WorldWideScience

Sample records for damage cross-sections recoil

  1. 100 group displacement cross sections from RECOIL data base

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.

    1995-01-01

    Displacement cross sections in 100 neutron energy groups were calculated from the RECOIL data base using the RECOIL program, for use in DPA (Displacement Per Atom) calculations for FBTR and PFBR materials. 100 group displacement cross sections were calculated using RECOIL-Data Base and RECOIL Program. Modifications were made in the data base to reduce space requirement, and in the program for easy handling on a PC. 2 refs

  2. ZZ RECOIL/B, Heavy Charged Particle Recoil Spectra Library for Radiation Damage Calculation

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Amburgey, J.D.; Greene, N.M.

    1983-01-01

    1 - Description of problem or function: Format: GAM-II group structure; Number of groups: 104 neutron and Recoil-energy groups; Nuclides: Elements Included in Charged-Particle Recoil Data Base: Al, W, Ti, Pb, V, Mg, Cr, Be, Mn, C, Fe, Au, Co, Si, Ni, B-10, Cu, B-11, Zr, N, Nb, Li-6, Mo, Li-7, Ta (Data for Ta-181,Ta-182), O, Origin: ENDF/B-IV cross-section data. A heavy charged-particle recoil data base (primary knock-on atom (PKA) spectra) and an analysis program have been created to assist experimentalists in studying, evaluating, and correlating radiation-damage effects in different neutron environments. Since experimentally obtained controlled thermo-nuclear-reactor-type neutron spectra are not presently available, the data base can be extremely useful in relating currently obtainable radiation damage to that which is anticipated in future fusion devices. However, the usefulness of the data base is not restricted to just CTR needs. Most of the elements of interest to the radiation-damage community and all neutron reactions of any significance for these elements have been processed, using available ENDF/B-IV cross-section data, and are included in the data base. Calculated data such as primary recoil spectra, displacement rates, and gas-production rates, obtained with the data base, for different radiation environments are presented and compared with previous calculations. Primary neutrons with energies up to 20 MeV have been considered. The elements included in the data base are listed in Table I. All neutron reactions of significance for these elements (i.e., elastic, inelastic, (n,2n), (n,3n), (n,p), (n,sigma), (n,gamma), etc.,) which have cross sections available from ENDF/B-IV have been processed and placed in the data base. Table I - Elements Included in Charged-Particle Recoil Data Base: Al, W, Ti, Pb, V, Mg, Cr, Be, Mn, C, Fe, Au, Co, Si, Ni, 10 B, Cu, 11 B, Zr, N, Nb, 6 Li, Mo, 7 Li, Ta (Data for Ta 181 ,Ta 182 ), O. 2 - Method of solution: The neutron

  3. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for recoil cross section spectra under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Yosuke, E-mail: iwamoto.yosuke@jaea.go.jp; Ogawa, Tatsuhiko

    2017-04-01

    Because primary knock-on atoms (PKAs) create point defects and clusters in materials that are irradiated with neutrons, it is important to validate the calculations of recoil cross section spectra that are used to estimate radiation damage in materials. Here, the recoil cross section spectra of fission- and fusion-relevant materials were calculated using the Event Generator Mode (EGM) of the Particle and Heavy Ion Transport code System (PHITS) and also using the data processing code NJOY2012 with the nuclear data libraries TENDL2015, ENDF/BVII.1, and JEFF3.2. The heating number, which is the integral of the recoil cross section spectra, was also calculated using PHITS-EGM and compared with data extracted from the ACE files of TENDL2015, ENDF/BVII.1, and JENDL4.0. In general, only a small difference was found between the PKA spectra of PHITS + TENDL2015 and NJOY + TENDL2015. From analyzing the recoil cross section spectra extracted from the nuclear data libraries using NJOY2012, we found that the recoil cross section spectra were incorrect for {sup 72}Ge, {sup 75}As, {sup 89}Y, and {sup 109}Ag in the ENDF/B-VII.1 library, and for {sup 90}Zr and {sup 55}Mn in the JEFF3.2 library. From analyzing the heating number, we found that the data extracted from the ACE file of TENDL2015 for all nuclides were problematic in the neutron capture region because of incorrect data regarding the emitted gamma energy. However, PHITS + TENDL2015 can calculate PKA spectra and heating numbers correctly.

  4. Uncertainties and correlations for the 56Fe damage cross sections and spectra averaged quantities based on TENDL-TMC

    International Nuclear Information System (INIS)

    Simakov, S.P.; Konobeyev, A.Yu.; Koning, A.

    2016-01-01

    The goal of this work is a calculation of the covariance matrices for the physical quantities used to characterize the neutron induced radiation damage in the materials. Such quantities usually encompass: the charged particles kinetic energy deposition KERMA (locally deposited nuclear heating), damage energy (to calculate then the number of displaced atoms) and gas production cross sections [(n,xα), (n,xt), (n,xp) … to calculate then transmuting of target nuclei to gases]. The uncertainties and energy-energy or reaction-reaction correlations for such quantities were not assessed so far, whereas the covariances for many underlying cross sections are often presented in the evaluated data libraries. Due to the dependence of damage quantities on many reactions channels, on both total and differential cross sections, and in particular on the energy distribution of reaction recoils, the evaluation of uncertainty is not straightforward. To reach a goal, we used the method based on idea of Total Monte Carlo application to the Nuclear Data. This report summarises the current results for evaluation, validation and representation in the ENDF-6 format of the radiation damage covariances for n + 56 Fe from thermal energy up to 20 MeV. This study was motivated by the IAEA Coordinated Research Project ''Primary Radiation Damage Cross Sections'' and by present dedicated Technical Meeting “Nuclear Reaction Data and Uncertainties for Radiation Damage”

  5. The Differential Cross Section and Λ Recoil Polarization from γδ -> Κ0(ρ)

    Energy Technology Data Exchange (ETDEWEB)

    Compton, Nicholas [Ohio Univ., Athens, OH (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-04-30

    Presented is the analysis of the differential cross section and Λ recoil polarization from the reaction γδ -> Κ0(ρ). This work measured these observables over beam energies from 0.90 GeV to 3.0 GeV. These measurements are the first in this channel to cover such a wide range of energies. The data were taken using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory (JLAB) along with a tagged photon beam. This analysis was completed by identifying events of interest that decayed into the final state topology of π-π+,π-&rho'(ρ). Through conservation of energy and momentum, the Κ0, Λ and missing mass of the spectator proton were reconstructed. Utilizing the same analysis techniques, the observables were measured on two different experiments with good agreement. Photoproduction of strange mesons from the neutron are difficult to measure, consequently there are only a few measurements of this kind. Despite that, these reactions supply essential complementary data to those on the proton. The differential cross sections and the recoil polarization extracted, span the region where new nucleon resonances have been found from studies of the reaction γρ -> Κ+Λ. Comparisons between the Κ+Λ and Κ0Λ cross section demonstrate that possible interference terms near 1900 MeV are less pronounced in the latter. This unexpected result inspired a partial wave analyses (PWA) to be fitted to the data. The fit solution shows that this measurement fostered an improvement on the knowledge of observed resonance parameters, necessary to understanding these excited states. The study of nucleon resonances is a key motivating factor since the resonance masses can be calculated from the theory of the strong nuclear force, called quantum chromodynamics, or QCD.

  6. Radiation damage calculations for compound materials

    International Nuclear Information System (INIS)

    Greenwood, L.R.

    1990-01-01

    This paper reports on the SPECOMP computer code, developed to calculate neutron-induced displacement damage cross sections for compound materials such as alloys, insulators, and ceramic tritium breeders for fusion reactors. These new calculations rely on recoil atom energy distributions previously computed with the DISCS computer code, the results of which are stored in SPECTER computer code master libraries. All reaction channels were considered in the DISCS calculations and the neutron cross sections were taken from ENDF/B-V. Compound damage calculations with SPECOMP thus do not need to perform any recoil atom calculations and consequently need no access to ENDF or other neutron data bases. The calculations proceed by determining secondary displacements for each combination of recoil atom and matrix atom using the Lindhard partition of the recoil energy to establish the damage energy

  7. Neutron radiation damage studies in the structural materials of a 500 MWe fast breeder reactor using DPA cross-sections from ENDF / B-VII.1

    Science.gov (United States)

    Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.

    2018-04-01

    The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.

  8. Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Michael E. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-02-01

    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.

  9. COREL, Ion Implantation in Solids, Range, Straggling Using Thomas-Fermi Cross-Sections. RASE4, Ion Implantation in Solids, Range, Straggling, Energy Deposition, Recoils. DAMG2, Ion Implantation in Solids, Energy Deposition Distribution with Recoils

    International Nuclear Information System (INIS)

    Brice, D. K.

    1979-01-01

    1 - Description of problem or function: COREL calculates the final average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 calculates the instantaneous average projected range, standard deviation in projected range, standard deviation in locations transverse to projected range, and average range along path for energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. RASE4 also calculates the instantaneous rate at which the projectile is depositing energy into atomic processes (damage) and into electronic processes (electronic excitation), the average range of target atom recoils projected onto the direction of motion of the projectiles, and the standard deviation in the recoil projected range. DAMG2 calculates the distribution in depth of the energy deposited into atomic processes (damage), electronic processes (electronic excitation), or other energy-dependent quality produced by energetic atomic projectiles incident on amorphous targets or crystalline targets oriented such that the projectiles are not incident along low index crystallographic axes or planes. 2 - Method of solution: COREL: The truncated differential equation which governs the several variables being sought is solved through second-order by trapezoidal integration. The energy-dependent coefficients in the equation are obtained by rectangular integration over the Thomas-Fermi elastic scattering cross section. RASE4: The truncated differential equation which governs the range and straggling variables is solved through second-order by trapezoidal integration. The energy

  10. Effects of primary recoil (PKA) energy spectrum on radiation damage in fcc metals

    International Nuclear Information System (INIS)

    Iwata, Tadao; Iwase, Akihiro

    1997-10-01

    Irradiation effects by different energetic particles such as electrons, various ions and neutrons are compared in fcc metals, particularly in Cu and Ni. It is discussed on the statistical consideration that the logarithm of the so-called PKA median energy, log T 1/2 , is a good representative to characterize the primary recoil (i.e. PKA) energy spectrum with the resultant defect production. For the irradiations of electrons, various ions and neutrons to Cu and Ni, fundamental physical quantities such as the fraction of stage I recovery, the defect production cross sections and the radiation annealing cross sections can be well scaled as a function of log T 1/2 , if the effects of the electron excitation caused by irradiating ions are excluded. Namely, all data of the respective physical quantity lie on a single continuous curve as a function of log T 1/2 . This characteristic curve is utilized to predict the damage accumulation (i.e. defect concentration) as a function of dpa in Cu and Ni with the PKA median energy as a parameter. (author)

  11. Effects of primary recoil (PKA) energy spectrum on radiation damage in fcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Tadao; Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    Irradiation effects by different energetic particles such as electrons, various ions and neutrons are compared in fcc metals, particularly in Cu and Ni. It is discussed on the statistical consideration that the logarithm of the so-called PKA median energy, log T{sub 1/2}, is a good representative to characterize the primary recoil (i.e. PKA) energy spectrum with the resultant defect production. For the irradiations of electrons, various ions and neutrons to Cu and Ni, fundamental physical quantities such as the fraction of stage I recovery, the defect production cross sections and the radiation annealing cross sections can be well scaled as a function of log T{sub 1/2}, if the effects of the electron excitation caused by irradiating ions are excluded. Namely, all data of the respective physical quantity lie on a single continuous curve as a function of log T{sub 1/2}. This characteristic curve is utilized to predict the damage accumulation (i.e. defect concentration) as a function of dpa in Cu and Ni with the PKA median energy as a parameter. (author)

  12. Damage energy and displacement cross sections: survey and sensitivity

    International Nuclear Information System (INIS)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended

  13. Radiation damage calculations for compound materials

    International Nuclear Information System (INIS)

    Greenwood, L.R.

    1989-01-01

    Displacement damage calculations can be performed for 40 elements in the energy range up to 20 MeV with the SPECTER computer code. A recent addition to the code, called SPECOMP, can intermix atomic recoil energy distributions for any four elements to calculate the proper displacement damage for compound materials. The calculations take advantage of the atomic recoil data in the SPECTER libraries, which were determined by the DISCS computer code, using evaluated neutron cross section and angular distribution data in ENDF/B-V. Resultant damage cross sections for any compound can be added to the SPECTER libraries for the routine calculation of displacements in any given neutron field. Users do not require access to neutron cross section files. Results are presented for a variety of fusion materials and a new ceramic superconductor material. Future plans and nuclear data needs are discussed. 11 refs., 6 figs., 1 tab

  14. Damage energy and displacement cross sections: survey and sensitivity. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended.

  15. Neutron displacement damage cross sections for SiC

    International Nuclear Information System (INIS)

    Huang Hanchen; Ghoniem, N.

    1993-01-01

    Calculations of neutron displacement damage cross sections for SiC are presented. We use Biersack and Haggmark's empirical formula in constructing the electronic stopping power, which combines Lindhard's model at low PKA energies and Bethe-Bloch's model at high PKA energies. The electronic stopping power for polyatomic materials is computed on the basis of Bragg's Additivity Rule. A continuous form of the inverse power law potential is used for nuclear scattering. Coupled integro-differential equations for the number of displaced atoms j, caused by PKA i, are then derived. The procedure outlined above gives partial displacement cross sections, displacement cross sections for each specie of the lattice, and for each PKA type. The corresponding damage rates for several fusion and fission neutron spectra are calculated. The stoichiometry of the irradiated material is investigated by finding the ratio of displacements among various atomic species. The role of each specie in displacing atoms is also investigated by calculating the fraction of displacements caused by each PKA type. The study shows that neutron displacement damage rates of SiC in typical magnetic fusion reactor first walls will be ∝10-15 dpa MW -1 m 2 ; in typical lead-protected inertial confinement fusion reactor first walls they will be ∝15-20 dpa MW -1 m 2 . For fission spectra, we find that the neutron displacement damage rate of SiC is ∝74 dpa per 10 27 n/m 2 in FFTF, ∝39 dpa per 10 27 n/m 2 in HFIR, and 25 dpa per 10 27 n/m 2 in NRU. Approximately 80% of displacement atoms are shown to be of the carbon-type. (orig.)

  16. Isotopic production cross-sections and recoil velocities of spallation-fission fragments in the reaction 238U(1A GeV)+e

    CERN Document Server

    Pereira, J; Wlazlo, W; Benlliure, J; Casarejos, E; Armbruster, P; Bernas, M; Enqvist, T; Legrain, R; Leray, S; Rejmund, F; Mustapha, B; Schmidt, K.-H; Stéphan, C; Taïeb, J; Tassan-Got, L; Volant, C; Boudard, A; Czajkowski, S; 10.1103/PhysRevC.75.014602

    2007-01-01

    Fission fragments of 1A GeV 238U nuclei interacting with a deuterium target have been investigatedwith the Fragment Separator (FRS) at GSI (Darmstadt) by measuring their isotopicproduction cross-sections and recoil velocities. The results, along with those obtained recently forspallation-evaporation fragments, provide a comprehensive analysis of the spallation nuclear productionsin the reaction 238U(1A GeV)+d. Details about experiment performance, data reductionand results will be presented.

  17. SPECTER-ANL, Neutron Damage for Material Irradiation

    International Nuclear Information System (INIS)

    1989-01-01

    1 - Description of program or function: SPECTER calculates spectral- averaged displacements, recoil spectra, gas production, and total damage energy (Kerma) for 41 pure elements using ENDF/B-V derived cross sections. The user need only specify a neutron energy spectrum. Because SPECTER does not handle compounds, SPECOMP was developed to determine displacement damage for alloys, insulators, and breeder materials. 2 - Method of solution: In SPECTER elastic scattering is treated exactly including angular distributions from ENDF/B-V. Inelastic scattering calculations consider both discrete and continuous nuclear level distributions. Multiple (n,xn) reactions use a Monte Carlo technique to derive the recoil distributions. The (n,d) and (n,t) reactions are treated as (n,p) and (n, 3 He) as (n, 4 He). The neutron-gamma reaction and subsequent beta-decay are also included, using a new treatment of gamma-gamma coincidences, angular correlations, beta-neutrino correlations and the incident neutron energy. The Lindhard model was used to compute the energy available for nuclear displacement at each recoil energy. SPECOMP reads the required files from SPECTER, computes secondary displacement functions for each combination of recoil and matrix atom, and then integrates over recoil energy to find the net displacement cross section at each neutron energy. Damage due to neutron, gamma-ray and beta decay events is then added in and the results are summed to obtain the total dpa cross section. 3 - Restrictions on the complexity of the problem: The DISCS computer code was used to process ENDF/B-V data for 41 pure elements for use with SPECTER-ANL. SPECOMP can use any combination of four elements in a single run

  18. Damage cross sections for fast heavy ion induced desorption of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Salehpour, M; Hakansson, P; Sundqvist, B [Uppsala Univ. (Sweden). Tandem Accelerator Lab.

    1984-03-01

    The Uppsala EN-tandem accelerator combined with a time-of-flight mass spectrometer has been used to measure the damage cross sections for Fast Heavy Ion Induced Desorption (FHIID) of the amino acid valine (MW=117) and the protein bovine insulin (MW=5733). Time-of-flight spectra have been obtained after exposing the sample to a known radiation dose of 90 MeV /sup 127/I/sup 14 +/ ions and the yield of the quasi-molecular ions has been measured as a function of the radiation dose. The results are: 6.8(+-1.8)x10/sup -13/ cm/sup 2/ and 50(+-17)x10/sup -13/ cm/sup 2/ for positive ions of valine and insulin respectively. The cross section for valine is roughly one order of magnitude larger than previously published low energy (keV) damage cross sections for the amino acid leucine.

  19. Photon-splitting cross sections

    International Nuclear Information System (INIS)

    Johannessen, A.M.; Mork, K.J.; Overbo, I.

    1980-01-01

    The differential cross section for photon splitting (scattering of one photon into two photons) in a Coulomb field, obtained earlier by Shima, has been integrated numerically to yield various differential cross sections. Energy spectra differential with respect to the energy of one of the outgoing photons are presented for several values of the primary photon energy. Selected examples of recoil momentum distributions and some interesting doubly or multiply differential cross sections are also given. Values for the total cross section are obtained essentially for all energies. The screening effect caused by atomic electrons is also taken into account, and is found to be important for high energies, as in e + e - pair production. Comparisons with various approximate results obtained by previous authors mostly show fair agreement. We also discuss the possibilities for experimental detection and find the most promising candidate to be a measurement of both photons, and their energies, at a moderately high energy

  20. Recoil ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Olson, R.E.

    1991-01-01

    The collision of a fast moving heavy ion with a neutral atomic target can produce very highly charged but slowly moving target ions. This article reviews experimental and theoretical work on the production and use of recoil ions beyond the second ionization state by beams with specific energies above 0.5 MeV/amu. A brief historical survey is followed by a discussion of theoretical approaches to the problem of the removal of many electrons from a neutral target by a rapid, multiply charged projectile. A discussion of experimental techniques and results for total and differential cross sections for multiple ionization of atomic and molecular targets is given. Measurements of recoil energy are discussed. The uses of recoil ions for in situ spectroscopy of multiply charged ions, for external beams of slow, highly charged ions and in ion traps are reviewed. Some possible future opportunities are discussed. (orig.)

  1. Prospects of measure the Higgs boson mass and cross section in e+e- → ZH using the recoil mass spectrum

    International Nuclear Information System (INIS)

    Lohmann, W.; Schaelicke, A.; Ohlerich, M.; Raspereza, A.

    2007-10-01

    The process e + e - → ZH allows to measure the Higgs boson in the recoil mass spectrum against the Z boson without any assumptions on the Higgs boson decay. We performed a full simulation and reconstruction of e + e - → ZH using the Mokka and Marlin packages describing the LDC detector. The Z is reconstructed from its decays into electrons and muons. The mass of the Higgs boson is set to 120GeV. Assuming a centre-of-mass energy of 250GeV and an integrated luminosity of 50 fb -1 the Higgs boson mass and the Higgs-strahlung cross section can be measured with a precision of 120MeV and 9%, respectively. (orig.)

  2. Classical scattering cross section in sputtering transport theory

    International Nuclear Information System (INIS)

    Zhang Zhulin

    2002-01-01

    For Lindhard scaling interaction potential scattering commonly used in sputtering theory, the authors analyzed the great difference between Sigmund's single power and the double power cross sections calculated. The double power cross sections can give a much better approximation to the Born-Mayer scattering in the low energy region (m∼0.1). In particular, to solve the transport equations by K r -C potential interaction given by Urbassek few years ago, only the double power cross sections (m∼0.1) can yield better approximate results for the number of recoils. Therefore, the Sigmund's single power cross section might be replaced by the double power cross sections in low energy collision cascade theory

  3. The dependence of radiation damage analysis on neutron dosimetry

    International Nuclear Information System (INIS)

    Goland, A.N.; Parkin, D.M.

    1977-01-01

    The characteristics of defect production in neutron spectra can be determined by utilizing neutron cross section data (e.g. ENDF/B), detailed neutron spectral data and radiation damage models. The combination of neutron cross section and spectral data is a fundamental starting point in applying damage models. Calculations using these data and damage models show that there are significant differences in the way defects are produced in various neutron spectra. Nonelastic events dominate the recoil energy distribution in high-energy neutron sources such as those based upon fusion and deuteron-breakup reactions. Therefore, high-energy neutron cross sections must be measured or calculated to supplement existing data files. Radiation damage models can then be used to further characterize the diverse neutron spectra

  4. Damage parameters for non-metals in a high energy neutron environment

    International Nuclear Information System (INIS)

    Dell, G.F.; Berry, H.C.; Lazareth, O.W.; Goland, A.N.

    1980-01-01

    Simulation of radiation damage induced in monatomic and binary non-metals by FMIT and fusion neutrons is described. Damage produced by elastic scattering of recoil atoms and by ionization-assisted processes has been evaluated using the damage program DON. Displacement damage from gamma rays has been evaluated by using the technique of Oen and Holmes. A comparison of damage for an anticipated FMIT radiation environment generated by a coupled n-γ transport calculations and a fusion spectrum is made. Gamma-induced displacement damage is sufficiently small that it is dominated by neutron-induced recoil processes. Ionization-assisted displacements may be important depending upon the ionization cross section of the particular non-metal under consideration

  5. Experimental investigation of the triple differential cross section for electron impact ionization of N{sub 2} and CO{sub 2} molecules at intermediate impact energy and large ion recoil momentum

    Energy Technology Data Exchange (ETDEWEB)

    Lahmam-Bennani, A; Staicu Casagrande, E M; Naja, A, E-mail: azzedine.bennani@u-psud.f [Universite Paris-Sud 11, Laboratoire des Collisions Atomiques et Moleculaires (LCAM), Bat. 351, 91405 Orsay Cedex (France)

    2009-12-14

    The (e,2e) triple differential cross sections (TDCS) are measured for the ionization of nitrogen and carbon dioxide molecules in a coplanar asymmetric geometry for a wide range of ejected electron energies and at an incident energy about 500-700 eV. This kinematics corresponds to a large momentum imparted to the ion, and is meant to enhance the recoil scattering. The experimental binary and recoil angular distributions of the TDCS are characterized both by a shift towards larger angles with respect to the momentum transfer direction and by a large intensity in the recoil region, in particular for the ionization of the 'inner' N{sub 2}(2{sigma}{sub g}) molecular orbital. The data are compared with the results of calculations using the first Born approximation-two centre continuum (FBA-TCC) theoretical model for treating differential electron impact ionization. The experimentally observed shifts and recoil intensity enhancement are not predicted by the model calculations, which rather yield a TDCS symmetrically distributed around the momentum transfer direction, and completely fail in describing the recoil distribution. It is hoped that these new results will stimulate the development of more refined theories for correctly modelling single ionization of molecules.

  6. Elastic neutron-proton differential cross section at 647 MeV

    International Nuclear Information System (INIS)

    Evans, M.L.

    1979-04-01

    The differential cross section for n-p elastic scattering in the angular range 51 0 was measured with high statistical accuracy using the 647 MeV monoenergetic neutron beam of the Los Alamos Meson Physics Facility. A proton recoil magnetic spectrometer was used for momentum analysis of the charge exchange protons from the reaction n+p→p+n. Absolute normalization of the cross section was established to within 7% using existing cross section data for the reaction p+p→π + +d. The results differ significantly from previous Dubna and PPA cross sections but agree well with recent Saclay data except at extreme backward angles. 41 references

  7. Geometry effects on the (e, 2e) cross section on ionic targets

    International Nuclear Information System (INIS)

    Khajuria, Y.

    2005-01-01

    The three body distorted wave Born approximation (DWBA) with spin averaged static exchange potential has been used to calculate the electron impact triple-differential cross section of Li + , Na + and K + ions in different geometries and kinematics. In coplanar geometry at high incident energy (≥ 500 eV) and scattering angle ∼10deg, both recoil and binary peaks in case of p-orbital electrons splits into two. The value of the binary to the recoil peak ratio for the specific value of the momentum transfer has been determined to understand the collision dynamics. In the non-coplanar geometry a strong interference resulting in a dip in triple differential cross section (TDCS) has been noticed. (author)

  8. Scattering and absorption differential cross sections for double ...

    Indian Academy of Sciences (India)

    degraded gamma quanta at the same time as the recoil electron. ... [2–4] are confined to energy, angular distribution, collision differential cross section and ... The positions of the two detectors are adjusted in such a way that they do not ... the energy values weighted in proportion to the probability for occurrence of this ...

  9. Review of the research and application of KERMA factor and DPA cross section

    International Nuclear Information System (INIS)

    1991-03-01

    The data for recoil atom spectra, KERMA factor and displacement cross sections from neutron-induced reactions are calling increasing interest for applications to the study of radiation damage, calculation of heat generation in reactor, neutron therapy and biological research. PKA spectra sub-working group was recently established in Japanese Nuclear Data Committee as a part of developing JENDL Special Purpose Data Files. Current status of the data and various features of application of the KERMA-related problems were reviewed and discussed at the first meeting of the sub-working group. Present report is a compilation of the items presented at the meeting, covering a brief review of the existing research and the data, method of calculation, the KERMA factor data in neutron therapy, the deduction of KERMA factor of C-12 from neutron reaction measurement and analysis, the data base for radiation damage, the damage simulation calculation, and the method of storaging the evaluated data in ENDF/B-VI format. (author)

  10. Relationship between cross section measurements and understanding radiation induced damage to biomolecules

    International Nuclear Information System (INIS)

    DuBois, R.D.; Braby, L.A.

    1993-10-01

    Experimental research performed at the Pacific Northwest Laboratory relating to energy deposition by energetic charged particles is described. How cross section data obtained from gaseous- and condensed-phase studies are related to understanding damage to biomolecules is discussed. Studies to date stress the need for information about energy deposition in individual interactions and show that multiple ionization may play a very significant role in biological damage. Current efforts to relate this gas-phase information to condensed-phase processes and biologically relevant targets are outlined

  11. Optimizing Higgs factories by modifying the recoil mass

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jiayin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Chinese Academy of Sciences, Beijing (China). Center for Future High Energy Physics; Li, Ying-Ying [Hong Kong Univ. of Science and Technology, Kowloon (China). Dept. of Physics

    2017-10-15

    It is difficult to measure the WW-fusion Higgs production process (e{sup +}e{sup -}→ν anti νh) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z (e{sup +}e{sup -}→hZ, Z→ν anti ν). We construct a modified recoil mass variable, m{sup p}{sub recoil}, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can better separate the WW-fusion and Higgsstrahlung events than the original recoil mass variable m{sub recoil}. Consequently, the m{sup p}{sub recoil} variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the m{sup p}{sub recoil} variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies.

  12. Hydrogen analysis by elastic recoil spectrometry

    International Nuclear Information System (INIS)

    Tirira, J.; Trocellier, P.

    1989-01-01

    An absolute, quantitative procedure was developed to determine the hydrogen content and to describe its concentration profile in the near-surface region of solids. The experimental technique used was the elastic recoil detection analysis of protons induced by 4 He beam bombardment in the energy range <=1.8 MeV. The hydrogen content was calculated using a new recoil cross section expression. The analyses were performed in silicon crystals implanted with hydrogen at 10 keV. The implantation dose was evaluated with an accuracy of 10% and the hydrogen depth profile with that of +-10 nm around 200 nm. (author) 10 refs.; 3 figs

  13. A supersonic jet target for the cross section measurement of the 12C(α, γ)16O reaction with the recoil mass separator ERNA

    Science.gov (United States)

    Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.

    2017-09-01

    12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.

  14. Energy and depth resolution in elastic recoil coincidence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E., E-mail: szilagyi@rmki.kfki.h [KFKI Research Institute for Particle and Nuclear Physics, P.O. Box 49, H-1525 Budapest (Hungary)

    2010-06-15

    Elastic recoil coincidence spectrometry was implemented into the analytical ion beam simulation program DEPTH. In the calculations, effective detector geometry and multiple scattering effects are considered. Mott's cross section for the identical, spin zero particles is included. Spectra based on the individual detector signal and summing the energy of the recoiled and scattered particles originating from the same scattering events can also be calculated. To calculate this latter case, the dependency of the energy spread contributions had to be reconsidered.

  15. Energy and depth resolution in elastic recoil coincidence spectrometry

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2010-01-01

    Elastic recoil coincidence spectrometry was implemented into the analytical ion beam simulation program DEPTH. In the calculations, effective detector geometry and multiple scattering effects are considered. Mott's cross section for the identical, spin zero particles is included. Spectra based on the individual detector signal and summing the energy of the recoiled and scattered particles originating from the same scattering events can also be calculated. To calculate this latter case, the dependency of the energy spread contributions had to be reconsidered.

  16. Calculations of atomic sputtering and displacement cross-sections in solid elements by electrons with energies from threshold to 1.5 MV

    International Nuclear Information System (INIS)

    Bradley, C.R.

    1988-12-01

    The kinetics of knock-on collisions of relativistic electrons with nuclei and details of the numerical evaluation of differential, recoil, and total Mott cross-sections are reviewed and discussed. The effects of electron beam induced displacement and sputtering, in the transmission electron microscope (TEM) environment, on microanalysis are analyzed with particular emphasis placed on the removal of material by knock-on sputtering. The mass loss predicted due to transmission knock-on sputtering is significant for many elements under conditions frequently encountered in microanalysis. Total Mott cross-sections are tabulated for all naturally occurring solid elements up to Z = 92 at displacement energies of one, two, four, and five times the sublimation energy and for accelerating voltages accessible in the transmission electron microscope. Fortran source code listings for the calculation of the differential Mott cross-section as a function of electron scattering angle (dMottCS), as a function of nuclear recoil angle (RECOIL), and the total Mott cross-section (TOTCS) are included. 48 refs., 21 figs., 12 tabs

  17. Coincidence measurements of slow recoil ions with projectile ions in 42-MeV Arq+-Ar collisions

    International Nuclear Information System (INIS)

    Tonuma, T.; Kumagai, H.; Matsuo, T.; Tawara, H.

    1989-01-01

    Slow Ar recoil-ion production cross sections by projectiles of 1.05-MeV/amu Ar q+ (q=4,6,8,10,12,14) were measured using a projectile-ion--recoil-ion coincidence technique. The present results indicate that the average recoil ion charges left-angle i right-angle increase with increasing the incident projectile charge q and the number of the lost and captured electrons from and/or into projectiles, whereas the projectile charge-changing cross sections for loss ionization decrease steeply with increasing q for low-charge-state projectiles, and those for transfer ionization increase rapidly with increasing q for high-charge-state projectiles. For Ar projectiles with q=10, which corresponds to the equilibrium charge state of Ar projectiles at the present collision energy, the average recoil-ion charges are nearly the same in both loss and transfer ionization, and a pure ionization process plays a much more important role in producing highly charged recoil ions, in contrast to projectile electron loss or transfer processes, which play a role in other projectile charge states

  18. High energy proton simulation of 14-MeV neutron damage in Al2O3

    International Nuclear Information System (INIS)

    Muir, D.W.; Bunch, J.M.

    1975-01-01

    High-energy protons are a potentially useful tool for simulating the radiation damage produced by 14-MeV neutrons in CTR materials. A comparison is given of calculations and measurements of the relative damage effectiveness of these two types of radiation in single-crystal Al 2 O 3 . The experiments make use of the prominent absorption band at 206 nm as an index to lattice damage, on the assumption that peak absorption is proportional to the concentration of lattice vacancies. The induced absorption is measured for incident proton energies ranging from 5 to 15 MeV and for 14-MeV neutrons. Recoil-energy spectra are calculated for elastic and inelastic scattering using published angular distributions. Recoil-energy spectra also are calculated for the secondary alpha particles and 12 C nuclei produced by (p,p'α) reactions on 16 O. The recoil spectra are converted to damage-energy spectra and then integrated to yield the damage-energy cross section at each proton energy and for 14 MeV neutrons. A comparison of the calculations with experimental results suggests that damage energy, at least at high energies, is a reasonable criterion for estimating this type of radiation damage. (auth)

  19. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-01-01

    An experiment is described to study highly charged recoil ions on-line to the heavy accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy-ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q = 15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q = 4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q = 6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix

  20. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-05-01

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  1. Optimizing Higgs factories by modifying the recoil mass

    Science.gov (United States)

    Gu, Jiayin; Li, Ying-Ying

    2018-02-01

    It is difficult to measure the WW-fusion Higgs production process ({{{e}}}+{{{e}}}-\\to {{ν }}\\bar{{{ν }}}{{h}}) at a lepton collider with a center of mass energy of 240-250 GeV due to its small rate and the large background from the Higgsstrahlung process with an invisible Z ({{{e}}}+{{{e}}}-\\to {{hZ}},{{Z}}\\to {{ν }}\\bar{{{ν }}}). We construct a modified recoil mass variable, {m}{{recoil}}p, defined using only the 3-momentum of the reconstructed Higgs particle, and show that it can separate the WW-fusion and Higgsstrahlung events better than the original recoil mass variable m recoil. Consequently, the {m}{{recoil}}p variable can be used to improve the overall precisions of the extracted Higgs couplings, in both the conventional framework and the effective-field-theory framework. We also explore the application of the {m}{{recoil}}p variable in the inclusive cross section measurements of the Higgsstrahlung process, while a quantitive analysis is left for future studies. JG is Supported by an International Postdoctoral Exchange Fellowship Program between the Office of the National Administrative Committee of Postdoctoral Researchers of China (ONACPR) and DESY. YYL is Supported by Hong Kong PhD Fellowship (HKPFS) and the Collaborative Research Fund (CRF) (HUKST4/CRF/13G)

  2. Prediction for neutrino-electron cross-sections in Weinberg's model for weak interactions

    NARCIS (Netherlands)

    Hooft, G. 't

    1971-01-01

    Weinberg's theory of purely leptonic weak interactions can be tested in neutrino-electron scattering experiments. Cross-sections must be measured as a function of the energy of the recoil electron. If Weinberg's theory is correct, then the masses of the intermediate vector bosons can be derived from

  3. Measurement of differential (n,x{alpha}) cross section using 4{pi} gridded ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Matsuyama, Shigeo; Kiyosumi, Takehide; Nauchi, Yasushi; Saito, Keiichiro; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Kawano, Toshihiko

    1997-03-01

    We carried out the measurements of high resolution {alpha} emission spectra of {sup 58}Ni and {sup nat}Ni between 4.5 and 6.5 MeV, and {sup 12}C(n,x{alpha}) cross section using a 4{pi} gridded ionization chamber. In Ni measurement, overall energy resolution was improved to around 200 keV by optimizing a sample thickness and a neutron source width. Measured alpha spectra showed separate peaks corresponding to the ground and low-lying excited states of the residual nucleus ({sup 55}Fe). These results were compared with another direct measurement and statistical model calculations. In {sup 12}C measurement, GIC was applied for (n,x{alpha}) reactions of light nuclei. This application is difficult to (n,x{alpha}) cross sections of light nuclei, because of the influences of large recoil energy and multi-body break-up. We developed new methods which eliminate the effects of recoil nuclei and multi-body break-up and applied them to {sup 12}C(n,x{alpha}) reaction at En=14.1 MeV. In our experiment, the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be angular differential cross section and {sup 12}C(n,n`3{alpha}) cross section were obtained. (author)

  4. Nuclear-Recoil Energy Scale in CDMS II Silicon Dark-Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; et al.

    2018-03-07

    The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum $^{252}$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $4.8^{+0.7}_{-0.9}$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $\\sim$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $\\sim$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.

  5. Reprint of: A supersonic jet target for the cross section measurement of the 12C(α, γ)16O reaction with the recoil mass separator ERNA

    Science.gov (United States)

    Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.

    2018-01-01

    12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.

  6. Calculation of atom displacement cross section for structure material

    International Nuclear Information System (INIS)

    Liu Ping; Xu Yiping

    2015-01-01

    The neutron radiation damage in material is an important consideration of the reactor design. The radiation damage of materials mainly comes from atom displacements of crystal structure materials. The reaction cross sections of charged particles, cross sections of displacements per atom (DPA) and KERMA are the basis of radiation damage calculation. In order to study the differences of DPA cross sections with different codes and different evaluated nuclear data libraries, the DPA cross sections for structure materials were calculated with UNF and NJOY codes, and the comparisons of results were given. The DPA cross sections from different evaluated nuclear data libraries were compared. And the comparison of DPA cross sections between NJOY and Monte Carlo codes was also done. The results show that the differences among these evaluated nuclear data libraries exist. (authors)

  7. Magneto optical trap recoil ion momentum spectroscopy: application to ion-atom collisions

    International Nuclear Information System (INIS)

    Blieck, J.

    2008-10-01

    87 Rb atoms have been cooled, trapped and prepared as targets for collision studies with 2 and 5 keV Na + projectiles. The physics studied deals with charge exchange processes. The active electron, which is generally the most peripheral electron of the atomic target, is transferred from the target onto the ionic projectile. The ionized target is called recoil ion. The technique used to study this physics is the MOTRIMS (Magneto Optical Trap Recoil Ion Momentum Spectroscopy) technique, which combines a magneto optical trap and a recoil ion momentum spectrometer. The spectrometer is used for the measurement of the recoil ions momentum, which gives access to all the information of the collision: the Q-value (which is the potential energy difference of the active electron on each particle) and the scattering angle of the projectile. The trap provides extremely cold targets to optimize the measurement of the momentum, and to release the latter from thermal motion. Through cinematically complete experiments, the MOTRIMS technique gives access to better resolutions on momentum measurements. Measurements of differential cross sections in initial and final capture states and in scattering angle have been done. Results obtained for differential cross sections in initial and final states show globally a good agreement with theory and an other experiment. Nevertheless, discrepancies with theory and this other experiment are shown for the measurements of doubly differential cross sections. These discrepancies are not understood yet. The particularity of the experimental setup designed and tested in this work, namely a low background noise, allows a great sensitivity to weak capture channels, and brings a technical and scientific gain compared with previous works. (author)

  8. Rosenbluth separation of the $\\pi^0$ Electroproduction Cross Section off the Neutron

    OpenAIRE

    Mazouz, M.; Ahmed, Z.; Albataineh, H.; Allada, K.; Aniol, K. A.; Bellini, V.; Benali, M.; Boeglin, W.; Bertin, P.; Brossard, M.; Camsonne, A.; Canan, M.; Chandavar, S.; Chen, C.; Chen, J. -P.

    2017-01-01

    We report the first longitudinal/transverse separation of the deeply virtual exclusive $\\pi^0$ electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\\sigma_L/dt$, $d\\sigma_T/dt$, $d\\sigma_{LT}/dt$ and $d\\sigma_{TT}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $x_B$=0.36. The $ed \\to ed\\pi^0$ cross sections are found compatible with the small values expected from theoretical...

  9. Kerma factors and reaction cross sections for n + 12C between 15 and 18 MeV

    International Nuclear Information System (INIS)

    Tornow, W.; Chen, Z.M.; Baird, K.; Walter, R.L.

    1988-01-01

    Differential elastic and inelastic (4.44 MeV) neutron scattering cross sections from 12 C are presented at 15.6, 16.8 and 17.3 MeV. The existing 18.2 MeV differential cross-section data were combined with newly measured analysing power data to parametrise neutron scattering at this energy. The 12 C recoil kerma factors were calculated and reaction cross sections were obtained from a phase-shift analysis and coupled channel analyses in the 15.6-18.2 MeV energy range. (author)

  10. On recoil energy dependent void swelling in pure copper: Theoretical treatment

    International Nuclear Information System (INIS)

    Golubov, S.I.; Singh, B.N.; Trinkaus, H.

