and acoustic emission (AE are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material’s performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.

  7. An evaluation of the effects of epidermal growth factor on irradiation lip mucosa damage in mice

    International Nuclear Information System (INIS)

    Feng Yan

    1994-01-01

    The effect of epidermal growth factor (EGF) on lip mucosa damage by irradiation was explored in mice. EGF was administered in doses of 100 μg/kg/day using different schedules. Mucosal damage was assessed. The metaphase arrest method with vinblastine was used to evaluate the diurnal rhythm of mitosis. EGF in regimens employed did not protect the mouse lip epithelial cells from irradiation induced damage, but it has a demonstrable stimulatory effect on cell proliferation in lip mucosa which is dependent on the schedules of administration. The reasons and mechanisms are discussed

  8. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    Science.gov (United States)

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  9. A Method for Ship Collision Damage and Energy Absorption Analysis and its Validation

    DEFF Research Database (Denmark)

    Zhang, Shengming; Pedersen, Preben Terndrup

    2016-01-01

    -examine this method’s validity andaccuracy for ship collision damage analysis in shipdesign assessments by comprehensive validations withthe experimental results from the public domain. Twentyexperimental tests have been selected, analysed andcompared with the results calculated using the proposedmethod. It can......For design evaluation there is a need for a method whichis fast, practical and yet accurate enough to determine theabsorbed energy and collision damage extent in shipcollision analysis. The most well-known simplifiedempirical approach to collision analysis was madeprobably by Minorsky and its...... limitation is also wellrecognized.The authors have previously developedsimple expressions for the relation between the absorbedenergy and the damaged material volume which take intoaccount the structural arrangements, the materialproperties and the damage modes. The purpose of thepresent paper is to re...

  10. A Method for Ship Collision Damage and Energy Absorption Analysis and its Validation

    DEFF Research Database (Denmark)

    Zhang, Shengming; Pedersen, Preben Terndrup

    2017-01-01

    For design evaluation, there is a need for a method which is fast, practical and yet accurate enough to deter-mine the absorbed energy and collision damage extent in ship collision analysis. The most well-known sim-plified empirical approach to collision analysis was made probably by Minorsky......, and its limitation is alsowell-recognised. The authors have previously developed simple expressions for the relation between theabsorbed energy and the damaged material volume which take into account the structural arrangements,the material properties and the damage modes. The purpose of the present paper...... is to re-examine thismethod’s validity and accuracy for ship collision damage analysis in ship design assessments by compre-hensive validations with experimental results from the public domain. In total, 20 experimental tests havebeen selected, analysed and compared with the results calculated using...

  11. Damage localization by statistical evaluation of signal-processed mode shapes

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Damkilde, Lars

    2015-01-01

    Due to their inherent ability to provide structural information on a local level, mode shapes and their derivatives are utilized extensively for structural damage identification. Typically, more or less advanced mathematical methods are implemented to identify damage-induced discontinuities in th...... is conducted on the basis of T2-statistics. The proposed method is demonstrated in the context of analytical work with a free-vibrating Euler-Bernoulli beam under noisy conditions.......) and subsequent application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact damage-induced, outlier analysis of principal components of the signal-processed mode shapes...

  12. Modified risk evaluation method

    International Nuclear Information System (INIS)

    Udell, C.J.; Tilden, J.A.; Toyooka, R.T.

    1993-08-01

    The purpose of this paper is to provide a structured and cost-oriented process to determine risks associated with nuclear material and other security interests. Financial loss is a continuing concern for US Department of Energy contractors. In this paper risk is equated with uncertainty of cost impacts to material assets or human resources. The concept provides a method for assessing the effectiveness of an integrated protection system, which includes operations, safety, emergency preparedness, and safeguards and security. The concept is suitable for application to sabotage evaluations. The protection of assets is based on risk associated with cost impacts to assets and the potential for undesirable events. This will allow managers to establish protection priorities in terms of the cost and the potential for the event, given the current level of protection

  13. Quantitative evaluation for small surface damage based on iterative difference and triangulation of 3D point cloud

    Science.gov (United States)

    Zhang, Yuyan; Guo, Quanli; Wang, Zhenchun; Yang, Degong

    2018-03-01

    This paper proposes a non-contact, non-destructive evaluation method for the surface damage of high-speed sliding electrical contact rails. The proposed method establishes a model of damage identification and calculation. A laser scanning system is built to obtain the 3D point cloud data of the rail surface. In order to extract the damage region of the rail surface, the 3D point cloud data are processed using iterative difference, nearest neighbours search and a data registration algorithm. The curvature of the point cloud data in the damage region is mapped to RGB color information, which can directly reflect the change trend of the curvature of the point cloud data in the damage region. The extracted damage region is divided into three prism elements by a method of triangulation. The volume and mass of a single element are calculated by the method of geometric segmentation. Finally, the total volume and mass of the damage region are obtained by the principle of superposition. The proposed method is applied to several typical injuries and the results are discussed. The experimental results show that the algorithm can identify damage shapes and calculate damage mass with milligram precision, which are useful for evaluating the damage in a further research stage.

  14. Frequency domain fatigue damage estimation methods suitable for deterministic load spectra

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, A.R.; Patel, M.H. [University Coll., Dept. of Mechanical Engineering, London (United Kingdom)

    2000-07-01

    The evaluation of fatigue damage due to load spectra, directly in the frequency domain, is a complex phenomena but with the benefit of significant computation time savings. Various formulae have been suggested but have usually relating to a specific application only. The Dirlik method is the exception and is applicable to general cases of continuous stochastic spectra. This paper describes three approaches for evaluating discrete deterministic load spectra generated by the floating wind turbine model developed the UCL/RAL research project. (Author)

  15. Thermal stress analysis for fatigue damage evaluation at a mixing tee

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Nakamura, Akira

    2011-01-01

    Highlights: → Thermal stress and fatigue damage have been analyzed for a mixing tee. → Fatigue damage was accumulated near boundaries of the cold spot. → It was found that fatigue damage was brought about by fluctuation of cold spot. → Simple one-dimensional analysis could derive stress for fatigue evaluation. - Abstract: Fatigue cracks have been found at mixing tees where fluids of different temperature flow in. In this study, the thermal stress at a mixing tee was calculated by the finite element method using temperature transients obtained by a fluid dynamics simulation. The simulation target was an experiment for a mixing tee, in which cold water flowed into the main pipe from a branch pipe. The cold water flowed along the main pipe wall and caused a cold spot, at which the membrane stress was relatively large. Based on the evaluated thermal stress, the magnitude of the fatigue damage was assessed according to the linear damage accumulation rule and the rain-flow procedure. Precise distributions of the thermal stress and fatigue damage could be identified. Relatively large axial stress occurred downstream from the branch pipe due to the cold spot. The variation ranges of thermal stress and fatigue damage became large near the position 20 o from the symmetry line in the circumferential direction. The position of the cold spot changed slowly in the circumferential direction, and this was the main cause of the fatigue damage. The fatigue damage was investigated for various differences in the temperature between the main and branch pipes. Since the magnitude of accumulated damage increased abruptly when the temperature difference exceeded the value corresponding to the fatigue limit, it was suggested that the stress amplitude should be suppressed less than the fatigue limit. In the thermal stress analysis for fatigue damage assessment, it was found that the detailed three-dimensional structural analysis was not required. Namely, for the current case, a one

  16. The evaluation of distributed damage in concrete based on sinusoidal modeling of the ultrasonic response.

    Science.gov (United States)

    Sepehrinezhad, Alireza; Toufigh, Vahab

    2018-05-25

    Ultrasonic wave attenuation is an effective descriptor of distributed damage in inhomogeneous materials. Methods developed to measure wave attenuation have the potential to provide an in-site evaluation of existing concrete structures insofar as they are accurate and time-efficient. In this study, material classification and distributed damage evaluation were investigated based on the sinusoidal modeling of the response from the through-transmission ultrasonic tests on polymer concrete specimens. The response signal was modeled as single or the sum of damping sinusoids. Due to the inhomogeneous nature of concrete materials, model parameters may vary from one specimen to another. Therefore, these parameters are not known in advance and should be estimated while the response signal is being received. The modeling procedure used in this study involves a data-adaptive algorithm to estimate the parameters online. Data-adaptive algorithms are used due to a lack of knowledge of the model parameters. The damping factor was estimated as a descriptor of the distributed damage. The results were compared in two different cases as follows: (1) constant excitation frequency with varying concrete mixtures and (2) constant mixture with varying excitation frequencies. The specimens were also loaded up to their ultimate compressive strength to investigate the effect of distributed damage in the response signal. The results of the estimation indicated that the damping was highly sensitive to the change in material inhomogeneity, even in comparable mixtures. In addition to the proposed method, three methods were employed to compare the results based on their accuracy in the classification of materials and the evaluation of the distributed damage. It is shown that the estimated damping factor is not only sensitive to damage in the final stages of loading, but it is also applicable in evaluating micro damages in the earlier stages providing a reliable descriptor of damage. In addition

  17. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    Directory of Open Access Journals (Sweden)

    Yuanqiang Ren

    2017-05-01

    Full Text Available Structural health monitoring (SHM of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  18. Evaluation of new multiaxial damage parameters on low carbon steel

    Directory of Open Access Journals (Sweden)

    A. S. Cruces

    2017-07-01

    Full Text Available Most mechanical components are subjected to the complex fatigue loading conditions, where both amplitude and direction of loading cycles change over the time. The estimation of damage caused by these complex loading scenarios are often done by simplified uniaxial fatigue theories, which ultimately leads to higher factor of safety during the final design considerations. Critical plane-based fatigue theories have been considered more accurate for computing the fatigue damage for multiaxial loading conditions in comparison to energy-based and equivalent stress-based theories. Two recently developed fatigue theories have been evaluated in this work for the available test data. Test data includes significant amount of biaxial load paths.

  19. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    Directory of Open Access Journals (Sweden)

    Na Yang

    2017-03-01

    Full Text Available Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and evaluation of light steel structures caused by strong winds, which include connection failure, fatigue failure, purlin buckling, and primary frame component instability problems. Moreover, this review will mention some applications of structure damage assessment methods in this area, such as vulnerability analysis and performance-based theory, etc.

  20. Radiation damage evaluation on AlGaAs/GaAs solar cells

    International Nuclear Information System (INIS)

    Moreno, E.G.; Alcubilla, R.; Prat, L.; Castaner, L.

    1988-01-01

    A piecewise model to evaluate radiation damage on AlGaAs based solar cells has been developed, which gives complete electrical parameters of the cells in the operating temperature range. Different structures, including graded band gap and double heteroface can be analyzed. The cell structure is sliced into layers of constant parameters, allowing the model to take into account nonuniform damage produced by low energy protons without excess computer time. Proton damage coefficients as well as proton damage ratios can be calculated for energies between 30 and 10/sup 4/ keV with only two adjustable parameters. In addition, coirradiation experiments with different energy protons can be simulated, by improving the conventional method of degradation computering

  1. Appreciation the damage of kidney function with RIA method

    International Nuclear Information System (INIS)

    Wang Haodan

    1992-01-01

    Using RIA method, the authors took 4 kinds of urine specimen from 100 normal persons which were taken in the morning 1 h after drinking voluntary and all- 24 h, and stored at 4 C deg and -30 C deg respectively, in order to detect the concentration of the urine protein Β 2 -MG, ALb, IgG and THP. The results are as follows: for 3-days-storage at 4 C deg and 2-weeks-storage at -30 C deg, P > 0.05; for the ALb, IgG and THP between voluntary urine and 24 h urine, α = 0.7565, 0.7865 and 0.7537 respectively; for Β 2 -MG, between the 1h-urine after drinking and voluntary urine, α = 0.7238. The urinary levels were measured of Β 2 -MG, ALb, IgG and THP with voluntary urine specimen in 177 cases of various types of nephropathy, urino-infection, and diabetic nephrosis, hypertesion-nephrosis, systemic lupus erythematosus. It is considered that the method of testing urine protein with voluntary urine specimen is not only accurate for collecting but also convenient for the patient. It is more accurate and sensitive than the traditional BUN and Cr for the appreciation of kidney function damage. And it gives a early stage index of kidney damage

  2. Nuclear data evaluation method and evaluation system

    International Nuclear Information System (INIS)

    Liu Tingjin

    1995-01-01

    The evaluation methods and Nuclear Data Evaluation System have been developed in China. A new version of the system has been established on Micro-VAX2 computer, which is supported by IAEA under the technology assistance program. The flow chart of Chinese Nuclear Data Evaluation System is shown out. For last ten years, the main efforts have been put on the double differential cross section, covariance data and evaluated data library validation. The developed evaluation method and Chinese Nuclear Data Evaluation System have been widely used at CNDC and in Chinese Nuclear Data Network for CENDL. (1 tab., 15 figs.)

  3. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge.

    Science.gov (United States)

    Guo, Xuesong; Liu, Junxin; Xiao, Benyi

    2014-10-20

    Extracellular polymeric substances (EPS) are susceptible to contamination by intracellular substances released during the extraction of EPS owing to the damage caused to microbial cell structures. The damage to cell walls and cell membranes in nine EPS extraction processes of activated sludge was evaluated in this study. The extraction of EPS (including proteins, carbohydrates and DNA) was the highest using the NaOH extraction method and the lowest using formaldehyde extraction. All nine EPS extraction methods in this study resulted in cell wall and membrane damage. The damage to cell walls, evaluated by 2-keto-3-deoxyoctonate (KDO) and N-acetylglucosamine content changes in extracted EPS, was the most significant in the NaOH extraction process. Formaldehyde extraction showed a similar extent of damage to cell walls to those detected in the control method (centrifugation), while those in the formaldehyde-NaOH and cation exchange resin extractions were slightly higher than those detected in the control. N-acetylglucosamine was more suitable than KDO for the evaluation of cell wall damage in the EPS extraction of activated sludge. The damage to cell membranes was characterized by two fluorochromes (propidium iodide and FITC Annexin V) with flow cytometry (FCM) measurement. The highest proportion of membrane-damaged cells was detected in NaOH extraction (26.54% of total cells) while membrane-damaged cells comprised 8.19% of total cells in the control. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Evaluation of compensation formulae to measure natural resource damages

    International Nuclear Information System (INIS)

    Robilliard, G.A.; Fischel, M.; Desvousges, W.H.; Dunford, R.W.; Mathews, K.

    1993-01-01

    Most of the oil spills in marine, estuarine, or freshwater environments of the United States are small (less than 1,000 gallons) and result in minimal injury to natural resources or little to no loss of services. However, federal, state, and Indian tribe trustees for natural resources are entitled under a variety of laws, including the Oil Pollution Act of 1990, to collect damages (money) from responsible parties to compensate for the foregone services and restoration of the services provided by the natural resources. Alaska, Washington, and Florida have developed a formula-based approach to calculating natural resource damages resulting from most spills; the federal National Oceanic and Atmospheric Administration and several other states are considering developing a compensation formula. The ideal compensation formula is a simplified assessment process that (a) can be applied rapidly, (b) requires relatively small transaction or assessment costs, (c) requires minimal site- and spill-specific data as inputs, (d) is based on generally accepted scientific and economic principles and methods, and (e) results in damage values acceptable to both the trustees and the responsible party. In theory, a compensation formula could be applied to most small oil spills in United States waters

  5. Damage and noise sensitivity evaluation of autoregressive features extracted from structure vibration

    International Nuclear Information System (INIS)

    Yao, Ruigen; Pakzad, Shamim N

    2014-01-01

    In the past few decades many types of structural damage indices based on structural health monitoring signals have been proposed, requiring performance evaluation and comparison studies on these indices in a quantitative manner. One tool to help accomplish this objective is analytical sensitivity analysis, which has been successfully used to evaluate the influences of system operational parameters on observable characteristics in many fields of study. In this paper, the sensitivity expressions of two damage features, namely the Mahalanobis distance of autoregressive coefficients and the Cosh distance of autoregressive spectra, will be derived with respect to both structural damage and measurement noise level. The effectiveness of the proposed methods is illustrated in a numerical case study on a 10-DOF system, where their results are compared with those from direct simulation and theoretical calculation. (paper)

  6. Damage and lifetime evaluation of three dimensional components subjected to complex loadings

    International Nuclear Information System (INIS)

    Comte, A.; Chator, T.

    1992-12-01

    Forecasting the mechanical behavior of structures and evaluating the lifetime of machine components are essential for the availability and safety of nuclear power stations. On this subject, Electricite de France has developed numerical methods for structural design with regard to cracking and damage to three dimensional structures. We explain here the methods adopted by the R and D Division which successfully produced the mechanical analysis for which it is responsible. (authors). 9 figs., 2 refs

  7. Damage to historic brick masonry structures. Masonry damage diagnostic system and damage atlas for evaluation of deterioration

    NARCIS (Netherlands)

    Balen, K. van; Binda, L.; Hees, R.P.J. van; Franke, L.

    1996-01-01

    The aim of the research on brick masonry degradation supported by the D.G. XII is presented. The project is delivering the following: ► Damage Atlas of ancient brick masonry, a book with a description of the types of damage, and their possible causes, in ancient brick masonry structures; ► Masonry

  8. An Overview of Crop Hail Damage and Evaluation of Hail Suppression Efficiency in Bulgaria.

    Science.gov (United States)

    Simeonov, Petio

    1996-09-01

    The space time distribution of the crop hail loss-to-risk ratio over the whole. Bulgarian territory has been ascertained using the rank approach. The relationships between hailfall characteristics (sizes and kinetic energy) and the percentage of the crop damage for wheat, corn, and vines were obtained using field observations and hailpad data. A physical statistical method for evaluating the changes in damaged crop areas was tested over a 5000-km2 target area (numbers for three hail suppression ranges). Using a regression equation (worked out for 120 nonseeded days) for evaluation of the damaged area changes, reductions in damaged area of 34% 48% were obtained for 7 and 9 years of heavy hail. The magnitude of the reduction is comparable with the one obtained using double-mass ratio and bivariate test of loss-to-risk data in the control and target areas. Similar results were obtained in other hail suppression projects in France, North Dakota, and Greece. A short overview of the physical effects of cloud seeding is presented. The physical-statistical approach for severe hailstorms, based on the regression between thermodynamical indices of instability and damaged areas, shows promise as a perspective to evaluate the efficiency of the seeding operations in problematic cases.

  9. Bone marrow scintigraphy: evaluation of damage caused by cancer chemotherapy

    International Nuclear Information System (INIS)

    Ciambellotti, E.; Cartia, G.L.; Coda, C.

    1988-01-01

    For various reasons the well-known myelopoietic damage caused by cancer chemotherapy is not easy to quantify by means of usual diagnostic procedures. The bone marrow scan with 99m Tc-nanocolloid rapidly cleared by the phagocitic action of the RES, which has a topographic extension similar to red marrow, has been used for many years to evaluate the inflammatory and neoplastic diseases, both localized and diffuse. Such examination was thus performed in patients undergoing cytostatic therapy, either to follow-up metastatic lesions or to evaluate a tissue damage due to different drugs. The BMS is easily performed and has no side-effects. It consists of a dinamic and a static part. Moreover, it helped pointing out important diagnostic data, such as the reduction of the sacroiliac uptake index below the normal values (3.7) in 33 out of 57 cases, and an abnormal distribution of nanocolloid in the skeleton (Munz's classification, 1983) in 37 out of 69 cases, higher in more myelotoxic cytostatic, which could be detected even after a few months

  10. Simple estimating method of damages of concrete gravity dam based on linear dynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, T.; Kanenawa, K.; Yamaguchi, Y. [Public Works Research Institute, Tsukuba, Ibaraki (Japan). Hydraulic Engineering Research Group

    2004-07-01

    Due to the occurrence of large earthquakes like the Kobe Earthquake in 1995, there is a strong need to verify seismic resistance of dams against much larger earthquake motions than those considered in the present design standard in Japan. Problems exist in using nonlinear analysis to evaluate the safety of dams including: that the influence which the set material properties have on the results of nonlinear analysis is large, and that the results of nonlinear analysis differ greatly according to the damage estimation models or analysis programs. This paper reports the evaluation indices based on a linear dynamic analysis method and the characteristics of the progress of cracks in concrete gravity dams with different shapes using a nonlinear dynamic analysis method. The study concludes that if simple linear dynamic analysis is appropriately conducted to estimate tensile stress at potential locations of initiating cracks, the damage due to cracks would be predicted roughly. 4 refs., 1 tab., 13 figs.

  11. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinzhi Zhu

    2017-07-01

    Full Text Available In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas reservoir in piedmont configuration, located in the Cretaceous Bashijiqike Fm of the Tarim Basin, as an example. First, evaluation experiments were conducted on the filtrate invasion, the dynamic damage of oil-based drill-in fluids and the loading capacity of filter cakes. Meanwhile, the evaluating methods were optimized for the formation damage control effect of oil-based drill-in fluids in laboratory: pre-processing drill-in fluids before grading analysis; using the dynamic damage method to simulate the damage process for evaluating the percentage of regained permeability; and evaluating the loading capacity of filter cakes. The experimental results show that (1 oil phase trapping damage and solid phase invasion are the main formation damage types; (2 the damage degree of filtrate is the strongest on the matrix; and (3 the dynamic damage degree of oil-based drill-in fluids reaches medium strong to strong on fractures and filter cakes show a good sealing capacity for the fractures less than 100 μm. In conclusion, the filter cakes' loading capacity should be first guaranteed, and both percentage of regained permeability and liquid trapping damage degree should be both considered in the oil-based drill-in fluids prepared for those ultra-deep fractured tight sandstone gas reservoirs.

  12. Evaluation of Muscle Damage Marker after Mixed Martial Arts Matches.

    Science.gov (United States)

    Wiechmann, Gerald Julius; Saygili, Erol; Zilkens, Christoph; Krauspe, Rüdiger; Behringer, Michael

    2016-03-21

    The aim of this paper is to identify predictors of serum muscle damage marker (MDM) response following mixed martial arts (MMA) matches. Creatine kinase activity (CK) and myoglobin concentration (Mb) were measured in ten male elite MMA fighters (aged 28±5.7 years) prior to, 2 h, 24 h, and 96 h following 9 different MMA matches. The number of performed upright punches and kicks (UKF) that failed the opponent, the number of obtained hits to the upper and lower body (LBH), as well as the total fight duration (TFD) were evaluated as potential predictors from video recordings. CK peaked 24 h (829±753 U/L(-1)) and Mb peaked 2 h (210±122 µg/L(-1)) post matches. Almost 80% of the peak CK variance could be explained by LBH and UKF, whereas 87% of the Mb variation was explained by TFD and LBH. MMA result in a significant skeletal muscle damage, which largely depends on LBH. Furthermore, eccentric contractions to decelerate kicks that missed the opponent and the TFD seem to contribute to the MDM response.

  13. Individual aircraft life monitoring: An engineering approach for fatigue damage evaluation

    Directory of Open Access Journals (Sweden)

    Rui JIAO

    2018-04-01

    Full Text Available Individual aircraft life monitoring is required to ensure safety and economy of aircraft structure, and fatigue damage evaluation based on collected operational data of aircraft is an integral part of it. To improve the accuracy and facilitate the application, this paper proposes an engineering approach to evaluate fatigue damage and predict fatigue life for critical structures in fatigue monitoring. In this approach, traditional nominal stress method is applied to back calculate the S-N curve parameters of the realistic structure details based on full-scale fatigue test data. Then the S-N curve and Miner’s rule are adopted in damage estimation and fatigue life analysis for critical locations under individual load spectra. The relationship between relative small crack length and fatigue life can also be predicted with this approach. Specimens of 7B04-T74 aluminum alloy and TA15M titanium alloy are fatigue tested under two types of load spectra, and there is a good agreement between the experimental results and analysis results. Furthermore, the issue concerning scatter factor in individual aircraft damage estimation is also discussed. Keywords: Fatigue damage, Fatigue monitoring, Fatigue test, Scatter factor, S-N curve

  14. Voltammetry Method Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Pereira, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Willit, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Williamson, M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-29

    The purpose of the ANL MPACT Voltammetry project is to evaluate the suitability of previously developed cyclic voltammetry techniques to provide electroanalytical measurements of actinide concentrations in realistic used fuel processing scenarios. The molten salts in these scenarios are very challenging as they include high concentrations of multiple electrochemically active species, thereby creating a variety of complications. Some of the problems that arise therein include issues related to uncompensated resistance, cylindrical diffusion, and alloying of the electrodeposited metals. Improvements to the existing voltammetry technique to account for these issues have been implemented, resulting in good measurements of actinide concentrations across a wide range of adverse conditions.

  15. Issues in bridge deck damage evaluation using aerial photos

    Science.gov (United States)

    Natarajan, M.; Chen, S. E.; Boyle, C.; Martin, E.; Hauser, E.

    2012-04-01

    Small format aerial photography (SFAP) with low flying technique is proposed for damage evaluation of bridge decks. High resolution images obtained using under-belly photography can be used to quantify the various bridge deck problems. The conventional truck-mount or vehicle-mount deck imaging technologies require a large number of image samples. Hence the physical scanning is time consuming and it is also challenging consider the size and location of a bridge. Aerial imaging overcomes these issues, but they face different kinds of challenges that are posed by obstacles such as shadow from trees, power lines and vehicles, signs and luminaries structures. The image resolution uncertainty, which is a function of the pilot skills and flying conditions, may also add additional challenges to aerial imaging technique. Hence different image processing tools have to be integrated into a single package to achieve the desired task. This paper summarizes the challenges faced and the preliminary results are presented and discussed.

  16. Tc-99m mercaptoacetylglycine to evaluate renal damage after ESWL

    International Nuclear Information System (INIS)

    Schaub, T.; Witsch, U.; El Damanhoury, H.; Naegele-Woehrle, B.; Hahn, K.

    1990-01-01

    This paper evaluates renal damage after extracorporeal shock wave lithotripsy (ESWL) with a new Tc-99m renal imaging compound. Tc-99m mercaptoacetylglycine-3 (MAG3) sequential scintigraphy was performed on 113 patients. A gamma camera was used, and the studies were done within 2 days before and after ESWL for renal stones. Relative renal function and clearance were calculated. Seventy (62%) of the 113 patients had abnormal findings after ESWL that were not present before the treatment. In 56 patients (50%) intra- or perirenal lesions were seen on sequential scintigraphy. Forty-six patients (41%) had a decrease of the relative renal function of at least 3% without an increase of total renal function

  17. Evaluation of Freezing Damage in some Pistachio Seedling Rootstocks

    Directory of Open Access Journals (Sweden)

    Maryam Afrousheh

    2018-06-01

    Full Text Available A greenhouse experiment was conducted to evaluate the freezing damage in some pistachio rootstocks by ion leakage and pH changes of leaked solution. A factorial experiment was carried out in randomized block designs (RBD with three factors: Temperature (A including 4 ̊C, 0 ̊C, -2 ̊C, -4 ̊C, -6 ̊C, Time (B including 3, 12, 24h , and Rootstock (C including P. vera cv 'Badami Zarand' (V13 and 'Sarakhs' (S5, P. mutica (M1and P. atlantica (A7. For this, one-year-old seedlings were kept at these five temperatures in incubator for 2 hours. Then in the first 24 hours in three hour intervals and during four days, EC and pH in leaked solution were measured daily. After four days the seedling samples were autoclaved at temperatures 105°C for 4 minutes to destroy all cell membrane. EC and pH of remaining solution were measured again and the percentage of ionic leakage was calculated. The results showed that the best time to evaluate the pH and ionic leakage was 24 hours after incubation of samples. Based on the results, ionic leakage dramatically increased with decreasing temperatures from 0°C to -6°C, while pH of leaked solution had no significant difference in 0°C and 4°C temperature treatments. When temperature reduced from 0°C to -6°C, like ionic leakage, pH greatly reduced. So the pH of the leaked solution could be an appropriate tool to study the freezing damage of pistachio rootstocks. Based on the results of pH and ionic leakage, P. mutica and P. atlantica were the most frost tolerant and sensitive rootstocks of this experiment, respectively.

  18. Statistical methods for damage detection applied to civil structures

    DEFF Research Database (Denmark)

    Gres, Szymon; Ulriksen, Martin Dalgaard; Döhler, Michael

    2017-01-01

    Damage detection consists of monitoring the deviations of a current system from its reference state, characterized by some nominal property repeatable for every healthy state. Preferably, the damage detection is performed directly on vibration data, hereby avoiding modal identification of the str...

  19. Lagrangian methods for blood damage estimation in cardiovascular devices--How numerical implementation affects the results.

    Science.gov (United States)

    Marom, Gil; Bluestein, Danny

    2016-01-01

    This paper evaluated the influence of various numerical implementation assumptions on predicting blood damage in cardiovascular devices using Lagrangian methods with Eulerian computational fluid dynamics. The implementation assumptions that were tested included various seeding patterns, stochastic walk model, and simplified trajectory calculations with pathlines. Post processing implementation options that were evaluated included single passage and repeated passages stress accumulation and time averaging. This study demonstrated that the implementation assumptions can significantly affect the resulting stress accumulation, i.e., the blood damage model predictions. Careful considerations should be taken in the use of Lagrangian models. Ultimately, the appropriate assumptions should be considered based the physics of the specific case and sensitivity analysis, similar to the ones presented here, should be employed.

  20. Designing a highly sensitive Eddy current sensor for evaluating damage on thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Min; Kim, Hak Joon; Song, Sung Jin; Seok, Chang Seong; Lee, Yeong Ze [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Seul Gi [LG Electronics, Seoul (Korea, Republic of)

    2016-06-15

    A thermal barrier coating (TBC) has been widely applied to machine components working under high temperature as a thermal insulator owing to its critical financial and safety benefits to the industry. However, the nondestructive evaluation of TBC damage is not easy since sensing of the microscopic change that occurs on the TBC is required during an evaluation. We designed an eddy current probe for evaluating damage on a TBC based on the finite element method (FEM) and validated its performance through an experiment. An FEM analysis predicted the sensitivity of the probe, showing that impedance change increases as the TBC thermally degrades. In addition, the effect of the magnetic shield concentrating magnetic flux density was also observed. Finally, experimental validation showed good agreement with the simulation result.

  1. Statistical time series methods for damage diagnosis in a scale aircraft skeleton structure: loosened bolts damage scenarios

    International Nuclear Information System (INIS)

    Kopsaftopoulos, Fotis P; Fassois, Spilios D

    2011-01-01

    A comparative assessment of several vibration based statistical time series methods for Structural Health Monitoring (SHM) is presented via their application to a scale aircraft skeleton laboratory structure. A brief overview of the methods, which are either scalar or vector type, non-parametric or parametric, and pertain to either the response-only or excitation-response cases, is provided. Damage diagnosis, including both the detection and identification subproblems, is tackled via scalar or vector vibration signals. The methods' effectiveness is assessed via repeated experiments under various damage scenarios, with each scenario corresponding to the loosening of one or more selected bolts. The results of the study confirm the 'global' damage detection capability and effectiveness of statistical time series methods for SHM.

  2. Application of Modal Parameter Estimation Methods for Continuous Wavelet Transform-Based Damage Detection for Beam-Like Structures

    Directory of Open Access Journals (Sweden)

    Zhi Qiu

    2015-02-01

    Full Text Available This paper presents a hybrid damage detection method based on continuous wavelet transform (CWT and modal parameter identification techniques for beam-like structures. First, two kinds of mode shape estimation methods, herein referred to as the quadrature peaks picking (QPP and rational fraction polynomial (RFP methods, are used to identify the first four mode shapes of an intact beam-like structure based on the hammer/accelerometer modal experiment. The results are compared and validated using a numerical simulation with ABAQUS software. In order to determine the damage detection effectiveness between the QPP-based method and the RFP-based method when applying the CWT technique, the first two mode shapes calculated by the QPP and RFP methods are analyzed using CWT. The experiment, performed on different damage scenarios involving beam-like structures, shows that, due to the outstanding advantage of the denoising characteristic of the RFP-based (RFP-CWT technique, the RFP-CWT method gives a clearer indication of the damage location than the conventionally used QPP-based (QPP-CWT method. Finally, an overall evaluation of the damage detection is outlined, as the identification results suggest that the newly proposed RFP-CWT method is accurate and reliable in terms of detection of damage locations on beam-like structures.

  3. Evaluation methods for hospital facilities

    DEFF Research Database (Denmark)

    Fronczek-Munter, Aneta

    2013-01-01

    according to focus areas and proposes which evaluation methods to use in different building phases of healthcare facilities. Hospital evaluations with experts and users are also considered; their subjective view on space, function, technology, usability and aesthetics. Results & solutions: This paper...... presents the different methods for evaluating buildings in use in a new model, the Evaluation Focus Flower, and proposes which evaluation methods are suitable for various aims and building phases, i.e. which is giving best input for the initial briefing process of new hospital facilities with ambition...... of creating buildings with enhanced usability. Additionally various evaluation methods used in hospital cases in Denmark and Norway are presented. Involvement of users is proposed, not just in defining requirements but also in co-creation/design and evaluation of solutions. The theories and preliminary...

  4. Cytogenetic methods for the detection of radiation-induced chromosome damage in aquatic organisms

    International Nuclear Information System (INIS)

    Kligerman, A.D.

    1979-01-01

    One means of evaluating the genetic effects of radiation on the genomes of aquatic organisms is to screen radiation-exposed cells for chromosome aberrations. A brief literature review of studies dealing with radiation-induced chromosome damage in aquatic organisms is presented, and reasons are given detailing why most previous studies are of little quantitative value. Suggestions are made for obtaining adequate qualitative and quantitative data through the use of modern cytogenetic methods and a model systems approach to the study of cytogenetic radiation damage in aquatic organisms. Detailed procedures for both in vivo and in vitro cytogenetic methods are described, and experimental considerations are discussed. Finally, suggestions for studies that could be of value in establishing protective guidelines for aquatic ecosystems are presented. (author)

  5. Lessons from the Mexican earthquake 1985: Quantitative evaluation of damage and damage parameters

    International Nuclear Information System (INIS)

    Tiedemann, H.

    1992-01-01

    In Mexico City, all buildings of more than 5 storeys were inspected in order to assess the relative importance of different damage parameters. The general mean damage (MDR) was 32.1%; ranging between 94.13% for 2% g buildings and 1.89% for 10% g buildings. Stiff buildings had much lower MDR's than soft ones. Irregularity and asymmetry increased MDR's significantly. The MDR's of oblong buildings strongly depended on their orientation. Most of the overall damage resulted from failure of non-structural items. The paper presents a detailed account of these findings and the salient lessons to be learned from them. (author). 13 refs, 1 fig., 1 tab

  6. An Element Free Galerkin method for an elastoplastic coupled to damage analysis

    Directory of Open Access Journals (Sweden)

    Sendi Zohra

    2016-01-01

    Full Text Available In this work, a Meshless approach for nonlinear solid mechanics is developed based on the Element Free Galerkin method. Furthermore, Meshless is combined with an elastoplastic model coupled to ductile damage. The efficiency of the proposed methodology is evaluated through various numerical examples. Besides these, two-dimensional tensile tests under several boundary conditions were studied and solved by a Dynamic-Explicit resolution scheme. Finally, the results obtained from the numerical simulations are analyzed and critically compared with Finite Element Method results.

  7. Multidisciplinary approach to evaluate flood damage for residential buildings: first results in Northern Italy

    Science.gov (United States)

    Luino, Fabio

    2015-04-01

    the aims was to provide public administrations a management tool to help them use damage information. For this purpose a GIS-based model was created that can simulate flood events and evaluate potential direct economic loss due to a catastrophe based on thorough land knowledge coupled with the description of various physical elements of the natural event. The multidisciplinary method can be summarized in the following steps: 1) Event description: definition of flood parameters (flooded area and water level). This definition is possible because of real-time measurements or event simulation through a hydraulic model; 2) Identifying the affected assets in the flooded area; 3) Evaluation of the degree of damage to the exposed elements as a function of event magnitude identified from the measurement of floodwater depths of an event; 4) Attribution of an economic value to exposed assets. Quantification of economic loss by multiplying the economic value of damaged assets and the degree of damage. The methodology can be used to estimate the damage from the impact of floodwater on exposed elements (direct damage) and to quantify the resulting economic loss (tangible damage).

  8. Evaluation of fatigue damage of pressure vessel materials by observation of microstructures

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    1994-01-01

    As the important factor as the secular change mode of pressure vessel materials, there is fatigue damage. In USA, there is the move to use LWRs by extending their life, and it becomes necessary to show the soundness of the structures of machinery and equipment for long period. For exactly evaluating the soundness of the structures of machinery and equipment, it is important to clarify the degree of secular deterioration of the materials. In this report, by limiting to the fatigue damage of LWR pressure vessel steel, the method of grasping the change of microstructure and the method of estimating the degree of fatigue damage from the change of microstructure are shown. The change of microstructure arising in materials due to fatigue advances in the following steps, namely, the multiplication of dislocations, the tangling of dislocations, the formation of cell structure, the turning of cells, the formation of microcracks, the growth of cracks and fracture. In the case of pressure vessel steel, due to the quenching and tempering, the cell structure is formed from the beginning, and the advance of fatigue is recognized as the increase of the turning angle of cell structures. The detection of fatigue damage by microstructure is reported. (K.I.)

  9. Rapid quantitative evaluation of vascular damage in vivo

    International Nuclear Information System (INIS)

    Griem, M.L.; Kramp, D.; Hedge, K.; Dimitrievich, G.

    1987-01-01

    Using the rabbit ear chamber technique (Rad Res 99:511-535) mature vessels are imaged with a photo microscope and video images are digitized by a Quantex image processor. Each digitized image frame continuously updates a background image via exponential averaging. Simultaneously this background image is subtracted from each input frame to form the difference image. The absolute value of this image, in which significant motion artifacts remain, is summed by a second memory until the intensity of the vessel regions has saturated. High pass spacial filter, followed by a band pass look-up table defines vessels as white and non- vessel regions as black except for ''salt and pepper noises.'' Next, the image is read into computer memory which searches for segments of white pixels of satisfactory length. Then either a) the entire segment or b) the mid-point of the segment is ''color-set'' and displayed with the image after final correction a count of the number of set pixels is made. This count is proportional to either a) total vessel area viewed or b) total vessel length. This technique is then used to create histograms of vessel lengths. Intercomparison with the photographic technique is presented for graded doses of radiation, evaluating vascular damage

  10. [Cranial nerve damage after neuroaxial methods of anesthesia in puerperas].

    Science.gov (United States)

    Floka, S E; Shifman, E M

    2007-01-01

    The paper describes cranial nerve damage, a rare complication of neuroaxial anesthesia in obstetric care. In the literature, there are summarized data on 17 cases of neurological deficit developing after subarachnoidal or epidural anesthesia in puerperas. The etiological and pathogenetic factors of the above complications may be suggested to be the high disposition of a local anesthetic, arterial hypotension due to neuroaxial anesthetics, the outflow of cerebrospinal fluid after pachymeningeal puncture (including after unintended puncture during epidural anesthesia), and ischemic injury after the blood packing performed to relieve postpuncture headache. Closer consideration of these risk factors seems to reduce the incidence of cranial nerve damage in puerperas.

  11. Evaluation Methods for Prevention Education.

    Science.gov (United States)

    Blue, Amy V.; Barnette, J. Jackson; Ferguson, Kristi J.; Garr, David R.

    2000-01-01

    Discusses the importance of assessing medical students' competence in prevention knowledge, skills, and attitudes. Provides general guidance for programs interested in evaluating their prevention instructional efforts, and gives specific examples of possible methods for evaluating prevention education. Stresses the need to tailor assessment…

  12. Evaluating the Human Damage of Tsunami at Each Time Frame in Aggregate Units Based on GPS data

    Directory of Open Access Journals (Sweden)

    Y. Ogawa

    2016-06-01

    Full Text Available Assessments of the human damage caused by the tsunami are required in order to consider disaster prevention at such a regional level. Hence, there is an increasing need for the assessments of human damage caused by earthquakes. However, damage assessments in japan currently usually rely on static population distribution data, such as statistical night time population data obtained from national census surveys. Therefore, human damage estimation that take into consideration time frames have not been assessed yet. With these backgrounds, the objectives of this study are: to develop a method for estimating the population distribution of the for each time frame, based on location positioning data observed with mass GPS loggers of mobile phones, to use a evacuation and casualties models for evaluating human damage due to the tsunami, and evaluate each time frame by using the data developed in the first objective, and 3 to discuss the factors which cause the differences in human damage for each time frame. By visualizing the results, we clarified the differences in damage depending on time frame, day and area. As this study enables us to assess damage for any time frame in and high resolution, it will be useful to consider provision for various situations when an earthquake may hit, such as during commuting hours or working hours and week day or holiday.

  13. Upgrading of highly elapsed degradation damage evaluation of structural materials for the light water reactors

    International Nuclear Information System (INIS)

    Katada, Yasuyuki; Matsushima, Shinobu; Sato, Shunji

    1998-01-01

    In this study, for degradation of structural materials in accompanying with highly yearly lapse of the nuclear power plants, it was an aim to elucidate interaction between material degradation and degradation under high hot water environment. And, another aims consisted in intention of expansion protection and recovery evaluation of damage due to laser processing method and so on for welded portion showing extreme material degradation and in preparation of damage region diagram based on the obtained data. In this fiscal year, on interaction between materials and environmental degradation, it was found that as stress corrosion cracking of materials hardened by shot peening shows a resemble shapes of stress-strain curve in CERT and CLRT, shapes of load-time curve were much different. On comparison of the SP material and non-processing material, as peak current showing activity of newly created surface shows no difference, re-passivation of the SP material was found to be too late. And, on recovery evaluation of material degradation damage, as it was found that constant melt depth was essential to evaluate corrosion, a condition preparation aimed for melt depth of more than 1 mm. As only small amount of bubbles were observed at molten metal part on YAG laser processing, it was found that many small bubbles scatter at thermal effect part. (G.K.)

  14. Damage tolerant evaluation of cracked stiffened panels under ...

    Indian Academy of Sciences (India)

    Stiffened panels; stress intensity factor; fatigue and fracture; damage .... Extensive work on fracture analysis of structural components was carried out by using the ... respectively), in view of the transformation matrices related to MQL9S2 FE.

  15. Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks

    Science.gov (United States)

    Avci, Onur; Abdeljaber, Osama; Kiranyaz, Serkan; Hussein, Mohammed; Inman, Daniel J.

    2018-06-01

    Being an alternative to conventional wired sensors, wireless sensor networks (WSNs) are extensively used in Structural Health Monitoring (SHM) applications. Most of the Structural Damage Detection (SDD) approaches available in the SHM literature are centralized as they require transferring data from all sensors within the network to a single processing unit to evaluate the structural condition. These methods are found predominantly feasible for wired SHM systems; however, transmission and synchronization of huge data sets in WSNs has been found to be arduous. As such, the application of centralized methods with WSNs has been a challenge for engineers. In this paper, the authors are presenting a novel application of 1D Convolutional Neural Networks (1D CNNs) on WSNs for SDD purposes. The SDD is successfully performed completely wireless and real-time under ambient conditions. As a result of this, a decentralized damage detection method suitable for wireless SHM systems is proposed. The proposed method is based on 1D CNNs and it involves training an individual 1D CNN for each wireless sensor in the network in a format where each CNN is assigned to process the locally-available data only, eliminating the need for data transmission and synchronization. The proposed damage detection method operates directly on the raw ambient vibration condition signals without any filtering or preprocessing. Moreover, the proposed approach requires minimal computational time and power since 1D CNNs merge both feature extraction and classification tasks into a single learning block. This ability is prevailingly cost-effective and evidently practical in WSNs considering the hardware systems have been occasionally reported to suffer from limited power supply in these networks. To display the capability and verify the success of the proposed method, large-scale experiments conducted on a laboratory structure equipped with a state-of-the-art WSN are reported.

  16. Development of nondestructive evaluation of creep-fatigue damage in SUS316 stainless steel

    International Nuclear Information System (INIS)

    Shoji, Tetsuo; Kawahara, Tetsuji; Awano, Masakazu; Sato, Yasumoto

    1999-01-01

    Creep-fatigue is a fatal failure mode of high temperature structural materials. It is recognized that the law of linear damage, according to which creep-fatigue damage is expressed by the sum of the creep damage and the fatigue damage, is inadequate to evaluate creep-fatigue damage. This is due to the fact that the law of linear damage does not include the effect of interaction between the creep damage and the fatigue damage. Consequently, development of direct measurement of damage accumulation on the sample of interest is required for plant life evaluation. In this study, the induced current focusing potential drop (ICFPD) technique was used to evaluate the depth of small surface cracks in SUS316FR stainless steel which was subjected to creep-fatigue damage. It is shown that the potential drop increased during the micro-crack initiation and propagation. Correspondingly, the ICFPD technique applied to estimate micro-crack depth changes was used to accurately evaluate the residual life of creep-fatigue damaged structural materials. (author)

  17. Damages and methods for reparation; Hydropower structures; Skador och reparationsmetoder

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, Tomas

    2008-10-15

    As the focus of the Swedish Hydropower Industry shifted from the developing phase of the 20th century to the present phase of managing and maintenance of the hydropower plants and the adherent structures knowledge regarding issues concerning repair work and degradation processes of concrete has become truly important. Hydropower structures are submitted to live loads (for example caused by ice, water, snow and wind) and physical attacks such as Freeze/thaw, leaching and erosion (abrasion and cavitation). Hydropower structures are also submitted to chemical and electro chemical attacks like ASR and corrosion of the reinforcement bars. All of the mentioned processes have a negative affect on concrete structures service life. As it is today the Hydropower Industry possesses a rather high degree of knowledge concerning principal repair and strengthening techniques like shotcreting and grouting. The purpose of this report is (1) to point out the Swedish Hydropower Industry's need for extensive knowledge regarding overlays and toppings and (2) the potential advantages of overlays and toppings as repair techniques with respect to hydropower environments and the corresponding degradation processes acting on those structures. The performance of repairing a concrete structure using overlays or toppings is principally executed by the removal (totally or partially) of the damaged concrete surface, afterwards a new concrete overlay or topping is applied. The overlay must be able to withstand the live loads and the physical, chemical and electro-chemical attacks that are acting on the structure. The overlay is also required to co-operate with, and protect, the host material for a very long time. This report deals with the most common types of physical and chemical processes that are acting in Hydropower environments and the damages that they are causing concrete structures. Some of the common principal repair techniques that can be used when repairing the damaged concrete

  18. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.

    Science.gov (United States)

    Kim, Ju-Won; Park, Seunghee

    2018-01-02

    In this study, a magnetic flux leakage (MFL) method, known to be a suitable non-destructive evaluation (NDE) method for continuum ferromagnetic structures, was used to detect local damage when inspecting steel wire ropes. To demonstrate the proposed damage detection method through experiments, a multi-channel MFL sensor head was fabricated using a Hall sensor array and magnetic yokes to adapt to the wire rope. To prepare the damaged wire-rope specimens, several different amounts of artificial damages were inflicted on wire ropes. The MFL sensor head was used to scan the damaged specimens to measure the magnetic flux signals. After obtaining the signals, a series of signal processing steps, including the enveloping process based on the Hilbert transform (HT), was performed to better recognize the MFL signals by reducing the unexpected noise. The enveloped signals were then analyzed for objective damage detection by comparing them with a threshold that was established based on the generalized extreme value (GEV) distribution. The detected MFL signals that exceed the threshold were analyzed quantitatively by extracting the magnetic features from the MFL signals. To improve the quantitative analysis, damage indexes based on the relationship between the enveloped MFL signal and the threshold value were also utilized, along with a general damage index for the MFL method. The detected MFL signals for each damage type were quantified by using the proposed damage indexes and the general damage indexes for the MFL method. Finally, an artificial neural network (ANN) based multi-stage pattern recognition method using extracted multi-scale damage indexes was implemented to automatically estimate the severity of the damage. To analyze the reliability of the MFL-based automated wire rope NDE method, the accuracy and reliability were evaluated by comparing the repeatedly estimated damage size and the actual damage size.

  19. Bayesian inference method for stochastic damage accumulation modeling

    International Nuclear Information System (INIS)

    Jiang, Xiaomo; Yuan, Yong; Liu, Xian

    2013-01-01

    Damage accumulation based reliability model plays an increasingly important role in successful realization of condition based maintenance for complicated engineering systems. This paper developed a Bayesian framework to establish stochastic damage accumulation model from historical inspection data, considering data uncertainty. Proportional hazards modeling technique is developed to model the nonlinear effect of multiple influencing factors on system reliability. Different from other hazard modeling techniques such as normal linear regression model, the approach does not require any distribution assumption for the hazard model, and can be applied for a wide variety of distribution models. A Bayesian network is created to represent the nonlinear proportional hazards models and to estimate model parameters by Bayesian inference with Markov Chain Monte Carlo simulation. Both qualitative and quantitative approaches are developed to assess the validity of the established damage accumulation model. Anderson–Darling goodness-of-fit test is employed to perform the normality test, and Box–Cox transformation approach is utilized to convert the non-normality data into normal distribution for hypothesis testing in quantitative model validation. The methodology is illustrated with the seepage data collected from real-world subway tunnels.

  20. Application of single cell gel electrophoresis in post-evaluation of organism radiation damage

    International Nuclear Information System (INIS)

    Jiang Lin; Mu Wanjun; Liu Guoping; Xu Yunshu; Luo Shunzhong; Gao Qingxiang

    2009-01-01

    The transient irradiation-caused DNA damage in the human peripheral blood lymphocytes,mouse peripheral blood lymphocytes and alive mouse irradiated by α-ray and γ-ray was investigated, and the single cell gel electrophoresis(SCGE, Comet Assay) was used to detect the extent of DNA damage. On this basis, the dose-effect curve and the evaluating method for radiant after-effect were established, the absorbed dose of alive mouse A irradiated by γ-rays was computed. The results indicate that not only the dose-effect can be described by using SCGE, but also the dose-computed after organism irradiated by radiant rays is achieved with it, and SCGE may be used as a new biological dosimeter. (authors)

  1. Application of single cell gel electrophoresis in post-evaluation of organism radiation damage

    International Nuclear Information System (INIS)

    Jiang Lin; Mu Wanjun; Liu Guoping; Xu Yunshu; Gao Qingxiang

    2007-01-01

    The immediate irradiation-caused DNA damage in the human Peripheral Blood Lymphocytes, mouse Peripheral Blood Lymphocytes and alive mouse irradiated by α-Rays and γ-rays was investigated, and the single cell gel electrophoresis(SCGE, Comet Assay) was used to detect the extent of DNA damage. On this base, the dose-effect curve and the evaluating method for radiant aftereffect were established, the absorbed does of alive mouse A irradiated by γ-rays was computed. The results indicated that not only the does-effect could be described by using SCGE, but also the does-computed after organism irradiated by radiant rays was achieved with it, and SCGE might be used as a new biological dosimeter. (authors)

  2. Interfacial damage identification of steel and concrete composite beams based on piezoceramic wave method.

    Science.gov (United States)

    Yan, Shi; Dai, Yong; Zhao, Putian; Liu, Weiling

    2018-01-01

    Steel-concrete composite structures are playing an increasingly important role in economic construction because of a series of advantages of great stiffness, good seismic performance, steel material saving, cost efficiency, convenient construction, etc. However, in service process, due to the long-term effects of environmental impacts and dynamic loading, interfaces of a composite structure might generate debonding cracks, relative slips or separations, and so on, lowering the composite effect of the composite structure. In this paper, the piezoceramics (PZT) are used as transducers to perform experiments on interface debonding slips and separations of composite beams, respectively, aimed at proposing an interface damage identification model and a relevant damage detection innovation method based on PZT wave technology. One part of various PZT patches was embedded in concrete as "smart aggregates," and another part of the PZT patches was pasted on the surface of the steel beam flange, forming a sensor array. A push-out test for four specimens was carried out and experimental results showed that, under the action of the external loading, the received signal amplitudes will increasingly decrease with increase of debonding slips along the interface. The proposed signal energy-based interface damage detection algorithm is highly efficient in surface state evaluations of composite beams.