    2000-06-01

    Over the years, an enormous amount of experimental results have been reported on damage accumulation (e.g. void swelling) in metals and alloys irradiated under vastly different recoil energy conditions. Unfortunately, however, very little is known either experimentally or theoretically about the effect of recoil energy on damage accumulation. Recently, dedicated irradiation experiments using 2.5 MeV electrons, 3.0 MeV protons and fission neutrons have been carried out to determine the effect of recoil energy on the damage accumulation behaviour in pure copper and the results have been reported in Part I of this paper (Singh, Eldrup, Horsewell, Ehrhart and Dworschak 2000). The present paper attempts to provide a theoretical framework within which the effect of recoil energy on damage accumulation behaviour can be understood. The damage accumulation under Frenkel pair production (e.g. 2.5 MeV electron) has been treated in terms of the standard rate theory (SRT) model whereas the evolution of the defect microstructure under cascade damage conditions (e.g. 3.0 MeV protons and fission neutrons) has been calculated within the framework of the production bias model (PBM). Theoretical results, in agreement with experimental results, show that the damage accumulation behaviour is very sensitive to recoil energy and under cascade damage conditions can be treated only within the framework of the PBM. The intracascade clustering of self-interstitial atoms (SIAs) and the properties of SIA clusters such as one-dimensional diffusional transport and thermal stability are found to be the main reasons for the recoil energy dependent vacancy supersaturation. The vacancy supersaturation is the main driving force for the void nucleation and void swelling. In the case of Frenkel pair production, the experimental results are found to be consistent with the SRT model with a dislocation bias value of 2 %. (au)

  11. Experimental evaluation of the primary damage process: neutron energy effects

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1979-01-01

    Experimental evaluation of the neutron energy dependnece of the primary damage stage depends upon a number of theoretical concepts. This state can only be observed after low- or perhaps ambient-temperature, low-fluence irradiations. The primary recoil energy spectrum, which determines the character of the displacement cascades, can be calculated if dosimetry has provided an accurate neutron spectrum. A review of experimental results relating neutron-energy effects shows that damage energy or damage energy cross section has often been a reliable correlation parameter for primary damage state experiments. However, the forthcoming emphasis on higher irradiation temperatures, more complex alloys and microstructural evolution has fostered a search for additional meaningful correlation parameters.

  12. Cross-section transmission electron microscopy of the ion implantation damage in annealed diamond

    Energy Technology Data Exchange (ETDEWEB)

    Derry, T.E. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa)], E-mail: Trevor.Derry@wits.ac.za; Nshingabigwi, E.K. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa); Department of Physics, National University of Rwanda, P.O. Box 117, Huye (Rwanda); Levitt, M. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa); Neethling, J. [DST/NRF CoE-SM and Physics Department, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Naidoo, S.R. [DST/NRF Centre of Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa)

    2009-08-15

    It has formerly been shown that low-damage levels, produced during the implantation doping of diamond as a semiconductor, anneal easily while high levels 'graphitize' (above about 5.2 x 10{sup 15} ions/cm{sup 2}). The difference in the defect types and their profiles, in the two cases, has never been directly observed. We have succeeded in using cross-section transmission electron microscopy to do so. The experiments were difficult because the specimens must be polished to {approx}40 {mu}m thickness, then implanted on edge and annealed, before final ion beam thinning to electron transparency. The low-damage micrographs reveal some deeply penetrating dislocations, whose existence had been predicted in earlier work.

  13. Cross-section transmission electron microscopy of the ion implantation damage in annealed diamond

    International Nuclear Information System (INIS)

    Derry, T.E.; Nshingabigwi, E.K.; Levitt, M.; Neethling, J.; Naidoo, S.R.

    2009-01-01

    It has formerly been shown that low-damage levels, produced during the implantation doping of diamond as a semiconductor, anneal easily while high levels 'graphitize' (above about 5.2 x 10 15 ions/cm 2 ). The difference in the defect types and their profiles, in the two cases, has never been directly observed. We have succeeded in using cross-section transmission electron microscopy to do so. The experiments were difficult because the specimens must be polished to ∼40 μm thickness, then implanted on edge and annealed, before final ion beam thinning to electron transparency. The low-damage micrographs reveal some deeply penetrating dislocations, whose existence had been predicted in earlier work.

  14. Kerma factors and reaction cross sections for n + /sup 12/C between 15 and 18 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W.; Chen, Z.M.; Baird, K.; Walter, R.L.

    1988-07-01

    Differential elastic and inelastic (4.44 MeV) neutron scattering cross sections from /sup 12/C are presented at 15.6, 16.8 and 17.3 MeV. The existing 18.2 MeV differential cross-section data were combined with newly measured analysing power data to parametrise neutron scattering at this energy. The /sup 12/C recoil kerma factors were calculated and reaction cross sections were obtained from a phase-shift analysis and coupled channel analyses in the 15.6-18.2 MeV energy range.

  15. ROSFOND based heating-damage cross sections sub-library: Preliminary uncertainty assessment

    International Nuclear Information System (INIS)

    Sinitsa, V.V.

    2016-01-01

    The accuracy of radiation damage calculations for the most important LWR component, the reactor pressure vessel (RPV), directly linked with the RPV End-of-Life (EoL) prediction which is in its turn connected with fundamental nuclear safety aspects and relevant economic impacts. In this connection, for nearly ten years the ENEA-Bologna Nuclear Data Group conducts the nuclear data processing and validation activities addressed to update the specialized broad-group coupled neutron/photon working cross section libraries for shielding and radiation damage calculations through NJOY and Bologna revised version of SCAMPI data processing systems. A number of working group-wise data libraries has been prepared and transferred to the ENEA Data Bank for dissemination. Several years ago the NRC ”Kurchatov Institute” has reset the GRUCON project, originally designed to provide group constants for fast nuclear reactor calculations [12], with aim to expand its application area and to use in the WWER safety tasks, in particular, in the RPV radiation damage analyses. By means of updated GRUCON and NJOY-99 processing codes, and calculation procedure, developed in the NDG of ENEA Bologna, a sample of kerma&damage energy point-wise data sub-libraries from different evaluated data libraries has been generated. On the base of this sample, the quantitative assessment of kerma/dpa data precision in the RPV calculations is obtained

  16. Proton induced single event upset cross section prediction for 0.15 μm six-transistor (6T) silicon-on-insulator static random access memories

    International Nuclear Information System (INIS)

    Li Lei; Zhou Wanting; Liu Huihua

    2012-01-01

    In this paper, an efficient physics-based method to estimate the saturated proton upset cross section for six-transistor (6T) silicon-on-insulator (SOI) static random access memory (SRAM) cells using layout and technology parameters is proposed. This method calculates the effects of radiation based on device physics. The simple method handles the problem with ease by SPICE simulations, which can be divided into two stages. At first, it uses a standard SPICE program to predict the cross section for recoiling heavy ions with linear energy transfer (LET) of 14 MeV-cm 2 /mg. Then, the predicted cross section for recoiling heavy ions with LET of 14 MeV-cm 2 /mg is used to estimate the saturated proton upset cross section for 6T SOI SRAM cells with a simple model. The calculated proton induced upset cross section based on this method is in good agreement with the test results of 6T SOI SRAM cells processed using 0.15 μm technology. (author)

  17. Exclusive ρ0 meson cross section ratios on deuterium and hydrogen targets

    International Nuclear Information System (INIS)

    Osborne, A.G.S.

    2006-06-01

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. This thesis presents the analysis of the kinematic dependencies of ρ 0 vector meson production on hydrogen and deuterium targets. The relative gluon and quark contribution to the ρ 0 production amplitude is expected to depend on the kinematical variable x Bj , and by measuring the ratio of ρ 0 electroproduction cross sections on deuterium and hydrogen from HERMES data this dependence is confirmed. This thesis describes the methods used to extract the cross section ratio from the HERMES data taken between the years 1996 and 2000 and compares the results with the theoretical predictions. Until 2005 the missing mass resolution of the HERMES spectrometer was only sufficient to allow exclusivity at the level of a data sample. The HERMES Recoil Detector, installed in early 2006, is an upgrade which will augment the HERMES spectrometer by establishing exclusivity at the event level and therefore improving the resolution to which various kinematical variables may be reconstructed. Additionally, the Recoil Detector will contribute to the overall background suppression capability of the HERMES spectrometer. These improvements will provide a strong reduction in the statistical uncertainties present in the ρ 0 -analysis and other analyses at HERMES. The Recoil Detector critically relies on its track reconstruction software to enable its capability to provide event level exclusive measurements. This tracking code is presented in detail. (orig.)

  18. Absolute cross sections for the multielectron processes in 15 keV I10++rare gas collisions

    International Nuclear Information System (INIS)

    Nakamura, N.; Currell, F.J.; Danjo, A.; Kimura, M.; Matsumoto, A.; Ohtani, S.; Sakaue, H.A.; Sakurai, M.; Tawara, H.; Watanabe, H.; Yamada, I.; Yoshino, M.

    1995-01-01

    We have experimentally determined the absolute cross sections for total charge transfer (σ q ), j electron transfer (σ j q ), i electron capture (σ q,q-i ) and each reaction process (σ j q,q-i ) in 15 keV I 10+ -Ne, Ar, Kr and Xe collisions. The branching ratios were determined by the coincidence measurements between charge changing projectile and recoil ions. The electron capture cross sections were measured by the initial growth rate method. The experimental results for total and j electron transfer cross sections were compared with the predictions of the extended classical over-barrier model (ECBM). (orig.)

  19. Cross section measurements of the (n,2n) reaction with 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Harumi; Shiokawa, Takanobu [Tohoku Univ., Sendai (Japan). Faculty of Science; Suehiro, Teruo; Yagi, Masuo

    1975-07-01

    Cross sections are measured for the reactions /sup 64/Zn(n, 2n)/sup 63/Zn, /sup 75/As(n, 2n)/sup 74/As, /sup 79/Br(n, 2n)/sup 78/Br, /sup 90/Zr(n, 2n)/sup 89/Zr, /sup 141/Pr(n, 2n)/sup 140/Pr and /sup 144/Sm(n, 2n)/sup 143/Sm by activation method in the energy range 13.5-14.8 MeV. The cross sections are determined relatively to the cross section for the /sup 63/Cu(n, 2n)/sup 62/Cu and /sup 19/F(n, 2n)/sup 18/F reactions. Before the cross section measurement, incident-neutron energies are measured by recoil proton method. The results of the cross sections are compared with data existing in the literatures and are discussed with reference to the theory of Weisskopf and Ewing.

  20. Rosenbluth Separation of the π^{0} Electroproduction Cross Section Off the Neutron.

    Science.gov (United States)

    Mazouz, M; Ahmed, Z; Albataineh, H; Allada, K; Aniol, K A; Bellini, V; Benali, M; Boeglin, W; Bertin, P; Brossard, M; Camsonne, A; Canan, M; Chandavar, S; Chen, C; Chen, J-P; Defurne, M; de Jager, C W; de Leo, R; Desnault, C; Deur, A; El Fassi, L; Ent, R; Flay, D; Friend, M; Fuchey, E; Frullani, S; Garibaldi, F; Gaskell, D; Giusa, A; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D; Holmstrom, T; Horn, T; Huang, J; Huang, M; Huber, G M; Hyde, C E; Iqbal, S; Itard, F; Kang, Ho; Kang, Hy; Kelleher, A; Keppel, C; Koirala, S; Korover, I; LeRose, J J; Lindgren, R; Long, E; Magne, M; Mammei, J; Margaziotis, D J; Markowitz, P; Martí Jiménez-Argüello, A; Meddi, F; Meekins, D; Michaels, R; Mihovilovic, M; Muangma, N; Muñoz Camacho, C; Nadel-Turonski, P; Nuruzzaman, N; Paremuzyan, R; Puckett, A; Punjabi, V; Qiang, Y; Rakhman, A; Rashad, M N H; Riordan, S; Roche, J; Russo, G; Sabatié, F; Saenboonruang, K; Saha, A; Sawatzky, B; Selvy, L; Shahinyan, A; Sirca, S; Solvignon, P; Sperduto, M L; Subedi, R; Sulkosky, V; Sutera, C; Tobias, W A; Urciuoli, G M; Wang, D; Wojtsekhowski, B; Yao, H; Ye, Z; Zana, L; Zhan, X; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P

    2017-06-02

    We report the first longitudinal-transverse separation of the deeply virtual exclusive π^{0} electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions dσ_{L}/dt, dσ_{T}/dt, dσ_{LT}/dt, and dσ_{TT}/dt are extracted as a function of the momentum transfer to the recoil system at Q^{2}=1.75  GeV^{2} and x_{B}=0.36. The ed→edπ^{0} cross sections are found compatible with the small values expected from theoretical models. The en→enπ^{0} cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π^{0} electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.

  1. Rosenbluth Separation of the π0 Electroproduction Cross Section Off the Neutron

    Science.gov (United States)

    Mazouz, M.; Ahmed, Z.; Albataineh, H.; Allada, K.; Aniol, K. A.; Bellini, V.; Benali, M.; Boeglin, W.; Bertin, P.; Brossard, M.; Camsonne, A.; Canan, M.; Chandavar, S.; Chen, C.; Chen, J.-P.; Defurne, M.; de Jager, C. W.; de Leo, R.; Desnault, C.; Deur, A.; El Fassi, L.; Ent, R.; Flay, D.; Friend, M.; Fuchey, E.; Frullani, S.; Garibaldi, F.; Gaskell, D.; Giusa, A.; Glamazdin, O.; Golge, S.; Gomez, J.; Hansen, O.; Higinbotham, D.; Holmstrom, T.; Horn, T.; Huang, J.; Huang, M.; Huber, G. M.; Hyde, C. E.; Iqbal, S.; Itard, F.; Kang, Ho.; Kang, Hy.; Kelleher, A.; Keppel, C.; Koirala, S.; Korover, I.; LeRose, J. J.; Lindgren, R.; Long, E.; Magne, M.; Mammei, J.; Margaziotis, D. J.; Markowitz, P.; Martí Jiménez-Argüello, A.; Meddi, F.; Meekins, D.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Muñoz Camacho, C.; Nadel-Turonski, P.; Nuruzzaman, N.; Paremuzyan, R.; Puckett, A.; Punjabi, V.; Qiang, Y.; Rakhman, A.; Rashad, M. N. H.; Riordan, S.; Roche, J.; Russo, G.; Sabatié, F.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Selvy, L.; Shahinyan, A.; Sirca, S.; Solvignon, P.; Sperduto, M. L.; Subedi, R.; Sulkosky, V.; Sutera, C.; Tobias, W. A.; Urciuoli, G. M.; Wang, D.; Wojtsekhowski, B.; Yao, H.; Ye, Z.; Zana, L.; Zhan, X.; Zhang, J.; Zhao, B.; Zhao, Z.; Zheng, X.; Zhu, P.; Jefferson Lab Hall A Collaboration

    2017-06-01

    We report the first longitudinal-transverse separation of the deeply virtual exclusive π0 electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions d σL/d t , d σT/d t , d σL T/d t , and d σT T/d t are extracted as a function of the momentum transfer to the recoil system at Q2=1.75 GeV2 and xB=0.36 . The e d →e d π0 cross sections are found compatible with the small values expected from theoretical models. The e n →e n π0 cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity generalized parton distributions of the nucleon. By combining these results with previous measurements of π0 electroproduction off the proton, we present a flavor decomposition of the u and d quark contributions to the cross section.

  2. Fission-neutron displacement cross sections in metals

    International Nuclear Information System (INIS)

    Takamura, Saburo; Aruga, Takeo; Nakata, Kiyotomo

    1985-01-01

    The sensitivity damage rates for 22 metals were measured after fission-spectrum neutron irradiation at low temperature and the experimental damage rates were compared with the theoretical calculation. The relation between the theoretical displacement cross section and the atomic weight of metals can be written by two curves; one is for fcc and hcp metals, and another is for bcc metals. On the other hand, the experimental displacement cross section versus atomic weight is shown approximately by a curve for both fcc and bcc metals, and the cross section for hcp metals deviates from the curve. The defect production efficiency is 0.3-0.4 for fcc metals and 0.6-0.8 for bcc metals. (orig.)

  3. Measurement of the uranium-235 fission cross section over the neutron energy range 1 to 6 MeV

    International Nuclear Information System (INIS)

    Barton, D.M.; Diven, B.C.; Hansen, G.E.; Jarvis, G.A.; Koontz, P.G.; Smith, R.K.

    1976-01-01

    The ratio of the fission cross section of 235 U to the scattering cross section of 1 H was measured in the 1- to 6-MeV range using monoenergetic neutrons from a pulsed 3 H(p,n) 3 He source. In this measurement, solid-state detectors determined fission fragment and recoil proton emissions from back-to-back U(99.7%) and polyethylene disks. Timing permitted discrimination against room-scattered neutron backgrounds. Absolute values for 235 U(n,f) are obtained using the Hopkins-Breit evaluation of the hydrogen-scattering cross section

  4. Exclusive {rho}{sup 0} meson cross section ratios on deuterium and hydrogen targets

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, A.G.S.

    2006-08-15

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. This thesis presents the analysis of the kinematic dependencies of {rho}{sup 0} vector meson production on hydrogen and deuterium targets. The relative gluon and quark contribution to the {rho}{sup 0} production amplitude is expected to depend on the kinematical variable x{sub Bj}, and by measuring the ratio of {rho}{sup 0} electroproduction cross sections on deuterium and hydrogen from HERMES data this dependence is confirmed. This thesis describes the methods used to extract the cross section ratio from the HERMES data taken between the years 1996 and 2000 and compares the results with the theoretical predictions. Until 2005 the missing mass resolution of the HERMES spectrometer was only sufficient to allow exclusivity at the level of a data sample. The HERMES Recoil Detector, installed in early 2006, is an upgrade which will augment the HERMES spectrometer by establishing exclusivity at the event level and therefore improving the resolution to which various kinematical variables may be reconstructed. Additionally, the Recoil Detector will contribute to the overall background suppression capability of the HERMES spectrometer. These improvements will provide a strong reduction in the statistical uncertainties present in the {rho}{sup 0}-analysis and other analyses at HERMES. The Recoil Detector critically relies on its track reconstruction software to enable its capability to provide event level exclusive measurements. This tracking code is presented in detail. (orig.)

  5. A recoil detector of Koala experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huagen [Forschungszentrum Juelich (Germany)

    2015-07-01

    The concept of the luminosity detector for the PANDA experiment is based on measuring antiproton-proton elastic scattering in the Coulomb-nuclear interference region by 4 planes of HV-MAPS tracking detectors. The absolute precision is limited by the lack of existing data of the physics quantities σ{sub tot}, ρ and b describing the differential cross section as a function of squared 4-momentum transfer t in the relevant beam momentum region. Therefore, the so-called Koala experiment has been proposed to measure antiproton-proton elastic scattering. The goal of Koala experiment is to measure a wide range of t-distribution to determine the parameters σ{sub tot}, ρ and b. The idea is to measure the scattered beam antiprotons at forward angles by tracking detectors and the recoil target protons near 90 {sup circle} by energy detectors. In order to validate this method a recoil detector has been designed and built. Commissioning of the recoil detector by measuring proton-proton elastic scattering has been performed at COSY. Preliminary results of the commissioning are presented.

  6. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Bourselier, Jean-Christophe

    2005-08-15

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by {sup 28}Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs.

  7. Talys calculations for evaluation of neutron-induced single-event upset cross sections

    International Nuclear Information System (INIS)

    Bourselier, Jean-Christophe

    2005-08-01

    The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by 28 Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs

  8. Investigation of complete and incomplete fusion in 20Ne + 51V system using recoil range measurement

    Directory of Open Access Journals (Sweden)

    Ali Sabir

    2015-01-01

    Full Text Available Recoil range distributions of evaporation residues, populated in 20Ne + 51V reaction at Elab ≈ 145 MeV, have been studied to determine the degree of momentum transferred through the complete and incomplete fusion reactions. Evaporation residues (ERs populated through the complete and incomplete fusion reactions have been identified on the basis of their recoil range in the Al catcher medium. Measured recoil range of evaporation residues have been compared with the theoretical value calculated using the code SRIM. Range integrated cross section of observed ERs have been compared with the value predicted by statistical model code PACE4.

  9. Deuterium electrodisintegration at high recoil momentum

    International Nuclear Information System (INIS)

    Steenholen, G.

    1996-01-01

    The availability of continuous electron beams made it possible to carry out various deuterium electro-disintegration experiments in kinematical domains corresponding to a high recoil momentum. Three such experiments are discussed: 1) the left-right asymmetry with respect to the direction of the momentum transfer has been measured with good precision; 2) cross sections have been obtained in a kinematical region well above the quasi-elastic peak; 3) data have been taken in quasi-elastic kinematics that can be used to study high-momentum components in the deuterium wave function [ru

  10. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Fallows, Scott Mathew [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  11. Calculations of radiation defect formation cross sections in reactor materials in (n,p) and (n,α) reactions

    International Nuclear Information System (INIS)

    Kupchishin, A.A.; Kupchishin, A.I.; Omarbekova, Zh.

    2001-01-01

    In the work an experimental data analysis by integral σ(E 1 ) and differential [dσ(E 1 ,E 2 )]/dE 2 neutron interaction cross sections with reactor materials with the secondary protons and alpha particles generation as well as with the primarily knock-on atoms production in such reactions are carried out. It is shown, that in the (n,p) and (n',α) reactions the recoil nuclei receive essential energy portion and they are the patriarchs for atom-atom cascades in the substance. Nuclear reactions with formation of the secondary α-particles and and recoil nuclei are considered. It is shown, that these reactions are effectively proceeding within neutrons energy range 0.3-15 MeV. The nuclear reactions kinematics of above mentioned processes is studied. Energy conservation law for these reaction is applied. Deferential cross section conservation and transformation law for radiation defect formation in the (n,α) reaction are considered as well

  12. Kinematic separation and mass analysis of heavy recoiling nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Eremin, A.V.; Belozerov, A.V.

    2002-01-01

    Within the past twelve years, the recoil separator VASSILISSA has been used for investigation of evaporation residues produced in heavy-ion induced complete-fusion reactions. In the course of the experimental work in the region of the elements with 92 ≤ Z ≤ 94, fourteen new isotopes have been identified by the parent-daughter correlations. The study of the decay properties and formation cross sections of the isotopes of elements 110, 112, and 114 was performed with the use of the high intensity 48 Ca beams; 232 Th, 238 U and 242 Pu targets were used in the experiments. At the beam energies corresponding to the calculated cross-section maxima of the 3n evaporation channels, the isotopes 277 110, 283 112, and 287 114 were produced and identified. For further experiments aimed at the synthesis of the superheavy element isotopes (Z ≥ 110) with the intensive 48 Ca extracted beams, the improvements in the ion optical system of the separator and of the focal plane detector system have been made. As a result, for heavy recoiling nuclei with masses A ∼ 250, the mass resolution of about 2.5 % was achieved with a good energy and position resolutions of the focal plane detectors

  13. Characterization of the energy-dependent uncertainty and correlation in silicon neutron displacement damage metrics

    Directory of Open Access Journals (Sweden)

    Griffin Patrick

    2017-01-01

    Full Text Available A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.

  14. Isotopic production cross sections of fission residues in 197Au-on-proton collisions at 800 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Armbruster, P.; Bernas, M.

    2000-02-01

    Interactions of 197 Au projectiles at 800 A MeV with protons leading to fission are investigated. We measured the production cross sections and velocities of all fission residues which are fully identified in atomic and mass number by using the in-flight separator FRS at GSI. The new data are compared with partial measurements of the characteristics of fission in similar reactions. Both the production cross sections and the recoil energies are relevant for a better understanding of spallation reactions. (orig.)

  15. Fast neutron spectroscopy by gas proton-recoil methods at the light water reactor pressure vessel simulator

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1980-10-01

    Fast neutron spectrum measurements were made in a Light Water Reactor (LWR) Pressure Vessel Simulator (PVS) to provide neutron spectral definition required to appropriately perform and interpret neutron dosimetry measurements related to fast neutron damage in LWR-PV steels. Proton-recoil proportional counter methods using hydrogen and methane gas-filled detectors were applied to obtain the proton spectra from which the neutron spectra were derived. Cylindrical and spherical geometry detectors were used to cover the neutron energy range between 50 keV and 2 MeV. Results show that the neutron spectra shift in energy distribution toward lower energy between the front and back of a PVS. The relative neutron flux densities increase in this energy range with increasing thickness of the steel. Neutron spectrum fine structure shapes and changes are observed. These results should assist in the generation of more accurate effective cross sections and fluences for use in LWR-PV fast neutron dosimetry and materials damage analyses

  16. Cross-sections of spallation residues produced in 1A GeV 208Pb on proton reactions

    International Nuclear Information System (INIS)

    Wlazlo, W.; Uniwersytet Jagiellonski, Cracow; Enqvist, T.; Armbruster, P.

    2000-02-01

    Spallation residues produced in 1 GeV per nucleon 208 Pb on proton reactions have been studied using the fragment separator facility at GSI. Isotopic production cross-sections of elements from 61 Pm to 82 Pb have been measured down to 0.1 mb with a high accuracy. The recoil kinetic energies of the produced fragments were also determined. The obtained cross-sections agree with most of the few existing gamma-spectroscopy data. Data are compared with different intranuclear-cascade and evaporation-fission models. Drastic deviations were found for a standard code used in technical applications. (orig.)

  17. Neutron cross sections for fusion

    International Nuclear Information System (INIS)

    Haight, R.C.

    1979-10-01

    First generation fusion reactors will most likely be based on the 3 H(d,n) 4 He reaction, which produces 14-MeV neutrons. In these reactors, both the number of neutrons and the average neutron energy will be significantly higher than for fission reactors of the same power. Accurate neutron cross section data are therefore of great importance. They are needed in present conceptual designs to calculate neutron transport, energy deposition, nuclear transmutation including tritium breeding and activation, and radiation damage. They are also needed for the interpretation of radiation damage experiments, some of which use neutrons up to 40 MeV. In addition, certain diagnostic measurements of plasma experiments require nuclear cross sections. The quality of currently available data for these applications will be reviewed and current experimental programs will be outlined. The utility of nuclear models to provide these data also will be discussed. 65 references

  18. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Science.gov (United States)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  19. Molecular data for a biochemical model of DNA damage: Electron impact ionization and dissociative ionization cross sections of DNA bases and sugar-phosphate backbone

    International Nuclear Information System (INIS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2006-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C 3 ' - and C 5 ' -deoxyribose-phosphate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C 3 ' - and C 5 ' -deoxyribose-phosphate cross sections, differing by less than 10%, an indication that a building-up principle may be applicable. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-H1) + , with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 16.9eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage

  20. Neutron induced fission cross sections for /sup 232/Th, /sup 235,238/U, /sup 237/Np and /sup 239/Pu from 1 to 400 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1988-01-01

    Neutron-induced fission cross section ratios for samples of /sup 232/Th, /sup 235,238/U, /sup 237/Np and /sup 239/Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence up to 30 MeV. These data provided the shape of the /sup 235/U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known values were determined using the neutron fluence measured with a second proton recoil telescope. Cross section values for /sup 232/Th, /sup 238/U, /sup 237/Np, and /sup 239/Pu were computed from the ratio data using our values for /sup 235/U(n,f). In addition to providing new results at high neutron energies, these data resolve long standing discrepancies among different data sets. 1 ref., 1 fig.

  1. Proton quasi-elastic scattering at 600MeV on the. cap alpha. -substructure of medium nuclei. [Differential cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Anne, R [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service d' Entretien et de Developpement des Appareils de Physique; Delpierre, P; Kahane, J; Sene, R [College de France, 75 - Paris. Lab. de Physique Corpusculaire; Devaux, A; Landaud, G [Clermont-Ferrand Univ., 63 (France); Yonnet, J [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    1975-01-01

    Alpha knock out from light and medium nuclei up to /sup 40/Ca was investigated. Preliminary values of the differential cross sections are given for /sup 6/Li and /sup 12/C nuclei. The p(R) recoil momentum distributions show a maximum at p(R)=0.

  2. WIMP-nucleon cross-section results from the second science run of ZEPLIN-III

    Energy Technology Data Exchange (ETDEWEB)

    Akimov, D.Yu. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Araujo, H.M., E-mail: h.araujo@imperial.ac.uk [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); Barnes, E.J. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Belov, V.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bewick, A. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); Burenkov, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Chepel, V. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Currie, A. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); DeViveiros, L. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Edwards, B. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Ghag, C.; Hollingsworth, A. [School of Physics and Astronomy, SUPA University of Edinburgh (United Kingdom); Horn, M.; Jones, W.G. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); Kalmus, G.E. [Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Kobyakin, A.S.; Kovalenko, A.G. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Lebedenko, V.N. [High Energy Physics Group, Blackett Laboratory, Imperial College London (United Kingdom); Lindote, A. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); Particle Physics Department, STFC Rutherford Appleton Laboratory, Chilton (United Kingdom); Lopes, M.I. [LIP-Coimbra and Department of Physics of the University of Coimbra (Portugal); and others

    2012-03-13

    We report experimental upper limits on WIMP-nucleon elastic scattering cross sections from the second science run of ZEPLIN-III at the Boulby Underground Laboratory. A raw fiducial exposure of 1344 kg Dot-Operator days was accrued over 319 days of continuous operation between June 2010 and May 2011. A total of eight events was observed in the signal acceptance region in the nuclear recoil energy range 7-29 keV, which is compatible with background expectations. This allows the exclusion of the scalar cross-section above 4.8 Multiplication-Sign 10{sup -8} pb near 50 GeV/c{sup 2} WIMP mass with 90% confidence. Combined with data from the first run, this result improves to 3.9 Multiplication-Sign 10{sup -8} pb. The corresponding WIMP-neutron spin-dependent cross-section limit is 8.0 Multiplication-Sign 10{sup -3} pb. The ZEPLIN programme reaches thus its conclusion at Boulby, having deployed and exploited successfully three liquid xenon experiments of increasing reach.

  3. WIMP-nucleon cross-section results from the second science run of ZEPLIN-III

    International Nuclear Information System (INIS)

    Akimov, D.Yu.; Araújo, H.M.; Barnes, E.J.; Belov, V.A.; Bewick, A.; Burenkov, A.A.; Chepel, V.; Currie, A.; DeViveiros, L.; Edwards, B.; Ghag, C.; Hollingsworth, A.; Horn, M.; Jones, W.G.; Kalmus, G.E.; Kobyakin, A.S.; Kovalenko, A.G.; Lebedenko, V.N.; Lindote, A.; Lopes, M.I.

    2012-01-01

    We report experimental upper limits on WIMP-nucleon elastic scattering cross sections from the second science run of ZEPLIN-III at the Boulby Underground Laboratory. A raw fiducial exposure of 1344 kg⋅days was accrued over 319 days of continuous operation between June 2010 and May 2011. A total of eight events was observed in the signal acceptance region in the nuclear recoil energy range 7-29 keV, which is compatible with background expectations. This allows the exclusion of the scalar cross-section above 4.8×10 -8 pb near 50 GeV/c 2 WIMP mass with 90% confidence. Combined with data from the first run, this result improves to 3.9×10 -8 pb. The corresponding WIMP-neutron spin-dependent cross-section limit is 8.0×10 -3 pb. The ZEPLIN programme reaches thus its conclusion at Boulby, having deployed and exploited successfully three liquid xenon experiments of increasing reach.

  4. A new recoil filter for {gamma}-detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Heese, J; Lahmer, W; Maier, K H [Hahn-Meitner-Institut Berlin GmbH (Germany); Janicki, M; Meczynski, W; Styczen, J [Institute of Nuclear Physics, Cracow (Poland)

    1992-08-01

    A considerable improvement of gamma spectra recorded in heavy ion induced fusion evaporation residues can be achieved when gamma rays are detected in coincidence with the recoiling evaporations residues. This coincidence suppresses gamma rays from fission processes, Coulombic excitation, and reactions with target contaminations, and therefore cleans gamma spectra and improves the peak to background ratio. A sturdy detector for evaporation residues has been designed as an additional detector for the OSIRIS spectrometer. The recoil filter consists of two rings of six and twelve detector elements. In each detector element, nuclei hitting a thin Mylar foil produce secondary electrons, which are electrostatically accelerated and focussed onto a thin plastic scintillator. Recoiling evaporation residues are discriminated from other reaction products and scattered beam by the pulse height of the scintillation signal and time of flight. The detector signal is fast enough to allow the detection of an evaporation residue even if the scattered beam hits the detector first. In-beam experiment were performed with the reactions {sup 40}Ar+{sup 124}Sn, {sup 40}Ar+{sup 152}Sm at 185 MeV beam energy, and {sup 36}Ar+{sup 154,156}Gd at 175 MeV. In the latter two cases, fission amount to 50-75% of the total fusion cross section. 10 refs., 4 figs.

  5. Charge-state correlated cross sections for the production of low-velocity highly charged Ne ions by heavy-ion bombardment

    International Nuclear Information System (INIS)

    Gray, T.J.; Cocke, C.L.; Justiniano, E.

    1980-01-01

    We report measured cross sections for the collisional production of highly charged low-velocity Ne recoil ions resulting from the bombardment of a thin Ne gas target by highly charged 1-MeV/amu C, N, O, and F projectiles. The measurements were made using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. For a given incident-projectile charge state, the recoil charge-state distribution is very dependent upon the final charge state of the projectile. Single- and double-electron capture events by incident bare nuclei and projectile K-shell ionization during the collision cause large shifts in the recoil charge-state distributions toward higher charge states. A previously proposed energy-deposition model is modified to include the effects of projectile charge-changing collisions during the collision for bare and hydrogenlike projectiles and is used to discuss the present experimental results

  6. Exclusion limits on the WIMP nucleon elastic scattering cross-section from the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Golwala, Sunil Ramanlal [UC, Berkeley

    2000-01-01

    Extensive evidence indicates that a large fraction of the matter in the universe is nonluminous, nonbaryonic, and “cold” — nonrelativistic at the time matter began to dominate the energy density of the universe. Weakly Interacting Massive Particles (WIMPs) are an excellent candidate for nonbaryonic, cold dark matter. Minimal supersymmetry provides a natural WIMP candidate in the form of the lightest superpartner, with a typical mass Mδ ~ 100 GeV c-2 . WIMPs are expected to have collapsed into a roughly isothermal, spherical halo within which the visible portion of our galaxy resides. They would scatter off nuclei via the weak interaction, potentially allowingtheir direct detection. The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for WIMPs via their elastic-scatteringinteractions with nuclei while discriminatingagainst interactions of background particles. The former yield nuclear recoils while the latter produce electron recoils. The ionization yield (the ratio of ionization production to recoil energy in a semiconductor) of a particle interaction differs greatly for nuclear and electron recoils. CDMS detectors measure phonon and electron-hole-pair production to determine recoil energy and ionization yield for each event and thereby discriminate nuclear recoils from electron recoils. This dissertation reports new limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV c-2 WIMP mass and, at > 75% CL, the entire 3σ allowed region for the WIMP signal reported by the DAMA experiment. The experimental apparatus, detector performance, and data analysis are fully described.

  7. Differential charge-transfer cross sections for systems with energetically degenerate or near-degenerate channels

    International Nuclear Information System (INIS)

    Nguyen, H.; Bredy, R.; Camp, H.A.; DePaola, B.D.; Awata, T.

    2004-01-01

    Resolution plays a vital role in spectroscopic studies. In the usual recoil-ion momentum spectroscopy (RIMS), Q-value resolution is relied upon to distinguish between different collision channels: The better the Q-value resolution, the better one is able to resolve energetically similar channels. Although traditional COLTRIMS greatly improves Q-value resolution by cooling the target and thus greatly reducing the initial target momentum spread, the resolution of the technique is still limited by target temperature. However, with the recent development in RIMS, namely, magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) superior recoil ion momentum resolution as well as charge transfer measurements with laser excited targets have become possible. Through MOTRIMS, methods for the measurements of target excited state fraction and kinematically complete relative charge transfer cross sections have been developed, even for some systems having energetically degenerate or nearly degenerate channels. In the present work, the systems of interest having energy degeneracies or near degeneracies are Rb + , K + , and Li + colliding with trapped Rb(5l), where l=s and p

  8. Capture cross sections for very heavy systems

    International Nuclear Information System (INIS)

    Rowley, N.; Grar, N.; Ntshangase, S.S.

    2006-01-01

    In intermediate-mass systems, collective excitations of the target and projectile can greatly enhance the sub-barrier capture cross section σ cap by giving rise to a distribution of Coulomb barriers. For such systems, capture essentially leads directly to fusion (formation of a compound nucleus (CN)), which then decays through the emission of light particles (neutrons, protons, and alpha particles). Thus the evaporation-residue (ER) cross section is essentially equal to σ cap . For heavier systems the experimental situation is significantly more complicated due to the presence of quasifission (QF) (rapid separation into two fragments before the CN is formed) and by fusion-fission (FF) of the CN itself. Thus three cross sections need to be measured in order to evaluate σ cap . Although the ER essentially recoil along the beam direction. QF and FF fragments are scattered to all angles and require the measurement of angular distribution in order to obtain the excitation function and barrier distribution for capture. Two other approaches to this problem exist. If QF is not important, one can still measure just the ER cross section and try to reconstruct the corresponding σ cap through use of an evaporation-model code that takes account of the FF degree of freedom. Some earlier results on σ cap obtained in this way will be re-analyzed with detail coupled-channels calculations, and the extra-push phenomenon discussed. One may also try to obtain σ cap by exploiting unitarity, that is, by measuring instead the flux of particles corresponding to quasielastic (QE) scattering from the Coulomb barrier. Some new QE results obtained for the 86 Kr + 208 Pb system at iThemba LABS in South Africa will be presented [ru

  9. Forward absolute cross-section of the reaction 2H(d,n)3He for Esub(d) = (3/6)MeV

    International Nuclear Information System (INIS)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Galeazzi, G.

    1981-01-01

    The zero-degree differential cross-section of the reaction 2 H(d,n) 3 He was measured, by means of a recoil-proton neutron counter telescope, with an accuracy of 2%, in the incident-deuteron energy interval from 3 to 6 MeV. (author)

  10. Analysis of Proton Induced Material Damage Using the DPA Cross-sections Based on NRT and BCA-MD Models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-O; Roh, Gyuhong; Lee, Byungchul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The level of radiation induced material damage is mainly quantified by using the unit of Displacements Per Atom (DPA), and particularly, the displacement cross-section is used for characterizing/analyzing the radiation damage from incident neutrons and charged particles. Not long ago, the standard Norgett-Robinson-Torrens (NRT) model had been applied to produce the nuclear data due to its simplicity and implementation in commonly used codes, such as NJOY and MCNP codes. However, the evaluations based on NRT model represent the severe disagreement with experimental data and more accurate calculations. Hence, the evaluations with existing and new nuclear data are performed/compared in this study. It is assumed that a high energy proton beam is directly moved to the target, and a series of calculations are performed by using MCNPX code. The proton induced material damage is evaluated by using the displacement cross-sections, and the effect of nuclear data on the evaluation is specifically analyzed with MCNPX code. First, there is significant difference between the nuclear data from existing and new models, and the new evaluated data is generally lower than the existing one. Second, the position of maximum DPA is slightly differed with the position of maximum energy deposition, and the evaluation using new evaluated data is lower about 2 times than the other.

  11. Cross-sectional examination of the damage zone in impacted specimens of carbon/epoxy and carbon/PEEK composites

    Science.gov (United States)

    Nettles, A. T.; Magold, N. J.

    1990-01-01

    Drop weight impact testing was utilized to inflict damage on eight-ply bidirectional and unidirectional samples of carbon/epoxy and carbon/PEEK (polyetheretherketone) test specimens with impact energies ranging from 0.80 J to 1.76 J. The impacting tip was of a smaller diameter (4.2-mm) than those used in most previous studies, and the specimens were placed with a diamond wheel wafering saw through the impacted area perpendicular to the outer fibers. Photographs at 12 x magnification were taken of these cross-sections and examined. The results on the bidirectional samples show little damage until 1.13 J, at which point delaminations were seen in the epoxy specimens. The PEEK specimens showed less delamination than the epoxy specimens for a given impact energy level. The unidirectional specimens displayed more damage than the bidirectional samples for a given impact energy, with the PEEK specimens showing much less damage than the epoxy material.

  12. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    Science.gov (United States)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5-7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5-11

  13. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    International Nuclear Information System (INIS)

    Mehdizadeh, Arash; Al-Sarawi, Said; Abbott, Derek; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi

    2013-01-01

    Stents are artificial implants that provide scaffolding to a cavity inside the body. This paper presents a new luminal device for reducing the mechanical failure of stents due to recoil, which is one of the most important issues in stenting. This device, which we call a recoil-resilient ring (RRR), is utilized standalone or potentially integrated with existing stents to address the problem of recoil. The proposed structure aims to minimize the need for high-pressure overexpansion that can induce intra-luminal trauma and excess growth of vascular tissue causing later restenosis. The RRR is an overlapped open ring with asymmetrical sawtooth structures that are intermeshed. These teeth can slide on top of each other, while the ring is radially expanded, but interlock step-by-step so as to keep the final expanded state against compressional forces that normally cause recoil. The RRRs thus deliver balloon expandability and, when integrated with a stent, bring both radial rigidity and longitudinal flexibility to the stent. The design of the RRR is investigated through finite element analysis (FEA), and then the devices are fabricated using micro-electro-discharge machining of 200-µm-thick Nitinol sheet. The standalone RRR is balloon expandable in vitro by 5–7 Atm in pressure, which is well within the recommended in vivo pressure ranges for stenting procedures. FEA compression tests indicate 13× less reduction of the cross-sectional area of the RRR compared with a typical stainless steel stent. These results also show perfect elastic recovery of the RRR after removal of the pressure compared to the remaining plastic deformations of the stainless steel stent. On the other hand, experimental loading tests show that the fabricated RRRs have 2.8× radial stiffness compared to a two-column section of a commercial stent while exhibiting comparable elastic recovery. Furthermore, testing of in vitro expansion in a mock artery tube shows around 2.9% recoil, approximately 5

  14. Role of the recoil effect in two-center interference in X-ray photoionization

    International Nuclear Information System (INIS)

    Ueda, K.; Liu, X.-J.; Pruemper, G.; Lischke, T.; Tanaka, T.; Hoshino, M.; Tanaka, H.; Minkov, I.; Kimberg, V.; Gel'mukhanov, F.