  3. Fatigue damage evaluation of stainless steel pipes in nuclear power plants using positron annihilation lineshape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Yasuhiro [Institute of Nuclear Safety System, Inc., Mihama, Fukui (Japan); Nakamura, Noriko; Yusa, Satoru [Ishikawajima-Harima Heavy Industries Co., Tokyo (Japan)

    2002-09-01

    Since positron annihilation lineshape analysis can evaluate the degree of fatigue damage by detecting defects such as dislocations in metals, we applied this method to evaluate that in a type 316 stainless steel pipe which was used in the primary system of a nuclear power plant. Using {sup 68}Ge as a positron source, an energy spread of annihilation gamma ray peak from the material was measured and expressed as the S-parameter. Actual plant material cut from a surge line pipe of a pressurizer in a pressurized water reactor type nuclear power plant was measured by positron annihilation lineshape analysis and the S-parameter was obtained. Comparing the S-parameter with a relationship between the S-parameter and fatigue life ratio of the type 316 stainless steel, we evaluated the degree of fatigue damage of the actual material. Furthermore, to verify the evaluation, microstructures of the actual material were investigated with TEM (transmission electron microscope) to observe dislocation densities. As a result, a change in the S-parameter of the actual material from standard as-received material (type 316 stainless steel) was in the range from -0.0013 to 0.0014, while variations in the S-parameter of the standard as-received material were about {+-}0.002, and hence the differences between the actual material and the as-received material were negligible. Moreover, the dislocation density of the actual plant material observed with TEM was almost the same as that of the as-received one. In conclusion, we could confirm the applicability of the positron annihilation lineshape analysis to fatigue damage evaluation of stainless steel. (author)

  4. Evaluation of creep damage in power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, P; Salonen, J. [VTT Manufacturing Technology, Espoo (Finland)] McNiven, U. [IVO Generation Services Ltd., Naantali (Finland)] Roennberg, J. [Imatran Voima Oy, Vantaa (Finland)] Borggreen, K. [FORCE Institute, Broendby (Germany)

    1998-12-31

    Metallographic inspection of creep cavitation damage provides routine support for maintenance scheduling of high temperature components in power plants. The available European inspection experience has been reviewed, particularly considering the performance of thick-section steam systems outside the boiler. Applications are highlighted with examples from plant. (orig.) 8 refs.

  5. Evaluation of creep damage in power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, P.; Salonen, J. [VTT Manufacturing Technology, Espoo (Finland)] McNiven, U. [IVO Generation Services Ltd., Naantali (Finland)] Roennberg, J. [Imatran Voima Oy, Vantaa (Finland)] Borggreen, K. [FORCE Institute, Broendby (Germany)

    1997-12-31

    Metallographic inspection of creep cavitation damage provides routine support for maintenance scheduling of high temperature components in power plants. The available European inspection experience has been reviewed, particularly considering the performance of thick-section steam systems outside the boiler. Applications are highlighted with examples from plant. (orig.) 8 refs.

  6. Active damage detection method based on support vector machine and impulse response

    International Nuclear Information System (INIS)

    Taniguchi, Ryuta; Mita, Akira

    2004-01-01

    An active damage detection method was proposed to characterize damage in bolted joints. The purpose of this study is to propose a damage detection method that can obtain the detailed information of the damage by creating feature vectors for pattern recognition. In the proposed method, the wavelet transform is applied to the sensor signals, and the feature vectors are defined by second power average of the amplitude. The feature vectors generated by experiments were successfully used as the training data for Support Vector Machine (SVM). By applying the wavelet transform to time-frequency analysis, the accuracy of pattern recognition was raised in both correlation coefficient and SVM applications. Moreover, the SVM could identify the damage with very strong discernment capability than others. Applicability of the proposed method was successfully demonstrated. (author)

  7. An alkaline separation method for detection of small amount of DNA damage

    International Nuclear Information System (INIS)

    Sakai, Kazuo; Okada, Shigefumi

    1981-01-01

    An alkaline separation technique originally established by Ahnstroem is modified to detect small amount of DNA damage in X-irradiated mouse leukemic L5178Y cells. It is made quantitative by calibration with an alkaline sucrose gradient centrifugation. The present method would make it possible to study DNA damage and its repair within a dose range of X-rays where cell survival and mutation are usually investigated. It is also useful for detecting DNA damage caused by chemicals. (author)

  8. LNG Safety Assessment Evaluation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Muna, Alice Baca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaFleur, Angela Christine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    Sandia National Laboratories evaluated published safety assessment methods across a variety of industries including Liquefied Natural Gas (LNG), hydrogen, land and marine transportation, as well as the US Department of Defense (DOD). All the methods were evaluated for their potential applicability for use in the LNG railroad application. After reviewing the documents included in this report, as well as others not included because of repetition, the Department of Energy (DOE) Hydrogen Safety Plan Checklist is most suitable to be adapted to the LNG railroad application. This report was developed to survey industries related to rail transportation for methodologies and tools that can be used by the FRA to review and evaluate safety assessments submitted by the railroad industry as a part of their implementation plans for liquefied or compressed natural gas storage ( on-board or tender) and engine fueling delivery systems. The main sections of this report provide an overview of various methods found during this survey. In most cases, the reference document is quoted directly. The final section provides discussion and a recommendation for the most appropriate methodology that will allow efficient and consistent evaluations to be made. The DOE Hydrogen Safety Plan Checklist was then revised to adapt it as a methodology for the Federal Railroad Administration’s use in evaluating safety plans submitted by the railroad industry.

  9. Evaluation Using Sequential Trials Methods.

    Science.gov (United States)

    Cohen, Mark E.; Ralls, Stephen A.

    1986-01-01

    Although dental school faculty as well as practitioners are interested in evaluating products and procedures used in clinical practice, research design and statistical analysis can sometimes pose problems. Sequential trials methods provide an analytical structure that is both easy to use and statistically valid. (Author/MLW)

  10. Damage approach: A new method for topology optimization with local stress constraints

    DEFF Research Database (Denmark)

    Verbart, Alexander; Langelaar, Matthijs; van Keulen, Fred

    2016-01-01

    In this paper, we propose a new method for topology optimization with local stress constraints. In this method, material in which a stress constraint is violated is considered as damaged. Since damaged material will contribute less to the overall performance of the structure, the optimizer...... will promote a design with a minimal amount of damaged material. We tested the method on several benchmark problems, and the results show that the method is a viable alternative for conventional stress-based approaches based on constraint relaxation followed by constraint aggregation....

  11. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis.

    Science.gov (United States)

    Zhang, Xue; Zhang, Chong; Zhou, Qian-Qian; Zhang, Xiao-Fei; Wang, Li-Yan; Chang, Hai-Bo; Li, He-Ping; Oda, Yoshimitsu; Xing, Xin-Hui

    2015-07-01

    DNA damage is the dominant source of mutation, which is the driving force of evolution. Therefore, it is important to quantitatively analyze the DNA damage caused by different mutagenesis methods, the subsequent mutation rates, and their relationship. Atmospheric and room temperature plasma (ARTP) mutagenesis has been used for the mutation breeding of more than 40 microorganisms. However, ARTP mutagenesis has not been quantitatively compared with conventional mutation methods. In this study, the umu test using a flow-cytometric analysis was developed to quantify the DNA damage in individual viable cells using Salmonella typhimurium NM2009 as the model strain and to determine the mutation rate. The newly developed method was used to evaluate four different mutagenesis systems: a new ARTP tool, ultraviolet radiation, 4-nitroquinoline-1-oxide (4-NQO), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The mutation rate was proportional to the corresponding SOS response induced by DNA damage. ARTP caused greater DNA damage to individual living cells than the other conventional mutagenesis methods, and the mutation rate was also higher. By quantitatively comparing the DNA damage and consequent mutation rate after different types of mutagenesis, we have shown that ARTP is a potentially powerful mutagenesis tool with which to improve the characteristics of microbial cell factories.

  12. Method for detecting damage in carbon-fibre reinforced plastic-steel structures based on eddy current pulsed thermography

    Science.gov (United States)

    Li, Xuan; Liu, Zhiping; Jiang, Xiaoli; Lodewijks, Gabrol

    2018-01-01

    Eddy current pulsed thermography (ECPT) is well established for non-destructive testing of electrical conductive materials, featuring the advantages of contactless, intuitive detecting and efficient heating. The concept of divergence characterization of the damage rate of carbon fibre-reinforced plastic (CFRP)-steel structures can be extended to ECPT thermal pattern characterization. It was found in this study that the use of ECPT technology on CFRP-steel structures generated a sizeable amount of valuable information for comprehensive material diagnostics. The relationship between divergence and transient thermal patterns can be identified and analysed by deploying mathematical models to analyse the information about fibre texture-like orientations, gaps and undulations in these multi-layered materials. The developed algorithm enabled the removal of information about fibre texture and the extraction of damage features. The model of the CFRP-glue-steel structures with damage was established using COMSOL Multiphysics® software, and quantitative non-destructive damage evaluation from the ECPT image areas was derived. The results of this proposed method illustrate that damaged areas are highly affected by available information about fibre texture. This proposed work can be applied for detection of impact induced damage and quantitative evaluation of CFRP structures.

  13. An improved EMD method for modal identification and a combined static-dynamic method for damage detection

    Science.gov (United States)

    Yang, Jinping; Li, Peizhen; Yang, Youfa; Xu, Dian

    2018-04-01

    Empirical mode decomposition (EMD) is a highly adaptable signal processing method. However, the EMD approach has certain drawbacks, including distortions from end effects and mode mixing. In the present study, these two problems are addressed using an end extension method based on the support vector regression machine (SVRM) and a modal decomposition method based on the characteristics of the Hilbert transform. The algorithm includes two steps: using the SVRM, the time series data are extended at both endpoints to reduce the end effects, and then, a modified EMD method using the characteristics of the Hilbert transform is performed on the resulting signal to reduce mode mixing. A new combined static-dynamic method for identifying structural damage is presented. This method combines the static and dynamic information in an equilibrium equation that can be solved using the Moore-Penrose generalized matrix inverse. The combination method uses the differences in displacements of the structure with and without damage and variations in the modal force vector. Tests on a four-story, steel-frame structure were conducted to obtain static and dynamic responses of the structure. The modal parameters are identified using data from the dynamic tests and improved EMD method. The new method is shown to be more accurate and effective than the traditional EMD method. Through tests with a shear-type test frame, the higher performance of the proposed static-dynamic damage detection approach, which can detect both single and multiple damage locations and the degree of the damage, is demonstrated. For structures with multiple damage, the combined approach is more effective than either the static or dynamic method. The proposed EMD method and static-dynamic damage detection method offer improved modal identification and damage detection, respectively, in structures.

  14. Evaluation of Kjeldahl digestion method

    International Nuclear Information System (INIS)

    Amin, M.; Flowers, T.H.

    2004-01-01

    The evaluation of the Kjeldahl digestion method was investigated by comparing measured values of total nitrogen, phosphorus and potassium using three salt and catalyst mixture in Standard Kjeldahl digestion method and Salicyclic acid Modification method with certified values of plant material as well as comparison was made for determination of total nitrogen from steam distillation method verses the Technicon Auto-analyzer, and phosphorus Ascorbic acid/Molybdate method verses Molybdate/ Metavanadate method on the Technicon Auto-Analyzer. The 1 g salt/catalyst mixture recovered less nitrogen than the 2.5 g in the standard Kjeldahl method due to the lower temperature and incomplete digestion in both plant and soil samples. The 2.5 g catalyst mixture partially recovered nitrate in the standard Kjeldahl method and the salicylic acid modification fail to recover all over nitrate in plant material. Use of 2.5 g salt catalyst mixture and selenium appears to promote nitrogen losses in salicylic acid modification method but not in the standard Kjeldahl method of digestion for soil samples. No interference of selenium or copper was observed in Nitrogen and Phosphorus on calorimetric determination. The standard Kjeldahl method with 2.5 g of salt/catalyst mixture of sodium sulphate copper sulphate (10:1) in 5 ml sulfuric acid were found suitable for determination of total Nitrogen, phosphorus and potassium. The steam distillation and the Technicon Auto-Analyzer technique measure similar amounts of ammonium nitrogen. However, the Technicon Auto analyzer technique is easier, rapid, higher degree of reproducibility, precise, accurate, reliable and free from human error. The amount of phosphorus measured by the Ascorbic acid/Molybdate method was more accurate than by the Molybdate/Metavanadate method on Technicon Auto-Analyzer. (author)

  15. Rapid Airfield Damage Recovery: Deployable Saw Technology Evaluation

    Science.gov (United States)

    2017-12-29

    portland cement concrete for Rapid Airfield Damage Recovery (RADR). However, the next generation of RADR is focusing on lighter and leaner efforts...best tools for cutting portland cement concrete (PCC) in ADR scenarios (Bell et al. 2015 and Edwards et al. 2015). The saws are easily attached to...Various teeth are available for varying needs and jobs. Most teeth are made of steel with carbide tips. The carbide may be produced as a seat tip or

  16. Classes evaluation: Methods and tools

    Directory of Open Access Journals (Sweden)

    Grabiński Tadeusz

    2013-01-01

    Full Text Available This study presents a method, tools, course and results of foreign language classes evaluation conducted in the summer semester 2012/2013 in the Andrzej Frycz - Modrzewski Krakow University. Because a new evaluation procedure has been implemented at the University, the former method - based on paper forms filled in by the students - was abandoned. On the surveyanyplace.com website, a free account has been registered and the form of the evaluation questionnaire has been inserted. This coverage presents results of a taxometric analysis aimed at checking the degree of mutual correspondence (correlation between certain criteria and instancing a graphic presentation of the evaluation results in a multidimensional perspective. In order to classify the grading criteria, the Ward's agglomerative method, along with Euclidean metric as a measure of criteria similarity, have been used. Calculations have been made with the use of Statistica package. Results of the questionnaire show that foreign language teaching at the Andrzej Frycz Modrzewski Krakow University is conducted professionally and on a high factual level.

  17. A method for the estimation of the probability of damage due to earthquakes

    International Nuclear Information System (INIS)

    Alderson, M.A.H.G.

    1979-07-01

    The available information on seismicity within the United Kingdom has been combined with building damage data from the United States to produce a method of estimating the probability of damage to structures due to the occurrence of earthquakes. The analysis has been based on the use of site intensity as the major damage producing parameter. Data for structural, pipework and equipment items have been assumed and the overall probability of damage calculated as a function of the design level. Due account is taken of the uncertainties of the seismic data. (author)

  18. A method for assessing frost damage risk in sweet cherry orchards of South Patagonia

    NARCIS (Netherlands)

    Cittadini, E.D.; Ridder, de N.; Peri, P.L.; Keulen, van H.

    2006-01-01

    Quantification of frost damage risk is important in planning the development of new orchard areas and for decision-making on design and installation of frost control systems. The objective of this study was to develop a comprehensive method to quantify frost damage risk in different sweet cherry

  19. A Time-Domain Structural Damage Detection Method Based on Improved Multiparticle Swarm Coevolution Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Shao-Fei Jiang

    2014-01-01

    Full Text Available Optimization techniques have been applied to structural health monitoring and damage detection of civil infrastructures for two decades. The standard particle swarm optimization (PSO is easy to fall into the local optimum and such deficiency also exists in the multiparticle swarm coevolution optimization (MPSCO. This paper presents an improved MPSCO algorithm (IMPSCO firstly and then integrates it with Newmark’s algorithm to localize and quantify the structural damage by using the damage threshold proposed. To validate the proposed method, a numerical simulation and an experimental study of a seven-story steel frame were employed finally, and a comparison was made between the proposed method and the genetic algorithm (GA. The results show threefold: (1 the proposed method not only is capable of localization and quantification of damage, but also has good noise-tolerance; (2 the damage location can be accurately detected using the damage threshold proposed in this paper; and (3 compared with the GA, the IMPSCO algorithm is more efficient and accurate for damage detection problems in general. This implies that the proposed method is applicable and effective in the community of damage detection and structural health monitoring.

  20. Earthquake Building Damage Mapping Based on Feature Analyzing Method from Synthetic Aperture Radar Data

    Science.gov (United States)

    An, L.; Zhang, J.; Gong, L.

    2018-04-01

    Playing an important role in gathering information of social infrastructure damage, Synthetic Aperture Radar (SAR) remote sensing is a useful tool for monitoring earthquake disasters. With the wide application of this technique, a standard method, comparing post-seismic to pre-seismic data, become common. However, multi-temporal SAR processes, are not always achievable. To develop a post-seismic data only method for building damage detection, is of great importance. In this paper, the authors are now initiating experimental investigation to establish an object-based feature analysing classification method for building damage recognition.

  1. Evaluation of myocardial damage in Duchenne's muscular dystrophy with thallium-201 myocardial SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Takuhisa; Shibuya, Noritoshi (Kawatana National Hospital, Nagasaki (Japan)); Hashiba, Kunitake; Oku, Yasuhiko; Mori, Hideki; Yano, Katsusuke

    1993-01-01

    Myocardial damage and cardiopulmonary functions in patients with Duchenne's muscular dystrophy (DMD) were assessed using thallium-201 myocardial single-photon emission computed tomography (SPECT) and technetium-99m multigated radionuclide angiography. Twenty-five patients with DMD were divided into 4 groups according to percent of perfusion defect (%PD) calculated by the bull's-eye method and age. PD was detected in 24 (96.0%) of 25 patients with DMD, and it spread from the left ventricular lateral wall to the anterior wall and/or interventricular septum. PD was detected even in a 6-year-old DMD boy. Patients in Group I (%PD[>=]10% and age<15 years old) were shown to have a higher risk of left-sided heart failure without respiratory failure. Patients in Group II (%PD[>=]10 and age[>=]15) showed decreased pulmonary function and worsened arterial blood gas values as compared with Group IV (%PD<10 and age[>=]15). There was no significant difference in cardiac function among the 4 groups. It is postulated that myocardial damage in Group II patients is dependent primarily on a deficiency of dystrophin and on chronic respiratory failure, and that some of them are at risk of cardiopulmonary failure. It is concluded that myocardial SPECT is useful for the early diagnosis of myocardial damage and evaluation of cardiopulmonary function in DMD patients. (author).

  2. Evaluation of myocardial damage in Duchenne's muscular dystrophy with thallium-201 myocardial SPECT

    International Nuclear Information System (INIS)

    Tamura, Takuhisa; Shibuya, Noritoshi; Hashiba, Kunitake; Oku, Yasuhiko; Mori, Hideki; Yano, Katsusuke.

    1993-01-01

    Myocardial damage and cardiopulmonary functions in patients with Duchenne's muscular dystrophy (DMD) were assessed using thallium-201 myocardial single-photon emission computed tomography (SPECT) and technetium-99m multigated radionuclide angiography. Twenty-five patients with DMD were divided into 4 groups according to percent of perfusion defect (%PD) calculated by the bull's-eye method and age. PD was detected in 24 (96.0%) of 25 patients with DMD, and it spread from the left ventricular lateral wall to the anterior wall and/or interventricular septum. PD was detected even in a 6-year-old DMD boy. Patients in Group I (%PD≥10% and age<15 years old) were shown to have a higher risk of left-sided heart failure without respiratory failure. Patients in Group II (%PD≥10 and age≥15) showed decreased pulmonary function and worsened arterial blood gas values as compared with Group IV (%PD<10 and age≥15). There was no significant difference in cardiac function among the 4 groups. It is postulated that myocardial damage in Group II patients is dependent primarily on a deficiency of dystrophin and on chronic respiratory failure, and that some of them are at risk of cardiopulmonary failure. It is concluded that myocardial SPECT is useful for the early diagnosis of myocardial damage and evaluation of cardiopulmonary function in DMD patients. (author)

  3. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  4. Methods for evaluating information sources

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2012-01-01

    The article briefly presents and discusses 12 different approaches to the evaluation of information sources (for example a Wikipedia entry or a journal article): (1) the checklist approach; (2) classical peer review; (3) modified peer review; (4) evaluation based on examining the coverage...... of controversial views; (5) evidence-based evaluation; (6) comparative studies; (7) author credentials; (8) publisher reputation; (9) journal impact factor; (10) sponsoring: tracing the influence of economic, political, and ideological interests; (11) book reviews and book reviewing; and (12) broader criteria....... Reading a text is often not a simple process. All the methods discussed here are steps on the way on learning how to read, understand, and criticize texts. According to hermeneutics it involves the subjectivity of the reader, and that subjectivity is influenced, more or less, by different theoretical...

  5. Evaluation of the damage in fish spermatozoa cryopreservation

    Science.gov (United States)

    Li, Jun; Liu, Qinghua; Zhang, Shicui

    2006-12-01

    Cryodamages occur during sperm cryopreservation. Cryopreservation of fish sperm usually results in marked decrease in sperm quality, such as swelling or disruption of the plasma membrane, mitochondrial dysfunction, diminished sperm motility, impaired velocity, shorter motility period, denaturation, and release of some enzymes from spermatozoa. In this paper, damages in morphology, physiology, biochemistry and metabolism, and genetic integrity of fish semen after cryopreservation are discussed. New approaches in assessment of fish thawed sperm quality such as computer assisted sperm analysis, flow cytometic analysis combined with fluorescent probes and single cell gel electrophoresis are also briefly reviewed.

  6. Concept and methodology for evaluating core damage frequency considering failure correlation at multi units and sites and its application

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, K.; Teragaki, T.; Nomura, S. [Former Incorporated Administrative Agency, Japan Nuclear Safety Organization (Japan); Abe, H., E-mail: Hiroshi_abe@nsr.go.jp [Former Incorporated Administrative Agency, Japan Nuclear Safety Organization (Japan); Shigemori, M.; Shimomoto, M. [Mizuho Information & Research Institute, 2-3, Kanda-Nishikicho, Chiyoda-ku, Tokyo (Japan)

    2015-07-15

    Highlights: • We develop a method to evaluate CDF considering failure correlation at multi units. • We develop a procedure to evaluate correlation coefficient between multi components. • We evaluate CDF at two different BWR units using correlation coefficients. • We confirm the validity of method and correlation coefficient through the evaluation. - Abstract: The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Daiichi Nuclear Power Plant with six units were overwhelmed by the tsunami and core damage occurred. Authors proposed the concept and method for evaluating core damage frequency (CDF) considering failure correlation at the multi units and sites. Based on the above method, one of authors developed the procedure for evaluating the failure correlation coefficient and response correlation coefficient between the multi components under the strong seismic motion. These method and failure correlation coefficients were applied to two different BWR units and their CDF was evaluated by seismic probabilistic risk assessment technology. Through this quantitative evaluation, the validity of the method and failure correlation coefficient was confirmed.

  7. Concept and methodology for evaluating core damage frequency considering failure correlation at multi units and sites and its application

    International Nuclear Information System (INIS)

    Ebisawa, K.; Teragaki, T.; Nomura, S.; Abe, H.; Shigemori, M.; Shimomoto, M.

    2015-01-01

    Highlights: • We develop a method to evaluate CDF considering failure correlation at multi units. • We develop a procedure to evaluate correlation coefficient between multi components. • We evaluate CDF at two different BWR units using correlation coefficients. • We confirm the validity of method and correlation coefficient through the evaluation. - Abstract: The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Daiichi Nuclear Power Plant with six units were overwhelmed by the tsunami and core damage occurred. Authors proposed the concept and method for evaluating core damage frequency (CDF) considering failure correlation at the multi units and sites. Based on the above method, one of authors developed the procedure for evaluating the failure correlation coefficient and response correlation coefficient between the multi components under the strong seismic motion. These method and failure correlation coefficients were applied to two different BWR units and their CDF was evaluated by seismic probabilistic risk assessment technology. Through this quantitative evaluation, the validity of the method and failure correlation coefficient was confirmed

  8. An easy and inexpensive method for quantitative analysis of endothelial damage by using vital dye staining and Adobe Photoshop software.

    Science.gov (United States)

    Saad, Hisham A; Terry, Mark A; Shamie, Neda; Chen, Edwin S; Friend, Daniel F; Holiman, Jeffrey D; Stoeger, Christopher

    2008-08-01

    We developed a simple, practical, and inexpensive technique to analyze areas of endothelial cell loss and/or damage over the entire corneal area after vital dye staining by using a readily available, off-the-shelf, consumer software program, Adobe Photoshop. The purpose of this article is to convey a method of quantifying areas of cell loss and/or damage. Descemet-stripping automated endothelial keratoplasty corneal transplant surgery was performed by using 5 precut corneas on a human cadaver eye. Corneas were removed and stained with trypan blue and alizarin red S and subsequently photographed. Quantitative assessment of endothelial damage was performed by using Adobe Photoshop 7.0 software. The average difference for cell area damage for analyses performed by 1 observer twice was 1.41%. For analyses performed by 2 observers, the average difference was 1.71%. Three masked observers were 100% successful in matching the randomized stained corneas to their randomized processed Adobe images. Vital dye staining of corneal endothelial cells can be combined with Adobe Photoshop software to yield a quantitative assessment of areas of acute endothelial cell loss and/or damage. This described technique holds promise for a more consistent and accurate method to evaluate the surgical trauma to the endothelial cell layer in laboratory models. This method of quantitative analysis can probably be generalized to any area of research that involves areas that are differentiated by color or contrast.

  9. Anisotropic Elastoplastic Damage Mechanics Method to Predict Fatigue Life of the Structure

    Directory of Open Access Journals (Sweden)

    Hualiang Wan

    2016-01-01

    Full Text Available New damage mechanics method is proposed to predict the low-cycle fatigue life of metallic structures under multiaxial loading. The microstructure mechanical model is proposed to simulate anisotropic elastoplastic damage evolution. As the micromodel depends on few material parameters, the present method is very concise and suitable for engineering application. The material parameters in damage evolution equation are determined by fatigue experimental data of standard specimens. By employing further development on the ANSYS platform, the anisotropic elastoplastic damage mechanics-finite element method is developed. The fatigue crack propagation life of satellite structure is predicted using the present method and the computational results comply with the experimental data very well.

  10. Damage Evaluation of Concrete Column under Impact Load Using a Piezoelectric-Based EMI Technique.

    Science.gov (United States)

    Fan, Shuli; Zhao, Shaoyu; Qi, Baoxin; Kong, Qingzhao

    2018-05-17

    One of the major causes of damage to column-supported concrete structures, such as bridges and highways, are collisions from moving vehicles, such as cars and ships. It is essential to quantify the collision damage of the column so that appropriate actions can be taken to prevent catastrophic events. A widely used method to assess structural damage is through the root-mean-square deviation (RMSD) damage index established by the collected data; however, the RMSD index does not truly provide quantitative information about the structure. Conversely, the damage volume ratio that can only be obtained via simulation provides better detail about the level of damage in a structure. Furthermore, as simulation can also provide the RMSD index relating to that particular damage volume ratio, the empirically obtained RMSD index can thus be related to the structural damage degree through comparison of the empirically obtained RMSD index to numerically-obtained RMSD. Thus, this paper presents a novel method in which the impact-induced damage to a structure is simulated in order to obtain the relationship between the damage volume ratio to the RMSD index, and the relationship can be used to predict the true damage degree by comparison to the empirical RMSD index. In this paper, the collision damage of a bridge column by moving vehicles was simulated by using a concrete beam model subjected to continuous impact loadings by a freefalling steel ball. The variation in admittance signals measured by the surface attached lead zirconate titanate (PZT) patches was used to establish the RMSD index. The results demonstrate that the RMSD index and the damage ratio of concrete have a linear relationship for the particular simulation model.

  11. Creep, fatigue and creep-fatigue damage evaluation and estimation of remaining life of SUS 304 austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Nishino, Seiichi; Sakane, Masao; Ohnami, Masateru

    1986-01-01

    Experimental study was made on the damage evaluation and estimation of remaining life of SUS 304 stainless steel in creep, low-cycle fatigue and creep-fatigue at 873 K in air. Creep, fatigue and creep-fatigue damage curves were drawn by the method proposed by D.A. Woodford and the relations between these damages and non-destructive parameters, i.e., microvickers hardness and quantities obtained from X-ray diffraction, were discussed. From these tests, the following conclusions were obtained. (1) Constant damage lines in the diagram of remaining lives in creep and fatigue could be drawn by changing load levels during the tests. Constant damage lines in creep-fatigue were also made by a linear damage rule using both static creep and fatigue damage curves, which agree well with the experimental data in creep-fatigue. (2) Microvickers hardness and half-value breadth in X-ray diffraction are appropriate parameters to evaluate creep damage but are not proper to evaluate fatigue damage. Particle size and microstrain obtained by X-ray profile analysis are good parameters to evaluate both creep and fatigue damages. (author)

  12. Condition Assessment for Wastewater Pipes: Method for Assessing Cracking and Surface Damage of Concrete Pipes

    OpenAIRE

    Hauge, Petter

    2013-01-01

    The objective of the Master Thesis has been to provide an improved method for condition assessment, which will give a better correlation between Condition class and actual Condition of concrete pipes with cracking and/or surface damages. Additionally improvement of the characterization of cracking (SR) and surface (KO) damages was a sub goal.Based on the findings described in my Thesis and my Specialization Project (Hauge 2012), I recommend that the Norwegian condition assessment method based...

  13. Use of X - Rays for the evaluation of internal damages provoked by corn seed drying and the effect of those damages upon the seeds quality

    International Nuclear Information System (INIS)

    Obando Flor, Ebert Pepe; Moreira de Carvalho, Maria Laene

    2002-01-01

    The work was conducted in the seed analysis laboratory of the department of agriculture and forest sciences of the Universidade Federal de Lavras (Federal University of Lavras. MG), over the period 1999 - 2000. Aiming to evaluate the efficiency of utilization of X - rays in the identification of the several types of internal damages provoked by corn seed drying to high temperatures as well as the effect of those damages upon the physiological quality of stored seeds, lots of the cultivars AG1143 and BR 106 were submitted to drying at the temperature of 50 degrades Celsius. The lots were divided into two categories according to the presence or not of internal damages visible with the naked eye submitted to the X - ray test (for 45 at 25 Kvp of radiation intensity) afterwards. They were separated into three sub lots. CDVCDRX (with visual damages and detected by X - ray) SDVSDRX (without visual damages and with damages detected by X ray). The sub lots were evaluated in their physiological quality by viability and vigor tests. The results showed the efficiency of X ray in detecting internal damages of drying not observed by visual analysis. The vigor of corn seeds with internal drying damages is affected in several manners, depending on the cultivars, evaluation time and sort of damage internal damages of drying detected by the radiographical analysis in spite of not affecting early viability, when they occurs in the two directions horizontal and vertical (Double damage) decrease the vigor of seeds after storage

  14. Non-destructive evaluation of impact damage on carbon fiber laminates: Comparison between ESPI and Shearography

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarulo, V., E-mail: v.pagliarulo@isasi.cnr.it; Ferraro, P. [CNR National Research Council, ISASI, Institute of Applied Sciences and Intelligent Systems, via Campi Flegrei 34, 80078 Pozzuoli, NA (Italy); Lopresto, V.; Langella, A. [Dpt. Of Chemicals, Materials and Production Engin., University of Naples “Federico II”, P.leTecchio 80, Naples (Italy); Antonucci, V.; Ricciardi, M. R. [CNR National Research Council, IPCB, Institute of Polymer Composites and Biomedical Materials, P.E. Fermi, Portici (Italy)

    2016-06-28

    The aim of this paper is to investigate the ability of two different interferometric NDT techniques to detect and evaluate barely visible impact damage on composite laminates. The interferometric techniques allow to investigate large and complex structures. Electronic Speckle Pattern Interferometry (ESPI) works through real-time surface illumination by visible laser (i.e. 532 nm) and the range and the accuracy are related to the wavelength. While the ESPI works with the “classic” holographic configuration, that is reference beam and object beam, the Shearography uses the object image itself as reference: two object images are overlapped creating a shear image. This makes the method much less sensitive to external vibrations and noise but with one difference, it measures the first derivative of the displacement. In this work, different specimens at different impact energies have been investigated by means of both methods. The delaminated areas have been estimated and compared.

  15. Study on Meshfree Hermite Radial Point Interpolation Method for Flexural Wave Propagation Modeling and Damage Quantification

    Directory of Open Access Journals (Sweden)

    Hosein Ghaffarzadeh

    Full Text Available Abstract This paper investigates the numerical modeling of the flexural wave propagation in Euler-Bernoulli beams using the Hermite-type radial point interpolation method (HRPIM under the damage quantification approach. HRPIM employs radial basis functions (RBFs and their derivatives for shape function construction as a meshfree technique. The performance of Multiquadric(MQ RBF to the assessment of the reflection ratio was evaluated. HRPIM signals were compared with the theoretical and finite element responses. Results represent that MQ is a suitable RBF for HRPIM and wave propagation. However, the range of the proper shape parameters is notable. The number of field nodes is the main parameter for accurate wave propagation modeling using HRPIM. The size of support domain should be less thanan upper bound in order to prevent high error. With regard to the number of quadrature points, providing the minimum numbers of points are adequate for the stable solution, but the existence of more points in damage region does not leads to necessarily the accurate responses. It is concluded that the pure HRPIM, without any polynomial terms, is acceptable but considering a few terms will improve the accuracy; even though more terms make the problem unstable and inaccurate.

  16. IMPLEMENTATION OF KRIGING METHODS IN MOBILE GIS TO ESTIMATE DAMAGE TO BUILDINGS IN CRISIS SCENARIOS

    Directory of Open Access Journals (Sweden)

    S. Laun

    2016-06-01

    Full Text Available In the paper an example for the application of kriging methods to estimate damage to buildings in crisis scenarios is introduced. Furthermore, the Java implementations for Ordinary and Universal Kriging on mobile GIS are presented. As variogram models an exponential, a Gaussian and a spherical variogram are tested in detail. Different test constellations are introduced with various information densities. As test data set, public data from the analysis of the 2010 Haiti earthquake by satellite images are pre-processed and visualized in a Geographic Information System. As buildings, topography and other external influences cannot be seen as being constant for the whole area under investigation, semi variograms are calculated by consulting neighboured classified buildings using the so called moving window method. The evaluation of the methods shows that the underlying variogram model is the determining factor for the quality of the interpolation rather than the choice of the kriging method or increasing the information density of a random sample. The implementation is completely realized with the programming language Java. Thereafter, the implemented software component is integrated into GeoTech Mobile, a mobile GIS Android application based on the processing of standardized spatial data representations defined by the Open Geospatial Consortium (OGC. As a result the implemented methods can be used on mobile devices, i.e. they may be transferred to other application fields. That is why we finally point out further research with new applications in the Dubai region.

  17. Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods

    Science.gov (United States)

    Meo, Michele; Polimeno, Umberto; Zumpano, Giuseppe

    2008-05-01

    Modern aerospace structures make increasing use of fibre reinforced plastic composites, due to their high specific mechanical properties. However, due to their brittleness, low velocity impact can cause delaminations beneath the surface, while the surface may appear to be undamaged upon visual inspection. Such damage is called barely visible impact damage (BVID). Such internal damages lead to significant reduction in local strengths and ultimately could lead to catastrophic failures. It is therefore important to detect and monitor damages in high loaded composite components to receive an early warning for a well timed maintenance of the aircraft. Non-linear ultrasonic spectroscopy methods are promising damage detection and material characterization tools. In this paper, two different non-linear elastic wave spectroscopy (NEWS) methods are presented: single mode nonlinear resonance ultrasound (NRUS) and nonlinear wave modulation technique (NWMS). The NEWS methods were applied to detect delamination damage due to low velocity impact (<12 J) on various composite plates. The results showed that the proposed methodology appear to be highly sensitive to the presence of damage with very promising future NDT and structural health monitoring applications.

  18. Evaluation of DMSA scintigraphy and urography in assessing both acute and permanent renal damage in children

    Energy Technology Data Exchange (ETDEWEB)

    Stokland, E.; Jacobsson, B. [Dept. of Pediatric Radiology, Sahlgrenska Univ. Hospital, Goeteborg Univ. (Sweden).; Hellstroem, M. [Dept. of Radiology, Sahlgrenska Univ. Hospital, Goeteborg Univ. (Sweden); Jodal, U. [Dept. of Pediatrics, Sahlgrenska Univ. Hospital, Goeteborg Univ. (Sweden); Sixt, R. [Dept. of Pediatric Clinical Physiology, Sahlgrenska Univ. Hospital, Goeteborg Univ. (Sweden)

    1998-07-01

    Purpose: To evaluate dimercaptosuccinic acid (DMSA) scintigraphy and urography in the detection of renal involvement in children with urinary tract infection (UTI) in order to identify patients with a high risk of developing renal damage. Material and Methods: A total of 157 children (median age 0.4 years, range 5 days to 5.8 years) with first-time symptomatic UTI were examined scintigraphy (with an assessment of renal area involvement) and urography at the time of UTI and 1 year later. All evaluations were made blindly. Results: Of the total 314 kidneys, 80 (25%) were abnormal at initial scintigraphy. Of these 80 kidneys, 44 (55%) had normalized at follow-up. Of the 234 initially normal kidneys, 29 (12%) were abnormal at follow-up. One year after UTI, abnormalities were seen in 59 children at scintigraphy and in 18 children at urography. Renal area involvement was larger and split function abnormalities more common in kidneys that were abnormal at both scintigraphy and urography than in kidneys with only scintigraphic abnormalities. Conclusion: Quantitation of renal area involvement and split renal function at early scintigraphy would seem to be useful in identifying patients at risk of developing renal damage. Urography at 1 year after infection identified mainly those with the most severe scintigraphic abnormalities. The clinical importance of scintigraphic abnormalities that are not confirmed by urography is not known. (orig.)

  19. Evaluation of DMSA scintigraphy and urography in assessing both acute and permanent renal damage in children

    International Nuclear Information System (INIS)

    Stokland, E.; Jacobsson, B.; Jodal, U.; Sixt, R.

    1998-01-01

    Purpose: To evaluate dimercaptosuccinic acid (DMSA) scintigraphy and urography in the detection of renal involvement in children with urinary tract infection (UTI) in order to identify patients with a high risk of developing renal damage. Material and Methods: A total of 157 children (median age 0.4 years, range 5 days to 5.8 years) with first-time symptomatic UTI were examined scintigraphy (with an assessment of renal area involvement) and urography at the time of UTI and 1 year later. All evaluations were made blindly. Results: Of the total 314 kidneys, 80 (25%) were abnormal at initial scintigraphy. Of these 80 kidneys, 44 (55%) had normalized at follow-up. Of the 234 initially normal kidneys, 29 (12%) were abnormal at follow-up. One year after UTI, abnormalities were seen in 59 children at scintigraphy and in 18 children at urography. Renal area involvement was larger and split function abnormalities more common in kidneys that were abnormal at both scintigraphy and urography than in kidneys with only scintigraphic abnormalities. Conclusion: Quantitation of renal area involvement and split renal function at early scintigraphy would seem to be useful in identifying patients at risk of developing renal damage. Urography at 1 year after infection identified mainly those with the most severe scintigraphic abnormalities. The clinical importance of scintigraphic abnormalities that are not confirmed by urography is not known. (orig.)

  20. Reliability Study Regarding the Use of Histogram Similarity Methods for Damage Detection

    Directory of Open Access Journals (Sweden)

    Nicoleta Gillich

    2013-01-01

    Full Text Available The paper analyses the reliability of three dissimilarity estimators to compare histograms, as support for a frequency-based damage detection method, able to identify structural changes in beam-like structures. First a brief presentation of the own developed damage detection method is made, with focus on damage localization. It consists actually in comparing a histogram derived from measurement results, with a large series of histograms, namely the damage location indexes for all locations along the beam, obtained by calculus. We tested some dissimilarity estimators like the Minkowski-form Distances, the Kullback-Leibler Divergence and the Histogram Intersection and found the Minkowski Distance as the method providing best results. It was tested for numerous locations, using real measurement results and with results artificially debased by noise, proving its reliability.

  1. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter.

    Science.gov (United States)

    Baherimoghadam, Tahreh; Akbarian, Sahar; Rasouli, Reza; Naseri, Navid

    2016-01-01

    To evaluate shear bond strength (SBS) of the orthodontic brackets bonded to fluorosed and nonfluorosed teeth using Light Bond with and without adhesion promoters and compare their enamel damages following debonding. In this study, 30 fluorosed (Thylstrup and Fejerskov Index = 4-5) and 30 nonfluorosed teeth were randomly distributed between two subgroups according to the bonding materials: Group 1, fluorosed teeth bonded with Light Bond; Group 2, fluorosed teeth bonded with adhesion promoters and Light Bond; Group 3, nonfluorosed teeth bonded with Light Bond; Group 4, nonfluorosed bonded with adhesion promoters and Light Bond. After bonding, the SBS of the brackets was tested with a universal testing machine. Stereomicroscopic evaluation was performed by unbiased stereology in all teeth to determine the amount of adhesive remnants and the number and length of enamel cracks before bonding and after debonding. The data were analyzed using two-way analysis of variance, Kruskal-Wallis, Wilcoxon Signed Rank, and Mann-Whitney test. While fluorosis reduced the SBS of orthodontic bracket (P = 0.017), Enhance Locus Ceruleus LC significantly increased the SBS of the orthodontic bracket in fluorosed and nonfluorosed teeth (P = 0.039). Significant increasing in the number and length of enamel crack after debonding was found in all four groups. There were no significant differences in the length of enamel crack increased after debonding among four groups (P = 0.768) while increasing in the number of enamel cracks after debonding was significantly different among the four groups (P = 0.023). Teeth in Group 2 showed the highest enamel damages among four groups following debonding. Adhesion promoters could improve the bond strength of orthodontic brackets, but conservative debonding methods for decreasing enamel damages would be necessary.

  2. A Damage Prognosis Method of Girder Structures Based on Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Rumian Zhong

    2014-01-01

    Full Text Available Based on the basic theory of wavelet neural networks and finite element model updating method, a basic framework of damage prognosis method is proposed in this paper. Firstly, a damaged I-steel beam model testing is used to verify the feasibility and effectiveness of the proposed damage prognosis method. The results show that the predicted results of the damage prognosis method and the measured results are very well consistent, and the maximum error is less than 5%. Furthermore, Xinyihe Bridge in the Beijing-Shanghai Highway is selected as the engineering background, and the damage prognosis is conducted based on the data from the structural health monitoring system. The results show that the traffic volume will increase and seasonal differences will decrease in the next year and a half. The displacement has a slight increase and seasonal characters in the critical section of mid span, but the strain will increase distinctly. The analysis results indicate that the proposed method can be applied to the damage prognosis of girder bridge structures and has the potential for the bridge health monitoring and safety prognosis.

  3. Evaluation of local radiation damage in silicon sensor via charge collection mapping with the Timepix read-out chip

    Czech Academy of Sciences Publication Activity Database

    Platkevič, M.; Jakůbek, J.; Havránek, Vladimír; Jakůbek, M.; Pospíšil, S.; Semián, Vladimír; Žemlička, J.

    2013-01-01

    Roč. 8, April 2013 (2013), C04001 ISSN 1748-0221. [14th International Workshop on Radiation Imaging Detectors. Figueira da Foz, Coimbra, 01.07.2012-05.07.2012] Institutional support: RVO:61389005 Keywords : solid state detectors * radiation damage evaluation methods * pixelated detectors and associated VLSI eletronics * radiation damage to detector materials Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/04/C04001/pdf/1748-0221_8_04_C04001.pdf

  4. An Improved Spectral Analysis Method for Fatigue Damage Assessment of Details in Liquid Cargo Tanks

    Science.gov (United States)

    Zhao, Peng-yuan; Huang, Xiao-ping

    2018-03-01

    Errors will be caused in calculating the fatigue damages of details in liquid cargo tanks by using the traditional spectral analysis method which is based on linear system, for the nonlinear relationship between the dynamic stress and the ship acceleration. An improved spectral analysis method for the assessment of the fatigue damage in detail of a liquid cargo tank is proposed in this paper. Based on assumptions that the wave process can be simulated by summing the sinusoidal waves in different frequencies and the stress process can be simulated by summing the stress processes induced by these sinusoidal waves, the stress power spectral density (PSD) is calculated by expanding the stress processes induced by the sinusoidal waves into Fourier series and adding the amplitudes of each harmonic component with the same frequency. This analysis method can take the nonlinear relationship into consideration and the fatigue damage is then calculated based on the PSD of stress. Take an independent tank in an LNG carrier for example, the accuracy of the improved spectral analysis method is proved much better than that of the traditional spectral analysis method by comparing the calculated damage results with the results calculated by the time domain method. The proposed spectral analysis method is more accurate in calculating the fatigue damages in detail of ship liquid cargo tanks.

  5. Ion bombardment induced damage in silicon carbide studied by ion beam analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E.; Kotai, E. [Magyar Tudomanyos Akademia, Budapest (HU). Research Inst. for Particle and Nuclear Physics (RIPNP); Khanh, N.Q.; Horvath, Z.E.; Lohner, T.; Battistig, G.; Zolnai, Z.; Gyulai, J. [Research Inst. for Technical Physics and Materials Science, Budapest (Hungary)

    2001-07-01

    Damage created by implantation of Al{sup +} ions into 4H-SiC is characterized using backscattering spectrometry in combination with channeling. The measurability of the damage profile in the carbon sublattice was demonstrated using the 4260 keV {sup 12}C({alpha},{alpha}){sup 12}C resonance. To create disorder, Al{sup +} ions with energy of 200 keV and 350 keV were implanted at room temperature. As an independent method, cross-sectional transmission electron microscopy was used to study the damage structure in irradiated 4H-SiC. (orig.)

  6. Evaluation of Glove Damage during Dental Procedures among Dental Specialists in Tabriz

    Directory of Open Access Journals (Sweden)

    Saeed Nezafati

    2007-08-01

    Full Text Available

    Background and aims. Dental practitioners are prone to occupational risk of infection. This can be prevented in part by wearing gloves. However, for this to be effective, gloves should be intact during the entire course of dental procedure. Leaky surgical latex gloves have been seen in 0.9% of cases before use. As much as 1.9% of latex gloves have been reported to be damaged during dental procedures. In this study, we decided to assess glove damage during dental procedures among dental specialists in Tabriz.

    Materials and methods. Thirty-six dental specialists were selected for this study. Each practitioner received 40 pairs of intact powdered latex gloves. Upon the completion of dental procedures, the gloves were retrieved and any tears were evaluated separately for right and left hands. Data was analyzed using chi-square test.

    Results. 159 punctures were detected in 144 gloves (5% out of 2880 unpaired gloves used by practitioners. They noticed the tear(s in 60 cases (2%, however, 99 cases (3% of tear(s were not noted during the procedure. The highest rate of glove damage was observed in the prosthodontists’ group (12.3%, which was statistically significant comparing to other groups (p=0.048. The lowest rate of the damage was observed in the oral surgeons’ group (2% which showed no significant difference (p=0.134. The highest rate of punctures in the gloves was observed in the first and second fingers of the non-dominant hand.

    Conclusion. The damage to 5% of the gloves is highly significant, with a potential role in occupational hazards. The higher rate of leaks in the prosthodontists’ group compared to other groups demands for greater prudence in this field. The high rate of leaks in the first and second fingers of the non-dominant hand requires more attention to this area during daily practice.

  7. Evaluation of fatigue damage for wind turbine blades using acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Jee, Hyun Sup; Ju, No Hoe [Korea Institute of Materials Science, Changwon (Korea, Republic of); So, Cheal Ho [Dongshin University, Naju (Korea, Republic of); Lee, Jong Kyu [Dept. of Physics, Pukyung National University, Busan (Korea, Republic of)

    2015-06-15

    In this study, the flap fatigue test of a 48 m long wind turbine blade was performed for 1 million cycles to evaluate the characteristics of acoustic emission signals generated from fatigue damage of the wind blades. As the number of hits and total energy continued to increase during the first 0.6 million cycles, blade damage was constant. The rise-time result showed that the major aspects of damage were initiation and propagation of matrix cracks. In addition, the signal analysis of each channel showed that the most seriously damaged sections were the joint between the skin and spar, 20 m from the connection, and the spot of actual damage was observable by visual inspection. It turned out that the event source location was related to the change in each channel{sup s} total energy. It is expected that these findings will be useful for the optimal design of wind turbine blades.

  8. Evaluating fire-damaged components of historic covered bridges

    Science.gov (United States)

    Brian Kukay; Charles Todd; Tyler Jahn; Jenson Sannon; Logan Dunlap; Robert White; Mark Dietenberger

    2016-01-01

    Arson continues to claim many historic covered bridges. Site-specific, post-fire evaluations of the structural integrity of a bridge are often necessary in a fire’s aftermath. Decisions on whether individual wood components can be rehabilitated, reconstructed, or replaced must be made. This report includes coverage of existing approaches and exploratory approaches that...

  9. Damage Detection Method of Wind Turbine Blade Using Acoustic Emission Signal Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Han, Byeong Hee; Yoon, Dong JIn [Korea Research Institute of Standards and Seience, Daejeon (Korea, Republic of)

    2011-02-15

    Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. Therefore, it is required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. In this study, a new damage location method has been proposed by using signal napping algorithm, and an experimental verification is conducted by using small wind turbine blade specimen: a part of 750 kW real blade. The results show that this new signal mapping method has high advantages such as a flexibility for sensor location, improved accuracy, high detectability. The newly proposed method was compared with traditional AE source location method based on arrival time difference

  10. Comparison of evaluation results of piping thermal fatigue evaluation method based on equivalent stress amplitude

    International Nuclear Information System (INIS)

    Suzuki, Takafumi; Kasahara, Naoto

    2012-01-01

    In recent years, reports have increased about failure cases caused by high cycle thermal fatigue both at light water reactors and fast breeder reactors. One of the reasons of the cases is a turbulent mixing at a Tee-junction, where hot and cold temperature fluids are mixed, in a coolant system. In order to prevent thermal fatigue failures at Tee-junctions. The Japan Society of Mechanical Engineers published the guideline which is an evaluation method of high cycle thermal fatigue damage at nuclear pipes. In order to justify safety margin and make the procedure of the guideline concise, this paper proposes a new evaluation method of thermal fatigue damage with use of the 'equivalent stress amplitude.' Because this new method makes procedure of evaluation clear and concise, it will contribute to improving the guideline for thermal fatigue evaluation. (author)

  11. An extended diffraction tomography method for quantifying structural damage using numerical Green's functions.

    Science.gov (United States)

    Chan, Eugene; Rose, L R Francis; Wang, Chun H

    2015-05-01

    Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Creep damage evaluation of low alloy steel weld joint by small punch creep testing

    International Nuclear Information System (INIS)

    Nishioka, Tomoya; Sawaragi, Yoshiatsu; Uemura, Hiromi

    2013-01-01

    The effect of sampling location on SPC (Small Punch Creep) tests were investigated for weld joints to establish evaluation method of Type IV creep behavior. The SPC specimen shape was 10mm diameter and 0.5mm thick round disc prepared from weld joints of 2.25Cr-1Mo low alloy steel. It was found that the center of SPC specimen should be 2mm apart from the weld interface as the recommended sampling location. Creep damage was imposed for large weld joint specimens by axial creep loading at 620degC, 52MPa with the interrupted time fraction of 0.34, 0.45, 0.64 and 0.82.SPC samples were prepared from those damaged specimens following the recommended way described in this paper. Among the various SPC tests conducted, good relationships were found for the test condition of 625degC, 200N. Namely, good relationships were obtained both between minimum deflection rate and creep life fraction, and between rupture time and creep life fraction. Consequently, creep life assessment of Type IV fracture by SPC tests could be well conducted using the sampling location and the test condition recommended in this paper. (author)

  13. Stochastic evaluation of the dynamic response and the cumulative damage of nuclear power plant piping

    International Nuclear Information System (INIS)

    Suzuki, Kohei; Aoki, Shigeru; Hanaoka, Masaaki

    1981-01-01

    This report deals with a fundamental study concerning an evaluation of uncertainties of the nuclear piping response and cumulative damage under excess-earthquake loadings. The main purposes of this study cover following several problems. (1) Experimental estimation analysis of the uncertainties concerning the dynamic response and the cumulative failure by using piping test model. (2) Numerical simulation analysis by Monte Carlo method under the assumption that relation between restoring force and deformation is characterized by perfectly elasto-plastic one. (Checking the mathematical model.) (3) Development of the conventional uncertainty estimating method by introducing a perturbation technique based on an appropriate equivalently linearized approach. (Checking the estimation technique.) (4) An application of this method to more realistical cases. Through above mentioned procedures some important results are obtained as follows; First, fundamental statistical properties of the natural frequencies and the number of cycle to failure crack initiation are evaluated. Second, the effect of the frequency fluctuation and the yielding fluctuation are estimated and examined through Monte Carlo simulation technique. It has become clear that the yielding fluctuation gives significant effect on the piping power response up to its failure initiation. Finally some results through proposed perturbation technique are discussed. Statistical properties estimated coincide fairly well with those through numerical simulation. (author)

  14. Comparative study of linear and nonlinear ultrasonic techniques for evaluation thermal damage of tube like structures

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Li, Xianqiang

    2013-01-01

    Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro damages in a tube like structure

  15. Evaluation of residual strength in the basalt fiber reinforced composites under impact damage

    Science.gov (United States)

    Kim, Yun-Hae; Lee, Jin-Woo; Moon, Kyung-Man; Yoon, Sung-Won; Baek, Tae-Sil; Hwang, Kwang-Il

    2015-03-01

    Composites are vulnerable to the impact damage by the collision as to the thickness direction, because composites are being manufactured by laminating the fiber. The understanding about the retained strength after the impact damage of the material is essential in order to secure the reliability of the structure design using the composites. In this paper, we have tried to evaluate the motion of the material according to the kinetic energy and potential energy and the retained strength after impact damage by testing the free fall test of the basalt fiber reinforced composite in the limelight as the environment friendly characteristic.

  16. Evaluation on damage of pipe using ultrasonic and acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung; Lee, Sang Pill; Lee, Moon Hee [Dongeui Univ., Busan (Korea, Republic of); Lee, Joon Hyun [Pusan National Univ., Busan (Korea, Republic of)

    2008-07-01

    An elastic waves like ultrasonic and acoustic emission were used to evaluate the propagating properties of the wave in pipe, and study on mode conversion of the elastic wave due to the defects on the pipe was performed. In this study an Acoustic Emission (AE) sensor was used to receive the propagated ultrasonic wave. AE technique has a advantage that it can identify the received ultrasonic wave by the analysis of the AE parameters such as count, energy, frequency, duration time and amplitude. For transmitting and receiving of the wave, an universal angle wedge was manufactured. The optimum angles for transmitting of ultrasonic wave and signal receiving at the attached AE sensor on the pipe were determined. Theoretical dispersion curve was compared with the results of the time-frequency analysis based on the wavelet transformation. The received modes showed a good agreement with theoretical one. The used ultrasonic sensor was 1MHz, and AE sensor was broadband. The artificial cracks were induced in the pipe to measure the propagation characteristics of the elastic wave for the cracks. AE parameters for the received signals were also varied with the crack types in the pipe. AE parameters of amplitude and duration time were more effective factors than the analysis of mode conversion for evaluation of the cracks in the pipe.

  17. Concrete damage diagnosed using the non-classical nonlinear acoustic method

    International Nuclear Information System (INIS)

    Dao, Zhou; Xiao-Zhou, Liu; Xiu-Fen, Gong; E, Nazarov V; Li, Ma

    2009-01-01

    It is known that the strength of concrete is seriously affected by damage and cracking. In this paper, six concrete samples under different damage levels are studied. The experimental results show a linear dependence of the resonance frequency shift on strain amplitude at the fundamental frequency, and approximate quadratic dependence of the amplitudes of the second and third harmonics on strain amplitude at the fundamental frequency as well. In addition, the amplitude of the third harmonics is shown to increase with the increase of damage level, which is even higher than that of the second harmonics in samples with higher damage levels. These are three properties of non-classical nonlinear acoustics. The nonlinear parameters increase from 10 6 to 10 8 with damage level, and are more sensitive to the damage level of the concrete than the linear parameters obtained by using traditional acoustics methods. So, this method based on non-classical nonlinear acoustics may provide a better means of non-destructive testing (NDT) of concrete and other porous materials

  18. Changes of forest stands vulnerability to future wind damage resulting from different management methods

    DEFF Research Database (Denmark)

    Panferov, O.; Sogachev, Andrey; Ahrends, B.

    2010-01-01

    The structure of forests stands changes continuously as a result of forest growth and both natural and anthropogenic disturbances like windthrow or management activities – planting/cutting of trees. These structure changes can stabilize or destabilize forest stands in terms of their resistance...... to wind damage. The driving force behind the damage is the climate, but the magnitude and sign of resulting effect depend on tree species, management method and soil conditions. The projected increasing frequency of weather extremes in the whole and severe storms in particular might produce wide area...... damage in European forest ecosystems during the 21st century. To assess the possible wind damage and stabilization/destabilization effects of forest management a number of numeric experiments are carried out for the region of Solling, Germany. The coupled small-scale process-based model combining Brook90...

  19. Scintigraphic evaluation of muscle damage following extreme exercise: concise communication

    International Nuclear Information System (INIS)

    Matin, P.; Lang, G.; Carretta, R.; Simon, G.

    1983-01-01

    Total body Tc-99m pyrophosphate scintigraphy was performed on 11 ''ultramarathon'' runners to assess the ability of nuclear medicine techniques to evaluate skeletal-muscle injury due to exercise. We found increased muscle radionuclide concentration in 90% of the runners. The pattern of muscle uptake correlated with the regions of maximum pain. The detection of exercise-induced rhabdomyolysis appeared to be best when scintigraphy was performed within 48 hr after the race, and to be almost undetectable after about a week. It was possible to differentiate muscle injury from joint and osseous abnormalities such as bone infarct or stress fracture. Although 77% of the runners had elevated serum creatine kinase MB activity, cardiac scintigraphy showed no evidence of myocardial injury

  20. DNA Damage Induction and Repair Evaluated in Human Lymphocytes Irradiated with X-Rays an Neutrons

    International Nuclear Information System (INIS)

    Niedzwiedz, W.; Cebulska-Wasilewska, A.

    2000-12-01

    The objective of this study was to evaluate the kinetic of the DNA damage induction and their subsequent repair in human lymphocytes exposed to various types of radiation. PBLs cells were isolated from the whole blood of two young healthy male subjects and one skin cancer patient, and than exposed to various doses of low LET X-rays and high LET neutrons from 252 Cf source. To evaluate the DNA damage we have applied the single cell get electrophoresis technique (SCGE) also known as the comet assay. In order to estimate the repair efficiency, cells, which had been irradiated with a certain dose, were incubated at 37 o C for various periods of time (0 to 60 min). The kinetic of DNA damage recovery was investigated by an estimation of residual DNA damage persisted at cells after various times of post-irradiation incubation (5, 10, 15, 30 and 60 min). We observed an increase of the DNA damage (reported as a Tail DNA and Tail moment parameters) in linear and linear-quadratic manner, with increasing doses of X-rays and 252 Cf neutrons, respectively. Moreover, for skin cancer patient (Code 3) at whole studied dose ranges the higher level of the DNA damage was observed comparing to health subjects (Code 1 and 2), however statistically insignificant (for Tail DNA p=0.056; for Tail moment p=0.065). In case of the efficiency of the DNA damage repair it was observed that after 1 h of post-irradiation incubation the DNA damage induced with both, neutrons and X-rays had been significantly reduced (from 65% to 100 %). Furthermore, in case of skin cancer patient we observed lover repair efficiency of X-rays induced DNA damage. After irradiation with neutrons within first 30 min, the Tail DNA and Tail moment decreased of about 50%. One hour after irradiation, almost 70% of residual and new formed DNA damage was still observed. In this case, the level of unrepaired DNA damage may represent the fraction of the double strand breaks as well as more complex DNA damage (i.e.-DNA or DNA

  1. Damage evolution analysis of coal samples under cyclic loading based on single-link cluster method

    Science.gov (United States)

    Zhang, Zhibo; Wang, Enyuan; Li, Nan; Li, Xuelong; Wang, Xiaoran; Li, Zhonghui

    2018-05-01

    In this paper, the acoustic emission (AE) response of coal samples under cyclic loading is measured. The results show that there is good positive relation between AE parameters and stress. The AE signal of coal samples under cyclic loading exhibits an obvious Kaiser Effect. The single-link cluster (SLC) method is applied to analyze the spatial evolution characteristics of AE events and the damage evolution process of coal samples. It is found that a subset scale of the SLC structure becomes smaller and smaller when the number of cyclic loading increases, and there is a negative linear relationship between the subset scale and the degree of damage. The spatial correlation length ξ of an SLC structure is calculated. The results show that ξ fluctuates around a certain value from the second cyclic loading process to the fifth cyclic loading process, but spatial correlation length ξ clearly increases in the sixth loading process. Based on the criterion of microcrack density, the coal sample failure process is the transformation from small-scale damage to large-scale damage, which is the reason for changes in the spatial correlation length. Through a systematic analysis, the SLC method is an effective method to research the damage evolution process of coal samples under cyclic loading, and will provide important reference values for studying coal bursts.

  2. Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

    Science.gov (United States)

    Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.

    2018-03-01

    A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

  3. Evaluation of Hail Simulated Damage on Marketable Tuber Yield of Potato Agria Cultivar in Ardabil Region

    Directory of Open Access Journals (Sweden)

    D. Hassanpanah

    2012-07-01

    Full Text Available This study was conducted at Ardabil Agriculture and Natural Resources Research Station during the year of 2010. A factorial experiment based on randomized complete block design with four replications and two factors were used to evaluate the effect of simulated hail damage to foliage at different growth stages of potato Agria cultivar on marketable tuber yield. The first factor consisted of six levels of foliar damage (0, 20, 40, 60, 80 and 100 percent and the second factor of five levels of plant growth stages (2, 5, 8, 11 and 15 weeks after the growing. Analysis of variance showed that there were significant differences among plants for levels and times of hail damage and their interactions in terms of marketable tuber yield. Percentage of marketable yield reduction at early stages of vegetative growth (2 weeks after growing was minimal. Occurrence of hail damage at the tuberization and bulking stages (5, 8 and 11 weeks after growing severely reduced marketable tuber yield. While, its damage at late growing stages of (14 weeks after growing on tuber yield was not appreciable. Times of hail damage on marketable tuber yield reduction was calculated through the regression. Relative reduction of marketable tuber yield at the early stages of vegetative growth, due to hail damage, against non-marketable tuber yield was higher than of bulking stage.

  4. Application of one-sided stress wave velocity measurement technique to evaluate freeze-thaw damage in concrete

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Park, Won Su

    1998-01-01

    It is well recognized that damage resulting from freeze-thaw cycles is a serious problems causing deterioration and degradation of concrete. In general, freeze-thaw cycles change the microstructure of the concrete ultimately leading to internal stresses and cracking. In this study, a new method for one-sided stress wave velocity measurement has been applied to evaluate freeze-thaw damage in concrete by monitoring the velocity change of longitudinal and surface waves. The freeze-thaw damage was induced in a 400 x 150 x 100 mm concrete specimen in accordance with ASTM C666 using s commercial testing apparatus. A cycle consisted of a variation of the temperature from -14 to 4 degrees Celsius. A cycle takes 4-5 hours with approximately equal times devoted to freezing-thawing. Measurement of longitudinal and surface wave velocities based on one-sided stress wave velocity measurement technique was made every 5 freeze-thaw cycle. The variation of longitudinal and surface wave velocities due to increasing freeze-thaw damage is demonstrated and compared to determine which one is more effective to monitor freeze-thaw cyclic damage progress. The variation in longitudinal wave velocity measured by one-sided technique is also compared with that measured by the conventional through transmission technique.

  5. An evaluation of monk parakeet damage to crops in the metropolitan area of Barcelona

    Energy Technology Data Exchange (ETDEWEB)

    Senar, J.C.; Domenech, J.; Arroyo, L.; Torre, I.; Gordo, O.

    2016-07-01

    We evaluated damage to commercial crops caused by the monk parakeet, Myiopsitta monachus, in the Baix Llobregat agricultural area (1,024 ha) bordering the city of Barcelona, Spain. Average crop loss was 0.4% for tomatoes, 28% for corn, 9% for red plums, 36% for round plums, 37% for pears, 17% for persimmons, and 7% for quinces. Our data show that the potential damage to crops by monk parakeets in this invaded area is now a reality. As a wait–and–see approach is likely to be a more costly strategy in the long–term, policy makers should assess issues such as the extent of damage, feasibility/cost benefit analysis, and public opinion so as to avoid greater damage and loss in the future. (Author)

  6. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    Science.gov (United States)

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Fixture and method for rectifying damaged guide thimble insert sleeves in a reconstitutable fuel assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferlan, S.J.

    1987-01-01

    A guide thimble damage-rectifying method is described for use on a reconstitutable fuel assembly being held in a work station with its top nozzle removed to expose a plurality of guide thimbles having one of several different types of damage. The method consists of: (a) providing a base having a plurality of tool positioning openings defined therein in a pattern matched with that of the guide thimbles of the fuel assembly; (b) mounting the base on the work station with its tool positioning openings in alignment with the guide thimbles of the fuel assembly and such that the base is movable toward the guide thimbles; (c) providing a plurality of different tools each operable to rectify one of the different types of guide thimble damage; (d) mounting selected ones of the different tools in respective ones of the openings of the base in alignment with ones of the thimbles having the respective types of guide thimble damage capable of being rectified by the selected tools such that upon movement of the base toward the guide thimbles the respective types of guide thimble damage will be rectified by the selected tools; (e) providing a group of positioning elements; (f) mounting the positioning elements in selected ones of the base openings corresponding to undamaged ones of the guide thimbles such that upon movement of the base toward the guide thimbles the positioning elements become mounted on upper end portions of the corresponding undamaged ones of the guide thimbles for precisely locating the fixture relative to the guide thimble upper end portions for accurate performance of the repairable damage rectifying operation by the tools as the base is moved toward the guide thimbles; and (g) moving the base toward the guide thimbles so as to mount the positioning elements on the corresponding ones of the undamaged guide thimbles and effect rectification of the damaged guide thimbles by the selected tools

  8. A damage detection method for instrumented civil structures using prerecorded Green’s functions and cross-correlation

    OpenAIRE

    Heckman, Vanessa; Kohler, Monica; Heaton, Thomas

    2011-01-01

    Automated damage detection methods have application to instrumented structures that are susceptible to types of damage that are difficult or costly to detect. The presented method has application to the detection of brittle fracture of welded beam-column connections in steel moment-resisting frames (MRFs), where locations of potential structural damage are known a priori. The method makes use of a prerecorded catalog of Green’s function templates and a cross-correlation method ...

  9. A new method of damage determination in geothermal wells from geothermal inflow with application to Los Humeros, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Moya, S. L [Centro Nacional de Investigacion y Desarrollo Tecnologico, Cuernavaca, Morelos (Mexico); Garcia-Gutierrez, A; Arellano, V [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-10-15

    Geothermal inflow type curves were obtained for different values of well damage (i.e., inflow performance relationships). The method was evaluated by diagnosing the damage of thirteen producing wells in the Los Humeros, Puebla, Mexico geothermal field. Permeability determinations were carried out for these wells and their productivity indices were estimated. Comparison of the diagnoses made via damage effects against the results of field pressure tests showed that the maximum difference between both approaches is on the order of 0.7 damage units. The methodology allows reservoir characterization along its productive life, since several production tests are carried out while the reservoir is producing. The data obtained from production tests are used to determine the damage effect and permeability of the rock formation. Previously the damage (skin factor) could only be determined from the analyses of transient pressure tests. [Spanish] Se presenta la obtencion de curvas-tipo de influjo geotermico para diferentes valores de dano, y se demuestra su aplicacion en los analisis de produccion de pozos geotermicos determinando el dano en trece pozos del campo geotermico de Los Humeros, Puebla, Mexico. Tambien se hicieron determinaciones de la permeabilidad en las zonas de produccion de estos pozos y de sus respectivos indices de productividad. Se compararon los resultados del valor de dano obtenido con la metodologia propuesta, con los valores de dano obtenidos a partir de pruebas de presion, encontrando que las diferencias maximas entre ambas tecnicas es del orden de 0.7 unidades de dano. La presente metodologia permite la caracterizacion del yacimiento a lo largo de su vida productiva a partir de las mediciones de las pruebas de produccion efectuadas en los pozos. La metodologia propuesta es innovadora porque anteriormente el dano solamente se podia determinar a partir de los analisis de las mediciones de la pruebas de presion.

  10. Pragmatism, Evidence, and Mixed Methods Evaluation

    Science.gov (United States)

    Hall, Jori N.

    2013-01-01

    Mixed methods evaluation has a long-standing history of enhancing the credibility of evaluation findings. However, using mixed methods in a utilitarian way implicitly emphasizes convenience over engaging with its philosophical underpinnings (Denscombe, 2008). Because of this, some mixed methods evaluators and social science researchers have been…

  11. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay.

    Science.gov (United States)

    Praveen Kumar, M K; Shyama, S K; Sonaye, B S; Naik, U Roshini; Kadam, S B; Bipin, P D; D'costa, A; Chaubey, R C

    2014-05-01

    Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of 'Comet assay' for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in both bivalve species. This showed a dose-dependent increase of genetic damage induced in bivalves by EMS as well as gamma radiation. Further, the highest DNA damage was observed at 24h. The damage gradually decreased with time, i.e. was smaller at 48 and 72 h than at 24h post irradiation in both species of bivalves. This may indicate repair of the damaged DNA and/or loss of heavily damaged cells as the post irradiation time advanced. The present study

  12. Creep/fatigue damage prediction of fast reactor components using shakedown methods

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    1997-01-01

    The present status of the shakedown method is reviewed, the application of the shakedown based principles to complex hardening and creep behaviour is described and justified and the prediction of damage against design criteria outlined. Comparisons are made with full inelastic analysis solutions where these are available and against damage assessments using elastic and inelastic design code methods. Current and future developments of the method are described including a summary of the advances made in the development of the post process ADAPT, which has enabled the method to be applied to complex geometry features and loading cases. The paper includes a review of applications of the method to typical Fast Reactor structural example cases within the primary and secondary circuits. For the primary circuit this includes structures such as the large diameter internal shells which are surrounded by hot sodium and subject to slow and rapid thermal transient loadings. One specific case is the damage assessment associated with thermal stratifications within sodium and the effects of moving sodium surfaces arising from reactor trip conditions. Other structures covered are geometric features within components such as the Above Core structure and Intermediate Heat Exchanger. For the secondary circuit the method has been applied to alternative and more complex forms of geometry namely thick section tubeplates of the Steam Generator and a typical secondary circuit piping run. Both of these applications are in an early stage of development but are expected to show significant advantages with respect to creep and fatigue damage estimation compared with existing code methods. The principle application of the method to design has so far been focused on Austenitic Stainless steel components however current work shows some significant benefits may be possible from the application of the method to structures made from Ferritic steels such as Modified 9Cr 1Mo. This aspect is briefly

  13. Modeling of damage evaluation in thin composite plate loaded by pressure loading

    Directory of Open Access Journals (Sweden)

    Dudinský M.

    2012-12-01

    Full Text Available This article presents the results of numerical analysis of elastic damage of thin laminated long fiber-reinforced composite plate consisting of unidirectional layers which is loaded by uniformly distributed pressure. The analysis has been performed by means of the finite element method (FEM. The numerical implementation uses layered plate finite elements based on the Kirchhoff plate theory. System of nonlinear equations has been solved by means of the Newton- Raphson procedure. Evolution of damage has been solved using the return-mapping algorithm based on the continuum damage mechanics (CDM. The analysis was performed using own program created in MATLAB. Problem of laminated fiber-reinforced composite plate fixed on edges for two different materials and three different laminate stacking sequences (LSS was simulated. Evolution of stresses vs. strains and also evolution of damage variables in critical points of the structure are shown.

  14. Qualitative and quantitative evaluation of renal parenchymal damage by 99mTc-DMSA planar and SPECT scintigraphy

    International Nuclear Information System (INIS)

    Itoh, Kazuo; Yamashita, Tetsufumi; Tsukamoto, Eriko; Nonomura, Katsuya; Furudate, Masayori; Koyanagi, Tomohiko

    1995-01-01

    The initial 99m Tc-DMSA studies carried out over a four year period in 229 patients with various heterogenic causes of lower urinary tract abnormalities were reviewed. Anatomical damage to the renal parenchyma was graded by means of planar and SPECT studies into a six group classification proposed by Monsour et al.: grade 0 (normal), I (equivocal), II (single defect), III (more than 2 defects), IV (contracted or small) and V (no visualization). Parenchymal uptake of 99m Tc-DMSA was quantitated from planar images at 2 hours postinjection by a computer assisted gamma camera method. SPECT studies could enhance the pick-up rate for parenchymal uptake defects by a factor of 1.5 in comparison with planar imaging. The incidence of anatomical damage to the renal parenchyma increased with a high radiological grade for VUR, and renal uptake per injection dose of 99m Tc-DMSA by the individual kidney significantly decreased in grades III and IV of the anatomical classification. These data revealed that 99m Tc-DMSA planar is still useful for evaluating gross structural damage and for quantitative evaluation of the kidney with computer assistance. SPECT scintigraphy is more effective in disclosing anatomical damage to the renal parenchyma than planar, although it needs further discussion as to whether SPECT may increase sensitivity with minimal or no adverse affect on specificity. (author)

  15. X-ray diffraction study on the evaluation of the damage of steel structures subjected to earthquake

    International Nuclear Information System (INIS)

    Kaneta, Kiyoshi; Nishizawa, Hidekazu; Koshika, Norihide.

    1985-01-01

    The purpose of this study is to investigate the behavior of steel structures subjected to a strong earthquake and to evaluate the damage from a microscopic point of view. For this purpose, the authors have adopted two kinds of research techniques. The first is the ''ON-LINE EARTHQUAKE RESPONSE SIMULATION SYSTEM (ON-LINE SIMULATION SYSTEM)'', which is composed of an electro-hydrauric testing machine controled by a computer and a full scale specimen. Since a term of restoring force in the equation of motion is to be substituted by the actual reaction of a specimen under test, we can obtain the non-linear response of structure without any assumption about the hysteretic characteristics. Based on this method, the dynamic behavior of simple steel structures subjected to an intense earthquakes were simulated. The second technique is the ''X-RAY DIFFRACTION METHOD''. Although this method is usually regarded an experimental technique particular to the material science, we have realized the good applicability for the study of structural engineering. Because X-ray diffraction method is advantageous in investigating the microscopic behavior of steel member such as the plastic deformation and the low cycle fatigue. From the view point stated above, we have adopted this method for the evaluation of low cycle fatigue damage of steel member subjected to an earthquake. The experiment has been performed by radiating the X-ray at several stages of the ON-LINE SIMULATION. As has been expected, the X-ray diffraction patterns have changed in a regular manner depending on the degree of fatigue damage, and the results have shown a good possibility that the X-ray diffraction approach can offer a powerful tool for the detection of the earthquake damage of steel members. (author)

  16. An animal experimental model for evaluating endothelial damage caused by various angiographic contrast media

    International Nuclear Information System (INIS)

    Gottlob, R.

    1981-01-01

    The endothelial damage caused by X-ray contrast media is tested on en face preparations of the rat aorta after silver staining. Hypertonic contrast media cause dehydration of the vessels so that solutions of silver nitrate penetrate into the media during the phase of rehydration whereby medial transverse lines are stained. These artifacts can be avoided by 3 minute rehydration of the vessels by Ringer solution prior to silver staining. In addition it is recommended to add highly diluted silver nitrate to the fixing media in order to intensify the pattern of the endothelial silver lines. Modern contrast media may cause very little endothelial damage, however, significant differences can be detected when in addition to the evaluation of larger foci damages of single endothelial cells ( brown cells with sparing of the nuclei and pseudonuclei ) are evaluated as well. No significant differences were found between the endothelial toxicity of meglumin diatrizoate and meglumin iothalamate. (orig.) [de

  17. Selection of facility location under environmental damage priority and using ELECTRE method.

    Science.gov (United States)

    Gundogdu, Ceren Erdin

    2011-03-01

    In the recent years, the environmental problems have reached to a vital extent, which is pushing the boundaries and far beyond daily evaluations. Industrial plants, the energy sources and uncontrolled release of pollutant gases (SO2, CO2 etc.) in the production stage have the greatest share in the occurrence of unfavorable environmental conditions. For this reason, the dimension of the problems that may arise in the production stage of industrial plants is directly related to the selection of facility location. In this study, geographical regions (a total of 7 regions) of our country have been analyzed in terms of environmental values based on their basins and the unfavorable environmental problems that are currently being experienced. Considered as such, with the directives of an expert group composed of nature scientists, the criteria and alternative areas are determined using the data gathered on ecosystem, basin characteristics, and land types. Since the primary goal is to keep the environmental damages at the minimum level, comprehensive definition of the problem is constructed by consultation of the expert group and the criteria are determined. Considering the fact that it will prevent the drawbacks generated by making decisions depending on certain stereotypes toa great extent, ELECTRE (Elimination and Choice Translating Reality English - Elimination Et Choix Traduisant la Realite) method is used to determine in which geographic region our country's industrial plants should be located.

  18. A method for estimating the local area economic damages of Superfund waste sites

    International Nuclear Information System (INIS)

    Walker, D.R.

    1992-01-01

    National Priority List (NPL) sites, or more commonly called Superfund sites, are hazardous waste sites (HWS) deemed by the Environmental Protection Agency (EPA) to impose the greatest risks to human health or welfare or to the environment. HWS are placed and ranked for cleanup on the NPL based on a score derived from the Hazard Ranking System (HRS), which is a scientific assessment of the health and environmental risks posed by HWS. A concern of the HRS is that the rank of sites is not based on benefit-cost analysis. The main objective of this dissertation is to develop a method for estimating the local area economic damages associated with Superfund waste sites. Secondarily, the model is used to derive county-level damage estimates for use in ranking the county level damages from Superfund sites. The conceptual model used to describe the damages associated with Superfund sites is a household-firm location decision model. In this model assumes that households and firms make their location choice based on the local level of wages, rents and amenities. The model was empirically implemented using 1980 census microdata on households and workers in 253 counties across the US. The household sample includes data on the value and structural characteristics of homes. The worker sample includes the annual earnings of workers and a vector worker attributes. The microdata was combined with county level amenity data, including the number of Superfund sites. The hedonic pricing technique was used to estimate the effect of Superfund sites on average annual wages per household and on monthly expenditures on housing. The results show that Superfund sites impose statistically significant damages on households. The annual county damages from Superfund sites for a sample of 151 counties was over 14 billion dollars. The ranking of counties using the damage estimates is correlated with the rank of counties using the HRS

  19. Gamma Radiation Damage Evaluation Studies on Ferroelectric La and Nb doped PZT Related Ceramics

    International Nuclear Information System (INIS)

    Cruz, Carlos M.; Pinnera, Ibrahin; Rodriguez, Arturo; Durruti, Ma. Dolores; Hernandez, Moises; Yannez-Limon, J. M.

    2015-01-01

    It is reported the research results of the gamma radiation damage evaluation on La (crystalline sites A) and / or Nb (crystalline sites B) doped ferroelectric PZT ceramics, which were irradiated with 60 Co gamma rays by applying two irradiation regimes: up to 125 lGy (irradiation steps of 25 kGy) and up to 700 kGy (irradiation steps of 100 kGy) exposition doses. The X Ray Diffraction pattern profiles of the irradiated sample were analyzed and the induced crystalline structure changes are reported and correlated with the observed irradiation induced changes on their ferroelectric properties on regard of the irradiation doses. Through the application of the MCCM atom displacements calculations algorithm and code, total dpa profiles were calculated for the studied samples, as well as, the dpa contributions of the different atomics species, where the atom displacements threshold energies were extrapolated from the values calculated by Molecular Dynamic methods for BaTiO 3 system. An evaluation of the reported dpa calculated values on regard of the observed crystal structure and radiation response of the ferroelectric properties is presented. (Author)

  20. Evaluation of acute radiation damage of the human brain by 1H-MRS

    International Nuclear Information System (INIS)

    Matsushima, Shigeru; Kinosada, Yasutomi.

    1993-01-01

    Fourteen patients (17 cases) were treated with the whole brain irradiation. Physiological changes in white matter were measured by in vivo 1 H magnetic resonance spectroscopy ( 1 H-MRS). Phantom examination proved the accuracy of our 1 H-MRS method to be valid. The measurement was performed 2 or 3 times in each case at the radiation doses ranging from 0 to 40 Gy with 2 Gy daily fractionation. For the measurement of 1 H-MRS, 1.5 T whole body MR system was used and stimulated echo acquisition mode (STEAM) with chemical shift selective (CHESS) pulse was applied. Volume of the interest (VOI) was 2.5x2.5x2.5 cm 3 , and the repetition time and echo time were 2000 ms and 272 ms, respectively. Acute radiation damage of the brain was evaluated by the change of peak area ratio (PAR) of choline, creatine and N-acetyl aspartate (NAA). 1 H-MRS spectra before irradiation were different from those observed during irradiation. There were statistically significant (p 1 H-MRS is a powerful modality, detecting the subtle physiological change which is difficult to evaluate with conventional images. (author)

  1. Application of X-ray methods to assess grain vulnerability to damage resulting from multiple loads

    International Nuclear Information System (INIS)

    Zlobecki, A.

    1995-01-01

    The aim of the work is to describe wheat grain behavior under multiple dynamic loads with various multipliers. The experiments were conducted on Almari variety grain. Grain moisture was 11, 16, 21 and 28%. A special ram stand was used for loading the grain. The experiments were carried out using an 8 g weight, equivalent to impact energy of 4,6 x 10 -3 [J]. The X-ray method was used to assess damage. The exposure time was 8 minutes with X-ray lamp voltage equal to 15 kV. The position index was used as the measure of the damage. The investigation results were elaborated statistically. Based on the results of analysis of variance, regression analysis, the d-Duncan test and the Kolmogorov-Smirnov test, the damage number was shown to depend greatly on the number of impacts for the whole range of moisture of the grain loaded. (author)

  2. Catalogue of methods, tools and techniques for recovery from fuel damage events

    International Nuclear Information System (INIS)

    1991-10-01

    On the basis of the recommendations of the Advisory Group Meeting on Main Principles of Safe Management of Severely Damaged Nuclear Fuel and other Accident Generated Waste, held from 13 to 16 November 1989, the IAEA initiated a programme in 1990 to collect technical information on special tools and methods to deal with circumstances beyond the normal design basis of fuel damage. A Questionnaire was sent out to solicit information from the Member States and organizations which might have experience in this field. The responses to the Questionnaire were discussed at a Consultants Meeting and at an Advisory Group Meeting during 1990. The aim of this document is to disseminate the experience gained in Member States serving Article 5 of the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency and also filling a potential void in response to fuel damage events of less severe magnitude

  3. Method for assessing damage to mitochondrial DNA caused by radiation and epichlorohydrin

    International Nuclear Information System (INIS)

    Singh, G.; Hauswirth, W.W.; Ross, W.E.; Neims, A.H.

    1985-01-01

    This paper describes a rapid and reliable method for quantification of damage to mitochondrial DNA (mtDNA), especially strand breaks. The degree of damage to mtDNA is assessed by the proportion of physical forms (i.e., supercoiled versus open-circular and linear forms) upon agarose gel electrophoresis, blotting, and visualization by hybridization with [ 32 P]mtDNA probes. The use of a radiolabeled probe is a crucial step in the procedure because it provides both a means to quantify by radioautography and to obtain the mtDNA specificity required to eliminate misinterpretation due to nuclear DNA contamination. To demonstrate the utility of this technique, X-irradiation and epichlorohydrin are shown to damage both isolated mtDNA and mtDNA in whole cells in a dose-dependent fashion

  4. A quick method for testing recessive lethal damage with a diploid strain of Aspergillus nidulans

    International Nuclear Information System (INIS)

    Morpurgo, G.; Puppo, S.; Gualandi, G.; Conti, L.

    1978-01-01

    A simple method capable of detecting recessive lethal damage in a diploid strain of Aspergillus nidulans is described. The method scores the recessive lethals on the 1st, the 3rd and the 5th chromosomes, which represent about 40% of the total map of A. nidulans. Two examples of induced lethals, with ultraviolet irradiation and methyl methanesulfonate are shown. The frequency of lethals may reach 36% of the total population with UV irradiation. (Auth.)

  5. Damaged Watermarks Detection in Frequency Domain as a Primary Method for Video Concealment

    Directory of Open Access Journals (Sweden)

    Robert Hudec

    2011-01-01

    Full Text Available This paper deals with video transmission over lossy communication networks. The main idea is to develop video concealment method for information losses and errors correction. At the beginning, three main groups of video concealment methods, divided by encoder/decoder collaboration, are briefly described. The modified algorithm based on the detection and filtration of damaged watermark blocks encapsulated to the transmitted video was developed. Finally, the efficiency of developed algorithm is presented in experimental part of this paper.

  6. Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH

    Science.gov (United States)

    Pal, Anoop K.; Hsieh, Shu-Feng; Khatri, Madhu; Isaacs, Jacqueline A.; Demokritou, Philip; Gaines, Peter; Schmidt, Daniel F.; Rogers, Eugene J.; Bello, Dhimiter

    2014-02-01

    Several acellular assays are routinely used to measure oxidative stress elicited by engineered nanomaterials (ENMs), yet little comparative evaluations of such methods exist. This study compares for the first time the performance of the dichlorofluorescein (DCFH) assay which measures reactive oxygen species (ROS) generation, to that of the ferric-reducing ability of serum (FRAS) assay, which measures biological oxidant damage in serum. A diverse set of 28 commercially important and extensively characterized ENMs were tested on both the assays. Intracellular oxidative stress was also assessed on a representative subset of seven ENMs in THP-1 (phorbol 12-myristate 13-acetate matured human monocytes) cells. Associations between assay responses and ENM physicochemical properties were assessed via correlation and regression analysis. DCFH correlated strongly with FRAS after dose normalization for mass ( R 2 = 0.78) and surface area ( R 2 = 0.68). Only 10/28 ENMs were positive in DCFH versus 21/28 in FRAS. Both assays were strongly associated with specific surface area and transition metal content. Qualitatively, a similar response ranking was observed for acellular FRAS and intracellular reduced:oxidized glutathione ratio (GSH:GSSG) in cells. Quantitatively, weak correlation was found between intracellular GSSG and FRAS or DCFH ( R 2 < 0.25) even after calculating effective dose to cells. The FRAS assay was more sensitive than DCFH, especially for ENMs with low to moderate oxidative damage potential, and may serve as a more biologically relevant substitute for acellular ROS measurements of ENMs. Further in vitro and in vivo validations of FRAS against other toxicological endpoints with larger datasets are recommended.

  7. Structural Integrity Evaluation for Damaged Fuel Canister of a Research Reactor

    International Nuclear Information System (INIS)

    Oh, Jinho; Kwak, Jinsung; Lee, Sangjin; Lee, Jongmin; Ryu, Jeong-Soo

    2016-01-01

    The purpose of this document is to confirm the structural integrity of damaged fuel canister through the numerical simulation. The analysis results of canister including damaged fuel are evaluated with design limits of the ASME Sec. III NF Codes and Standards. The main function of canister is to store and protect the damaged fuel assembly generated from the operation of the research reactor. The canister is classified into safety class NNS (Non-nuclear Safety) and seismic category II. The shape of the canister is designed into commercialized circular tube due to economic benefit and easy manufacturing. The damaged fuel assembly is loaded in a dedicated canister by using special tool and supported by lower block in the canister. Then it is move into the damaged fuel storage rack under safeguards arrangements. The canister is securely supported at guide plate and base plate of rack. The structural integrity evaluation for the canister is performed by using response spectrum analysis. The analysis results show that the stress intensity of the canister under the seismic loads is within the ASME Code limits. Thus, the validity of the present design of the canister has been demonstrated

  8. Structural Integrity Evaluation for Damaged Fuel Canister of a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jinho; Kwak, Jinsung; Lee, Sangjin; Lee, Jongmin; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The purpose of this document is to confirm the structural integrity of damaged fuel canister through the numerical simulation. The analysis results of canister including damaged fuel are evaluated with design limits of the ASME Sec. III NF Codes and Standards. The main function of canister is to store and protect the damaged fuel assembly generated from the operation of the research reactor. The canister is classified into safety class NNS (Non-nuclear Safety) and seismic category II. The shape of the canister is designed into commercialized circular tube due to economic benefit and easy manufacturing. The damaged fuel assembly is loaded in a dedicated canister by using special tool and supported by lower block in the canister. Then it is move into the damaged fuel storage rack under safeguards arrangements. The canister is securely supported at guide plate and base plate of rack. The structural integrity evaluation for the canister is performed by using response spectrum analysis. The analysis results show that the stress intensity of the canister under the seismic loads is within the ASME Code limits. Thus, the validity of the present design of the canister has been demonstrated.

  9. Metamodel-based inverse method for parameter identification: elastic-plastic damage model

    Science.gov (United States)

    Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb

    2017-04-01

    This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.

  10. Creep-fatigue life prediction for different heats of Type 304 stainless steel by linear-damage rule, strain-range partitioning method, and damage-rate approach

    International Nuclear Information System (INIS)

    Maiya, P.S.

    1978-07-01

    The creep-fatigue life results for five different heats of Type 304 stainless steel at 593 0 C (1100 0 F), generated under push-pull conditions in the axial strain-control mode, are presented. The life predictions for the various heats based on the linear-damage rule, strain-range partitioning method, and damage-rate approach are discussed. The appropriate material properties required for computation of fatigue life are also included

  11. Method for identification of fluid mixing zones subject to thermal fatigue damage

    International Nuclear Information System (INIS)

    Vole, O.; Beaud, F.

    2009-01-01

    High cycle thermal fatigue due to the mixing of hot and cold fluids may initiate cracking in pipes of safety related circuits. A method has been developed to identify such fluid mixing zones subjected to potential thermal fatigue damage. This method is based on a loading model and a mechanical model that depend on the main characteristics of the mixing zone and on the material properties. It is supported by a large experimental program. This method has been applied to all the mixing zones of safety related circuits of the EDF pressurised water reactors, allowing to identify sensitive zones and to apply an appropriate inspection program that ensures the control of the risk due to this damage mechanism. (authors)

  12. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    Science.gov (United States)

    Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655

  13. Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP

    Directory of Open Access Journals (Sweden)

    Pablo Zuluaga-Ramírez

    2015-11-01

    Full Text Available This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL and realistic variable amplitude loads (VAL, representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications.

  14. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva

    1998-01-01

    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  15. Discount method for programming language evaluation

    DEFF Research Database (Denmark)

    Kurtev, Svetomir; Christensen, Tommy Aagaard; Thomsen, Bent

    2016-01-01

    This paper presents work in progress on developing a Discount Method for Programming Language Evaluation inspired by the Discount Usability Evaluation method (Benyon 2010) and the Instant Data Analysis method (Kjeldskov et al. 2004). The method is intended to bridge the gap between small scale...... internal language design evaluation methods and large scale surveys and quantitative evaluation methods. The method is designed to be applicable even before a compiler or IDE is developed for a new language. To test the method, a usability evaluation experiment was carried out on the Quorum programming...... language (Stefik et al. 2016) using programmers with experience in C and C#. When comparing our results with previous studies of Quorum, most of the data was comparable though not strictly in agreement. However, the discrepancies were mainly related to the programmers pre-existing expectations...

  16. Methods Developed by the Tools for Engine Diagnostics Task to Monitor and Predict Rotor Damage in Real Time

    Science.gov (United States)

    Baaklini, George Y.; Smith, Kevin; Raulerson, David; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Brasche, Lisa

    2003-01-01

    Tools for Engine Diagnostics is a major task in the Propulsion System Health Management area of the Single Aircraft Accident Prevention project under NASA s Aviation Safety Program. The major goal of the Aviation Safety Program is to reduce fatal aircraft accidents by 80 percent within 10 years and by 90 percent within 25 years. The goal of the Propulsion System Health Management area is to eliminate propulsion system malfunctions as a primary or contributing factor to the cause of aircraft accidents. The purpose of Tools for Engine Diagnostics, a 2-yr-old task, is to establish and improve tools for engine diagnostics and prognostics that measure the deformation and damage of rotating engine components at the ground level and that perform intermittent or continuous monitoring on the engine wing. In this work, nondestructive-evaluation- (NDE-) based technology is combined with model-dependent disk spin experimental simulation systems, like finite element modeling (FEM) and modal norms, to monitor and predict rotor damage in real time. Fracture mechanics time-dependent fatigue crack growth and damage-mechanics-based life estimation are being developed, and their potential use investigated. In addition, wireless eddy current and advanced acoustics are being developed for on-wing and just-in-time NDE engine inspection to provide deeper access and higher sensitivity to extend on-wing capabilities and improve inspection readiness. In the long run, these methods could establish a base for prognostic sensing while an engine is running, without any overt actions, like inspections. This damage-detection strategy includes experimentally acquired vibration-, eddy-current- and capacitance-based displacement measurements and analytically computed FEM-, modal norms-, and conventional rotordynamics-based models of well-defined damages and critical mass imbalances in rotating disks and rotors.

  17. Evaluation of moisture damage in asphalt concrete with CRM motorcycle tire waste passing #50 sieve size

    Science.gov (United States)

    Siswanto, Henri; Supriyanto, Bambang; Pranoto, Pranoto; Chandra, Pria Rizky; Hakim, Arief Rahman

    2017-09-01

    The objective of this experimental research is to evaluate moisture damage in Asphalt Concrete (AC) with Crumb Rubber Modified (CRM) motorcycle tire waste passing #50 and retaining #100 sieve size. Two gradations were used in this research, the first gradation is usual for asphalt concrete base (ACB) and the second gradation is for asphalt concrete wearing course (ACWC). Marshall testing apparatus was used for testing the Marshall specimens. Seven levels of CRM content were used, namely 0%, 0.5%, 1%, 1.5%, 3%, 4.5% and 6% by weight of mixtures. Retained stability represent the level of moisture damage of AC pavement. The result indicates that addition CRM to the AC mixture increases their the stability to a maximum value and subsequent addition decrease the stability. The addition CRM to AC decreases their moisture damage susceptibility. AC with 1% CRM is the best asphalt-CRM mix.

  18. An Improved Method of Parameter Identification and Damage Detection in Beam Structures under Flexural Vibration Using Wavelet Multi-Resolution Analysis

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Ravanfar

    2015-09-01

    Full Text Available This paper reports on a two-step approach for optimally determining the location and severity of damage in beam structures under flexural vibration. The first step focuses on damage location detection. This is done by defining the damage index called relative wavelet packet entropy (RWPE. The damage severities of the model in terms of loss of stiffness are assessed in the second step using the inverse solution of equations of motion of a structural system in the wavelet domain. For this purpose, the connection coefficient of the scaling function to convert the equations of motion in the time domain into the wavelet domain is applied. Subsequently, the dominant components based on the relative energies of the wavelet packet transform (WPT components of the acceleration responses are defined. To obtain the best estimation of the stiffness parameters of the model, the least squares error minimization is used iteratively over the dominant components. Then, the severity of the damage is evaluated by comparing the stiffness parameters of the identified model before and after the occurrence of damage. The numerical and experimental results demonstrate that the proposed method is robust and effective for the determination of damage location and accurate estimation of the loss in stiffness due to damage.

  19. DNA-damage effect of polycyclic aromatic hydrocarbons from urban area, evaluated in lung fibroblast cultures

    International Nuclear Information System (INIS)

    Calesso Teixeira, Elba; Pra, Daniel; Idalgo, Daniele; Henriques, João Antonio Pêgas; Wiegand, Flavio

    2012-01-01

    This study was designed to biomonitor the effect of PAH extracts from urban areas on the DNA of lung cell cultures. The analyses of the polycyclic aromatic hydrocarbons (PAHs) were performed in atmospheric PM 2.5 and PM 10 collected at three sampling sites with heavy traffic located in the Metropolitan Area of Porto Alegre (MAPA) (Brazil). The concentrations of 16 major PAHs were determined according to EPA. Comet assay on V79 hamster lung cells was chosen for genotoxicity evaluation. Temperature, humidity, and wind speed were recorded. With regard to the damage index, higher levels were reported in the extract of particulate matter samples from the MAPA during the summer. High molecular weight compounds showed correlation with DNA damage frequency and their respective carcinogenicity. - Highlights: ► Cell line V79 was used to assess the effect of PAHs in PM 2.5 and PM 10 from urban area. ► Temperature showed a significant seasonal variation with the level of DNA damage. ► PAHs with higher molecular weight contributed to higher DNA damage levels. - DNA-damage effect of polycyclic aromatic hydrocarbons from urban area, showed difference according to season

  20. Cosmetics Europe compilation of historical serious eye damage/eye irritation in vivo data analysed by drivers of classification to support the selection of chemicals for development and evaluation of alternative methods/strategies: the Draize eye test Reference Database (DRD).

    Science.gov (United States)

    Barroso, João; Pfannenbecker, Uwe; Adriaens, Els; Alépée, Nathalie; Cluzel, Magalie; De Smedt, Ann; Hibatallah, Jalila; Klaric, Martina; Mewes, Karsten R; Millet, Marion; Templier, Marie; McNamee, Pauline

    2017-02-01

    A thorough understanding of which of the effects assessed in the in vivo Draize eye test are responsible for driving UN GHS/EU CLP classification is critical for an adequate selection of chemicals to be used in the development and/or evaluation of alternative methods/strategies and for properly assessing their predictive capacity and limitations. For this reason, Cosmetics Europe has compiled a database of Draize data (Draize eye test Reference Database, DRD) from external lists that were created to support past validation activities. This database contains 681 independent in vivo studies on 634 individual chemicals representing a wide range of chemical classes. A description of all the ocular effects observed in vivo, i.e. degree of severity and persistence of corneal opacity (CO), iritis, and/or conjunctiva effects, was added for each individual study in the database, and the studies were categorised according to their UN GHS/EU CLP classification and the main effect driving the classification. An evaluation of the various in vivo drivers of classification compiled in the database was performed to establish which of these are most important from a regulatory point of view. These analyses established that the most important drivers for Cat 1 Classification are (1) CO mean ≥ 3 (days 1-3) (severity) and (2) CO persistence on day 21 in the absence of severity, and those for Cat 2 classification are (3) CO mean ≥ 1 and (4) conjunctival redness mean ≥ 2. Moreover, it is shown that all classifiable effects (including persistence and CO = 4) should be present in ≥60 % of the animals to drive a classification. As a consequence, our analyses suggest the need for a critical revision of the UN GHS/EU CLP decision criteria for the Cat 1 classification of chemicals. Finally, a number of key criteria are identified that should be taken into consideration when selecting reference chemicals for the development, evaluation and/or validation of alternative methods and

  1. Computational methods for data evaluation and assimilation

    CERN Document Server

    Cacuci, Dan Gabriel

    2013-01-01

    Data evaluation and data combination require the use of a wide range of probability theory concepts and tools, from deductive statistics mainly concerning frequencies and sample tallies to inductive inference for assimilating non-frequency data and a priori knowledge. Computational Methods for Data Evaluation and Assimilation presents interdisciplinary methods for integrating experimental and computational information. This self-contained book shows how the methods can be applied in many scientific and engineering areas. After presenting the fundamentals underlying the evaluation of experiment

  2. A Kriging Model Based Finite Element Model Updating Method for Damage Detection

    Directory of Open Access Journals (Sweden)

    Xiuming Yang

    2017-10-01

    Full Text Available Model updating is an effective means of damage identification and surrogate modeling has attracted considerable attention for saving computational cost in finite element (FE model updating, especially for large-scale structures. In this context, a surrogate model of frequency is normally constructed for damage identification, while the frequency response function (FRF is rarely used as it usually changes dramatically with updating parameters. This paper presents a new surrogate model based model updating method taking advantage of the measured FRFs. The Frequency Domain Assurance Criterion (FDAC is used to build the objective function, whose nonlinear response surface is constructed by the Kriging model. Then, the efficient global optimization (EGO algorithm is introduced to get the model updating results. The proposed method has good accuracy and robustness, which have been verified by a numerical simulation of a cantilever and experimental test data of a laboratory three-story structure.

  3. Evaluation of sensitization and corrosive damages of the weldment for SUS 316 stainless steel

    International Nuclear Information System (INIS)

    Na, Eui Gyun

    2013-01-01

    The anodic polarization method was verified to be suitable for evaluating the degree of sensitization for the weldment of stainless steel at the passive region. Heat treated weldment and parent are more sensitized than untreated weldments and parents. Specifically, weldments treated at 730 .deg. C with a 4 h holding time and then cooled in a furnace are the most sensitized. An unstable passive film formed on the surface of the heated-treated weldment because of the Cr-depletion zone at the passive region. The time to failure (TTF) for the parent in synthetic seawater requires a longer amount of time than that in air. However, the TTF for the weldment is shorter than that in air. The heat treated-weldment in a corrosive environment was the most severely damaged among the specimens. For the heat-treated weldment, most acoustic emission (AE) counts were emitted until 4 x 10 5 s, whereas those for the untreated weldment were produced over the elastic-plastic deformation range. Moreover, the number of AE counts per hour for the heat- treated weldments and parents decreased considerably compared with the untreated weldments and parents

  4. Analysis of foot structural damage in rheumatoid arthritis: clinical evaluation by validated measures and serological correlations

    Directory of Open Access Journals (Sweden)

    E. Bartoloni Bocci

    2011-06-01

    Full Text Available Objective: To examine foot involvement in rheumatoid arthritis (RA and to characterize structural alterations in patients with anti-cyclic citrullinated peptide (CCP antibody-positive and -negative disease. Methods: Seventy-eight patients with RA with foot pain were consecutively enrolled. The Manchester Hallux Valgus (MHV rating scale was used to evaluate the hallux valgus deformity degree. The Foot Posture Index (FPI6, a novel, foot-specific outcome measure, was adopted in order to quantify variation in the position of the foot. The findings were correlated with disease duration and presence or absence of anti-CCP antibodies. Results: About 84.6% patients had different degrees of hallux valgus and 65.4% subjects had a pronated foot. These two foot alterations were prevalently found in patients with long-standing disease and circulating anti-CCP antibodies. On the contrary, RA patients without anti-CCP and early disease essentially displayed a supinated foot without relevant hallux valgus deformity. Conclusion: Our findings allowed to identify different anatomic foot alterations in RA patients according to disease duration and negative prognostic factors such as anti-CCP antibodies. Our findings support the role of an accurate analysis of foot structural damage and may suggest the usefulness of a correct plantar orthosis prescription also in early phases of the disease.

  5. Evaluation of nitrate destruction methods

    International Nuclear Information System (INIS)

    Taylor, P.A.; Kurath, D.E.; Guenther, R.