    2006-01-01

    X-ray photoelectron spectra of the N 2 molecule are studied both experimentally and theoretically in the extended energy region up to 1 keV. The ratio of the photoionization cross sections for the gerade and ungerade core levels displays a modulation in the high energy region caused by the two-center interference, as predicted by Cohen and Fano (CF) in 1966. The physical background of this CF effect is the same as in Young's double-slit experiment. We have found that the interference pattern deviates significantly from the CF prediction. The origin of such a breakdown of the CF formula is the scattering of the photoelectron inside the molecule and the momentum transfer from the emitted fast photoelectron to the nuclei. Usually the recoil effect is small. We show that the electron recoil strongly affects the two-center interference pattern. Both stationary and dynamical aspects of the recoil effect shed light on the role of the momentum exchange in the two-center interference

  15. Calculations of charged-particle recoils, slowing-down spectra, LET and event-size distributions for fast neutrons and comparisons with measurements

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1979-01-01

    A rapid system has been developed for computing charged-particle distributions generated in tissue by any neutron spectra less than 4 MeV. Oxygen and carbon recoils were derived from R-matrix theory, and hydrogen recoils were obtained from cross-section evaluation. Application to two quite different fission-neutron spectra demonstrates the flexibility of this method for providing spectral details of the different types of charged-particle recoils. Comparisons have been made between calculations and measurements of event-size distributions for a sphere of tissue 1 μm in diameter irradiated by these two neutron spectra. LET distributions have been calculated from computed charged-particle recoils and also derived from measurements using the conventional approximation that all charged particles traverse the chamber. The limitations of the approximation for these neutron spectra are discussed. (author)

  16. Forward absolute cross-section of the reaction /sup 2/H(d,n)/sup 3/He for Esub(d) = (3/6)MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.

    1981-12-01

    The zero-degree differential cross-section of the reaction /sup 2/H(d,n)/sup 3/He was measured, by means of a recoil-proton neutron counter telescope, with an accuracy of 2%, in the incident-deuteron energy interval from 3 to 6 MeV.

  17. Forward absolute cross-section of the reaction /sup 2/H(d,n)/sup 3/He for Esub(d)=(3/6)MeV

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Padua (Italy)); Galeazzi, G. (Istituto Nazionale di Fisica Nucleare, Padua (Italy). Lab. di Legnaro)

    1981-12-01

    The zero-degree differential cross-section of the reaction /sup 2/H(d,n)/sup 3/He was measured, by means of a recoil-proton neutron counter telescope, with an accuracy of 2%, in the incident deuteron energy interval form 3 to 6 MeV.

  18. Neutron induced fission cross sections for 232Th, 235,238U, 237Np, and 239Pu

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Hill, N.W.; Carlson, A.D.; Wasson, O.A.

    1989-01-01

    Neutron-induced fission cross section ratios for samples of 232 Th, 235,238 U, 237 Np and 239 Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence from 3 to 30 MeV. Those data provided the shape of the 235 U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n,f) at 14.178 MeV. From 30 to 400 MeV cross section values were determined using the neutron fluence measured with a plastic scintillator. Cross section values of 232 Th, 235,238 U, 237 Np and 239 Pu were computed from the ratio data using the authors' values for 235 U(n,f). In addition to providing new results at high neutron energies, these data highlight several areas of deficiency in the evaluated nuclear data files and provide new information for the 235 U(n,f) standard

  19. Measurement of total and differential cross sections of neutrino and antineutrino coherent π± production on carbon

    Science.gov (United States)

    Mislivec, A.; Higuera, A.; Aliaga, L.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Caceres v., G. F. R.; Cai, T.; Martinez Caicedo, D. A.; Carneiro, M. F.; Chavarria, E.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Harris, D. A.; Hurtado, K.; Jena, D.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; McFarland, K. S.; Messerly, B.; Miller, J.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Nguyen, C.; Norrick, A.; Nuruzzaman, Paolone, V.; Perdue, G. N.; Ramírez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Sultana, M.; Sánchez Falero, S.; Tagg, N.; Valencia, E.; Wospakrik, M.; Yaeggy, B.; Zavala, G.; MinerνA Collaboration

    2018-02-01

    Neutrino induced coherent charged pion production on nuclei, ν¯ μA →μ±π∓A , is a rare inelastic interaction in which the four-momentum squared transferred to the nucleus is nearly zero, leaving it intact. We identify such events in the scintillator of MINERvA by reconstructing |t | from the final state pion and muon momenta and by removing events with evidence of energetic nuclear recoil or production of other final state particles. We measure the total neutrino and antineutrino cross sections as a function of neutrino energy between 2 and 20 GeV and measure flux integrated differential cross sections as a function of Q2 , Eπ, and θπ . The Q2 dependence and equality of the neutrino and antineutrino cross sections at finite Q2 provide a confirmation of Adler's partial conservation of axial current hypothesis.

  20. Nuclear Reaction Data and Uncertainties for Radiation Damage. Summary Report of the Technical Meeting

    International Nuclear Information System (INIS)

    Griffin, P.J.; Sjöstrand, H.; Simakov, S.P.

    2016-08-01

    This Meeting was organized to implement the recommendation of the second Research Coordinated Meeting (RCM) of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) “Primary Radiation Damage Cross Sections” to analyse the accuracy and consistency of the radiation damage-relevant nuclear data in the major nuclear data evaluations with the eventual goal of identifying the most reliable data and providing quantitative uncertainty estimates. Participants have considered the status of the primary nuclear data, such as reaction recoils spectra in the latest releases of ENDF, JEFF, JENDL, FENDL, ROSFOND and TENDL nuclear data libraries, and the ways of deriving the damage quantities KERMA, NRT- or arc-dpa and gas production cross sections as well as the recipes for an assessment of their uncertainties. This report contains the contemporary view of the Meeting participants on these issues in the form of a consolidated set of statements, recommendations and individual summaries. (author)

  1. Displacement cross sections and PKA spectra: tables and applications

    International Nuclear Information System (INIS)

    Doran, D.G.; Graves, N.J.

    1976-12-01

    Damage energy cross sections to 20 MeV are given for aluminum, vanadium, chromium, iron, nickel, copper, zirconium, niobium, molybdenum, tantalum, tungsten, lead, and 18Cr10Ni stainless steel. They are based on ENDF/B-IV nuclear data and the Lindhard energy partition model. Primary knockon atom (PKA) spectra are given for aluminum, iron, niobium, tantalum, and lead for neutron energies up to 15 MeV at approximately one-quarter lethargy intervals. The contributions of various reactions to both the displacement cross sections (taken to be proportional to the damage energy cross sections) and the PKA spectra are presented graphically. Spectral-averaged values of the displacement cross sections are given for several spectra, including approximate maps for the Experimental Breeder Reactor-II (EBR-II) and several positions in the Fast Test Reactor (FTR). Flux values are included to permit estimation of displacement rates. Graphs show integral PKA spectra for the five metals listed above for neutron spectra corresponding to locations in the EBR-II, the High Flux Isotope Reactor (HFIR), and a conceptual fusion reactor (UWMAK-I). Detailed calculations are given only for cases not previously documented. Uncertainty estimates are included

  2. Direct determination of recoil ion detection efficiency for coincidence time-of-flight studies of molecular fragmentation

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Carnes, K.D.; Ginther, S.G.; Johnson, D.T.; Norris, P.J.; Weaver, O.L.

    1993-01-01

    Molecular fragmentation of diatomic and small polyatomic molecules caused by fast ion impact has been studied. The evaluation of the cross sections of the different fragmentation channels depends strongly on the recoil ion detection efficiency, ε r (single ions proportional to ε r , and ion pairs to ε 2 r , etc.). A method is suggested for the direct determination of this detection efficiency. This method is based on the fact that fast H + + CH 4 collisions produce C 2+ fragments only in coincidence with H + and H + 2 fragments, that is, there is a negligible number of C 2+ singles, if any. The measured yield of C 2+ singles is therefore due to events in which the H + m of the H + m + C 2+ ion pair was not detected and thus is proportional to 1 - ε r . Methane fragmentation caused by 1 MeV proton impact is used to evaluate directly the recoil ion detection efficiency and to demonstrate the method of deriving the cross sections of all breakup channels. (orig.)

  3. Recoil detector test for the day-one experiment at HESR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang [Institute of Modern Physics, CAS, 730000 Lanzhou (China); Forschungszentrum Juelich, 52425 Juelich (Germany); Xu, Huagen; Ritman, James [Forschungszentrum Juelich, 52425 Juelich (Germany)

    2013-07-01

    The proposed day-one experiment at HESR is a dedicated measurement of antiproton-proton elastic scattering. The aim of the day-one experiment is to determine the elastic differential parameters (total cross section σ{sub T}, the ratio of real to imaginary part of the forward scattering amplitude ρ, and the slope parameter B) by measuring a large range of 4-momentum transfer squared t (0.0008-0.1 GeV{sup 2}). The conceptual design of the day-one experiment is to measure the elastic scattered antiproton and recoil proton, by a tracking detector in the small polar angle range and by an energy detector near 90 , respectively. The recoil arm covers a maximum polar angle range from 71 to 90 and consists of two silicon strip detectors (76.8(length) x 50.0(width) x 1.0(thickness) mm{sup 3}) and two germanium detectors (80.4(length) x 50.0(width) x 5.0 (11.0) (thickness) mm{sup 3}). All detectors are single sided structure with 1.2 mm pitch. The silicon detectors will be used to detect recoil protons with energy up to about 12 MeV and the germanium detectors will be used to detect protons with energy from 12 MeV to 60 MeV. At present, one recoil arm is being constructed and the test for the detectors with radioactive sources is on-going. Preliminary test results indicate that all detectors are operational and work properly. The latest test results of these detectors are presented.

  4. Measurements of the {sup 235}U(n,f) cross section in the 3 to 30 MeV neutron energy region

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, A.D.; Wasson, O.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Lisowski, P.W. [Los Alamos National Lab., NM (United States)] [and others

    1991-12-31

    To improve the accuracy of the {sup 235}U(n,f) cross section, measurements have been made of this standard cross section at the target 4 facility at Los Alamos National Laboratory (LANL). The data were obtained at the 20-meter flight path of that facility. The fission reaction rate was determined with a fast parallel plate ionization chamber and the neutron fluence was measured with an annular proton recoil telescope. The measurements provide the shape of the {sup 235}U(n,f) cross section relative to the hydrogen scattering cross section for neutron energies from about 3 to 30 MeV neutron energy. The data have been normalized to the very accurately known value near 14 MeV. The results are in good agreement with the ENDF/B-VI evaluation up to about 15 MeV neutron energy. Above this energy differences as large as 5% are observed.

  5. Effect of recoiled O on damage regrowth and electrical properties of through-oxide implanted Si

    International Nuclear Information System (INIS)

    Sadana, D.K.; Wu, N.R.; Washburn, J.; Current, M.; Morgan, A.; Reed, D.; Maenpaa, M.

    1982-10-01

    High dose (4 to 7.5 x 10 15 cm -2 ) As implantations into p-type (100) Si have been carried out through a screen-oxide of thicknesses less than or equal to 775A and without screen oxide. The effect of recoiled O on damage annealing and electrical properties of the implanted layers has been investigated using a combination of the following techniques: TEM, RBS/MeV He + channeling, SIMS and Hall measurements in conjunction with chemical stripping and sheet resistivity measurements. The TEM results show that there is a dramatically different annealing behavior of the implantation damage for the through oxide implants (Case I) as compared to implants into bare silicon (Case II). Comparison of the structural defect profiles with O distributions obtained by SIMS demonstrated that retardation in the secondary damage growth in Case I can be directly related with the presence of O. Weak-beam TEM showed that a high density of fine defect clusters (less than or equal to 50A) were present both in Case I and Case II. The electrical profiles showed only 30% of the total As to be electrically active. The structural and electrical results have been explained by a model that entails As-O, Si-O and As-As complex formation and their interaction with the dislocations

  6. Absolute differential cross sections for π±p elastic scattering at 30 ≤ Tπ ≤ 67 MeV

    International Nuclear Information System (INIS)

    Brack, J.T.; Ristinen, R.A.; Kraushaar, J.J.

    1989-11-01

    Absolute π±p differential cross sections have been measured at incident pion energies of 30.0, 45.0, and 66.8 MeV, using active targets of scintillator plastic (CH 1.1 ) to detect recoil protons in coincidence with scattered pions. Statistical uncertainties are typically ±3%; systematic uncertainties are ±2%. The results are consistent with two earlier measurements by this group employing different experimental techniques at 67 MeV and higher incident pion energies. The π - p cross sections are in good agreement with currently accepted phase-shift analyses, but the corresponding π + p predictions are typically 15% higher at large angles than the π + p data reported here

  7. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  8. Forward absolute cross section of the reaction /sup 2/H(d,n)/sup 3/He from E/sub d/ = 3 to 6 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.

    1981-01-15

    The zero degree differential cross section of the reaction /sup 2/H(d,n)/sup 3/He was measured, by means of a proton recoil neutron counter telescope, with an accuracy of 2%, in the incident deuteron energy interval from 3 to 6 MeV. Results are presented.

  9. Measurements of the inclusive neutrino and antineutrino charged current cross sections in MINERvA using the low-ν flux method

    Science.gov (United States)

    Devan, J.; Ren, L.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Budd, H.; Cai, T.; Carneiro, M. F.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Endress, E.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman, Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tice, B. G.; Valencia, E.; Wolcott, J.; Wospakrik, M.; Minerva Collaboration

    2016-12-01

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an in situ prediction of the shape of the flux as a function of neutrino energy from 2-50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy (ν ) have a nearly constant cross section as a function of incident neutrino energy. This measurement is the lowest energy application of the low-ν flux technique, the first time it has been used in the NuMI antineutrino beam configuration, and demonstrates that the technique is applicable to future neutrino beams operating at multi-GeV energies. The cross section measurements presented are the most precise measurements to date below 5 GeV.

  10. Scattering chamber facility for double-differential cross-section

    Indian Academy of Sciences (India)

    inducedcharged-particle productions is very important for estimating the nuclear heating and radiation damage of a fusion reactor. Only a few experimental data are available even though the nuclear reaction cross-section data of structural materials are ...

  11. Effect of activation cross section uncertainties in the assessment of primary damage for MFE/IFE low-activation steels irradiated in IFMIF

    International Nuclear Information System (INIS)

    Cabellos, O.; Sanz, J.; Garcia-Herranz, N.; Otero, B.

    2009-01-01

    The present study is mainly aimed to provide the primary damage (displacements per atom, generation of solid transmutants and gas production rates) of structural materials irradiated in the high and medium flux test modules of the International Fusion Materials Irradiation Facility (IFMIF). We have investigated if the change of the composition during the irradiation time has effect on the prediction of the atomic displacements. The effect of the activation cross section uncertainties in the assessment of both solid transmutants and hydrogen and helium production is also analyzed. The results are provided element-by-element, so that the primary damage of any material irradiated in such neutron environments can be easily assessed; in this paper, we have predicted the primary damage of the low activation steel Eurofer.

  12. Effect of activation cross section uncertainties in the assessment of primary damage for MFE/IFE low-activation steels irradiated in IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Cabellos, O. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, n2, 28006 Madrid (Spain); Dept. de Ingenieria Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain)], E-mail: cabellos@din.upm.es; Sanz, J. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, n2, 28006 Madrid (Spain); Dept. de Ingenieria Energetica, Universidad Nacional de Educacion a Distancia, 28045 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, n2, 28006 Madrid (Spain); Dept. de Ingenieria Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Otero, B. [Dept. de Ingenieria Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain)

    2009-04-30

    The present study is mainly aimed to provide the primary damage (displacements per atom, generation of solid transmutants and gas production rates) of structural materials irradiated in the high and medium flux test modules of the International Fusion Materials Irradiation Facility (IFMIF). We have investigated if the change of the composition during the irradiation time has effect on the prediction of the atomic displacements. The effect of the activation cross section uncertainties in the assessment of both solid transmutants and hydrogen and helium production is also analyzed. The results are provided element-by-element, so that the primary damage of any material irradiated in such neutron environments can be easily assessed; in this paper, we have predicted the primary damage of the low activation steel Eurofer.

  13. Double- and triple-differential cross sections for electron-impact ionization of helium

    International Nuclear Information System (INIS)

    Biswas, R.; Sinha, C.

    1995-01-01

    Triple- (TDCS) and double- (DDCS) differential cross sections have been calculated for single ionization in electron-helium collisions for asymmetric geometry at intermediate and medium high energies. The TDCS and DDCS results have been presented for different kinematical situations and have been compared with the corresponding experiments. In the present prescription, the final-state wave function involves the correlation between the two continuum electrons and satisfies the three-body asymptotic boundary condition (for asymmetric geometry), which is an important criterion for reliable ionization cross sections. The sensitivity of the ionization cross sections (particularly of the TDCS) with respect to the choice of the bound-state wave function of the He atom has also been studied, using two different forms of wave function of the He atom. The binary-to-recoil peak intensity ratio against momentum transfer in TDCS is found to be in closer agreement with the experiment for the simple Hylleraas wave function than for the Hartree-Fock wave function. The DDCS results are found to be in good agreement with the experimental data of Mueller-Fiedler et al. [J. Phys. B 19, 1211 (1986)] for lower ejected energy (E 2 ), while for higher E 2 the results are closer to the measurements of Shyn et al. [Phys. Rev. A 19, 557 (1979)] and Avaldi et al. [Nuovo Cimento D 9, 97 (1987)

  14. Progress report on the 14-MeV fission cross section measurements

    International Nuclear Information System (INIS)

    1979-01-01

    The development of a recoil proton monitor was completed. It will be used to measure the neutron flux in the 14-MeV fisson cross section measurements. Extensive calculations of the efficiency of this monitor were made and compared with the calculations of other authors. It is clear that a major source of uncertainty in the efficiency is the lack of precise knowledge of the angular distribution of the n-p elastic scattering cross section. This leads to a change in efficiency of 3% depending on the form of the angular distribution that is used. A 4πβ-γ coincidence system was assembled to investigate the K-correction in determining the absolute activity of foil sources. Iron foils will be used as secondary flux standards in comparing the 14-MeV neutron flux with the fluxes in other laboratories, so this is an important correction to measure. The target and target holders that will be used in the 14-MeV measurements were designed and constructed. Preparations were completed to measure the angular distribution of the fission fragments produced in neutron-induced fission at 14 MeV. 2 figures

  15. Generation of damage cross section for silicon carbide

    International Nuclear Information System (INIS)

    Chang, Jonghwa; Lee, Wonjae

    2013-01-01

    There is practically no cross section library for current reactor physics codes which will be used for DPA calculation. Silicon carbide(SiC) is an important material used in gas-cooled reactor, advanced nuclear fuel, and fusion applications. There are more than 200 polytypes of SiC. However β-SiC, which is produced under 1700 .deg. C, is the polytype interesting for a nuclear application. This work has been carried out under the Korea-US I-NERI program supported by Korea Ministry of Education Science and Technology and US Department of Energy. Authors express gratitude to C. S. Gil of KAERI nuclear data center for NJOY processing

  16. Exclusion limits on the WIMP-nucleon cross section from the first run of the Cryogenic Dark Matter Search in the Soudan Underground Laboratory

    International Nuclear Information System (INIS)

    Akerib, D.S.; Bailey, C.N.; Dragowsky, M.R.; Driscoll, D.D.; Hennings-Yeomans, R.; Kamat, S.; Perera, T.A.; Schnee, R.W.; Wang, G.; Armel-Funkhouser, M.S.; Daal, M.; Filippini, J.; Lu, A.; Mandic, V.; Meunier, P.; Mirabolfathi, N.; Issac, M.C. Perillo; Rau, W.; Seitz, D.N.; Serfass, B.

    2005-01-01

    The Cryogenic Dark Matter Search (CDMS-II) employs low-temperature Ge and Si detectors to seek weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei. Simultaneous measurements of both ionization and phonon energy provide discrimination against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.99% efficiency. Electromagnetic events very near the detector surface can mimic nuclear recoils because of reduced charge collection, but these surface events are rejected with >96% efficiency by using additional information from the phonon pulse shape. Efficient use of active and passive shielding, combined with the 2090 m.w.e. overburden at the experimental site in the Soudan mine, makes the background from neutrons negligible for this first exposure. All cuts are determined in a blind manner from in situ calibrations with external radioactive sources without any prior knowledge of the event distribution in the signal region. Resulting efficiencies are known to ∼10%. A single event with a recoil of 64 keV passes all of the cuts and is consistent with the expected misidentification rate of surface electron recoils. Under the assumptions for a standard dark matter halo, these data exclude previously unexplored parameter space for both spin-independent and spin-dependent WIMP-nucleon elastic scattering. The resulting limit on the spin-independent WIMP-nucleon elastic-scattering cross section has a minimum of 4x10 -43 cm 2 at a WIMP mass of 60 GeVc -2 . The minimum of the limit for the spin-dependent WIMP-neutron elastic-scattering cross section is 2x10 -37 cm 2 at a WIMP mass of 50 GeVc -2

  17. [Fast neutron cross section measurements]: Progress report

    International Nuclear Information System (INIS)

    1988-01-01

    As projected in our previous proposal, the past year on the cross section project at the University of Michigan has been one primarily of construction and assembly of our 14 MeV pulsed Neutron Facility. All the components of the system have now been either purchased or fabricated in our shop facilities and have been assembled in their final configuration. We are now in the process of testing the rf components that have been designed to deliver voltage to both the pulser and buncher stages. We expect that the system will be operational by the end of the current contract year. We have also accomplished the design and construction of several other major pieces of equipment that are needed to begin fast neutron time-of-flight measurements. These include the primary proton recoil detector, and a californium fission chamber needed in the efficiency calibration of the primary detector. We have also added considerable concrete shielding designed to lower the neutron background in the experimental area. 10 figs., 5 tabs

  18. Bond scission cross sections for alpha-particles in cellulose nitrate (LR115)

    CERN Document Server

    Barillon, R; Chambaudet, A; Katz, R; Stoquert, J P; Pape, A

    1999-01-01

    Chemical damage created by alpha-particles in cellulose nitrate (LR115) have been studied by infrared spectroscopy. This technique enables identifying the sensitive bonds and giving an order of magnitude of their scission cross sections for given alpha-particle energies. The high cross sections observed suggest a new description of the track etch velocity in this material.

  19. Neutron cross sections for defect production by high-energy displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Mann, F.M.

    1983-08-01

    Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after shortterm annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after shortterm annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects

  20. Neutron cross sections for defect production by high energy displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Mann, F.M.

    1984-01-01

    Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after short-term annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after short-term annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects. (orig.)

  1. Studies of radiation damage in silicon sensors and a measurement of the inelastic proton--proton cross-section at 13 TeV

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00360674; Ward, Patricia

    This thesis presents studies of radiation damage in silicon sensors for the new ATLAS tracker at the high-luminosity LHC, calibrations of the LHC luminosity scale, and a measurement of the proton--proton inelastic cross-section at 13 TeV~with ATLAS data. The studies of radiation damage are performed by comparing sensor performance before and after irradiation, and include annealing studies. The measured quantities include: leakage current, depletion depth, inter-strip isolation, and charge collection. Surface and bulk damage is studied by comparing the results of sensors irradiated with protons and neutrons. The observed degradation of performance suggests the current sensor design will endure the radiation damage expected over the lifetime of the experiment at the high-luminosity LHC. The luminosity is calibrated for the proton--proton, proton--lead, and lead--lead collisions delivered by the LHC during 2013 and 2015. The absolute luminosity scale is derived with the van der Meer method. The systematic unc...

  2. The morphology of collision cascades as a function of recoil energy

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Singh, B.N.

    1989-09-01

    An analytical method based on defect densities has been devised to determine the threshold energies for subcascade formation in computer simulated collision cascades. Cascades generated with the binary collision code MARLOWE in Al, Cu, Ag, Au, Fe, Mo and W were analyzed to determine the threshold energy for subcascade formation, the number of subcascades per recoil per unit energy and the average spacing of subcascades. Compared on the basis of reduced damage energy, metals of the same crystal structure have subcascade thresholds at the same reduced energy. The number of subcascades per unit reduced damage energy is about the same for metals of the same crystal structure, and the average spacing of subcascades is about the same in units of lattice parameters. Comparisons between subcascade threshold energies and average recoil energies in fission and fusion neutron environments show the spectral sensitivity of the formation of subcascades

  3. Microscopic integral cross section measurements in the Be(d,n) neutron spectrum for applications in neutron dosimetry, radiation damage and the production of long-lived radionuclides

    International Nuclear Information System (INIS)

    Smith, D.L.; Meadows, J.W.; Greenwood, L.R.

    1990-01-01

    Integral neutron-reaction cross sections have been measured, relative to the U-238 neutron fission cross-section standard, for 27 reactions which are of contemporary interest in various nuclear applications (e.g., fast-neutron dosimetry, neutron radiation damage and the production of long-lived activities which affect nuclear waste disposal). The neutron radiation field employed in this study was produced by bombarding a thick Be-metal target with 7-MeV deuterons from an accelerator. The experimental results are reported along with detailed information on the associated measurement uncertainties and their correlations. These data are also compared with corresponding calculated values, based on contemporary knowledge of the differential cross sections and of the Be(d,n) neutron spectrum. Some conclusions are reached on the utility of this procedure for neutron-reaction data testing

  4. Cross sections required for FMIT dosimetry

    International Nuclear Information System (INIS)

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-01-01

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies

  5. A study of nuclear recoil backgrounds in dark matter detectors

    Science.gov (United States)

    Westerdale, Shawn S.

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the 1-1000 GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering off of nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating (alpha, n) yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  6. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Westerdale, Shawn S. [Princeton Univ., NJ (United States)

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and

  7. Treatment for the recoil effects of the multi-step heavy-ion nucleon transfers with the orthogonalized coupled-reaction-channel theory

    International Nuclear Information System (INIS)

    Misono, S.; Imanishi, B.

    1997-02-01

    We have investigated recoil effects in heavy-ion reactions for the nucleon transfers, and the validity of the spatially local approximation for the non-local transfer interaction defined by the orthogonalized coupled-reaction-channel (OCRC) theory. This approximation makes it easier to treat multi-step transfer processes with the coupled channel method and makes it possible to define the nucleon molecular orbitals with the inclusion of the recoil effects. The transfer interaction is expanded in a power series of the momentum operator, and is approximated by the first order term, i.e., the spatially local term. The numerical calculation for the core-symmetric systems 12 C+ 13 C and 16 O+ 17 O with this approximation shows that the recoil effects are well included in the results at energies lower than a few MeV/nucleon. Furthermore, the OCRC formalism allows us even to employ the complete no-recoil approximation for the calculation of cross sections, even though it is not adequate to use this approximation in the distorted wave Born approximation (DWBA) method. As to polarization, however, the no-recoil approximation is not good even in the OCRC formalism. We discuss the recoil effects on nucleon molecular-orbital states. It is shown that states of the covalent molecular orbitals of the valence (transferred) nucleon are little affected by the recoil effects, as already suggested by Korotky et al. in the full finite-range DWBA analysis of the transfer reaction, 13 C( 13 C, 12 C) 14 C. (author). 59 refs

  8. Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling

    International Nuclear Information System (INIS)

    Langford, R.M.; Petford-Long, A.K.

    2001-01-01

    The preparation of transmission electron microscopy cross-section specimens using focused ion beam milling is outlined. The 'liftout' and 'trench' techniques are both described in detail, and their relative advantages and disadvantages are discussed. Artifacts such as ion damage to the top surface and sidewalls of the cross-section specimens, and methods of reducing them, are addressed

  9. Studies of combustion reactions at the state-resolved differential cross section level

    Energy Technology Data Exchange (ETDEWEB)

    Houston, P.L.; Suits, A.G.; Bontuyan, L.S.; Whitaker, B.J. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    State-resolved differential reaction cross sections provide perhaps the most detailed information about the mechanism of a chemical reaction, but heretofore they have been extremely difficult to measure. This program explores a new technique for obtaining differential cross sections with product state resolution. The three-dimensional velocity distribution of state-selected reaction products is determined by ionizing the appropriate product, waiting for a delay while it recoils along the trajectory imparted by the reaction, and finally projecting the spatial distribution of ions onto a two dimensional screen using a pulsed electric field. Knowledge of the arrival time allows the ion position to be converted to a velocity, and the density of velocity projections can be inverted mathematically to provide the three-dimensional velocity distribution for the selected product. The main apparatus has been constructed and tested using photodissociations. The authors report here the first test results using crossed beams to investigate collisions between Ar and NO. Future research will both develop further the new technique and employ it to investigate methyl radical, formyl radical, and hydrogen atom reactions which are important in combustion processes. The authors intend specifically to characterize the reactions of CH{sub 3} with H{sub 2} and H{sub 2}CO; of HCO with O{sub 2}; and of H with CH{sub 4}, CO{sub 2}, and O{sub 2}.

  10. Cross-section requirements for reactor neutron flux measurements from the user's point of view

    International Nuclear Information System (INIS)

    Mas, P.; Lloret, R.

    1978-01-01

    The dosimetry of testing materials irradiations involves in practice a lot of problems: fluences measurements, knowledge of spectrum, choice of a convenient set of cross section, damage rate determination, transposition from testing reactor to power reactor. From those problems, we consider that a temporary recommandation concerning the differential cross section of some fluence detectors is to be done, and that it is necessary to dispose of more accessible benchmarks in order to correlate cross section and computer codes. (author)

  11. Neutron displacement cross-sections for tantalum and tungsten at energies up to 1 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Broeders, C.H.M. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe GmbH, Postfach 3640, 76021 Karlsruhe (Germany)]. E-mail: cornelis.broeders@irs.fzk.de; Konobeyev, A.Yu. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe GmbH, Postfach 3640, 76021 Karlsruhe (Germany); Institute of Nuclear and Power Engineering, 249020 Obninsk (Russian Federation); Villagrasa, C. [Institut fuer Reaktorsicherheit, Forschungszentrum Karlsruhe GmbH, Postfach 3640, 76021 Karlsruhe (Germany)

    2005-06-30

    The neutron displacement cross-section has been evaluated for tantalum and tungsten at energies from 10{sup -5} eV up to 1 GeV. The nuclear optical model, the intranuclear cascade model combined with the pre-equilibrium and evaporation models were used for the calculations. The number of defects produced by recoil atoms nuclei in materials was calculated by the Norgett, Robinson, Torrens model and by the approach combining calculations using the binary collision approximation model and the results of the molecular dynamics simulation. The numerical calculations were done using the NJOY code, the ECIS96 code, the MCNPX code and the IOTA code.

  12. Differential dpa calculations with SPECTRA-PKA

    Science.gov (United States)

    Gilbert, M. R.; Sublet, J.-Ch.

    2018-06-01

    The processing code SPECTRA-PKA produces energy spectra of primary atomic recoil events (or primary knock-on atoms, PKAs) for any material composition exposed to an irradiation spectrum. Such evaluations are vital inputs for simulations aimed at understanding the evolution of damage in irradiated material, which is generated in cascade displacement events initiated by PKAs. These PKA spectra present the full complexity of the input (to SPECTRA-PKA) nuclear data-library evaluations of recoil events. However, the commonly used displacements per atom (dpa) measure, which is an integral measure over all possible recoil events of the displacement damage dose, is still widely used and has many useful applications - as both a comparative and correlative quantity. This paper describes the methodology employed that allows the SPECTRA-PKA code to evaluate dpa rates using the energy-dependent recoil (PKA) cross section data used for the PKA distributions. This avoids the need for integral displacement kerma cross sections and also provides new insight into the relative importance of different reaction channels (and associated different daughter residual and emitted particles) to the total integrated dpa damage dose. Results are presented for Fe, Ni, W, and SS316. Fusion dpa rates are compared to those in fission, highlighting the increased contribution to damage creation in the former from high-energy threshold reactions.

  13. Gamma-ray production cross sections for MeV neutrons

    International Nuclear Information System (INIS)

    Kitazawa, Hideo; Harima, Yoshiko; Yamakoshi, Hisao; Sano, Yuji; Kobayashi, Tsuguyuki.

    1979-01-01

    Gamma-ray production cross section and spectra for 1- to 20-MeV neutrons were theoretically obtained, which were requested for heating calculations, for shielding design calculations, and for material damage estimates. Calculations were carried out for Al, Si, Ca, Fe, Ni, Cu, Nb, Ta, Au, and Pb, using a spin-dependent evaporation model without the parity conservation and including the dipole and quardupole gamma-ray transitions. The results were compared with the experimental data measured in ORNL to confirm the availability of this model in applications. In addition, the effects on the gamma-ray production cross section of the optical potential, level density, yrast level, and radiation width were investigated in detail. The conclusions are: 1) the use of the optical potential which gives the correct total reaction cross section is essential to gamma-ray production calculations, 2) the gamma-ray production cross section is not so sensitive to the choice of level density parameters, 3) the inclusion of yrast levels is necessary in dealing with the competition of the neutron and gamma-ray emissions from highly excited states, and 4) the Brink-Axel type's radiation width is unsuitable to be applied to radiative capture processes. (author)

  14. Advanced nuclear data for radiation-damage calculations

    International Nuclear Information System (INIS)

    MacFarlane, R.E.; Foster, D.G. Jr.

    1983-01-01

    Accurate calculations of atomic displacement damage in materials exposed to neutrons require detailed spectra for primary recoil nuclei. Such data are not available from direct experimental measurements. Moreover, they cannot always be computed accurately starting from evaluated nuclear data libraries such as ENDF/B-V that were developed primarily for neutron transport applications, because these libraries lack detailed energy-and-angle distributions for outgoing charged particles. Fortunately, a new generation of nuclear model codes is now available that can be used to fill in the missing spectra. One example is the preequilibrium statistical-model code GNASH. For heating and damage applications, a supplementary code called RECOIL has been developed. RECOIL uses detailed reaction data from GNASH, together with angular distributions based on Kalbach-Mann systematics to compute the energy and angle distributions of recoil nuclei. The energy-angle distributions for recoil nuclei and outgoing particles are written out in the new ENDF/B File 6 format. The result is a complete set of nuclear data that can be used to calculate displacement-energy production, heat production, gas production, transmutation, and activation. Sample results for iron are given and compared to the results of conventional damage models such as those used in NJOY

  15. Range calculations for spallation recoils in ThF4 by use of the computer code 'Marlowe'

    International Nuclear Information System (INIS)

    Westmeier, W.; Roessler, K.

    1978-12-01

    The determination of cross sections of spallation reactions requires a knowledge of the target thickness since only the products recoiling from the target are measured and their yield depends on the range. The effective target thickness is a function of the projectile's Z, A and spallation recoil energy and, thus, varies for the individual products. The computer code MARLOWE was used to evaluate energy vs. range curves in the binary collisions approximation. The program was extended to the high energy regime taking into account the stripping of electrons from the projectile and the concomitant changes in the interaction potentials especially for the inelastic part of the collisions. A complementary computer program LATTIC was developed for the parameterization of the lattice description. This code enables the application of MARLOWE to target materials with complicated crystallographic structure. Test calculations for a series of projectile/target combinations showed a reasonable agreement with experimental recoil ranges of Pd, Ag, Os and Ir isotopes from proton induced spallation in Ag, In and Pb targets, respectively. MARLOWE was then applied to calculate product ranges of the 232 Th(p,spall)X-reaction in the ployatomic system ThF 4 . The calculated energy vs. range curves enabled the evaluation of the mean spallation recoil ranges for all possible products, e.g. 170.8 μg/cm 2 for 192 Tl, 115.2 μg/cm 2 for 208 At and 37.1 μg/cm 2 for 223 Ac. (orig.)

  16. Cross Section Measurements of the {sup 58}Ni (n, p) {sup 58}Co and {sup 29}Si (n, alpha) Reactions in the Energy Range 2.2 to 3.8 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J; Lauber, A

    1963-08-15

    The Si(n, a) Mg and Ni(n, p) Co reaction cross-sections have been measured using a surface barrier solid state detector to record the charged particles. Absolute measurements of the neutron flux were made, recording the proton recoils from a thin polyethylene radiator with the solid state detector. Both reaction cross-sections show strong fluctuations as a function of energy, which may be due to the statistical fluctuation of the level densities. Estimations of the level densities of the intermediate nuclei from the relative fluctuations of the cross section curves are in good agreement with those expected on theoretical grounds. The agreement with earlier measurements of the nickel reaction is good, while absolute values for the cross-sections on the silicon reaction have not been reported before in this energy region.

  17. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  18. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  19. The study of the ion-crystal interaction by using the blocking technique for scattered recoils

    International Nuclear Information System (INIS)

    Karamyan, S.A.

    1989-01-01

    Experimental data are presented on the orientation effects observed in the fast heavy ion irradiated diamond, Si and Ge crystals by recording recoil nuclei. The volume capture of medium-weight nuclei to channeling has first been revealed and studied. Ion damaging power is systematized and the anomalously low damaging power is Xe ions is established. 18 refs.; 9 figs

  20. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, Andrew [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  1. WE-E-BRE-11: New Method to Simulate DNA Damage Using Ionization Cross-Sections and a Geometrical Nucleosome Model

    International Nuclear Information System (INIS)

    Pater, P; Seuntjens, J; El Naqa, I

    2014-01-01

    Purpose: To obtain probability distributions of various DNA damage types as a function of the incident electron kinetic energy. Methods: Using Geant4-DNA electron ionization cross-sections, we calculated path length distributions for electrons of energies between 10 eV and 1 MeV, defined as the length between two subsequent interactions. These path lengths were then convolved with probability distributions for the creation of same-strand damage, opposite-strand damage, clustered damage, isolated damage, and same DNA strand target damage. These probability distributions of DNA damage were obtained by a Monte Carlo routine calculating probabilities of interaction in DNA targets inside a nucleosome geometrical model. Results represent the probability of a secondary electron, initially created inside a DNA strand target, of undergoing its next interaction: (1) in the opposite strand (DSB), (2) in the same strand (SSB+), (3) in either the opposite or same-strand (clustered), (4) in the same DNA target (multiple-hit) or (5) more than 10 base pairs away (isolated). Results: Electrons with kinetic energy between 50 and 250 eV have a maximal probability of creating DSB, SSB+, clustered damage and multiple-hits in the same target The probabilities for these damage patterns have values of 2.5%, 4.3%, 6.7% and 5.4%, respectively. Isolated damage is most probable between 700 eV to 900 eV with a probability of 0.2%. Conclusion: We obtained DNA damage probability distributions as a function of electron incident energy. We showed that electrons with kinetic energies between 50 and 250 eV have the highest probability of producing complex forms of DNA damage (DSB, SSB+). We also showed that a double ionization within the same DNA target is the most frequent outcome occurring 5% of the time. It is expected that electron slowing down spectra can be convolved with our formalism to calculate source specific DNA damage patterns. Research grants from governments of Canada and Quebec. PP

  2. Partial Photoionization Cross Sections and Angular Distributions for Double Excitation of Helium up to the N=13 Threshold

    International Nuclear Information System (INIS)

    Czasch, A.; Schoeffler, M.; Hattass, M.; Schoessler, S.; Jahnke, T.; Weber, Th.; Staudte, A.; Titze, J.; Wimmer, C.; Kammer, S.; Weckenbrock, M.; Voss, S.; Grisenti, R.E.; Jagutzki, O.; Schmidt, L.Ph.H.; Schmidt-Boecking, H.; Doerner, R.; Rost, J.M.; Schneider, T.; Liu, C.-N.

    2005-01-01

    Partial photoionization cross sections σ N (E γ ) and photoelectron angular distributions β N (E γ ) were measured for the final ionic states He + (N>4) in the region between the N=8 and N=13 thresholds (E γ >78.155 eV) using the cold target recoil ion momentum spectroscopy technique (COLTRIMS). Comparison of the experimental data with two independent sets of theoretical predictions reveals disagreement for the branching ratios to the various He N + states. The angular distributions just below the double ionization threshold suggest an excitation process for highly excited N states similar to the Wannier mechanism for double ionization

  3. Cage effect in recoil studies

    International Nuclear Information System (INIS)

    Berei, K.

    1983-09-01

    The role of cage effect is one of the most discussed questions of hot atom chemistry in condensed organic systems. So far no direct evidence is available for assessing the exact contribution of thermal recombinations occurring in the liquid cage to the stabilization processes of recoil atoms. However, some conclusions can be drawn from experimental observations concerning the influence on product yield of hot atom recoil spectra, the effects of density, phase and long range order of the medium as well as from comparisons with systems providing cage walls of different chemical reactivities towards the recoil atom. Recent developments in this field are reviewed based primarily on the investigations of recoil halogen reactions in aliphatic and aromatic hydrocarbons and their haloderivatives. (author)

  4. Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Chris [TRIUMF, Vancouver, BC (Canada); Greife, Uwe; Hager, Ulrike [Colorado School of Mines, Golden, CO (United States)

    2014-06-15

    Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities. (orig.)