    1993-01-01

    A wide variety of high nitrate-concentration aqueous mixed [radioactive and Resource Conservation and Recovery Act (RCRA) hazardous] wastes are stored at various US Department of Energy (DOE) facilities. These wastes will ultimately be solidified for final disposal, although the waste acceptance criteria for the final waste form is still being determined. Because the nitrates in the wastes will normally increase the volume or reduce the integrity of all of the waste forms under consideration for final disposal, nitrate destruction before solidification of the waste will generally be beneficial. This report describes and evaluates various technologies that could be used to destroy the nitrates in the stored wastes. This work was funded by the Department of Energy's Office of Technology Development, through the Chemical/Physical Technology Support Group of the Mixed Waste Integrated Program. All the nitrate destruction technologies will require further development work before a facility could be designed and built to treat the majority of the stored wastes. Several of the technologies have particularly attractive features: the nitrate to ammonia and ceramic (NAC) process produces an insoluble waste form with a significant volume reduction, electrochemical reduction destroys nitrates without any chemical addition, and the hydrothermal process can simultaneously treat nitrates and organics in both acidic and alkaline wastes. These three technologies have been tested using lab-scale equipment and surrogate solutions. At their current state of development, it is not possible to predict which process will be the most beneficial for a particular waste stream

  6. The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes

    International Nuclear Information System (INIS)

    Güney, D; Aydin, E; Öztürk, B

    2015-01-01

    On March 8 th , 2010 Karakocan-Elazig earthquake of magnitude 6.0 occurred at a region where masonry and adobe construction is very common. Karakocan-Elazig is located in a high seismicity region on Eastern Anatolian Fault System (EAFS). Due to the earthquake, 42 people were killed and 14’113 buildings were damaged. Another city, Van located at South east of Turkey is hit by earthquakes with M = 7.2 occurred on October 23 rd , 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanli village) and M = 5.6 on November 9 th , 2011 with an epicenter near the town of Edremit, south of Van and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 10’000 buildings were seriously damaged. There are many traditional types of structures existing in the region hit by earthquakes (both Van and Elazig). These buildings were built as adobe, unreinforced masonry or mixed type. These types of buildings are very common in rural areas (especially south and east) of Turkey because of easy workmanship and cheap construction cost. Many of those traditional type structures experienced serious damages. The use of masonry is very common in some of the world's most hazard-prone regions, such as in Latin America, Africa, the Indian subcontinent and other parts of Asia, the Middle East, and southern Europe. Based on damage and failure mechanism of those buildings, the parameters affecting the seismic performance of those traditional buildings are analyzed in this paper. The foundation type, soil conditions, production method of the masonry blocks, construction method, the geometry of the masonry walls, workmanship quality, existence of wooden beams, type of roof, mortar between adobe blocks are studied in order to understand the reason of damage for these types of buildings. (paper)

  7. The evaluation of damage mechanism of unreinforced masonry buildings after Van (2011) and Elazig (2010) Earthquakes

    Science.gov (United States)

    Güney, D.; Aydin, E.; Öztürk, B.

    2015-07-01

    On March 8th, 2010 Karakocan-Elazig earthquake of magnitude 6.0 occurred at a region where masonry and adobe construction is very common. Karakocan-Elazig is located in a high seismicity region on Eastern Anatolian Fault System (EAFS). Due to the earthquake, 42 people were killed and 14’113 buildings were damaged. Another city, Van located at South east of Turkey is hit by earthquakes with M = 7.2 occurred on October 23rd, 2011 at 13:41 (local time), whose epicenter was about 16 km north of Van (Tabanli village) and M = 5.6 on November 9th, 2011 with an epicenter near the town of Edremit, south of Van and caused the loss of life and heavy damages. Both earthquakes killed 644 people and 2608 people were injured. Approximately 10’000 buildings were seriously damaged. There are many traditional types of structures existing in the region hit by earthquakes (both Van and Elazig). These buildings were built as adobe, unreinforced masonry or mixed type. These types of buildings are very common in rural areas (especially south and east) of Turkey because of easy workmanship and cheap construction cost. Many of those traditional type structures experienced serious damages. The use of masonry is very common in some of the world's most hazard-prone regions, such as in Latin America, Africa, the Indian subcontinent and other parts of Asia, the Middle East, and southern Europe. Based on damage and failure mechanism of those buildings, the parameters affecting the seismic performance of those traditional buildings are analyzed in this paper. The foundation type, soil conditions, production method of the masonry blocks, construction method, the geometry of the masonry walls, workmanship quality, existence of wooden beams, type of roof, mortar between adobe blocks are studied in order to understand the reason of damage for these types of buildings.

  8. Safety evaluations required in the safety regulations for Monju and the validity confirmation of safety evaluation methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purposes of this study are to perform the safety evaluations of the fast breeder reactor 'Monju' and to confirm the validity of the safety evaluation methods. In JFY 2012, the following results were obtained. As for the development of safety evaluation methods needed in the safety examination achieved for the reactor establishment permission, development of the analysis codes, such as a core damage analysis code, were carried out according to the plan. As for the development of the safety evaluation method needed for the risk informed safety regulation, the quantification technique of the event tree using the Continuous Markov chain Monte Carlo method (CMMC method) were studied. (author)

  9. Investigation method of torsional properties and damages of glass/epoxy composite pipes

    Directory of Open Access Journals (Sweden)

    Putić Slaviša S.

    2006-01-01

    Full Text Available Pipes made of composites glass fiber/epoxy resin are predominantly used in the chemical industry, construction, infrastructure and war technique. The pipes made for this purpose are in their use exposed to static and dynamic loading. Depending on the purpose, the pipes, especially those in complex structures, can be loaded by torsion. In that case, exceeding allowed tensions can cause damages such as cracking the fibers and matrix delamination. These damages can lead to the appearance of cracks on the pipes and in many cases to complete breakage of the pipe. Because of this, it is very important to evaluate composite pipes exposed to torsion and find out in which way the construction is weakened, what actually is the main goal of this paper.

  10. A method of modeling time-dependent rock damage surrounding underground excavations in multiphase groundwater flow

    International Nuclear Information System (INIS)

    Christian-Frear, T.; Freeze, G.

    1997-01-01

    Underground excavations produce damaged zones surrounding the excavations which have disturbed hydrologic and geomechanical properties. Prediction of fluid flow in these zones must consider both the mechanical and fluid flow processes. Presented here is a methodology which utilizes a mechanical model to predict damage and disturbed rock zone (DRZ) development around the excavation and then uses the predictions to develop time-dependent DRZ porosity relationships. These relationships are then used to adjust the porosity of the DRZ in the fluid flow model based upon the time and distance from the edge of the excavation. The application of this methodology is presented using a site-specific example from the Waste Isolation Pilot Plant, a US Department of Energy facility in bedded salts being evaluated for demonstration of the safe underground disposal of transuranic waste from US defense-related activities

  11. Development of an ultrasonic nondestructive inspection method for impact damage detection in composite aircraft structures

    Science.gov (United States)

    Capriotti, M.; Kim, H. E.; Lanza di Scalea, F.; Kim, H.

    2017-04-01

    High Energy Wide Area Blunt Impact (HEWABI) due to ground service equipment can often occur in aircraft structures causing major damages. These Wide Area Impact Damages (WAID) can affect the internal components of the structure, hence are usually not visible nor detectable by typical one-sided NDE techniques and can easily compromise the structural safety of the aircraft. In this study, the development of an NDI method is presented together with its application to impacted aircraft frames. The HEWABI from a typical ground service scenario has been previously tested and the desired type of damages have been generated, so that the aircraft panels could become representative study cases. The need of the aircraft industry for a rapid, ramp-friendly system to detect such WAID is here approached with guided ultrasonic waves (GUW) and a scanning tool that accesses the whole structure from the exterior side only. The wide coverage of the specimen provided by GUW has been coupled to a differential detection approach and is aided by an outlier statistical analysis to be able to inspect and detect faults in the challenging composite material and complex structure. The results will be presented and discussed with respect to the detection capability of the system and its response to the different damage types. Receiving Operating Characteristics curves (ROC) are also produced to quantify and assess the performance of the proposed method. Ongoing work is currently aimed at the penetration of the inner components of the structure, such as shear ties and C-frames, exploiting different frequency ranges and signal processing techniques. From the hardware and tool development side, different transducers and coupling methods, such as air-coupled transducers, are under investigation together with the design of a more suitable scanning technique.

  12. SU-E-T-168: Evaluation of Normal Tissue Damage in Head and Neck Cancer Treatments

    International Nuclear Information System (INIS)

    Ai, H; Zhang, H

    2014-01-01

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant that represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients

  13. Methods for evaluating imaging methods of limited reproducibility

    International Nuclear Information System (INIS)

    Krummenauer, F.

    2005-01-01

    Just like new drugs, new or modified imaging methods must be subjected to objective clinical tests, including tests on humans. In this, it must be ensured that the principle of Good Clinical Practice (GCP) are followed with regard to medical, administrative and methodical quality. Innovative methods fo clinical epidemiology and medical biometry should be applied from the planning stage to the final statistical evaluation. The author presents established and new methods for planning, evaluation and reporting of clinical tests of diagnostic methods, and especially imaging methods, in clinical medicine and illustrates these by means of current research projects in the various medical disciplines. The strategies presented are summarized in a recommendation based on the concept of phases I - IV of clinical drug testing in order to enable standardisation of the clinical evaluation of imaging methods. (orig.)

  14. Evaluation of radioinduced damage and repair capacity in blood lymphocytes of breast cancer patients

    Directory of Open Access Journals (Sweden)

    P.A. Nascimento

    2001-02-01

    Full Text Available Genetic damage caused by ionizing radiation and repair capacity of blood lymphocytes from 3 breast cancer patients and 3 healthy donors were investigated using the comet assay. The comets were analyzed by two parameters: comet tail length and visual classification. Blood samples from the donors were irradiated in vitro with a 60Co source at a dose rate of 0.722 Gy/min, with a dose range of 0.2 to 4.0 Gy and analyzed immediately after the procedure and 3 and 24 h later. The basal level of damage and the radioinduced damage were higher in lymphocytes from breast cancer patients than in lymphocytes from healthy donors. The radioinduced damage showed that the two groups had a similar response when analyzed immediately after the irradiations. Therefore, while the healthy donors presented a considerable reduction of damage after 3 h, the patients had a higher residual damage even 24 h after exposure. The repair capacity of blood lymphocytes from the patients was slower than that of lymphocytes from healthy donors. The possible influence of age, disease stage and mutations in the BRCA1 and BRCA2 genes are discussed. Both parameters adopted proved to be sensitive and reproducible: the dose-response curves for DNA migration can be used not only for the analysis of cellular response but also for monitoring therapeutic interventions. Lymphocytes from the breast cancer patients presented an initial radiosensitivity similar to that of healthy subjects but a deficient repair mechanism made them more vulnerable to the genotoxic action of ionizing radiation. However, since lymphocytes from only 3 patients and 3 normal subjects were analyzed in the present paper, additional donors will be necessary for a more accurate evaluation.

  15. Evaluation of Bulk and Surface Radiation Damage of Silicon Sensors for the ATLAS Upgrade

    CERN Document Server

    Mikeštíková, Marcela; Št'astný, Jan

    2015-01-01

    The electrical characteristics of different types of end-cap miniature n + -in- p strip sensors, ATLAS12A, were evaluated in Institute of Physics in Prague before and after proton and gamma irradiation. We report here on the bulk damage aspects, including the increase of leakage current and evaluation of the full depletion voltage and the surface damage, including the decrease of inter-strip resistance, changes in inter-strip capacitance and the effectiveness of punch-through protection structure. It was verified that different geometries of end-cap sensors do not influence their stability; the sensors should provide acceptable strip isolation and n ew gate PTP structure functions well even at the highest tested proton fluence 2× 10 15 n eq / cm 2

  16. Preliminary evaluation of the expected radiation damage of the bayonet IFMIF back-plate

    Energy Technology Data Exchange (ETDEWEB)

    Frisoni, M. [Athena s.a.s, Via del Battiferro 3, I-40129 Bologna (Italy)], E-mail: manuela.frisoni@enea.it; Agostini, P. [ENEA CR Brasimone, Bacino del Brasimone 40032, Camugnano (Bolivia, Plurinational State of) (Italy); Fasanella, D. [Athena s.a.s, Via del Battiferro 3, I-40129 Bologna (Italy); Micciche, G. [ENEA CR Brasimone, Bacino del Brasimone 40032, Camugnano (Bolivia, Plurinational State of) (Italy)

    2009-06-15

    This paper summarises and discusses the results of a preliminary damage assessment of the non-seizure coating of the bayonet IFMIF back-plate. Neutron-induced kerma factors, dpa and gas production cross sections libraries were produced in a multigroup structure for neutron energies up to 60 MeV, by processing evaluated nuclear data files with NJOY-99.259 system. The material damage evaluations in terms of heat deposition, displacement and gas production rates were calculated using these libraries and compared with the values obtained using the data contained in the pointwise ACE format files of MCNP5 code package. The calculations were performed with MCNP5 code both using the McEnea and the McDelicious neutron source models to reproduce the energy-angle distributions of the neutrons produced in IFMIF d-Li interactions.

  17. Optimizing Usability Studies by Complementary Evaluation Methods

    NARCIS (Netherlands)

    Schmettow, Martin; Bach, Cedric; Scapin, Dominique

    2014-01-01

    This paper examines combinations of complementary evaluation methods as a strategy for efficient usability problem discovery. A data set from an earlier study is re-analyzed, involving three evaluation methods applied to two virtual environment applications. Results of a mixed-effects logistic

  18. Evaluation of gamma radiation induced genetic damage in the fish Cyprinus carpio using comet assay

    International Nuclear Information System (INIS)

    Praveen Kumar, M.K.; Shyama, S.K.; Bhagat, S.S.; Chaubey, R.C.

    2013-01-01

    Radionuclides released from various sources including the industries, as well as, accidental release during a nuclear disaster can contaminate inland water bodies. Suitable bio-monitoring methods/biomarkers are the need of the day to assess the impact of high/low levels of radiation exposure in aquatic environment. Fishes are very important as a group of ecologically and commercially important non-human biota and are often used as a bioindicators of aquatic pollution. Present work was carried out to assess the genotoxic effect of gamma radiation on fresh water fish Cyprinus carpio (common carp) in vivo using comet assay. Fishes were irradiated with 2, 4, 6, 8 and 10 Gy of gamma rays using a teletherapy machine and comet assay was performed on nucleated erythrocytes after 24, 48 and 72 h of irradiation . A significant increase in % tail DNA was observed at all the doses of gamma radiation as compared to controls indicating radiation induced DNA damage in a dose-dependent manner. Maximum % tail DNA was observed at 24 h which gradually declined till 72 h, in a time-dependent manner. This decrease in damage may indicate repair of the damaged DNA and or loss of heavily damaged cells, over a period of time. The study reveals that the comet assay may be used as a sensitive and rapid method to detect genotoxicity of gamma radiation and other environmental pollutants in sentinel species. (author)

  19. Non-Destructive Evaluation Method Based On Dynamic Invariant Stress Resultants

    Directory of Open Access Journals (Sweden)

    Zhang Junchi

    2015-01-01

    Full Text Available Most of the vibration based damage detection methods are based on changes in frequencies, mode shapes, mode shape curvature, and flexibilities. These methods are limited and typically can only detect the presence and location of damage. Current methods seldom can identify the exact severity of damage to structures. This paper will present research in the development of a new non-destructive evaluation method to identify the existence, location, and severity of damage for structural systems. The method utilizes the concept of invariant stress resultants (ISR. The basic concept of ISR is that at any given cross section the resultant internal force distribution in a structural member is not affected by the inflicted damage. The method utilizes dynamic analysis of the structure to simulate direct measurements of acceleration, velocity and displacement simultaneously. The proposed dynamic ISR method is developed and utilized to detect the damage of corresponding changes in mass, damping and stiffness. The objectives of this research are to develop the basic theory of the dynamic ISR method, apply it to the specific types of structures, and verify the accuracy of the developed theory. Numerical results that demonstrate the application of the method will reflect the advanced sensitivity and accuracy in characterizing multiple damage locations.

  20. Empirical evaluation methods in computer vision

    CERN Document Server

    Christensen, Henrik I

    2002-01-01

    This book provides comprehensive coverage of methods for the empirical evaluation of computer vision techniques. The practical use of computer vision requires empirical evaluation to ensure that the overall system has a guaranteed performance. The book contains articles that cover the design of experiments for evaluation, range image segmentation, the evaluation of face recognition and diffusion methods, image matching using correlation methods, and the performance of medical image processing algorithms. Sample Chapter(s). Foreword (228 KB). Chapter 1: Introduction (505 KB). Contents: Automate

  1. A time reversal damage imaging method for structure health monitoring using Lamb waves

    International Nuclear Information System (INIS)

    Zhang Hai-Yan; Cao Ya-Ping; Sun Xiu-Li; Chen Xian-Hua; Yu Jian-Bo

    2010-01-01

    This paper investigates the Lamb wave imaging method combining time reversal for health monitoring of a metallic plate structure. The temporal focusing effect of the time reversal Lamb waves is investigated theoretically. It demonstrates that the focusing effect is related to the frequency dependency of the time reversal operation. Numerical simulations are conducted to study the time reversal behaviour of Lamb wave modes under broadband and narrowband excitations. The results show that the reconstructed time reversed wave exhibits close similarity to the reversed narrowband tone burst signal validating the theoretical model. To enhance the similarity, the cycle number of the excited signal should be increased. Experiments combining finite element model are then conducted to study the imaging method in the presence of damage like hole in the plate structure. In this work, the time reversal technique is used for the recompression of Lamb wave signals. Damage imaging results with time reversal using broadband and narrowband excitations are compared to those without time reversal. It suggests that the narrowband excitation combined time reversal can locate and determine the size of structural damage more precisely, but the cycle number of the excited signal should be chosen reasonably

  2. A damage cumulation method for crack initiation prediction under non proportional loading and overloading

    International Nuclear Information System (INIS)

    Taheri, S.

    1992-04-01

    For a sequence of constant amplitude cyclic loading containing overloads, we propose a method for damage cumulation in non proportional loading. This method uses as data cyclic stabilized states at non proportional loading and initiation or fatigue curve in uniaxial case. For that, we take into account the dependence of Cyclic Strain Stress Curves (C.S.S.C.) and mean cell size on prehardening and we define a stabilized uniaxial state cyclically equivalent to a non proportional stabilized state through a family of C.S.S.C. Although simple assumptions like linear damage function and linear cumulation is used we obtain a sequence effect for difficult cross slip materials as 316 stainless steel, but the Miner rule for easy cross-slip materials. We show then differences between a load-controlled test and a strain controlled test: for a 316 stainless steel in a load controlled test, the non proportional loading at each cycle is less damaging than the uniaxial one for the same equivalent stress, while the result is opposite in a strain controlled test. We show also that an overloading retards initiation in a load controlled test while it accelerates initiation in a strain controlled test. (author). 26 refs., 8 figs

  3. Validation of a new multiaxial criteria for creep-fatigue damage evaluation

    International Nuclear Information System (INIS)

    Cabrillat, M.T.; Martin, P.

    1989-01-01

    For many years, design codes evaluated creep damage using the Von Mises criterion to take account of multiaxiality of stresses. However, recent studies have confirmed that the Von Mises criterion is overconservative for nonuniaxial stress state. Various criteria have been put forward to take account of the real stress state. This paper describes a criterion which was introduced in 1987 and the various studies which led to its adoption

  4. Evaluation of damages of airplane crash in European Advanced Boiling Water Reactor (EU-ABWR)

    International Nuclear Information System (INIS)

    Kamei, Kazuhiro; Tanoue, Tetsuharu; Kataoka, Kazuyoshi; Jimbo, Masakazu

    2011-01-01

    European Advanced Boiling Water Reactor (EU-ABWR) is developed by Toshiba. EU-ABWR accommodates an armored reactor building against Airplane Crash (APC), severe accident mitigation systems, N+2 principle in safety systems and a large output of 1600 MWe. Thanks to above mentioned features, EU-ABWR's design objectives and principles are consistent with safety requirements in an European market. In this paper, evaluation of damages induced by APC has been summarized. (author)

  5. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue. Separate abstracts have been indexed for articles from this report.

  6. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments

    DEFF Research Database (Denmark)

    Skovgård Olsen, Anders; Zhou, Qianqian; Linde, Jens Jørgen

    2015-01-01

    Estimating the expected annual damage (EAD) due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how vulnerable it is to flood risk and how much can be gained by implementing e.g., climate change...... adaptation measures. This study identifies and compares three different methods for estimating the EAD based on unit costs of flooding of urban assets. One of these methods was used in previous studies and calculates the EAD based on a few extreme events by assuming a log-linear relationship between cost...... of an event and the corresponding return period. This method is compared to methods that are either more complicated or require more calculations. The choice of method by which the EAD is calculated appears to be of minor importance. At all three case study areas it seems more important that there is a shift...

  7. Tomography reconstruction methods for damage diagnosis of wood structure in construction field

    Science.gov (United States)

    Qiu, Qiwen; Lau, Denvid

    2018-03-01

    The structural integrity of wood building element plays a critical role in the public safety, which requires effective methods for diagnosis of internal damage inside the wood body. Conventionally, the non-destructive testing (NDT) methods such as X-ray computed tomography, thermography, radar imaging reconstruction method, ultrasonic tomography, nuclear magnetic imaging techniques, and sonic tomography have been used to obtain the information about the internal structure of wood. In this paper, the applications, advantages and disadvantages of these traditional tomography methods are reviewed. Additionally, the present article gives an overview of recently developed tomography approach that relies on the use of mechanical and electromagnetic waves for assessing the structural integrity of wood buildings. This developed tomography reconstruction method is believed to provide a more accurate, reliable, and comprehensive assessment of wood structural integrity

  8. Evaluation of seismic damage to bridges and highway systems in Shelby County, Tennessee

    Science.gov (United States)

    Jernigan, John Bailey

    Past earthquakes have demonstrated that bridges are one of the most vulnerable components of highway transportation systems. In addition to bridges, roadways may also be subject to damage, particularly in an area prone to earthquake-induced liquefaction. As a consequence, the highway transportation systems after an earthquake might be impaired and the post-earthquake emergency response might be compromised. Furthermore, the impact on the regional economy might be very significant from the damage to highway systems. Since highway transportation systems are critical lifelines for people living in an urban area, it is important to evaluate the vulnerability of bridges and highway systems in earthquake-prone regions. Memphis and Shelby County, Tennessee are located close to the southwestern segment of the New Madrid seismic zone (NMSZ). This zone produced three of the largest earthquakes in North America in 1811--1812. Presently, the NMSZ is still active and is considered by engineers, seismologists, and public officials as the most hazardous seismic zone in the central and eastern United States. Bridges in the Memphis area were generally not designed for seismic resistance until 1990. Therefore, the majority of existing bridges might suffer damage from earthquakes occurring in the NMSZ. The overall objective of this study is to evaluate the expected damage to bridges and roadways on the major routes in Memphis and Shelby County resulting from New Madrid earthquakes with the aid of geographic information system (GIS) technology. The road network selected for this study includes all the Interstate highway system, all the primary and secondary routes maintained by the state, and most of the major arterial routes. There are 452 bridges on the selected roadway systems and data pertinent to these bridges and roadway systems were collected and implemented as a GIS database. The bridges in the Memphis area were classified into several types and damage states were determined

  9. Thermal load non-uniformity estimation for superheater tube bundle damage evaluation

    Directory of Open Access Journals (Sweden)

    Naď Martin

    2018-01-01

    Full Text Available Industrial boiler damage is a common phenomenon encountered in boiler operation which usually lasts several decades. Since boiler shutdown may be required because of localized failures, it is crucial to predict the most vulnerable parts. If damage occurs, it is necessary to perform root cause analysis and devise corrective measures (repairs, design modifications, etc.. Boiler tube bundles, such as those in superheaters, preheaters and reheaters, are the most exposed and often the most damaged boiler parts. Both short-term and long-term overheating are common causes of tube failures. In these cases, the design temperatures are exceeded, which often results in decrease of remaining creep life. Advanced models for damage evaluation require temperature history, which is available only in rare cases when it has been measured and recorded for the whole service life. However, in most cases it is necessary to estimate the temperature history from available operation history data (inlet and outlet pressures and temperatures etc.. The task may be very challenging because of the combination of complex flow behaviour in the flue gas domain and heat transfer phenomena. This paper focuses on estimating thermal load non-uniformity on superheater tubes via Computational Fluid Dynamics (CFD simulation of flue gas flow including heat transfer within the domain consisting of a furnace and a part of the first stage of the boiler.

  10. Damage Evaluation of Critical Components of Tilted Support Spring Nonlinear System under a Rectangular Pulse

    Directory of Open Access Journals (Sweden)

    Ningning Duan

    2015-01-01

    Full Text Available Dimensionless nonlinear dynamical equations of a tilted support spring nonlinear packaging system with critical components were obtained under a rectangular pulse. To evaluate the damage characteristics of shocks to packaged products with critical components, a concept of the damage boundary surface was presented and applied to a titled support spring system, with the dimensionless critical acceleration of the system, the dimensionless critical velocity, and the frequency parameter ratio of the system taken as the three basic parameters. Based on the numerical results, the effects of the frequency parameter ratio, the mass ratio, the dimensionless peak pulse acceleration, the angle of the system, and the damping ratio on the damage boundary surface of critical components were discussed. It was demonstrated that with the increase of the frequency parameter ratio, the decrease of the angle, and/or the increase of the mass ratio, the safety zone of critical components can be broadened, and increasing the dimensionless peak pulse acceleration or the damping ratio may lead to a decrease of the damage zone for critical components. The results may lead to a thorough understanding of the design principles for the tilted support spring nonlinear system.

  11. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    International Nuclear Information System (INIS)

    Kwon, Oh Yang; Kim, Tae Hyun

    1999-01-01

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  12. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyun; Kwon Oh Yang [Dept. of Mechanical Engineering, Inje Univesity, Kimhae (Korea, Republic of)

    1999-05-15

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E{sub 0}) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  13. A Real-time Evaluation Technique of Fatigue Damage in Adhesively Bonded Composite-Metal Joints

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Oh Yang; Kim, Tae Hyun [Inha University, Incheon (Korea, Republic of)

    1999-12-15

    One of the problems for practical use of fiber-reinforced plastics is the performance degradation by fatigue damage in the joints. The study is to develop a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between the qualify of bonded parts and AUP's. We obtained a curve showing the correlation between the degree of fatigue damage and AUP's calculated from signals acquired during fatigue loading of single-lap and double-lap joints of CFRP and Al6061. The curve is an analogy to the one showing stiffness reduction (E/Eo) of polymer matrix composites by fatigue damage. From those facts, it is plausible to predict the degree of fatigue damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joints whereas Amplitude and AUP2 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the application for real structures

  14. A real time evaluation technique of fatigue damage in adhesively bonded composite metal joints

    International Nuclear Information System (INIS)

    Kim, Tae Hyun; Kwon Oh Yang

    1999-01-01

    One of the problems for practical use of fiber-reinforced composite material is performance degradation by fatigue damage in the joints. The study is to develope a nondestructive technique for real-time evaluation of adhesively bonded composite-metal joints. From the prior study we confirmed that the bonding strength can be estimated from the correlation between quality of bonded parts and AUP's. We obtained a curve showing the correlation between AUP's calculated from signals obtained from single-lap and double-lap joints and the degree of fatigue damage at bonding interface during fatigue test. The curve is an analogy to the one showing stiffness reduction(E/E 0 ) of polymer matrix composites by fatigue damage. From those facts, it is possible to predict degree of damage in real-time. Amplitude and AUP2 appeared to be optimal parameters to provide more reliable results for single-lap joint whereas amplitude and AUP1 did for double-lap joints. It is recommended to select optimal parameters for different geometries in the real structure.

  15. Evaluation of roadside greenbelt trees damage caused by strangler plants in Bogor

    Science.gov (United States)

    Danniswari, Dibyanti; Nasrullah, Nizar

    2017-10-01

    Certain plants are called stranglers (hemiepiphyte) because they grow on host trees and slowly choking the host, which often results in the host’s death. The existence of strangler plants on roadside greenbelt trees is quite common in Bogor, but they may cause tree’s failure and threaten users’ safety. To prevent such hazard, evaluation of roadside greenbelt trees damage caused by strangler plants is important. This study was directed to analyse the vegetation of strangler plants in Bogor, to assess the damage caused by stranglers, and to compose strangled trees maintenance recommendations. This study was conducted in March to May 2014 by doing survey at five major roads in Bogor, which were Jalan Ahmad Yani, Jalan Sudirman, Jalan Pemuda, Jalan Semeru, and Jalan Juanda. The results showed that strangler species found in Bogor are Ficus benjamina, Ficus glauca, Ficus elastica, and Schefflera actinophylla. The most common species in Bogor is F. benjamina. Host trees that tend to be preferred by strangler plants are trees with large trunk, many branches, and medium to high height. The maintenance for every strangled tree is different according to the damage level, mild to severe damage could be treated by strangler root cutting to tree logging, respectively.

  16. Challenges in Using Mix Methods in Evaluation

    OpenAIRE

    Stefan COJOCARU

    2010-01-01

    This article explores the debates between quantitative and qualitative methods in the evaluation process, analyzes the challenges about methodological mix in terms of credibility and validity of data and tools, and the evaluation findings. Beyond the epistemological contradictions, it seems that, in terms of usefulness, the mixing of methods is a practical solution, along with hybrids theories, able to provide information to improve the sufficiency of the program. Mixing methods is also a wa...

  17. Evaluation methods for neutron cross section standards

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1980-01-01

    Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables

  18. A New Quantitative Method for the Non-Invasive Documentation of Morphological Damage in Paintings Using RTI Surface Normals

    Directory of Open Access Journals (Sweden)

    Marcello Manfredi

    2014-07-01

    Full Text Available In this paper we propose a reliable surface imaging method for the non-invasive detection of morphological changes in paintings. Usually, the evaluation and quantification of changes and defects results mostly from an optical and subjective assessment, through the comparison of the previous and subsequent state of conservation and by means of condition reports. Using quantitative Reflectance Transformation Imaging (RTI we obtain detailed information on the geometry and morphology of the painting surface with a fast, precise and non-invasive method. Accurate and quantitative measurements of deterioration were acquired after the painting experienced artificial damage. Morphological changes were documented using normal vector images while the intensity map succeeded in highlighting, quantifying and describing the physical changes. We estimate that the technique can detect a morphological damage slightly smaller than 0.3 mm, which would be difficult to detect with the eye, considering the painting size. This non-invasive tool could be very useful, for example, to examine paintings and artwork before they travel on loan or during a restoration. The method lends itself to automated analysis of large images and datasets. Quantitative RTI thus eases the transition of extending human vision into the realm of measuring change over time.

  19. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings. Revised

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1999-01-01

    A noncontact technique is described that uses atomic oxygen, generated under low pressure in the presence of nitrogen, to remove soot and charred varnish from the surface of a painting. The process, which involves surface oxidation, permits control of the amount of surface material removed. The effectiveness of the process was evaluated by reflectance measurements from selected areas made during the removal of soot from acrylic gesso, ink on paper, and varnished oil paint substrates. For the latter substrate, treatment also involved the removal of damaged varnish and paint binder from the surface.

  20. Geophysical methods for evaluation of plutonic rocks

    International Nuclear Information System (INIS)

    Gibb, R.A.; Scott, J.S.

    1986-04-01

    Geophysical methods are systematically described according to the physical principle and operational mode of each method, the type of information produced, limitations of a technical and/or economic nature, and the applicability of the method to rock-mass evaluation at Research Areas of the Nuclear Fuel Waste Management Program. The geophysical methods fall into three categories: (1) airborne and other reconnaissance surveys, (2) detailed or surface (ground) surveys, and (3) borehole or subsurface surveys. The possible roles of each method in the site-screening and site-evaluation processes of disposal vault site selection are summarized

  1. Evaluation of blast wave damage from very large unconfined vapour cloud explosions

    International Nuclear Information System (INIS)

    Munday, G.

    1975-01-01

    A mathematical model is described for estimating the damage potential from unconfined vapour cloud explosions. An attempt has been made to cover the salient details of the explosive phenomenon including finite flame accelerations and finite vapour cloud sizes. The model has been evaluated against two industrial incidents and the results extrapolated to large-volume vapour clouds. The authors conclude, on the evidence of this model, that great care must be taken in the evaluation of the explosion hazard from the probable occurrence of very large unconfined explosions even at distances in excess of 1 km from the centre of initiation. (author)

  2. Residual Strength Analysisof Asymmetrically Damaged Ship Hull GirderUsing Beam Finite Element Method

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Muis Alie

    2016-04-01

    Full Text Available The objective of the present study is to analyze the residual strength of asymmetrically damaged ship hull girder under longitudinal bending. Beam Finite Element Method isused for the assessment of the residual strength of two single hull bulk carriers (Ship B1 and Ship B4 and a three-cargo-hold model of a single-side Panamax Bulk Carrierin hogging and sagging conditions. The Smith’s  method  is  adopted  and  implemented  into  Beam  Finite  Element Method. An efficient solution procedure is applied; i.e. by assuming the cross section remains plane, the vertical bending moment is applied to the  cross section  and  three-cargo-hold  model. As a fundamental  case,  the  damage is simply  created  by removing the elements from the cross section, neglecting any welding residual stress and initial imperfection. Also no crack  extension  is considered.  The  result  obtained  by  Beam  Finite  Element  Method  so-called Beam-HULLST is compared to the progressive collapse analysis obtained by HULLST for the validation of the present work. Then, for the three-hold-model, the Beam-HULLST is used to investigate the effect of the rotation of the netral axisboth intact and damage condition taking the one and five frame spaces into account. 

  3. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay

    International Nuclear Information System (INIS)

    Praveen Kumar, M.K.; Shyama, S.K.; Sonaye, B.S.; Naik, U Roshini; Kadam, S.B.; Bipin, P.D.; D’costa, A.; Chaubey, R.C.

    2014-01-01

    Highlights: • Possible genotoxic effect of accidental exposure of aquatic fauna to γ radiation. • Relative sensitivity of bivalves to γ radiation is also analyzed using comet assay. • γ radiation induced significant genetic damage in both the species of bivalves. • P. malabarica and M. casta exhibited a similar level of sensitivity to γ radiation. • Comet assay may be used as a biomarker for the environmental biomonitoring. - Abstract: Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of ‘Comet assay’ for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in

  4. Evaluation of γ-radiation-induced DNA damage in two species of bivalves and their relative sensitivity using comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, M.K., E-mail: here.praveen@gmail.com [Department of Zoology, Goa University, Goa 403206 (India); Shyama, S.K., E-mail: skshyama@gmail.com [Department of Zoology, Goa University, Goa 403206 (India); Sonaye, B.S. [Department of Radiation Oncology, Goa Medical College, Goa (India); Naik, U Roshini; Kadam, S.B.; Bipin, P.D.; D’costa, A. [Department of Zoology, Goa University, Goa 403206 (India); Chaubey, R.C. [Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-05-01

    Highlights: • Possible genotoxic effect of accidental exposure of aquatic fauna to γ radiation. • Relative sensitivity of bivalves to γ radiation is also analyzed using comet assay. • γ radiation induced significant genetic damage in both the species of bivalves. • P. malabarica and M. casta exhibited a similar level of sensitivity to γ radiation. • Comet assay may be used as a biomarker for the environmental biomonitoring. - Abstract: Ionizing radiation is known to induce genetic damage in diverse groups of organisms. Under accidental situations, large quantities of radioactive elements get released into the environment and radiation emitted from these radionuclides may adversely affect both the man and the non-human biota. The present study is aimed (a) to know the genotoxic effect of gamma radiation on aquatic fauna employing two species of selected bivalves, (b) to evaluate the possible use of ‘Comet assay’ for detecting genetic damage in haemocytes of bivalves as a biomarker for environmental biomonitoring and also (c) to compare the relative sensitivity of two species of bivalves viz. Paphia malabarica and Meretrix casta to gamma radiation. The comet assays was optimized and validated using different concentrations (18, 32 and 56 mg/L) of ethyl methanesulfonate (EMS), a direct-acting reference genotoxic agent, to which the bivalves were exposed for various times (24, 48 and 72 h). Bivalves were irradiated (single acute exposure) with 5 different doses (viz. 2, 4, 6, 8 and 10 Gy) of gamma radiation and their genotoxic effects on the haemocytes were studied using the comet assay. Haemolymph was collected from the adductor muscle at 24, 48 and 72 h of both EMS-exposed and irradiated bivalves and comet assay was carried out using standard protocol. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA damage at different concentrations of EMS and all the doses of gamma radiation as compared to controls in

  5. Safeguards Evaluation Method for evaluating vulnerability to insider threats

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Judd, B.R.; Renis, T.A.

    1986-01-01

    As protection of DOE facilities against outsiders increases to acceptable levels, attention is shifting toward achieving comparable protection against insiders. Since threats and protection measures for insiders are substantially different from those for outsiders, new perspectives and approaches are needed. One such approach is the Safeguards Evaluation Method. This method helps in assessing safeguards vulnerabilities to theft or diversion of special nuclear meterial (SNM) by insiders. The Safeguards Evaluation Method-Insider Threat is a simple model that can be used by safeguards and security planners to evaluate safeguards and proposed upgrades at their own facilities. The method is used to evaluate the effectiveness of safeguards in both timely detection (in time to prevent theft) and late detection (after-the-fact). The method considers the various types of potential insider adversaries working alone or in collusion with other insiders. The approach can be used for a wide variety of facilities with various quantities and forms of SNM. An Evaluation Workbook provides documentation of the baseline assessment; this simplifies subsequent on-site appraisals. Quantitative evaluation is facilitated by an accompanying computer program. The method significantly increases an evaluation team's on-site analytical capabilities, thereby producing a more thorough and accurate safeguards evaluation

  6. Nondestructive evaluation ultrasonic methods for construction materials

    International Nuclear Information System (INIS)

    Chilibon, I.; Zisu, T.; Raetchi, V.

    2002-01-01

    The paper presents some ultrasonic methods for evaluation of physical-mechanical properties of construction materials (bricks, concrete, BCA), such as: pulse method, examination methods, and direct measurement of the propagation velocity and impact-echo method. Utilizing these nondestructive evaluation ultrasonic methods it can be determined the main material parameters and material characteristics (elasticity coefficients, density, propagation velocity, ultrasound attenuation, etc.) of construction materials. These method are suitable for construction materials because the defectoscopy methods for metallic materials cannot be utilized, due to its rugged and non-homogeneous structures and grate attenuation coefficients of ultrasound propagation through materials. Also, the impact-echo method is a technique for flaw detection in concrete based on stress wave propagation. Studies have shown that the impact-echo method is effective for locating voids, honeycombing, delaminating, depth of surface opening cracks, and measuring member thickness

  7. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    International Nuclear Information System (INIS)

    Masera, D; Bocca, P; Grazzini, A

    2011-01-01

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a 'damage-gauge' for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  8. Coda Wave Interferometry Method Applied in Structural Monitoring to Assess Damage Evolution in Masonry and Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Masera, D; Bocca, P; Grazzini, A, E-mail: davide.masera@polito.it [Department of Structural and Geotechnical Engineering - Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2011-07-19

    In this experimental program the main goal is to monitor the damage evolution in masonry and concrete structures by Acoustic Emission (AE) signal analysis applying a well-know seismic method. For this reason the concept of the coda wave interferometry is applied to AE signal recorded during the tests. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced masonry walls under variable amplitude loading and strengthening reinforced concrete (RC) beams under monotonic static load has been carried out. In the reinforced masonry wall, cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of masonry under static long-time loading. During the tests, the evaluation of fracture growth is monitored by coda wave interferometry which represents a novel approach in structural monitoring based on AE relative change velocity of coda signal. In general, the sensitivity of coda waves has been used to estimate velocity changes in fault zones, in volcanoes, in a mining environment, and in ultrasound experiments. This method uses multiple scattered waves, which travelled through the material along numerous paths, to infer tiny temporal changes in the wave velocity. The applied method has the potential to be used as a 'damage-gauge' for monitoring velocity changes as a sign of damage evolution into masonry and concrete structures.

  9. Methods and Piezoelectric Imbedded Sensors for Damage Detection in Composite Plates Under Ambient and Cryogenic Conditions

    Science.gov (United States)

    Engberg, Robert; Ooi, Teng K.

    2004-01-01

    New methods for structural health monitoring are being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. A variety of damage detection methods and different Sensors are employed in the different composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency, impedance measurements, and pulse echoing techniques of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage. These results are furthermore compared with previous work using externally mounted sensors. Results and optimized methods from this work can then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2" generation reusable launch vehicle using composites as a structural element.

  10. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    Science.gov (United States)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  11. A strategy for evaluating pathway analysis methods.

    Science.gov (United States)

    Yu, Chenggang; Woo, Hyung Jun; Yu, Xueping; Oyama, Tatsuya; Wallqvist, Anders; Reifman, Jaques

    2017-10-13

    Researchers have previously developed a multitude of methods designed to identify biological pathways associated with specific clinical or experimental conditions of interest, with the aim of facilitating biological interpretation of high-throughput data. Before practically applying such pathway analysis (PA) methods, we must first evaluate their performance and reliability, using datasets where the pathways perturbed by the conditions of interest have been well characterized in advance. However, such 'ground truths' (or gold standards) are often unavailable. Furthermore, previous evaluation strategies that have focused on defining 'true answers' are unable to systematically and objectively assess PA methods under a wide range of conditions. In this work, we propose a novel strategy for evaluating PA methods independently of any gold standard, either established or assumed. The strategy involves the use of two mutually complementary metrics, recall and discrimination. Recall measures the consistency of the perturbed pathways identified by applying a particular analysis method to an original large dataset and those identified by the same method to a sub-dataset of the original dataset. In contrast, discrimination measures specificity-the degree to which the perturbed pathways identified by a particular method to a dataset from one experiment differ from those identifying by the same method to a dataset from a different experiment. We used these metrics and 24 datasets to evaluate six widely used PA methods. The results highlighted the common challenge in reliably identifying significant pathways from small datasets. Importantly, we confirmed the effectiveness of our proposed dual-metric strategy by showing that previous comparative studies corroborate the performance evaluations of the six methods obtained by our strategy. Unlike any previously proposed strategy for evaluating the performance of PA methods, our dual-metric strategy does not rely on any ground truth

  12. Novel Methods in Terminal Ballistics and Mechanochemistry of Damage 2. Phenomenological Mechanochemistry of Damage in Solid Brittle Dielectrics

    Science.gov (United States)

    2015-09-01

    variational calculus . To the best of this author’s knowledge, still, 35 years after its appearance, these techniques have been mastered by less than...following formula ( , , )ki j MU Pψ ψ κ= ∇ , (1) where kP —the polarization vector , iU —the displacement vector , Mκ —the damage parameters. This...external boundaries these vectors should satisfy the following boundary conditions: 0i iE Q + −   =  (5) and 0i iD N + −   =  , (6

  13. Color image definition evaluation method based on deep learning method

    Science.gov (United States)

    Liu, Di; Li, YingChun

    2018-01-01

    In order to evaluate different blurring levels of color image and improve the method of image definition evaluation, this paper proposed a method based on the depth learning framework and BP neural network classification model, and presents a non-reference color image clarity evaluation method. Firstly, using VGG16 net as the feature extractor to extract 4,096 dimensions features of the images, then the extracted features and labeled images are employed in BP neural network to train. And finally achieve the color image definition evaluation. The method in this paper are experimented by using images from the CSIQ database. The images are blurred at different levels. There are 4,000 images after the processing. Dividing the 4,000 images into three categories, each category represents a blur level. 300 out of 400 high-dimensional features are trained in VGG16 net and BP neural network, and the rest of 100 samples are tested. The experimental results show that the method can take full advantage of the learning and characterization capability of deep learning. Referring to the current shortcomings of the major existing image clarity evaluation methods, which manually design and extract features. The method in this paper can extract the images features automatically, and has got excellent image quality classification accuracy for the test data set. The accuracy rate is 96%. Moreover, the predicted quality levels of original color images are similar to the perception of the human visual system.

  14. Methods of ecological capability evaluation of forest

    International Nuclear Information System (INIS)

    Hosseini, M.; Makhdoum, M.F.; Akbarnia, M.; Saghebtalebi, Kh.

    2000-01-01

    In this research common methods of ecological capability evaluation of forests were reviewed and limitations for performance were analysed. Ecological capability of forests is an index that show site potential in several role of wood production, soil conservation, flood control, biodiversity, conservation and water supply. This index is related to ecological characteristics of land, such as soil, micro climate, elevation, slope and aspect that affect potential of sites. Suitable method of ecological capability evaluation must be chosen according to the objective of forestry. Common methods for ecological capability evaluation include plant and animal diversity, site index curve, soil and land form, inter branches, index plants, leave analyses, analyses regeneration and ecological mapping

  15. Application of a value-based equivalency method to assess environmental damage compensation under the European Environmental Liability Directive

    NARCIS (Netherlands)

    Martin-Ortega, J.; Brouwer, R.; Aiking, H.

    2011-01-01

    The Environmental Liability Directive (ELD) establishes a framework of liability based on the 'polluter-pays' principle to prevent and remedy environmental damage. The ELD requires the testing of appropriate equivalency methods to assess the scale of compensatory measures needed to offset damage.

  16. A fuzzy logic-based damage identification method for simply-supported bridge using modal shape ratios

    Directory of Open Access Journals (Sweden)

    Hanbing Liu

    2012-08-01

    Full Text Available A fuzzy logic system (FLS is established for damage identification of simply supported bridge. A novel damage indicator is developed based on ratios of mode shape components between before and after damage. Numerical simulation of a simply-supported bridge is presented to demonstrate the memory, inference and anti-noise ability of the proposed method. The bridge is divided into eight elements and nine nodes, the damage indicator vector at characteristic nodes is used as the input measurement of FLS. Results reveal that FLS can detect damage of training patterns with an accuracy of 100%. Aiming at other test patterns, the FLS also possesses favorable inference ability, the identification accuracy for single damage location is up to 93.75%. Tests with noise simulated data show that the FLS possesses favorable anti-noise ability.

  17. Evaluation of urban flood damages in climate and land use changes: Case Studies from Southeast Asia

    Science.gov (United States)

    Kefi, M.; Binaya, M. K.; Kumar, P.; Fukushi, K.

    2017-12-01

    Urbanization, changes in land use and global warming increase the threat of natural disasters such as flooding. In recent decades, it was observed a rise of intensity and frequency of flood events. The exposure both of people and the national economy to flood hazards is amplified and can induce serious economic and social damages. For this reason, local governments adopted several strategies to cope with flood risk in urban areas in particular, but a better comprehension of the flood hazard factors may enhance the efficiency of mitigating measures overall. For this research, a spatial analysis is applied to estimate future direct flood damage for 2030 in three Southeast Asian megacities: Jakarta (Indonesia), Metro-Manila (Philippines) and Hanoi (Vietnam). This comprehensive method combined flood characteristics (flood depth) obtained from flood simulation using FLO-2D, land use generated from supervised classification and remote sensing products, property value of affected buildings and flood damage rate derived from flood depth function. This function is established based on field surveys with local people affected by past flood events. Additionally, two scenarios were analyzed to simulate the future conditions. The first one is related to climate change and it is based on several General Circulation Models (GCMs). However, the second one is establish to point out the effect of adaptation strategies. The findings shows that the climate change combined with the expansion of built-up areas increase the vulnerability of urban areas to flooding and the economic damage. About 16%, 8% and 19% of flood inundation areas are expected to increase respectively in Metro-Manila, Jakarta and Hanoi. However, appropriate flood control measures can be helpful to reduce the impact of natural disaster. Furthermore, flood damage maps are generated at a large scale, which can be helpful to local stakeholders when prioritizing their mitigation strategies on urban disaster resilience.

  18. A New Damage Assessment Method by Means of Neural Network and Multi-Sensor Satellite Data

    Directory of Open Access Journals (Sweden)

    Alessandro Piscini

    2017-08-01

    Full Text Available Artificial Neural Network (ANN is a valuable and well-established inversion technique for the estimation of geophysical parameters from satellite images. After training, ANNs are able to generate very fast products for several types of applications. Satellite remote sensing is an efficient way to detect and map strong earthquake damage for contributing to post-disaster activities during emergency phases. This work aims at presenting an application of the ANN inversion technique addressed to the evaluation of building collapse ratio (CR, defined as the number of collapsed buildings with respect to the total number of buildings in a city block, by employing optical and SAR satellite data. This is done in order to directly relate changes in images with damage that has occurred during strong earthquakes. Furthermore, once they have been trained, neural networks can be used rapidly at application stage. The goal was to obtain a general tool suitable for re-use in different scenarios. An ANN has been implemented in order to emulate a regression model and to estimate the CR as a continuous function. The adopted ANN has been trained using some features obtained from optical and Synthetic Aperture Radar (SAR images, as inputs, and the corresponding values of collapse ratio obtained from the survey of the 2010 M7 Haiti Earthquake, i.e., as target output. As regards the optical data, we selected three change parameters: the Normalized Difference Index (NDI, the Kullback–Leibler divergence (KLD, and Mutual Information (MI. Concerning the SAR images, the Intensity Correlation Difference (ICD and the KLD parameters have been considered. Exploiting an object-oriented approach, a segmentation of the study area into several regions has been performed. In particular, damage maps have been generated by considering a set of polygons (in which satellite parameters have been calculated extracted from the open source Open Street Map (OSM geo-database. The trained

  19. Clinical evaluation of direct and photosensitized ultraviolet radiation damage to the lens

    International Nuclear Information System (INIS)

    Hockwin, O.; Lerman, S.

    1982-01-01

    We are reporting a new, objective, and quantitative method for monitoring age-related molecular changes in the human ocular lens in vivo, as expressed by increases in at least two (nontryptophan) fluorescence wavelengths. These fluorescence wavelengths appear to be caused by photochemically induced changes in the lens, and they reflect the ultraviolet (UV) filtering capacity of the patients' ocular lenses. These data correlate with previously reported in vitro lens fluorescence changes that are associated with the aging process. This method will also detect alterations in lenticular fluorescence caused by photosensitized as well as direct UV radiation damage

  20. Creating Alternative Methods for Educational Evaluation.

    Science.gov (United States)

    Smith, Nick L.

    1981-01-01

    A project supported by the National Institute of Education is adapting evaluation procedures from such areas as philosophy, geography, operations research, journalism, film criticism, and other areas. The need for such methods is reviewed, as is the context in which they function, and their contributions to evaluation methodology. (Author/GK)

  1. Consumer behavior changing: methods of evaluation

    Directory of Open Access Journals (Sweden)

    Elīna Gaile-Sarkane

    2013-11-01

    Full Text Available The article is devoted to methods of analyses of consumer buying behavior as well as to evaluation of most important factors what influences consumer behavior. This research aims at investigations about the changes in consumer behavior caused by globalization and development of information technologies; it helps to understand the specific factors what should be taken into account in evaluation of consumer behavior. The authors employ well-established quantitative and qualitative methods of research: grouping, analysis, synthesis, expert method, statistic method, etc. Research findings disclosed that there is possibility to introduce new methods for evaluation of changing consumer behavior.

  2. Nondestructive Evaluation of Functionally Graded Subsurface Damage on Cylinders in Nuclear Installations Based on Circumferential SH Waves

    Directory of Open Access Journals (Sweden)

    Zhen Qu

    2016-01-01

    Full Text Available Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.

  3. Environmental management: Integrating ecological evaluation, remediation, restoration, natural resource damage assessment and long-term stewardship on contaminated lands

    International Nuclear Information System (INIS)

    Burger, Joanna

    2008-01-01

    Ecological evaluation is essential for remediation, restoration, and Natural Resource Damage Assessment (NRDA), and forms the basis for many management practices. These include determining status and trends of biological, physical, or chemical/radiological conditions, conducting environmental impact assessments, performing remedial actions should remediation fail, managing ecosystems and wildlife, and assessing the efficacy of remediation, restoration, and long-term stewardship. The objective of this paper is to explore the meanings of these assessments, examine the relationships among them, and suggest methods of integration that will move environmental management forward. While remediation, restoration, and NRDA, among others, are often conducted separately, it is important to integrate them for contaminated land where the risks to ecoreceptors (including humans) can be high, and the potential damage to functioning ecosystems great. Ecological evaluations can range from inventories of local plants and animals, determinations of reproductive success of particular species, levels of contaminants in organisms, kinds and levels of effects, and environmental impact assessments, to very formal ecological risk assessments for a chemical or other stressor. Such evaluations can range from the individual species to populations, communities, ecosystems or the landscape scale. Ecological evaluations serve as the basis for making decisions about the levels and kinds of remediation, the levels and kinds of restoration possible, and the degree and kinds of natural resource injuries that have occurred because of contamination. Many different disciplines are involved in ecological evaluation, including biologists, conservationists, foresters, restoration ecologists, ecological engineers, economists, hydrologist, and geologists. Since ecological evaluation forms the basis for so many different types of environmental management, it seems reasonable to integrate management options

  4. Comparing Methods of Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments

    Directory of Open Access Journals (Sweden)

    Anders Skovgård Olsen

    2015-01-01

    Full Text Available Estimating the expected annual damage (EAD due to flooding in an urban area is of great interest for urban water managers and other stakeholders. It is a strong indicator for a given area showing how vulnerable it is to flood risk and how much can be gained by implementing e.g., climate change adaptation measures. This study identifies and compares three different methods for estimating the EAD based on unit costs of flooding of urban assets. One of these methods was used in previous studies and calculates the EAD based on a few extreme events by assuming a log-linear relationship between cost of an event and the corresponding return period. This method is compared to methods that are either more complicated or require more calculations. The choice of method by which the EAD is calculated appears to be of minor importance. At all three case study areas it seems more important that there is a shift in the damage costs as a function of the return period. The shift occurs approximately at the 10 year return period and can perhaps be related to the design criteria for sewer systems. Further, it was tested if the EAD estimation could be simplified by assuming a single unit cost per flooded area. The results indicate that within each catchment this may be a feasible approach. However the unit costs varies substantially between different case study areas. Hence it is not feasible to develop unit costs that can be used to calculate EAD, most likely because the urban landscape is too heterogeneous.

  5. Detection of smaller Jc region and damage in YBCO coated conductors by using permanent magnet method

    International Nuclear Information System (INIS)

    Hattori, K.; Saito, A.; Takano, Y.; Suzuki, T.; Yamada, H.; Takayama, T.; Kamitani, A.; Ohshima, S.

    2011-01-01

    We developed a non-destructive method for measuring the critical current density (J c ) in YBCO-coated conductors by using a permanent magnet (Sm 2 Co 17 ). J c could be determined from the repulsive force (F r ) generated between a permanent magnet and a coated conductor where shielding current flows. We also examined the influence of damage to the film on the J c distribution. The measured F r when the permanent magnet approached the cut part was smaller than that of the undamaged area. We developed a non-destructive method for measuring the critical current density (J c ) in YBCO-coated conductors by using a permanent magnet (Sm 2 Co 17 ). J c could be determined from the repulsive force (F r ) generated between a permanent magnet and a coated conductor where shielding current flows. We tried to detect a smaller J c region in the coated conductor by using the system. The J c distribution could be determined without influence from the thick copper film on YBCO thin film. We also examined the influence of damage to the film on the J c distribution. The surface of the coated conductors was cut by using a knife. The measured F r when the permanent magnet approached the cut part was smaller than that of the undamaged area. This J c measurement technique will be useful for detecting smaller J c regions and defects in coated conductors.

  6. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection

    Science.gov (United States)

    Reisz, Julie A.; Bansal, Nidhi; Qian, Jiang; Zhao, Weiling

    2014-01-01

    Abstract Significance: The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. Recent Advances: The development of high-throughput “omics” technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. Critical Issues: In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. Future Directions: Throughout the review, the synergy of combined “omics” technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies. Antioxid. Redox Signal. 21: 260–292. PMID:24382094

  7. A New Experimental Approach to Evaluate Plasma-induced Damage in Microcantilever

    Directory of Open Access Journals (Sweden)

    Yuki Nishimori

    2013-09-01

    Full Text Available Plasma  etching,  during  micro-fabrication  processing  is  indispensable  for  fabricating  MEMS  structures.  During  the plasma  processes,  two  major matters,  charged  ions  and  vacuum–ultraviolet  (VUV  irradiation  damage,  take  charge  of reliability  degradation.  The  charged  ions  induce  unwanted  sidewall  etching,  generally  called  as  “notching”,  which causes  degradation  in  brittle  strength.  Furthermore,  the  VUV  irradiation  gives  rise  to  crystal  defects  on  the  etching surface.  To overcome  the  problem,  neutral  beam  etching  (NBE,  which  use  neutral  particles  without  the  VUV irradiation,  has  been  developed.  In  order  to  evaluate  the  effect  of  the  NBE  quantitatively,  we  measured  the  resonance property of a micro-cantilever before and after NBE treatment. The thickness of damage layer (δ times the imaginary part  of  the  complex Young's  modulus  (Eds  were  then  compared,  which  is  a  parameter  of  surface  damage.  Although plasma processes  make the initial surface of cantilevers damaged during their fabrication, the removal of that damage by NBE was confirmed as the reduction in δEds. NBE will realize a damage-free surface for microstructures.

  8. Damage evaluation and rehabilitation of the Montorio medieval tower after the September 14th, 2003 earthquake

    International Nuclear Information System (INIS)

    Indirli, M.; Carpani, B.; Panza, G.; Romanelli, F.; Spadoni, B.

    2006-12-01

    On September 14th, 2003, a moderate earthquake struck the Bolognese Apennines, with the epicenter near Monghidoro (30 km far from Bologna, Italy). The seismic event, felt in a sufficiently large area, showed an inhomogeneous damage distribution, due both to site effects and building different vulnerability. The paper deals with the evaluation of the seismic input (in general and specifically) and its effects on Masonry CUltural Heritage Structures (MCUHESs): in fact, several among them, mainly churches and ancient monuments, were subjected to relevant damage, including the medieval Montorio Tower, matter of this paper, not far from the epicenter. Some of the authors, involved in the on-site Civil Defense investigations, carried out a detailed survey on the above told building (declared unsafe), which showed heavy and spread damage to structural elements, including vertical walls and wooden floors, with one MCS Intensity level more than the pattern suggested by macroseismic data. After a detailed analysis of its structural characteristics, the Montorio Tower post-seismic rehabilitation (which must avoid a possible conflict between specific conservation criteria and antiseismic requirements) is discussed. (author)

  9. Evaluation of satellite technology for pipeline route surveillance and the prevention of third party interference damage

    Energy Technology Data Exchange (ETDEWEB)

    Palmer-Jones, Roland; Hopkins, Phil [Penspen Integrity, Newcastle upon Tyne (United Kingdom)]. E-mail: r.palmer-jones@penspen.com; p.hopkins@penspen.com; Fraser, Andy [Integrated Statistical Solutions (United States)]. E-mail: andy@issquared.co.uk; Dezobry, Jerome [Gas de France, Paris (France)]. E-mail: jerome.dezobry@gazdefrance.com; Merrienboer, Hugo Van [Gasunie, Groningen (Netherlands)]. E-mail: H.A.M.van.Merrienboer@gasunie.nl

    2003-07-01

    The damage caused by Third Party Interference (TPI) is one of the major causes of pipeline failures. Consequently, new technologies for identifying activities that may cause damage to our pipelines are constantly being developed. A recently completed project sponsored by a number of pipeline operators has investigated the use of high-resolution satellites for the integrity management of onshore transmission pipelines. The sponsors were BG Technology (on behalf of Transco), Dansk Olie NatureGas, Gasunie, BP, Gaz de France, Distrigas, and the Health and Safety Executive. The project started with a general review of the satellite technologies available and their potential. The study was then focussed on the identification of activities that might result in damage to the pipeline and the potential of high-resolution optical satellites in identifying hazardous activities. A key element of the study was a comparison with existing surveillance systems, which generally involve regular aerial patrols of the pipeline route. To achieve this a survey was carried out to try and evaluate the costs and benefits of existing systems. In addition a simple model for analysing the cost benefit of pipeline surveillance was constructed, and a functional specification for a surveillance system drafted. Finally the performance of the IKONOS 2 high-resolution satellite system was tested in a controlled experiment using targets placed along a pipeline route. The results of this test were compared with a similar test of helicopter-based surveillance carried out by one of the sponsors. (author)

  10. Evaluation of winter pothole patching methods.

    Science.gov (United States)

    2014-01-01

    The main objective of this study was to evaluate the performance and cost-effectiveness of the tow-behind combination : infrared asphalt heater/reclaimer patching method and compare it to the throw and roll and spray injection methods. To : achieve t...

  11. Knowledge-Based Energy Damage Model for Evaluating Industrialised Building Systems (IBS Occupational Health and Safety (OHS Risk

    Directory of Open Access Journals (Sweden)

    Abas Nor Haslinda

    2016-01-01

    Full Text Available Malaysia’s construction industry has been long considered hazardous, owing to its poor health and safety record. It is proposed that one of the ways to improve safety and health in the construction industry is through the implementation of ‘off-site’ systems, commonly termed ‘industrialised building systems (IBS’ in Malaysia. This is deemed safer based on the risk concept of reduced exposure, brought about by the reduction in onsite workers; however, no method yet exists for determining the relative safety of various construction methods, including IBS. This study presents a comparative evaluation of the occupational health and safety (OHS risk presented by different construction approaches, namely IBS and traditional methods. The evaluation involved developing a model based on the concept of ‘argumentation theory’, which helps construction designers integrate the management of OHS risk into the design process. In addition, an ‘energy damage model’ was used as an underpinning framework. Development of the model was achieved through three phases, namely Phase I – knowledge acquisitaion, Phase II – argument trees mapping, and Phase III – validation of the model. The research revealed that different approaches/methods of construction projects carried a different level of energy damage, depending on how the activities were carried out. A study of the way in which the risks change from one construction process to another shows that there is a difference in the profile of OHS risk between IBS construction and traditional methods.Therefore, whether the option is an IBS or traditional approach, the fundamental idea of the model is to motivate construction designers or decision-makers to address safety in the design process and encourage them to examine carefully the probable OHS risk variables surrounding an action, thus preventing accidents in construction.

  12. Effectiveness of two conventional methods for seismic retrofit of steel and RC moment resisting frames based on damage control criteria

    Science.gov (United States)

    Beheshti Aval, Seyed Bahram; Kouhestani, Hamed Sadegh; Mottaghi, Lida

    2017-07-01

    This study investigates the efficiency of two types of rehabilitation methods based on economic justification that can lead to logical decision making between the retrofitting schemes. Among various rehabilitation methods, concentric chevron bracing (CCB) and cylindrical friction damper (CFD) were selected. The performance assessment procedure of the frames is divided into two distinct phases. First, the limit state probabilities of the structures before and after rehabilitation are investigated. In the second phase, the seismic risk of structures in terms of life safety and financial losses (decision variables) using the recently published FEMA P58 methodology is evaluated. The results show that the proposed retrofitting methods improve the serviceability and life safety performance levels of steel and RC structures at different rates when subjected to earthquake loads. Moreover, these procedures reveal that financial losses are greatly decreased, and were more tangible by the application of CFD rather than using CCB. Although using both retrofitting methods reduced damage state probabilities, incorporation of a site-specific seismic hazard curve to evaluate mean annual occurrence frequency at the collapse prevention limit state caused unexpected results to be obtained. Contrary to CFD, the collapse probability of the structures retrofitted with CCB increased when compared with the primary structures.

  13. Evaluation of registration methods on thoracic CT

    DEFF Research Database (Denmark)

    Murphy, K.; van Ginneken, B.; Reinhardt, J.

    2011-01-01

    method and the evaluation is independent, using the same criteria for all participants. All results are published on the EMPIRE10 website (http://empire10.isi.uu.nl). The challenge remains ongoing and open to new participants. Full results from 24 algorithms have been published at the time of writing......EMPIRE10 (Evaluation of Methods for Pulmonary Image REgistration 2010) is a public platform for fair and meaningful comparison of registration algorithms which are applied to a database of intra-patient thoracic CT image pairs. Evaluation of non-rigid registration techniques is a non trivial task....... This article details the organisation of the challenge, the data and evaluation methods and the outcome of the initial launch with 20 algorithms. The gain in knowledge and future work are discussed....

  14. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn [MOE Key Laboratory of Pressurized System and Safety, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  15. Damage evaluation of Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) on five apple cultivars under laboratory conditions

    International Nuclear Information System (INIS)

    Branco, E.S.; Vendramin, J.D.; Denardi, F.; Nora, I.

    1999-01-01

    The apple production losses in southern Brazil caused by the attack of the fruit fly Anastrepha fraterculus can reach up to 100% in some years. Its control demands intensive systematic sprays of insecticides, which increase production costs and affect environmental quality. In terms of integrated pest management, the use of resistant cultivars represents one of the most important alternatives to control this apple pest. With the objective of identifying sources of host plant resistance, apple fruits of different cultivars from the Clonal Germplasm Repository of the EPAGRI Research Station of Cacador were tested. The experiment consisted of 5 treatments (cultivars) with 5 replicates. Fruits at the harvest stage were used. The fruits were placed in boxes (40x110 cm), where they were exposed to oviposition by the fruit fly. After infestation, fruits were left on shelves at room temperature for 10 days in order to evaluate the damage level according to the following scale: 1 = fruit without attack; 2 = fruit with punctures and/or deformation without galleries; 3 = fruit with punctures and/or deformation and galleries; 4 = fruit with punctures and/or deformations, galleries and larvae. The Gala cultivar was the most susceptible, with an average damage level of 3.4, differing from the cultivars Fuji and Royal Red Delicious (damage levels of 1.6 and 1.2, respectively). The Belgolden and Sansa clones presented intermediate damage levels. A. fraterculus preferred to oviposit in the Golden Delicious group compared with the Delicious group. These studies suggest good possibilities for reduction of insecticide sprays to control the fruit fly in the cv. Fuji, as well as the incorporation of resistance factor in apple cultivars. (author)

  16. The Persian Gulf: pollution, damage assessment, damage evaluation. Detection of environmental changes after oil spill. Final report

    International Nuclear Information System (INIS)

    Graf, G.

    1993-01-01

    During a cruise in december 1991 postwar environmental damage was assessed in the nothern Persian Gulf. The sediments contained apparent traces of oil residues. Extremely high sediment oxygen demand cannot be explained by oil pollution. Sufficient aeriation of the water column is ensured by the hydrographical setting in the area. Since large macrofauna species are very little abundant, the benthic biomass dominated by bacteria. Due to this shift in the size distribution of the benthic community, changes of the whole ecosystem are most likely. (orig.) [de

  17. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    Science.gov (United States)

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  18. Success tree method of resources evaluation

    International Nuclear Information System (INIS)

    Chen Qinglan; Sun Wenpeng

    1994-01-01

    By applying the reliability theory in system engineering, the success tree method is used to transfer the expert's recognition on metallogenetic regularities into the form of the success tree. The aim of resources evaluation is achieved by means of calculating the metallogenetic probability or favorability of the top event of the success tree. This article introduces in detail, the source, principle of the success tree method and three kinds of calculation methods, expounds concretely how to establish the success tree of comprehensive uranium metallogenesis as well as the procedure from which the resources evaluation is performed. Because this method has not restrictions on the number of known deposits and calculated area, it is applicable to resources evaluation for different mineral species, types and scales and possesses good prospects of development

  19. Haertel's turbidity test and extraction of conifer needles by benzene as methods for the determination of smoke-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Materna, J; Hrncirova, L

    1960-01-01

    The applicability of the Haertel turbidity test to the assessment of smoke damage to conifers is based on the observation that needles from smoke damage to conifers is based on the observation that needles from smoke-damaged areas eliminate less wax than undamaged needles. Of the various organic solvent and extraction methods tested, best results were obtained by a half-hour extraction of the wax from the needle surface with cold benzene. The evaporation residue from this extraction method contained only traces of components from the inside of the needles; microscopic examination of the surface of the needles revealed that all wax was removed from the needle surface fissures. Comparison of wax quantities extracted from needles from smoke-damage areas with those from healthy needles and comparison of wax yields from areas which suffered different degrees of smoke damage confirmed that higher wax yields are obtained from healthy than from smoke-damaged needles. Comparison with results of turbidity tests disclosed that benzene extraction yields decreased with increasing turbidity test values, indicating that increased turbidity of smoke-damaged needles is not caused by wax. In the Haertel test extract, silicon, calcium, magnesium, phosphorus, potassium, sulfur, iron, nitrogenous substances, tannin, glycides, and waxes were found. It is as yet unresolved which substances contribute to increased turbidity from smoke damage.

  20. The use of the DInSAR method in the monitoring of road damage caused by mining activities

    Science.gov (United States)

    Murdzek, Radosław; Malik, Hubert; Leśniak, Andrzej

    2018-04-01

    This paper reviews existing remote sensing methods of road damage detection and demonstrates the possibility of using DInSAR (Differential Interferometry SAR) method to identify endangered road sections. In this study two radar images collected by Sentinel-1 satellite have been used. Images were acquired with 24 days interval in 2015. The analysis allowed to estimate the scale of the post-mining deformation that occurred in Upper Silesia and to indicate areas where road infrastructure is particularly vulnerable to damage.

  1. Natural Frequencies Evaluation on Partially Damaged Building using Ambient Vibration Technique

    Science.gov (United States)

    Kamarudin, A. F.; Zainal Abidin, M. H.; Daud, M. E.; Noh, M. S. Md; Madun, A.; Ibrahim, A.; Matarul, J.; Mokhatar, S. N.

    2018-04-01

    Severe damages observed on the school blocks, roads, retaining walls and drainage within the compound of SMK Kundasang Sabah possibly due to the ground movements triggered by the Ranau earthquake in 1991. Ambient vibration measurements were carried on the remaining demolished 3-storey building which partially damaged in order to measure the predominant building frequencies using tri-axial 1 Hz seismometer sensors. Popular methods of Horizontal-to-vertical spectral ratios (HVSR) and Fourier amplitude spectra (FAS) were used to compute the ambient vibration wave fields of each building axes (Transverse or North-South (NS), Longitudinal or East-West (EW) and vertical) into Fourier spectra. Two main modes of translation and torsion were observed from the peaks frequencies obtained at 2.99 to 3.10 Hz (1st mode), 4.85 Hz (2nd mode) and 5.63 to 5.85 Hz (3rd mode). The building experiencing translation modes of bending and shear in the NS and EW directions. It could be seen when the amplitudes tends to increase when the floor are increased. Meanwhile, the torsional bending mode is expected to occur when the deformation amplitudes are found to be increasing horizontally, when moving into partially structural damaged section located on the East wing of building.

  2. Biomechanical evaluation of potential damage to hernia repair materials due to fixation with helical titanium tacks.

    Science.gov (United States)

    Lerdsirisopon, Sopon; Frisella, Margaret M; Matthews, Brent D; Deeken, Corey R

    2011-12-01

    This study aimed to determine whether the strength and extensibility of hernia repair materials are negatively influenced by the application of helical titanium tacks. This study evaluated 14 meshes including bare polypropylene, macroporous polytetrafluoroethylene, absorbable barrier, partially absorbable mesh, and expanded polytetrafluoroethylene materials. Each mesh provided 15 specimens, which were prepared in 7.5 × 7.5-cm squares. Of these, 5 "undamaged" specimens were subjected to ball-burst testing to determine their biomechanical properties before application of helical titanium tacks (ProTack). To 10 "damaged" specimens 7 tacks were applied 1 cm apart in a 3.5-cm-diameter circle using a tacking force of 25 to 28 N. The tacks were removed from five of the specimens before ball-burst testing and left intact in the remaining five specimens. The application of tacks had no effect on the tensile strength of Dualmesh, ProLite Ultra, Infinit, Ultrapro, C-QUR Lite (6 in.). Most of the meshes did not exhibit significantly different tensile strengths between removal of tacks and tacks left intact. Exceptions included C-QUR, Prolene, Ultrapro, and Bard Soft Mesh, which were weaker with removal of tacks than with tacks left intact during the test. Damage due to the application of helical titanium tacks also caused increased strain at a stress of 16 N/cm for all the meshes except C-QUR Lite (>6 in.) and Physiomesh. Many of the meshes evaluated in this study exhibited damage in the form of reduced tensile strength and increased extensibility after the application of tacks compared with the corresponding "undamaged" meshes. Meshes with smaller interstices and larger filaments were influenced negatively by the application of helical titanium tacks, whereas mesh designs with larger interstices and smaller filaments tended to maintain their baseline mechanical properties.

  3. SURVEY METHODS FOR EARTHQUAKE DAMAGES IN THE "CAMERA DEGLI SPOSI" OF MANTEGNA (MANTOVA

    Directory of Open Access Journals (Sweden)

    E. Fratus de Balestrini

    2013-07-01

    Full Text Available Cultural Heritage constitutes a fundamental resource for all Countries, even in economic terms, as it can be considered an extraordinary tourist attraction. This is particularly true for Italy, which is one of the Countries with the richest artistic heritage in the world. For this reason, restoration becomes an essential step towards the conservation and therefore valorisation of architecture. In this context, this paper focuses on one of the first stages that allow us to reach a complete knowledge of a building. Because of the earthquake of May 2012, the Castle of San Giorgio in Mantova (Italy presented a series of structural damages. On the occasion of its upcoming re-opening to the public, the Soprintendenza per i Beni Architettonici e Paesaggistici per le province di Brescia, Cremona e Mantova has requested an analysis and evaluation of the damages for the development of an intervention project. In particular, a special attention was given to the "Camera degli Sposi" ("Bridal Chamber", also known as the Camera picta ("painted chamber". It is a frescoed room, with illusionistic paintings by Andrea Mantegna, located in the northeast tower of the Castle. It was painted between 1465 and 1474 and commissioned by Ludovico Gonzaga, and it is well-known for the use of trompe l'oeil details and for the decoration of its ceiling. The seismic shakes damaged the wall decorated with the "Scena della Corte" ("Court Scene", above the chimney, re-opening an old crack that had to be analysed, in order to understand whether the damage was structural or just superficial. The diagnostic analyses constitute a fundamental prerequisite for the elaboration of any kind of intervention or restoration in any architectural, artistic or archaeological framework. To obtain a description of the conservation state of the Camera, non-invasive integrated survey techniques were applied. The purpose of the study presented here is the definition of a methodology able to support

  4. Methods for evaluation of industry training programs

    International Nuclear Information System (INIS)

    Morisseau, D.S.; Roe, M.L.; Persensky, J.J.

    1987-01-01

    The NRC Policy Statement on Training and Qualification endorses the INPO-managed Training Accreditation Program in that it encompasses the elements of effective performance-based training. Those elements are: analysis of the job, performance-based learning objectives, training design and implementation, trainee evaluation, and program evaluation. As part of the NRC independent evaluation of utilities implementation of training improvement programs, the staff developed training review criteria and procedures that address all five elements of effective performance-based training. The staff uses these criteria to perform reviews of utility training programs that have already received accreditation. Although no performance-based training program can be said to be complete unless all five elements are in place, the last two, trainee and program evaluation, are perhaps the most important because they determine how well the first three elements have been implemented and ensure the dynamic nature of training. This paper discusses the evaluation elements of the NRC training review criteria. The discussion will detail the elements of evaluation methods and techniques that the staff expects to find as integral parts of performance-based training programs at accredited utilities. Further, the review of the effectiveness of implementation of the evaluation methods is discussed. The paper also addresses some of the qualitative differences between what is minimally acceptable and what is most desirable with respect to trainee and program evaluation mechanisms and their implementation

  5. Damage detection and locating using tone burst and continuous excitation modulation method

    Science.gov (United States)

    Li, Zheng; Wang, Zhi; Xiao, Li; Qu, Wenzhong

    2014-03-01

    Among structural health monitoring techniques, nonlinear ultrasonic spectroscopy methods are found to be effective diagnostic approach to detecting nonlinear damage such as fatigue crack, due to their sensitivity to incipient structural changes. In this paper, a nonlinear ultrasonic modulation method was developed to detect and locate a fatigue crack on an aluminum plate. The method is different with nonlinear wave modulation method which recognizes the modulation of low-frequency vibration and high-frequency ultrasonic wave; it recognizes the modulation of tone burst and high-frequency ultrasonic wave. In the experiment, a Hanning window modulated sinusoidal tone burst and a continuous sinusoidal excitation were simultaneously imposed on the PZT array which was bonded on the surface of an aluminum plate. The modulations of tone burst and continuous sinusoidal excitation was observed in different actuator-sensor paths, indicating the presence and location of fatigue crack. The results of experiments show that the proposed method is capable of detecting and locating the fatigue crack successfully.

  6. Standard test method for damage to contacting solid surfaces under fretting conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the studying or ranking the susceptibility of candidate materials to fretting corrosion or fretting wear for the purposes of material selection for applications where fretting corrosion or fretting wear can limit serviceability. 1.2 This test method uses a tribological bench test apparatus with a mechanism or device that will produce the necessary relative motion between a contacting hemispherical rider and a flat counterface. The rider is pressed against the flat counterface with a loading mass. The test method is intended for use in room temperature air, but future editions could include fretting in the presence of lubricants or other environments. 1.3 The purpose of this test method is to rub two solid surfaces together under controlled fretting conditions and to quantify the damage to both surfaces in units of volume loss for the test method. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5...

  7. Dynamic Method of Neutral Axis Position Determination and Damage Identification with Distributed Long-Gauge FBG Sensors.

    Science.gov (United States)

    Tang, Yongsheng; Ren, Zhongdao

    2017-02-20

    The neutral axis position (NAP) is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS). In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG) sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC) is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC) beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated.

  8. Dynamic Method of Neutral Axis Position Determination and Damage Identification with Distributed Long-Gauge FBG Sensors

    Directory of Open Access Journals (Sweden)

    Yongsheng Tang

    2017-02-01

    Full Text Available The neutral axis position (NAP is a key parameter of a flexural member for structure design and safety evaluation. The accuracy of NAP measurement based on traditional methods does not satisfy the demands of structural performance assessment especially under live traffic loads. In this paper, a new method to determine NAP is developed by using modal macro-strain (MMS. In the proposed method, macro-strain is first measured with long-gauge Fiber Bragg Grating (FBG sensors; then the MMS is generated from the measured macro-strain with Fourier transform; and finally the neutral axis position coefficient (NAPC is determined from the MMS and the neutral axis depth is calculated with NAPC. To verify the effectiveness of the proposed method, some experiments on FE models, steel beam and reinforced concrete (RC beam were conducted. From the results, the plane section was first verified with MMS of the first bending mode. Then the results confirmed the high accuracy and stability for assessing NAP. The results also proved that the NAPC was a good indicator of local damage. In summary, with the proposed method, accurate assessment of flexural structures can be facilitated.

  9. Finite element method for viscoelastic medium with damage and the application to structural analysis of solid rocket motor grain

    Science.gov (United States)

    Deng, Bin; Shen, ZhiBin; Duan, JingBo; Tang, GuoJin

    2014-05-01

    This paper studies the damage-viscoelastic behavior of composite solid propellants of solid rocket motors (SRM). Based on viscoelastic theories and strain equivalent hypothesis in damage mechanics, a three-dimensional (3-D) nonlinear viscoelastic constitutive model incorporating with damage is developed. The resulting viscoelastic constitutive equations are numerically discretized by integration algorithm, and a stress-updating method is presented by solving nonlinear equations according to the Newton-Raphson method. A material subroutine of stress-updating is made up and embedded into commercial code of Abaqus. The material subroutine is validated through typical examples. Our results indicate that the finite element results are in good agreement with the analytical ones and have high accuracy, and the suggested method and designed subroutine are efficient and can be further applied to damage-coupling structural analysis of practical SRM grain.

  10. Evaluating a method for automated rigid registration

    DEFF Research Database (Denmark)

    Darkner, Sune; Vester-Christensen, Martin; Larsen, Rasmus

    2007-01-01

    to point distance. T-test for common mean are used to determine the performance of the two methods (supported by a Wilcoxon signed rank test). The performance influence of sampling density, sampling quantity, and norms is analyzed using a similar method.......We evaluate a novel method for fully automated rigid registration of 2D manifolds in 3D space based on distance maps, the Gibbs sampler and Iterated Conditional Modes (ICM). The method is tested against the ICP considered as the gold standard for automated rigid registration. Furthermore...

  11. Experimental validation of a structural damage detection method based on marginal Hilbert spectrum

    Science.gov (United States)

    Banerji, Srishti; Roy, Timir B.; Sabamehr, Ardalan; Bagchi, Ashutosh

    2017-04-01

    Structural Health Monitoring (SHM) using dynamic characteristics of structures is crucial for early damage detection. Damage detection can be performed by capturing and assessing structural responses. Instrumented structures are monitored by analyzing the responses recorded by deployed sensors in the form of signals. Signal processing is an important tool for the processing of the collected data to diagnose anomalies in structural behavior. The vibration signature of the structure varies with damage. In order to attain effective damage detection, preservation of non-linear and non-stationary features of real structural responses is important. Decomposition of the signals into Intrinsic Mode Functions (IMF) by Empirical Mode Decomposition (EMD) and application of Hilbert-Huang Transform (HHT) addresses the time-varying instantaneous properties of the structural response. The energy distribution among different vibration modes of the intact and damaged structure depicted by Marginal Hilbert Spectrum (MHS) detects location and severity of the damage. The present work investigates damage detection analytically and experimentally by employing MHS. The testing of this methodology for different damage scenarios of a frame structure resulted in its accurate damage identification. The sensitivity of Hilbert Spectral Analysis (HSA) is assessed with varying frequencies and damage locations by means of calculating Damage Indices (DI) from the Hilbert spectrum curves of the undamaged and damaged structures.

  12. A Method for treating Damage Related Criteria in Optimal Topology Design of Continuum Structures

    DEFF Research Database (Denmark)

    Bendsøe, Martin P; Diaz, Alejandro

    1997-01-01

    In this paper we present a formulation of the well-known structural topology optimization problem that accounts for the presence of loads capable of causing permanent damage to the structure. Damage is represented in the form of an internal variable model which is standard in continuum damage mec...

  13. A Method for treating Damage Related Criteria in Optimal Topology Design of Continuum Structures

    DEFF Research Database (Denmark)

    Bendsøe, Martin P; Diaz, A.R.

    1998-01-01

    In this paper we present a formulation of the well-known structural topology optimization problem that accounts for the presence of loads capable of causing permanent damage to the structure. Damage is represented in the form of an internal variable model which is standard in continuum damage mec...

  14. Cortical damage following traumatic brain injury evaluated by iomazenil SPECT and in vivo microdialysis.

    Science.gov (United States)

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2013-01-01

    [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT) has been reported to be a useful marker of neuronal integrity. We evaluated cortical damage following traumatic brain injury (TBI) with IMZ SPECT at the acute stage. After conventional therapy for a cranial trauma, an IMZ SPECT re-evaluation was performed at the chronic stage. A reduction in IMZ uptake in the location of cerebral contusions was observed during the TBI acute phase; however, images of IMZ SPECT obtained during the chronic phase showed that areas with decreased IMZ distribution were remarkably reduced compared with those obtained during the acute phase. As a result of in vivo microdialysis study, the extracellular levels of glutamate in the cortex, where decreased IMZ distribution was shown during the acute phase, were increased during the 168-h monitoring period. During the chronic phase, IMZ uptake in the region with the microdialysis probes was recovered. The results suggest that this reduction in IMZ uptake might not be a sign of irreversible tissue damage in TBI.

  15. Quantitative Efficiency Evaluation Method for Transportation Networks

    Directory of Open Access Journals (Sweden)

    Jin Qin

    2014-11-01

    Full Text Available An effective evaluation of transportation network efficiency/performance is essential to the establishment of sustainable development in any transportation system. Based on a redefinition of transportation network efficiency, a quantitative efficiency evaluation method for transportation network is proposed, which could reflect the effects of network structure, traffic demands, travel choice, and travel costs on network efficiency. Furthermore, the efficiency-oriented importance measure for network components is presented, which can be used to help engineers identify the critical nodes and links in the network. The numerical examples show that, compared with existing efficiency evaluation methods, the network efficiency value calculated by the method proposed in this paper can portray the real operation situation of the transportation network as well as the effects of main factors on network efficiency. We also find that the network efficiency and the importance values of the network components both are functions of demands and network structure in the transportation network.

  16. "System evaluates system": method for evaluating the efficiency of IS

    Directory of Open Access Journals (Sweden)

    Dita Blazkova

    2016-10-01

    Full Text Available In paper I deal with the possible solution of evaluating the efficiency of information systems in companies. The large number of existing methods used to address the efficiency of information systems is dependent on the subjective responses of the user that may distort output evaluation. Therefore, I propose a method that eliminates the subjective opinion of a user as the primary data source. Applications, which I suggests as part of the method, collects relevant data. In this paper I describe the application in detail. This is a follow-on program on any system that runs parallel with it. The program automatically collects data for evaluation. Data include mainly time data, positions the mouse cursor, printScreens, i-grams of previous, etc. I propose a method of evaluation of the data, which identifies the degree of the friendliness of the information system to the user. Thus, the output of the method is the conclusion whether users, who work with the information system, can handle effectively work with it.

  17. Scale interactions in economics: application to the evaluation of the economic damages of climatic change and of extreme events

    International Nuclear Information System (INIS)

    Hallegatte, S.

    2005-06-01

    Growth models, which neglect economic disequilibria, considered as temporary, are in general used to evaluate the damaging effects generated by climatic change. This work shows, through a series of modeling experiences, the importance of disequilibria and of endogenous variability of economy in the evaluation of damages due to extreme events and climatic change. It demonstrates the impossibility to separate the evaluation of damages from the representation of growth and of economic dynamics: the comfort losses will depend on both the nature and intensity of impacts and on the dynamics and situation of the economy to which they will apply. Thus, the uncertainties about the damaging effects of future climatic changes come from both scientific uncertainties and from uncertainties about the future organization of our economies. (J.S.)

  18. Retention of data in heat-damaged SIM cards and potential recovery methods.

    Science.gov (United States)

    Jones, B J; Kenyon, A J

    2008-05-02

    Examination of various SIM cards and smart card devices indicates that data may be retained in SIM card memory structures even after heating to temperatures up to 450 degrees C, which the National Institute of Standards and Technology (NIST) has determined to be approximately the maximum average sustained temperature at desk height in a house fire. However, in many cases, and certainly for temperatures greater than 450 degrees C, the SIM card chip has suffered structural or mechanical damage that renders simple probing or rewiring ineffective. Nevertheless, this has not necessarily affected the data, which is stored as charge in floating gates, and alternative methods for directly accessing the stored charge may be applicable.

  19. FISH as A method for detection of radiation Induced genetic damage

    International Nuclear Information System (INIS)

    Lakatosova, M.; Holeckova, B.

    2006-01-01

    Fluorescence in situ hybridization (FISH) has been considered as a suitable method for rapid and easy detection of chromosome aberrations. In contrast to the standard conventional staining procedure, this technique enables the detection and specification of stable chromosomal re-arrangements, which are compatible with cellular division and thus, they could be transmitted from common ancestral to next cell generations. FISH chromosome - specific painting probes have been effectively applied for the detection of chromosomal damage after exposure to radiation. During last years, several specific fluorescent labeled probes were performed that allowed precise detection of centromeres, sub-telomeres or other regions (sequences) in genome. Our paper deals with describing of different types of FISH probes and their possibilities for application in radiobiology. (authors)

  20. Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin.

    Science.gov (United States)

    Larese Filon, Francesca; Crosera, Matteo; Mauro, Marcella; Baracchini, Elena; Bovenzi, Massimo; Montini, Tiziano; Fornasiero, Paolo; Adami, Gianpiero

    2016-07-01

    The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm(-2) of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm(-2) and 1.06 ± 0.44 μg cm(-2) in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm(-2) h(-1) and 0.057 ± 0.030 μg cm(-2) h(-1) and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively. This study indicates that Pd can penetrate human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Research into real-option evaluation method

    International Nuclear Information System (INIS)

    Shiba, Tsuyoshi; Wakamatsu, Hitoshi

    2002-03-01

    As an evaluational method for valuation of a corporation, an investment project, a research and development, or the evaluation technique of an enterprise strategy, a real option analysis attracts attention instead of conventional Discount Cash Flow method. The reason is that it can divert the technique for the option valuation in financial engineering to the decision-making process performed according to change in investment environment. Related references, the analysis tools, the application examples, etc. were investigated about the decision-making technique using real option analysis, and this investigation considered the application method to decision-making of the research and development at Japan Nuclear Cycle Development Institute. Consequently, since the feature is in real option analysis being the evaluation technique on condition of that business conditions and business itself also change, the real option analysis fits for evaluation of a research and development that business conditions were opaque and it turns out that the businesses are highly flexible. Moreover, it turns out that it fits also for evaluation of a capital concentration type investment issue like power plants. (author)

  2. Veterinary and human vaccine evaluation methods

    Science.gov (United States)

    Knight-Jones, T. J. D.; Edmond, K.; Gubbins, S.; Paton, D. J.

    2014-01-01

    Despite the universal importance of vaccines, approaches to human and veterinary vaccine evaluation differ markedly. For human vaccines, vaccine efficacy is the proportion of vaccinated individuals protected by the vaccine against a defined outcome under ideal conditions, whereas for veterinary vaccines the term is used for a range of measures of vaccine protection. The evaluation of vaccine effectiveness, vaccine protection assessed under routine programme conditions, is largely limited to human vaccines. Challenge studies under controlled conditions and sero-conversion studies are widely used when evaluating veterinary vaccines, whereas human vaccines are generally evaluated in terms of protection against natural challenge assessed in trials or post-marketing observational studies. Although challenge studies provide a standardized platform on which to compare different vaccines, they do not capture the variation that occurs under field conditions. Field studies of vaccine effectiveness are needed to assess the performance of a vaccination programme. However, if vaccination is performed without central co-ordination, as is often the case for veterinary vaccines, evaluation will be limited. This paper reviews approaches to veterinary vaccine evaluation in comparison to evaluation methods used for human vaccines. Foot-and-mouth disease has been used to illustrate the veterinary approach. Recommendations are made for standardization of terminology and for rigorous evaluation of veterinary vaccines. PMID:24741009

  3. Evaluation of laboratory diagnostic methods for cryptosporidiosis ...

    African Journals Online (AJOL)

    The conventional method of modified Ziehl-Neelsen (MZN) is very laborious, and stool ... Objective: This research was set to evaluate the diagnostic efficacy of ... 93.1% (MZN to ELISA) with ELISA techniques showing the highest sensitivity at ...

  4. Simplified methods for evaluating road prism stability

    Science.gov (United States)

    William J. Elliot; Mark Ballerini; David Hall

    2003-01-01

    Mass failure is one of the most common failures of low-volume roads in mountainous terrain. Current methods for evaluating stability of these roads require a geotechnical specialist. A stability analysis program, XSTABL, was used to estimate the stability of 3,696 combinations of road geometry, soil, and groundwater conditions. A sensitivity analysis was carried out to...

  5. Concentration of the genera Aspergillus, Eurotium and Penicillium in 63-μm house dust fraction as a method to predict hidden moisture damage in homes

    Directory of Open Access Journals (Sweden)

    Assadian Ojan

    2009-07-01

    Full Text Available Abstract Background Quantitative measurements of mould enrichment of indoor air or house dust might be suitable surrogates to evaluate present but hidden moisture damage. Our intent was to develop a house-dust monitoring method to detect hidden moisture damage excluding the influence of outdoor air, accumulated old dust, and dust swirled up from room surfaces. Methods Based on standardized measurement of mould spores in the 63-μm fraction of house dust yielded by carpets, the background concentrations were determined and compared to simultaneously obtained colony numbers and total spore numbers of the indoor air in 80 non-mouldy living areas during summer and winter periods. Additionally, sampling with a vacuum-cleaner or manual sieve was compared to sampling with a filter holder or sieving machine, and the evaluative power of an established two-step assessment model (lower and upper limits was compared to that of a one-step model (one limit in order to derive concentration limits for mould load in house dust. Results Comparison with existing evaluation procedures proved the developed method to be the most reliable means of evaluating hidden moisture damage, yielding the lowest false-positive results (specificity 98.7%. Background measurements and measurements in 14 mouldy rooms show that even by evaluating just the indicator genera in summer and winter, a relatively certain assessment of mould infestation is possible. Conclusion A one-step evaluation is finally possible for house dust. The house-dust evaluation method is based on analysis of the indicator genera Aspergillus, Eurotium and Penicillium spp., which depend on the total fungal count. Inclusion of further moisture indicators currently appears questionable, because of outdoor air influence and the paucity of measurements.

  6. Evaluation of Abiotic Resource LCIA Methods

    Directory of Open Access Journals (Sweden)

    Rodrigo A. F. Alvarenga

    2016-02-01

    Full Text Available In a life cycle assessment (LCA, the impacts on resources are evaluated at the area of protection (AoP with the same name, through life cycle impact assessment (LCIA methods. There are different LCIA methods available in literature that assesses abiotic resources, and the goal of this study was to propose recommendations for that impact category. We evaluated 19 different LCIA methods, through two criteria (scientific robustness and scope, divided into three assessment levels, i.e., resource accounting methods (RAM, midpoint, and endpoint. In order to support the assessment, we applied some LCIA methods to a case study of ethylene production. For RAM, the most suitable LCIA method was CEENE (Cumulative Exergy Extraction from the Natural Environment (but SED (Solar Energy Demand and ICEC (Industrial Cumulative Exergy Consumption/ECEC (Ecological Cumulative Exergy Consumption may also be recommended, while the midpoint level was ADP (Abiotic Depletion Potential, and the endpoint level was both the Recipe Endpoint and EPS2000 (Environmental Priority Strategies. We could notice that the assessment for the AoP Resources is not yet well established in the LCA community, since new LCIA methods (with different approaches and assessment frameworks are showing up, and this trend may continue in the future.

  7. Damage detection of rotating wind turbine blades using local flexibility method and long-gauge fiber Bragg grating sensors

    Science.gov (United States)

    Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.

    2018-01-01

    Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by

  8. Crack luminescence as an innovative method for detection of fatigue damage

    Directory of Open Access Journals (Sweden)

    R. Makris

    2018-04-01

    Full Text Available Conventional non-destructive testing methods for crack detection provide just a snapshot of fatigue crack evolution at a specific location in the moment of examination. The crack luminescence coating realizes a clear visibility of the entire crack formation. The coating consists of two layers with different properties and functions. The bottom layer emits light as fluorescence under UV radiation. The top layer covers the fluorescing one and prevents the emitting of light in case of no damage at the surface. Several different experiments show that due to the sensitive coating even the early stage of crack formation can be detected. That makes crack luminescence helpful for investigating the incipient crack opening behavior. Cracks can be detected and observed during operation of a structure, making it also very interesting for continuous monitoring. Crack luminescence is a passive method and no skilled professionals are necessary to detect cracks, as for conventional methods. The luminescent light is clearly noticeable by unaided eye observations and also by standard camera equipment, which makes automated crack detection possible as well. It is expected that crack luminescence can reduce costs and time for preventive maintenance and inspection.

  9. Evaluation of Dynamic Methods for Earthwork Assessment

    Directory of Open Access Journals (Sweden)

    Vlček Jozef

    2015-05-01

    Full Text Available Rapid development of road construction imposes requests on fast and quality methods for earthwork quality evaluation. Dynamic methods are now adopted in numerous civil engineering sections. Especially evaluation of the earthwork quality can be sped up using dynamic equipment. This paper presents the results of the parallel measurements of chosen devices for determining the level of compaction of soils. Measurements were used to develop the correlations between values obtained from various apparatuses. Correlations show that examined apparatuses are suitable for examination of compaction level of fine-grained soils with consideration of boundary conditions of used equipment. Presented methods are quick and results can be obtained immediately after measurement, and they are thus suitable in cases when construction works have to be performed in a short period of time.

  10. Induction of chromosome damage by ultraviolet light and caffeine: correlation of cytogenetic evaluation and flow karyotype

    International Nuclear Information System (INIS)

    Cremer, C.; Cremer, T.; Gray, J.W.

    1982-01-01

    Asynchronously growing cells of a M3-1 Chinese hamster line were ultraviolet (UV) irradiated (lambda . 254 nm) with UV fluences up to 7.5 J/m(2). After irradiation cells were incubated with or without 2 mM caffeine for 20 hr, then mitotic cells were selected by mechanical shaking. Their chromosomes were isolated, stained with Hoechst 33258 and chromomycin A3, and measured flow cytometrically. While the fluorescence distributions of chromosomes (flow karyo-types) from cells treated with UV alone or with caffeine alone were very similar to those of untreated controls, the flow karyo-types of UV + caffeine-treated cells showed a debris continuum that increased with increasing UV fluence suggesting an increased number of chromosome fragments. Visual evaluation of metaphase plates revealed that the percentage of cells with chromosome damage also increased steadily with increasing UV fluence. A high degree of correlation was observed between the relative magnitude of the debris level from flow karyotypes and the percentage of cells with chromosome damage and with generalized chromosomes shattering, respectively, as determined from metaphase spreads

  11. Analysis and evaluation of atom level composition variation and property change due to materials irradiation damage

    International Nuclear Information System (INIS)

    Furuya, Kazuo; Takeguchi, Masaki; Mitsuishi, Kazuki; Song Menhi; Saito, Tetsuya

    2000-01-01

    This study aims at general elucidation of atom level composition variation due to radiation damage and property change accompanied with this under intending to stressing application of the in-situ analysis and evaluation apparatus on material radiation damage. Then, by using the electron energy loss spectroscopy (EELS) capable of showing a power in composition analysis at microscopic region, measurement of EELS on crystal structure change after heat treatment of Xe precipitation was carried out under parallel of its high resolution observation. As a result, a precipitation with less than 30 nm in diameter was observed on a specimen inserted at 473 K. Xe precipitates in crystalline state began to change at 623 K, to be perfectly gassy state at 773 K. In an energy filter image (EFI) using low loss of Xe, distribution of crystalline and non-crystalline Xe was observed. In EELS, peaks at 14.6 and 15.3 eV were observed in 300 and 773 K, respectively, which were thought to be plasmon. And, difference of peak position at the core loss was thought to reflex difference of Xe state at 300 and 773 K. (G.K.)

  12. Development of an automated informatic system, for the evaluation of damage in plastics and minerals

    International Nuclear Information System (INIS)

    Hidalgo V, V.; Lopez G, A.D.; Ledezma F, L.E.; Segovia R, A.; Balcazar, M.

    2008-01-01

    A computer system of pattern recognition to evaluate automatically the damages registered by positive ions in minerals and plastics was developed. In the case of minerals the apatite in which was achievement to recognize and to count the damages by spontaneous fission of the uranium contained in her was selected. The selected plastic was the CR39, in which was possible to obtain the distribution of the diameters of the you give you taken place by slight ions in this plastic. In both cases, the recognition of patterns you bases on Ision for Computer, using the methodology described by Gonzalez and Woods [6]. The technique consists in: Acquisition of the Image, Pre-prosecution, Segmentation, Description and Classification; the computer system you development making use of the software Matlab version 7. The Apatita you selects for their importance in the one dated geologic and the determination of the thermal history, both of importance in the oil prospecting. In the case of the CR39 their importance resides in its wide and massive use as dosimetro of neutrons, determination of environmental Radon and detection of nuclear reactions of low section. (Author)

  13. Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro.

    Science.gov (United States)

    Djelić, Ninoslav; Radaković, Milena; Spremo-Potparević, Biljana; Zivković, Lada; Bajić, Vladan; Stevanović, Jevrosima; Stanimirović, Zoran

    2015-02-01

    Catechol groups can be involved in redox cycling accompanied by generation of reactive oxygen species (ROS) which may lead to oxidative damage of cellular macromolecules including DNA. The objective of this investigation was to evaluate possible genotoxic effects of a natural catecholamine adrenaline in cultured human lymphocytes using cytogenetic (sister chromatid exchange and micronuclei) and the single cell gel electrophoresis (Comet) assay. In cytogenetic tests, six experimental concentrations of adrenaline were used in a range from 0.01-500 μM. There were no indications of genotoxic effects of adrenaline in sister chromatid exchange and micronucleus tests. However, at four highest concentrations of adrenaline (5 μM, 50 μM, 150 μM and 300 μM) we observed a decreased mitotic index and cell-cycle delay. In addition, in the Comet assay we used adrenaline in a range from 0.0005-500 μM, at two treatment times: 15 min or 60 min. In contrast to cytogenetic analysis, there was a dose-dependent increase of DNA damage detected in the Comet assay. These effects were significantly reduced by concomitant treatment with quercetin or catalase. Therefore, the obtained results indicate that adrenaline may exhibit genotoxic effects in cultured human lymphocytes, most likely due to production of reactive oxygen species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. ALTERNATIVE METHOD FOR ON SITE EVALUATION OF THERMAL TRANSMITTANCE

    Directory of Open Access Journals (Sweden)

    Aleksandar Janković

    2017-08-01

    Full Text Available Thermal transmittance or U-value is an indicator of the building envelope thermal properties and a key parameter for evaluation of heat losses through the building elements due to heat transmission. It can be determined by calculation based on thermal characteristics of the building element layers. However, this value does not take into account the effects of irregularities and degradation of certain elements of the envelope caused by aging, which may lead to errors in calculation of the heat losses. An effective and simple method for determination of thermal transmittance is in situ measurement, which is governed by the ISO 9869-1:2014 that defines heat flow meter method. This relatively expensive method leaves marks and damages surface of the building element. Furthermore, the final result is not always reliable, in particular when the building element is light or when the weather conditions are not suitable. In order to avoid the above mentioned problems and to estimate the real thermal transmittance value an alternative experimental method, here referred as the natural convection and radiation method, is proposed in this paper. For determination of thermal transmittance, this method requires only temperatures of inside and outside air, as well as the inner wall surface temperature. A detailed statistical analysis, performed by the software package SPSS ver. 20, shows several more advantages of this method comparing to the standard heat flow meter one, besides economic and non-destructive benefits.

  15. Analysis of localized damage in creep rupture

    International Nuclear Information System (INIS)

    Wang Zhengdong; Wu Dongdi

    1992-01-01

    Continuum Damage Mechanics studies the effect of distributed defects, whereas the failure of engineering structures is usually caused by local damage. In this paper, an analysis of localized damage in creep rupture is carried out. The material tested is a 2 1/4Cr-1Mo pressure vessel steel and the material constants necessary for damage analysis are evaluated. Notched specimens are used to reflect localized damage in creep rupture and the amount of damage is measured using DCPD method. Through FEM computation, stress components and effective stress in the region of notch root are evaluated and it is found that the von Mises effective stress can represent the damage effective stress in the analysis of localized creep damage. It is possible to develop a method for the assessment of safety of pressure vessels under creep through localized creep damage analysis. (orig.)

  16. Damage detection in high-rise buildings using damage-induced rotations

    International Nuclear Information System (INIS)

    Sung, Seung Hun; Jung, Ho Youn; Lee, Jung Hoon; Jung, Hyung Jo

    2016-01-01

    In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not

  17. Damage detection in high-rise buildings using damage-induced rotations

    International Nuclear Information System (INIS)

    Sung, Seung Hoon; Jung, Ho Youn; Lee, Jung Hoon; Jung, Hyung Jo

    2014-01-01

    In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not.

  18. A Micro-Damage Detection Method of Litchi Fruit Using Hyperspectral Imaging Technology

    Directory of Open Access Journals (Sweden)

    Juntao Xiong

    2018-02-01

    Full Text Available The non-destructive testing of litchi fruit is of great significance to the fresh-keeping, storage and transportation of harvested litchis. To achieve quick and accurate micro-damage detection, a non-destructive grading test method for litchi fruits was studied using 400–1000 nm hyperspectral imaging technology. The Huaizhi litchi was chosen in this study, and the hyperspectral data average for the region of interest (ROI of litchi fruit was extracted for spectral data analysis. Then the hyperspectral data samples of fresh and micro-damaged litchi fruits were selected, and a partial least squares discriminant analysis (PLS-DA was used to establish a prediction model for the realization of qualitative analysis for litchis with different qualities. For the external validation set, the mean per-type recall and precision were 94.10% and 93.95%, respectively. Principal component analysis (PCA was used to determine the sensitive wavelength for recognition of litchi quality characteristics, with the results of wavelengths corresponding to the local extremum for the weight coefficient of PC3, i.e., 694, 725 and 798 nm. Then the single-band images corresponding to each sensitive wavelength were analyzed. Finally, the 7-dimension features of the PC3 image were extracted using the Gray Level Co-occurrence Matrix (GLCM. Through image processing, least squares support vector machine (LS-SVM modeling was conducted to classify the different qualities of litchis. The model was validated using the experiment data, and the average accuracy of the validation set was 93.75%, while the external validation set was 95%. The results indicate the feasibility of using hyperspectral imaging technology in litchi postpartum non-destructive detection and classification.