  5. Measurements of single top quark cross sections in pp collisions at 8 TeV with the CMS detector

    CERN Document Server

    AUTHOR|(CDS)2079136

    2016-01-01

    Measurements are presented of the single top quark production in proton-proton collisions at the LHC at a centre-of-mass energy of 8 TeV, using data collected with the CMS experiment during 2012. The first analysis, in the t-channel single top production mode, considers decay channels where the W comes from the top decays into electron-neutrino or muon-neutrino. It makes use of a template fit exploiting the pseudorapidity distribution of the recoil jet and the reconstructed top quark mass, using background estimates determined from control samples in data. The measurement of top/antitop cross section ratio is also presented. The second analysis, measuring the associated production cross section of single top quark and W boson, considers final states in which the associated W boson, as well as the one originating from the top quark, decay leptonically. Multivariate methods are used to separate the signal from the topologically similar top pair production background. Multivariate techniques are also adopted in ...

  6. Standard cross-section data

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1984-01-01

    The accuracy of neutron cross-section measurement is limited by the uncertainty in the standard cross-section and the errors associated with using it. Any improvement in the standard immediately improves all cross-section measurements which have been made relative to that standard. Light element, capture and fission standards are discussed. (U.K.)

  7. A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013

    Science.gov (United States)

    Saha, Uttiyoarnab; Devan, K.; Ganesan, S.

    2018-05-01

    Displacements per atom (dpa), estimated based on the standard Norgett-Robinson-Torrens (NRT) model, is used for assessing radiation damage effects in fast reactor materials. A computer code CRaD has been indigenously developed towards establishing the infrastructure to perform improved radiation damage studies in Indian fast reactors. We propose a method for computing multigroup neutron NRT dpa cross sections based on SRIM-2013 simulations. In this method, for each neutron group, the recoil or primary knock-on atom (PKA) spectrum and its average energy are first estimated with CRaD code from ENDF/B-VII.1. This average PKA energy forms the input for SRIM simulation, wherein the recoil atom is taken as the incoming ion on the target. The NRT-dpa cross section of iron computed with "Quick" Kinchin-Pease (K-P) option of SRIM-2013 is found to agree within 10% with the standard NRT-dpa values, if damage energy from SRIM simulation is used. SRIM-2013 NRT-dpa cross sections applied to estimate the integrated dpa for Fe, Cr and Ni are in good agreement with established computer codes and data. A similar study carried out for polyatomic material, SiC, shows encouraging results. In this case, it is observed that the NRT approach with average lattice displacement energy of 25 eV coupled with the damage energies from the K-P option of SRIM-2013 gives reliable displacement cross sections and integrated dpa for various reactor spectra. The source term of neutron damage can be equivalently determined in the units of dpa by simulating self-ion bombardment. This shows that the information of primary recoils obtained from CRaD can be reliably applied to estimate the integrated dpa and damage assessment studies in accelerator-based self-ion irradiation experiments of structural materials. This study would help to advance the investigation of possible correlations between the damages induced by ions and reactor neutrons.

  8. Analysis of hard exclusive scattering processes of the HERMES recoil experiment

    International Nuclear Information System (INIS)

    Brodski, Irina

    2014-11-01

    Deeply virtual Compton Scattering (DVCS), ep → epγ is the simplest reaction giving indication of generalized parton distributions (GPD) of the nucleon. The DVCS process has the same final state as the Bethe-Heitler process (BH). For this reason the access is taken not through the cross-sections directly but through asymmetries between DVCS events depending on charge and polarization of the 27.6 GeV beam. For the first time the azimuthal asymmetry amplitudes according the charge of the lepton beam are extracted using a kinematically complete reconstruction method at the HERMES experiment. The recoil detector installed in 2006 allows the reconstruction of recoiling protons that completes the measurements of the forward detector to cover almost the complete angle range around the vertex. This approach allows suppressing the background processes by almost a complete magnitude compared to the traditional method using only the information of the forward spectrometer. The analysis of the asymmetries was carried out at different values of the kinematic variables t c' x B and Q 2 to investigate the dependence of these variables. This work pushes the limits of the readability of data and shows which periods have been found to be unstable in the data acquisition. It points out the impact of this finding to previous HERMES publications.

  9. Calculated differential secondary-particle production cross sections after nonelastic neutron interactions with carbon and oxygen between 15 and 60 MeV

    International Nuclear Information System (INIS)

    Brenner, D.J.; Prael, R.E.

    1989-01-01

    Calculated values are given for double-differential (energy/angle) cross sections for the nonelastic production of hydrogen and helium isotopes and heavier-mass recoils, after the interaction of 15- to 60-MeV neutrons with carbon and oxygen. The data are calculated with an intranuclear cascade code, including alpha clustering and particle pickup, followed by a Fermi-breakup mechanism, incorporating decay via intermediate particle-unstable states. The predictions have been extensively tested against available experimental data in this energy/mass range. copyright 1989 Academic Press, Inc

  10. The measurement of neutron differential scattering cross sections for 12C, 14N and 16O in the energy range 20-26 Mev

    International Nuclear Information System (INIS)

    Petler, J.S.; Finlay, R.W.; Meigooni, A.S.; Islam, M.S.; Rapaport, J.

    1985-01-01

    The Ohio University Beam Swinger provides a high resolution, low back-ground time-of-flight facility for the measurement of elastic and inelastic neutron scattering. It has been used to obtain a comprehensive set of differential scattering cross sections for 12 C, 14 N, 16 O and 40 Ca between 18 and 26 MeV. The elastic cross sections can be used directly to obtain partial kerma factors and, combined with the known total cross sections, provide accurate values for the reaction cross sections. Angular distributions have been measured for inelastic scattering from all the nuclear levels that cannot decay by particle emission thus providing (by subtraction) a limit on the sum of all charged-particle producing reactions. The integrated cross sections for inelastic scattering from some particle-unstable states in 12 C are in excellent agreement with the cross sections for three-body breakup obtained by Antolkovic et al. The differential data have been used, together with higher energy proton scattering data to produce energy-dependent optical model parameters for each of these nuclei in the energy range 20-60 MeV. It has been found that the elastic differential cross sections at theta > 100 0 for 12 C, 14 N and 16 O cannot be well described by a spherical optical model. Explicit consideration of coupled-channel effects, and in the case of 12 C, deformation of the ground state, improves the agreement between calculation and experiment. Heavy ion recoil kerma factors and reaction cross sections have been obtained for each element and compared with previous calculations and measurements

  11. Differential cross sections and polarization observables from CLAS K⁎ photoproduction and the search for new N⁎ states

    Directory of Open Access Journals (Sweden)

    A.V. Anisovich

    2017-08-01

    Full Text Available The reaction γp→K⁎+Λ was measured using the CLAS detector for photon energies between the threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. For the first time, spin-density matrix elements have been extracted for this reaction. Differential cross sections, spin density matrix elements, and the Λ recoil polarization are compared with theoretical predictions using the BnGa partial wave analysis. The main result is the evidence for significant contributions from N(18951/2− and N(21001/2+ to the reaction. Branching ratios for decays into K⁎Λ for these resonances and further resonances are reported.

  12. Differential cross sections and polarization observables from CLAS K* photoproduction and the search for new N* states

    Science.gov (United States)

    Anisovich, A. V.; Hicks, K.; Klempt, E.; Nikonov, V. A.; Sarantsev, A.; Tang, W.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Badui, R. A.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Roy, P.; Sabatié, F.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Tian, Ye.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2017-08-01

    The reaction γp →K*+ Λ was measured using the CLAS detector for photon energies between the threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. For the first time, spin-density matrix elements have been extracted for this reaction. Differential cross sections, spin density matrix elements, and the Λ recoil polarization are compared with theoretical predictions using the BnGa partial wave analysis. The main result is the evidence for significant contributions from N (1895) 1 /2- and N (2100) 1 /2+ to the reaction. Branching ratios for decays into K* Λ for these resonances and further resonances are reported.

  13. Three-dimensional recoil-ion momentum analyses in 8.7 MeV O7+-He collisions

    International Nuclear Information System (INIS)

    Kambara, T.; Tang, J.Z.; Awaya, Y.

    1995-01-01

    Using high-resolution recoil-ion momentum spectroscopy we have measured the differential cross sections of single-electron capture and target single-ionization processes for 8.7 MeV O 7+ -He collisions as functions of scattering angle. A transverse momentum resolution of ±0.2 au, which corresponds to an angular resolution of about ±1.5x10 -6 rad for the projectile scattering angle, was obtained by intersecting a well collimated O 7+ beam with a target of a supersonic He jet from a pre-cooled gas and by measuring the recoil-ion transverse momentum. For the single capture reaction, information on the n-value of the electron final state in O 6+ (1snl) is obtained from the longitudinal momentum of the recoil ions. In pure single-electron capture, the dominant contributions to capture were found to be those from the n=4 and higher states, whereas single capture accompanied by the ionization of the second target electron mainly populates n=2 to n=4 states. Furthermore, the measured transverse momentum distribution differs significantly between pure single capture and capture with simultaneous ionization. The measured data for the pure capture process compare favourably with theoretical results based on a molecular-state expansion method. Other experimental data are discussed in terms of the classical overbarrier model. (author)

  14. Evaluation of 28,29,30Si neutron induced cross sections for ENDF/B-VI

    International Nuclear Information System (INIS)

    Hetrick, D.M.; Larson, D.C.; Larson, N.M.; Leal, L.C.; Epperson, S.J.

    1997-04-01

    Separate evaluations have been done for the three stable isotopes of silicon for ENDF/B-VI. The evaluations are based on analysis of experimental data, supplemented by results of nuclear model calculations. The computational methods and the parameters required as input to the nuclear model codes are reviewed. Discussion of the evaluated data given for resonance parameters, neutron induced reaction cross sections, associated angular and energy distributions, and gamma-ray production cross sections is included. Extensive comparisons of the evaluated cross sections to measured data are shown in this report. The evaluations include all necessary data to allow KERMA (Kinetic Energy Released in MAterials) and displacement cross sections to be calculated directly. These quantities are fundamental to studies of neutron heating and radiation damage

  15. First measurement of the polarization observable E and helicity-dependent cross sections in single π0 photoproduction from quasi-free nucleons

    Directory of Open Access Journals (Sweden)

    M. Dieterle

    2017-07-01

    Full Text Available The double-polarization observable E and the helicity-dependent cross sections σ1/2 and σ3/2 have been measured for the first time for single π0 photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the π0 meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the π0N final state. A comparison to data measured with a free proton target showed that the absolute scale of the cross sections is significantly modified by nuclear final-state interaction (FSI effects. However, there is no significant effect on the asymmetry E since the σ1/2 and σ3/2 components appear to be influenced in a similar way. Thus, the best approximation of the two helicity-dependent cross sections for the free neutron is obtained by combining the asymmetry E measured with quasi-free neutrons and the unpolarized cross section corrected for FSI effects under the assumption that the FSI effects are similar for neutrons and protons.

  16. New remarks on KERMA factors and DPA cross section data in ACE files

    International Nuclear Information System (INIS)

    Konno, Chikara; Sato, Satoshi; Ohta, Masayuki; Kwon, Saerom; Ochiai, Kentaro

    2016-01-01

    KERMA factors and DPA cross section data are essential for nuclear heating and material damage estimation in fusion reactor designs. Recently we compared KERMA factors and DPA cross section data in the latest official ACE files of JENDL-4.0, ENDF/B-VII.1, JEFF-3.2 and FENDL-3.0 and it was found out that the KERMA factors and DPA cross section data of a lot of nuclei did not always agree among the nuclear data libraries. We investigated the nuclear data libraries and the nuclear data processing code NJOY and specified new reasons for the discrepancies; (1) incorrect nuclear data and NJOY bugs, (2) huge helium production cross section data, (3) gamma production data format in the nuclear data, (4) no detailed secondary particle data (energy–angular distribution data). These problems should be resolved based on this study.

  17. New remarks on KERMA factors and DPA cross section data in ACE files

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Chikara, E-mail: konno.chikara@jaea.go.jp; Sato, Satoshi; Ohta, Masayuki; Kwon, Saerom; Ochiai, Kentaro

    2016-11-01

    KERMA factors and DPA cross section data are essential for nuclear heating and material damage estimation in fusion reactor designs. Recently we compared KERMA factors and DPA cross section data in the latest official ACE files of JENDL-4.0, ENDF/B-VII.1, JEFF-3.2 and FENDL-3.0 and it was found out that the KERMA factors and DPA cross section data of a lot of nuclei did not always agree among the nuclear data libraries. We investigated the nuclear data libraries and the nuclear data processing code NJOY and specified new reasons for the discrepancies; (1) incorrect nuclear data and NJOY bugs, (2) huge helium production cross section data, (3) gamma production data format in the nuclear data, (4) no detailed secondary particle data (energy–angular distribution data). These problems should be resolved based on this study.

  18. Cross sections for atmospheric corrections

    International Nuclear Information System (INIS)

    Meyer, J.P.; Casse, M.; Westergaard, N.

    1975-01-01

    A set of cross sections for spallation of relativistic nuclei is proposed based on (i) the best available proton cross sections, (ii) an extrapolation to heavier nuclei of the dependence on the number of nucleons lost of the 'target factor' observed for C 12 and O 16 by Lindstrom et al. (1975), in analogy with Rudstam's formalism, and (iii) on a normalization of all cross sections to the total cross sections for production of fragments with Asub(f) >= 6. The obtained cross sections for peripheral interactions are not inconsistent with simple geometrical considerations. (orig.) [de

  19. The IRK time-of-flight facility for measurements of double-differential neutron emission cross sections

    International Nuclear Information System (INIS)

    Pavlik, A.; Priller, A.; Steier, P.; Vonach, H.; Winkler, G.

    1994-01-01

    In order to improve the present experimental data base of energy- and angle-differential neutron emission cross sections at 14 MeV incident-neutron energy, a new time-of-flight (TOF) facility was installed at the Institut fuer Radiumforschung und Kernphysik (IRK), Vienna. The set-up was particularly designed to more precisely measure the high-energy part of the secondary neutron spectra and consists of three main components: (1) a pulsed neutron generator of Cockcroft-Walton type producing primary neutrons via the T(d,n)-reaction, (2) a tube system which can be evacuated containing the neutron flight path, the sample, collimators and the sample positioning system, and (3) the neutron detectors with the data acquisition equipment. Removing the air along the neutron flight path results in a drastic suppression of background due to air-scattered neutrons in the spectrum of the secondary neutrons. For every secondary neutron detected in the main detector, the time-of-flight, the pulse-shape information and the recoil energy are recorded in list-mode via a CAMAC system connected to a PDP 11/34 on-line computer. Using a Micro VAX, the multiparameter data are sorted and reduced to double-differential cross sections

  20. Detection Efficiency of a ToF Spectrometer from Heavy-Ion Elastic Recoil Detection

    International Nuclear Information System (INIS)

    Barbara, E. de; Marti, G. V.; Capurro, O. A.; Fimiani, L.; Mingolla, M. G.; Negri, A. E.; Arazi, A.; Figueira, J. M.; Pacheco, A. J.; Martinez Heimann, D.; Carnelli, P. F. F.; Fernandez Niello, J. O.

    2010-01-01

    The detection efficiency of a time-of-flight system based on two micro-channel plates (MCP) time zero detectors plus a conventional silicon surface barrier detector was obtained from heavy ion elastic recoil measurements (this ToF spectrometer is mainly devoted to measurements of total fusion cross section of weakly bound projectiles on different mass-targets systems). In this work we have used beams of 7 Li, 16 O, 32 S and 35 Cl to study the mass region of interest for its application to measurements fusion cross sections in the 6,7 Li+ 27 Al systems at energies around and above the Coulomb barrier (0.8V B ≤E≤2.0V B ). As the efficiency of a ToF spectrometer is strongly dependent on the energy and mass of the detected particles, we have covered a wide range of the scattered particle energies with a high degree of accuracy at the lowest energies. The different experimental efficiency curves obtained in that way were compared with theoretical electronic stopping power curves on carbon foils and were applied.

  1. Measurement of the single-top-quark t-channel cross section in pp collisions at $ \\sqrt{s}=7 $ TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C. -E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D’Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Bakhet, N.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Kuotb Awad, A. M.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Roinishvili, V.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Komm, M.; Kreuzer, P.; Marquardt, B.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hansen, J.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D’Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Ronchese, P.; Simonetto, F.; Torassa, E.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D’Agnolo, R. T.; Dell’Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D’Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Gundacker, S.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D’Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O’Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O’Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2012-12-01

    A measurement of the single-top-quark t-channel production cross section in pp collisions at sqrt(s) = 7 TeV with the CMS detector at the LHC is presented. Two different and complementary approaches have been followed. The first approach exploits the distributions of the pseudorapidity of the recoil jet and reconstructed top-quark mass using background estimates determined from control samples in data. The second approach is based on multivariate analysis techniques that probe the compatibility of the candidate events with the signal. Data have been collected for the muon and electron final states, corresponding to integrated luminosities of 1.17 and 1.56 inverse femtobarns, respectively. The single-top-quark production cross section in the t-channel is measured to be 67.2 +/- 6.1 pb, in agreement with the approximate next-to-next-to-leading-order standard model prediction. Using the standard model electroweak couplings, the CKM matrix element abs(V[tb

  2. Evaluated cross-section libraries and kerma factors for neutrons up to 100 MeV on 12C

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Blann, M.; Cox, L.; Young, P.G.; Meigooni, A.

    1995-01-01

    A program is being carried out at Lawrence Livermore National Laboratory to develop high-energy evaluated nuclear data libraries for use in Monte Carlo simulations of cancer radiation therapy. In this report we describe evaluated cross sections and kerma factors for neutrons with incident energies up to 100 MeV on 12 C. The aim of this effort is to incorporate advanced nuclear physics modeling methods, with new experimental measurements, to generate cross section libraries needed for an accurate simulation of dose deposition in fast neutron therapy. The evaluated libraries are based mainly on nuclear model calculations, benchmarked to experimental measurements where they exist. We use the GNASH code system, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms. The libraries tabulate elastic and nonelastic cross sections, angle-energy correlated production spectra for light ejectiles with A≤and kinetic energies given to light ejectiles and heavy recoil fragments. The major steps involved in this effort are: (1) development and validation of nuclear models for incident energies up to 100 MeV; (2) collation of experimental measurements, including new results from Louvain-la-Nueve and Los Alamos; (3) extension of the Livermore ENDL formats for representing high-energy data; (4) calculation and evaluation of nuclear data; and (5) validation of the libraries. We describe the evaluations in detail, with particular emphasis on our new high-energy modeling developments. Our evaluations agree well with experimental measurements of integrated and differential cross sections. We compare our results with the recent ENDF/B-VI evaluation which extends up to 32 MeV

  3. D0-brane recoil revisited

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Evnin, Oleg [California Institute of Technology 452-48, Pasadena, CA 91125 (United States); Nakamura, Shin [Physics Department, Hanyang University, Seoul, 133-791 (Korea, Republic of)

    2006-12-15

    One-loop string scattering amplitudes computed using the standard D0-brane conformal field theory (CFT) suffer from infrared divergences associated with recoil. A systematic framework to take recoil into account is the worldline formalism, where fixed boundary conditions are replaced by dynamical D0-brane worldlines. We show that, in the worldline formalism, the divergences that plague the CFT are automatically cancelled in a non-trivial way. The amplitudes derived in the worldline formalism can be reproduced by deforming the CFT with a specific 'recoil operator', which is bilocal and different from the ones previously suggested in the literature.

  4. Determination of Optimum Cross-section for Oran Highway Revetment

    Science.gov (United States)

    Velioglu, Deniz; Sogut, Erdinc; Guler, Isikhan

    2017-04-01

    Revetments are shore parallel, sloping coastal structures which are built to provide protection from the negative effects of the sea. The revetment mentioned in this study is located in the City of Oran, Algeria and is currently under construction. This study investigates the determination of the optimum revetment cross section for Oran highway, considering both the hydraulic stability of the revetment and economy. The existence of cliffs in the region and the settlement of the City of Oran created a necessity to re-align Oran highway; therefore, it was shifted towards the Gulf of Oran. Approximately 1 km of the highway is to be constructed on the Mediterranean Sea due to the new alignment. In order to protect the sea side of the road from the adverse effects of the sea, a revetment was designed. The proposed cross section had an armour layer composed of 23 tons of antifer units and regular placement of armour units was recommended. In order to check the hydraulic stability of the proposed section, physical model tests were performed in the laboratory of LEM (Laboratoire d'Etudes Maritimes) in Algeria, using the pre-determined design wave conditions. The physical model tests revealed that the trunk of the revetment was totaly damaged. Accordingly, the proposed section was found insufficient and certain modifications were required. The first modification was made in the arrangement of armour units, changing them from regular to irregular. After testing the new cross section, it was observed that the revetment was vulnerable to breaking wave attack due to the toe geometry and thus the toe of the revetment had to be re-shaped. Therefore, the second option was to reduce the toe elevation. It was observed that even though the revetment trunk was safe, the damage in the toe was not in acceptable limits. The new cross section was found insufficient and as the final option, the weight of the antifer units used in the armour layer was increased, the toe length of the

  5. Multitrajectory eikonal cross sections

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    With the use of reference and distorted transition operators, a time-correlation-function representation of the inelastic differential cross section has recently been used to obtain distorted eikonal cross sections. These cross sections involve straight-line and reference classical translational trajectories that are unaffected by any internal-state changes which have occurred during the collision. This distorted eikonal theory is now extended to include effects of internal-state changes on the translational motion. In particular, a different classical trajectory is associated with each pair of internal states. Expressions for these inelastic cross sections are obtained in terms of time-ordered cosine and sine memory functions using the Zwanzig-Feshbach projection-operator method. Explicit formulas are obtained in the time-disordered perturbation approximation

  6. Preparation of TEM specimen by cross-section technique

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1986-01-01

    Transmission electron microscopy (TEM) is applied to the direct observation of the depth dependent damage structure in ion-irradiated stainless steel by using the cross-section technique; obtaining the TEM specimen from a slice of the irradiated stainless steel with thick Ni plating. Here has been developed the specimen preparation method of cross-section technique without heat treatment, which was necessary in the conventional method to strengthen the bonding between Ni and stainless steel. Nickel plating with good bonding to stainless steel is enabled by the following manner. First, the irradiated stainless steel is immersed in the Wood's nickel solution at room temperature for 60s to activate the surface, followed by the stricking for 300s at a current density of 300 A/m 2 in the solution to make fine and homogeneous nucleation of Ni on the stainless steel. Then, the sample is plated with Ni in the Watt's nickel plating solution at 333 K with current density of 900 ∼ 1,000 A/m 2 . The TEM disc is obtained by mechanical slicing from the specimen with Ni plating of more than 3 mm thickness. Electropolishing is accomplished by using both Ballmann method and jet electropolishing to perforate the disc accurately at the aimed point for the observation of the damage structure. (author)

  7. Summary Report of the Technical Meeting on Primary Radiation Damage: From Nuclear Reaction to Point Defects

    International Nuclear Information System (INIS)

    Stoller, R. E.; Nordlund, K.; Simakov, S.P.

    2012-11-01

    The Meeting was convened to bring together the experts from both the nuclear data and materials research communities because of their common objective of accurately characterizing irradiation environments and resulting material damage. The meeting demonstrated that significant uncertainties remain regarding both the status of nuclear data and the use of these data by the materials modeling community to determine the primary damage state obtained in irradiated materials. At the conclusion of the meeting, the participants agreed that there is clear motivation to initiate a CRP that engages participants from the nuclear data and materials research communities. The overall objective of this CRP would be to determine the best possible parameter (or a few parameters) for correlating damage from irradiation facilities with very different particle types and energy spectra, including fission and fusion reactors, charged particle accelerators, and spallation irradiation facilities. Regarding progress achieved during the last decade in the atomistic simulation of primary defects in crystalline materials, one of the essential and quantitative outcomes from the CRP is expected to be cross sections for point defects left after recoil cascade quenching. (author)

  8. FEMA DFIRM Cross Sections

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...

  9. Natural alpha recoil particle radiation and ionizing radiation sensitivities in quartz detected with EPR: implications for geochronometry

    International Nuclear Information System (INIS)

    Rink, W.J.; Odom, A.L.

    1991-01-01

    The electron paramagnetic resonance EPR signals in granitic quartz samples of known age are studied. Time-integrated alpha recoil activity and EPR signal intensity are more significantly correlated than sample age and EPR signal intensity. Neutron activation analysis for internal uranium and thorium in quartz are reported. Natural germanium EPR signals are observed in pegmatitic quartz samples and one granitic quartz. Pegmatitic quartz exhibits germanium EPR center growth competing strongly with E' center growth, apparently leading to depleted natural concentrations of E' centers. Calculations of lattice vacancy accumulation associated with alpha recoil damage are presented and compared with concentrations of paramagnetic oxygen vacancies in the quartz. Based on the results reported, the potential and problems associated with dating quartz are discussed, relating both to accumulated lattice damage and the additive dose methods. (author)

  10. Preparation of 235mU targets for 235U(n,n')235mU cross section measurements

    International Nuclear Information System (INIS)

    Bond, E.M.; Vieira, D.J.; Rundberg, R.S.; Glover, S.; Hynek, D.; Jansen, Y.; Becker, J.; Macri, R.

    2008-01-01

    This paper describes the preparation of samples for an experiment to measure the cross-section for 235 U(n,n') 235m U in a fast fission spectrum of neutrons provided by a fast pulsed reactor/critical assembly. Samples of 235m U have been prepared for the calibration of the internal conversion electron detector that is used for the 235m U measurement. Two methods are described for the preparation of 235 mU. The first method used a U-Pu chemical separation based on anion-exchange chromatography and the second method used an alpha recoil collection method. Thin, uniform samples of 235m U+ 235 U were prepared for the experiment using electrodeposition. (author)

  11. Calculation of neutron cross sections on iron up to 40 MeV

    International Nuclear Information System (INIS)

    Arthur, E.D.; Young, P.G.

    1980-01-01

    The development of high energy d + Li neutron sources for fusion materials radiation damage studies will require neutron cross sections up to 40 MeV. Experimental data above 15 MeV are generally sparse or nonexistent, and reliance must be placed upon nuclear-model calculations to produce the needed cross sections. To satisfy such requirements for the Fusion Materials Irradiation Test Facility (FMIT), neutron cross sections have been calculated for 54 56 Fe between 3 and 40 MeV. These results were joined to the existing ENDF/B-V evaluation below 3 MeV. In this energy range, most neutron reactions can be described using the Hauser-Feshbach statistical model with corrections for preequilibrium and direct-reaction effects. To properly use these models to obtain realistic cross sections, emphasis must be placed upon the determination of suitable input parameters (optical model sets, gamma-ray strength functions, level densities) valid over the energy range of the calculation. To do this, several types of independent data were used to arrive at consistent parameter sets as described

  12. Light output response of EJ-309 liquid organic scintillator to 2.86-3.95 MeV carbon recoil ions due to neutron elastic and inelastic scatter

    Science.gov (United States)

    Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.

    2018-03-01

    We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.

  13. Measurement of 54Fe(n,2n)53Fe cross section near threshold

    International Nuclear Information System (INIS)

    Smither, R.K.; Greenwood, L.R.

    1984-01-01

    A series of experiments were performed at the Princeton Plasma Physics Laboratory to measure the cross section of the 54 Fe(n,2n) 53 Fe reaction near threshold. Measurements were made at 6 different neutron energies and cover the 1 MeV energy range from threshold (13.64 MeV) to 14.64 MeV. The 54 Fe(n,2n) cross section was measured relative to the 27 Al(n,p) 27 Mg cross section to an accuracy of a few percent. These accurate cross-section measurements will be useful in calculating damage caused by 14 MeV D-T plasma neutrons in Fe and calculating the production of the long-lived 53 Mn nuclei that account for much of the buildup of long-lived radioactivity in steel structures and other ferrous materials used in the construction of fusion reactors. They will also play an important part in a new method for measuring the plasma ion temperature of a D-T plasma

  14. Analysis of neutron spectrum effects on primary damage in tritium breeding blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Hee, E-mail: cyh871@snu.ac.kr [School of Energy Systems Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Joo, Han Gyu [School of Energy Systems Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2012-07-15

    The effect of neutron spectrum on primary damages in a structural material of a tritium breeding blanket is investigated with a newly established recoil spectrum estimation system. First, a recoil spectrum generation code is developed to obtain the energy spectrum of primary knock-on atoms (PKAs) for a given neutron spectrum utilizing the latest ENDF/B data. Secondly, a method for approximating the high energy tail of the recoil spectrum is introduced to avoid expensive molecular dynamics calculations for high energy PKAs using the concept of recoil energy of the secondary knock-on atoms originated by the INtegration of CAScades (INCAS) model. Thirdly, the modified spectrum is combined with a set of molecular dynamics calculation results to estimate the primary damage parameters such as the number of surviving point defects. Finally, the neutron spectrum is varied by changing the material of the spectral shifter and the result in primary damage parameters is examined.

  15. Analysis of neutron spectrum effects on primary damage in tritium breeding blankets

    Science.gov (United States)

    Choi, Yong Hee; Joo, Han Gyu

    2012-07-01

    The effect of neutron spectrum on primary damages in a structural material of a tritium breeding blanket is investigated with a newly established recoil spectrum estimation system. First, a recoil spectrum generation code is developed to obtain the energy spectrum of primary knock-on atoms (PKAs) for a given neutron spectrum utilizing the latest ENDF/B data. Secondly, a method for approximating the high energy tail of the recoil spectrum is introduced to avoid expensive molecular dynamics calculations for high energy PKAs using the concept of recoil energy of the secondary knock-on atoms originated by the INtegration of CAScades (INCAS) model. Thirdly, the modified spectrum is combined with a set of molecular dynamics calculation results to estimate the primary damage parameters such as the number of surviving point defects. Finally, the neutron spectrum is varied by changing the material of the spectral shifter and the result in primary damage parameters is examined.

  16. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1976-09-01

    A comparison of some integral cross-section values for several cross-section libraries in the SAND-II format is presented. The integral cross-section values are calculated with the aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross-section libraries used have all the SAND-II format. Discrepancies between cross-sections in the different libraries are indicated but not discussed

  17. Relativistic photon-Maxwellian electron cross sections

    International Nuclear Information System (INIS)

    Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.

    1986-01-01

    Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)

  18. Summary Report of the First Research Coordination Meeting on Primary Radiation Damage Cross Sections

    International Nuclear Information System (INIS)

    Stoller, R.E.; Greenwood, L.R.; Simakov, S.P.

    2013-12-01

    The Nuclear Data Section of IAEA has initiated a new Coordinated Research Project with the main goal of reviewing and recommending primary damage response functions for neutron and ion irradiations of materials. The output of this CRP will be a database of recommended damage response functions for selected materials with corresponding documentation. It will serve the needs of the fission, fusion and accelerator neutron source communities. The first Research Coordination Meeting (RCM) was held 4 to 8 November 2013 at the IAEA. At this meeting, the attendees discussed the objectives of the whole CRP, presented their contributions and elaborated on consolidated recommendations and actions for implementation over the next 1.5 year period. This Summary Report documents the individual contributions and joint decisions made during this meeting. The identified research needs were refined through extensive discussion, and a consensus was developed which defined the CRP objectives in two broad categories. The first addresses the underlying physics-related research relevant to nuclear reactions and ion stopping powers, while the second task will address the development of new materials damage response functions. (author)

  19. Computer simulation of high-energy recoils in FCC metals: cascade shapes and sizes

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1981-01-01

    Displacement cascades in copper generated by primary knock-on atoms with energies from 1 keV to 500 keV were produced with the computer code MARLOWE. The sizes and other features of the point defect distributions were measured as a function of energy. In the energy range from 30 keV to 50 keV there is a transition from compact single damage regions to chains of generally closely-spaced, but distinct multiple damage regions. The average spacing between multiple damage regions remains constant with energy. Only a small fraction of the recoils from fusion neutrons is expected to produce widely separated subcascades

  20. Interpreting Recoil for Undergraduate Students

    Science.gov (United States)

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  1. Nerve Damage in Young Patients with Leprosy Diagnosed in an Endemic Area of the Brazilian Amazon: A Cross-Sectional Study.

    Science.gov (United States)

    Bandeira, Sabrina Sampaio; Pires, Carla Avelar; Quaresma, Juarez Antonio Simões

    2017-06-01

    To describe nerve damage and its association with clinical and epidemiologic characteristics in young patients with leprosy diagnosed in an endemic area of the Brazilian Amazon. All 45 patients with leprosy younger than 15 years of age and diagnosed at a health referral unit in northern Brazil were invited to participate in a cross-sectional, descriptive, analytical study. Subjects were submitted to a templated simple neurologic examination of the peripheral nerves and answered a structured questionnaire. Of 41 cases, referral was the mode of detection in 33 participants (80.5%); 19 (46.3%) had been seen by 3 or more physicians to obtain a diagnosis, and 26 (63.4%) had received other diagnoses. The interval between the onset of symptoms and diagnosis was more than 1 year in 30 cases (73.2%). Borderline leprosy was the predominant clinical form (48.8%); 63.4% of the participants had multibacillary leprosy, 31.7% had nerve damage, and 17.1% exhibited disabilities. The following variables showed a statistically significant association (P???.05) with nerve damage at diagnosis: home visit by the community health worker, number of doctors seen, number of skin lesions (>5), and lesions along the path of nerve trunks. Centralized healthcare, a low frequency of home visits by community health workers, and the difficulty in diagnosing leprosy in children are factors that contribute to late treatment initiation and an increased risk of peripheral nerve damage. In addition, multiple skin lesions and lesions along the path of nerve trunks require rigorous monitoring. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Integral nucleus-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Kumawat, H.

    2003-01-01

    Expressions approximating the experimental integral cross sections for elastic and inelastic interactions of light and heavy nuclei at the energies up to several GeV/nucleon are presented. The calculated cross sections are inside the corridor of experimental errors or very close to it. Described in detail FORTRAN code and a numerical example of the cross section approximation are also presented

  3. Recoil mixing in high-fluence ion implantation

    International Nuclear Information System (INIS)

    Littmark, U.; Hofer, W.O.

    1979-01-01

    The effect of recoil mixing on the collection and depth distribution of implanted projectiles during high-fluence irradiation of a random solid is investigated by model calculations based on a previously published transport theoretical approach to the general problem of recoil mixing. The most pronounced effects are observed in the maximum implantable amount of projectiles and in the critical fluence for saturation. Both values are significantly increased by recoil mixing. (Auth.)

  4. Comparison of integral cross section values of several cross section libraries in the SAND-II format

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.

    1978-01-01

    A comparison of some integral cross section values for several cross section libraries in the SAND-II format is presented. The integral cross section values are calculated with aid of the spectrum functions for a Watt fission spectrum, a 1/E spectrum and a Maxwellian spectrum. The libraries which are considered here are CCC-112B, ENDF/B-IV, DETAN74, LAPENAS and CESNEF. These 5 cross section libraries used have all the SAND-II format. (author)

  5. Jet inclusive cross sections

    International Nuclear Information System (INIS)

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons

  6. Complementary scattered and recoiled ion data from TOF-E heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    The advantage of Time of Flight and Energy (ToF-E) Heavy Ion Elastic Recoil Detection Analysis (HIERDA) over Rutherford Backscattering (RBS) analysis is its mass and energy dispersive capabilities. The mass resolution of ToF-E HIERDA deteriorates for very heavy elements. The limitation is related to the poor energy resolution of Si detectors for heavy ions. While the energy spectra from ToF-E HIERDA data are normally used to extract depth profiles, this work discusses the benefits of using the time spectra of both the recoiled and the scattered ions for depth profiling. The simulation of the complementary scattered and recoiled ion time spectra improves depth profiling and reduced current limitations when dealing with very heavy ions, such as Pt, Bi, Ta. (authors)

  7. Electron collision cross sections of mercury

    International Nuclear Information System (INIS)

    Suzuki, Susumu; Kuzuma, Kiyotaka; Itoh, Haruo

    2006-01-01

    In this paper, we propose a new collision cross section set for mercury which revises the original set summarized by Hayashi in 1989. Hanne reported three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) determined from an electron beam experiment in 1988. As a matter for regret, no attentive consideration was given to combining these three excitation cross sections with the cross section set of Hayashi. Therefore we propose a new set where these three excitation cross sections are included. In this study, other two excitation cross sections (6 1 P 1 , 6 3 D 3 ) except for the three excitation collision cross sections (6 3 P 0 , 6 3 P 1 , 6 3 P 2 ) are taken from the original set of Hayashi. The momentum transfer cross section and the ionization collision cross section are also taken from Hayashi. A Monte Carlo Simulation (MCS) technique is applied for evaluating our new cross section set. The present results of the electron drift velocity and the ionization coefficient are compared to experimental values. Agreement is secured in relation to the electron drift velocity for 1.5 Td 2 ) is the reduced electric field, E (V/cm) is the electric field, N (1/cm 3 ) is the number density of mercury atoms at 0degC, 1 Torr, E/N is also equal to 2.828 x 10 -17 E/p 0 from the relation of the ideal gas equation, p 0 (Torr) is gas pressure at 0degC, 1 Torr=1.33322 x 10 -2 N/cm -2 and 10 -17 V/cm 2 is called 1 Td. Thus it is ensured that our new cross section set is reasonable enough to be used up to 100 eV when considering with the electron drift velocity and the ionization coefficient. (author)

  8. Background-cross-section-dependent subgroup parameters

    International Nuclear Information System (INIS)

    Yamamoto, Toshihisa

    2003-01-01

    A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)

  9. Scintillation efficiency of nuclear recoil in liquid xenon

    CERN Document Server

    Arneodo, F; Badertscher, A; Benetti, P; Bernardini, E; Bettini, A; Borio di Tigliole, A A; Brunetti, R; Bueno, A G; Calligarich, E; Campanelli, M; Carpanese, C; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, A; Cline, D; De Mitri, I; Dolfini, R; Ferrari, A; Gigli-Berzolari, A; Matthey, C; Mauri, F; Mazza, D; Mazzone, L; Meng, G; Montanari, C; Nurzia, G; Otwinowski, S; Palamara, O; Pascoli, D; Pepato, Adriano; Petrera, S; Periale, L; Piano Mortari, G; Piazzoli, A; Picchi, P; Pietropaolo, F; Rancati, T; Rappoldi, A; Raselli, G L; Rebuzzi, D; Revol, Jean Pierre Charles; Rico, J; Rossella, M; Rossi, C; Rubbia, André; Rubbia, Carlo; Sala, P; Scannicchio, D A; Sergiampietri, F; Suzuki, S; Terrani, M; Tian, W; Ventura, Sandro; Vignoli, C; Wang, H; Woo, J; Xu, Z

    2000-01-01

    We present the results of a test done with a Liquid Xenon (LXe) detector for 'Dark Matter' search, exposed to a neutron beam to produce nuclear recoil events simulating those which would be generated by WIMP's elastic scattering. The aim of the experiment was to measure directly the scintillation efficiency of nuclear recoil. The nuclear recoil considered in the test was in the tens of keV range. The ratio of measured visible energy over the true recoil energy was evaluated to be about 20%, in good agreement with the theoretical predictions.

  10. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1975-11-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  11. Cross-section methodology in SIMMER

    International Nuclear Information System (INIS)

    Soran, P.D.

    1976-05-01

    The cross-section methodology incorporated in the SIMMER code is described. Data base for all cross sections is the ENDF/B system with various progressing computer codes to group collapse and modify the group constants which are used in SIMMER. Either infinitely dilute cross sections or the Bondarenko formalism can be used in SIMMER. Presently only a microscopic treatment is considered, but preliminary macroscopic algorithms have been investigated

  12. Ionization and scintillation of nuclear recoils in gaseous xenon

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J., E-mail: jrenner@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Department of Physics, University of California, Berkeley, CA 94720 (United States); Gehman, V.M.; Goldschmidt, A.; Matis, H.S.; Miller, T.; Nakajima, Y.; Nygren, D.; Oliveira, C.A.B.; Shuman, D. [Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720 (United States); Álvarez, V. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Borges, F.I.G. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); Cárcel, S. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Castel, J.; Cebrián, S. [Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza (Spain); Cervera, A. [Instituto de Física Corpuscular (IFIC), CSIC & Universitat de València, Calle Catedrático José Beltrán, 2, 46980 Paterna, Valencia (Spain); Conde, C.A.N. [Departamento de Fisica, Universidade de Coimbra, Rua Larga, 3004-516 Coimbra (Portugal); and others

    2015-09-01

    Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.

  13. Electron-impact cross sections of Ne

    International Nuclear Information System (INIS)

    Tsurubuchi, S.; Arakawa, K.; Kinokuni, S.; Motohashi, K.

    2000-01-01

    Electron-impact absolute emission cross sections were measured for the 3p→3s transitions of Ne. Excitation functions of the 3s→2p first resonance lines were measured in the energy range from the threshold to 1000 eV by a polarization-free optical method and relative cross sections were normalized to the absolute values, (41.0±5.4)x10 -19 cm 2 for the 73.6 nm line and (7.1±1.0)x10 -19 cm 2 for the 74.4 nm line, which were determined at 500 eV. The integrated level-excitation cross sections of Suzuki et al for the 1s 2 and 1s 4 levels were combined with the corresponding 3p→3s cascade cross sections obtained in this paper to give absolute emission cross sections for the resonance lines. The level-excitation cross sections of the 1s 2 and 1s 4 states in Paschen notation were determined from the threshold to 1000 eV by subtracting 3p→3s cascade cross sections from the corresponding 3s→2p emission cross sections of the resonance lines. A large cascade contribution is found in the emission cross section of the resonance lines. It is 28.5% for the 73.6 nm line and 49.6% for the 74.4 nm line at 40 eV, and 17.0 and 61.8%, respectively, at 300 eV. (author)

  14. A study of etching model of alpha-recoil tracks in biotite

    International Nuclear Information System (INIS)

    Dong Jinquan; Yuan Wanming; Wang Shicheng; Fan Qicheng

    2005-01-01

    Like fission-track dating, alpha-recoil track (ART) dating is based on the accumulation of nuclear particles that the released from natural radioactivity and produce etchable tracks in solids. ARTs are formed during the alpha-decay of uranium and thorium as well as of their daughter nuclei. When emitting an alpha-particle, the heavy remaining nucleus recoils 30-40 nm, leaving behind a trail of radiation damage. Through etching the ART tracks become visible with the aid of an interference phase-contrast microscope. Under the presupposition that all tracks are preserved since the formation of a sample their total number is a measure of the sample's age. The research for etching model is to accurately determine ART volume density, i.e., the number of ARTs per unit volume. The volume density of many dots in many layers may be determined on a sample using this etching model, and as decreasing the error and increasing the accuracy. (authors)

  15. Neutron cross sections: Book of curves

    International Nuclear Information System (INIS)

    McLane, V.; Dunford, C.L.; Rose, P.F.

    1988-01-01

    Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs

  16. Evaluated cross section libraries

    International Nuclear Information System (INIS)

    Maqurno, B.A.

    1976-01-01

    The dosimetry tape (ENDF/B-IV tape 412) was issued in a general CSEWG distribution, August 1974. The pointwise cross section data file was tested with specified reference spectra. A group averaged cross section data file (620 groups based on tape 412) was tested with the above spectra and the results are presented in this report

  17. Displacement damage caused by gamma-rays and neutrons on Au and Se.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    This report documents theoretical calculations of displacement damage produced by gamma rays and neutrons on various materials. The average energy of the gamma rays was 1.24 MeV and 1.0 MeV for the neutrons. The fluence of the gamma rays was 1.2e14 γ/cm2 , for the neutrons it was 1.0e12 n/cm2. The initial materials of interest were Au and Se. The total doses of the gamma ray exposures were in the 100 kRad range for both elements. An equivalent electron fluence was approximated to be the same as the gamma ray fluence over one gamma ray attenuation length in both materials and at the same 1.24 MeV energy. The maximum recoil energy of the Au and Se for these electrons was calculated relativisticaly to be 29 and 72 eV respectively. The relativisitic McKinley and Feshbach theory for the atomic recoil cross sections produced by the electrons were in the 10s of mbarn range and an upper limit for the concentration of Frenkel pairs for the gamma ray exposures for both elements was in the ppb range. The Robinson Energy Partioning Theory for non-ionizing energy loss (NIEL) of ions in solids was used to calculate the concentration of Frenkel pairs produced by the 1 MeV neutrons, and this concentration was also in the ppb range for both Au and Se. Low damage levels like this can have effects on minority carrier recombination in semiconductors, but are not expected to have any effect on metals like Au, or metalloids such as Se.

  18. Chemical effects of fission recoils

    International Nuclear Information System (INIS)

    Meisels, G.G.; Freeman, J.P.; Gregory, J.P.; Richardson, W.C.; Sroka, G.J.

    1978-01-01

    The production of nitrogen from nitrous oxide at high density was employed to investigate the energy deposition efficiency of fission recoils produced from fission of U 235 in uranium-palladium foils clad with platinum. Nitrogen production varied linearly with fission recoil dose from 1.1 x 10 20 to 9.0 x 10 20 eV, and was independent of density between 12.5 and 127.5 g l -1 N 2 O. 16.2 +- 0.8% of the fission recoil energy was deposited external to the foil. Electron microprobe analysis showed some unevenness of new foil and polymer buildup on the surface after irradiation of ethylene-oxygen mixtures. Subsequent irradiation in the presence of nitrous oxide restored some of the original efficiency. This is ascribed to chemical oxidation of the polymer induced by reactive intermediates produced from nitrous oxide. (author)

  19. Moving towards first science with the St. George recoil separator

    Science.gov (United States)

    Meisel, Zachary; Berg, G. P. A.; Gilardy, G.; Moran, M.; Schmitt, J.; Seymour, C.; Stech, E.; Couder, M.

    2015-10-01

    The St. George recoil mass separator has recently been coupled to the 5MV St. Ana accelerator at the University of Notre Dame's Nuclear Science Lab. St. George is a unique tool designed to measure radiative alpha-capture reactions for nuclei up to A = 40 in inverse kinematics in order to directly obtain cross sections required for astrophysical models of stellar and explosive helium burning. Commissioning of St. George is presently taking place with primary beams of hydrogen, helium, and oxygen. In this presentation, results will be shown for the measured energy acceptance of St. George, which compare favorably to COSY results when employing the calculated optimal ion-optical settings. Additionally, future plans will be discussed, such as assessing the angular acceptance of St. George and the re-integration of HiPPO at the separator target position to provide a dense, windowless helium gas-jet target. The material presented in this work is partially supported by the National Science Foundation Grant No. 1419765.

  20. Measurement of isotopic cross sections of the fission fragments produced in 500 AMeV 208Pb + p reaction

    International Nuclear Information System (INIS)

    Fernandez-Dominguez, B.

    2003-03-01

    The aim of this work is the study of the fission fragments produced in the spallation reaction 208 Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z fis , A fis , E* fis ). In addition, the number of post-fission neutrons emitted from the fission fragments, v post , has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)

  1. Nuclear Forensics and Radiochemistry: Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-08

    The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.

  2. Remote recoil: a new wave mean interaction effect

    Science.gov (United States)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the

  3. Differential Top Cross-section Measurements

    CERN Document Server

    Fenton, Michael James; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. The measurement of the differential top-quark pair production cross-section provides a stringent test of advanced perturbative QCD calculations. The ATLAS collaboration has performed detailed measurements of those differential cross sections at a centre-of-mass energy of 13 TeV. This talk focuses on differential cross-section measurements in the lepton+jets final state, including using boosted top quarks to probe our understanding of top quark production in the TeV regime.

  4. Cross-sectional investigation of HEMS activities in Europe

    DEFF Research Database (Denmark)

    Di Bartolomeo, Stefano; Gava, Paolo; Truhlář, Anatolij

    2014-01-01

    OBJECTIVES: To gather information on helicopter emergency medical services (HEMSs) activities across Europe. METHODS: Cross-sectional data-collection on daily (15 November 2013) activities of a sample of European HEMSs. A web-based questionnaire with both open and closed questions was used......, by paramedics in 24%, and by nurses in 9%. On-board physicians estimated to have caused a major decrease of death risk in 47% of missions, possible decrease in 22%, minor benefit in 17%, no benefit in 11%, and damage in 3%. Earlier treatment and faster transport to hospital were the main reasons for benefit...

  5. Activation cross section data file, (1)

    International Nuclear Information System (INIS)

    Yamamuro, Nobuhiro; Iijima, Shungo.

    1989-09-01

    To evaluate the radioisotope productions due to the neutron irradiation in fission of fusion reactors, the data for the activation cross sections ought to be provided. It is planning to file more than 2000 activation cross sections at final. In the current year, the neutron cross sections for 14 elements from Ni to W have been calculated and evaluated in the energy range 10 -5 to 20 MeV. The calculations with a simplified-input nuclear cross section calculation system SINCROS were described, and another method of evaluation which is consistent with the JENDL-3 were also mentioned. The results of cross section calculation are in good agreement with experimental data and they were stored in the file 8, 9 and 10 of ENDF/B format. (author)

  6. An Evaluation of Magneto Rheological Dampers for Controlling Gun Recoil Dynamics

    Directory of Open Access Journals (Sweden)

    Mehdi Ahmadian

    2001-01-01

    Full Text Available The application of magneto rheological dampers for controlling recoil dynamics is examined, using a recoil demonstrator that includes a single-shot 50 caliber BMG rifle action and a MR damper. The demonstrator is selected such that it can adequately represent the velocities that commonly occur in weapons with a recoil system, and can be used for collecting data for analyzing the effects of MR dampers on recoil dynamics. The MR damper is designed so that it can work effectively at the large velocities commonly occurring in gun recoil, and also be easily adjusted to reasonably optimize the damper performance for the recoil demonstrator. The test results show that it is indeed possible to design and use MR dampers for recoil applications, which subject the damper to relative velocities far larger than the applications that such dampers have commonly been used for (i.e., vehicle applications. Further, the results indicate that the recoil force increases and the recoil stroke decreases nonlinearly with an increase in the damping force. Also of significance is the fact that the adjustability of MR dampers can be used in a closed-loop system such that the large recoil forces that commonly occur upon firing the gun are avoided and, simultaneously, the recoil stroke is reduced. This study points to the need for several areas of research including establishing the performance capabilities for MR dampers for gun recoil applications in an exact manner, and the potential use of such dampers for a fire out of battery recoil system.

  7. Utilization of cross-section covariance data in FBR core nuclear design and cross-section adjustment

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    1994-01-01

    In the core design of large fast breeder reactors (FBRs), it is essentially important to improve the prediction accuracy of nuclear characteristics from the viewpoint of both reducing cost and insuring reliability of the plant. The cross-section errors, that is, covariance data are one of the most dominant sources for the prediction uncertainty of the core parameters, therefore, quantitative evaluation of covariance data is indispensable for FBR core design. The first objective of the present paper is to introduce how the cross-section covariance data are utilized in the FBR core nuclear design works. The second is to delineate the cross-section adjustment study and its application to an FBR design, because this improved design method markedly enhances the needs and importance of the cross-section covariance data. (author)

  8. Gas powered fluid gun with recoil mitigation

    Science.gov (United States)

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  9. Is the quasielastic pion cross section really bigger than the pion-nucleus reaction cross section

    International Nuclear Information System (INIS)

    Silbar, R.R.

    1979-01-01

    It is shown that soft pion charge exchanges may increase the inclusive (π + ,π 0 ') cross section, relative to the total quasielastic (π + ,π + ') cross section, by as much as a factor of two. 4 references

  10. JENDL gas-production cross section file

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Narita, Tsutomu

    1992-05-01

    The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)

  11. Doppler broadening of cross sections

    International Nuclear Information System (INIS)

    Buckler, P.A.C.; Pull, I.C.

    1962-12-01

    Expressions for temperature dependent cross-sections in terms of resonance parameters are obtained, involving generalisations of the conventional Doppler functions, ψ and φ. Descriptions of Fortran sub-routines, which calculate broadened cross-sections in accordance with the derived formulae, are included. (author)

  12. Comprehensive neutron cross-section and secondary energy distribution uncertainty analysis for a fusion reactor

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; LaBauve, R.J.; Young, P.G.

    1980-05-01

    On the example of General Atomic's well-documented Power Generating Fusion Reactor (PGFR) design, this report exercises a comprehensive neutron cross-section and secondary energy distribution (SED) uncertainty analysis. The LASL sensitivity and uncertainty analysis code SENSIT is used to calculate reaction cross-section sensitivity profiles and integral SED sensitivity coefficients. These are then folded with covariance matrices and integral SED uncertainties to obtain the resulting uncertainties of three calculated neutronics design parameters: two critical radiation damage rates and a nuclear heating rate. The report documents the first sensitivity-based data uncertainty analysis, which incorporates a quantitative treatment of the effects of SED uncertainties. The results demonstrate quantitatively that the ENDF/B-V cross-section data files for C, H, and O, including their SED data, are fully adequate for this design application, while the data for Fe and Ni are at best marginally adequate because they give rise to response uncertainties up to 25%. Much higher response uncertainties are caused by cross-section and SED data uncertainties in Cu (26 to 45%), tungsten (24 to 54%), and Cr (up to 98%). Specific recommendations are given for re-evaluations of certain reaction cross-sections, secondary energy distributions, and uncertainty estimates

  13. Cross-sectional anatomy for computed tomography

    International Nuclear Information System (INIS)

    Farkas, M.L.

    1988-01-01

    This self-study guide recognizes that evaluation and interpretation of CT-images demands a firm understanding of both cross-sectional anatomy and the principles of computed tomography. The objectives of this book are: to discuss the basic principles of CT, to stress the importance of cross-sectional anatomy to CT through study of selected cardinal transverse sections of head, neck, and trunk, to explain orientation and interpretation of CT-images with the aid of corresponding cross-sectional preparations

  14. Density-dependent expressions for photoionization cross-sections

    International Nuclear Information System (INIS)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-01-01

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function

  15. Density-dependent expressions for photoionization cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weiguo; Ma Xiaoguang; Cheng Yansong

    2004-06-07

    Alternative expressions for photoionization cross-sections and dielectric influence functions are suggested to study the photoionization cross-sections of atoms in solid system. The basic picture is that the photoionization cross-section of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated particle, while the CQ part may represent most of the important influence of the macroscopic effects (e.g., the interactions of all surrounding polarized particles, and the dielectric property, etc.) on the photoionization cross-sections. The applications to the barium system show that the number-density-dependent new photoionization formula not only obtains the same cross-sections as those from the first order approximation for ideal gas, but also can generate the cross-sections for solid barium by transforming those of ideal gas of the same species using the dielectric influence function.

  16. Multivariate analysis method for energy calibration and improved mass assignment in recoil spectrometry

    International Nuclear Information System (INIS)

    El Bouanani, Mohamed; Hult, Mikael; Persson, Leif; Swietlicki, Erik; Andersson, Margaretha; Oestling, Mikael; Lundberg, Nils; Zaring, Carina; Cohen, D.D.; Dytlewski, Nick; Johnston, P.N.; Walker, S.R.; Bubb, I.F.; Whitlow, H.J.

    1994-01-01

    Heavy ion recoil spectrometry is rapidly becoming a well established analysis method, but the associated data analysis processing is still not well developed. The pronounced nonlinear response of silicon detectors for heavy ions leads to serious limitation and complication in mass gating, which is the principal factor in obtaining energy spectra with minimal cross talk between elements. To overcome the above limitation, a simple empirical formula with an associated multiple regression method is proposed for the absolute energy calibration of the time of flight-energy dispersive detector telescope used in recoil spectrometry. A radical improvement in mass assignment was realized, which allows a more accurate and improved depth profiling with the important feature of making the data processing much easier. ((orig.))

  17. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    International Nuclear Information System (INIS)

    Singh, Harinder J; Wereley, Norman M

    2014-01-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events. (paper)

  18. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    Science.gov (United States)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  19. Radiation damage for the spallation target of ADS

    International Nuclear Information System (INIS)

    Fan Sheng; Ye Yanlin; Xu Chuncheng; Chen Tao; Sobolevsky, N.M.

    2000-01-01

    By using SHIELD codes system, the authors investigate the radiation damage, such as radiation damage cross section, displacement atom cross section and the rate of displacement atom, gas production cross section, the rate of gas production and the ratio, R, of the helium and displacement production rates in target, container window and spallation neutron source materials as W and Pb induced from intermediate energy proton and neutron incident. And the study of radiation damage in the thick Pb target with long 60 cm, radius 20 cm is presented

  20. Energy spectra of primary knock-on atoms under neutron irradiation

    International Nuclear Information System (INIS)

    Gilbert, M.R.; Marian, J.; Sublet, J.-Ch.

    2015-01-01

    Materials subjected to neutron irradiation will suffer from a build-up of damage caused by the displacement cascades initiated by nuclear reactions. Previously, the main “measure” of this damage accumulation has been through the displacements per atom (dpa) index, which has known limitations. This paper describes a rigorous methodology to calculate the primary atomic recoil events (often called the primary knock-on atoms or PKAs) that lead to cascade damage events as a function of energy and recoiling species. A new processing code SPECTRA-PKA combines a neutron irradiation spectrum with nuclear recoil data obtained from the latest nuclear data libraries to produce PKA spectra for any material composition. Via examples of fusion relevant materials, it is shown that these PKA spectra can be complex, involving many different recoiling species, potentially differing in both proton and neutron number from the original target nuclei, including high energy recoils of light emitted particles such as α-particles and protons. The variations in PKA spectra as a function of time, neutron field, and material are explored. The application of PKA spectra to the quantification of radiation damage is exemplified using two approaches: the binary collision approximation and stochastic cluster dynamics, and the results from these different models are discussed and compared. - Highlights: • Recoil cross-section matrices under neutron irradiation are generated. • Primary knock-on atoms (PKA) spectra are calculated for fusion relevant materials. • Variation in PKA spectra due to changes in geometry are considered. • Inventory simulations to consider time-evolution in PKA spectra. • Damage quantification using damage functions from different approximations.

  1. Total neutron cross section of lead

    International Nuclear Information System (INIS)

    Kanda, K.; Aizawa, O.

    1976-01-01

    The total thermal-neutron cross section of natural lead under various physical conditions was measured by the transmission method. It became clear that the total cross section at room temperature previously reported is lower than the present data. The total cross section at 400, 500, and 600 0 C, above the melting point of lead, 327 0 C, was also measured, and the changes in the cross section as a function of temperature were examined, especially near and below the melting point. The data obtained for the randomly oriented polycrystalline state at room temperature were in reasonable agreement with the theoretical values calculated by the THRUSH and UNCLE-TOM codes

  2. Measurement of the ${240}$Pu(n,f) reaction cross-section

    CERN Multimedia

    Following proposal CERN-INTC-2010-042 / INTC-P-280 (“Measurement of the fission cross-section of $^{240}$Pu and $^{242}$Pu at CERN’s n_TOF Facility”), the parallel measurement of the $^{240}$Pu(n,f) and $^{242}$Pu(n,f) reaction cross-sections was carried out at n_TOF EAR-1. While the $^{242}$Pu measurement was successful, unexpected sample-induced damage to the detectors caused by the high α-activity of the 240Pu samples resulted in a deterioration of the detector performance over the data taking period of several months, which compromised the measurement. This obstacle can be eliminated by performing the measurement in EAR-2, where the higher neutron flux will allow collecting data in a much shorter time, thus preventing the degradation of the detectors. In addition to this obvious advantage, the measurement would also benefit from the stronger suppression of the sample-induced α-background, due to the shorter times-of-flight involved.

  3. Damage and fatigue in cross-linked rubbers

    Science.gov (United States)

    Melnikov, Alexei

    Damage and fatigue of elastomers have not been fundamentally understood because of the complex nature of these materials. All currently existing models are completely phenomenological. Therefore two problems have been investigated in this research to address those fundamental issues. The first problem was creating an innovative concept with a mathematical modeling, which would be able to describe the damage using molecular characteristics of elastomers. The second problem is developing new approaches to study fatigue, and especially impact fatigue of elastomers. The following results have been obtained in this research. A theoretical model of damage has been developed which involves the basic molecular characteristics of cross-linked elastomers and takes into account the effects of viscoelasticity and stress-induced crystallization. This model was found very reliable and successful in description of numerous quasi-static simple extension experiments for monotonous and repeating loadings. It also roughly predicts in molecular terms the failure of elastomers with various degrees of cross-linking. Quasi-impact fatigue tests with different geometry of an indenter have also been performed. Some microscopic features of rubber damage have been investigated using optical microscopy and SEM. In particular, the accumulation of a completely de-vulcanized, liquid-like substance was observed under intense, multi-cycle impacts. All the findings discovered in quasi-impact experiments are consistent with the damage model predictions.

  4. Determination of the displacement cross-section in C-60 fullerene exposed to the gamma rays

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Leyva, D.; Cruz, C.; Abreu, Y.

    2011-01-01

    Using the threshold energy values reported in literature for spherical fullerene C-60 molecules and taking into account the McKinley-Feshbach approach, the effective atomic displacement cross-section in C-60 nanostructures exposed to the gamma rays was estimated. The Kinchin-Pease approximation for the damage function was also considered. These calculations were performed using MCCM code system developed by the authors for the study of gamma radiation damage in solid materials. (Author)

  5. A Measurement of the Ratio of the W + 1 Jet to Z + 1 Jet Cross Sections with ATLAS

    CERN Document Server

    Meade, A

    2011-01-01

    The measurement of hadronic activity recoiling against W and Z vector bosons provides an important test of perturbative QCD, as well as a method of searching for new physics in a model independent fashion. We present a study of the cross-section ratio for the production of W and Z gauge bosons in association with exactly one jet R-jets = (W +1jet)/(Z +1jet), in pp collisions at sqrt(s) = 7 TeV. The study is performed in the electron and muon channels with data collected with the ATLAS detector at the LHC. The ratio R-jets is studied as a function of the cumulative transverse momentum pT distribution of the jet. This result can be compared to NLO pQCD calculations and the prediction from LO matrix element + parton shower generators.

  6. Top quark production cross-section measurements

    CERN Document Server

    Chen, Ye; The ATLAS collaboration

    2017-01-01

    Measurements of the inclusive and differential cross-sections for top-quark pair and single top production cross sections in proton-proton collisions with the ATLAS detector at the Large Hadron Collider are presented at center-of-mass energies of 8 TeV and 13 TeV. The inclusive measurements reach high precision and are compared to the best available theoretical calculations. These measurements, including results using boosted tops, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers and NLO QCD calculations. For the t-channel single top measurement, the single top-quark and anti-top-quark total production cross-sections, their ratio, as well as differential cross sections are also presented. A measurement of the production cross-section of a single top quark in association with a W boson, the second largest single-top production mode, is also presented. Finally, measurements of ...

  7. Trapping of slow recoil ions: past results and speculations on the future

    International Nuclear Information System (INIS)

    Prior, M.H.

    1983-01-01

    A simple electrostatic ion trap has been utilized to capture low energy recoil ions made by fast heavy ion impact upon a neon gas target. The heavy ion beams have been provided by the LBL SuperHILAC and the work has so far concentrated upon studies of the decay of the trapped ion population in time following creation by the pulsed HILAC beam (3.3 msec pulse length, 36Hz repetition rate). The various charge states decay predominantly via electron capture collisions with the ambient gas in the ion trap. By varying the gas composition and density, one can determine the electron capture rate constants from which an effective (velocity averaged) capture cross-section can be obtained. The uniqueness of this work lies in the high charge states, up to Ne 10 + (fully stripped), and the low mean collision energies available (in the range 1.0 to 70.0 eV)

  8. A gun recoil system employing a magnetorheological fluid damper

    International Nuclear Information System (INIS)

    Li, Z C; Wang, J

    2012-01-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment. (paper)

  9. Krypton irradiation damage in Nd-doped zirconolite and perovskite

    International Nuclear Information System (INIS)

    Davoisne, C.; Stennett, M.C.; Hyatt, N.C.; Peng, N.; Jeynes, C.; Lee, W.E.

    2011-01-01

    Understanding the effect of radiation damage and noble gas accommodation in potential ceramic hosts for plutonium disposition is necessary to evaluate their long-term behaviour during geological disposal. Polycrystalline samples of Nd-doped zirconolite and Nd-doped perovskite were irradiated ex situ with 2 MeV Kr + at a dose of 5 x 10 15 ions cm -2 to simulate recoil of Pu nuclei during alpha decay. The feasibility of thin section preparation of both pristine and irradiated samples by Focused Ion Beam sectioning was demonstrated. After irradiation, the Nd-doped zirconolite revealed a well defined amorphous region separated from the pristine material by a thin (40-60 nm) damaged interface. The zirconolite lattice was lost in the damaged interface, but the fluorite sublattice was retained. The Nd-doped perovskite contained a defined irradiated layer composed of an amorphous region surrounded by damaged but still crystalline layers. The structural evolution of the damaged regions is consistent with a change from orthorhombic to cubic symmetry. In addition in Nd-doped perovskite, the amorphisation dose depended on crystallographic orientation and possibly sample configuration (thin section or bulk). Electron Energy Loss Spectroscopy revealed Ti remained in the 4+ oxidation state but there was a change in Ti coordination in both Nd-doped perovskite and Nd-doped zirconolite associated with the crystalline to amorphous transition.

  10. Damage Detection Based on Cross-Term Extraction from Bilinear Time-Frequency Distributions

    Directory of Open Access Journals (Sweden)

    Ma Yuchao

    2014-01-01

    Full Text Available Abundant damage information is implicated in the bilinear time-frequency distribution of structural dynamic signals, which could provide effective support for structural damage identification. Signal time-frequency analysis methods are reviewed, and the characters of linear time-frequency distribution and bilinear time-frequency distribution typically represented by the Wigner-Ville distribution are compared. The existence of the cross-term and its application in structural damage detection are demonstrated. A method of extracting the dominant term is proposed, which combines the short-time Fourier spectrum and Wigner-Ville distribution; then two-dimensional time-frequency transformation matrix is constructed and the complete cross-term is extracted finally. The distribution character of which could be applied to the structural damage identification. Through theoretical analysis, model experiment and numerical simulation of the girder structure, the change rate of cross-term amplitude is validated to identify the damage location and degree. The effectiveness of the cross-term of bilinear time-frequency distribution for damage detection is confirmed and the analytical method of damage identification used in structural engineering is available.

  11. Differences between LASL- and ANL-processed cross sections

    International Nuclear Information System (INIS)

    Kidman, R.B.; MacFarlane, R.E.; Becker, M.

    1978-03-01

    As part of the Los Alamos Scientific Laboratory (LASL) cross-section processing development, LASL cross sections and results from MINX/1DX system are compared to the Argonne National Laboratory cross sections and results from the ETOE-2/MC 2 -2 system for a simple reactor problem. Exact perturbation theory is used to establish the eigenvalue effect of every isotope group cross-section difference. Cross sections, cross-section differences, and their eigenvalue effects are clearly and conveniently displayed and compared on a group-by-group basis

  12. Differential α-production cross sections of iron and nickel for 4.3 to 14.1 MeV Neutrons

    International Nuclear Information System (INIS)

    Baba, Mamoru; Ito, Nobuo; Matsuyama, Isamu

    1994-01-01

    The cross section data for neutron-induced α-production are of prime importance in the evaluation of the radiation damage and nuclear heating in fusion and fast reactors. For the evaluation, energy and angular doubly differential cross sections are also required to calculate primary knock-on atom spectra. However, the experimental (n, xα) data are few and discrepant, therefore, the new experimental data are required urgently to improve the accuracy of the (n, xα) cross section data. The authors have measured the double differential (n, xα) cross sections of Fe and Ni in the neutron energy range of 4.3-14.1 MeV using a specially developed gridded ionization chamber. The present work was undertaken as a part of IAEA Coordinated Research Program for neutron-induced He production cross sections. The gridded ionization chamber and the experimental method were reported previously. Three-signals from the common cathode and two anodes were accumulated as two sets of two-dimensional data. The experimental two-dimensional data for the anode and cathode signals were transformed into the double differential cross sections. The results of the double differential cross sections, angular distributions, angle-integrated spectra in the center of mass system and total α-production cross sections are shown. (K.I.)

  13. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    International Nuclear Information System (INIS)

    Liu, F. K.; Wang Dong; Chen Xian

    2012-01-01

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q ∼> 0.3 with a minimum possible value q min ≅ 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s –1 in the direction within an angle ∼< 40° relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  14. (n,{alpha}) cross section measurement of gaseous sample using gridded ionization chamber. Cross section determination

    Energy Technology Data Exchange (ETDEWEB)

    Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-03-01

    We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)

  15. Photoionization cross section of atomic and molecular oxygen

    International Nuclear Information System (INIS)

    Pareek, P.N.

    1983-01-01

    Photoionization cross sections of atomic oxygen and dissociative photoionization cross sections of molecular oxygen were measured from their respective thresholds to 120 angstrom by use of a photoionization mass spectrometer in conjunction with a spark light source. The photoionization cross sections O 2 + parent ion and O + fragment ion from neutral O 2 were obtained by a technique that eliminated the serious problem of identifying the true abundances of O + ions. These ions are generally formed with considerable kinetic energy and, because most mass spectrometers discriminate against energetic ions, true O + abundances are difficult to obtain. In the present work the relative cross sections for producing O + ions are obtained and normalized against the total cross sections in a spectral region where dissociative ionization is not possible. The fragmentation cross sections for O + were then obtained by subtraction of O 2 + cross sections from the known total photoionization cross sections. The results are compared with the previously published measurements. The absolute photoionization cross section of atomic oxygen sigma 8 /sub +/ was measured at 304 A. The actual number density of oxygen atoms within the ionization region was obtained by measuring the fraction of 0 2 molecules dissociated. This sigma/sub +/ at 304 angstrom was used to convert the relative photoinization cross sections, measured as a function of wavelength using a calibrated photodiode, to absolute cross sections. The results are compared with previous measurements and calculated cross sections. angstrom Rydberg series converging to the OII 4 P state was observed

  16. Measurements of neutron capture cross sections

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1984-01-01

    A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)

  17. XCOM: Photon Cross Sections Database

    Science.gov (United States)

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  18. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  19. Graphs of the cross sections in the recommended Monte Carlo cross-section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Soran, P.D.; Seamon, R.E.

    1980-05-01

    Graphs of all neutron cross sections and photon production cross sections on the Recommended Monte Carlo Cross Section (RMCCS) library have been plotted along with local neutron heating numbers. Values for anti ν, the average number of neutrons per fission, are also given

  20. Scattering cross section for various potential systems

    Directory of Open Access Journals (Sweden)

    Myagmarjav Odsuren

    2017-08-01

    Full Text Available We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  1. Scattering cross section for various potential systems

    Energy Technology Data Exchange (ETDEWEB)

    Odsuren, Myagmarjav; Khuukhenkhuu, Gonchigdorj; Davaa, Suren [Nuclear Research Center, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar (Mongolia); Kato, Kiyoshi [Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo (Japan)

    2017-08-15

    We discuss the problems of scattering in this framework, and show that the applied method is very useful in the investigation of the effect of the resonance in the observed scattering cross sections. In this study, not only the scattering cross sections but also the decomposition of the scattering cross sections was computed for the α–α system. To obtain the decomposition of scattering cross sections into resonance and residual continuum terms, the complex scaled orthogonality condition model and the extended completeness relation are used. Applying the present method to the α–α and α–n systems, we obtained good reproduction of the observed phase shifts and cross sections. The decomposition into resonance and continuum terms makes clear that resonance contributions are dominant but continuum terms and their interference are not negligible. To understand the behavior of observed phase shifts and the shape of the cross sections, both resonance and continuum terms are calculated.

  2. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-06-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  3. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Trocsanyi, Z. [CERN, Geneva (Switzerland)

    2010-06-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of an earlier NNLO subtraction scheme over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state. (orig.)

  4. NNLO jet cross sections by subtraction

    CERN Document Server

    Somogyi, Gabor; Trocsanyi, Zoltan

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of [1-4], over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  5. Recoil momenta distributions in the double photoionization

    International Nuclear Information System (INIS)

    Amusia, M Ya; Liverts, E Z; Drukarev, E G; Mikhai, A I

    2014-01-01

    We calculate the distributions in recoil momenta for the high energy double photoionization of helium caused by quasifree mechanism. The distributions obtain local maxima at small values of the recoil momenta. This agrees with earlier predictions and recent experimental data. Angular correlations which reach the largest value for 'back-to-back' configuration of photoelectrons are also obtained.

  6. Differential cross sections and cross-section ratios for the electron-impact excitation of the neon 2p53s configuration

    International Nuclear Information System (INIS)

    Khakoo, M. A.; Wrkich, J.; Larsen, M.; Kleiban, G.; Kanik, I.; Trajmar, S.; Brunger, M.J.; Teubner, P.J.O.; Crowe, A.; Fontes, C.J.; Clark, R.E.H.; Zeman, V.; Bartschat, K.; Madison, D.H.; Srivastava, R.; Stauffer, A.D.

    2002-01-01

    Electron-impact differential cross-section measurements for the excitation of the 2p 5 3s configuration of Ne are reported. The Ne cross sections are obtained using experimental differential cross sections for the electron-impact excitation of the n=2 levels of atomic hydrogen [Khakoo et al., Phys. Rev. A 61, 012701-1 (1999)], and existing experimental helium differential cross-section measurements, as calibration standards. These calibration measurements were made using the method of gas mixtures (Ne and H followed by Ne and He), in which the gas beam profiles of the mixed gases are found to be the same within our experimental errors. We also present results from calculations of these differential cross sections using the R-matrix and unitarized first-order many-body theory, the distorted-wave Born approximation, and relativistic distorted-wave methods. Comparison with available experimental differential cross sections and differential cross-section ratios is also presented

  7. Determination of the displacement cross section in single-walled carbon nanotubes under gamma irradiation

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, D.

    2009-01-01

    Using the threshold energy value reported in literature for C atoms in single-walled carbon nanotube and taking into account the McKinley-Feshbach approach, the effective atomic displacement cross-section in nanotubes exposed to the gamma rays was estimated. In this calculation the Kinchin-Pease approximation for the damage function was considered. (Author)

  8. Capture cross sections on unstable nuclei

    Science.gov (United States)

    Tonchev, A. P.; Escher, J. E.; Scielzo, N.; Bedrossian, P.; Ilieva, R. S.; Humby, P.; Cooper, N.; Goddard, P. M.; Werner, V.; Tornow, W.; Rusev, G.; Kelley, J. H.; Pietralla, N.; Scheck, M.; Savran, D.; Löher, B.; Yates, S. W.; Crider, B. P.; Peters, E. E.; Tsoneva, N.; Goriely, S.

    2017-09-01

    Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  9. Status of neutron dosimetry cross sections

    International Nuclear Information System (INIS)

    Griffin, P.J.; Kelly, J.G.

    1992-01-01

    Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes

  10. Capture cross sections on unstable nuclei

    Directory of Open Access Journals (Sweden)

    Tonchev A.P.

    2017-01-01

    Full Text Available Accurate neutron-capture cross sections on unstable nuclei near the line of beta stability are crucial for understanding the s-process nucleosynthesis. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining the most relevant observables that can constrain Hauser-Feshbach statistical-model calculations of capture cross sections. Specifically, we will consider photon scattering using monoenergetic and 100% linearly polarized photon beams. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes near and far from stability will be discussed.

  11. Graphs of the cross sections in the Alternate Monte Carlo Cross Section library at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Seamon, R.E.; Soran, P.D.

    1980-06-01

    Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes

  12. Recoil-proton fast-neutron counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R. (Padua Univ. (Italy). Ist. di Fisica); Galeazzi, G.; Bressanini, G.

    1981-12-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  13. Recoil-proton fast-neutron-counter telescope

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, G.; Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Bressanini, G.

    1981-01-01

    A proton-recoil neutron counter telescope is described composed of a solid state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time-of-flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV, presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV.

  14. Systematic investigation of background sources in neutron flux measurements with a proton-recoil silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Marini, P., E-mail: marini@cenbg.in2p3.fr [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Mathieu, L. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France); Acosta, L. [Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México D.F. 01000 (Mexico); Aïche, M.; Czajkowski, S.; Jurado, B.; Tsekhanovich, I. [CENBG, CNRS/IN2P3-Université de Bordeaux, Chemin du Solarium B.P. 120, 33175 Gradignan (France)

    2017-01-01

    Proton-recoil detectors (PRDs), based on the well known standard H(n,p) elastic scattering cross section, are the preferred instruments to perform precise quasi-absolute neutron flux measurements above 1 MeV. The limitations of using a single silicon detector as PRD at a continuous neutron beam facility are investigated, with the aim of extending such measurements to neutron energies below 1 MeV. This requires a systematic investigation of the background sources affecting the neutron flux measurement. Experiments have been carried out at the AIFIRA facility to identify these sources. A study on the role of the silicon detector thickness on the background is presented and an energy limit on the use of a single silicon detector to achieve a neutron flux precision better than 1% is given.

  15. Neutron-capture Cross Sections from Indirect Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  16. Atlas of photoneutron cross sections obtained with monoenergetic photons

    International Nuclear Information System (INIS)

    Dietrich, S.S.; Berman, B.L.

    1988-01-01

    Photoneutron cross-section and integrated cross-section data obtained with monoenergetic photons are presented in a uniform format. All of the measured partial photoneutron cross sections, the total photoneutron cross section, and the photoneutron yield cross section are plotted as functions of the incident photon energy, as are the integrated photoneutron cross sections and their first and second moments. The values of the integrated cross sections and the moments of the integrated total cross section up to the highest photon energy for which they were measured are tabulated, as are the parameters of Lorentz curves fitted to the total photoneutron cross-section data for medium and heavy nuclei (A>50). This compilation is current as of June 1987. copyright 1988 Academic Press, Inc

  17. Cross-Sectional Analysis of Longitudinal Mediation Processes.

    Science.gov (United States)

    O'Laughlin, Kristine D; Martin, Monica J; Ferrer, Emilio

    2018-01-01

    Statistical mediation analysis can help to identify and explain the mechanisms behind psychological processes. Examining a set of variables for mediation effects is a ubiquitous process in the social sciences literature; however, despite evidence suggesting that cross-sectional data can misrepresent the mediation of longitudinal processes, cross-sectional analyses continue to be used in this manner. Alternative longitudinal mediation models, including those rooted in a structural equation modeling framework (cross-lagged panel, latent growth curve, and latent difference score models) are currently available and may provide a better representation of mediation processes for longitudinal data. The purpose of this paper is twofold: first, we provide a comparison of cross-sectional and longitudinal mediation models; second, we advocate using models to evaluate mediation effects that capture the temporal sequence of the process under study. Two separate empirical examples are presented to illustrate differences in the conclusions drawn from cross-sectional and longitudinal mediation analyses. Findings from these examples yielded substantial differences in interpretations between the cross-sectional and longitudinal mediation models considered here. Based on these observations, researchers should use caution when attempting to use cross-sectional data in place of longitudinal data for mediation analyses.

  18. Parametric equations for calculation of macroscopic cross sections

    International Nuclear Information System (INIS)

    Botelho, Mario Hugo; Carvalho, Fernando

    2015-01-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  19. ZZ DOSCROS, Neutron Cross-Section Library for Spectra Unfolding and Integral Parameter Evaluation

    International Nuclear Information System (INIS)

    Zijp, Willem L.; Nolthenius, Henk J.; Rieffe, Henk Ch.

    1987-01-01

    1 - Description of problem or function: Format: SAND-II; Number of groups: 640 fine group cross section values; Nuclides: Li, B, F, Na, Mg, Al, S, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Nb, Mo, Rh, Pd, Ag, In, Sb, I, Cs, La, Eu, Sm, Dy, Lu, Ta, W, Re, Au, Th, U, Np, Pu. Origin: ENDF/B-V mainly, ENDF/B-IV, INDL/V. This library forms in combination with the DAMSIG81 library a convenient source of evaluated energy dependent cross section sets which may be used in the determination of neutron spectra by means of adjustment (or unfolding) procedures or which can be used for the determination of integral parameters (such as damage-to-activation ratio) useful in characterising the neutron spectra. The energy dependent fine group cross section data are presented in a 640 group structure of the SAND-II type. This group structure has 45 energy groups per energy decade below 1 MeV and a group width of 100 KeV above 1 MeV. The total energy span of this group structure is from 10 -10 MeV to 20 MeV. The library has the SAND-II format, which implies that a special part of the library has to contain cover cross section data sets. These cross section data sets are required in the SAND-II program for taking into account the influence of special detector surroundings which may be used during an irradiation. 2 - Method of solution: The selection of the reactions from the evaluated nuclear data libraries was determined by various properties of the reactions for neutron metrology. For this reason all the well- known reactions of the ENDF/B-V dosimetry file are included but these data are supplemented with cross section sets for less well known metrology reactions which may become of interest

  20. Time-of-flight scattering and recoiling spectrometry

    International Nuclear Information System (INIS)

    Rabalais, J.W.

    1991-01-01

    Ion scattering and recoiling spectrometry consists of directing a collimated beam of monoenergetic ions towards a surface and measuring the flux of scattered and recoiled particles from this surface. When the neutral plus ion flux is velocity selected by measuring the flight times from the sample to the detector, the technique is called time-of-flight scattering and recoiling spectrometry (TOF-SARS). TOF-SARS is capable of (1) surface elemental analysis by applying classical mechanics to the velocities of the particles, (2) surface structural analysis by monitoring the angular anisotropies in the particle flux, and (3) ion-surface electron exchange probabilities by analysis of the ion/neutral fractions in the particle flux. Examples of these three areas are presented herein

  1. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  2. Ionization of liquid water by fast electron impact: multiple differential cross sections for the 1B1 orbital

    International Nuclear Information System (INIS)

    Fojon, O A; De Sanctis, M L; Stia, C R; Vuilleumier, R; Politis, M-F

    2011-01-01

    We present a theoretical study of single ionization of water molecules in liquid phase by impact of fast electrons in a coplanar geometry. Multiple differential cross sections are obtained through a first order model obtained within the framework of an independent electron approximation in which relaxation of the target is not taken into account. The wavefunctions for a single water molecule in the liquid phase are obtained through a Wannier orbital formalism and the ejected electron is described by means of Coulomb functions. We also present averaged calculations over all molecular orientations. A comparison with previous theoretical and experimental results, the latter corresponding to water in gaz phase, shows a good agreement. The main physical features of the reaction (such as binary and recoil peaks) present in measurements for vapor are also observed in the present theoretical predictions.