  19. The Focinator - a new open-source tool for high-throughput foci evaluation of DNA damage

    International Nuclear Information System (INIS)

    Oeck, Sebastian; Malewicz, Nathalie M.; Hurst, Sebastian; Rudner, Justine; Jendrossek, Verena

    2015-01-01

    The quantitative analysis of foci plays an important role in many cell biological methods such as counting of colonies or cells, organelles or vesicles, or the number of protein complexes. In radiation biology and molecular radiation oncology, DNA damage and DNA repair kinetics upon ionizing radiation (IR) are evaluated by counting protein clusters or accumulations of phosphorylated proteins recruited to DNA damage sites. Consistency in counting and interpretation of foci remains challenging. Many current software solutions describe instructions for time-consuming and error-prone manual analysis, provide incomplete algorithms for analysis or are expensive. Therefore, we aimed to develop a tool for costless, automated, quantitative and qualitative analysis of foci. For this purpose we integrated a user-friendly interface into ImageJ and selected parameters to allow automated selection of regions of interest (ROIs) depending on their size and circularity. We added different export options and a batch analysis. The use of the Focinator was tested by analyzing γ-H2.AX foci in murine prostate adenocarcinoma cells (TRAMP-C1) at different time points after IR with 0.5 to 3 Gray (Gy). Additionally, measurements were performed by users with different backgrounds and experience. The Focinator turned out to be an easily adjustable tool for automation of foci counting. It significantly reduced the analysis time of radiation-induced DNA-damage foci. Furthermore, different user groups were able to achieve a similar counting velocity. Importantly, there was no difference in nuclei detection between the Focinator and ImageJ alone. The Focinator is a costless, user-friendly tool for fast high-throughput evaluation of DNA repair foci. The macro allows improved foci evaluation regarding accuracy, reproducibility and analysis speed compared to manual analysis. As innovative option, the macro offers a combination of multichannel evaluation including colocalization analysis and the

  20. Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings

    Science.gov (United States)

    Sagasta, Francisco; Zitto, Miguel E.; Piotrkowski, Rosa; Benavent-Climent, Amadeo; Suarez, Elisabet; Gallego, Antolino

    2018-03-01

    A modification of the original b-value (Gutenberg-Richter parameter) is proposed to evaluate local damage of reinforced concrete structures subjected to dynamical loads via the acoustic emission (AE) method. The modification, shortly called energy b-value, is based on the use of the true energy of the AE signals instead of its peak amplitude, traditionally used for the calculation of b-value. The proposal is physically supported by the strong correlation between the plastic strain energy dissipated by the specimen and the true energy of the AE signals released during its deformation and cracking process, previously demonstrated by the authors in several publications. AE data analysis consisted in the use of guard sensors and the Continuous Wavelet Transform in order to separate primary and secondary emissions as much as possible according to particular frequency bands. The approach has been experimentally applied to the AE signals coming from a scaled reinforced concrete frame structure, which was subjected to sequential seismic loads of incremental acceleration peak by means of a 3 × 3 m2 shaking table. For this specimen two beam-column connections-one exterior and one interior-were instrumented with wide band low frequency sensors properly attached on the structure. Evolution of the energy b-value along the loading process accompanies the evolution of the severe damage at the critical regions of the structure (beam-column connections), thus making promising its use for structural health monitoring purposes.

  1. Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures.

    Science.gov (United States)

    Adamchik, Y; Frantseva, M V; Weisspapir, M; Carlen, P L; Perez Velazquez, J L

    2000-04-01

    Organotypic brain slice cultures have been used in a variety of studies on neurodegenerative processes [K.M. Abdel-Hamid, M. Tymianski, Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins, J. Neurosci. 17, 1997, pp. 3538-3553; D.W. Newell, A. Barth, V. Papermaster, A.T. Malouf, Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures, J. Neurosci. 15, 1995, pp. 7702-7711; J.L. Perez Velazquez, M.V. Frantseva, P.L. Carlen, In vitro ischemia promotes glutamate mediated free radical generation and intracellular calcium accumulation in pyramidal neurons of cultured hippocampal slices, J. Neurosci. 23, 1997, pp. 9085-9094; L. Stoppini, L.A. Buchs, D. Muller, A simple method for organotypic cultures of nervous tissue, J. Neurosci. Methods 37, 1991, pp. 173-182; R.C. Tasker, J.T. Coyle, J.J. Vornov, The regional vulnerability to hypoglycemia induced neurotoxicity in organotypic hippocampal culture: protection by early tetrodotoxin or delayed MK 801, J. Neurosci. 12, 1992, pp. 4298-4308.]. We describe two methods to induce traumatic cell damage in hippocampal organotypic cultures. Primary trauma injury was achieved by rolling a stainless steel cylinder (0.9 g) on the organotypic slices. Secondary injury was followed after dropping a weight (0.137 g) on a localised area of the organotypic slice, from a height of 2 mm. The time course and extent of cell death were determined by measuring the fluorescence of the viability indicator propidium iodide (PI) at several time points after the injury. The initial localised impact damage spread 24 and 67 h after injury, cell death being 25% and 54%, respectively, when slices were kept at 37 degrees C. To validate these methods as models to assess neuroprotective strategies, similar insults were applied to slices at relatively low temperatures (30

  2. Evaluation of surface fractal dimension of carbon for plasma-facing material damaged by hydrogen plasma

    International Nuclear Information System (INIS)

    Nishino, Nobuhiro

    1997-01-01

    The surface structure of the plasma facing materials (PFM) changes due to plasma-surface interaction in a nuclear fusion reactor. Usually B 4 C coated graphite block are used as PFM. In this report, the surface fractal was applied to study the surface structure of plasma-damaged PFM carbon. A convenient flow-type adsorption apparatus was developed to evaluate the surface fractal dimension of materials. Four branched alkanol molecules with different apparent areas were used as the probe adsorbates. The samples used here were B 4 C coated isotopic graphite which were subjected to hydrogen plasma for various periods of exposure. The monolayer capacities of these samples for alkanols were determined by applying BET theory. The surface fractal dimension was calculated using the monolayer capacities and molecular areas for probe molecules and was found to increase from 2 to 3 with the plasma exposure time. (author)

  3. Evaluation of the material’s damage in gas turbine rotors by instrumented spherical indentation

    Directory of Open Access Journals (Sweden)

    D. Nappini

    2014-10-01

    Full Text Available Experimental indentations are carried out on items of two different materials, taken in several location of various components from high pressure gas turbine rotor which have seen an extensive service. The components object of investigation consisted in 1st and 2nd high pressure turbine wheels made in nickel-base superalloy (Inconel 718, the spacer ring (Inconel 718 and the compressor shaft made in CrMoV low alloy steel (ASTM A471 type10. Aim of the work is to set up the capability of the instrumented spherical indentation testing system to evaluate variations in the material properties due to damage, resulting from temperature field and stresses acting on components during service. To perform this task load-indentation depth curves will be acquired in various zones of the above mentioned components. The analysis of the results has allowed to identify an energy parameter which shows a linear evolution with the mean temperature acting on the components.

  4. Evaluation of genome damage and transcription profile of DNA damage/repair response genes in peripheral blood mononuclear cells exposed to low dose radiation

    International Nuclear Information System (INIS)

    Soren, D.C.; Saini, Divyalakshmi; Das, Birajalaxmi

    2016-01-01

    Humans are exposed to various physical and chemical mutagens in their life time. Physical mutagens, like ionizing radiation (IR), may induce adverse effect at high acute dose exposures in human cells. However, there are inconsistent results on the effect of low dose radiation exposure in human cells. There are a variety of DNA damage endpoints to evaluate the effect of low dose radiation in human cells. DNA damage response (DDR) may lead to changes in expression profile of many genes. In the present study, an attempt has been made to evaluate genome damage at low dose IR exposure in human blood lymphocytes. Cytochalasin blocked micronuclei (CBMN) assay has been used to determine the frequency of micronuclei in binucleated cells in PBMCs exposed to IR. Transcription profile of ATM, P53, GADD45A, CDKN1A, TRF1 and TRF2 genes was studied using real time quantitative PCR. Venous blood samples collected from 10 random healthy donors were irradiated with different doses of γ-radiation ( 137 Cs) along with sham irradiated control. Whole blood culture was set up using microculture technique. Blood samples were stimulated with phytohemagglutinin, and CBMN assay was performed. An average of 2,500 binucleated cells was scored for each dose point. For gene expression analysis, total RNA was isolated, cDNA was prepared, and gene expression analysis for ATM, P53, CDKN1A, GADD45A, TRF1 and TRF2 was done using real time PCR. Our results revealed no significant increase in the frequency of MN up to 100 mGy as compared to control. However, no significant alteration in gene expression profile was observed. In conclusion, no significant dose response was observed at the frequency of MN as well as the expression profile of DDR/repair genes, suggesting low dose radiation did not induce significant DNA damage at these acute dose exposures. (author)

  5. Uncertainty Evaluation in the Design of Structural Health Monitoring Systems for Damage Detection†

    Directory of Open Access Journals (Sweden)

    Christine Schubert Kabban

    2018-04-01

    Full Text Available The validation of structural health monitoring (SHM systems for aircraft is complicated by the extent and number of factors that the SHM system must demonstrate for robust performance. Therefore, a time- and cost-efficient method for examining all of the sensitive factors must be conducted. In this paper, we demonstrate the utility of using the simulation modeling environment to determine the SHM sensitive factors that must be considered for subsequent experiments, in order to enable the SHM validation. We demonstrate this concept by examining the effect of SHM system configuration and flaw characteristics on the response of a signal from a known piezoelectric wafer active sensor (PWAS in an aluminum plate, using simulation models of a particular hot spot. We derive the signal responses mathematically and through the statistical design of experiments, we determine the significant factors that affect the damage indices that are computed from the signal, using only half the number of runs that are normally required. We determine that the transmitter angle is the largest source of variation for the damage indices that are considered, followed by signal frequency and transmitter distance to the hot spot. These results demonstrate that the use of efficient statistical design and simulation may enable a cost- and time-efficient sequential approach to quantifying sensitive SHM factors and system validation.

  6. Evaluating the effectiveness of flood damage mitigation measures by the application of Propensity Score Matching

    NARCIS (Netherlands)

    Hudson, P.G.M.B.; Botzen, W.J.W.; Kreibich, H.; Bubeck, P.; Aerts, J.C.J.H.

    2014-01-01

    The employment of damage mitigation measures (DMMs) by individuals is an important component of integrated flood risk management. In order to promote efficient damage mitigation measures, accurate estimates of their damage mitigation potential are required. That is, for correctly assessing the

  7. Evaluation of splenic autotransplants by radionuclide methods

    International Nuclear Information System (INIS)

    Nawaz, K.; Nema, T.A.; Al-Mohannadi, S.; Abdel-Dayem, H.M.

    1986-01-01

    The viability of omental autotransplantation of splenic tissue after splenectomy has been disputed. The authors followed up splenic implants by imaging with either Tc-99m tin colloid or heat-damaged RBCs to determine how early implants can be visualized and whether a difference exists between patients who underwent emergency splenectomy for trauma (nine patients) and those who underwent elective splenectomy (seven patients). In the latter group, splenectomy was performed for portal hypertension in six patients and for hematologic disorder (Wiscott Aldrich syndrome) in one. All patients were imaged 2-4 weeks and 6 months after surgery. In the first group, seven implants were seen at 2-4 weeks and all nine were seen by 6 months. In the second group, only two implants were seen at 2-4 weeks and four were seen at 6 months; two implants were not visualized even at 6 months. The implant of the patient with hematologic disorder was not seen before 6 months. The authors conclude that splenic implants can be visualized bu scintigraphic methods as early as 2-4 weeks after surgery, and that by 6 months all implants from normal spleen are viable. By contrast, spleen implants placed for portal hypertension or hematologic disorders may fail

  8. Assessing the impacts of lifetime sun exposure on skin damage and skin aging using a non-invasive method

    International Nuclear Information System (INIS)

    Kimlin, Michael G.; Guo, Yuming

    2012-01-01

    Background: Ultraviolet radiation exposure during an individuals' lifetime is a known risk factor for the development of skin cancer. However, less evidence is available on assessing the relationship between lifetime sun exposure and skin damage and skin aging. Objectives: This study aims to assess the relationship between lifetime sun exposure and skin damage and skin aging using a non-invasive measure of exposure. Methods: We recruited 180 participants (73 males, 107 females) aged 18–83 years. Digital imaging of skin hyperpigmentation (skin damage) and skin wrinkling (skin aging) on the facial region was measured. Lifetime sun exposure (presented as hours) was calculated from the participants' age multiplied by the estimated annual time outdoors for each year of life. We analyzed the effects of lifetime sun exposure on skin damage and skin aging. We adjust for the influence of age, sex, occupation, history of skin cancer, eye color, hair color, and skin color. Results: There were non-linear relationships between lifetime sun exposure and skin damage and skin aging. Younger participant's skin is much more sensitive to sun exposure than those who were over 50 years of age. As such, there were negative interactions between lifetime sun exposure and age. Age had linear effects on skin damage and skin aging. Conclusion: The data presented showed that self reported lifetime sun exposure was positively associated with skin damage and skin aging, in particular, the younger people. Future health promotion for sun exposure needs to pay attention to this group for skin cancer prevention messaging. - Highlights: ► This is the first study finding the non-linear relationship between lifetime sun exposure and skin damage and skin aging. ► This study finds there is negative interaction between lifetime sun exposure and age for skin damage and aging. ► This study suggests that future health promotion for sun exposure needs to pay attention to youth group for skin cancer

  9. Utilities' nuclear fuel economic evaluation methods

    International Nuclear Information System (INIS)

    Sonz, L.A.

    1987-01-01

    This paper presents the typical perceptions, methods, considerations, and procedures used by an operating electric utility in the economic evaluation of nuclear fuel preparation and utilization scenarios. The means given are probably not an exclusive review of those available, but are the author's recollection of systems employed to select and recommend preferable courses of action. Economic evaluation of proposed nuclear fuel scenarios is an important, but not exclusive, means of deciding on corporate action. If the economic evaluation is performed and coordinated with the other corporate considerations, such as technical and operational ability, electrical system operations management, tax effects, capital management, rates impact, etc., then the resultant recommendation may be employed to the benefit of the customers and, consequently, to the corporation

  10. Methods of Evaluating Performances for Marketing Strategies

    OpenAIRE

    Ioan Cucu

    2005-01-01

    There are specific methods for assessing and improving the effectiveness of a marketing strategy. A marketer should state in the marketing plan what a marketing strategy is supposed to accomplish. These statements should set forth performance standards, which usually are stated in terms of profits, sales, or costs. Actual performance must be measured in similar terms so that comparisons are possible. This paper describes sales analysis and cost analysis, two general ways of evaluating the act...

  11. A comparison of damage detection methods applied to civil engineering structures

    DEFF Research Database (Denmark)

    Gres, Szymon; Andersen, Palle; Johansen, Rasmus Johan

    2018-01-01

    Facilitating detection of early-stage damage is crucial for in-time repairs and cost-optimized maintenance plans of civil engineering structures. Preferably, the damage detection is performed by use of output vibration data, hereby avoiding modal identification of the structure. Most of the work...

  12. A comparison of damage detection methods applied to civil engineering structures

    DEFF Research Database (Denmark)

    Gres, Szymon; Andersen, Palle; Johansen, Rasmus Johan

    2017-01-01

    Facilitating detection of early-stage damage is crucial for in-time repairs and cost-optimized maintenance plans of civil engineering structures. Preferably, the damage detection is performed by use of output vibration data, hereby avoiding modal identification of the structure. Most of the work...

  13. Assessment methods for the evaluation of vitiligo.

    Science.gov (United States)

    Alghamdi, K M; Kumar, A; Taïeb, A; Ezzedine, K

    2012-12-01

    There is no standardized method for assessing vitiligo. In this article, we review the literature from 1981 to 2011 on different vitiligo assessment methods. We aim to classify the techniques available for vitiligo assessment as subjective, semi-objective or objective; microscopic or macroscopic; and as based on morphometry or colorimetry. Macroscopic morphological measurements include visual assessment, photography in natural or ultraviolet light, photography with computerized image analysis and tristimulus colorimetry or spectrophotometry. Non-invasive micromorphological methods include confocal laser microscopy (CLM). Subjective methods include clinical evaluation by a dermatologist and a vitiligo disease activity score. Semi-objective methods include the Vitiligo Area Scoring Index (VASI) and point-counting methods. Objective methods include software-based image analysis, tristimulus colorimetry, spectrophotometry and CLM. Morphometry is the measurement of the vitiliginous surface area, whereas colorimetry quantitatively analyses skin colour changes caused by erythema or pigment. Most methods involve morphometry, except for the chromameter method, which assesses colorimetry. Some image analysis software programs can assess both morphometry and colorimetry. The details of these programs (Corel Draw, Image Pro Plus, AutoCad and Photoshop) are discussed in the review. Reflectance confocal microscopy provides real-time images and has great potential for the non-invasive assessment of pigmentary lesions. In conclusion, there is no single best method for assessing vitiligo. This review revealed that VASI, the rule of nine and Wood's lamp are likely to be the best techniques available for assessing the degree of pigmentary lesions and measuring the extent and progression of vitiligo in the clinic and in clinical trials. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  14. Comparative Study of Fatigue Damage Models Using Different Number of Classes Combined with the Rainflow Method

    Directory of Open Access Journals (Sweden)

    S. Zengah

    2013-06-01

    Full Text Available Fatigue damage increases with applied load cycles in a cumulative manner. Fatigue damage models play a key role in life prediction of components and structures subjected to random loading. The aim of this paper is the examination of the performance of the “Damaged Stress Model”, proposed and validated, against other fatigue models under random loading before and after reconstruction of the load histories. To achieve this objective, some linear and nonlinear models proposed for fatigue life estimation and a batch of specimens made of 6082T6 aluminum alloy is subjected to random loading. The damage was cumulated by Miner’s rule, Damaged Stress Model (DSM, Henry model and Unified Theory (UT and random cycles were counted with a rain-flow algorithm. Experimental data on high-cycle fatigue by complex loading histories with different mean and amplitude stress values are analyzed for life calculation and model predictions are compared.

  15. Usability Evaluation Method for Agile Software Development

    Directory of Open Access Journals (Sweden)

    Saad Masood Butt

    2015-02-01

    Full Text Available Agile methods are the best fit for tremendously growing software industry due to its flexible and dynamic nature. But the software developed using agile methods do meet the usability standards? To answer this question we can see that majority of agile software development projects currently involve interactive user interface designs, which can only be possible by following User Centered Design (UCD in agile methods. The question here is, how to integrate UCD with agile models. Both Agile models and UCD are iterative in nature but agile models focus on coding and development of software; whereas, UCD focuses on user interface of the software. Similarly, both of them have testing features where the agile model involves automated tested code while UCD involves an expert or a user to test the user interface. In this paper, a new agile usability model is proposed and the evaluation is of the proposed model is presented by practically implementing it in three real life projects. . Key results from these projects clearly show: the proposed agile model incorporates usability evaluation methods, improves the relationship between usability experts to work with agile software experts; in addition, allows agile developers to incorporate the result from UCD into subsequent interactions.

  16. Development of a transient criticality evaluation method

    International Nuclear Information System (INIS)

    Pain, C.C.; Eaton, M.D.; Miles, B.; Ziver, A.K.; Gomes, J.L.M.A.; Umpleby, A.P.; Piggott, M.D.; Goddard, A.J.H.; Oliveira, C.R.E. de

    2005-01-01

    In developing a transient criticality evaluation method we model, in full spatial/temporal detail, the neutron fluxes and consequent power and the evolving material properties - their flows, energies, phase changes etc. These methods are embodied in the generic method FETCH code which is based as far as possible on basic principles and is capable of use in exploring safety-related situations somewhat beyond the range of experiment. FETCH is a general geometry code capable of addressing a range of criticality issues in fissile materials. The code embodies both transient radiation transport and transient fluid dynamics. Work on powders, granular materials, porous media and solutions is reviewed. The capability for modelling transient criticality for chemical plant, waste matrices and advanced reactors is also outlined. (author)

  17. Evaluation of three methods of platelet labelling

    International Nuclear Information System (INIS)

    Mortelmans, L.; Verbruggen, A.; Roo, M. de; Vermylen, J.

    1986-01-01

    The study of the kinetics of labelled platelets makes sense only when the platelets preserve their viability after separation and labelling. The separation and labelling procedures described in the manual of two producers of 111 In-oxinate (Amersham, Mallinckrodt) have been evaluated by in vitro aggregation tests. The method of Mallinckrodt diminished the aggregation capacities of the thrombocytes. The labelled platelets with normal in vitro aggregation response (Amersham) were tested in vivo in 11 patients who underwent peripheral bypass surgery. The platelet half-life and the platelet accumulation on bypass grafts were checked one week post-operatively. Because of the poor in vivo response of both methods (exponential half-life curve and bad graft visualization), a third method based on that described by W.A. Heaton et al. 1979 was optimized in the authors' laboratory with good in vitro and in vivo results in 12 patients. (author)

  18. Evaluation of three methods of platelet labelling.

    Science.gov (United States)

    Mortelmans, L; Verbruggen, A; De Roo, M; Vermylen, J

    1986-07-01

    The study of the kinetics of labelled platelets makes sense only when the platelets preserve their viability after separation and labelling. The separation and labelling procedures described in the manual of two producers of 111In-oxinate (Amersham, Mallinckrodt) have been evaluated by in vitro aggregation tests. The method of Mallinckrodt diminished the aggregation capacities of the thrombocytes. The labelled platelets with normal in vitro aggregation response (Amersham) were tested in vivo in 11 patients who underwent peripheral bypass surgery. The platelet half-life and the platelet accumulation on bypass grafts were checked one week post-operatively. Because of the poor in vivo response of both methods (exponential half-life curve and bad graft visualization), a third method was optimized in our laboratory with good in vitro and in vivo results in 12 patients.

  19. Evaluation of radio-protective effect of melatonin on whole body irradiation induced liver tissue damage.

    Science.gov (United States)

    Shirazi, Alireza; Mihandoost, Ehsan; Ghobadi, Ghazale; Mohseni, Mehran; Ghazi-Khansari, Mahmoud

    2013-01-01

    Ionizing radiation interacts with biological systems to induce excessive fluxes of free radicals that attack various cellular components. Melatonin has been shown to be a direct free radical scavenger and indirect antioxidant via its stimulatory actions on the antioxidant system.The aim of this study was to evaluate the antioxidant role of melatonin against radiation-induced oxidative injury to the rat liver after whole body irradiation. In this experimental study,thirty-two rats were divided into four groups. Group 1 was the control group, group 2 only received melatonin (30 mg/kg on the first day and 30 mg/kg on the following days), group 3 only received whole body gamma irradiation of 10 Gy, and group 4 received 30 mg/kg melatonin 30 minutes prior to radiation plus whole body irradiation of 10 Gy plus 30 mg/kg melatonin daily through intraperitoneal (IP) injection for three days after irradiation. Three days after irradiation, all rats were sacrificed and their livers were excised to measure the biochemical parameters malondialdehyde (MDA) and glutathione (GSH). Each data point represents mean ± standard error on the mean (SEM) of at least eight animals per group. A one-way analysis of variance (ANOVA) was performed to compare different groups, followed by Tukey's multiple comparison tests (p<0.05). The results demonstrated that whole body irradiation induced liver tissue damage by increasing MDA levels and decreasing GSH levels. Hepatic MDA levels in irradiated rats that were treated with melatonin (30 mg/kg) were significantly decreased, while GSH levels were significantly increased, when compared to either of the control groups or the melatonin only group. The data suggest that administration of melatonin before and after irradiation may reduce liver damage caused by gamma irradiation.

  20. Atomic Oxygen Treatment as a Method of Recovering Smoke Damaged Paintings

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Forkapa, Mark; Stueber, Thomas; Sechkar, Edward; Malinowski, Kevin

    1998-01-01

    Smoke damage, as a result of a fire, can be difficult to remove from some types of painting media without causing swelling, leaching or pigment movement or removal. A non-contact technique has been developed which can remove soot from the surface of a painting by use of a gently flowing gas containing atomic oxygen. The atomic oxygen chemically reacts with the soot on the surface creating gasses such as carbon monoxide and carbon dioxide which can be removed through the use of an exhaust system. The reaction is limited to the surface so that the process can be timed to stop when the paint layer is reached. Atomic oxygen is a primary component of the low Earth orbital environment, but can be generated on Earth through various methods. This paper will discuss the results of atomic oxygen treatment of soot exposed acrylic gesso, ink on paper, and a varnished oil painting. Reflectance measurements were used to characterize the surfaces before and after treatment.

  1. Processing of hazardous material, or damage treatment method for shallow layer underground storage structure

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Sakaguchi, Takehiko; Nishioka, Yoshihiro.

    1997-01-01

    In radioactive waste processing facilities and shallow layer underground structures for processing hazardous materials, sheet piles having freezing pipes at the joint portions are spiked into soils at the periphery of a damaged portion of the shallow layer underground structure for processing or storing hazardous materials. Liquid nitrogen is injected to the freezing pipes to freeze the joint portions of adjacent sheet piles. With such procedures, continuous waterproof walls are formed surrounding the soils at the peripheries of the damaged portion. Further, freezing pipes are disposed in the surrounding soils, and liquid nitrogen is injected to freeze the soils. The frozen soils are removed, and artificial foundation materials are filled in the space except for the peripheries of the damaged portion after the removal thereof, and liquid suspension is filled in the peripheries of the damaged portion, and restoration steps for closing the damaged portion are applied. Then, the peripheries of the damaged portion are buried again. With such procedures, series of treatments for removing contaminated soils and repairing a damaged portion can be conducted efficiently at a low cost. (T.M.)

  2. Studies on DNA damage: discordant responses of rate of DNA disentanglement (viscosimetrically evaluated) and alkaline elution rate, obtained for several compounds. Possible explanations of the discrepancies.

    Science.gov (United States)

    Parodi, S; Balbi, C; Abelmoschi, M L; Pala, M; Russo, P; Santi, L

    1983-12-01

    Alkaline elution is a well-known method for detecting DNA damage. Recently we have developed a viscosimetric method that is even more sensitive than alkaline elution. Here we report that the two methods, although apparently both revealing alkaline DNA fragmentation, can give dramatically different results for a significant series of compounds. We suspect that alkaline elution might reveal not only DNA fragmentation but also the extent of disentanglement of chromatin structure, whereas this DNA disentanglement rate, when evaluated viscosimetrically , is more strictly correlated with the initiation of DNA unwinding.

  3. Neuroprotection and secondary damage following spinal cord injury: concepts and methods.

    Science.gov (United States)

    Hilton, Brett J; Moulson, Aaron J; Tetzlaff, Wolfram

    2017-06-23

    Neuroprotection refers to the attenuation of pathophysiological processes triggered by acute injury to minimize secondary damage. The development of neuroprotective treatments represents a major goal in the field of spinal cord injury (SCI) research. In this review, we discuss the strengths and limitations of the methodologies employed to assess secondary damage and neuroprotection in preclinical models of traumatic SCI. We also discuss modelling issues and how new tools might be exploited to study secondary damage and neuroprotection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Fuzzy comprehensive evaluation method of F statistics weighting in ...

    African Journals Online (AJOL)

    In order to rapidly identify the source of water inrush in coal mine, and provide the theoretical basis for mine water damage prevention and control, fuzzy comprehensive evaluation model was established. The F statistics of water samples was normalized as the weight of fuzzy comprehensive evaluation for determining the ...

  5. Development of methods for evaluating active faults

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The report for long-term evaluation of active faults was published by the Headquarters for Earthquake Research Promotion on Nov. 2010. After occurrence of the 2011 Tohoku-oki earthquake, the safety review guide with regard to geology and ground of site was revised by the Nuclear Safety Commission on Mar. 2012 with scientific knowledges of the earthquake. The Nuclear Regulation Authority established on Sep. 2012 is newly planning the New Safety Design Standard related to Earthquakes and Tsunamis of Light Water Nuclear Power Reactor Facilities. With respect to those guides and standards, our investigations for developing the methods of evaluating active faults are as follows; (1) For better evaluation on activities of offshore fault, we proposed a work flow to date marine terrace (indicator for offshore fault activity) during the last 400,000 years. We also developed the analysis of fault-related fold for evaluating of blind fault. (2) To clarify the activities of active faults without superstratum, we carried out the color analysis of fault gouge and divided the activities into thousand of years and tens of thousands. (3) To reduce uncertainties of fault activities and frequency of earthquakes, we compiled the survey data and possible errors. (4) For improving seismic hazard analysis, we compiled the fault activities of the Yunotake and Itozawa faults, induced by the 2011 Tohoku-oki earthquake. (author)

  6. Evaluation of thermal damage in dental implants after irradiation with 980nm diode laser. An in vitro study

    Directory of Open Access Journals (Sweden)

    Carlo Cafiero

    2016-12-01

    Full Text Available Purpose: The aim of this study was to analyze the thermal damage in dental implants after irradiations with a 980nm diode laser, normally used for the decontamination. Material and Methods: Five Titanium Plasma Sprayed dental implants were irradiated with a 980nm diode laser at different parameters. Temperature increase on implant surface was evaluated by a Mid-Wavelength Infrared thermal-camera (Merlin®, FLIR, USA. Temperature increase (ΔT was compared to environmental temperature (27°C and recorded in three points: “A” (laser spot, “B” (3mm apically to the laser spot and “C” (2mm horizontally to the laser spot. Finally, a morphological evaluation at optical stereomicroscopy was performed. Results: When 0.6W power was applied, a moderate increase of temperature in point A (5.5°C-15.0°C, a slight increase in point B (0.1°C-6.2°C and point C (0.1°C-5.7°C, were registered after 30” of irradiation. In the samples treated at 6W, in “point A” an impressive ΔT increase was immediately recorded (over 70°C. In “point B” was recorded a slight ΔT after 2 sec. irradiation (range 2.3°C-6.0°C, a moderate ΔT after 4 sec. irradiation (16.4°C and a consistent ΔT after 8-10 sec. irradiation (range 36.6°C-46.2°C. In “point C” ΔT values were very similar to those collected in “point B”. Optical stereomicroscopy examination at a magnification of 32x did not show any surface alteration or damage after whichever laser irradiation independently from irradiation time and power output . Conclusions: 980nm diode laser, used at controlled parameters, can be used in the decontamination of dental implants, without causing any thermal damage or increase.

  7. New method for evaluating liquefaction potential

    Energy Technology Data Exchange (ETDEWEB)

    Arulmoli, K.; Arulanandan, K.; Seed, H.B.

    1985-01-01

    A new method of indexing the grain and aggregate properties of sand using electrical parameters is described. Correlations are established between these parameters and relative density, D /sub r/ , cyclic stress ratio, /tau//sigma'/sub 0/, and K2 /sub max/ . An electrical probe, used to predict these parameters from in-situ electrical measurements, is described. Evaluations are made of D /sub r/ and /tau//sigma/sub 0/, which are compared with values measured independently from controlled laboratory tests. Reasonable agreement is found between predicted and measured values. The potential applicability of the electrical probe in the field is shown by evaluation of liquefaction and nonliquefaction at sites affected by the 1906 San Francisco, Niigata and Tangshan earthquakes.

  8. Instrumentation and quantitative methods of evaluation

    International Nuclear Information System (INIS)

    Beck, R.N.; Cooper, M.D.

    1991-01-01

    This report summarizes goals and accomplishments of the research program entitled Instrumentation and Quantitative Methods of Evaluation, during the period January 15, 1989 through July 15, 1991. This program is very closely integrated with the radiopharmaceutical program entitled Quantitative Studies in Radiopharmaceutical Science. Together, they constitute the PROGRAM OF NUCLEAR MEDICINE AND QUANTITATIVE IMAGING RESEARCH within The Franklin McLean Memorial Research Institute (FMI). The program addresses problems involving the basic science and technology that underlie the physical and conceptual tools of radiotracer methodology as they relate to the measurement of structural and functional parameters of physiologic importance in health and disease. The principal tool is quantitative radionuclide imaging. The objective of this program is to further the development and transfer of radiotracer methodology from basic theory to routine clinical practice. The focus of the research is on the development of new instruments and radiopharmaceuticals, and the evaluation of these through the phase of clinical feasibility. 234 refs., 11 figs., 2 tabs

  9. Damage Analysis and Evaluation of Light Steel Structures Exposed to Wind Hazards

    OpenAIRE

    Na Yang; Fan Bai

    2017-01-01

    Compared to hot-rolled steel structures, cold-formed steel structures are susceptible to extreme winds because of the light weight of the building and its components. Many modern cold-formed steel structures have sustained significant structural damage ranging from loss of cladding to complete collapse in recent cyclones. This article first provides some real damage cases for light steel structures induced by the high winds. After that, the paper reviews research on the damage analysis and e...

  10. Damage Evaluation and Analysis of Composite Pressure Vessels Using Fiber Bragg Gratings to Determine Structural Health

    National Research Council Canada - National Science Library

    Kunzler, Marley; Udd, Eric; Kreger, Stephen; Johnson, Mont; Henrie, Vaughn

    2005-01-01

    .... Using fiber Bragg gratings embedded into the weave structure of carbon fiber epoxy composites allow the capability to monitor these composites during manufacture, cure, general aging, and damage...

  11. Lifetime estimates of a fusion reactor first wall by linear damage summation and strain range partitioning methods

    International Nuclear Information System (INIS)

    Liu, K.C.; Grossbeck, M.L.

    1979-01-01

    A generalized model of a first wall made of 20% cold-worked steel was examined for neutron wall loadings ranging from 2 to 5 MW/m 2 . A spectrum of simplified on-off duty cycles was assumed with a 95% burn time. Independent evaluations of cyclic lifetimes were based on two methods: the method of linear damage summation currently being employed for use in ASME high-temperature design Code Case N-47 and that of strain range partitioning being studied for inclusion in the design code. An important point is that the latter method can incorporate a known decrease in ductility for materials subject to irradiation as a parameter, so low-cycle fatigue behavior can be estimated for irradiated material. Lifetimes predicted by the two methods agree reasonably well despite their diversity in concept. Lack of high-cycle fatigue data for the material tested at temperatures within the range of our interest precludes making conclusions on the accuracy of the predicted results, but such data are forthcoming. The analysis includes stress relaxation due to thermal and irradiation-induced creep. Reduced ductility values from irradiations that simulate the environment of the first wall of a fusion reactor were used to estimate the lifetime of the first wall under irradiation. These results indicate that 20% cold-worked type 316 stainless steel could be used as a first-wall material meeting a 8 to 10 MW-year/m 2 lifetime goal for a neutron wall loading of about 2 MW-year/m 2 and a maximum temperature of about 500 0 C

  12. NRC methods for evaluation of industry training

    International Nuclear Information System (INIS)

    Morisseau, D.S.; Koontz, J.L.; Persensky, J.J.

    1987-01-01

    On March 20, 1985, the Nuclear Regulatory Commission published the Policy Statement on Training and Qualification. The Policy Statement endorsed the INPO-managed Training Accreditation Program because it encompasses the five elements of performance-based training. This paper described the multiple methods that the NRC is using to monitor industry efforts to improve training and implement the NRC Policy Statement on Training and Qualification. The results of the evaluation of industry training improvement programs will be reviewed by the Commissioners in April 1987 to determine the nature of continuing NRC policy and programs for ensuring effective training for the US nuclear industry

  13. Evaluation methodology for flood damage reduction by preliminary water release from hydroelectric dams

    Science.gov (United States)

    Ando, T.; Kawasaki, A.; Koike, T.

    2017-12-01

    IPCC AR5 (2014) reported that rainfall in the middle latitudes of the Northern Hemisphere has been increasing since 1901, and it is claimed that warmer climate will increase the risk of floods. In contrast, world water demand is forecasted to exceed a sustainable supply by 40 percent by 2030. In order to avoid this expectable water shortage, securing new water resources has become an utmost challenge. However, flood risk prevention and the secure of water resources are contradictory. To solve this problem, we can use existing hydroelectric dams not only as energy resources but also for flood control. However, in case of Japan, hydroelectric dams take no responsibility for it, and benefits have not been discussed accrued by controlling flood by hydroelectric dams, namely by using preliminary water release from them. Therefore, our paper proposes methodology for assessing those benefits. This methodology has three stages as shown in Fig. 1. First, RRI model is used to model flood events, taking account of the probability of rainfall. Second, flood damage is calculated using assets in inundation areas multiplied by the inundation depths generated by that RRI model. Third, the losses stemming from preliminary water release are calculated, and adding them to flood damage, overall losses are calculated. We can evaluate the benefits by changing the volume of preliminary release. As a result, shown in Fig. 2, the use of hydroelectric dams to control flooding creates 20 billion Yen benefits, in the probability of three-day-ahead rainfall prediction of the assumed maximum rainfall in Oi River, in the Shizuoka Pref. of Japan. As the third priority in the Sendai Framework for Disaster Risk Reduction 2015-2030, `investing in disaster risk reduction for resilience - public and private investment in disaster risk prevention and reduction through structural and non-structural measures' was adopted. The accuracy of rainfall prediction is the key factor in maximizing the benefits

  14. Laboratory methods to evaluate therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Arteaga de Murphy, C.; Rodriguez-Cortes, J.; Pedraza-Lopez, M.; Ramirez-Iglesias, MT.; Ferro-Flores, G.

    2007-01-01

    The overall aim of this coordinated research project was to develop in vivo and in vitro laboratory methods to evaluate therapeutic radiopharmaceuticals. Towards this end, the laboratory methods used in this study are described in detail. Two peptides - an 8 amino acid minigastrin analogue and octreotate - were labelled with 177 Lu. Bombesin was labelled with 99 mTc, and its diagnostic utility was proven. For comparison, 99 mTc-TOC was used. The cell lines used in this study were AR42J cells, which overexpress somatostatin receptors found in neuroendocrine cancers, and PC3 cells, which overexpress gastric releasing peptide receptors (GRP-r) found in human prostate and breast cancers. The animal model chosen was athymic mice with implanted dorsal tumours of pathologically confirmed cell cancers. The methodology described for labelling, quality control, and in vitro and in vivo assays can be easily used with other radionuclides and other peptides of interest. (author)

  15. Evaluation on microscopic damage and fabrication process of shape memory alloy

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Choi, Il Kook; Park, Young Chul; Lee, Kyu Chang; Lee, Jun Hyun

    2002-01-01

    Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and Al6061 were used as reinforcing material and matrix, respectively. In this study, TiNi/Al6061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at tile boundary between TiNi fiber anti Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effort. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/Al6061 shape memory alloy composite at high temperature.

  16. Evaluating bull fertility based on non-return method

    Directory of Open Access Journals (Sweden)

    Prka Igor

    2012-01-01

    Full Text Available In order to evaluate the results of reproductive cows and heifers, different parameters of fertility are used, such as the service period, insemination index, intercalving time and others, and of the breeding bulls the values obtained through non-return. An ejaculate is taken up for further processing by veterinary centres only provided it meets the prescribed quality parameters. Rating semen parameters includes a macroscopic (volume, colour, consistency, smell and pH and a microscopic evaluation (mobility, density, percentage of live sperm and abnormal and damaged sperm. In addition to sperm quality and the fertility of the female animal, the results of the non-return method are also influenced by a number of exogenous causes (season, age, race, insemination techniques that have no small impact on the end result of insemination - pregnancy. In order to obtain more objective results of the fertility of bulls the following tasks were undertaken, namely: 1. to calculate with the non-return method the fertility of bulls in over 10,000 cows inseminated for the first time during a period of 6 years; and 2. to analyze the impact of semen quality, season, age of cow and bull, and the bull breed on the results of fertility.

  17. Survey and evaluation of aging risk assessment methods and applications

    International Nuclear Information System (INIS)

    Sanzo, D.; Kvam, P.; Apostolakis, G.; Wu, J.; Milici, T.; Ghoniem, N.; Guarro, S.

    1994-11-01

    The US Nuclear Regulatory Commission initiated the nuclear power plant aging research program about 6 years ago to gather information about nuclear power plant aging. Since then, this program has collected a significant amount of information, largely qualitative, on plant aging and its potential effects on plant safety. However, this body of knowledge has not yet been integrated into formalisms that can be used effectively and systematically to assess plant risk resulting from aging, although models for assessing the effect of increasing failure rates on core damage frequency have been proposed. This report surveys the work on the aging of systems, structures, and components (SSCs) of nuclear power plants, as well as associated data bases. We take a critical look at the need to revise probabilistic risk assessments (PRAs) so that they will include the contribution to risk from plant aging, the adequacy of existing methods for evaluating this contribution, and the adequacy of the data that have been used in these evaluation methods. We identify a preliminary framework for integrating the aging of SSCs into the PRA and include the identification of necessary data for such an integration

  18. UV-vis spectra as an alternative to the Lowry method for quantify hair damage induced by surfactants.

    Science.gov (United States)

    Pires-Oliveira, Rafael; Joekes, Inés

    2014-11-01

    It is well known that long term use of shampoo causes damage to human hair. Although the Lowry method has been widely used to quantify hair damage, it is unsuitable to determine this in the presence of some surfactants and there is no other method proposed in literature. In this work, a different method is used to investigate and compare the hair damage induced by four types of surfactants (including three commercial-grade surfactants) and water. Hair samples were immersed in aqueous solution of surfactants under conditions that resemble a shower (38 °C, constant shaking). These solutions become colored with time of contact with hair and its UV-vis spectra were recorded. For comparison, the amount of extracted proteins from hair by sodium dodecyl sulfate (SDS) and by water were estimated by the Lowry method. Additionally, non-pigmented vs. pigmented hair and also sepia melanin were used to understand the washing solution color and their spectra. The results presented herein show that hair degradation is mostly caused by the extraction of proteins, cuticle fragments and melanin granules from hair fiber. It was found that the intensity of solution color varies with the charge density of the surfactants. Furthermore, the intensity of solution color can be correlated to the amount of proteins quantified by the Lowry method as well as to the degree of hair damage. UV-vis spectrum of hair washing solutions is a simple and straightforward method to quantify and compare hair damages induced by different commercial surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Damage identification method for continuous girder bridges based on spatially-distributed long-gauge strain sensing under moving loads

    Science.gov (United States)

    Wu, Bitao; Wu, Gang; Yang, Caiqian; He, Yi

    2018-05-01

    A novel damage identification method for concrete continuous girder bridges based on spatially-distributed long-gauge strain sensing is presented in this paper. First, the variation regularity of the long-gauge strain influence line of continuous girder bridges which changes with the location of vehicles on the bridge is studied. According to this variation regularity, a calculation method for the distribution regularity of the area of long-gauge strain history is investigated. Second, a numerical simulation of damage identification based on the distribution regularity of the area of long-gauge strain history is conducted, and the results indicate that this method is effective for identifying damage and is not affected by the speed, axle number and weight of vehicles. Finally, a real bridge test on a highway is conducted, and the experimental results also show that this method is very effective for identifying damage in continuous girder bridges, and the local element stiffness distribution regularity can be revealed at the same time. This identified information is useful for maintaining of continuous girder bridges on highways.

  20. From creep damage mechanics to homogenization methods a liber amicorum to celebrate the birthday of Nobutada Ohno

    CERN Document Server

    Matsuda, Tetsuya; Okumura, Dai

    2015-01-01

    This volume presents a collection of contributions on materials modeling, which were written to celebrate the 65th birthday of Prof. Nobutada Ohno. The book follows Prof. Ohno’s scientific topics, starting with creep damage problems and ending with homogenization methods.

  1. A proposed method to assess the damage risk of future climate change to museum objects in historic buildings

    NARCIS (Netherlands)

    Huijbregts, Z.; Kramer, R.P.; Martens, M.H.J.; Schijndel, van A.W.M.; Schellen, H.L.

    2012-01-01

    Future climate change is expected to have a critical effect on valuable museum collections that are housed in historic buildings. Changes of the indoor environment in the building affect the microclimate around the museum objects and may cause damage to the collection. In this study, a method is

  2. Methods and Metrics for Evaluating Environmental Dredging ...

    Science.gov (United States)

    This report documents the objectives, approach, methodologies, results, and interpretation of a collaborative research study conducted by the National Risk Management Research Laboratory (NRMRL) and the National Exposure Research laboratory (NERL) of the U.S. Environmental Protection Agency’s (U.S. EPA’s) Office of Research and Development (ORD) and the U.S. EPA’s Great Lakes National Program Office (GLNPO). The objectives of the research study were to: 1) evaluate remedy effectiveness of environmental dredging as applied to contaminated sediments in the Ashtabula River in northeastern Ohio, and 2) monitor the recovery of the surrounding ecosystem. The project was carried out over 6 years from 2006 through 2011 and consisted of the development and evaluation of methods and approaches to assess river and ecosystem conditions prior to dredging (2006), during dredging (2006 and 2007), and following dredging, both short term (2008) and long term (2009-2011). This project report summarizes and interprets the results of this 6-year study to develop and assess methods for monitoring pollutant fate and transport and ecosystem recovery through the use of biological, chemical, and physical lines of evidence (LOEs) such as: 1) comprehensive sampling of and chemical analysis of contaminants in surface, suspended, and historic sediments; 2) extensive grab and multi-level real time water sampling and analysis of contaminants in the water column; 3) sampling, chemi

  3. Development of methods for evaluating active faults

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The HERP report for long-term evaluation of active faults and the NSC safety review guide with regard to geology and ground of site were published on Nov. 2010 and on Dec. 2010, respectively. With respect to those reports, our investigation is as follows; (1) For assessment of seismic hazard, we estimated seismic sources around NPPs based on information of tectonic geomorphology, earthquake distribution and subsurface geology. (2) For evaluation on the activity of blind fault, we calculated the slip rate on the 2008 Iwate-Miyagi Nairiku Earthquake fault, using information on late Quaternary fluvial terraces. (3) To evaluate the magnitude of earthquakes whose sources are difficult to identify, we proposed a new method for calculation of the seismogenic layer thickness. (4) To clarify the activities of active faults without superstratum, we carried out the color analysis of fault gouge and divided the activities into thousand of years and tens of thousands. (5) For improving chronology of sediments, we detected new widespread cryptotephras using mineral chemistry and developed late Quaternary cryptotephrostratigraphy around NPPs. (author)

  4. Evaluation of the damages in rocks caused by the construction of a repository

    International Nuclear Information System (INIS)

    Devillers, C.; Escalier des Orres, P.

    1988-12-01

    The Commissariat a l'Energie Atomique (French Atomic Energy Commission) has conducted a bibliographic study of the damages in the rock caused by the construction of a repository, and several hydraulic simulations, to appreciate the influence of these damages on the safety of the repository. These studies have led to the proposal of construction techniques in accordance safety requirements and industrial feasibility [fr

  5. Fatigue Damage Evaluation of Short Carbon Fiber Reinforced Plastics Based on Phase Information of Thermoelastic Temperature Change.

    Science.gov (United States)

    Shiozawa, Daiki; Sakagami, Takahide; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-12-06

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft, or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to evaluate fatigue damage in short carbon fiber composites. The distribution of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damage was detected from the distribution of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was more clearly detected than before by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the property that carbon fiber shows opposite phase thermoelastic temperature change.

  6. Direct evaluation of radiation damage in human hematopoietic progenitor cells in vivo

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; McCune, J.M.; Namikawa, Reiko

    1994-01-01

    We have developed techniques by which normal functional elements of human bone marrow can be implanted into immunodeficient C.B-17 scid/scid (SCID) mice. Afterward, long-term multilineage human hematopoiesis is sustained in vivo. We evaluated the effect of irradiation on the function of human bone marrow with this in vivo model. After whole-body X irradiation of the engrafted animals, it was determined that the D 0 value of human committed progenitor cells within the human marrow was 1.00 ± 0.09 (SEM) Gy for granulocyte-macrophage colony-forming units (CFU-GM) and 0.74 ± 0.12 Gy for erythroidburst-forming units (BFU-E). The effects of irradiation on the hematopoietic elements were reduced when the radioprotective agent WR-2721 was administered prior to irradiation. After low-dose irradiation, recovery of human granulocyte colony-stimulating factor (G-CSF). This small animal model may prove amenable for the analysis of the risk of the exposure of humans to irradiation as well as for the development of new modalities for the prevention and treatment of radiation-induced hematopoietic damage. 41 refs., 5 figs., 1 tab

  7. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    International Nuclear Information System (INIS)

    Herppich, Werner B.; Zabler, Simon; Dawson, Martin; Choinka, Gerard; Manke, Ingo

    2015-01-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  8. Synchrotron X-ray CT of rose peduncles. Evaluation of tissue damage by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Herppich, Werner B. [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V., Potsdam (Germany). Abt. Technik im Gartenbau; Matsushima, Uzuki [Iwate Univ., Morioka (Japan). Faculty of Agriculture; Graf, Wolfgang [Association for Technology and Structures in Agriculture (KTBL), Darmstadt (Germany); Zabler, Simon [Fraunhofer-Institut fuer Integrierte Schaltungen (IIS), Wuerzburg (Germany). Project group NanoCT Systems (NCTS); Dawson, Martin [Salford Univ., Greater Manchester (United Kingdom); Choinka, Gerard; Manke, Ingo [Helmholtz Center Berlin for Materials and Energy (HZB), Berlin (Germany)

    2015-02-01

    ''Bent-neck'' syndrome, an important postharvest problem of cut roses, is probably caused by water supply limitations and/or the structural weakness of vascular bundles of the peduncle tissue. For this reason, advanced knowledge about the microstructures of rose peduncles and their cultivar specific variations may lead to a better understanding of the underlying mechanisms. Synchrotron X-ray computed tomography (SXCT), especially phase-based CT, is a highly suitable technique to nondestructively investigate plants' micro anatomy. SXCT with monochromatic X-ray beams of 30, 40 and 50 keV photon energy was used to evaluate the three-dimensional inner structures of the peduncles of 3 rose cultivars that differ greatly in their bent-neck susceptibility. Results indicated that this technique achieves sufficiently high spatial resolution to investigate complex tissues. However, further investigations with chlorophyll fluorescence analysis (CFA) and optical microscope imagery reveal different kinds of heavy damage of the irradiated regions induced by synchrotron X-rays; in a cultivar-specific manner, partial destruction of cell walls occurred a few hours after X-ray irradiation. Furthermore, a delayed inhibition of photosynthesis accompanied by the degradation of chlorophyll was obvious from CFA within hours and days after the end of CT measurements. Although SXCT is certainly well suited for three-dimensional anatomical analysis of rose peduncles, the applied technique is not nondestructive.