  3. A new sliding joint to accommodate recoil of a free-piston-driven expansion tube facility

    Science.gov (United States)

    Gildfind, D. E.; Morgan, R. G.

    2016-11-01

    This paper describes a new device to decouple free-piston driver recoil and its associated mechanical vibration from the acceleration tube and test section of The University of Queensland's X3 expansion tube. A sliding joint is introduced to the acceleration tube which axially decouples the facility at this station. When the facility is fired, the upstream section of the facility, which includes the free-piston driver, can recoil upstream freely. The downstream acceleration tube remains stationary. This arrangement provides two important benefits. Firstly, it eliminates nozzle movement relative to the test section before and during the experiment. This has benefits in terms of experimental setup and alignment. Secondly, it prevents transmission of mechanical disturbances from the free-piston driver to the acceleration tube, thereby eliminating mechanically-induced transducer noise in the sensitive pressure transducers installed in this low-pressure tube. This paper details the new design, and presents experimental confirmation of its performance.

  4. Low Energy Neutrino Cross Sections

    International Nuclear Information System (INIS)

    Zeller, G.P.

    2004-01-01

    Present atmospheric and accelerator based neutrino oscillation experiments operate at low neutrino energies (Ev ∼ 1 GeV) to access the relevant regions of oscillation parameter space. As such, they require precise knowledge of the cross sections for neutrino-nucleon interactions in the sub-to-few GeV range. At these energies, neutrinos predominantly interact via quasi-elastic (QE) or single pion production processes, which historically have not been as well studied as the deep inelastic scattering reactions that dominate at higher energies.Data on low energy neutrino cross sections come mainly from bubble chamber, spark chamber, and emulsion experiments that collected their data decades ago. Despite relatively poor statistics and large neutrino flux uncertainties, these measurements provide an important and necessary constraint on Monte Carlo models in present use. The following sections discuss the current status of QE, resonant single pion, coherent pion, and single kaon production cross section measurements at low energy

  5. Neutron-photon multigroup cross sections for neutron energies less than or equal to400 MeV. Revision 1

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Barnes, J.M.; Drischler, J.D.

    1986-01-01

    For a variety of applications, e.g., accelerator shielding design, neutrons in radiotherapy, radiation damage studies, etc., it is necessary to carry out transport calculations involving medium-energy (greater than or equal to20 MeV) neutrons. A previous paper described neutron-photon multigroup cross sections in the ANISN format for neutrons from thermal to 400 MeV. In the present paper the cross-section data presented previously have been revised to make them agree with available experimental data. 7 refs., 1 fig

  6. Cross Section Measurements of the 76Ge (n ,n' γ) Reaction

    Science.gov (United States)

    Crider, B. P.; Peters, E. E.; Prados-Estévez, F. M.; Ross, T. J.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2013-10-01

    Neutrinoless double-beta decay (0 νββ) is a topic of great current interest and, as such, is the focus of several experiments and international collaborations. Two of these experiments, Majorana and GERDA, are seeking evidence of 0 νββ in the decay of 76Ge, where the signal would appear as a sharp peak in the energy spectrum at the Q-value of the reaction plus a small amount of recoil energy, or 2039 keV. Due to the high sensitivity of such a measurement, knowledge of background lines is critical. A study of 76Ga β- decay into 76Ge revealed a 2040.70(25)-keV transition from the 3951.70(14)-keV level, which, if populated, could potentially be a background line of concern. In addition to β- decay from 76Ga, a potential population mechanism could be cosmic-ray-induced inelastic neutron scattering. Measurements of the neutron-induced cross section of the 3951.70-keV level have been performed utilizing the 76 Ge (n ,n' γ) reaction at the University of Kentucky at neutron energies ranging from 4.3 to 4.9 MeV. This material is based upon work is supported by the U.S. National Science Foundation under grant no. PHY-0956310.

  7. Group cross-section processing method and common nuclear group cross-section library based on JENDL-3 nuclear data file

    International Nuclear Information System (INIS)

    Hasegawa, Akira

    1991-01-01

    A common group cross-section library has been developed in JAERI. This system is called 'JSSTDL-295n-104γ (neutron:295 gamma:104) group constants library system', which is composed of a common 295n-104γ group cross-section library based on JENDL-3 nuclear data file and its utility codes. This system is applicable to fast and fusion reactors. In this paper, firstly outline of group cross-section processing adopted in Prof. GROUCH-G/B system is described in detail which is a common step for all group cross-section library generation. Next available group cross-section libraries developed in Japan based on JENDL-3 are briefly reviewed. Lastly newly developed JSSTDL library system is presented with some special attention to the JENDL-3 data. (author)

  8. Neutron-capture cross sections from indirect measurements

    Directory of Open Access Journals (Sweden)

    Scielzo N.D.

    2012-02-01

    Full Text Available Cross sections for compound-nuclear reactions reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f reactions, but need to be improved upon for applications to capture reactions.

  9. Curves and tables of neutron cross sections

    International Nuclear Information System (INIS)

    Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi

    1990-07-01

    Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)

  10. Differential cross section measurements of the π-p elastic scattering in the Coulomb interference region between 30 and 140 GeV

    International Nuclear Information System (INIS)

    Ille, B.

    1979-01-01

    The differential cross section of elastic π - -p scattering in the Coulomb interference region from 30 GeV to 140 GeV has been measured at the CERN SPS using in conjunction an ionization chamber recoil spectrometer and a forward multiwire proportional chamber-magnet spectrometer. The phase of the π - -p forward hadronic amplitude was found to go four negative value (at 30 GeV) to positive value (at 140 GeV), passing through zero at about 60 GeV. The logarithmic slope at small /t/ (/t/ approximately 0.03 (GeV/c) 2 ) has also been measured and was found to be higher by about 3 (GeV/c) -2 than the values determined at higher /t/ (/t/ = 0.2 (GeV/c) 2 ) [fr

  11. DART, a BCA code to assess and compare primary irradiation damage in nuclear materials submitted to neutron and ion flux - 02002

    International Nuclear Information System (INIS)

    Luneville, L.; Simeone, D.

    2016-01-01

    When a material is subjected to a flux of high-energy particles, its constituent atoms can be knocked from their equilibrium positions with a wide range of energies, depending on the exact nature of the collision. The spectrum of damage energy, derived from the exact knowledge of the recoil spectra for each nuclear reaction occurring in the solid, constitutes a vital data set required for understanding how materials evolve under irradiation. The knowledge of such damage energy is relevant to compare the impact of different facilities on the structural behavior and relevant properties of materials. The DART code was developed for two distinct reasons: the first one was a correct determination of the Primary Knocked on Atoms (PKA) spectrum from reliable cross section data libraries and the second was a crude estimation of the damage energy induced by different irradiations. This last term can be a quick estimation of radiation damage produced in the same material by different nuclear plants and particle accelerators. Based on the Binary Collision Approximation, this code allows computing the primary spectra produced by neutrons, ions and electrons as well as the damage energy deposited by these particles in a poly atomic material. It is then a tool to compare radiation damage induced in nuclear reactors as well as in ion beam facilities. This brief paper is followed by the slides of the presentation

  12. Neutron Cross Sections for Aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Leif

    1963-08-15

    Total, elastic, inelastic, (n, 2n), (n, {alpha}), (n, p), and (n, {gamma}) cross sections for aluminium have been compiled from thermal to 100 MeV based upon literature search and theoretical interpolations and estimates. Differential elastic cross sections in the centre of mass system are represented by the Legendre coefficients. This method was chosen in order to obtain the best description of the energy dependence of the anisotropy.

  13. High ET jet cross sections at CDF

    International Nuclear Information System (INIS)

    Flaugher, B.

    1996-08-01

    The inclusive jet cross section for p anti p collisions at √s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the Σ E T cross section at √s = 1.8 TeV and the central inclusive jet cross section at √s = 0.630 TeV will also be shown

  14. Recommended evaluation procedure for photonuclear cross section

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)

  15. Recoil effects of neutron-irradiated metal salts

    International Nuclear Information System (INIS)

    Lee, B.H.

    1980-01-01

    The distribution of sup(56)Mn and sup(38)Cl recoil species following radiative neutron capture permanganates, chlorates and perchlorates has been investigated by using ion-exchange chromatography method. The whole of the sup(56)Mn radioactivity in permanganates appeared in two valence states, the sup(38)Cl radioactivity in chlorates in two valence states and also the sup(38)Cl radioactivity in perchlorates in three valence states. Recoil energy was calculated. The internal conversion of sup(38m)Cl isomer transition affects the retention value. The greater the radii of the cation, the higher is the probability of the recoil atom breaking through the secondary cage. In ammonium salt, the ammonium ion behaves as a reducing agent. Crystal structures with their greater free space have shown by retention. (Author)

  16. Recommended activation detector cross sections (RNDL-82)

    International Nuclear Information System (INIS)

    Bondars, Kh.Ya.; Lapenas, A.A.

    1984-01-01

    The results of the comparison between measured and calculated average cross sections in 5 benchmark experiments are presented. Calculations have been based on the data from 10 libraries of evaluated cross sections. The recommended library (RNDL-82) of the activation detector cross sections has been created on the basis of the comparison. RNDL-82, including 26 reactions, and the basic characteristics of the detectors are presented. (author)

  17. Activation cross section and isomeric cross section ratios for the (n ,2 n ) reaction on 153Eu

    Science.gov (United States)

    Luo, Junhua; Jiang, Li; Li, Suyuan

    2017-10-01

    The 153Eu(n ,2 n ) m1,m2,g152Eu cross section was measured by means of the activation technique at three neutron energies in the range 13-15 MeV. The quasimonoenergetic neutron beam was formed via the 3H(d ,n ) 4He reaction, in the Pd-300 Neutron Generator at the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The cross section of the population of the second high-spin (8-) isomeric state was measured along with the reaction cross section populating both the ground (3-) and the first isomeric state (0-). Cross sections were also evaluated theoretically using the numerical code TALYS-1.8, with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  18. Transportation system of recoil nucleus by helium jet

    International Nuclear Information System (INIS)

    Cabral, S.C.; Borges, A.M.; Lemos Junior, O.F.; Auler, L.T.; Silva, A.G. da

    1981-01-01

    The transportation system of recoil nucleus by helium jet, is studied. It is used a technique aiming to put in the detection area (region of low background) the recoils, produced by nuclear reactions between target and particle beams, those produced with the help of cyclotron CV-28. (E.G.) [pt

  19. Computer calculation of neutron cross sections with Hauser-Feshbach code STAPRE incorporating the hybrid pre-compound emission model

    International Nuclear Information System (INIS)

    Ivascu, M.

    1983-10-01

    Computer codes incorporating advanced nuclear models (optical, statistical and pre-equilibrium decay nuclear reaction models) were used to calculate neutron cross sections needed for fusion reactor technology. The elastic and inelastic scattering (n,2n), (n,p), (n,n'p), (n,d) and (n,γ) cross sections for stable molybdenum isotopes Mosup(92,94,95,96,97,98,100) and incident neutron energy from about 100 keV or a threshold to 20 MeV were calculated using the consistent set of input parameters. The hydrogen production cross section which determined the radiation damage in structural materials of fusion reactors can be simply deduced from the presented results. The more elaborated microscopic models of nuclear level density are required for high accuracy calculations

  20. Activation cross section and isomeric cross-section ratio for the (n,2n) reaction on {sup 132,134}Ba

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua [Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; Hexi Univ., Zhangye (China). Inst. of New Energy; Wu, Chunlei; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Li, Suyuan [Hexi Univ., Zhangye (China). Inst. of New Energy

    2017-07-01

    Cross sections of the {sup 132}Ba(n,2n){sup 131m,g}Ba and {sup 134}Ba(n,2n){sup 133m,g}Ba reactions and their isomeric cross section ratios σ{sub m}/σ{sub g} have been measured by means of the activation technique at three neutron energies in the range 13-15 MeV. BaCO{sub 3} samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The quasimonoenergetic neutrons beam were produced via the {sup 3}H(d,n){sup 4}He reaction at the Pd-300 Neutron Generator of the Chinese Academy of Engineering Physics (CAEP). The activities induced in the reaction products were measured using high-resolution γ ray spectroscopy. The pure cross section of the ground-state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  1. Dielectronic recombination cross sections for H-like ions

    International Nuclear Information System (INIS)

    Pindzola, M.S.; Badnell, N.R.; Griffin, D.C.

    1990-01-01

    Dielectronic recombination cross sections for several H-like atomic ions are calculated in an isolated-resonance, distorted-wave approximation. Fine-structure and configuration-interaction effects are examined in detail for the O 7+ cross section. Hartree-Fock, intermediate-coupled, multiconfiguration dielectronic recombination cross sections for O 7+ are then compared with the recent experimental measurements obtained with the Test Storage Ring in Heidelberg. The cross-section spectra line up well in energy and the shape of the main resonance structures are comparable. The experimental integrated cross sections differ by up to 20% from theory, but this may be due in part to uncertainties in the electron distribution function

  2. Comparative analysis among several cross section sets

    International Nuclear Information System (INIS)

    Caldeira, A.D.

    1983-01-01

    Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author) [pt

  3. Fission cross section measurements at intermediate energies

    International Nuclear Information System (INIS)

    Laptev, Alexander

    2005-01-01

    The activity in intermediate energy particle induced fission cross-section measurements of Pu, U isotopes, minor actinides and sub-actinides in PNPI of Russia is reviewed. The neutron-induced fission cross-section measurements are under way in the wide energy range of incident neutrons from 0.5 MeV to 200 MeV at the GNEIS facility. In number of experiments at the GNEIS facility, the neutron-induced fission cross sections were obtained for many nuclei. In another group of experiments the proton-induced fission cross-section have been measured for proton energies ranging from 200 to 1000 MeV at 100 MeV intervals using the proton beam of PNPI synchrocyclotron. (author)

  4. Partial cross sections near the higher resonances

    International Nuclear Information System (INIS)

    Falk-Vairant, P.; Valladas, G.

    1961-07-01

    As a continuation of the report given at the 10. Rochester Conference, recent measurements of charge-exchange cross section and π 0 production in π - -p interactions are presented here. Section 1 gives a summary of the known results for the elastic, inelastic, and charge-exchange cross sections. Section 2 presents the behavior of the cross sections in the T=1/2 state, in order to discuss the resonances at 600 and 890 MeV. Section 3 discusses the charge-exchange scattering and the interference term between the T=1/2 and T=3/2 states. Section 4 presents some comments on inelastic processes. This report is reprinted from 'Reviews of Modern Physics', Vol. 33, No. 3, 362-367, July, 1961

  5. Heavy quark symmetry at large recoil: The case of baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kroll, P.

    1992-02-01

    We analyze the large recoil behaviour of heavy baryon transition form factors in semi-leptonic decays. We use a generalized Brodsky-Lepage hard scattering formalism where diquarks are considered as quasi-elementary constituents of baryons. In the limit of infinitely heavy quark masses the large recoil form factors exhibit a new model-independent heavy quark symmetry which is reminiscent but not identical to the Isgur-Wise symmetry at low recoil. (orig.)

  6. Recoil release of fission products from nuclear fuel

    International Nuclear Information System (INIS)

    Wise, C.

    1985-01-01

    An analytical approximation is developed for calculating recoil release from nuclear fuel into gas filled interspaces. This expression is evaluated for a number of interspace geometries and shown to be generally accurate to within about 10% by comparison with numerical calculations. The results are applied to situations of physical interest and it is demonstrated that recoil can be important when modelling fission product release from low temperature CAGR pin failures. Furthermore, recoil can contribute significantly in experiments on low temperature fission product release, particularly where oxidation enhancement of this release is measured by exposing the fuel to CO 2 . The calculations presented here are one way of allowing for this, other methods are suggested. (orig.)

  7. Shallow doping of gallium arsenide by recoil implantation

    International Nuclear Information System (INIS)

    Sadana, D.K.; Souza, J.P. de; Rutz, R.F.; Cardone, F.; Norcott, M.H.

    1989-01-01

    Si atoms were recoil-implanted into GaAs by bombarding neutral (As + ) or dopant (Si + ) ions through a thin Si cap. The bombarded samples were subsequently rapid thermally or furnace annealed at 815-1000 degree C in Ar or arsine ambient. The presence of the recoiled Si in GaAs and resulting n + -doping was confirmed by secondary ion mass spectrometry and Hall measurements. It was found that sheet resistance of 19 cm 3 and the annealing temperature was > 850 degree C. The present electrical data show that the recoil implant method is a viable alternative to direct shallow implant for n + doping of GaAs. 7 refs., 3 figs., 1 tab

  8. Recoil polarization measurements in $\\pi^{0}$ electroproduction at the peak of the Delta (1232)

    CERN Document Server

    Sarty, A J

    2001-01-01

    This talk presents a status report, along with some preliminary/on line results, from the Thomas Jefferson National Accelerator Facility (JLab) experiment E91011 which was performed in Hall A at JLab during the summer of 2000. The experiment measured angular distributions for the differential cross section and recoil proton polarizations in the reaction p(e, e'p) pi /sup 0/. Kinematics were chosen to be centered at a CMS energy of W=1232 MeV, and a squared four momentum transfer of Q/sup 2/=1.0 (GeV/c)/sup 2/. The primary objectives of the experiment are to isolate contributions from the resonant quadrupole N to Delta , multipole S/sub 1+/, and to clarify the role of other, small nonresonant multipole contributions to the reaction. Details of the experiment itself will be given, along with sample spectra illustrating the quality and coverage of the data obtained. (10 refs) .

  9. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    Science.gov (United States)

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.

  10. Cross section data for ionization of important cyanides

    International Nuclear Information System (INIS)

    Kaur, Jaspreet; Antony, Bobby

    2015-01-01

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  11. Cross section data for ionization of important cyanides

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com

    2015-11-15

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  12. W/Z+Jets Production Cross Section Ratio as a New Physics Search with the ATLAS Detector at CERN

    CERN Document Server

    Pearce, James Douglas

    One of the dominant backgrounds in new physics searches at the Large Hadron Collider comes from the leptonic decays of Standard Model W and Z bosons recoiling off jets associated with the underlying event. The ratio of the W+jets and Z+jets cross sections, Rn, is predicted with high precision due to the similar masses and production mechanisms of the W and Z bosons. Any significant departures of Rn from predicted values would be an indication of new physics. This thesis studies a strategy to enhance the sensitivity of Rn to a specific type of signal. A measurement of the ratio Rn is presented, and its sensitivity to pair production of top quarks and leptoquarks is studied. Using a set of topology-discriminating variables, based upon calorimeter topoclusters, the sensitivity of Rn to top quark and leptoquark signals is enhanced using multivariate analysis techniques.

  13. Accurate Cross Sections for Microanalysis

    OpenAIRE

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a...

  14. Criticality benchmark comparisons leading to cross-section upgrades

    International Nuclear Information System (INIS)

    Alesso, H.P.; Annese, C.E.; Heinrichs, D.P.; Lloyd, W.R.; Lent, E.M.

    1993-01-01

    For several years criticality benchmark calculations with COG. COG is a point-wise Monte Carlo code developed at Lawrence Livermore National Laboratory (LLNL). It solves the Boltzmann equation for the transport of neutrons and photons. The principle consideration in developing COG was that the resulting calculation would be as accurate as the point-wise cross-sectional data, since no physics computational approximations were used. The objective of this paper is to report on COG results for criticality benchmark experiments in concert with MCNP comparisons which are resulting in corrections an upgrades to the point-wise ENDL cross-section data libraries. Benchmarking discrepancies reported here indicated difficulties in the Evaluated Nuclear Data Livermore (ENDL) cross-sections for U-238 at thermal neutron energy levels. This led to a re-evaluation and selection of the appropriate cross-section values from several cross-section sets available (ENDL, ENDF/B-V). Further cross-section upgrades anticipated

  15. Cross section homogenization analysis for a simplified Candu reactor

    International Nuclear Information System (INIS)

    Pounders, Justin; Rahnema, Farzad; Mosher, Scott; Serghiuta, Dumitru; Turinsky, Paul; Sarsour, Hisham

    2008-01-01

    The effect of using zero current (infinite medium) boundary conditions to generate bundle homogenized cross sections for a stylized half-core Candu reactor problem is examined. Homogenized cross section from infinite medium lattice calculations are compared with cross sections homogenized using the exact flux from the reference core environment. The impact of these cross section differences is quantified by generating nodal diffusion theory solutions with both sets of cross sections. It is shown that the infinite medium spatial approximation is not negligible, and that ignoring the impact of the heterogeneous core environment on cross section homogenization leads to increased errors, particularly near control elements and the core periphery. (authors)

  16. Influence of irradiation parameters on damage accumulation in metals and alloys

    DEFF Research Database (Denmark)

    Singh, B.N.; Zinkle, S.J.

    1994-01-01

    , helium production rate and the production rate of transmutant impurities may affect the rate and the magnitude of the damage accumulation. Possible mechanisms by which these parameters may affect the damage accumulation are described. Specific examples are given to illustrate the fact that the recoil...

  17. Fission cross section measurements of actinides at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Tovesson, Fredrik [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  18. Methodology series module 3: Cross-sectional studies

    Directory of Open Access Journals (Sweden)

    Maninder Singh Setia

    2016-01-01

    Full Text Available Cross-sectional study design is a type of observational study design. In a cross-sectional study, the investigator measures the outcome and the exposures in the study participants at the same time. Unlike in case–control studies (participants selected based on the outcome status or cohort studies (participants selected based on the exposure status, the participants in a cross-sectional study are just selected based on the inclusion and exclusion criteria set for the study. Once the participants have been selected for the study, the investigator follows the study to assess the exposure and the outcomes. Cross-sectional designs are used for population-based surveys and to assess the prevalence of diseases in clinic-based samples. These studies can usually be conducted relatively faster and are inexpensive. They may be conducted either before planning a cohort study or a baseline in a cohort study. These types of designs will give us information about the prevalence of outcomes or exposures; this information will be useful for designing the cohort study. However, since this is a 1-time measurement of exposure and outcome, it is difficult to derive causal relationships from cross-sectional analysis. We can estimate the prevalence of disease in cross-sectional studies. Furthermore, we will also be able to estimate the odds ratios to study the association between exposure and the outcomes in this design.

  19. Methodology Series Module 3: Cross-sectional Studies.

    Science.gov (United States)

    Setia, Maninder Singh

    2016-01-01

    Cross-sectional study design is a type of observational study design. In a cross-sectional study, the investigator measures the outcome and the exposures in the study participants at the same time. Unlike in case-control studies (participants selected based on the outcome status) or cohort studies (participants selected based on the exposure status), the participants in a cross-sectional study are just selected based on the inclusion and exclusion criteria set for the study. Once the participants have been selected for the study, the investigator follows the study to assess the exposure and the outcomes. Cross-sectional designs are used for population-based surveys and to assess the prevalence of diseases in clinic-based samples. These studies can usually be conducted relatively faster and are inexpensive. They may be conducted either before planning a cohort study or a baseline in a cohort study. These types of designs will give us information about the prevalence of outcomes or exposures; this information will be useful for designing the cohort study. However, since this is a 1-time measurement of exposure and outcome, it is difficult to derive causal relationships from cross-sectional analysis. We can estimate the prevalence of disease in cross-sectional studies. Furthermore, we will also be able to estimate the odds ratios to study the association between exposure and the outcomes in this design.

  20. Compilation of cross-sections. Pt. 1

    International Nuclear Information System (INIS)

    Flaminio, V.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1983-01-01

    A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  1. Compilation of cross-sections. Pt. 4

    International Nuclear Information System (INIS)

    Alekhin, S.I.; Ezhela, V.V.; Lugovsky, S.B.; Tolstenkov, A.N.; Yushchenko, O.P.; Baldini, A.; Cobal, M.; Flaminio, V.; Capiluppi, P.; Giacomelli, G.; Mandrioli, G.; Rossi, A.M.; Serra, P.; Moorhead, W.G.; Morrison, D.R.O.; Rivoire, N.

    1987-01-01

    This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and K L 0 . It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)

  2. A recoil-proton fast-neutron counter telescope

    International Nuclear Information System (INIS)

    Pavan, P.; Toniolo, D.; Zago, G.; Zannoni, R.; Galeazzi, G.; Bressanini, G.

    1981-01-01

    A recoil-proton neutron counter telescope is described composed of a solid-state silicon transmission detector and a NE 102 A plastic scintillator, measuring the energy loss, the energy of the recoil protons and the time of flight between the two detectors. The counter exposed to monoenergetic neutron beams of energy from 6 to 20 MeV presents a low background and a moderate energy resolution. Its absolute efficiency is calculated up to 50 MeV. (author)

  3. Evaluation of fusion-evaporation cross-section calculations

    Science.gov (United States)

    Blank, B.; Canchel, G.; Seis, F.; Delahaye, P.

    2018-02-01

    Calculated fusion-evaporation cross sections from five different codes are compared to experimental data. The present comparison extents over a large range of nuclei and isotopic chains to investigate the evolution of experimental and calculated cross sections. All models more or less overestimate the experimental cross sections. We found reasonable agreement by using the geometrical average of the five model calculations and dividing the average by a factor of 11.2. More refined analyses are made for example for the 100Sn region.

  4. NDS multigroup cross section libraries

    International Nuclear Information System (INIS)

    DayDay, N.

    1981-12-01

    A summary description and documentation of the multigroup cross section libraries which exist at the IAEA Nuclear Data Section are given in this report. The libraries listed are available either on tape or in printed form. (author)

  5. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    Science.gov (United States)

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  6. Neutron-induced fission cross sections

    International Nuclear Information System (INIS)

    Weigmann, H.

    1991-01-01

    In the history of fission research, neutron-induced fission has always played the most important role. The practical importance of neutron-induced fission rests upon the fact that additional neutrons are produced in the fission process, and thus a chain reaction becomes possible. The practical applications of neutron-induced fission will not be discussed in this chapter, but only the physical properties of one of its characteristics, namely (n,f) cross sections. The most important early summaries on the subject are the monograph edited by Michaudon which also deals with the practical applications, the earlier review article on fission by Michaudon, and the review by Bjornholm and Lynn, in which neutron-induced fission receives major attention. This chapter will attempt to go an intermediate way between the very detailed theoretical treatment in the latter review and the cited monograph which emphasizes the applied aspects and the techniques of fission cross-section measurements. The more recent investigations in the field will be included. Section II will survey the properties of cross sections for neutron-induced fission and also address some special aspects of the experimental methods applied in their measurement. Section Ill will deal with the formal theory of neutron-induced nuclear reactions for the resolved resonance region and the region of statistical nuclear reactions. In Section IV, the fission width, or fission transmission coefficient, will be discussed in detail. Section V will deal with the broader structures due to incompletely damped vibrational resonances, and in particular will address the special case of thorium and neighboring isotopes. Finally, Section VI will briefly discuss parity violation effects in neutron-induced fission. 74 refs., 14 figs., 3 tabs

  7. ENDF/B-5 fission product cross section evaluations

    International Nuclear Information System (INIS)

    Schenter, R.E.; England, T.R.

    1979-12-01

    Cross section evaluations were made for the 196 fission product nuclides on the ENDF/B-5 data files. Most of the evaluations involve updating the capture cross sections of the important absorbers for fast and thermal reactor systems. This included updating thermal values, resonance integrals, resonance parameter sets, and fast capture cross sections. For the fast capture results generalized least-squares calculations were made with the computer code FERRET. Input for these cross section adjustments included nuclear models calculations and both integral and differential experimental data results. The differential cross sections and their uncertainties were obtained from the CSIRS library. Integral measurement results came from CFRMF and STEK Assemblies 500, 1000, 2000, 3000, 4000. Comparisons of these evaluations with recent capture measurements are shown. 15 figures, 10 tables

  8. Nuclear fission and neutron-induced fission cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    James, G.D.; Lynn, J.E.; Michaudon, A.; Rowlands, J.; de Saussure, G.

    1981-01-01

    A general presentation of current knowledge of the fission process is given with emphasis on the low energy fission of actinide nuclei and neutron induced fission. The need for and the required accuracy of fission cross section data in nuclear energy programs are discussed. A summary is given of the steps involved in fission cross section measurement and the range of available techniques. Methods of fission detection are described with emphasis on energy dependent changed and detector efficiency. Examples of cross section measurements are given and data reduction is discussed. The calculation of fission cross sections is discussed and relevant nuclear theory including the formation and decay of compound nuclei and energy level density is introduced. A description of a practical computation of fission cross sections is given.

  9. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    Science.gov (United States)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  10. Model cross section calculations using LAHET

    International Nuclear Information System (INIS)

    Prael, R.E.

    1992-01-01

    The current status of LAHET is discussed. The effect of a multistage preequilibrium exciton model following the INC is examined for neutron emission benchmark calculations, as is the use of a Fermi breakup model for light nuclei rather than an evaporation model. Comparisons are made also for recent fission cross section experiments, and a discussion of helium production cross sections is presented

  11. Interference analysis of fission cross section

    International Nuclear Information System (INIS)

    Toshkov, S.A.; Yaneva, N.B.

    1976-01-01

    The formula for the reaction cross-section based on the R-matrix formalism considering the interference between the two neighbouring resonances, referred to the same value of total momentum was used for the analysis of the cross-section of resonance neutron induced fission of 230Pu. The experimental resolution and thermal motion of the target nuclei were accounted for numerical integration

  12. Total cross sections for electron scattering by He

    International Nuclear Information System (INIS)

    De Heer, F.J.; Jansen, R.H.J.

    1977-01-01

    A set of total cross sections for scattering of electrons by He has been evaluated over the energy range of zero to 3000 eV by means of the analysis of experiments and theories on total cross sections for elastic scattering, ionisation and excitation, and on differential cross sections for elastic and inelastic scattering. Between 0 and 19.8 eV, where no inelastic processes occur, the total cross sections for scattering are equal to those for elastic scattering. Above 19.8 eV total cross sections for scattering of electrons have been evaluated by adding those for ionisation, excitation and elastic scattering. The total cross sections thus obtained are probably accurate to about 5% over a large part of the energy range. They appear to be in very good agreement with the recent experimental results of Blaauw et al. (J. Phys. B.; 10:L299 (1977)). The present results have already proved useful for application in the dispersion relation for forward scattering in electron-helium collisions. (author)

  13. Cross Sections for Inner-Shell Ionization by Electron Impact

    Energy Technology Data Exchange (ETDEWEB)

    Llovet, Xavier, E-mail: xavier@ccit.ub.edu [Centres Científics i Tecnològics, Universitat de Barcelona, Lluís Solé i Sabarís 1-3, 08028 Barcelona (Spain); Powell, Cedric J. [Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8370 (United States); Salvat, Francesc [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Jablonski, Aleksander [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  14. Floodplain Cross Section Lines

    Data.gov (United States)

    Department of Homeland Security — This table is required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally any FIRM...

  15. A Pebble Bed Reactor cross section methodology

    International Nuclear Information System (INIS)

    Hudson, Nathanael H.; Ougouag, Abderrafi M.; Rahnema, Farzad; Gougar, Hans

    2009-01-01

    A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.

  16. Transport cross section for small-angle scattering

    International Nuclear Information System (INIS)

    D'yakonov, M.I.; Khaetskii, A.V.

    1991-01-01

    Classical mechanics is valid for describing potential scattering under the conditions (1) λ much-lt α and (2) U much-gt ℎυ/α, where λ is the de Broglie wavelength, α is the characteristic size of the scatterer, U is the characteristic value of the potential energy, and υ is the velocity of the scattered particle. The second of these conditions means that the typical value of the classical scattering angle is far larger than the diffraction angle λ/α. In this paper the authors show that this second condition need not hold in a derivation of the transport cross section. In other words, provided that the condition λ much-lt α holds, it is always possible to calculate the transport cross section from the expressions of classical mechanics, even in the region U approx-lt ℎυ/α, where the scattering is diffractive,and the differential cross section is greatly different from the classical cross section. The transport cross section is found from the classical expression even in the anticlassical case U much-lt ℎυ/α, where the Born approximation can be used

  17. Nonelastic-scattering cross sections of elemental nickel

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1980-06-01

    Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of approx. 50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elastic-scattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of greater than or equal to 6%. The experimental results are compared with previously reported values as represented by ENDF/B-V, and areas of consistency and discrepancy, noted. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. 4 figures, 1 table

  18. Fragmentation cross sections outside the limiting-fragmentation regime

    CERN Document Server

    Sümmerer, K

    2003-01-01

    The empirical parametrization of fragmentation cross sections, EPAX, has been successfully applied to estimate fragment production cross sections in reactions of heavy ions at high incident energies. It is checked whether a similar parametrization can be found for proton-induced spallation around 1 GeV, the range of interest for ISOL-type RIB facilities. The validity of EPAX for medium-energy heavy-ion induced reactions is also checked. Only a few datasets are available, but in general EPAX predicts the cross sections rather well, except for fragments close to the projectile, where the experimental cross sections are found to be larger.

  19. Neutral pion electroproduction and virtual Compton scattering on proton with four-momentum transfer squared Q2 = 1 GeV2. Measurement of cross-sections and of generalized polarizabilities

    International Nuclear Information System (INIS)

    Laveissiere, G.

    2001-11-01

    In hadronic physics, the nucleon structure and the quarks confinement are still topical issues. The neutral pion electroproduction and virtual Compton scattering (VCS) reactions allow us to access new observables that describe this structure. This work is focussed on the VCS experiment performed at Jefferson Lab in 1998. The 4 GeV electron beam is scattered off a cryogenic hydrogen target, and the scattered electron and recoiled proton are detected in coincidence in the twin hall A spectrometers. The photon (pion) is reconstructed using a missing particle technique. The data analysis allowed to extract the cross sections relative to both process at four-momentum transfer squared Q 2 = 1 GeV 2 . The VCS cross section has been extracted for the first time in the proton resonance region (W between 1.O and 2.0 GeV) through the photon electroproduction reaction. Around the pion-production threshold up to the Delta(1232) resonance region, these results lead to the measurement of the generalized polarizabilities, that describe the proton structure in the same way as the elastic form factors. Moreover, the neutral pion electroproduction cross section measurement in the resonance region has brought new constraints on the existing phenomenological models. (author)

  20. Measurements of fission cross-sections. Chapter 4

    International Nuclear Information System (INIS)

    James, G.D.

    1981-01-01

    The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)

  1. Vibrational enhancement of total breakup cross sections

    International Nuclear Information System (INIS)

    Haftel, M.I.; Lim, T.K.

    1984-01-01

    This paper considers the role of multi-two-body bound states, namely vibrational excitations, on total three-body breakup cross-sections. Total cross-sections are usually easy to measure, and they play a fundamental role in chemical kinetics. (orig.)

  2. Target dependence of K+-nucleus total cross sections

    International Nuclear Information System (INIS)

    Jiang, M.F.; Ernst, D.J.; Chen, C.M.

    1995-01-01

    We investigate the total cross section and its target dependence for K + -nucleus scattering using a relativistic momentum-space optical potential model which incorporates relativistically normalized wave functions, invariant two-body amplitudes, covariant kinematics, and an exact full-Fermi averaging integral. The definition of the total cross section in the presence of a Coulomb interaction is reviewed and the total cross section is calculated in a way that is consistent with what is extracted from experiment. In addition, the total cross sections for a nucleus and for the deuteron are calculated utilizing the same theory. This minimizes the dependence of the ratio of these cross sections on the details of the theory. The model dependence of the first-order optical potential calculations is investigated. The theoretical results are found to be systematically below all existing data

  3. Tables of RCN-2 fission-product cross section evaluation

    International Nuclear Information System (INIS)

    Gruppelaar, H.

    1979-05-01

    This report (continuation of ECN-13 and ECN-33) describes the third part of the RCN-2 evaluation of neutron cross sections for fission product nuclides in KEDAK format. It contains evaluated data for nine nuclides, i.e. 142 Nd, 143 Nd, 144 Nd, 145 Nd, 146 Nd, 147 Nd, 148 Nd, 150 Nd and 147 Pm. Most emphasis has been given to the evaluation of the radiative capture cross section, in order to provide a data base for adjustment calculations using results of integral measurements. Short evaluation reports are given for this cross section. The evaluated capture cross sections are compared with recent experimental differential and integral data. Graphs are given of the capture cross sections at neutron energies above 1 keV, in which also adjusted point cross sections, based upon integral STEK and CFRMF data have been plotted. Moreover, the results are compared with those of the well-known ENDF/B-IV evaluation for fission product nucleides. Finally, evaluation summaries are given, which include tables of other important neutron cross sections, such as the total, elastic scattering and inelastic scattering cross sections

  4. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  5. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  6. Moeller polarimetry for the BGO-OD experiment and cross section measurement of the reaction γp→K+Λ at the extreme forward angles

    International Nuclear Information System (INIS)

    Zimmermann, Thomas

    2017-01-01

    The BGO-OD experiment, located at the electron accelerator ELSA at the University of Bonn, is designed to study nucleon and hyperon excitations via meson photoproduction using an energy tagged bremsstrahlung photon beam, with the emphasis on understanding the reaction dynamics. It consists of a central BGO calorimeter with a magnetic spectrometer in forward directions. The physics program includes the measurement of polarization observables, some of which can be accessed using polarized photon beams. Circularly polarized photon beams can be produced via bremsstrahlung from an amorphous radiator using longitudinally polarized electrons. The degree of polarization of the photon beam depends on the transferred momentum from the beam electron to the beam photon, and the degree of polarization of the electron beam. The polarization of the electron beam is measured by a Moeller polarimeter. The setup and commissioning of this polarimeter is described in this thesis. Using a circularly polarized photon beam, several double polarization observables can be measured. For associated strangeness photoproduction, such as γp→K + Λ the self analyzing weak hyperon decay, allows the determination of the recoil polarization without requiring an additional recoil polarimeter. γp→K + Λ is therefore one of the photoproduction final states with the most polarization observable data available. Large contributions from t-channel exchange mechanisms however still leave it difficult to determine resonance, s-channel contributions in this channel. To understand the t-channel contribution, the forward angles are essential, but even in the most simplest observable, the cross section, the angular coverage is not complete. In addition the available data disagrees with each other. The BGO-OD experiment is ideally suited to resolve these issues. The magnetic forward spectrometer covers the forward angular range and the BGO calorimeter enabled significant background reduction. The

  7. On the M\\"ossbauer effect and the rigid recoil question

    OpenAIRE

    Davidson, Mark

    2016-01-01

    Various theories for the M\\"ossbauer rigid-recoil effect, which enables a crystal to absorb momentum but not appreciable energy, are compared. These suggest that the recoil may not be instantaneous, and that the recoil time could be used to distinguish between them. An experiment is proposed to measure this time. The idea is to use a small sphere whose outer surface is coated with an electrically charged M\\"ossbauer-active element, and then to measure the amount of energy lost due to Bremmsst...

  8. Multilevel parametrization of fissile nuclei resonance cross sections

    International Nuclear Information System (INIS)

    Lukyanov, A.A.; Kolesov, V.V.; Janeva, N.

    1987-01-01

    Because the resonance interference has an important influence on the resonance structure of neutron cross sections energy dependence at lowest energies, multilevel scheme of the cross section parametrization which take into account the resonance interference is used for the description with the same provisions in the regions of the interferential maximum and minimum of the resonance cross sections of the fissile nuclei

  9. Total and ionization cross sections of electron scattering by fluorocarbons

    International Nuclear Information System (INIS)

    Antony, B K; Joshipura, K N; Mason, N J

    2005-01-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and CF 3 I and the CF x (x 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CF x (x = 1-3) radicals presented here are first estimates on these species

  10. Calculations on neutron irradiation damage in reactor materials

    International Nuclear Information System (INIS)

    Sone, Kazuho; Shiraishi, Kensuke

    1976-01-01

    Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)

  11. Preparation of next generation set of group cross sections. 3

    International Nuclear Information System (INIS)

    Kaneko, Kunio

    2002-03-01

    This fiscal year, based on the examination result about the evaluation energy range of heavy element unresolved resonance cross sections, the upper energy limit of the energy range, where ultra-fine group cross sections are produced, was raised to 50 keV, and an improvement of the group cross section processing system was promoted. At the same time, reflecting the result of studies carried out till now, a function producing delayed neutron data was added to the general-purpose group cross section processing system , thus the preparation of general purpose group cross section processing system has been completed. On the other hand, the energy structure, data constitution and data contents of next generation group cross section set were determined, and the specification of a 151 groups next generation group cross section set was defined. Based on the above specification, a concrete library format of the next generation cross section set has been determined. After having carried out the above-described work, using the general-purpose group cross section processing system , which was complete in this study, with use of the JENDL-3. 2 evaluated nuclear data, the 151 groups next generation group cross section of 92 nuclides and the ultra fine group resonance cross section library for 29 nuclides have been prepared. Utilizing the 151 groups next generation group cross section set and the ultra-fine group resonance cross-section library, a bench mark test calculation of fast reactors has been performed by using an advanced lattice calculation code. It was confirmed, by comparing the calculation result with a calculation result of continuous energy Monte Carlo code, that the 151 groups next generation cross section set has sufficient accuracy. (author)

  12. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    Science.gov (United States)

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Positive Scattering Cross Sections using Constrained Least Squares

    International Nuclear Information System (INIS)

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-01-01

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented

  14. Recoil ion charge state distributions in low energy Arq+ - Ar collisions

    International Nuclear Information System (INIS)

    Vancura, J.; Marchetti, V.; Kostroun, V.O.

    1992-01-01

    We have measured the recoil ion charge state distributions in Ar q+ -- Ar (8≤q≤16) collisions at 2.3 qkeV and 0.18qkeV by time of flight (TOF) spectroscopy. For Ar 8-16+ , recoil ion charge states up to 6+ are clearly present, indicating that the 3p subshell in the target atom is being depleted, while for Ar 10-16+ , there is evidence that target 3s electrons are also being removed. Comparison of the recoil ion charge state spectra at 2.3 and 0.18 qkeV shows that for a given projectile charge, there is very little dependence of the observed recoil target charge state distribution on projectile energy

  15. Heisenberg rise of total cross sections

    International Nuclear Information System (INIS)

    Ezhela, V.V.; Yushchenko, O.P.

    1988-01-01

    It is shown that on the basis of the original idea of Heisenberg on the quasiclassical picture of extended particle interactions one can construct a satisfactory description of the total cross sections, elastic cross sections, elastic diffractive slopes and mean charged multiplicities in the cm energy range from 5 to 900 GeV, and produce reasonable extrapolations up to several tens of TeV. 14 refs.; 7 figs.; 2 tabs

  16. FENDL/E-2.0. Evaluated nuclear data library of neutron-nucleus interaction cross sections and photon production cross sections and photon-atom interaction cross sections for fusion applications. Version 1, March 1997. Summary documentation

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.

    1998-01-01

    This document presents the description of a physical tape containing the basic evaluated nuclear data library of neutron-nucleus interaction cross sections, photon production cross sections and photon-atom interaction cross sections for fusion applications. It is part of the evaluated nuclear data library for fusion applications FENDL-2. The data are available cost-free from the Nuclear Data Section upon request. The data can also be retrieved by the user via online access through international computer networks. (author)

  17. Airborne particulate matter and mitochondrial damage: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Hou Lifang

    2010-08-01

    Full Text Available Abstract Background Oxidative stress generation is a primary mechanism mediating the effects of Particulate Matter (PM on human health. Although mitochondria are both the major intracellular source and target of oxidative stress, the effect of PM on mitochondria has never been evaluated in exposed individuals. Methods In 63 male healthy steel workers from Brescia, Italy, studied between April and May 2006, we evaluated whether exposure to PM was associated with increased mitochondrial DNA copy number (MtDNAcn, an established marker of mitochondria damage and malfunctioning. Relative MtDNAcn (RMtDNAcn was determined by real-time PCR in blood DNA obtained on the 1st (time 1 and 4th day (time 2 of the same work week. Individual exposures to PM10, PM1, coarse particles (PM10-PM1 and airborne metal components of PM10 (chromium, lead, arsenic, nickel, manganese were estimated based on measurements in the 11 work areas and time spent by the study subjects in each area. Results RMtDNAcn was higher on the 4th day (mean = 1.31; 95%CI = 1.22 to 1.40 than on the 1st day of the work week (mean = 1.09; 95%CI = 1.00 to 1.17. PM exposure was positively associated with RMtDNAcn on either the 4th (PM10: β = 0.06, 95%CI = -0.06 to 0.17; PM1: β = 0.08, 95%CI = -0.08 to 0.23; coarse: β = 0.06, 95%CI = -0.06 to 0.17 or the 1st day (PM10: β = 0.18, 95%CI = 0.09 to 0.26; PM1: β = 0.23, 95%CI = 0.11 to 0.35; coarse: β = 0.17, 95%CI = 0.09 to 0.26. Metal concentrations were not associated with RMtDNAcn. Conclusions PM exposure is associated with damaged mitochondria, as reflected in increased MtDNAcn. Damaged mitochondria may intensify oxidative-stress production and effects.

  18. Analysis of Boling's laser-damage morphology

    International Nuclear Information System (INIS)

    Sparks, M.S.

    1980-01-01

    Boling observed that his total-internal-reflection laser-damage sites in glass closely resembled the scattering cross section for small (ka << 1), perfectly conducting sphere and suggested that a very small plasma formed and grew to a larger size, still with ka << 1 satisfied. Even with ka = 1, for which the cross section is different from that observed, the scattered field still is too small to explain the damage in terms of constructive interference between the incident- and scattered fields. Furthermore, the characteristic shape of the scattering cross section that matches the damage patterns is for circular polarization or unpolarized light, in contrast to the experimental plane polarizations. Extending the ideas to include effects of the scattered field outside the glass, such as plasma formation, and to include the correct field (with interesting polarization, including longitudinal circuler polarization at certain distances from the surface) incident on the sphere may explain the experiments. Additional experiments and analysis would be useful to determine if the extended model is valid and to investigate related materials improvement, nondestructive testing, and the relation between laser damage, plasma initiation, and failure under stress, all initiated at small isolated spots

  19. RECOILING MASSIVE BLACK HOLES IN GAS-RICH GALAXY MERGERS

    International Nuclear Information System (INIS)

    Guedes, Javiera; Madau, Piero; Mayer, Lucio; Callegari, Simone

    2011-01-01

    The asymmetric emission of gravitational waves produced during the coalescence of a massive black hole (MBH) binary imparts a velocity 'kick' to the system that can displace the hole from the center of its host. Here, we study the trajectories and observability of MBHs recoiling in three (one major, two minor) gas-rich galaxy merger remnants that were previously simulated at high resolution, and in which the pairing of the MBHs had been shown to be successful. We run new simulations of MBHs recoiling in the major merger remnant with Mach numbers in the range 1≤M≤6 and use simulation data to construct a semi-analytical model for the orbital evolution of MBHs in gas-rich systems. We show the following. (1) In major merger remnants the energy deposited by the moving hole into the rotationally supported, turbulent medium makes a negligible contribution to the thermodynamics of the gas. This contribution becomes significant in minor merger remnants, potentially allowing for an electromagnetic signature of MBH recoil. (2) In major merger remnants, the combination of both deeper central potential well and drag from high-density gas confines even MBHs with kick velocities as high as 1200 km s -1 within 1 kpc from the host's center. (3) Kinematically offset nuclei may be observable for timescales of a few Myr in major merger remnants in the case of recoil velocities in the range 700-1000 km s -1 . (4) In minor merger remnants the effect of gas drag is weaker, and MBHs with recoil speeds in the range 300-600 km s -1 will wander through the host halo for longer timescales. When accounting for the probability distribution of kick velocities, however, we find that the likelihood of observing recoiling MBHs in gas-rich galaxy mergers is very low even in the best-case scenario.

  20. Enhancing the sensitivity of recoil-beta tagging

    International Nuclear Information System (INIS)

    Henderson, J; Jenkins, D G; Davies, P J; Henry, T W; Joshi, P; Nichols, A J; Ruotsalainen, P; Scholey, C; Auranen, K; Grahn, T; Greenlees, P T; Herzáň, A; Jakobsson, U; Julin, R; Juutinen, S; Konki, J; Leino, M; Pakarinen, J; Lotay, G; Obertelli, A

    2013-01-01

    Tagging with β-particles at the focal plane of a recoil separator has been shown to be an effective technique for the study of exotic proton-rich nuclei. This article describes three new pieces of apparatus used to greatly improve the sensitivity of the recoil-beta tagging technique. These include a highly-pixelated double-sided silicon strip detector, a plastic phoswich detector for discriminating high-energy β-particles, and a charged-particle veto box. The performance of these new detectors is described and characterised, and the resulting improvements are discussed.

  1. Modelisation of the fission cross section

    International Nuclear Information System (INIS)

    Morariu, Claudia

    2013-03-01

    The neutron cross sections of four nuclear systems (n+ 235 U, n+ 233 U, n+ 241 Am and n+ 237 Np) are studied in the present document. The target nuclei of the first case, like 235 U and 239 Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237 Np and 241 Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author) [fr

  2. Cross sections for hadron and lepton production processes

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    1976-01-01

    Charged heavy lepton production in proton-proton collisions is studied. Motivated by recent experimental results from the Stanford Linear Accelerator Center a parton model analysis is given of the reaction p + p → L + + L - + x → μ +- + e/ -+ / + neutrinos + x. Results are presented for the total cross section and the differential cross sections with respect to the invariant mass squared of the final charged leptons and the transverse momenta of each one of them. The two-photon mechanism for pair production in colliding beam exeriments is considered. Through the use of mapped invariant integration variables, a reliable exact numerical calculation of the cross section for the production of muon and pion pairs by the two-photon mechanism is provided. Results are given for the exact total cross sections and also the differential cross sections with respect to the invariant mass squared of the pair. These are compared to the results obtained from the equivalent photon approximation method

  3. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    Science.gov (United States)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  4. Microscopic cross-section measurements by thermal neutron activation

    International Nuclear Information System (INIS)

    Avila L, J.

    1987-08-01

    Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained

  5. Distorted eikonal cross sections: A time-dependent view

    International Nuclear Information System (INIS)

    Turner, R.E.

    1982-01-01

    For Hamiltonians with two potentials, differential cross sections are written as time-correlation functions of reference and distorted transition operators. Distorted eikonal differential cross sections are defined in terms of straight-line and reference classical trajectories. Both elastic and inelastic results are obtained. Expressions for the inelastic cross sections are presented in terms of time-ordered cosine and sine memory functions through the use of the Zwanzig-Feshbach projection-operator method

  6. Discussion of electron cross sections for transport calculations

    International Nuclear Information System (INIS)

    Berger, M.J.

    1983-01-01

    This paper deals with selected aspects of the cross sections needed as input for transport calculations and for the modeling of radiation effects in biological materials. Attention is centered mainly on the cross sections for inelastic interactions between electrons and water molecules and the use of these cross sections for the calculation of energy degradation spectra and of ionization and excitation yields. 40 references, 3 figures, 1 table

  7. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  8. Symmetric charge transfer cross section of uranium

    International Nuclear Information System (INIS)

    Shibata, Takemasa; Ogura, Koichi

    1995-03-01

    Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d 3/2 electron in the U atom transfers into the d-electron site of U + ( 4 I 9/2 ) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10 -15 cm 2 ) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U + ion. Charge transfer cross section between U + in the first excited state (289 cm -1 ) and U in the ground state was also obtained. (author)

  9. NNLO jet cross sections by subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Bolzoni, P. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Trocsanyi, Z. [CERN PH-TH, on leave from University of Debrecen and Institute of Nuclear Research of HAS, H-4001 P.O.Box 51 (Hungary)

    2010-08-15

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  10. NNLO jet cross sections by subtraction

    International Nuclear Information System (INIS)

    Somogyi, G.; Bolzoni, P.; Trocsanyi, Z.

    2010-01-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 06, 024 (2005), (arXiv:hep-ph/0502226); G. Somogyi and Z. Trocsanyi, (2006), (arXiv:hep-ph/0609041); G. Somogyi, Z. Trocsanyi, and V. Del Duca, JHEP 01, 070 (2007), (arXiv:hep-ph/0609042); G. Somogyi and Z. Trocsanyi, JHEP 01, 052 (2007), (arXiv:hep-ph/0609043)] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  11. FENDL/E. Evaluated nuclear data library of neutron nuclear interaction cross-sections and photon production cross-sections and photon-atom interaction cross sections for fusion applications. Version 1.1 of November 1994

    International Nuclear Information System (INIS)

    Pashchenko, A.B.; Wienke, H.; Ganesan, S.; McLaughlin, P.K.

    1996-01-01

    This document presents the description of a physical tape containing the basic evaluated nuclear data library of neutron nuclear interaction cross-sections and photon production cross-sections and photon-atom interaction cross-sections for fusion applications. It is part of FENDL, the evaluated nuclear data library for fusion applications. The nuclear data are available cost-free for distribution to interested scientists upon request. The data can also be retrieved by the user via online access through international computer networks. (author). 11 refs, 1 tab

  12. Average cross sections for the 252Cf neutron spectrum

    International Nuclear Information System (INIS)

    Dezso, Z.; Csikai, J.

    1977-01-01

    A number of average cross sections have been measured for 252 Cf neutrons in (n, γ), (n,p), (n,2n), (n,α) reactions by the activation method and for fission by fission chamber. Cross sections have been determined for 19 elements and 45 reactions. The (n,γ) cross section values lie in the interval from 0.3 to 200 mb. The data as a function of target neutron number increases up to about N=60 with minimum near to dosed shells. The values lie between 0.3 mb and 113 mb. These cross sections decrease significantly with increasing the threshold energy. The values are below 20 mb. The data do not exceed 10 mb. Average (n,p) cross sections as a function of the threshold energy and average fission cross sections as a function of Zsup(4/3)/A are shown. The results obtained are summarized in tables

  13. Comparison of the Recoil of Conventional and Electromagnetic Cannon

    Directory of Open Access Journals (Sweden)

    Edward M. Schmidt

    2001-01-01

    Full Text Available The recoil from an electromagnetic (EM railgun is discussed and compared with that from conventional, propellant gas driven cannon. It is shown that, under similar launch conditions, the recoil of the EM gun is less than that of the powder gun; however, use of a muzzle brake on a powder gun can alter this relative behavior.

  14. Cross section library DOSCROS77 (in the SAND-II format)

    International Nuclear Information System (INIS)

    Zijp, W.L.; Nolthenius, H.J.; Borg, N.J.C.M. van der.

    1977-08-01

    The dosimetry cross section library DOSCROS77 is documented with tables, plots and cross section values averaged over a few reference spectra. This library is based on the ENDF/B-IV dosimetry file, supplemented with some other evaluations. The total number of reaction cross section sets incorporated in this library is 49 (+3 cover cross sections sets). The cross section data are available in a format which is suitable for the program SAND-II

  15. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  16. JSD1000: multi-group cross section sets for shielding materials

    International Nuclear Information System (INIS)

    Yamano, Naoki

    1984-03-01

    A multi-group cross section library for shielding safety analysis has been produced by using ENDF/B-IV. The library consists of ultra-fine group cross sections, fine-group cross sections, secondary gamma-ray production cross sections and effective macroscopic cross sections for typical shielding materials. Temperature dependent data at 300, 560 and 900 K have been also provided. Angular distributions of the group to group transfer cross section are defined by a new method of ''Direct Angular Representation'' (DAR) instead of the method of finite Legendre expansion. The library designated JSD1000 are stored in a direct access data base named DATA-POOL and data manipulations are available by using the DATA-POOL access package. The 3824 neutron group data of the ultra-fine group cross sections and the 100 neutron, 20 photon group cross sections are applicable to shielding safety analyses of nuclear facilities. This report provides detailed specifications and the access method for the JSD1000 library. (author)

  17. Self-triggering detectors for recoil nuclei

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.I.; Gasparyan, A.O.

    1975-01-01

    Hybrid α-detectors consisting of wide gap spark chambers and signal α detectors are described. The investigations have been carried out with γ-beams of Yerevan Electron Synchrotron. The possibility of using such detectors in the experiments on particle photoproduction on gas helium with the determination of the interaction point, emission angle of the recoil nucleus and its energy by means of range measurement has been shown. It has been shown that self - triggering wide gap spark chamber allows to detect and measure the range of the recoil nuclei α-particles with energies Esub(α) > or approximately (1 - 2) Mev which correspond to momentum transfers apprxomation (10 -2 - 10 -3 ) (GeV/c) 2

  18. Moeller polarimetry for the BGO-OD experiment and cross section measurement of the reaction γp→K{sup +}Λ at the extreme forward angles

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Thomas

    2017-07-01

    The BGO-OD experiment, located at the electron accelerator ELSA at the University of Bonn, is designed to study nucleon and hyperon excitations via meson photoproduction using an energy tagged bremsstrahlung photon beam, with the emphasis on understanding the reaction dynamics. It consists of a central BGO calorimeter with a magnetic spectrometer in forward directions. The physics program includes the measurement of polarization observables, some of which can be accessed using polarized photon beams. Circularly polarized photon beams can be produced via bremsstrahlung from an amorphous radiator using longitudinally polarized electrons. The degree of polarization of the photon beam depends on the transferred momentum from the beam electron to the beam photon, and the degree of polarization of the electron beam. The polarization of the electron beam is measured by a Moeller polarimeter. The setup and commissioning of this polarimeter is described in this thesis. Using a circularly polarized photon beam, several double polarization observables can be measured. For associated strangeness photoproduction, such as γp→K{sup +}Λ the self analyzing weak hyperon decay, allows the determination of the recoil polarization without requiring an additional recoil polarimeter. γp→K{sup +}Λ is therefore one of the photoproduction final states with the most polarization observable data available. Large contributions from t-channel exchange mechanisms however still leave it difficult to determine resonance, s-channel contributions in this channel. To understand the t-channel contribution, the forward angles are essential, but even in the most simplest observable, the cross section, the angular coverage is not complete. In addition the available data disagrees with each other. The BGO-OD experiment is ideally suited to resolve these issues. The magnetic forward spectrometer covers the forward angular range and the BGO calorimeter enabled significant background reduction. The

  19. Parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.

    2015-01-01

    Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement

  20. The total collision cross section in the glory region

    International Nuclear Information System (INIS)

    Biesen, J.J.H. van den.

    1982-01-01

    Chapter 1 presents a calculation of approximate total cross sections in the glory region from noble gas potentials. The relations between the main features of the total cross section and the properties of the potential to which these are sensitive are extensively investigated in chapter II. A beam apparatus has been developed, which allows for accurate measurements on the total cross section. All effects due to the finite angular and velocity resolution of the apparatus can be eliminated from the data to yield actual total cross sections as a function of the relative velocity. This facilitates a comparison to total cross sections predicted by potentials available in the literature. A brief description of the apparatus and of the data reduction is given in chapter III. The total cross section data obtained for various noble gas combinations are presented and analysed in chapter IV, where also a large number of potentials proposed in the literature is tested. In chapter V the quenching of the glories in the case of a non-spherical interaction is analysed. Subsequently, total cross section data for some atom-molecule systems are discussed. (Auth.)

  1. Hardon cross sections at ultra high energies

    International Nuclear Information System (INIS)

    Yodh, G.B.

    1987-01-01

    A review of results on total hadronic cross sections at ultra high energies obtained from a study of longitudinal development of cosmic ray air showers is given. The experimental observations show that proton-air inelastic cross section increases from 275 mb to over 500 mb as the collision energy in the center of mass increases from 20 GeV to 20 TeV. The proton-air inelastic cross section, obtained from cosmic ray data at √s = 30 TeV, is compared with calculations using various different models for the energy variation of the parameters of the elementary proton-proton interaction. Three conclusions are derived

  2. Total cross section results for deuterium electrodisintegration

    International Nuclear Information System (INIS)

    Skopik, D.M.; Murphy, J.J. II; Shin, Y.M.

    1976-01-01

    Theoretical total cross sections for deuterium electrodisintegration are presented as a function of incident electron energy. The cross section has been calculated using virtual photon theory with Partovi's photodisintegration calculation for E/subx/ > 10 MeV and effective range theory for E/subx/ 2 H(e, n) reaction in Tokamak reactors

  3. Electron-impact ionization cross section of rubidium

    International Nuclear Information System (INIS)

    Kim, Y.; Migdalek, J.; Siegel, W.; Bieron, J.

    1998-01-01

    A theoretical model for electron-impact ionization cross section has been applied to Rb and the theoretical cross section (from the threshold to 1 keV in incident energy) is in good agreement with the recent experimental data obtained using Rb atoms trapped in a magneto-optical trap. The theoretical model, called the binary-encounter endash dipole (BED) model, combines a modified Mott cross section with the high-energy behavior of Born cross sections. To obtain the continuum dipole oscillator strength df/dE of the 5s electron required in the BED model, we used Dirac-Fock continuum wave functions with a core polarization potential that reproduced the known position of the Cooper minimum in the photoionization cross section. For inner-shell ionization, we used a simpler version of df/dE, which retained the hydrogenic shape. The contributions of the 4p→4d, 5s, and 5p autoionizing excitations were estimated using the plane-wave Born approximation. As a by-product, we also present the dipole oscillator strengths for the 5s→np 1/2 and 5s→np 3/2 transitions for high principal quantum numbers n near the ionization threshold obtained from the Dirac-Fock wave functions with the same core polarization potential as that used for the continuum wave functions. copyright 1998 The American Physical Society

  4. Measurement cross sections for radioisotopes production

    International Nuclear Information System (INIS)

    Garrido, E.

    2011-01-01

    New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β - - 47 Sc, 67 Cu - β + - 44 Sc, 64 Cu, 82 Sr/ 82 Rb, 68 Ge/ 68 Ga - and α emitters - 211 At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - nat Cu or nat Ni - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the nat Ti(p,X) 47 Sc and 68 Zn(p,2p) 67 Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68 Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)

  5. Neutron cross section libraries for analysis of fusion neutronics experiments

    International Nuclear Information System (INIS)

    Kosako, Kazuaki; Oyama, Yukio; Maekawa, Hiroshi; Nakamura, Tomoo

    1988-03-01

    We have prepared two computer code systems producing neutron cross section libraries to analyse fusion neutronics experiments. First system produces the neutron cross section library in ANISN format, i.e., the multi-group constants in group independent format. This library can be obtained by using the multi-group constant processing code system MACS-N and the ANISN format cross section compiling code CROKAS. Second system is for the continuous energy cross section library for the MCNP code. This library can be obtained by the nuclear data processing system NJOY which generates pointwise energy cross sections and the cross section compiling code MACROS for the MCNP library. In this report, we describe the production procedures for both types of the cross section libraries, and show six libraries with different conditions in ANISN format and a library for the MCNP code. (author)

  6. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  7. Calculation of the intermediate energy activation cross section

    Energy Technology Data Exchange (ETDEWEB)

    Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)

    1997-03-01

    We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)

  8. Validation of evaluated neutron standard cross sections

    International Nuclear Information System (INIS)

    Badikov, S.; Golashvili, T.

    2008-01-01

    Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)

  9. View-CXS neutron and photon cross-sections viewer

    International Nuclear Information System (INIS)

    Subbaiah, K.V.; Sunil Sunny, C.

    2004-01-01

    A graphical user-friendly interface is developed in Visual Basic (VB)-6 to view the variation of neutron and photon interaction cross-sections of different isotopes as a function of energy. VB subroutines developed read the binary data files of cross-sections created in MCNP-ACE (Briesmeister, J.F., 1993. MCNP - a general purpose Monte Carlo N-Particle Transport code. Version 4A. LANL, USA), ANISN-DLC (Engle W.W. Jr., 1967, A User's Manual for ANISN, K-1693; ORNL, 1974. 100 group neutron cross section data based on ENDF/B-III. Oak Ridge National Laboratory, USA) and KENO-AMPX (Petrie, L.M., Landers, N.F., 1984 KENO-Va- An Improved Monte Carlo Criticality Program with Super Grouping. RSICC-CCC-548, USA) formats using LAHEY-77 Fortran Compiler. The information on isotopes present in each library will be displayed with the help of database files prepared using Micro-Soft ACESS. The cross-section data can be viewed in different presentation styles namely, line graphs, bar graphs, histograms etc., with different color and symbol options. The cross-section plots generated can be saved as Bit-Map file to embed in any other text files. This software enables inter comparison of cross-sections from different type of libraries for isotopes as well as mixtures. Provision is made to view the cross-sections for nuclear reactions such as (n,γ), (n,f), (n,α), etc. The software can be obtained from Radiation Safety Information and Computational Centre (RSICC), ORNL, USA with the code package identification number PSR-514. The software package needs a hard disk space of about 80 MB when installed and works in WINDOWS-95/98/2000 operating systems

  10. Optical Model and Cross Section Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  11. Pion-nucleus cross sections

    International Nuclear Information System (INIS)

    Barashenkov, V.S.

    1990-01-01

    The tables of inelastic and total cross sections of π ± mesons interactions with nuclei 4 He- 238 U are presented. The tables are obtained by theoretical analysis of known experimental data for energies higher some tens of MeV. 1 ref.; 1 tab

  12. Proton-air and proton-proton cross sections

    Directory of Open Access Journals (Sweden)

    Ulrich Ralf

    2013-06-01

    Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.

  13. Compact fitting formulas for electron-impact cross sections

    International Nuclear Information System (INIS)

    Kim, Y.K.

    1992-01-01

    Compact fitting formulas, which contain four fitting constants, are presented for electron-impact excitation and ionization cross sections of atoms and ions. These formulas can fit experimental and theoretical cross sections remarkably well, when resonant structures are smoothed out, from threshold to high incident electron energies (<10 keV), beyond which relativistic formulas are more appropriate. Examples of fitted cross sections for some atoms and ions are presented. The basic form of the formula is valid for both atoms and molecules

  14. Single-level resonance parameters fit nuclear cross-sections

    Science.gov (United States)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  15. Total cross section of highly excited strings

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-01-01

    The unpolarized total cross section for the joining of two highly excited strings is calculated. The calculation is performed by taking the average overall states in the given excitation levels of the initial strings. We find that the total cross section grows with the energy and momentum of the initial states. (author). 8 refs, 1 fig

  16. Commissioning of a proton-recoil spectrometer

    International Nuclear Information System (INIS)

    Nunes, J.C.; Faught, R.T.

    2000-01-01

    Measurements of neutron fluence spectra in fields from bare and heavy-water-moderated 252 Cf were made with a commercially available proton-recoil spectrometer (PRS) that covers 50 keV to 4.5 MeV. Data obtained from these measurements were compared with data from Bonner sphere spectrometry, Monte Carlo simulation and the open literature. Alterations to the input data file used in unfolding recoil-proton pulse-height distributions were made. Understanding the reasons for these changes and considering the effects of some of the results in an appreciation of the significance of parameters used in the unfolding. An uncertainty of 10% is estimated for values of fluence and ambient dose equivalent for the energy region covered by this PRS. (author)

  17. MXS cross-section preprocessor user's manual

    International Nuclear Information System (INIS)

    Parker, F.; Ishikawa, M.; Luck, L.

    1987-03-01

    The MXS preprocessor has been designed to reduce the execution time of programs using isotopic cross-section data and to both reduce the execution time and improve the accuracy of shielding-factor interpolation in the SIMMER-II accident analysis program. MXS is a dual-purpose preprocessing code to: (1) mix isotopes into materials and (2) fit analytic functions to the shelf-shielding data. The program uses the isotope microscopic neutron cross-section data from the CCCC standard interface file ISOTXS and the isotope Bondarenko self-shielding data from the CCCC standard interface file BRKOXS to generate cross-section and self-shielding data for materials. The materials may be a mixture of several isotopes. The self-shielding data for the materials may be the actual shielding factors or a set of coefficients for functions representing the background dependence of the shielding factors. A set of additional data is given to describe the functions necessary to interpolate the shielding factors over temperature

  18. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  19. NNLO jet cross sections by subtraction

    Science.gov (United States)

    Somogyi, G.; Bolzoni, P.; Trócsányi, Z.

    2010-08-01

    We report on the computation of a class of integrals that appear when integrating the so-called iterated singly-unresolved approximate cross section of the NNLO subtraction scheme of Refs. [G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 06, 024 (2005), arXiv:hep-ph/0502226; G. Somogyi and Z. Trócsányi, (2006), arXiv:hep-ph/0609041; G. Somogyi, Z. Trócsányi, and V. Del Duca, JHEP 01, 070 (2007), arXiv:hep-ph/0609042; G. Somogyi and Z. Trócsányi, JHEP 01, 052 (2007), arXiv:hep-ph/0609043] over the factorised phase space of unresolved partons. The integrated approximate cross section itself can be written as the product of an insertion operator (in colour space) times the Born cross section. We give selected results for the insertion operator for processes with two and three hard partons in the final state.

  20. A PROPOSAL TO MEASURE THE CROSS SECTION OF THE SPACE STAR IN NEUTRON-DEUTERON BREAKUP IN A RECOIL GEOMETRY SETUP. Final report

    International Nuclear Information System (INIS)

    Crowe, Benjamin J. III

    2009-01-01

    Nucleon-deuteron (Nd) breakup is an important tool for obtaining a better understanding of three-nucleon (3N) dynamics and for developing meson exchange descriptions of nuclear systems. The kinematics of the nd breakup reaction enable observables to be studied in a variety of exit-channel configurations that show sensitivity to realistic nucleon-nucleon (NN) potential models and three-nucleon force (3NF) models. Rigorous 3N calculations give very good descriptions of most 3N reaction data. However, there are still some serious discrepancies between data and theory. The largest discrepancy observed between theory and data for nd breakup is for the cross section for the space-star configuration. This discrepancy is known as the 'Space Star Anomaly'. Several experimental groups have obtained results consistent with the 'Space Star Anomaly', but it is important to note that they all used essentially the same experimental setup and so their experimental results are subject to the same systematic errors. We propose to measure the space-star cross-section at the Triangle Universities Nuclear Laboratory (TUNL) using an experimental technique that is significantly different from the one used in previous breakup experiments. This technique has been used by a research group from the University of Bonn to measure the neutron-neutron scattering length. There are three possible scenarios for the outcome of this work: (1) the new data are consistent with previous measurements; (2) the new data are not in agreement with previous measurements, but are in agreement with theory; and (3) the new data are not in agreement with either theory or previous measurements. Any one of the three scenarios will provide valuable insight on the Space Star Anomaly.

  1. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  2. LHCb cross-section measurements with heavy flavour jets

    CERN Multimedia

    Michielin, Emanuele

    2017-01-01

    Cross-section measurements of jets originating from the hadronization of beauty ($b$) and charm ($c$) quarks at LHCb give the unique opportunity to probe Parton Distribution Functions (PDFs) at low and large momentum fraction and to test the Standard Model in the forward region. In this poster the production of $t\\bar{t}$ pairs in the forward region, the measurement of the $W+b\\bar{b}$ and $W+c\\bar{c}$ cross-section and the measurement of the $Z\\rightarrow b\\bar{b}$ cross-section are presented.

  3. D-particle Recoil Space Times and "Glueball" Masses

    CERN Document Server

    Mavromatos, Nikolaos E; Mavromatos, Nick E.; Winstanley, Elizabeth

    2001-01-01

    We discuss the properties of matter in a D-dimensional anti-de-Sitter-type space time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world-sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cut-offs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ra...

  4. Neutron cross section measurements for the Fast Breeder Program

    International Nuclear Information System (INIS)

    Block, R.C.

    1979-06-01

    This research was concerned with the measurement of neutron cross sections of importance to the Fast Breeder Reactor. The capture and total cross sections of fission products ( 101 102 104 Ru, 143 145 Nd, 149 Sm, 95 97 Mo, Cs, Pr, Pd, 107 Pd, 99 Tc) and tag gases (Kr, 78 80 Kr) were measured up to 100 keV. Filtered neutron beams were used to measure the capture cross section of 238 U (with an Fe filter) and the total cross section of Na (with a Na filter). A radioactive neutron capture detector was developed. A list of publications is included

  5. Developing Scientific Reasoning Through Drawing Cross-Sections

    Science.gov (United States)

    Hannula, K. A.

    2012-12-01

    Cross-sections and 3D models of subsurface geology are typically based on incomplete information (whether surface geologic mapping, well logs, or geophysical data). Creating and evaluating those models requires spatial and quantitative thinking skills (including penetrative thinking, understanding of horizontality, mental rotation and animation, and scaling). However, evaluating the reasonableness of a cross-section or 3D structural model also requires consideration of multiple possible geometries and geologic histories. Teaching students to create good models requires application of the scientific methods of the geosciences (such as evaluation of multiple hypotheses and combining evidence from multiple techniques). Teaching these critical thinking skills, especially combined with teaching spatial thinking skills, is challenging. My Structural Geology and Advanced Structural Geology courses have taken two different approaches to developing both the abilities to visualize and to test multiple models. In the final project in Structural Geology (a 3rd year course with a pre-requisite sophomore mapping course), students create a viable cross-section across part of the Wyoming thrust belt by hand, based on a published 1:62,500 geologic map. The cross-section must meet a number of geometric criteria (such as the template constraint), but is not required to balance. Each student tries many potential geometries while trying to find a viable solution. In most cases, the students don't visualize the implications of the geometries that they try, but have to draw them and then erase their work if it does not meet the criteria for validity. The Advanced Structural Geology course used Midland Valley's Move suite to test the cross-sections that they made in Structural Geology, mostly using the flexural slip unfolding algorithm and testing whether the resulting line lengths balanced. In both exercises, students seemed more confident in the quality of their cross-sections when the

  6. Applications of the BEam Cross section Analysis Software (BECAS)

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir

    2013-01-01

    A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the gener......A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used...... for the generation of beam finite element models which correctly account for effects stemming from material anisotropy and inhomogeneity in cross sections of arbitrary geometry. These type of modelling approach allows for an accurate yet computationally inexpensive representation of a general class of three...

  7. Absolute photoionization cross-section of the methyl radical.

    Science.gov (United States)

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  8. Cross-section crushing behaviour of hat-sections (Part II: Analytical modelling)

    NARCIS (Netherlands)

    Hofmeyer, H.

    2005-01-01

    Hat-sections are often used to experimentally investigate building sheeting subject to a concentrated load and bending. In car doors, hat-sections are used for side-impact protection. Their crushing behaviour can partly be explained by only observing their cross-sectional behaviour [1]. This

  9. Asymptotic behaviour of pion-pion total cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Greynat, David [Dipartimento di Scienze Fisiche, Universita di Napoli “Federico II”,Via Cintia, 80126 Napoli (Italy); Rafael, Eduardo de [Aix-Marseille Université, CNRS,CPT, UMR 7332, 13288 Marseille (France); Université de Toulon, CNRS,CPT, UMR 7332, 83957 La Garde (France); Vulvert, Grégory [Departament de Física Teórica, IFIC,CSIC - Universitat de València, Apt. Correus 22085, E-46071 València (Spain)

    2014-03-24

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log{sup 2} s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π{sup +}π{sup −}, π{sup ±}π{sup 0} and π{sup 0}π{sup 0} scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N{sub c} and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N{sub c} QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N{sub c} counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ{sub π{sup ±}π{sup 0total}}(s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N{sub c} Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections.

  10. Asymptotic behaviour of pion-pion total cross-sections

    International Nuclear Information System (INIS)

    Greynat, David; Rafael, Eduardo de; Vulvert, Grégory

    2014-01-01

    We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log 2  s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π + π − , π ± π 0 and π 0 π 0 scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours N c and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-N c QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-N c counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σ π ± π 0 total (s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-N c Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections

  11. Neutron total scattering cross sections of elemental antimony

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V.

  12. Neutron total scattering cross sections of elemental antimony

    International Nuclear Information System (INIS)

    Smith, A.B.; Guenther, P.T.; Whalen, J.F.

    1982-11-01

    Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V

  13. Total cross sections for heavy flavour production at HERA

    CERN Document Server

    Frixione, Stefano; Nason, P; Ridolfi, G; Frixione, S; Mangano, M L; Nason, P; Ridolfi, G

    1995-01-01

    We compute total cross sections for charm and bottom photoproduction at HERA energies, and discuss the relevant theoretical uncertainties. In particular we discuss the problems arising from the small-x region, the uncertainties in the gluon parton density, and the uncertainties in the hadronic component of the cross section. Total electroproduction cross sections, calculated in the Weizs\\"acker-Williams approximation, are also given.

  14. Heavy flavour hadro-production cross-sections

    CERN Document Server

    Wöhri, H K

    2003-01-01

    Hadro-production data on charm and beauty absolute cross-sections, collected by experiments at CERN, DESY and Fermilab, are reviewed. The measurements, corrected for the 'time evolution' of the branching ratios, are compared to calculations done with Pythia, as a function of the collision energy, using the latest parametrizations of the parton densities. We then estimate some charm and beauty production cross-sections relevant for future measurements, including nuclear effectes in the PDFs. We finish by briefly addressing the relevance, in heavy-ion collisions, of beauty production as feed-down for J/psi production.

  15. Evaluated activation cross-sections and intercomparison of the ...

    Indian Academy of Sciences (India)

    mental data cross-section with the theoretical codes, to study the quality of the theoretical ... the cross-section, angular distribution, double differential data, gamma ..... TALYS. TENDL. Figure 6. Excitation function of the 87Sr(p, 2n)86Y reaction.

  16. Signal yields of keV electronic recoils and their discrimination from nuclear recoils in liquid xenon

    Science.gov (United States)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Mahlstedt, J.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Ramírez García, D.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wittweg, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration

    2018-05-01

    We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V /cm , 154 V /cm and 366 V /cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V /cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.

  17. Positron induced scattering cross sections for hydrocarbons relevant to plasma

    Science.gov (United States)

    Singh, Suvam; Antony, Bobby

    2018-05-01

    This article explores positron scattering cross sections by simple hydrocarbons such as ethane, ethene, ethyne, propane, and propyne. Chemical erosion processes occurring on the surface due to plasma-wall interactions are an abundant source of hydrocarbon molecules which contaminate the hydrogenic plasma. These hydrocarbons play an important role in the edge plasma region of Tokamak and ITER. In addition to this, they are also one of the major components in the planetary atmospheres and astrophysical mediums. The present work focuses on calculation of different positron impact interactions with simple hydrocarbons in terms of the total cross section (Qtot), elastic cross section (Qel), direct ionization cross section (Qion), positronium formation cross section (Qps), and total ionization cross section (Qtion). Knowing that the positron-plasma study is one of the trending fields, the calculated data have diverse plasma and astrophysical modeling applications. A comprehensive study of Qtot has been provided where the inelastic cross sections have been reported for the first time. Comparisons are made with those available from the literature, and a good agreement is obtained with the measurements.

  18. Neutron standard cross sections in reactor physics - Need and status

    International Nuclear Information System (INIS)

    Carlson, A.D.

    1990-01-01

    The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community

  19. Evaluation of kerma in carbon and the carbon cross sections

    International Nuclear Information System (INIS)

    Axton, E.J.

    1992-02-01

    A preliminary simultaneous least squares fit to measurements of kerma in carbon, and carbon cross sections taken from the ENDF/B-V file was carried out. In the calculation the shapes of the total cross section and the various partial cross sections were rigid but their absolute values were allowed to float in the fit within the constraints of the ENDF/B-V uncertainties. The construction of the ENDF/B-V file imposed improbable shapes, particularly in the case of the (12)C(n,n'3(alpha)) reaction, which were incompatible with direct measurements of kerma and of the reaction cross sections. Consequently a new evaluation of the cross section data became necessary. Since the available time was limited the new evaluation concentrated particularly on those aspects of the ENDF/B-V carbon file which would have most impact on kerma calculations. Following the new evaluation of cross sections new tables of kerma factors were produced. Finally, the simultaneous least squares fit to measurements of kerma and the new cross section file was repeated

  20. single-top quark production cross section using the ATLAS detector

    CERN Document Server

    Feng, Cunfeng; The ATLAS collaboration

    2014-01-01

    Measurements of single top-quark production cross section in proton proton collisions at 7 and 8 TeV are presented. In the leading order process, a W boson is exchanged in the t-channel. For this process, for the first time a fiducial cross section measured within the detector acceptance is presented and the modelling uncertainty when extrapolating to the total inclusive cross section is assessed with a large number of different Monte Carlo generators. The result is in good agreement with the most up-to-date theory predictions. Furthermore, the single top-quark and anti-top total production cross sections, their ratio, as well as a measurement of the inclusive production cross section is presented. Differential cross sections are measured as a function of the transverse momentum and the absolute value of the rapidity of top and anti-top quarks. In addition, a measurement of the production cross section of a single top quark in association with a W boson is presented. The s-channel production is explored and l...

  1. Effects of cross-section on mechanical properties of Au nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Vazinishayan, Ali; Yang, Shuming, E-mail: shuming.yang@mail.xjtu.edu.cn; Duongthipthewa, Anchalee; Wang, Yiming [State Key Laboratory for manufacturing system engineering, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2016-02-15

    The aim of this paper is study of the effects of multiple cross-section of Au nanowire on mechanical properties. Different cross-section models of Au nanowires including circular, hexagonal, pentagonal and rectangular were simulated by finite element modeling using ABAQUS. In this study, the bending technique was applied so that both ends of the model were clamped with mid-span under loading condition. The cross-sections had the length of 400 nm and the diameter of 40 nm, except the circular cross-section while the rest of the cross-sections had an equivalent diameter. Von Misses stresses distribution were used to define the stress distribution in the cross-section under loading condition, and elastic deformation was analyzed by the beam theory. The results disclosed that the circular and the rectangular models had highest and lowest strengths against plastic deformation, respectively.