  9. Evaluation of the plasticity and damage parameters of aluminium 7075 T7

    International Nuclear Information System (INIS)

    Elgueta Vergara, Marcelo

    2004-01-01

    Mechanical damage occurs when, because of deformations, the initial crystalline network of a material is modified and suffers deterioration or progressive mechanical damage, until a macro crack occurs and then, the rupture or final fracture of the material. This mechanical damage is physically represented by the presence of cavities, decohesions, microfissures, etc. The mechanical damage, considered to be the progressive deterioration of the matter when submitted to deformations, is a phenomenon that, compared with the rupture of the material, has only recently begun to be studied. This work defines the parameters of plasticity, the laws of isotropic and kinematic hardening and the one dimensional law of mechanical damage of an aluminum alloy 7075 T7, widely used in the aeronautics industry. Measurements of deformations were taken with extensometry stamps, extensometries and a digital imagery correlation technique, in tests under a monotonous as well as a cyclic load (CW)

  10. Estimating the uncertainty of damage costs of pollution: A simple transparent method and typical results

    International Nuclear Information System (INIS)

    Spadaro, Joseph V.; Rabl, Ari

    2008-01-01

    Whereas the uncertainty of environmental impacts and damage costs is usually estimated by means of a Monte Carlo calculation, this paper shows that most (and in many cases all) of the uncertainty calculation involves products and/or sums of products and can be accomplished with an analytic solution which is simple and transparent. We present our own assessment of the component uncertainties and calculate the total uncertainty for the impacts and damage costs of the classical air pollutants; results for a Monte Carlo calculation for the dispersion part are also shown. The distribution of the damage costs is approximately lognormal and can be characterized in terms of geometric mean μ g and geometric standard deviation σ g , implying that the confidence interval is multiplicative. We find that for the classical air pollutants σ g is approximately 3 and the 68% confidence interval is [μ g / σ g , μ g σ g ]. Because the lognormal distribution is highly skewed for large σ g , the median is significantly smaller than the mean. We also consider the case where several lognormally distributed damage costs are added, for example to obtain the total damage cost due to all the air pollutants emitted by a power plant, and we find that the relative error of the sum can be significantly smaller than the relative errors of the summands. Even though the distribution for such sums is not exactly lognormal, we present a simple lognormal approximation that is quite adequate for most applications

  11. Color Doppler ultrasound evaluation of asphyxial neonatal left ventricular function and its correlation with target organ damage

    Directory of Open Access Journals (Sweden)

    Cheng-Cai Chen

    2017-01-01

    Full Text Available Objective: To study the color Doppler ultrasound parameters of asphyxial neonatal left ventricular function and the correlation with target organ damage. Methods: Normal neonates, mildly asphyxial neonates and severely asphyxial neonates born in our hospital between January 2014 and December 2015 were selected as the control group (n = 46, mild asphyxia group (n = 37 and severe asphyxia group (n = 23 respectively. On the 1st day after birth, color Doppler ultrasound was used to evaluate left ventricular function, and serum was collected to determine myocardial tissue injury, brain tissue injury and brain tissue metabolism indexes. Results: Color Doppler ultrasound parameters cardiac output (CO, ejection fraction (EF and left ventricular fraction shortening (FS as well as serum folate and vitamin B12 content of mild asphyxia group and severe asphyxia group were significantly lower than those of control group (P<0.05 while serum creatine kinase isoenzyme (CK-MB, troponin I (cTnI, troponin T (cTnT, S100B, neuron-specific enolase (NSE, creatine kinase BB (CK-BB, glycogen phosphorylase BB (GPBB, and homocysteine (Hcy content were significantly higher than those of control group (P<0.05; CO, FS and EF as well as serum folate and vitamin B12 content of severe asphyxia group were significantly lower than those of mild asphyxia group (P<0.05 while serum CK-MB, cTnT, cTnI, S100B, NSE, CK-BB, GPBB and Hcy content were significantly higher than those of mild asphyxia group (P<0.05. Conclusions: Color Doppler ultrasound can accurately assess asphyxial neonatal left ventricular function damage degree and is closely related to myocardial tissue injury and brain tissue injury degree.

  12. Laser Induced Damage of Potassium Dihydrogen Phosphate (KDP Optical Crystal Machined by Water Dissolution Ultra-Precision Polishing Method

    Directory of Open Access Journals (Sweden)

    Yuchuan Chen

    2018-03-01

    Full Text Available Laser induced damage threshold (LIDT is an important optical indicator for nonlinear Potassium Dihydrogen Phosphate (KDP crystal used in high power laser systems. In this study, KDP optical crystals are initially machined with single point diamond turning (SPDT, followed by water dissolution ultra-precision polishing (WDUP and then tested with 355 nm nanosecond pulsed-lasers. Power spectral density (PSD analysis shows that WDUP process eliminates the laser-detrimental spatial frequencies band of micro-waviness on SPDT machined surface and consequently decreases its modulation effect on the laser beams. The laser test results show that LIDT of WDUP machined crystal improves and its stability has a significant increase by 72.1% compared with that of SPDT. Moreover, a subsequent ultrasonic assisted solvent cleaning process is suggested to have a positive effect on the laser performance of machined KDP crystal. Damage crater investigation indicates that the damage morphologies exhibit highly thermal explosion features of melted cores and brittle fractures of periphery material, which can be described with the classic thermal explosion model. The comparison result demonstrates that damage mechanisms for SPDT and WDUP machined crystal are the same and WDUP process reveals the real bulk laser resistance of KDP optical crystal by removing the micro-waviness and subsurface damage on SPDT machined surface. This improvement of WDUP method makes the LIDT more accurate and will be beneficial to the laser performance of KDP crystal.

  13. Evaluation of oxidative DNA damage promoted by storage in sperm from sex-reversed rainbow trout.

    Science.gov (United States)

    Pérez-Cerezales, S; Martínez-Páramo, S; Cabrita, E; Martínez-Pastor, F; de Paz, P; Herráez, M P

    2009-03-01

    Short-term storage and cryopreservation of sperm are two common procedures in aquaculture, used for routine practices in artificial insemination reproduction and gene banking, respectively. Nevertheless, both procedures cause injuries affecting sperm motility, viability, cell structure and DNA stability, which diminish reproductive success. DNA modification is considered extremely important, especially when sperm storage is carried out with gene banking purposes. DNA damage caused by sperm storage is not well characterized and previous studies have reported simple and double strand breaks that have been attributed to oxidative events promoted by the generation of free radicals during storage. The objective of this study was to reveal DNA fragmentation and to explore the presence of oxidized bases that could be produced by oxidative events during short-term storage and cryopreservation in sex-reversed rainbow trout (Oncorhynchus mykiss) spermatozoa. Sperm from six males was analyzed separately. Different aliquots of the samples were stored 2h (fresh) or 5 days at 4 degrees C or were cryopreserved. Then spermatozoa were analyzed using the Comet assay, as well as combining this method with digestion with two endonucleases from Escherichia coli (Endonuclease III, that cut in oxidized cytosines, and FPG, cutting in oxidized guanosines). Both storage procedures yielded DNA fragmentation, but only short-term storage oxidative events were clearly detected, showing that oxidative processes affect guanosines rather than cytosines. Cryopreservation increases DNA fragmentation but the presence of oxidized bases was not noticed, suggesting that mechanisms other than oxidative stress could be involved in DNA fragmentation promoted by freezing.

  14. Evaluation and considerations about fundamental periods of damaged reinforced concrete buildings

    Directory of Open Access Journals (Sweden)

    R. Ditommaso

    2013-07-01

    Full Text Available The aim of this paper is an empirical estimation of the fundamental period of reinforced concrete buildings and its variation due to structural and non-structural damage. The 2009 L'Aquila earthquake has highlighted the mismatch between experimental data and code provisions value not only for undamaged buildings but also for the damaged ones. The 6 April 2009 L'Aquila earthquake provided the first opportunity in Italy to estimate the fundamental period of reinforced concrete (RC buildings after a strong seismic sequence. A total of 68 buildings with different characteristics, such as age, height and damage level, have been investigated by performing ambient vibration measurements that provided their fundamental translational period. Four different damage levels were considered according with the definitions by EMS 98 (European Macroseismic Scale, trying to regroup the estimated fundamental periods versus building heights according to damage. The fundamental period of RC buildings estimated for low damage level is equal to the previous relationship obtained in Italy and Europe for undamaged buildings, well below code provisions. When damage levels are higher, the fundamental periods increase, but again with values much lower than those provided by codes. Finally, the authors suggest a possible update of the code formula for the simplified estimation of the fundamental period of vibration for existing RC buildings, taking into account also the inelastic behaviour.

  15. Damage sources for the NIF Grating Debris Shield (GDS) and methods for their mitigation

    Science.gov (United States)

    Carr, C. W.; Bude, J.; Miller, P. E.; Parham, T.; Whitman, P.; Monticelli, M.; Raman, R.; Cross, D.; Welday, B.; Ravizza, F.; Suratwala, T.; Davis, J.; Fischer, M.; Hawley, R.; Lee, H.; Matthews, M.; Norton, M.; Nostrand, M.; Vanblarcom, D.; Sommer, S.

    2017-11-01

    The primary sources of damage on the National Ignition Facility (NIF) Grating Debris Shield (GDS) are attributed to two independent types of laser-induced particulates. The first comes from the eruptions of bulk damage in a disposable debris shield downstream of the GDS. The second particle source comes from stray light focusing on absorbing glass armor at higher than expected fluences. We show that the composition of the particles is secondary to the energetics of their delivery, such that particles from either source are essentially benign if they arrive at the GDS with low temperatures and velocities.

  16. Evaluation of nuclear power plant component failure probability and core damage probability using simplified PSA model

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2000-01-01

    It is anticipated that the change of frequency of surveillance tests, preventive maintenance or parts replacement of safety related components may cause the change of component failure probability and result in the change of core damage probability. It is also anticipated that the change is different depending on the initiating event frequency or the component types. This study assessed the change of core damage probability using simplified PSA model capable of calculating core damage probability in a short time period, which is developed by the US NRC to process accident sequence precursors, when various component's failure probability is changed between 0 and 1, or Japanese or American initiating event frequency data are used. As a result of the analysis, (1) It was clarified that frequency of surveillance test, preventive maintenance or parts replacement of motor driven pumps (high pressure injection pumps, residual heat removal pumps, auxiliary feedwater pumps) should be carefully changed, since the core damage probability's change is large, when the base failure probability changes toward increasing direction. (2) Core damage probability change is insensitive to surveillance test frequency change, since the core damage probability change is small, when motor operated valves and turbine driven auxiliary feed water pump failure probability changes around one figure. (3) Core damage probability change is small, when Japanese failure probability data are applied to emergency diesel generator, even if failure probability changes one figure from the base value. On the other hand, when American failure probability data is applied, core damage probability increase is large, even if failure probability changes toward increasing direction. Therefore, when Japanese failure probability data is applied, core damage probability change is insensitive to surveillance tests frequency change etc. (author)

  17. Assessment of gamma irradiation heating and damage in miniature neutron source reactor vessel using computational methods and SRIM - TRIM code

    International Nuclear Information System (INIS)

    Appiah-Ofori, F. F.

    2014-07-01

    The Effects of Gamma Radiation Heating and Irradiation Damage in the reactor vessel of Ghana Research Reactor 1, Miniature Neutron Source Reactor were assessed using Implicit Control Volume Finite Difference Numerical Computation and validated by SRIM - TRIM Code. It was assumed that 5.0 MeV of gamma rays from the reactor core generate heat which interact and absorbed completely by the interior surface of the MNSR vessel which affects it performance due to the induced displacement damage. This displacement damage is as result of lattice defects being created which impair the vessel through formation of point defect clusters such as vacancies and interstitiaIs which can result in dislocation loops and networks, voids and bubbles and causing changes in the layers in the thickness of the vessel. The microscopic defects produced in the vessel due to γ - radiation damage are referred to as radiation damage while the defects thus produced modify the macroscopic properties of the vessel which are also known as the radiation effects. These radiation damage effects are of major concern for materials used in nuclear energy production. In this study, the overall objective was to assess the effects of gamma radiation heating and damage in GHARR - I MNSR vessel by a well-developed Mathematical model, Analytical and Numerical solutions, simulating the radiation damage in the vessel. SRIM - TRIM Code was used as a computational tool to determine the displacement per atom (dpa) associated with radiation damage while implicit Control Volume Finite Difference Method was used to determine the temperature profile within the vessel due to γ - radiation heating respectively. The methodology adopted in assessing γ - radiation heating in the vessel involved development of the One-Dimensional Steady State Fourier Heat Conduction Equation with Volumetric Heat Generation both analytical and implicit Control Volume Finite Difference Method approach to determine the maximum temperature and

  18. The methodological convention 2,0 for the estimation of environmental costs. An economic evaluation of environmental damages; Methodenkonvention 2.0 zur Schaetzung von Umweltkosten. Oekonomische Bewertung von Umweltschaeden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The reliable estimation of environmental damage costs requires a high degree of transparency of the objectives, assumptions and methods of assessment in order to ensure a correct classification and comparability of the cost factors. The methods convention under consideration aims to develop uniform standards for the technical evaluation of environmental costs and to improve the transparency of the estimates.

  19. Assessing the impacts of lifetime sun exposure on skin damage and skin aging using a non-invasive method

    Energy Technology Data Exchange (ETDEWEB)

    Kimlin, Michael G., E-mail: m.kimlin@qut.edu.au; Guo, Yuming, E-mail: guoyuming@yahoo.cn

    2012-05-15

    Background: Ultraviolet radiation exposure during an individuals' lifetime is a known risk factor for the development of skin cancer. However, less evidence is available on assessing the relationship between lifetime sun exposure and skin damage and skin aging. Objectives: This study aims to assess the relationship between lifetime sun exposure and skin damage and skin aging using a non-invasive measure of exposure. Methods: We recruited 180 participants (73 males, 107 females) aged 18-83 years. Digital imaging of skin hyperpigmentation (skin damage) and skin wrinkling (skin aging) on the facial region was measured. Lifetime sun exposure (presented as hours) was calculated from the participants' age multiplied by the estimated annual time outdoors for each year of life. We analyzed the effects of lifetime sun exposure on skin damage and skin aging. We adjust for the influence of age, sex, occupation, history of skin cancer, eye color, hair color, and skin color. Results: There were non-linear relationships between lifetime sun exposure and skin damage and skin aging. Younger participant's skin is much more sensitive to sun exposure than those who were over 50 years of age. As such, there were negative interactions between lifetime sun exposure and age. Age had linear effects on skin damage and skin aging. Conclusion: The data presented showed that self reported lifetime sun exposure was positively associated with skin damage and skin aging, in particular, the younger people. Future health promotion for sun exposure needs to pay attention to this group for skin cancer prevention messaging. - Highlights: Black-Right-Pointing-Pointer This is the first study finding the non-linear relationship between lifetime sun exposure and skin damage and skin aging. Black-Right-Pointing-Pointer This study finds there is negative interaction between lifetime sun exposure and age for skin damage and aging. Black-Right-Pointing-Pointer This study suggests that future

  20. A human-machine interface evaluation method: A difficulty evaluation method in information searching (DEMIS)

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2009-01-01

    A human-machine interface (HMI) evaluation method, which is named 'difficulty evaluation method in information searching (DEMIS)', is proposed and demonstrated with an experimental study. The DEMIS is based on a human performance model and two measures of attentional-resource effectiveness in monitoring and detection tasks in nuclear power plants (NPPs). Operator competence and HMI design are modeled to be most significant factors to human performance. One of the two effectiveness measures is fixation-to-importance ratio (FIR) which represents attentional resource (eye fixations) spent on an information source compared to importance of the information source. The other measure is selective attention effectiveness (SAE) which incorporates FIRs for all information sources. The underlying principle of the measures is that the information source should be selectively attended to according to its informational importance. In this study, poor performance in information searching tasks is modeled to be coupled with difficulties caused by poor mental models of operators or/and poor HMI design. Human performance in information searching tasks is evaluated by analyzing the FIR and the SAE. Operator mental models are evaluated by a questionnaire-based method. Then difficulties caused by a poor HMI design are evaluated by a focused interview based on the FIR evaluation and then root causes leading to poor performance are identified in a systematic way.

  1. Evaluation of determinative methods for sodium impurities

    International Nuclear Information System (INIS)

    Molinari, Marcelo; Guido, Osvaldo; Botbol, Jose; Ares, Osvaldo

    1988-01-01

    Sodium, universally accepted as heat transfer fluid in fast breeder reactors, requires a special technology for every operation involved in any applicable methodology, due to its well known chemical reactivity. The purpose of this work is: a) to study the sources and effects of chemical species which, as traces, accompany sodium used in the nuclear field; b) to classify, taking into account, the present requirements and resources of the National Atomic Energy Commission (CNEA), the procedures found in the literature for determination of the most important impurities which exist in experimental liquid sodium systems and c) to describe the principles of the methods and to evaluate them in order to make a selection. It was concluded the convenience to develop, as a first stage, laboratory procedures to determine carbon, oxygen, hydrogen and non-volatile impurities, which besides serving present needs, will be referential for direct methods with undeferred response. The latter are needed in liquid sodium experimental loops and require, primarily, more complex and extended development. Additionally, a description is made of experimental work performed up-to-now in this laboratory, consisting of a transfer device for sodium sampling and a sodium distillation device, adapted from a previous design, with associated vacuum and inert gas systems. It is intended as a separative technique for indirect determination of oxygen and non-volatile impurities. (Author) [es

  2. Evaluation of local radiation damage in silicon sensor via charge collection mapping with the Timepix read-out chip

    International Nuclear Information System (INIS)

    Platkevic, M; Jakubek, J; Jakubek, M; Pospisil, S; Zemlicka, J; Havranek, V; Semian, V

    2013-01-01

    Studies of radiation hardness of silicon sensors are standardly performed with single-pad detectors evaluating their global electrical properties. In this work we introduce a technique to visualize and determine the spatial distribution of radiation damage across the area of a semiconductor sensor. The sensor properties such as charge collection efficiency and charge diffusion were evaluated locally at many points of the sensor creating 2D maps. For this purpose we used a silicon sensor bump bonded to the pixelated Timepix read-out chip. This device, operated in Time-over-threshold (TOT) mode, allows for the direct energy measurement in each pixel. Selected regions of the sensor were intentionally damaged by defined doses (up to 10 12 particles/cm 2 ) of energetic protons (of 2.5 and 4 MeV). The extent of the damage was measured in terms of the detector response to the same ions. This procedure was performed either on-line during irradiation or off-line after it. The response of the detector to each single particle was analyzed determining the charge collection efficiency and lateral charge diffusion. We evaluated the changes of these parameters as a function of radiation dose. These features are related to the local properties such as the spatial homogeneity of the sensor. The effect of radiation damage was also independently investigated measuring local changes of signal response to γ, and X rays and alpha particles.

  3. Evaluation of methods to assess physical activity

    Science.gov (United States)

    Leenders, Nicole Y. J. M.

    Epidemiological evidence has accumulated that demonstrates that the amount of physical activity-related energy expenditure during a week reduces the incidence of cardiovascular disease, diabetes, obesity, and all-cause mortality. To further understand the amount of daily physical activity and related energy expenditure that are necessary to maintain or improve the functional health status and quality of life, instruments that estimate total (TDEE) and physical activity-related energy expenditure (PAEE) under free-living conditions should be determined to be valid and reliable. Without evaluation of the various methods that estimate TDEE and PAEE with the doubly labeled water (DLW) method in females there will be eventual significant limitations on assessing the efficacy of physical activity interventions on health status in this population. A triaxial accelerometer (Tritrac-R3D, (TT)), an uniaxial (Computer Science and Applications Inc., (CSA)) activity monitor, a Yamax-Digiwalker-500sp°ler , (YX-stepcounter), by measuring heart rate responses (HR method) and a 7-d Physical Activity Recall questionnaire (7-d PAR) were compared with the "criterion method" of DLW during a 7-d period in female adults. The DLW-TDEE was underestimated on average 9, 11 and 15% using 7-d PAR, HR method and TT. The underestimation of DLW-PAEE by 7-d PAR was 21% compared to 47% and 67% for TT and YX-stepcounter. Approximately 56% of the variance in DLW-PAEE*kgsp{-1} is explained by the registration of body movement with accelerometry. A larger proportion of the variance in DLW-PAEE*kgsp{-1} was explained by jointly incorporating information from the vertical and horizontal movement measured with the CSA and Tritrac-R3D (rsp2 = 0.87). Although only a small amount of variance in DLW-PAEE*kgsp{-1} is explained by the number of steps taken per day, because of its low cost and ease of use, the Yamax-stepcounter is useful in studies promoting daily walking. Thus, studies involving the

  4. Methods for the comparative evaluation of pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Busse, Reinhard

    2005-11-01

    Full Text Available Political background: As a German novelty, the Institute for Quality and Efficiency in Health Care (Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen; IGWiG was established in 2004 to, among other tasks, evaluate the benefit of pharmaceuticals. In this context it is of importance that patented pharmaceuticals are only excluded from the reference pricing system if they offer a therapeutic improvement. The institute is commissioned by the Federal Joint Committee (Gemeinsamer Bundesausschuss, G-BA or by the Ministry of Health and Social Security. The German policy objective expressed by the latest health care reform (Gesetz zur Modernisierung der Gesetzlichen Krankenversicherung, GMG is to base decisions on a scientific assessment of pharmaceuticals in comparison to already available treatments. However, procedures and methods are still to be established. Research questions and methods: This health technology assessment (HTA report was commissioned by the German Agency for HTA at the Institute for Medical Documentation and Information (DAHTA@DIMDI. It analysed criteria, procedures, and methods of comparative drug assessment in other EU-/OECD-countries. The research question was the following: How do national public institutions compare medicines in connection with pharmaceutical regulation, i.e. licensing, reimbursement and pricing of drugs? Institutions as well as documents concerning comparative drug evaluation (e.g. regulations, guidelines were identified through internet, systematic literature, and hand searches. Publications were selected according to pre-defined inclusion and exclusion criteria. Documents were analysed in a qualitative matter following an analytic framework that had been developed in advance. Results were summarised narratively and presented in evidence tables. Results and discussion: Currently licensing agencies do not systematically assess a new drug's added value for patients and society. This is why many

  5. Digital image envelope: method and evaluation

    Science.gov (United States)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  6. Chesapeake Bay fish–osprey (Pandion haliaetus) food chain: Evaluation of contaminant exposure and genetic damage

    Science.gov (United States)

    Lazarus, Rebecca S.; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Karouna-Reiner, Natalie K.; Erickson, Richard A.; Ottinger, Mary Ann

    2016-01-01

    From 2011 to 2013, a large-scale ecotoxicological study was conducted in several Chesapeake Bay (USA) tributaries (Susquehanna River and flats, the Back, Baltimore Harbor/Patapsco Rivers, Anacostia/ middle Potomac, Elizabeth and James Rivers) and Poplar Island as a mid-Bay reference site. Osprey (Pandion haliaetus) diet and the transfer of contaminants from fish to osprey eggs were evaluated. The most bioaccumulative compounds (biomagnification factor > 5) included p,p′-dichlorodiphenyldichloroethylene (DDE), total polychlorinated biphenyls (PCBs), total polybrominated diphenyl ethers (PBDEs), and bromodiphenyl ether (BDE) congeners 47, 99, 100, and 154. This analysis suggested that alternative brominated flame retardants and other compounds (methoxytriclosan) are not appreciably biomagnifying. A multivariate analysis of similarity indicated that major differences in patterns among study sites were driven by PCB congeners 105, 128, 156, 170/190, and 189, and PBDE congeners 99 and 209. An integrative redundancy analysis showed that osprey eggs from Baltimore Harbor/Patapsco River and the Elizabeth River had high residues of PCBs and p,p′-DDE, with PBDEs making a substantial contribution to overall halogenated contamination on the Susquehanna and Anacostia/middle Potomac Rivers. The redundancy analysis also suggested a potential relation between PBDE residues in osprey eggs and oxidative DNA damage in nestling blood samples. The results also indicate that there is no longer a discernible relation between halogenated contaminants in osprey eggs and their reproductive success in Chesapeake Bay. Osprey populations are thriving in much of the Chesapeake, with productivity rates exceeding those required to sustain a stable population.

  7. Towards the damage evaluation using Gurson-Tvergaard-Needleman (GTN) model for hot forming processes

    Science.gov (United States)

    Imran, Muhammad; Bambach, Markus

    2018-05-01

    In the production of semi-finished metal products, hot forming is used to eliminate the pores and voids from the casting process under compressive stresses and to modify the microstructure for further processing. In the case of caliber and flat rolling processes, tensile stresses occur at certain roll gap ratios which promote pore formation on nonmetallic inclusion. The formation of new pores contributes to ductile damage and reduces the load carrying capacity of the material. In the literature, the damage nucleation and growth during the hot forming process are not comprehensively described. The aim of this study is to understand the damage initiation and growth mechanism during hot forming processes. Hot tensile tests are performed at different temperatures and strain rates for 16MnCrS5 steel. To investigate the influence of geometrical variations on the damage mechanism, specimens with different stress triaxiality ratios are used. Finite element simulations using the Gurson-Tvergaard-Needleman (GTN) damage model are performed to estimate the critical void fraction for the damage initiation and the evolution of the void volume fraction. The results showed that the GTN model underestimates the softening of the material due to the independence of the temperature and the strain rate.

  8. Methods for evaluating cervical range of motion in trauma settings

    Directory of Open Access Journals (Sweden)

    Voss Sarah

    2012-08-01

    Full Text Available Abstract Immobilisation of the cervical spine is a common procedure following traumatic injury. This is often precautionary as the actual incidence of spinal injury is low. Nonetheless, stabilisation of the head and neck is an important part of pre-hospital care due to the catastrophic damage that may follow if further unrestricted movement occurs in the presence of an unstable spinal injury. Currently available collars are limited by the potential for inadequate immobilisation and complications caused by pressure on the patient’s skin, restricted airway access and compression of the jugular vein. Alternative approaches to cervical spine immobilisation are being considered, and the investigation of these new methods requires a standardised approach to the evaluation of neck movement. This review summarises the research methods and scientific technology that have been used to assess and measure cervical range of motion, and which are likely to underpin future research in this field. A systematic search of international literature was conducted to evaluate the methodologies used to assess the extremes of movement that can be achieved in six domains. 34 papers were included in the review. These studies used a range of methodologies, but study quality was generally low. Laboratory investigations and biomechanical studies have gradually given way to methods that more accurately reflect the real-life situations in which cervical spine immobilisation occurs. Latterly, new approaches using virtual reality and simulation have been developed. Coupled with modern electromagnetic tracking technology this has considerable potential for effective application in future research. However, use of these technologies in real life settings can be problematic and more research is needed.

  9. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    OpenAIRE

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Moller, Lennart

    2005-01-01

    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyg...

  10. Methods for the comparative evaluation of pharmaceuticals.

    Science.gov (United States)

    Zentner, Annette; Velasco-Garrido, Marcial; Busse, Reinhard

    2005-11-15

    POLITICAL BACKGROUND: As a German novelty, the Institute for Quality and Efficiency in Health Care (Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen; IGWiG) was established in 2004 to, among other tasks, evaluate the benefit of pharmaceuticals. In this context it is of importance that patented pharmaceuticals are only excluded from the reference pricing system if they offer a therapeutic improvement. The institute is commissioned by the Federal Joint Committee (Gemeinsamer Bundesausschuss, G-BA) or by the Ministry of Health and Social Security. The German policy objective expressed by the latest health care reform (Gesetz zur Modernisierung der Gesetzlichen Krankenversicherung, GMG) is to base decisions on a scientific assessment of pharmaceuticals in comparison to already available treatments. However, procedures and methods are still to be established. This health technology assessment (HTA) report was commissioned by the German Agency for HTA at the Institute for Medical Documentation and Information (DAHTA@DIMDI). It analysed criteria, procedures, and methods of comparative drug assessment in other EU-/OECD-countries. The research question was the following: How do national public institutions compare medicines in connection with pharmaceutical regulation, i.e. licensing, reimbursement and pricing of drugs? Institutions as well as documents concerning comparative drug evaluation (e.g. regulations, guidelines) were identified through internet, systematic literature, and hand searches. Publications were selected according to pre-defined inclusion and exclusion criteria. Documents were analysed in a qualitative matter following an analytic framework that had been developed in advance. Results were summarised narratively and presented in evidence tables. Currently licensing agencies do not systematically assess a new drug's added value for patients and society. This is why many countries made post-licensing evaluation of pharmaceuticals a

  11. Objective instrumental memory and performance tests for evaluation of patients with brain damage: a search for a behavioral diagnostic tool.

    Science.gov (United States)

    Harness, B Z; Bental, E; Carmon, A

    1976-03-01

    Cognition and performance of patients with localized and diffuse brain damage was evaluated through the application of objective perceptual testing. A series of visual perceptual and verbal tests, memory tests, as well as reaction time tasks were administered to the patients by logic programming equipment. In order to avoid a bias due to communicative disorders, all responses were motor, and achievement was scored in terms of correct identification and latencies of response. Previously established norms based on a large sample of non-brain-damaged hospitalized patients served to standardize the performance of the brain-damaged patient since preliminary results showed that age and educational level constitute an important variable affecting performance of the control group. The achievement of brain-damaged patients, corrected for these factors, was impaired significantly in all tests with respect to both recognition and speed of performance. Lateralized effects of brain damage were not significantly demonstrated. However, when the performance was analyzed with respect to the locus of visual input, it was found that patients with right hemispheric lesions showed impairment mainly on perception of figurative material, and that this deficit was more apparent in the left visual field. Conversely, patients with left hemispheric lesions tended to show impairment on perception of visually presented verbal material when the input was delivered to the right visual field.

  12. Evaluation of DNA damage induced by gamma radiation in gill and muscle tissues of Cyprinus carpio and their relative sensitivity.

    Science.gov (United States)

    M K, Praveen Kumar; Shyama, Soorambail K; D'Costa, Avelyno; Kadam, Samit B; Sonaye, Bhagatsingh Harisingh; Chaubey, Ramesh Chandra

    2017-10-01

    The effect of radiation on the aquatic environment is of major concern in recent years. Limited data is available on the genotoxicity of gamma radiation on different tissues of aquatic organisms. Hence, the present investigation was carried out to study the DNA damage induced by gamma radiation in the gill and muscle tissues and their relative sensitivity using the comet assay in the freshwater teleost fish, common carp (Cyprinus carpio). The comet assay was optimized and validated in common carp using cyclophosphamide (CP), a reference genotoxic agent. The fish were exposed (acute) to various doses of gamma radiation (2, 4, 6, 8 and 10Gy) and samplings (gill and muscle tissue) were done at regular intervals (24, 48 and 72h) to assess the DNA damage. A significant increase in DNA damage was observed as indicated by an increase in % tail DNA for all doses of gamma radiation in both tissues. We also observed a dose-related increase and a time-dependent decrease of DNA damage. In comparison, DNA damage showed different sensitivity among the tissues at different doses. This shows that a particular dose may have different effects on different tissues which could be due to physiological factors of the particular tissue. Our study also suggests that the gills and muscle of fish are sensitive and reliable tissues for evaluating the genotoxic effects of reference and environmental agents, using the comet assay. Copyright © 2017. Published by Elsevier Inc.

  13. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    Science.gov (United States)

    Lei, Hao; Wang, Meihan; Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka

    2013-11-01

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  14. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Hao, E-mail: haolei@imr.ac.cn [State Key Laboratory for Corrosion and Protection, Division of Surface Engineering of Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Meihan [College of Mechanical Engineering, Shenyang University, Shenyang 110044 (China); Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka [Center for Hyper Media Research, Tokyo Polytechnic University, 1583 Iiyama, Atsugi, Kanagawa 243-0297 (Japan)

    2013-11-15

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  15. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System.

    Science.gov (United States)

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-12-16

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths.

  16. Fluorescence in situ hybridization: an improved method of quantitating chromosome damage and repair

    International Nuclear Information System (INIS)

    Brown, J.M.; Evans, J.W.

    1993-01-01

    The authors combined fluorescence in situ hybridization (FISH) with specific full-length chromosome probes using the premature chromosome condensation (PCC) technique chromosome condensation (PCC) technique to simplify scoring chromosome damage and its repair. They have shown the technique works well and enables breaks and exchanges to be readily detected and scored in individual chromosomes. A chromosome 4 full-length specific library has been used in initial studies. (UK)

  17. Protective effect of lycopene on whole body irradiation induced liver damage of Swiss albino mice: pathological evaluation

    International Nuclear Information System (INIS)

    Marimuthu, Srinivasan; Menon, Venugopal Padmanabhan

    2013-01-01

    The present study was aimed to evaluate the radioprotective efficacy of lycopene, a naturally occurring dietary carotenoid on whole body radiation-induced liver damage of Swiss albino mice. The first phase of the study was carried out to fix the effective concentration of Iycopene by performing a 30 days survival studies using different graded doses (10, 20, 40 and 80 mg/kg body weight) of lycopene administered orally to mice via intragastric intubations for seven consecutive days prior to exposure of whole body radiation (10 Gy). Based on the results of survival studies, the effective dose of Iycopene was fixed which was then administered to mice orally via intragastric intubations for seven consecutive days prior to exposure of whole body radiation (4 Gy) to evaluate its radioprotective efficacy by performing various biochemical assays in the liver of Swiss albino mice. The results indicated that radiation-induced decrease in the activities of endogenous antioxidant enzymes and increase in lipid peroxidative index, DNA damage and comet assays were altered by pre-administration with the effective dose of Iycopene (20 mg/kg body weight) which restored the antioxidant status to near normal and decreased the levels of lipid peroxidative index, DNA damage and comet assays.These results were further confirmed by histopathological examinations which indicated that pre-administration with the effective dose of Iycopene reduced the hepatic damage induced by radiation. (author)

  18. SEAM PUCKERING EVALUATION METHOD FOR SEWING PROCESS

    Directory of Open Access Journals (Sweden)

    BRAD Raluca

    2014-07-01

    Full Text Available The paper presents an automated method for the assessment and classification of puckering defects detected during the preproduction control stage of the sewing machine or product inspection. In this respect, we have presented the possible causes and remedies of the wrinkle nonconformities. Subjective factors related to the control environment and operators during the seams evaluation can be reduced using an automated system whose operation is based on image processing. Our implementation involves spectral image analysis using Fourier transform and an unsupervised neural network, the Kohonen Map, employed to classify material specimens, the input images, into five discrete degrees of quality, from grade 5 (best to grade 1 (the worst. The puckering features presented in the learning and test images have been pre-classified using the seam puckering quality standard. The network training stage will consist in presenting five input vectors (derived from the down-sampled arrays, representing the puckering grades. The puckering classification consists in providing an input vector derived from the image supposed to be classified. A scalar product between the input values vectors and the weighted training images is computed. The result will be assigned to one of the five classes of which the input image belongs. Using the Kohonen network the puckering defects were correctly classified in proportion of 71.42%.

  19. Evaluation method of nuclear nonproliferation credibility

    International Nuclear Information System (INIS)

    Kwon, Eun-ha; Ko, Won Il

    2009-01-01

    This paper presents an integrated multicriteria analysis method for the quantitative evaluation of a state's nuclear nonproliferation credibility level. Underscoring the implications of policy on the sources of political demand for nuclear weapons rather than focusing on efforts to restrict the supply of specific weapons technology from the 'haves' to the 'have-nots', the proposed methodology considers the political, social, and cultural dimensions of nuclear proliferation. This methodology comprises three steps: (1) identifying the factors that influence credibility formation and employing them to construct a criteria tree that will illustrate the relationships among these factors; (2) defining the weight coefficients of each criterion through pairwise comparisons of the Analytical Hierarchy Process (AHP); and (3) assigning numerical scores to a state under each criterion and combining them with the weight coefficients in order to provide an overall assessment of the state. The functionality of this methodology is examined by assessing the current level of nuclear nonproliferation credibility of four countries: Japan, North Korea, South Korea, and Switzerland.

  20. Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants.

    Science.gov (United States)

    Gichner, Tomás; Znidar, Irena; Száková, Jirina

    2008-04-30

    Tobacco (Nicotiana tabacum L. var. xanthi) seedlings were treated with aqueous solutions of lead nitrate (Pb2+) at concentrations ranging from 0.4 mM to 2.4 mM for 24 h and from 25 microM to 200 microM for 7 days. The DNA damage measured by the comet assay was high in the root nuclei, but in the leaf nuclei a slight but significant increase in DNA damage could be demonstrated only after a 7-day treatment with 200 microM Pb2+. In tobacco plants growing for 6 weeks in soil polluted with Pb2+ severe toxic effects, expressed by the decrease in leaf area, and a slight but significant increase in DNA damage were observed. The tobacco plants with increased levels of DNA damage were severely injured and showed stunted growth, distorted leaves and brown root tips. The frequency of somatic mutations in tobacco plants growing in the Pb2+-polluted soil did not significantly increase. Analytical studies by inductively coupled plasma optical emission spectrometry demonstrate that after a 24-h treatment of tobacco with 2.4 mM Pb2+, the accumulation of the heavy metal is 40-fold higher in the roots than in the above-ground biomass. Low Pb2+ accumulation in the above-ground parts may explain the lower levels or the absence of Pb2+-induced DNA damage in leaves.

  1. Evaluation of different soil parameters and wild boar (Sus scrofa [L.] grassland damage

    Directory of Open Access Journals (Sweden)

    Žiga Laznik

    2014-10-01

    Full Text Available Presented in this paper are the correlations between different soil parameters [presence of grubs, earthworms, pH, content of P2O5, K2O and organic matter (OM in soil] and wild boar (Sus scrofa [L.] damage to grasslands. The soil samples and damage assessments were performed at six locations in the Kočevje region, which is a densely wooded part of South East Slovenia. A significant positive correlation was discovered between the extent of damage due to wild boar rooting in grasslands and the number of grubs (r=0.73, the weight of grubs (r=0.69 and the content of P2O5 (r=0.87 in the soil. The quantity and weight of grubs in soil were significantly influenced by soil pH, the content of CaCl2 (r=0.71/0.72, P2O5 (r=0.90/0.91, and OM (r=0.74/0.77; while the quantity and weight of earthworms in soil were influenced by the content of K2O (r=0.81/-0.84. A moderate yet insignificant correlation (r=0.48/0.56 was discovered between the number and weight of earthworms in soil and the extent of grassland damage. Grubs represent a more important source of protein for wild boars than earthworms; consequently, reducing the quantity of grubs in soil could minimise the extent of damage caused by boars.

  2. Economic valuation of acidic deposition damages: Preliminary results from the 1985 NAPAP [National Acid Precipitation Assessment Program] damage assessment

    International Nuclear Information System (INIS)

    Callaway, J.M.; Darwin, R.F.; Nesse, R.J.

    1985-01-01

    This paper identifies methods used to evaluate the economic damages of acid deposition in the 1985 Damage Assessment being coordinated by the National Acid Precipitation Program. It also presents the preliminary estimates of economic damages for the Assessment. Economic damages are estimated for four effect areas: commercial agriculture and forests, recreational fishing and selected types of materials. In all but the last area, methods are used which incorporate the behavioral responses of individuals and firms or simulated physical damages to resources at risk. The preliminary nature of the estimated damages in each area is emphasized. Over all, the damage estimates should be interpreted with caution. 44 refs., 6 figs., 5 tabs

  3. Characterizing Ductile Damage and Failure: Application of the Direct Current Potential Drop Method to Uncracked Tensile Specimens

    OpenAIRE

    Brinnel, V.; Döbereiner, B.; Münstermann, Sebastian

    2014-01-01

    Modern high-strength steels exhibit excellent ductility properties but their application is hindered by traditional design rules. A characterization of necessary safety margins for the ductile failure of these steels is therefore required. Direct observation of ductile damage within tests is currently not possible, only limited measurements can be made with synchrotron or X-ray radiation facilities. The direct current potential drop (DCPD) method can determine ductile crack propagation with l...

  4. Structures of masonry walls in buildings of permanent ruin – causes of damage and methods of repairs

    OpenAIRE

    Bartosz Szostak

    2017-01-01

    Currently there is a lot of castles classified as objects of the permanent ruin. In according to conservation doctrine, it is needed to protect this objects and prevent further degradation. Usually one of the most destructed element in this type of object is masonry wall. In this article has been described selected types of the masonry walls of the permanent ruin, causes of their damages and repairs methods.

  5. Structures of masonry walls in buildings of permanent ruin – causes of damage and methods of repairs

    Directory of Open Access Journals (Sweden)

    Bartosz Szostak

    2017-12-01

    Full Text Available Currently there is a lot of castles classified as objects of the permanent ruin. In according to conservation doctrine, it is needed to protect this objects and prevent further degradation. Usually one of the most destructed element in this type of object is masonry wall. In this article has been described selected types of the masonry walls of the permanent ruin, causes of their damages and repairs methods.

  6. Quantitative Methods to Evaluate Timetable Attractiveness

    DEFF Research Database (Denmark)

    Schittenhelm, Bernd; Landex, Alex

    2009-01-01

    The article describes how the attractiveness of timetables can be evaluated quantitatively to ensure a consistent evaluation of timetables. Since the different key stakeholders (infrastructure manager, train operating company, customers, and society) have different opinions on what an attractive...

  7. Multidisciplinary eHealth Survey Evaluation Methods

    Science.gov (United States)

    Karras, Bryant T.; Tufano, James T.

    2006-01-01

    This paper describes the development process of an evaluation framework for describing and comparing web survey tools. We believe that this approach will help shape the design, development, deployment, and evaluation of population-based health interventions. A conceptual framework for describing and evaluating web survey systems will enable the…

  8. Evaluation of the Corrosion Protection Coating in Accordance with Burn Damage

    International Nuclear Information System (INIS)

    Seo, ChangHo; Park, JinHwan

    2016-01-01

    This study was conducted in order to examine the effect of burn damage and the resultant anti-corrosion performance. The breakdown and defect of the paint film caused by burn damage are considered to affect not only the macroscopic appearance but also the adhesive force and the anti-corrosion performance of the paint film. The material of the paint film was epoxy paint that is used most widely for heavy-duty coating, and in order to induce burn damage, heat treatment with a torch was applied to the other side of the paint film. Surface and chemical structure changes according to aging were analyzed using FE-SEM and infrared absorption spectroscopy, and variation in the anti-corrosion performance was analyzed through the AC impedance test.

  9. Plant-Damage Assessment Technique for Evaluating Military Vehicular Impacts to Vegetation in the Mojave Desert; TOPICAL

    International Nuclear Information System (INIS)

    D. J. Hansen; W. K. Ostler

    2001-01-01

    A new plant damage assessment technique was developed by plant ecologists from Bechtel Nevada at the U.S. Department of Energy's National Security Administration Nevada Operations Office and funded by the Strategic Environmental Research and Development Program Project CS-1131 in cooperation with the U.S. Army's National Training Center (NTC) at Fort Irwin, California. The technique establishes linear transects the width of vehicle tracts from evidence of vehicle tracks in the soil (usually during a prior training rotation period of 30 days or since the last rain or wind storm), and measures vegetation within the tracks to determine the area of plant parts being run over, the percent of the impacted parts damaged, and the percent of impacted parts expected to recover. It documents prior-damage classes based on estimated of damage that plants have apparently experienced previously (as assessed from field indicators of damage such as plant shape and height). The technique was used to evaluate different vehicle types (rubber-tire wheels vs. tracks) in six area at the NTC with different soils and training intensity levels. The technique provides tabular data that can be sorted and queried to show a variety of trends related to military vehicular impacts. The technique also appears suitable for assessing other non-military off-road traffic impacts. Findings report: (1) differences in plant sensitivity of different vehicular impacts, (2) plant cover and density by species and training area, (3) the degree to which wheels have less impact than tracks, and (4) the mean percent survival is inversely proportional to the degree of prior damage received by the vegetation (i.e., plants previously impacted have lower survival than plants not previously impacted)

  10. Evaluation of DNA damage and antioxidant system induced by di-n-butyl phthalates exposure in earthworms (Eisenia fetida).

    Science.gov (United States)

    Du, Li; Li, Guangde; Liu, Mingming; Li, Yanqiang; Yin, Suzhen; Zhao, Jie; Zhang, Xinyi

    2015-05-01

    Di-n-butyl phthalates (DBP) are recognized as ubiquitous contaminants in soil and adversely impact the health of organisms. The effect of DBP on the activity of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT), malondialdehyde (MDA) content and DNA damage were used as biomarkers to analyze the relationship between DNA damage and oxidative stress and to evaluate the genotoxic effect of DBP on earthworms (Eisenia fetida). DBP was added to artificial soil in the amounts of 0, 5, 10, 50 and 100mg per kg of soil. Earthworm tissues exposed to each treatment were collected on the 7th, 14th, 21st, and 28th day of the treatment. The results showed that SOD and CAT levels were significantly inhibited in the 100mgkg(-1) treatment group on day 28. MDA content in treatment groups was higher than in the control group throughout the exposure time, suggesting that DBP may lead to oxidative stress in cells. A dose-response relationship existed between DNA damage and total soil DBP levels. The comet assay showed that increasing concentrations of DBP resulted in a gradual increase in the OTM, Comet Tail Length and Tail DNA %. The degree of DNA damage was increased with increasing concentration of DBP. These results suggested that DBP induced serious oxidative damage on earthworms and induced the formation of reactive oxygen species (ROS) in earthworms. The excessive generation of ROS caused damage to vital macromolecules including lipids and DNA. DBP in the soils were responsible for the exerting genotoxic effects on earthworms. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Apparent diffusion coefficient histogram analysis can evaluate radiation-induced parotid damage and predict late xerostomia degree in nasopharyngeal carcinoma.

    Science.gov (United States)

    Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng

    2017-09-19

    We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased ( P histogram parameters increased (all P histogram parameters. Early mean change rates for bilateral parotid SD and ADC max could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 ( P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy.

  12. Evaluation through comet assay of DNA damage induced in human lymphocytes by alpha particles. Comparison with protons and Co-60 gamma rays

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Kreiner, A. J.; Schuff, J. A.; Vallerga, M. B.; Taja, M. R.; Lopez, F. O.; Alvarez, D. E.; Saint Martin, G.; Burton, A.; Debray, M. E.; Kesque, J. M.; Somacal, H.; Stoliar, P.; Valda, A.; Davidson, J.; Davidson, M.; Ozafran, M. J.; Vazquez, M. E.

    2004-01-01

    Several techniques with different sensitivity to single-strand breaks and/or double strand breaks were applied to detect DNA breaks generated by high LET particles. Tests that assess DNA damage in single cells might be the appropriate tool to estimate damage induced by particles, facilitating the assessment of heterogeneity of damage in a cell population. The microgel electrophoresis (comet) assay is a sensitive method for measuring DNA damage in single cells. The objective of this work was to evaluate the proficiency of comet assay to assess the effect of high LET radiation on peripheral blood lymphocytes, compared to protons and Co-60 gamma rays. Materials and methods: Irradiations of blood samples were performed at TANDAR laboratory (Argentina). Thin samples of human peripheral blood were irradiated with different doses (0-2.5 Gy) of 20.2 MeV helium-4 particles in the track segment mode, at nearly constant LET. Data obtained were compared with the effect induced by a MeV protons and Co-60 gamma rays. Alkaline comet assay was applied. Comets were quantified by the Olive tail moment. Distribution of the helium-4 particle and protons were evaluated considering Poisson distribution in lymphocyte nuclei. The mean dose per nucleus per particle result 0.053 Gy for protons and 0.178 Gy for helium-4 particles. When cells are exposed to a dose of 0.1 Gy, the hit probability model predicts that 43% of the nuclei should have experienced and alpha traversal while with protons, 85% of the nuclei should be hit. The experimental results show a biphasic response for helium-4 particles (0.1 Gy), indicating the existence of two subpopulations: unhit and hit. Distributions of tail moment as a function of fluence and experimental dose for comets induced by helium-4 particles, protons and Co-60 gamma rays were analyzed. With helium-4 irradiations, lymphocyte nuclei show an Olive tail moment distribution flattened to higher tail moments a dose increase. However, for irradiations with

  13. Methods of marketing and advertising activity evaluation

    Directory of Open Access Journals (Sweden)

    A.I. Yakovlev

    2016-09-01

    Full Text Available The result of the business entities’ activities is associated with the development of instruments of the economic processes efficiency determination, including marketing activities. It has determined the purpose of the article. The methodological principles in this area are developed. It is proved that the increase in sales of the profit margin is only partly dependent on the implementation of advertising measures. The methodical approaches for estimation of exhibition and advertising activity and promotion of its employees are specified. The results of work involve evaluation of the advertising effect value on the basis of share of the advertising impact on the increase of sales and revenue from the sale of products. The corresponding proportion of such impact is determined based on the consumer inquiry. The index of trade fair works, its calculation based on two components: how many times a specific company participated in such events; and how well the company was presented at relevant trade fairs. The indices of the cost on advertising and promotion of certain products manufacturer are provided. The scientific innovation of the research is as follows. It is proved that the sales increase effect should not be assigned to advertising only. The compositions that influence the consumer preferences and their share in the total value effect are determined. The new is the proposed index of influence of the trade fair work results depending on the selected factors. The practical importance of the research results involve more accurate calculation of the effect of the activities made and, consequently, increase efficiency of the business entities.

  14. A backward method to estimate the Dai-ichi reactor core damage using radiation exposure in the environment

    International Nuclear Information System (INIS)

    PM Udiyani; S Kuntjoro; S Widodo

    2016-01-01

    The Fukushima accident resulted in the melting of the reactor core due to loss of supply of coolant when the reactor stopped from operating conditions. The earthquake and tsunami caused loss of electricity due to the flooding that occurred in the reactor. The absence of the coolant supply after reactor shutdown resulted in heat accumulation, causing the temperature of the fuel to rise beyond its melting point. In the early stages of the accident, operator could not determine the severity of the accident and the percentage of the reactor core damaged. The available data was based on the radiation exposure in the environment that was reported by the authorities. The aim of this paper is to determine the severity of the conditions in the reactor core based on the radiation doses measured in the environment. The method is performed by backward counting based on the measuring radiation exposure and radionuclides releases source term. The calculation was performed by using the PC-COSYMA code. The results showed that the core damage fraction at Dai-ichi Unit 1 was 70%, and the resulting individual effective dose in the exclusion area is 401 mSv, while the core damage fraction at Unit 2 was 30%, and the resulting individual effective dose was 9.1 mSv, while for Unit 3, the core damage fraction was 25% for an individual effective dose of 92.2 mSv. The differences between the results of the calculation for estimation of core damage proposed in this paper with the previously reported results is probably caused by the applied model for assessment, differences in postulations and assumptions, and the incompleteness of the input data. This difference could be reduced by performing calculations and simulations for more varied assumptions and postulations. (author)

  15. Radiation damage prediction system using damage function

    International Nuclear Information System (INIS)

    Tanaka, Yoshihisa; Mori, Seiji

    1979-01-01

    The irradiation damage analysis system using a damage function was investigated. This irradiation damage analysis system consists of the following three processes, the unfolding of a damage function, the calculation of the neutron flux spectrum of the object of damage analysis and the estimation of irradiation effect of the object of damage analysis. The damage function is calculated by applying the SAND-2 code. The ANISN and DOT3, 5 codes are used to calculate neutron flux. The neutron radiation and the allowable time of reactor operation can be estimated based on these calculations of the damage function and neutron flux. The flow diagram of the process of analyzing irradiation damage by a damage function and the flow diagram of SAND-2 code are presented, and the analytical code for estimating damage, which is determined with a damage function and a neutron spectrum, is explained. The application of the irradiation damage analysis system using a damage function was carried out to the core support structure of a fast breeder reactor for the damage estimation and the uncertainty evaluation. The fundamental analytical conditions and the analytical model for this work are presented, then the irradiation data for SUS304, the initial estimated values of a damage function, the error analysis for a damage function and the analytical results are explained concerning the computation of a damage function for 10% total elongation. Concerning the damage estimation of FBR core support structure, the standard and lower limiting values of damage, the permissible neutron flux and the allowable years of reactor operation are presented and were evaluated. (Nakai, Y.)

  16. Histopathologic evaluation of the effects of etodolac in established adjuvant arthritis in rats: evidence for reversal of joint damage.

    Science.gov (United States)

    Weichman, B M; Chau, T T; Rona, G

    1987-04-01

    Histopathologic evaluation of hindpaws from control rats with established adjuvant arthritis showed severe alterations in soft tissue and bone, as well as progressive, moderate-to-severe articular changes. Following treatment with etodolac for 28 days, soft tissue and articular changes were rated mild, and bone changes were rated moderate, but with remodeling. These findings indicate that etodolac partially reversed the joint damage in these rats.

  17. Development and Evaluation of Cement-Based Materials for Repair of Corrosion-Damaged Reinforced Concrete Slabs

    OpenAIRE

    Liu, Rongtang; Olek, J.

    2001-01-01

    In this study, the results of an extensive laboratory investigation conducted to evaluate the properties of concrete mixes used as patching materials to repair reinforced concrete slabs damaged by corrosion are reported. Seven special concrete mixes containing various combinations of chemical or mineral admixtures were developed and used as a patching material to improve the durability of the repaired slabs. Physical and mechanical properties of these mixes, such as compressive strength, stat...

  18. Detection Damage in Bearing System of Jet Engine Using the Vibroacoustic Method

    Directory of Open Access Journals (Sweden)

    Żokowski Mariusz

    2017-09-01

    Full Text Available The article discusses typical, operational systems for monitoring vibrations of jet engines, which constitute the propulsion of combat aircraft of the Armed Forces of the Republic of Poland. After that, the paper presents the stage of installing vibration measuring sensors in the direct area of one of the jet engine bearings, which is a support system for its rotor. The article discusses results of carried out analyses of data gathered during tests of the engine in the conditions a jet engine test bed. Results of detecting damages to the bear-ing, using sensors built in the direct area will be presented.

  19. Development of a Rapid Cartilage Damage Quantification Method for the Lateral Tibiofemoral Compartment Using Magnetic Resonance Images: Data from the Osteoarthritis Initiative

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2015-01-01

    Full Text Available The purpose of this study was to expand and validate the cartilage damage index (CDI to detect cartilage damage in the lateral tibiofemoral compartment. We used an iterative 3-step process to develop and validate the lateral CDI: development (100 knees, testing (80 knees, and validation (100 knees. The validation set included 100 knees from the Osteoarthritis Initiative that was enriched to include all grades of lateral joint space narrowing (JSN, 0–3. Measurement of the CDI was rapid at 7.4 (s.d. 0.73 minutes per knee pair (baseline and follow-up of one knee. The intratester reliability is good (intraclass correlation coefficient (3, 1 model = 0.86 to 0.98. At baseline, knees with greater KL grade and lateral JSN had a lower mean CDI (i.e., greater cartilage damage. Baseline lateral CDI is associated with both lateral JSW (r=0.81 to 0.85, p<0.01 and HKA (r=-0.30 to −0.33, p<0.05. The SRM is good (lateral femur SRM = −0.76; lateral tibia SRM = −0.73; lateral tibiofemoral total SRM = −0.87. The lateral tibiofemoral CDI quantification allows for rapid evaluation and is reliable and responsive, with good construct validity. It may be an efficient method to measure lateral tibiofemoral articular cartilage in large clinical and epidemiologic studies.

  20. Evaluation of critical temperatures for heat damage in northern highbush blueberry

    Science.gov (United States)

    Overhead sprinklers are often used to cool blueberry fields in the Pacific Northwest, but more information is needed to determine exactly when cooling is needed. The objective of this study was to identify the critical temperatures for heat damage in northern highbush blueberry (Vaccinium corymbosum...

  1. Evaluation of Both Free Radical Scavenging Capacity and Antioxidative Damage Effect of Polydatin.

    Science.gov (United States)

    Jin, Ju; Li, Yan; Zhang, Xiuli; Chen, Tongsheng; Wang, Yifei; Wang, Zhiping

    Cellular damage such as oxidation and lipid peroxidation, and DNA damage induced by free-radicals like reactive oxygen species, has been implicated in several diseases. Radicals generated by 2,2-azobis (2-amidino-propane) dihydrochloride (AAPH) are similar to physiologically active ones. In this study we found that polydatin, a resveratrol natural precursor derived from many sources, has the capacity of free radical scavenging and antioxidative damage. Using free radical scavenging assays, the IC50 values of polydatin were 19.25 and 5.29 μg/ml with the DPPH and the ABTS assay, respectively, and 0.125 mg ferrous sulfate/1 mg polydatin with the FRAP assay. With the AAPH-induced oxidative injury cell model assay, polydatin showed a strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicate that the antioxidant properties of polydatin have great potential for use as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetics and pharmaceutical preparations for the treatment of oxidative diseases.

  2. Perioperative brain damage after cardiovascular surgery; Clinical evaluation including CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Michiyuki; Kuriyama, Yoshihiro; Sawada, Toru; Fujita, Tsuyoshi; Omae, T. (National Cardiovascular Center, Suita, Osaka (Japan))

    1989-08-01

    We examined 39 cases (1.6%) of post-operative brain damages out of 2,445 sequential cases of cardiovascular surgery in NCVC during past three years. In this study, we investigated clinical course and CT findings of each patient in details and analyzed the causes of the post operative brain damages. Of 39 cases, 23 (59%) were complicated with cerebral ischemia, 8 (21%) with subdural hematoma (SDH), 2 (5%) with intracranial hemorrhage (ICH) and 1 (2%) with subarachnoid hemorrhage (SAH), respectively. 5 cases (13%) had unclassified brain damages. In 23 cases of cerebral ischemia there were 5 cases of hypotension-induced ischemia, 4 cases of hypoxic encephalopathy, 3 cases of ischemia induced by intra-operative maneuvers, 3 cases of embolism after operation and a single case of 'microembolism'. Seven cases could not be classified into any of these categories. Duration of ECC was 169.9 {plus minus} 48.5 min on the average in patients with such brain damages as SDH, ICH, SAH and cardiogenic embolism, which were thought not to be related with ECC. On the other hand, that of the patients hypotensive ischemia or 'microembolism' gave an average value of 254.5 {plus minus} 96.8 min. And these patients were thought to have occurred during ECC. There was a statistically significant difference between these two mean values. (J.P.N.).

  3. Evaluation of the Weevil-damaged Sweet Potato as Substrate for Microbial Protein Obtaining

    Directory of Open Access Journals (Sweden)

    Lic. Antonio Montes-de-Oca-Olivares

    2015-11-01

    Full Text Available The production of microbial protein from agricultural and agroindustrial wastes is an important way to supply the demand of this essential nutritional principle. Sweet potato (Ipomea batata tubercles damaged by weevil (Cylas formicarius are considered a waste due to their unpleasant flavor. This research deal in the characterization of sweet potato damaged by weevil, as an alternative substratefor the culture of the fodder yeast Candida utilis. It was found that the damaged tubercle had a similar composition that the healthy one, concerning dry matter, total reducing sugars, nitrogen and minerals; the high content of reducing sugars (30-40 % dry weight recommends the use of this waste as a substrate for single cell protein production. Several fungal strains were assayed to enzymatic degradation of sweet potato polysaccharides; from these ones, Aspergillus oryzae H/28-1 and Neurospora sp. were the more actives to release reducing sugars to the culture medium, being the last one the more prominent. Theyeast Candida utilis showed a satisfactory growth in media formulated in basis to weevil-damaged sweet potato, reaching reducing sugar consumptions over 80 % and biomass yields of 37-58 %; addition of urea as nitrogen source improved both parameters of the growth. The fermentation’s end-product acquired a pleasant flavor, which suggests a better palatability.

  4. Clinical evaluation of extraperitoneal colostomy without damaging the muscle layer of the abdominal wall.

    Science.gov (United States)

    Dong, L-R; Zhu, Y-M; Xu, Q; Cao, C-X; Zhang, B-Z

    2012-01-01

    This study investigated whether extraperitoneal colostomy without damaging the muscle layer of the abdominal wall is an improved surgical procedure compared with conventional sigmoid colostomy in patients undergoing abdominoperineal resection. Patients with rectal cancer undergoing abdominoperineal resection were selected and randomly divided into two groups: the study group received extraperitoneal colostomy without damaging the muscle layer of the abdominal wall and the control group received conventional colostomy. Clinical data from both groups were analysed. A total of 128 patients were included: 66 received extraperitoneal colostomy without damaging the muscle layer of the abdominal wall and 62 received conventional colostomy. Significant differences between the two groups were found in relation to colostomy operating time, defaecation sensation, bowel control and overall stoma-related complications. Duration of postoperative hospital stay was also significantly different between the study groups. Extraperitoneal colostomy without damaging the muscle layer of the abdominal wall was found to be an improved procedure compared with conventional sigmoid colostomy in abdominoperineal resection, and may reduce colostomy-related complications, shorten operating time and postoperative hospital stay, and potentially improve patients' quality of life.

  5. Red-cockaded woodpecker cavity-tree damage by Hurricane Rita: an evaluation of contributing factors

    Science.gov (United States)

    Ben Bainbridge; Kristen A. Baum; Daniel Saenz; Cory K. Adams

    2011-01-01

    Picoides borealis (Red-cockaded Woodpecker) is an endangered species inhabiting pine savannas of the southeastern United States. Because the intensity of hurricanes striking the southeastern United States is likely to increase as global temperatures rise, it is important to identify factors contributing to hurricane damage to Red-cockaded Woodpecker cavity-trees. Our...

  6. Evaluation of cytogenetic damage in nuclear medicine personnel occupationally exposed to low-level ionising radiation

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.; Poropat, M.

    2005-01-01

    Despite intensive research over the last few decades, there still remains considerable uncertainty as to the genetic impact of ionising radiation on human populations, particularly at low levels. The aim of this study was to provide data on genetic hazards associated with occupational exposure to low doses of ionising radiation in nuclear medicine departments. The assessment of DNA damage in peripheral blood lymphocytes of medical staff was performed using the chromosome aberration (CA) test. Exposed subjects showed significantly higher frequencies of CA than controls. There were significant inter-individual differences in DNA damage within the exposed population, indicating differences in genome sensitivity. Age and gender were not confounding factors, while smoking enhanced the levels of DNA damage only in control subjects. The present study suggests that chronic exposure to low doses of ionising radiation in nuclear medicine departments causes genotoxic damage. Therefore, to avoid potential genotoxic effects, the exposed medical personnel should minimise radiation exposure wherever possible. Our results also point to the significance of biological indicators providing information about the actual risk to the radiation exposed individuals.(author)

  7. Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings

    Science.gov (United States)

    David, L.; Feldman, A.; Mansfield, E.; Lehman, J.; Singh, G.

    2014-03-01

    We study laser irradiation behavior of multiwalled carbon nanotubes (MWCNT) and chemically modified graphene (rGO)-composite spray coatings for use as a thermal absorber material for high-power laser calorimeters. Spray coatings on aluminum test coupon were exposed to increasing laser irradiance for extended exposure times to quantify their damage threshold and optical absorbance. The coatings, prepared at varying mass % of MWCNTs in rGO, demonstrated significantly higher damage threshold values at 2.5 kW laser power at 10.6 μm wavelength than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens show that the coating prepared at 50% CNT loading endure at least 2 kW.cm-2 for 10 seconds without significant damage. The improved damage resistance is attributed to the unique structure of the composite in which the MWCNTs act as an efficient absorber of laser light while the much larger rGO sheets surrounding them, dissipate the heat over a wider area.

  8. Evaluation of extent of UTI related renal parenchymal damage in pediatric patient population

    International Nuclear Information System (INIS)

    Sharma, A.R.; Charan, S.; Silva, I.

    2004-01-01

    Introduction: Urinary tract infection (UTI) is important cause of morbidity in childhood. UTI may lead to involvement of renal parenchyma ranging from recoverable acute inflammation, renal scarring of Reflux nephropathy, hypertension and ultimately end stage renal disease. Hence, extent of renal parenchymal involvement bears prognostic significance in pediatric population. Laboratory and clinical parameters have inherent limitations in detecting and localizing renal parenchymal involvement in the settings of UTI. Objectives: The present study has been designed with the aim to determine the frequency and degree of renal parenchymal involvement in pediatric patients having urinary tract infection. MATERIALS AND METHODS: From May to December 2003, 33 consecutive children (65 Kidneys, 32-paired, I-solitary) aged one month to 12 years (mean age 3 years, 20M, 13F) with positive past history and culture documented urinary tract infection were enrolled in the study. They were subjected to Renal cortical scan using Tc-99m DMSA (20-100 MBq) on Dual detectors gamma camera (e.cam) fitted with LEHR collimator in anterior, posterior and posterior oblique projections. DMSA renal scans were interpreted as per Clarke's interpretation criteria. Renal ultrasound (RUS) and cystourethrogram (MCUG) were available in all the cases. Results: As per Clarke's classification, there were 19 children with no evidence of renal cortical involvement (Type-1). Renal parenchymal involvement found to be unilateral (Type-4 to Type-6) and bilateral (Type-7 and 8) in 8 and 6 children respectively. DMSA scan was abnormal in 20 of 65 kidneys (31%). MCUG was positive for presence of VUR in 34 kidneys (Group A) and negative for VUR in remaining 31 units (Group B). In Gp A, 18 of 34 kidneys (53%) showed renal parenchymal involvement on DMSA Scan. In Gp A, presence or absence of renal parenchymal damage on DMSA scan did not show any statistically significant difference in age, sex and grade of VUR. Whereas

  9. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV

  10. A novel evaluation of microvascular damage in critically ill polytrauma patients by using circulating microRNAs

    Directory of Open Access Journals (Sweden)

    Bedreag Ovidiu Horea

    2016-03-01

    Full Text Available The management of the critically ill polytrauma patient is complex due to the multiple complications and biochemical and physiopathological imbalances. This happened due to the direct traumatic injury, or due to the post-traumatic events. One of the most complex physiopathology associated to the multiple traumas is represented by microvascular damage, subsequently responsible for a series of complications induced through the imbalance of the redox status, severe molecular damage, reduction of the oxygen delivery to the cell and tissues, cell and mitochondrial dead, augmentation of the inflammatory response and finally the installation of multiple organ dysfunction syndrome in this type of patients. A gold goal in the intensive care units is represented by the evaluation and intense monitoring of the molecular and physiopathological dysfunctions of the critically ill patients. Recently, it was intensely researched the use of microRNAs as biomarkers for the specific physiopathological dysfunctions. In this paper we wish to present a series of microRNAs that can serve as biomarkers for the evaluation of microvascular damage, as well as for the evaluation of other specific physiopathology for the critically ill polytrauma patient.

  11. Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the 134Cs/137Cs ratio method

    International Nuclear Information System (INIS)

    Endo, T.; Sato, S.; Yamamoto, A.

    2012-01-01

    Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the 134 Cs/ 137 Cs ratio method for measured radioactivities of 134 Cs and 137 Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured 134 Cs/ 137 Cs ratio from the contaminated soil is 0.996±0.07 as of March 11, 2011. Based on the 134 Cs/ 137 Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2±1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost the same evaluation values of 134 Cs/ 137 Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on 134 Cs/ 137 Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)

  12. SIAM CM 09 - The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures

    International Nuclear Information System (INIS)

    Scheider, Ingo; Cornec, Alfred; Schwalbe, Karl-Heinz

    2009-01-01

    This document provides guidance on the determination of damage and fracture of ductile metallic materials and structures made thereof, based mainly on experience obtained at GKSS. The method used for the fracture prediction is the cohesive model, in which material separation is represented by interface elements and their constitutive behaviour, the so-called traction-separation law, in the framework of finite elements. Several traction-separation laws are discussed, some of which are already implemented in commercial finite element codes and therefore easy applicable. Methods are described for the determination of the cohesive parameters, using a hybrid experimental/numerical approach. (orig.)

  13. SIAM CM 09 - The SIAM method for applying cohesive models to the damage behaviour of engineering materials and structures

    Energy Technology Data Exchange (ETDEWEB)

    Scheider, Ingo; Cornec, Alfred [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung; Schwalbe, Karl-Heinz

    2009-12-19

    This document provides guidance on the determination of damage and fracture of ductile metallic materials and structures made thereof, based mainly on experience obtained at GKSS. The method used for the fracture prediction is the cohesive model, in which material separation is represented by interface elements and their constitutive behaviour, the so-called traction-separation law, in the framework of finite elements. Several traction-separation laws are discussed, some of which are already implemented in commercial finite element codes and therefore easy applicable. Methods are described for the determination of the cohesive parameters, using a hybrid experimental/numerical approach. (orig.)

  14. An Improved Method of Mitigating Laser Induced Surface Damage Growth in Fused Silica Using a Rastered, Pulsed CO2 Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bass, I L; Guss, G M; Nostrand, M J; Wegner, P L

    2010-10-21

    A new method of mitigating (arresting) the growth of large (>200 m diameter and depth) laser induced surface damage on fused silica has been developed that successfully addresses several issues encountered with our previously-reported large site mitigation technique. As in the previous work, a tightly-focused 10.6 {micro}m CO{sub 2} laser spot is scanned over the damage site by galvanometer steering mirrors. In contrast to the previous work, the laser is pulsed instead of CW, with the pulse length and repetition frequency chosen to allow substantial cooling between pulses. This cooling has the important effect of reducing the heat-affected zone capable of supporting thermo-capillary flow from scale lengths on the order of the overall scan pattern to scale lengths on the order of the focused laser spot, thus preventing the formation of a raised rim around the final mitigation site and its consequent down-stream intensification. Other advantages of the new method include lower residual stresses, and improved damage threshold associated with reduced amounts of redeposited material. The raster patterns can be designed to produce specific shapes of the mitigation pit including cones and pyramids. Details of the new technique and its comparison with the previous technique will be presented.

  15. Evaluation of sampling methods for toxicological testing of indoor air particulate matter.

    Science.gov (United States)

    Tirkkonen, Jenni; Täubel, Martin; Hirvonen, Maija-Riitta; Leppänen, Hanna; Lindsley, William G; Chen, Bean T; Hyvärinen, Anne; Huttunen, Kati

    2016-09-01

    There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings.

  16. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance. Separate articles from this report have been indexed into the database.

  17. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    Science.gov (United States)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  18. Evaluation of Antioxidant and DNA Damage Protection Activity of the Hydroalcoholic Extract of Desmostachya bipinnata L. Stapf

    Directory of Open Access Journals (Sweden)

    Upendarrao Golla

    2014-01-01

    Full Text Available Desmostachya bipinnata Stapf (Poaceae/Gramineae is an official drug of ayurvedic pharmacopoeia. Various parts of this plant were used extensively in traditional and folklore medicine to cure various human ailments. The present study was aimed to evaluate the antioxidant and DNA damage protection activity of hydroalcoholic extract of Desmostachya bipinnata both in vitro and in vivo, to provide scientific basis for traditional usage of this plant. The extract showed significant antioxidant activity in a dose-dependent manner with an IC50 value of 264.18±3.47 μg/mL in H2O2 scavenging assay and prevented the oxidative damage to DNA in presence of DNA damaging agent (Fenton’s reagent at a concentration of 50 μg/mL. Also, the presence of extract protected yeast cells in a dose-dependent manner against DNA damaging agent (Hydroxyurea in spot assay. Moreover, the presence of extract exhibited significant antioxidant activity in vivo by protecting yeast cells against oxidative stressing agent (H2O2. Altogether, the results of current study revealed that Desmostachya bipinnata is a potential source of antioxidants and lends pharmacological credence to the ethnomedical use of this plant in traditional system of medicine, justifying its therapeutic application for free-radical-induced diseases.

  19. Research on psychological evaluation method for nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; He Xuhong; Zhao Bingquan

    2007-01-01

    The qualitative and quantitative psychology evaluation methods to the nuclear power plant operators were analyzed and discussed in the paper. The comparison analysis to the scope and result of application was carried out between method of outline figure fitted and method of fuzzy synthetic evaluation. The research results can be referenced to the evaluation of nuclear power plant operators. (authors)

  20. A Two-Stage Method for Structural Damage Prognosis in Shear Frames Based on Story Displacement Index and Modal Residual Force

    Directory of Open Access Journals (Sweden)

    Asghar Rasouli

    2015-01-01

    Full Text Available A two-stage method is proposed to properly identify the location and the extent of damage in shear frames. In the first stage, a story displacement index (SDI is presented to precisely locate the damage in the shear frame which is calculated using the modal analysis information of the damaged structure. In the second stage, by defining a new objective function, the extent of the actual damage is determined via an imperialist competitive algorithm. The performance of the proposed method is demonstrated by implementing the technique to three examples containing five-, ten-, and twenty-five-story shear frames with noises and without them in modal data. Moreover, the performance of the proposed method has been verified through using a benchmark problem. Numerical results show the high efficiency of the proposed method for accurately identifying the location and the extent of structural damage in shear frames.

  1. Evaluating Methods for Evaluating Instruction: The Case of Higher Education

    OpenAIRE

    Bruce A. Weinberg; Belton M. Fleisher; Masanori Hashimoto

    2007-01-01

    This paper develops an original measure of learning in higher education, based on grades in subsequent courses. Using this measure of learning, this paper shows that student evaluations are positively related to current grades but unrelated to learning once current grades are controlled. It offers evidence that the weak relationship between learning and student evaluations arises, in part, because students are unaware of how much they have learned in a course. The paper concludes with a discu...

  2. Creep Damage Evaluation of Titanium Alloy Using Nonlinear Ultrasonic Lamb Waves

    International Nuclear Information System (INIS)

    Xiang Yan-Xun; Xuan Fu-Zhen; Deng Ming-Xi; Chen Hu; Chen Ding-Yue

    2012-01-01

    The creep damage in high temperature resistant titanium alloys Ti60 is measured using the nonlinear effect of an ultrasonic Lamb wave. The results show that the normalised acoustic nonlinearity of a Lamb wave exhibits a variation of the 'increase-decrease' tendency as a function of the creep damage. The influence of microstructure evolution on the nonlinear Lamb wave propagation has been analyzed based on metallographic studies, which reveal that the normalised acoustic nonlinearity increases due to a rising of the precipitation volume fraction and the dislocation density in the early stage, and it decreases as a combined result of dislocation change and micro-void initiation in the material. The nonlinear Lamb wave exhibits the potential for the assessment of the remaining creep life in metals

  3. Evaluation of DNA-damaging marine natural product with potential anticancer activity

    International Nuclear Information System (INIS)

    Nisa, M.; Amjad, S.; Chaudhary, M.I.; Sualah, R.; Khan, S.H.

    2002-01-01

    The treatment for the dreadful disease cancer require a continued development of novel and improved chemo preventive and chemotherapeutic agents. An exploitable feature of tumor cell is that it has defect in its ability to repair damage to DNA as compared with normal cell, suggesting that agent with selective toxicity towards DNA repair deficient cell might be potential anticancer agent. In a recently developed mechanism based approach discovery. DNA repair a recombination-deficient mutants of the yeast Saccharomyces cerevisiae were utilized, as yeast and bacteria are the popular genetically engineered microorganisms. We have scanned organic solvent extracts of about thirty five different species of marine flora and fauna under DNA-damaging activity assays. Marine plants showed no activity towards this bioassay, whereas marine animals tested under this bioassay showed good activity. Detail results of our studies will be discussed in this paper. (author)

  4. Comparative evaluation of acoustic techniques for detection of damages in historical wood

    Czech Academy of Sciences Publication Activity Database

    Kloiber, Michal; Reinprecht, L.; Hrivnák, Jaroslav; Tippner, J.

    2016-01-01

    Roč. 20, July-August (2016), s. 622-631 ISSN 1296-2074 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0060; GA MŠk(CZ) LO1219; GA MK(CZ) DG16P02M026 Keywords : historical wood * damages * inspection * acoustic techniques * mechanical properties Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 1.838, year: 2016 http://www.sciencedirect.com/science/article/pii/S1296207416300103

  5. Evaluation of impact damage effect on fatigue life of carbon fibre composites

    Czech Academy of Sciences Publication Activity Database

    Kytýř, D.; Fíla, T.; Valach, Jaroslav; Šperl, Martin

    2013-01-01

    Roč. 75, č. 2 (2013), s. 157-164 ISSN 1454-2358 R&D Projects: GA ČR(CZ) GAP105/12/0824 Institutional support: RVO:68378297 Keywords : carbon fibre composites * impact damage * material degradation Subject RIV: JI - Composite Materials http://www.scientificbulletin.upb.ro/SeriaD_-_Inginerie_Mecanica.php?page=revistaonline&a=2&arh_an=2013&arh_ser=D&arh_nr=2

  6. Evaluation of free radical scavenging capacity and antioxidative damage effect of resveratrol-nanostructured lipid carriers

    Science.gov (United States)

    Jin, Ju; Shi, Fan; Li, Qiu-wen; Li, Pei-shan; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2016-03-01

    Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical(ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, resveratrol loaded nanostructured lipid carriers (Res-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Res-NLC on free radical scavenging capacity and antioxidative damage is investigated. The particle size and zeta potential of Res-NLC were 139.3 ± 1.7 nm and -11.21 ± 0.41 mV, respectively. By free radical scavenging assays, the IC50 value of Res-NLC were 19.25, 5.29 μg/mL with DPPH, ABTS assay respectively, and 0.161 mg ferrous sulfate/1 mg Res-NLC with FRAP assay; and by AAPH-induced oxidative injury cell model assay, Res-NLC showed the strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicated that the antioxidant properties of Res-NLC hold great potential used as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.

  7. Evaluation of DNA damage in patients with arsenic poisoning: urinary 8-hydroxydeoxyguanine

    International Nuclear Information System (INIS)

    Yamauchi, Hiroshi; Aminaka, Yoshito; Yoshida, Katsumi; Sun Guifan; Pi Jingbo; Waalkes, Michael P.

    2004-01-01

    The relationship between arsenic exposure and DNA damage in patients with acute or chronic arsenic poisoning was analyzed. Urinary 8-hydroxydeoxyguanine (8-OHdG) concentrations were measured as an indication of oxidative DNA damage. A remarkable increase in 8-OHdG in the urine was observed in 60% of 52 patients with acute arsenic poisoning from the accidental oral intake of the arsenic trioxide. This was two- to threefold higher than levels in normal healthy subjects (n = 248). There was a clear relationship between arsenic concentrations in urine after acute poisoning and elevated levels of 8-OHdG. Levels of urinary 8-OHdG returned to normal within 180 days after the acute arsenic poisoning event. In patients chronically poisoned by the consumption of well water with elevated levels of arsenate [As(V)], elevated 8-OHdG concentrations in urine were also observed. A significant correlation between the 8-OHdG levels and arsenic levels in the urine was observed in 82 patients with chronic poisoning. Thus, evidence of oxidative DNA damage occurred in acute arsenic poisoning by arsenite [As(III)] and in chronic arsenic poisoning by As(V). In chronic poisoning patients provided low-arsenic drinking water, evidence of DNA damage subsided between 9 months and 1 year after the high levels of arsenic intake were reduced. The initial level of arsenic exposure appeared to dictate the length of this recovery period. These data indicate that some aspects of chronic and acute arsenic poisoning may be reversible with the cessation of exposure. This knowledge may contribute to our understanding of the risk elevation from arsenic carcinogenesis and perhaps be used in a prospective fashion to assess individual risk

  8. Criteria for the Evaluation and Selection of Radiation-Induced Metabolic Changes as Biochemical Indicators of Radiation Damage

    Energy Technology Data Exchange (ETDEWEB)

    Altman, K. I. [Departments of Experimental Radiology, Radiation Biology, Biophysics and Biochemistry, University of Rochester, School of Medicine and Dentistry, Rochester, NY (United States)

    1971-03-15

    There are several reasons which prompt a search for suitable biochemical indicators of radiation damage in man. Perhaps the most compelling of these reasons is the urgent need for estimates of exposure doses in cases of accidental exposures of human subjects to ionizing radiations under conditions which preclude a reliable assessment of the exposure dose by the usual physical means. At worst, a biochemical estimate of the dose would provide an independent means of obtaining information otherwise based solely on physical considerations and assumptions. In addition, a biochemical estimate of radiation injury may also, under ideal circumstances, serve as a guide to the attending physician in chosing the type of therapy most efficacious and least likely to lead to complications in the near as well as more distant future. The availability of biochemical indicators capable of revealing with some degree of accuracy the impairment of function of a particular organ would be a helpful adjunct in making decisions concerning the therapeutic approach to be adopted. The latter aspect would be of considerable interest in acute, accidental radiation exposures since under these circumstances radiation exposures are frequently of the partial-body type. An estimate of radiation injury by means of biochemical indicators should also prove useful in cases of protracted or chronic exposures to radiation, the source of which may be either external or internal. The use of biochemical indicators under these conditions of radiation exposure may, in general, aid 'case-finding' efforts and, in a more specific way, may help in pin-pointing discrete organ dysfunctions. In evaluating the suitability of radiation-induced metabolic changes for application as biochemical indicators of radiation damage, the following general criteria may be set forth: (1) the biochemical response to irradiation must be dose-dependent within a certain, sufficiently wide range in order to be useful; (2) the sensitivity

  9. Magnetic resonance imaging in the evaluation of treatment-related central nervous system damage

    International Nuclear Information System (INIS)

    Packer, R.J.; Zimmerman, R.A.; Bilaniuk, L.T.

    1986-01-01

    Neurologic and neuropsychologic treatment related sequelae are increasingly encountered in children with cancer, but conventional means of neurologic investigation are insensitive to the presence and extent of damage. Magnetic resonance imaging (MRI) has shown brain damage not demonstrable by other means of investigation. For this reason, 11 children with cancer and with nontumor-related neurologic dysfunction were studied on a 1.5 Tesla MRI unit. All had concurrent computed tomography (CT). MRI abnormalities were seen in all (100%) patients. In 10 of 11 patients, abnormalities were of greater extent on MRI than on CT. White matter changes were frequently seen on MRI without corresponding CT abnormality. Those patients with the most severe forms of neurologic compromise had the most extensive changes on MRI. Focal neurologic findings correlated well with regions of focal signal change. Milder forms of neurologic compromise occurred in patients with definite, but less extensive, periventricular and/or subcortical change on MRI. MRI is more sensitive than CT in demonstrating treatment-related neurologic damage in children with cancer, and the type of change seen on MRI seems to correlate well with the type and severity of neurologic dysfunction present

  10. Sodium leak and combustion experiment-II report. Evaluation result of damage of mild steel liner

    Energy Technology Data Exchange (ETDEWEB)

    Aoto, K.; Hirakawa, Y.; Kuroda, T. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1996-09-01

    Several material analyses on damage of the floor liner made of a mild steel which was in the test cell of the second sodium leak and combustion experiment (Test-2) performed in OEC/PNC on June 7 in 1996 were carried out to clarify the following issues. (1) Difference of the corrosion mechanism of Test-2 liner to that of the first sodium leak and combustion experiment (Test-1) liner. (2) The vital factor which can desides corrosion mechanism and damage location. The following analyses were accomplished. (1) Microstructure observation, (2) EPMA for cross-section of vicinity of corroded area, (3) X-ray diffraction (XRD) for the interface between corrosion product-liner (mild steel). The differences between the corrosion mechanism of Test-1 liner which is seemed to be the same that of `MONJU` liner and that of Test-2 liner is discussed based on the results of these material analyses. As the result, the Na-Fe double oxidization with mechanical/chemical removal of reaction product can be occurred on the Test-1 and `MONJU` liner. On the other hand, a hot-corrosion, that is the molten salt type corrosion is subject to be thinning of the Test-2 liner. All failures of Test-2 liner surround at the halfway up a convex. Considering the above corrosion mechanism, that fact leads that significant damage is occurred at the molten salt level. (author)

  11. Evaluating the Thermal Damage Resistance of Reduced Graphene Oxide/Carbon Nanotube Hybrid Coatings

    Science.gov (United States)

    David, Lamuel; Feldman, Ari; Mansfield, Elisabeth; Lehman, John; Singh, Gurpreet; National Institute of Standards and Technology Collaboration

    2014-03-01

    Carbon nanotubes and graphene are known to exhibit some exceptional thermal (K ~ 2000 to 4400 W.m-1K-1 at 300K) and optical properties. Here, we demonstrate preparation and testing of multiwalled carbon nanotubes and chemically modified graphene-composite spray coatings for use on thermal detectors for high-power lasers. The synthesized nanocomposite material was tested by preparing spray coatings on aluminum test coupons used as a representation of the thermal detector's surface. These coatings were then exposed to increasing laser powers and extended exposure times to quantify their damage threshold and optical absorbance. The graphene/carbon nanotube (prepared at varying mass% of graphene in CNTs) coatings demonstrated significantly higher damage threshold values at 2.5 kW laser power (10.6 μm wavelength) than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens showed that the composite coating endured high laser-power densities (up to 2 kW.cm-2) without significant visual damage. This research is based on work supported by the National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems Division), under grant no. 1335862 to G. Singh.

  12. Creep-fatigue damage evaluation for SS-316LN (ORNL PLATES): - RCC-MR vs. ASME SEC III - NH

    International Nuclear Information System (INIS)

    Sati, Bhuwan Chandra; Jalaldeen, S.; Velusamy, K.; Selvaraj, P.

    2016-01-01

    Investigations of high temperature tests done on ORNL plate with deformation control loading, under creep-fatigue damage have been presented. The test results with methodology of RCC-MR and ASME-NH life prediction under creep-fatigue loading have been assessed. The stress relaxation effect in calculating the life using RCC-MR under creep-fatigue damage is found to be significant in presence of secondary stress. RCC-MR: 2007 is more realistic number of cycles (predicts 51 number of cycles) as compared to ASME-NH (predicts 312 number of cycles) which is demonstrated by the experimental work (observed 86 numbers of cycles). Between RCC-MR and experimental work, design code seems to be more conservative for life prediction due to creep-fatigue damage. For fatigue damage, the approaches are same and the difference comes from material properties and the starting stress for applying Neuber's rule. ASME approach has the limitation of stress range magnitude. ASME approach predicts lower elastic plus plastic strain for the cases having S* above the linear stress limit. For creep strain and creep damage evaluation, ASME and RCC-MR have different approaches for calculating the stress at the beginning and during the hold period. The RCC-MR takes account of cyclic hardening or softening effects (hardening in the present case of 316 LN) by means of the cyclic stress-strain curve and the benefit of symmetrization effects which are significant for this material. The ASME code neglects these effects and instead relies on an approach based on the isochronous stress-strain curves. (author)

  13. Radiation damage evaluation on concrete within a facility for Selective Production of Exotic Species (SPES Project), Italy

    International Nuclear Information System (INIS)

    Pomaro, B.; Salomoni, V.A.; Gramegna, F.; Prete, G.; Majorana, C.E.

    2011-01-01

    Highlights: → We present the effect of radiation on concrete as shielding material. → The coupling between hydro-thermal-mechanical fields and radiation damage is shown. → Attention is focused on numerical modelling of concrete in 3D domains. → A new estimate of the radiation damage parameter is given. → A risk assessment of concrete-radiation interactions is developed. - Abstract: Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties.

  14. An efficient method for the carboxylation of few-wall carbon nanotubes with little damage to their sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Martín, Olga [Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés-Madrid (Spain); Gutierrez, Humberto R. [Department of Physics and Astronomy, 102 Natural Science Building, University of Louisville, Louisville, KY 40292 (United States); Maroto-Valiente, Angel [Departamento de Química Inorgánica y Química Técnica, Facultad de Ciencias, UNED, C/ Senda del Rey 9, 28040 Madrid (Spain); Terrones, Mauricio [Research Center for Exotic Nanocarbons (JST), Shinshu University, Wakasato 4-17-1, Nagano 380-8553 (Japan); Department of Physics, Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, 104 Davey Lab., University Park, PA 16802-6300 (United States); Blanco, Tamara [Materials and Processes Department, Airbus Operations S.L., Paseo John Lennon s/n, 28906 Getafe-Madrid (Spain); Baselga, Juan, E-mail: jbaselga@ing.uc3m.es [Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés-Madrid (Spain)

    2013-07-15

    We report a novel method that is able to efficiently functionalize carbon nanotubes (few-walled: from 1 to 6 layers and multiwalled) with a high yield of carboxyl groups, based on treatments with H{sub 2}O{sub 2} in the presence of UV light. The amount of carboxylic groups was quantified by X-ray photoelectron spectroscopy and back-titration, showing both measurements reasonable agreement. According to the zeta potential values and to the amount of suspended nanotubes, we demonstrate that the method is able to produce uniform and stable suspensions of carbon nanotubes in water. With the aid of scanning and transmission electron microscopy, thermogravimetric analysis, and Raman spectroscopy, we show that the surfaces of the tubes are not damaged by the treatment and that the functionalized tubes have an enhanced reactivity toward oxygen. This route is efficient and could now be used to fabricate polymer composites using few-walled and multiwalled carbon nanotubes. - Highlights: • We report an efficient method for acid functionalization of carbon nanotubes. • The method produces uniform and stable suspensions of carbon nanotubes in water. • The surfaces of the tubes are not damaged by the treatment.

  15. Gamma cameras - a method of evaluation

    International Nuclear Information System (INIS)

    Oates, L.; Bibbo, G.

    2000-01-01

    Full text: With the sophistication and longevity of the modern gamma camera it is not often that the need arises to evaluate a gamma camera for purchase. We have recently been placed in the position of retiring our two single headed cameras of some vintage and replacing them with a state of the art dual head variable angle gamma camera. The process used for the evaluation consisted of five parts: (1) Evaluation of the technical specification as expressed in the tender document; (2) A questionnaire adapted from the British Society of Nuclear Medicine; (3) Site visits to assess gantry configuration, movement, patient access and occupational health, welfare and safety considerations; (4) Evaluation of the processing systems offered; (5) Whole of life costing based on equally configured systems. The results of each part of the evaluation were expressed using a weighted matrix analysis with each of the criteria assessed being weighted in accordance with their importance to the provision of an effective nuclear medicine service for our centre and the particular importance to paediatric nuclear medicine. This analysis provided an objective assessment of each gamma camera system from which a purchase recommendation was made. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  16. Residual damage in different ground logging methods alongside skid trails and winching strips

    Czech Academy of Sciences Publication Activity Database

    Aysan Badraghi, Naghimeg; Erler, J.; Hosseini, S. A. O.

    2015-01-01

    Roč. 61, č. 12 (2015), s. 526-534 ISSN 1212-4834 Institutional support: RVO:67179843 Keywords : Long-length method (LLM) * Short-length method (SLM) * Skidding and winching operations * Tree-length method (TLM) Subject RIV: EF - Botanics

  17. Comparing the ISO-recommended and the cumulative data-reduction algorithms in S-on-1 laser damage test by a reverse approach method

    Science.gov (United States)

    Zorila, Alexandru; Stratan, Aurel; Nemes, George

    2018-01-01

    We compare the ISO-recommended (the standard) data-reduction algorithm used to determine the surface laser-induced damage threshold of optical materials by the S-on-1 test with two newly suggested algorithms, both named "cumulative" algorithms/methods, a regular one and a limit-case one, intended to perform in some respects better than the standard one. To avoid additional errors due to real experiments, a simulated test is performed, named the reverse approach. This approach simulates the real damage experiments, by generating artificial test-data of damaged and non-damaged sites, based on an assumed, known damage threshold fluence of the target and on a given probability distribution function to induce the damage. In this work, a database of 12 sets of test-data containing both damaged and non-damaged sites was generated by using four different reverse techniques and by assuming three specific damage probability distribution functions. The same value for the threshold fluence was assumed, and a Gaussian fluence distribution on each irradiated site was considered, as usual for the S-on-1 test. Each of the test-data was independently processed by the standard and by the two cumulative data-reduction algorithms, the resulting fitted probability distributions were compared with the initially assumed probability distribution functions, and the quantities used to compare these algorithms were determined. These quantities characterize the accuracy and the precision in determining the damage threshold and the goodness of fit of the damage probability curves. The results indicate that the accuracy in determining the absolute damage threshold is best for the ISO-recommended method, the precision is best for the limit-case of the cumulative method, and the goodness of fit estimator (adjusted R-squared) is almost the same for all three algorithms.

  18. Evaluation of the Toxicity, AChE Activity and DNA Damage Caused by Imidacloprid on Earthworms, Eisenia fetida.

    Science.gov (United States)

    Wang, Kai; Qi, Suzhen; Mu, Xiyan; Chai, Tingting; Yang, Yang; Wang, Dandan; Li, Dongzhi; Che, Wunan; Wang, Chengju

    2015-10-01

    Imidacloprid is a well-known pesticide and it is timely to evaluate its toxicity to earthworms (Eisenia fetida). In the present study, the effect of imidacloprid on reproduction, growth, acetylcholinesterase (AChE) and DNA damage in earthworms was assessed using an artificial soil medium. The median lethal concentration (LC50) and the median number of hatched cocoons (EC50) of imidacloprid to earthworms was 3.05 and 0.92 mg/kg respectively, the lowest observed effect concentration of imidacloprid about hatchability, growth, AChE activity and DNA damage was 0.02, 0.5, 0.1 and 0.5 mg/kg, respectively.

  19. Applicability of the comet assay in evaluation of DNA damage in healthcare providers’ working with antineoplastic drugs: a systematic review and meta-analysis

    Science.gov (United States)

    Zare Sakhvidi, Mohammad Javad; Hajaghazadeh, Mohammad; Mostaghaci, Mehrdad; Mehrparvar, Amir houshang; Zare Sakhvidi, Fariba; Naghshineh, Elham

    2016-01-01

    Background Unintended occupational exposure to antineoplastic drugs (ANDs) may occur in medical personnel. Some ANDs are known human carcinogens and exposure can be monitored by genotoxic biomarkers. Objective To evaluate the obstacles to obtaining conclusive results from a comet assay test to determine DNA damage among AND exposed healthcare workers. Methods We systematically reviewed studies that used alkaline comet assay to determine the magnitude and significance of DNA damage among health care workers with potential AND exposure. Fifteen studies were eligible for review and 14 studies were used in the meta-analysis. Results Under random effect assumption, the estimated standardized mean difference (SMD) in the DNA damage of health care workers was 1.93 (95% CI: 1.15–2.71, p comet moment, I2 test results, as a measure of heterogeneity, dropped to zero. Heterogeneity analysis showed that date of study publication was a possible source of heterogeneity (B = −0.14; p comet assay methodological variables, and exposure characteristics may be responsible for heterogenic data from comet assay studies and interfere with obtaining conclusive results. Lack of quantitative environmental exposure measures and variation in comet assay protocols across studies are important obstacles in generalization of results. PMID:27110842

  20. Evaluation of structural reliability using simulation methods

    Directory of Open Access Journals (Sweden)

    Baballëku Markel

    2015-01-01

    Full Text Available Eurocode describes the 'index of reliability' as a measure of structural reliability, related to the 'probability of failure'. This paper is focused on the assessment of this index for a reinforced concrete bridge pier. It is rare to explicitly use reliability concepts for design of structures, but the problems of structural engineering are better known through them. Some of the main methods for the estimation of the probability of failure are the exact analytical integration, numerical integration, approximate analytical methods and simulation methods. Monte Carlo Simulation is used in this paper, because it offers a very good tool for the estimation of probability in multivariate functions. Complicated probability and statistics problems are solved through computer aided simulations of a large number of tests. The procedures of structural reliability assessment for the bridge pier and the comparison with the partial factor method of the Eurocodes have been demonstrated in this paper.

  1. Evaluation of Ponseti method in neglected clubfoot

    Directory of Open Access Journals (Sweden)

    Abhinav Sinha

    2016-01-01

    Conclusions: Painless, supple, plantigrade, and cosmetically acceptable feet were achieved in neglected clubfeet without any extensive surgery. A fair trial of conservative Ponseti method should be tried before resorting to extensive soft tissue procedure.

  2. Quantitative Methods for Software Selection and Evaluation

    National Research Council Canada - National Science Library

    Bandor, Michael S

    2006-01-01

    ... (the ability of the product to meet the need) and the cost. The method used for the analysis and selection activities can range from the use of basic intuition to counting the number of requirements fulfilled, or something...

  3. Direct Index Method of Beam Damage Location Detection Based on Difference Theory of Strain Modal Shapes and the Genetic Algorithms Application

    Directory of Open Access Journals (Sweden)

    Bao Zhenming

    2012-01-01

    Full Text Available Structural damage identification is to determine the structure health status and analyze the test results. The three key problems to be solved are as follows: the existence of damage in structure, to detect the damage location, and to confirm the damage degree or damage form. Damage generally changes the structure physical properties (i.e., stiffness, mass, and damping corresponding with the modal characteristics of the structure (i.e., natural frequencies, modal shapes, and modal damping. The research results show that strain mode can be more sensitive and effective for local damage. The direct index method of damage location detection is based on difference theory, without the modal parameter of the original structure. FEM numerical simulation to partial crack with different degree is done. The criteria of damage location detection can be obtained by strain mode difference curve through cubic spline interpolation. Also the genetic algorithm box in Matlab is used. It has been possible to identify the damage to a reasonable level of accuracy.

  4. Methods of evaluating market transformation programmes: experience in Sweden

    International Nuclear Information System (INIS)

    Neij, L.

    2001-01-01

    The evaluation of market transformation programmes requires the development of new methods, relative to methods used for the evaluation of traditional energy efficiency programmes. In this paper, a model for the evaluation of market transformation programmes is proposed, based in part on evaluation methods discussed in the literature. The proposed model entails an extensive evaluation process, including the evaluation of market transformation effects, the impact of these effects, and the evaluation of the outline of the programme. Furthermore, evaluations of Swedish market transformation programmes have been analysed in relation to the proposed model. The analysis shows that not all of the evaluations have been focused on market transformation, and those that have, are only partly consistent with the evaluation model proposed here. It is concluded that future evaluations of Swedish market transformation programmes should be extended and improved in accordance with the proposed model. (author)

  5. Evaluation of blind signal separation methods

    NARCIS (Netherlands)

    Schobben, D.W.E.; Torkkola, K.; Smaragdis, P.

    1999-01-01

    Recently many new Blind Signal Separation BSS algorithms have been introduced Authors evaluate the performance of their algorithms in various ways Among these are speech recognition rates plots of separated signals plots of cascaded mixingunmixing impulse responses and signal to noise ratios Clearly

  6. A Ranking Method for Evaluating Constructed Responses

    Science.gov (United States)

    Attali, Yigal

    2014-01-01

    This article presents a comparative judgment approach for holistically scored constructed response tasks. In this approach, the grader rank orders (rather than rate) the quality of a small set of responses. A prior automated evaluation of responses guides both set formation and scaling of rankings. Sets are formed to have similar prior scores and…

  7. Improved methods to evaluate realised energy savings

    NARCIS (Netherlands)

    Boonekamp, P.G.M.

    2005-01-01

    This thesis regards the calculation of realised energy savings at national and sectoral level, and the policy contribution to total savings. It is observed that the results of monitoring and evaluation studies on realised energy savings are hardly applied in energy saving policy. Causes are the lack

  8. Comparative Study on Code-based Linear Evaluation of an Existing RC Building Damaged during 1998 Adana-Ceyhan Earthquake

    International Nuclear Information System (INIS)

    Toprak, A. Emre; Guelay, F. Guelten; Ruge, Peter

    2008-01-01

    Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performed on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 mx7.80 m = 127.90 m 2 with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher

  9. Comparative Study on Code-based Linear Evaluation of an Existing RC Building Damaged during 1998 Adana-Ceyhan Earthquake

    Science.gov (United States)

    Toprak, A. Emre; Gülay, F. Gülten; Ruge, Peter

    2008-07-01

    Determination of seismic performance of existing buildings has become one of the key concepts in structural analysis topics after recent earthquakes (i.e. Izmit and Duzce Earthquakes in 1999, Kobe Earthquake in 1995 and Northridge Earthquake in 1994). Considering the need for precise assessment tools to determine seismic performance level, most of earthquake hazardous countries try to include performance based assessment in their seismic codes. Recently, Turkish Earthquake Code 2007 (TEC'07), which was put into effect in March 2007, also introduced linear and non-linear assessment procedures to be applied prior to building retrofitting. In this paper, a comparative study is performed on the code-based seismic assessment of RC buildings with linear static methods of analysis, selecting an existing RC building. The basic principles dealing the procedure of seismic performance evaluations for existing RC buildings according to Eurocode 8 and TEC'07 will be outlined and compared. Then the procedure is applied to a real case study building is selected which is exposed to 1998 Adana-Ceyhan Earthquake in Turkey, the seismic action of Ms = 6.3 with a maximum ground acceleration of 0.28 g It is a six-storey RC residential building with a total of 14.65 m height, composed of orthogonal frames, symmetrical in y direction and it does not have any significant structural irregularities. The rectangular shaped planar dimensions are 16.40 m×7.80 m = 127.90 m2 with five spans in x and two spans in y directions. It was reported that the building had been moderately damaged during the 1998 earthquake and retrofitting process was suggested by the authorities with adding shear-walls to the system. The computations show that the performing methods of analysis with linear approaches using either Eurocode 8 or TEC'07 independently produce similar performance levels of collapse for the critical storey of the structure. The computed base shear value according to Eurocode is much higher

  10. Intake of Po-210 into the body through the damaged skin and efficiency of some methods in preventing its absorption

    International Nuclear Information System (INIS)

    Ilyin, L.A.; Ivannikov, A.T.; Bazhin, A.G.; Konstantinova, T.P.; Altukhova, G.A.

    1977-01-01

    The metabolic behaviour of 210 Po nitrate arising from contamination of damaged skin (stabbed, cutaneous and muscular wounds and abrasions) of rats and the efficiency of some methods of decontaminating the wounds and stimulating 210 Po removal from the body, have been studied. The decontamination efficiency obtained, by wiping and washing the wound surface with oxatiol, by surgical incision of the wounds, and by parenteral oxatiol injections, are compared. The accumulation of 210 Po in various organs and tissues of rats after the different decontamination routines had been carried out are shown tabulated. (U.K.)

  11. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    Science.gov (United States)

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Möller, Lennart

    2005-11-15

    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyguanosine (8-oxodG), (32)P-HPLC for measurements of lipophilic DNA-adducts, and the Comet assay to measure a variety of DNA lesions, including oxidative stress. No significant oxidative damage from either isomer was found regarding formation of 8-oxodG analysed using HPLC-EC/UV. However, the Comet assay (with FPG-treatment), which is more sensitive and detects more types of damages compared to HPLC-EC/UV, showed a significant effect from both 3-NBA and 2-NBA. (32)P-HPLC revealed a strong DNA-adduct formation from both 3-NBA and 2-NBA, and also a significant difference between both isomers compared to negative control. These results clearly show that 2-NBA has a genotoxic potential. Even if the DNA-adduct forming capacity and the amount of DNA lesions measured with the (32)P-HPLC and Comet assay is about one third of 3-NBA, the high abundance of 2-NBA in ambient air calls for further investigation and evaluation of its health hazard.

  12. A Discrete Element Method Approach to Progressive Localization of Damage in Granular Rocks and Associated Seismicity

    Science.gov (United States)

    Vora, H.; Morgan, J.

    2017-12-01

    Brittle failure in rock under confined biaxial conditions is accompanied by release of seismic energy, known as acoustic emissions (AE). The objective our study is to understand the influence of elastic properties of rock and its stress state on deformation patterns, and associated seismicity in granular rocks. Discrete Element Modeling is used to simulate biaxial tests on granular rocks of defined grain size distribution. Acoustic Energy and seismic moments are calculated from microfracture events as rock is taken to conditions of failure under different confining pressure states. Dimensionless parameters such as seismic b-value and fractal parameter for deformation, D-value, are used to quantify seismic character and distribution of damage in rock. Initial results suggest that confining pressure has the largest control on distribution of induced microfracturing, while fracture energy and seismic magnitudes are highly sensitive to elastic properties of rock. At low confining pressures, localized deformation (low D-values) and high seismic b-values are observed. Deformation at high confining pressures is distributed in nature (high D-values) and exhibit low seismic b-values as shearing becomes the dominant mode of microfracturing. Seismic b-values and fractal D-values obtained from microfracturing exhibit a linear inverse relationship, similar to trends observed in earthquakes. Mode of microfracturing in our simulations of biaxial compression tests show mechanistic similarities to propagation of fractures and faults in nature.

  13. Evaluation of interference fit and bone damage of an uncemented femoral knee implant.

    Science.gov (United States)

    Berahmani, Sanaz; Hendriks, Maartje; de Jong, Joost J A; van den Bergh, Joop P W; Maal, Thomas; Janssen, Dennis; Verdonschot, Nico

    2018-01-01

    During implantation of an uncemented femoral knee implant, press-fit interference fit provides the primary stability. It is assumed that during implantation a combination of elastic and plastic deformation and abrasion of the bone will occur, but little is known about what happens at the bone-implant interface and how much press-fit interference fit is eventually achieved. Five cadaveric femora were prepared and implantation was performed by an experienced surgeon. Micro-CT- and conventional CT-scans were obtained pre- and post-implantation for geometrical measurements and to measure bone mineral density. Additionally, the position of the implant with respect to the bone was determined by optical scanning of the reconstructions. By measuring the differences in surface geometry, assessments were made of the cutting error, the actual interference fit, the amount of bone damage, and the effective interference fit. Our analysis showed an average cutting error of 0.67mm (SD 0.17mm), which pointed mostly towards bone under-resections. We found an average actual AP interference fit of 1.48mm (SD 0.27mm), which was close to the nominal value of 1.5mm. We observed combinations of bone damage and elastic deformation in all bone specimens, which showed a trend to be related with bone density. Higher bone density tended to lead to lower bone damage and higher elastic deformation. The results of the current study indicate different factors that interact while implanting an uncemented femoral knee component. This knowledge can be used to fine-tune design criteria of femoral components to achieve adequate primary stability for all patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of local corrosion life by statistical method<