  2. Invisible anti-cloak with elliptic cross section using phase complement

    International Nuclear Information System (INIS)

    Yang Yu-Qi; Zhang Min; Yue Jian-Xiang

    2011-01-01

    Based on the theory of phase complement, an anti-cloak with circular cross section can be made invisible to an object outside its domain. As the cloak with elliptic cross section is more effective to make objects invisible than that with circular cross section, a scaled coordinate system is proposed to design equivalent materials of invisible anti-cloak with elliptic cross section using phase complement. The cloaks with conventional dielectric and double negative parameters are both simulated with the geometrical transformations. The results show that the cloak with elliptic cross section through phase complement can effectively hide the outside objects. (classical areas of phenomenology)

  3. Methods for calculating anisotropic transfer cross sections

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yixin.

    1985-01-01

    The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)

  4. Photoionization cross sections: present status and future needs

    International Nuclear Information System (INIS)

    Manson, S.T.

    1988-01-01

    The existing experimental data situation for photoionization cross section of ground-state atoms, excited states and positive ions is reviewed. The ability of theory to predict these cross sections is also discussed. The likely progress for the near future is presented [pt

  5. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  6. Neutrino-nucleus cross sections for oscillation experiments

    Science.gov (United States)

    Katori, Teppei; Martini, Marco

    2018-01-01

    Neutrino oscillations physics is entering an era of high precision. In this context, accelerator-based neutrino experiments need a reduction in systematic errors to the level of a few percent. Today, one of the most important sources of systematic errors are neutrino-nucleus cross sections which, in the energy region of hundreds of MeV to a few GeV, are known to a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of neutrino-nucleus interaction physics. After introducing neutrino-oscillation physics and accelerator-based neutrino experiments, we give an overview of general aspects of neutrino-nucleus cross sections, from both the theoretical and experimental point of view. Then, we focus on these cross sections in different reaction channels. We start with the quasi-elastic and quasi-elastic-like cross section, placing a special emphasis on the multinucleon emission channel, which has attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and the differences among them. The discussion is always driven by a comparison with the experimental data. We then consider the one-pion production channel where agreement between data and theory remains highly unsatisfactory. We describe how to interpret pion data, and then analyze, in particular, the puzzle related to the difficulty of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the {ν }μ and {ν }e cross sections, relevant for the charge-conjugation-parity violation experiments. The impact of nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino-oscillation parameters is also reviewed. Finally, we look to the future by discussing projects and efforts in relation to future detectors, beams

  7. Karakteristike trzanja elektromagnetskog topa / Recoil characteristics of an electromagnetic rail gun

    Directory of Open Access Journals (Sweden)

    Zoran B. Ristić

    2009-10-01

    Full Text Available U radu je razmatrano trzanje elektromagnetskog šinskog topa i upoređeno sa trzanjem konvencionalnog topa sa barutnim punjenjem. Zaključuje se da je kod elektromagnetskog topa trzanje manje nego kod topa sa barutnim punjenjem. Takođe, pokazano je da pri istim uslovima lansiranja upotreba gasne kočnice topa sa barutnim punjenjem može izmeniti karakteristike trzanja i više ih približiti ponašanju elektromagnetskog topa. / In this paper the electromagnetic rail gun recoil is discussed and compared with the recoil of a conventional, propellant gas driven gun. It is shown that, under similar launch conditions, the recoil of an electromagnetic gun is weaker than that of the powder-driven gun. The use of a muzzle brake on a powder-driven gun can alter its recoil characteristics and make its behavior closer to that of the electromagnetic rail gun.

  8. Inclined Bodies of Various Cross Sections at Supersonic Speeds

    Science.gov (United States)

    Jorgensen, Leland H.

    1958-01-01

    To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.

  9. Detector for recoil nuclei stopping in the spark chamber gas

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.L.; Ivanov, V.I.; Mkrtchyan, G.G.; Pikhtelev, R.N.

    1974-01-01

    A detector consisting of the combination of a drift and a wide gap spark chambers and designed to detect recoil nuclei stopping in the spark chamber gas is described. It is shown, that by using an appropriate discrimination the detector allows to detect reliably the recoil nuclei in the presence of intensive electron and γ-quanta beams

  10. Priority cross-sections. Joint Nordic analyses of important cross-sections in the Nordel system. Main report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-06-01

    The Nordic Grid Master Plan 2002 shed light on the energy and power balance for the Nordel area but with special focus on 2005. There was a lot to suggest that the tradi-tional transport patterns with frequent southbound transports would change and be more frequently replaced by northbound transports. Against this background, a number of cross-sections were identified within the Nordel area where expansion is expected to have considerable significance for the Nordic elec-tricity market. The present report 'Priority Cross-sections' concludes the work which was started with the grid master plan. The priority cross-sections are subjected to a technical and socio-economic analysis. The analysis aims to understand the transports in the Nordel system and to support Nor-del when prioritizing forthcoming initiatives. The market price is the driving force for the initiatives which will be carried out on the supply and demand side. The commissioning and decommissioning of commercial pro-duction capacity is determined by the market players, and the task of the transmission system operators (TSOs) is to ensure a robust infrastructure for the smooth operation of the electricity market. (au)

  11. Measurement of actinide neutron cross sections

    International Nuclear Information System (INIS)

    Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald

    2003-01-01

    The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility

  12. 238U subthreshold neutron induced fission cross section

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Perez, R.B.; De Saussure, G.; Olsen, D.K.; Ingle, R.W.

    1976-01-01

    High resolution measurements of the 238 U neutron induced fission cross section are reported for neutron energies between 600 eV and 2 MeV. The average subthreshold fission cross section between 10 and 100 keV was found to be 44 +- 6 μb

  13. Fission cross sections in the intermediate energy region

    International Nuclear Information System (INIS)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J.; Carlson, A.D.; Wasson, O.A.; Hill, N.W.

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for 235 U and 238 U compared to intranuclear cascade and statistical model predictions

  14. Fission cross sections in the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. (Los Alamos National Lab., NM (USA)); Carlson, A.D.; Wasson, O.A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Hill, N.W. (Oak Ridge National Lab., TN (USA))

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  15. Sonic Rarefaction Wave Low Recoil Gun

    National Research Council Canada - National Science Library

    Kathe, E

    2002-01-01

    A principal challenge faced by the U.S. Army TACOM-ARDEC Benet Laboratories in the design of armaments for lightweight future fighting vehicles with lethality overmatch is mitigating the deleterious effects of large caliber cannon recoil...

  16. Radiation damage in materials. Primary knock-on atom energy analyses of cascade damage

    International Nuclear Information System (INIS)

    Sekimura, Naoto

    1995-01-01

    To understand cascade damage formation as a function of primary recoil energy, thin foils of gold were irradiated with 20 - 400 keV self-ions to 1.0 x 10 14 ions/m 2 at 300 K. Yield of groups of vacancy clusters saturated at ion energy higher than 100 keV. Number of clusters in a group had variation even from the same energy ions. Size distribution of the clusters was not strongly dependent on number of clusters in a group and ion energy. Density of vacancy clusters in a group formed near the specimen surface was calibrated to estimate vacancy cluster formation in neutron-irradiated material. A model was proposed to predict distribution of defect clusters in the irradiated materials based on a primary recoil spectrum. Examples of recomposed distribution of vacancy clusters in a group in irradiated gold were compared with the measured data. (author)

  17. Polynomial parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, Joao Claudio B.

    2015-01-01

    The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)

  18. Cross section recondensation method via generalized energy condensation theory

    International Nuclear Information System (INIS)

    Douglass, Steven; Rahnema, Farzad

    2011-01-01

    Highlights: → A new method is presented which corrects for core environment error from specular boundaries at the lattice cell level. → Solution obtained with generalized energy condensation provides improved approximation to the core level fine-group flux. → Iterative recondensation of the cross sections and unfolding of the flux provides on-the-fly updating of the core cross sections. → Precomputation of energy integrals and fine-group cross sections allows for easy implementation and efficient solution. → Method has been implemented in 1D and shown to correct the environment error, particularly in strongly heterogeneous cores. - Abstract: The standard multigroup method used in whole-core reactor analysis relies on energy condensed (coarse-group) cross sections generated from single lattice cell calculations, typically with specular reflective boundary conditions. Because these boundary conditions are an approximation and not representative of the core environment for that lattice, an error is introduced in the core solution (both eigenvalue and flux). As current and next generation reactors trend toward increasing assembly and core heterogeneity, this error becomes more significant. The method presented here corrects for this error by generating updated coarse-group cross sections on-the-fly within whole-core reactor calculations without resorting to additional cell calculations. In this paper, the fine-group core flux is unfolded by making use of the recently published Generalized Condensation Theory and the cross sections are recondensed at the whole-core level. By iteratively performing this recondensation, an improved core solution is found in which the core-environment has been fully taken into account. This recondensation method is both easy to implement and computationally very efficient because it requires precomputation and storage of only the energy integrals and fine-group cross sections. In this work, the theoretical basis and development

  19. Poster - 18: New features in EGSnrc for photon cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Elsayed; Mainegra-Hing, Ernesto; Rogers, David W.O. [The Ottawa Hospital Cancer Centre, National Research Council Canada, Carleton University (Canada)

    2016-08-15

    Purpose: To implement two new features in the EGSnrc Monte Carlo system. The first is an option to account for photonuclear attenuation, which can contribute a few percent to the total cross section at the higher end of the energy range of interest to medical physics. The second is an option to use exact NIST XCOM photon cross sections. Methods: For the first feature, the photonuclear total cross sections are generated from the IAEA evaluated data. In the current, first-order implementation, after a photonuclear event, there is no energy deposition or secondary particle generation. The implementation is validated against deterministic calculations and experimental measurements of transmission signals. For the second feature, before this work, if the user explicitly requested XCOM photon cross sections, EGSnrc still used its own internal incoherent scattering cross sections. These differ by up to 2% from XCOM data between 30 keV and 40 MeV. After this work, exact XCOM incoherent scattering cross sections are an available option. Minor interpolation artifacts in pair and triplet XCOM cross sections are also addressed. The default for photon cross section in EGSnrc is XCOM except for the new incoherent scattering cross sections, which have to be explicitly requested. The photonuclear, incoherent, pair and triplet data from this work are available for elements and compounds for photon energies from 1 keV to 100 GeV. Results: Both features are implemented and validated in EGSnrc.Conclusions: The two features are part of the standard EGSnrc distribution as of version 4.2.3.2.

  20. MINERvA - neutrino nucleus cross section experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Recent results from MINERvA, a neutrino cross section experiment at Fermilab, are presented. MINERVA has the goal of providing precision results which will have important impact on oscillation experiments.  Initial data runs for muon neutrino and antineutrino beams of ~3.5 GeV have produced a large number of new results. This seminar will introduce the experiment and describe results for quasielastic, pion production, and inclusive cross sections.

  1. Evaluation methods for neutron cross section standards

    International Nuclear Information System (INIS)

    Bhat, M.R.

    1980-01-01

    Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables

  2. Evaluation of cross sections for neutron-induced reactions in sodium

    International Nuclear Information System (INIS)

    Larson, D.C.

    1980-09-01

    An evaluation of the neutron-induced cross sections of 23 Na has been done for the energy range from 10 -5 eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V, and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables

  3. Differential bremsstrahlung and pair production cross sections at high energies

    International Nuclear Information System (INIS)

    Olsen, Haakon A.

    2003-01-01

    Detailed differential cross sections for high energy bremsstrahlung and pair production are derived with specific attention to the differences between the two processes, which are considerable. For the integrated cross sections, which are the only cross sections specifically known until now, the final state integration theorem guarantees that the exact cross section formulas can be exchanged between bremsstrahlung and pair production by the same substitution rules as for the Born-approximation Bethe-Heitler cross sections, for any amount of atomic screening. In fact the theorem states that the Coulomb corrections to the integrated bremsstrahlung and pair production cross sections are identical for any amount of screening. The analysis of the basic differential cross sections leads to fundamental physical differences between bremsstrahlung and pair production. Coulomb corrections occur for pair production in the strong electric field of the atom for 'large' momentum transfer of the order of mc. For bremsstrahlung, on the other hand, the Coulomb corrections take place at a 'large' distance from the atom of the order of ((ℎ/2π)/mc)ε, with a 'small' momentum transfer mc/ε, where ε is the initial electron energy in units of mc 2 . And the Coulomb corrections can be large, of the order of larger than (Z/137) 2 , which is considerably larger than the integrated cross section corrections

  4. Positron total scattering cross-sections for alkali atoms

    Science.gov (United States)

    Sinha, Nidhi; Singh, Suvam; Antony, Bobby

    2018-01-01

    Positron-impact total scattering cross-sections for Li, Na, K, Rb, Cs and Fr atoms are calculated in the energy range from 5-5000 eV employing modified spherical complex optical potential formalism. The main aim of this work is to apply this formalism to the less studied positron-target collision systems. The results are compared with previous theoretical and experimental data, wherever available. In general, the present data show overall agreement and consistency with other results. Furthermore, we have done a comparative study of the results to investigate the effect of atomic size on the cross-sections as we descend through the group in the periodic table. We have also plotted a correlation graph of the present total cross-sections with polarizability and number of target electrons. The two correlation plots confirm the credibility and consistency of the present results. Besides, this is the first theoretical attempt to report positron-impact total cross-sections of alkali atoms over such a wide energy range.

  5. Coincident detection of electrons ejected at large angles and target recoil ions produced in multiply ionizing collisions for the 1-MeV/u Oq++Ar collision system

    International Nuclear Information System (INIS)

    Gaither III, C.C.; Breinig, M.; Berryman, J.W.; Hasson, B.F.; Richards, J.D.; Price, K.

    1993-01-01

    The angular distributions of energetic electrons ejected at angles between 45 degree and 135 degree with respect to the incident-beam direction have been measured in coincidence with the charge states of the target recoil ions produced in multiply ionizing collisions for the 1-MeV/u O q+ (q=4,7)+Ar collision systems. These measurements have been made for ∼179-, ∼345-, and ∼505-eV electrons. Additionally, the energy distributions of electrons ejected into specific angular regions have been measured. Ar LMM satellite Auger electrons appear as a peak in the energy spectrum of electrons ejected at all large angles. The center of this peak is found at an electron energy of ∼179 eV. Electrons with ∼179 eV energy, ejected at large angles, are preferentially produced in coincidence with recoil ions of charge state 4+. Electrons with ∼345 eV energy and ∼505 eV energy ejected at large angles are preferentially produced in coincidence with recoil ions of charge state 3+. The angular distributions for these electrons are strongly peaked in the forward direction; essentially no electrons are observed at angles larger than 90 degree. These results are consistent with the dominant production mechanism for energetic electrons ejected at large angles being a binary-encounter process. Differential cross sections have been calculated from these angular distributions. They are on the order of 10 -21 cm 2 /(eV sr)

  6. Recoil implantation of boron into silicon by high energy silicon ions

    Science.gov (United States)

    Shao, L.; Lu, X. M.; Wang, X. M.; Rusakova, I.; Mount, G.; Zhang, L. H.; Liu, J. R.; Chu, Wei-Kan

    2001-07-01

    A recoil implantation technique for shallow junction formation was investigated. After e-gun deposition of a B layer onto Si, 10, 50, or 500 keV Si ion beams were used to introduce surface deposited B atoms into Si by knock-on. It has been shown that recoil implantation with high energy incident ions like 500 keV produces a shallower B profile than lower energy implantation such as 10 keV and 50 keV. This is due to the fact that recoil probability at a given angle is a strong function of the energy of the primary projectile. Boron diffusion was showed to be suppressed in high energy recoil implantation and such suppression became more obvious at higher Si doses. It was suggested that vacancy rich region due to defect imbalance plays the role to suppress B diffusion. Sub-100 nm junction can be formed by this technique with the advantage of high throughput of high energy implanters.

  7. From cutting-edge pointwise cross-section to groupwise reaction rate: A primer

    Science.gov (United States)

    Sublet, Jean-Christophe; Fleming, Michael; Gilbert, Mark R.

    2017-09-01

    The nuclear research and development community has a history of using both integral and differential experiments to support accurate lattice-reactor, nuclear reactor criticality and shielding simulations, as well as verification and validation efforts of cross sections and emitted particle spectra. An important aspect to this type of analysis is the proper consideration of the contribution of the neutron spectrum in its entirety, with correct propagation of uncertainties and standard deviations derived from Monte Carlo simulations, to the local and total uncertainty in the simulated reactions rates (RRs), which usually only apply to one application at a time. This paper identifies deficiencies in the traditional treatment, and discusses correct handling of the RR uncertainty quantification and propagation, including details of the cross section components in the RR uncertainty estimates, which are verified for relevant applications. The methodology that rigorously captures the spectral shift and cross section contributions to the uncertainty in the RR are discussed with quantified examples that demonstrate the importance of the proper treatment of the spectrum profile and cross section contributions to the uncertainty in the RR and subsequent response functions. The recently developed inventory code FISPACT-II, when connected to the processed nuclear data libraries TENDL-2015, ENDF/B-VII.1, JENDL-4.0u or JEFF-3.2, forms an enhanced multi-physics platform providing a wide variety of advanced simulation methods for modelling activation, transmutation, burnup protocols and simulating radiation damage sources terms. The system has extended cutting-edge nuclear data forms, uncertainty quantification and propagation methods, which have been the subject of recent integral and differential, fission, fusion and accelerators validation efforts. The simulation system is used to accurately and predictively probe, understand and underpin a modern and sustainable understanding

  8. From cutting-edge pointwise cross-section to groupwise reaction rate: A primer

    Directory of Open Access Journals (Sweden)

    Sublet Jean-Christophe

    2017-01-01

    Full Text Available The nuclear research and development community has a history of using both integral and differential experiments to support accurate lattice-reactor, nuclear reactor criticality and shielding simulations, as well as verification and validation efforts of cross sections and emitted particle spectra. An important aspect to this type of analysis is the proper consideration of the contribution of the neutron spectrum in its entirety, with correct propagation of uncertainties and standard deviations derived from Monte Carlo simulations, to the local and total uncertainty in the simulated reactions rates (RRs, which usually only apply to one application at a time. This paper identifies deficiencies in the traditional treatment, and discusses correct handling of the RR uncertainty quantification and propagation, including details of the cross section components in the RR uncertainty estimates, which are verified for relevant applications. The methodology that rigorously captures the spectral shift and cross section contributions to the uncertainty in the RR are discussed with quantified examples that demonstrate the importance of the proper treatment of the spectrum profile and cross section contributions to the uncertainty in the RR and subsequent response functions. The recently developed inventory code FISPACT-II, when connected to the processed nuclear data libraries TENDL-2015, ENDF/B-VII.1, JENDL-4.0u or JEFF-3.2, forms an enhanced multi-physics platform providing a wide variety of advanced simulation methods for modelling activation, transmutation, burnup protocols and simulating radiation damage sources terms. The system has extended cutting-edge nuclear data forms, uncertainty quantification and propagation methods, which have been the subject of recent integral and differential, fission, fusion and accelerators validation efforts. The simulation system is used to accurately and predictively probe, understand and underpin a modern and

  9. pp production cross sections and the constraint method

    International Nuclear Information System (INIS)

    Anjos, J.C.; Santoro, A.F.S.; Souza, M.H.G.

    1983-01-01

    A method of constructing production cross sections that satisfy the constraints represented by the first few moments is shown to give an excellent account of the data when applied to the high energy pp production cross section ν sub(n) (s) plotted as functions of n. (Author) [pt

  10. Total Cross Sections at High Energies An update

    CERN Document Server

    Fazal-e-Aleem, M; Alam, Saeed; Qadee-Afzal, M

    2002-01-01

    Current and Future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX and TOTEM have been analyzed using various models. In the light of this study an attempt has been made to focus on the behavior of total cross section at very high energies.

  11. Pion-nucleus cross sections approximation

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Polanski, A.; Sosnin, A.N.

    1990-01-01

    Analytical approximation of pion-nucleus elastic and inelastic interaction cross-section is suggested, with could be applied in the energy range exceeding several dozens of MeV for nuclei heavier than beryllium. 3 refs.; 4 tabs

  12. Angular differential studies of electron transfer in collisions of He-like ions with Na(3s) : The role of electron saddle crossings

    NARCIS (Netherlands)

    Blank, I.; Otranto, S.; Meinema, C.; Olson, R. E.; Hoekstra, R.

    2013-01-01

    We present a systematic experimental and theoretical study of angular differential cross sections of single-electron transfer in collisions of N5+, O6+, and Ne8+ with ground-state Na(3s) in the collision energy range from 1 to 8 keV/amu. Experiments were performed using recoil-ion momentum

  13. Electron collision cross section sets of TMS and TEOS vapours

    Science.gov (United States)

    Kawaguchi, S.; Takahashi, K.; Satoh, K.; Itoh, H.

    2017-05-01

    Reliable and detailed sets of electron collision cross sections for tetramethylsilane [TMS, Si(CH3)4] and tetraethoxysilane [TEOS, Si(OC2H5)4] vapours are proposed. The cross section sets of TMS and TEOS vapours include 16 and 20 kinds of partial ionization cross sections, respectively. Electron transport coefficients, such as electron drift velocity, ionization coefficient, and longitudinal diffusion coefficient, in those vapours are calculated by Monte Carlo simulations using the proposed cross section sets, and the validity of the sets is confirmed by comparing the calculated values of those transport coefficients with measured data. Furthermore, the calculated values of the ionization coefficient in TEOS/O2 mixtures are compared with measured data to confirm the validity of the proposed cross section set.

  14. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  15. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W B; Johnston, P N; Walker, S R; Bubb, I F [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J F [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  16. Penetration of HEPA filters by alpha recoil aerosols

    International Nuclear Information System (INIS)

    McDowell, W.J.; Seeley, F.G.; Ryan, M.T.

    1976-01-01

    The self-scattering of alpha-active substances has long been recognized and is attributed to expulsion of aggregates of atoms from the surface of alpha-active materials by alpha emission recoil energy, and perhaps to further propulsion of these aggregates by subsequent alpha recoils. Workers at the University of Lowell recently predicted that this phenomenon might affect the retention of alpha-active particulate matter by HEPA filters, and found support in experiments with 212 Pb. Tests at Oak Ridge National Laboratory have confirmed that alpha-emitting particulate matter does penetrate high-efficiency filter media, such as that used in HEPA filters, much more effectively than do non-radioactive or beta-gamma active aerosols. Filter retention efficiencies drastically lower than the 99.9 percent quoted for ordinary particulate matter were observed with 212 Pb, 253 Es, and 238 Pu sources, indicating that the phenomenon is common to all of these and probably to all alpha-emitting materials of appropriate half-life. Results with controlled air-flow through filters in series are consistent with the picture of small particles dislodged from the ''massive'' surface of an alpha-active material, and then repeatedly dislodged from positions on the filter fibers by subsequent alpha recoils. The process shows only a small dependence on the physical form of the source material. Oxide dust, nitrate salt, and plated metal all seem to generate the recoil particles effectively. The amount penetrating a series of filters depends on the total amount of activity in the source material, its specific activity, and the length of time of air flow

  17. Recoil transporter devices

    International Nuclear Information System (INIS)

    Madhavan, N.

    2005-01-01

    The study of sparsely produced nuclear reaction products in the direction of intense primary beam is a challenging task, the pursuit of which has given rise to the advent or several types of selective devices. These range from a simple parallel plate electrostatic deflector to state-of-the-art electromagnetic separators. There is no single device which can satisfy all the requirements of an ideal recoil transporter, simultaneously. An overview of such devices and their building blocks is presented, which may help in the proper choice of the device as per the experimental requirements. (author)

  18. Nuclear reactions excited by recoil protons on a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Khaydarov, A.; Barsukova, E.G.

    2006-01-01

    The nuclear reactions excited by recoil protons and of the detection possibility of the various chemical elements with the use of these secondary nucleus reactions were investigated. The recoil protons are produced on a nuclear reactor in the result of (n, p) inelastic and elastic scattering interaction of fast neutrons with nuclei of hydrogen. It is well known that the share of fast neutrons in energetic spectrum of reactor's neutrons in comparison with the share of thermal neutrons is small. . Consequently, the share of recoil protons produced in the result of fast neutron interaction with nuclei of light elements, capable to cause the nuclear reactions, is also small, des, due to Coulomb barrier of nuclei the recoil protons can cause the nuclear reactions only on nuclei of light and some middle elements. Our studies show that observable yields have radio nuclides excited in the result of nuclear reactions on Li, B, O, V and Cu. Our experimental results have demonstrated that the proton activation analysis based on the application of secondary nuclear reactions is useful technique to determine large contents of various light and medium chemical elements. Detection limits for studied chemical elements are estimated better than 10 ppm

  19. LINEAR2007, Linear-Linear Interpolation of ENDF Format Cross-Sections

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: LINEAR converts evaluated cross sections in the ENDF/B format into a tabular form that is subject to linear-linear interpolation in energy and cross section. The code also thins tables of cross sections already in that form. Codes used subsequently need thus to consider only linear-linear data. IAEA1311/15: This version include the updates up to January 30, 2007. Changes in ENDF/B-VII Format and procedures, as well as the evaluations themselves, make it impossible for versions of the ENDF/B pre-processing codes earlier than PREPRO 2007 (2007 Version) to accurately process current ENDF/B-VII evaluations. The present code can handle all existing ENDF/B-VI evaluations through release 8, which will be the last release of ENDF/B-VI. Modifications from previous versions: - Linear VERS. 2007-1 (JAN. 2007): checked against all ENDF/B-VII; increased page size from 60,000 to 600,000 points 2 - Method of solution: Each section of data is considered separately. Each section of File 3, 23, and 27 data consists of a table of cross section versus energy with any of five interpolation laws. LINEAR will replace each section with a new table of energy versus cross section data in which the interpolation law is always linear in energy and cross section. The histogram (constant cross section between two energies) interpolation law is converted to linear-linear by substituting two points for each initial point. The linear-linear is not altered. For the log-linear, linear-log and log- log laws, the cross section data are converted to linear by an interval halving algorithm. Each interval is divided in half until the value at the middle of the interval can be approximated by linear-linear interpolation to within a given accuracy. The LINEAR program uses a multipoint fractional error thinning algorithm to minimize the size of each cross section table

  20. A method for measuring light ion reaction cross-sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.; Arendse, G.J.; Auce, A.; Cox, A.J.; Foertsch, S.V.; Jacobs, N.M.; Johansson, R.; Nyberg, J.; Peavy, J.; Renberg, P.-U.; Sundberg, O.; Stander, J.A.; Steyn, G.F.; Tibell, G.; Zorro, R.

    2005-01-01

    An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle

  1. A method for measuring light ion reaction cross sections

    International Nuclear Information System (INIS)

    Carlson, R.F.; Ingemarsson, A.; Lantz, M.

    2005-03-01

    An experimental procedure for measuring reaction cross sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross sections for five different sizes of the solid angles in steps from 99.1 to 99.8% of the total solid angle. The final reaction cross section values are obtained by extrapolation to the full solid angle

  2. Calculated Cross Sections for the Electron Impact Ionization of Molecular Ions

    Science.gov (United States)

    Deutsch, H.; Becker, K.; Defrance, P.; Onthong, U.; Parajuli, R.; Probst, M.; Matt-Leubner, S.; Maerk, T.

    2002-10-01

    We report the results of the application of the semi- classical Deutsch-Märk (DM) formalism to the calculation of the absolute electron-impact ionization cross section of the molecular ions H2+, N2+, O2+, CD+, CO+, CO2+, H3O+, and CH4+ for which experimental data have been reported . Where available, we also compare our calculated cross sections with calculated cross sections using the BEB method of Kim and co-workers. The level of agreement between the experimentally determined and calculated cross section is satisfactory in some cases. In all cases, the calculated cross sections exceed the measured cross sections which is not surprising in view of the experimental complications in measuring ionization cross sections of molecular ions due to the presence of competing channels such as ionization dissociative ionization, and dissociative excitation. Work supported in part by FWF, OEAW, and NASA.

  3. Meeting cross-section requirements for nuclear-energy design

    Energy Technology Data Exchange (ETDEWEB)

    Weisbin, C.R.; de Saussure, G.; Santoro, R.T. (Oak Ridge National Lab., TN (USA)); Gilai, T. (Ben-Gurion Univ. of the Negev, Beersheba (Israel))

    1982-01-01

    Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs.

  4. Neutron Elastic Scattering Cross Sections Experimental Data and Optical Model Cross Section Calculations. A Compilation of Neutron Data from the Studsvik Neutron Physics Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Holmqvist, B; Wiedling, T

    1969-06-15

    Neutron elastic scattering cross section measurements have been going on for a long period at the Studsvik Van de Graaff laboratory. The cross sections of a range of elements have been investigated in the energy interval 1.5 to 8 MeV. The experimental data have been compared with cross sections calculated with the optical model when using a local nuclear potential.

  5. Cross sections for pion, proton, and heavy-ion production from 800 MeV protons incident upon aluminum and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dicello, J.F. (Clarkson Univ., Potsdam, NY (USA)); Schillaci, M.E.; Liu Lonchang (Los Alamos National Lab., NM (USA))

    1990-01-01

    When high-energy cosmic rays interact with electronics or other materials in a spacecraft, including the occupants themselves, pions are produced as secondary particles. These secondary pions interact further in the materials producing nuclear secondaries, including nuclear recoils and heavy-ion tertiaries. The secondary pions and the the tertiary particles are capable of producing single-event upsets and other damage in integrated circuits and damage in biological systems. Negative pions stopping in materials are particularly effective because of their unique ability to produce short-range heavy particles from pion stars. With the Los Alamos National Laboratory's version of the intranuclear cascade evaporation code, VEGAS, we have calculated the number of pions produced per energy interval per incident proton from 800 MeV protons on aluminum-27 and silicon-28 along with corresponding results for neutrons, protons, and heavier ions. (orig.).

  6. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  7. Total cross-section measurements progress in nuclear physics

    CERN Document Server

    Giacomelli, G; Mulvey, J H

    2013-01-01

    Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota

  8. Investigation of fractional momentum transfer: measurement of forward recoil ranges in 16O + natTm collisions

    International Nuclear Information System (INIS)

    Singh, Pushpendra P.; Unnati; Sharma, Manoj Kumar; Singh, B.P.; Prasad, R.; Rakesh Kumar; Golda, K.S.; Bhardwaj, H.D.

    2006-01-01

    For better understanding of complete fusion and incomplete fusion in heavy ion reactions a programme of precise measurements of excitation functions, recoil range distribution and angular distributions of recoils has been undertaken. In the present contribution the recoil range distribution for the residues have been measured at ≅ 6 MeV/nucleon, using recoil-catcher technique followed by off-line gamma-spectroscopy

  9. Measurements of recoil and projectile momentum distributions for 19-MeV F9+ + Ne collisions

    International Nuclear Information System (INIS)

    Frohne, V.; Cheng, S.; Ali, R.M.; Raphaelian, M.L.; Cocke, C.L.; Olson, R.

    1996-01-01

    The collision system of 19-MeV F 9+ on Ne has been studied using recoil and projectile momentum spectroscopy. For each event, identified by final recoil and projectile charge state, the three-dimensional momentum vector of the recoil ion and the transverse momentum vector of the projectile ion were measured. The transverse momenta of the recoil and projectile ions were found to be equal in magnitude and opposite in direction, indicating that the transverse momentum exchange is dominated by interactions between the two ion cores. The transverse momentum distributions are well described by nCTMC calculations. The longitudinal momentum distributions of the recoil ions show that a large fraction of the momentum transferred to the projectile is carried off by continuum electrons. The recoil ions are scattered slightly backward, in partial agreement with predictions of nCTMC calculations. copyright 1996 The American Physical Society

  10. Learning of Cross-Sectional Anatomy Using Clay Models

    Science.gov (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  11. Q.C.D. estimates of hadronic cross sections

    International Nuclear Information System (INIS)

    Navelet, H.; Peschanski, R.

    1983-03-01

    Estimates for hadron-hadron cross-sections are made using the leading log approximation of Q.C.D. The rise of the total inelastic pp cross-sections at high energy is reproduced, thanks to the competition between the small parton-parton interaction and the large multiplicity of gluons predicted by Q.C.D

  12. Comparative study of Monte Carlo particle transport code PHITS and nuclear data processing code NJOY for PKA energy spectra and heating number under neutron irradiation

    International Nuclear Information System (INIS)

    Iwamoto, Y.; Ogawa, T.

    2016-01-01

    The modelling of the damage in materials irradiated by neutrons is needed for understanding the mechanism of radiation damage in fission and fusion reactor facilities. The molecular dynamics simulations of damage cascades with full atomic interactions require information about the energy distribution of the Primary Knock on Atoms (PKAs). The most common process to calculate PKA energy spectra under low-energy neutron irradiation is to use the nuclear data processing code NJOY2012. It calculates group-to-group recoil cross section matrices using nuclear data libraries in ENDF data format, which is energy and angular recoil distributions for many reactions. After the NJOY2012 process, SPKA6C is employed to produce PKA energy spectra combining recoil cross section matrices with an incident neutron energy spectrum. However, intercomparison with different processes and nuclear data libraries has not been studied yet. Especially, the higher energy (~5 MeV) of the incident neutrons, compared to fission, leads to many reaction channels, which produces a complex distribution of PKAs in energy and type. Recently, we have developed the event generator mode (EGM) in the Particle and Heavy Ion Transport code System PHITS for neutron incident reactions in the energy region below 20 MeV. The main feature of EGM is to produce PKA with keeping energy and momentum conservation in a reaction. It is used for event-by-event analysis in application fields such as soft error analysis in semiconductors, micro dosimetry in human body, and estimation of Displacement per Atoms (DPA) value in metals and so on. The purpose of this work is to specify differences of PKA spectra and heating number related with kerma between different calculation method using PHITS-EGM and NJOY2012+SPKA6C with different libraries TENDL-2015, ENDF/B-VII.1 and JENDL-4.0 for fusion relevant materials

  13. Spectral flux of the p-7Li(C Q-M neutron source measured by proton recoil telescope

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The cyclotron-based fast neutron source at NPI produces mono-energetic neutron fields up to 35 MeV neutron energy using the p + 7Li(carbon backing reactions. To be applied for activation cross-section measurements, not only the intensity of neutron peak, but also the contribution of low-energy continuum in the spectra must be well determined. Simulations of the spectral flux from present source at a position of irradiated samples were performed using CYRIC TOF-data validated in the present work against LA150h by calculations with the transport Monte Carlo code MCNPX. Simulated spectra were tested by absolute measurements using a proton-recoil telescope technique. The recoil-proton spectrometer consisted of a shielded scattering chamber with polyethylene and carbon radiators and the ΔE1-ΔE2-E telescope of silicon-surface detectors located to the neutron beam axis at 45° in the laboratory system. Si-detectors were handled by usual data acquisition system. Dead-time – and pulse-overlap losses of events were determined from the count rate of pulse generator registered during duty cycle of accelerator operation. The proton beam charge and data were taken in the list mode for later replay and analysis. The calculations for 7Li(p,n and 12C(p,n reactions reasonably reproduce CYRIC TOF neutron source spectra. The influence of neutron source set-up (proton beam dimensions, 7Li-foil, carbon stopper, cooling medium, target support/chamber and the geometry-arrangement of irradiated sample on the spectral flux is discussed in details.

  14. Measurements of Electron Proton Elastic Cross Sections for 0.4

    International Nuclear Information System (INIS)

    Christy, M.E.; Abdellah Ahmidouch; Christopher Armstrong; John Arrington; Arshak Asaturyan; Steven Avery; Baker, O.; Douglas Beck; Henk Blok; Bochna, C.W.; Werner Boeglin; Peter Bosted; Maurice Bouwhuis; Herbert Breuer; Brown, D.S.; Antje Bruell; Roger Carlini; Nicholas Chant; Anthony Cochran; Leon Cole; Samuel Danagoulian; Donal Day; James Dunne; Dipangkar Dutta; Rolf Ent; Howard Fenker; Fox, B.; Liping Gan; Haiyan Gao; Kenneth Garrow; David Gaskell; Ashot Gasparian; Don Geesaman; Paul Gueye; Mark Harvey; Roy Holt; Xiaodong Jiang; Cynthia Keppel; Edward Kinney; Yongguang Liang; Wolfgang Lorenzon; Allison Lung; Pete Markowitz; Martin, J.W.; Kevin Mcilhany; David Mckee; David Meekins; Miller, M.A.; Richard Milner; Joseph Mitchell; Hamlet Mkrtchyan; Robert Mueller; Alan Nathan; Gabriel Niculescu; Maria-ioana Niculescu; Thomas O'neill; Vassilios Papavassiliou; Stephen Pate; Rodney Piercey; David Potterveld; Ronald Ransome; Joerg Reinhold; Rollinde, E.; Philip Roos; Adam Sarty; Reyad Sawafta; Elaine Schulte; Edwin Segbefia; Smith, C.; Samuel Stepanyan; Steffen Strauch; Vardan Tadevosyan; Liguang Tang; Raphael Tieulent; Alicia Uzzle; William Vulcan; Stephen Wood; Feng Xiong; Lulin Yuan; Markus Zeier; Benedikt Zihlmann; Vitaliy Ziskin

    2004-01-01

    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 distinct kinematic settings covering a range in momentum transfer of 0.4 < Q2 < 5.5 (GeV/c)2. These measurements represent a significant contribution to the world's cross section data set in the Q2 range, where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab. This data set shows good agreement with previous cross section measurements, indicating that if a heretofore unknown systematic error does exist in the cross section measurements, then it is intrinsic to all such measurements

  15. Electron capture cross sections by O+ from atomic He

    International Nuclear Information System (INIS)

    Joseph, Dwayne C; Saha, Bidhan C

    2009-01-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  16. Electron capture cross sections by O+ from atomic He

    Science.gov (United States)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  17. Photoproton cross section for /sup 19/F

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, H [Tohoku Univ., Sendai (Japan). Coll. of General Education; Kawamura, N; Oikawa, S; Uegaki, J I

    1975-02-01

    Proton energy spectra have been measured at 90/sup 0/ for the /sup 19/F(e,e'p)/sup 18/O reaction in the giant resonance region. The (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) differential cross sections are extracted from the proton energy spectra by using virtual-photon spectra. The integrated differential cross section of the (..gamma..,p/sub 0/) and (..gamma..,p/sub 1/) reactions are 1.80+-0.27 and 0.50+-0.45 MeV-mb/sr, respectively. The results are discussed with the shell model theory by comparing with the (..gamma..,p/sub 0/) cross section of the neighboring 4n-nucleus /sup 20/Ne. A significant increase of the proton yield leaving the non-ground states is found at 25 MeV of the incident electron energy. This is discussed in terms of the core excitation effect.

  18. Electron-collision cross sections for iodine

    International Nuclear Information System (INIS)

    Zatsarinny, O.; Bartschat, K.; Garcia, G.; Blanco, F.; Hargreaves, L.R.; Jones, D.B.; Murrie, R.; Brunton, J.R.; Brunger, M.J.; Hoshino, M.; Buckman, S.J.

    2011-01-01

    We present results from a joint experimental and theoretical study of elastic electron scattering from atomic iodine. The experimental results were obtained by subtracting known cross sections from the measured data obtained with a pyrolyzed mixed beam containing a variety of atomic and molecular species. The calculations were performed using both a fully relativistic Dirac B-spline R-matrix (close-coupling) method and an optical model potential approach. Given the difficulty of the problem, the agreement between the two sets of theoretical predictions and the experimental data for the angle-differential and the angle-integrated elastic cross sections at 40 eV and 50 eV is satisfactory.

  19. Exclusive ρ0 production measured with the HERMES recoil detector

    International Nuclear Information System (INIS)

    Perez Benito, Roberto Francisco

    2010-12-01

    The Hermes experiment (HERa MEasurement of Spin) at Desy was designed to study the spin structure of the nucleon in semi-inclusive deep inelastic scattering. The internal structure of the nucleon has been investigated in detail and it has been measured that the intrinsic quark spin contribution is only about 30% of the total spin of the nucleon. A formalism to describe the internal structure of the nucleon called Generalised Patron Distributions (GPDs) was developed recently to understand the fundamental structure of the nucleon. These GPDs can be accessed by the measurement of hard exclusive reactions and hard exclusive processes that can be understood in terms of GPDs. The accumulated Hermes data offer access to GPDs in different combinations of beam charge and beam and target helicity asymmetries. To improve exclusivity and to enhance the resolution of kinematic variables to study hard exclusive processes which provide access to the GPDs and hence to the orbital angular momentum of the quarks, in January 2006 a Recoil Detector was installed that surrounded the internal gas target of the Hermes experiment. The Hermes Recoil Detector consisted of three components: a silicon strip detector inside the vacuum, a scintillating fiber tracker and the photon detector. All three detectors were located inside a solenoidal magnet which provided a 1T longitudinal magnetic field. The Recoil Detector improves the selection of exclusive events by a direct measurement of the momentum and track position of the recoiling particle as well as by rejecting non-exclusive background. This detector was an ideal novel tool to combine energy and position measurements for charged particles in a momentum range of 0.1 to 1.4 GeV/c. The Recoil Detector was fully commissioned and operating. Data was taken continuously until the final Hera shutdown in July of 2007. In this thesis we report on the performance of the Recoil Detector and more specifically about the scintillating fiber tracker

  20. Fission neutron spectrum averaged cross sections for threshold reactions on arsenic

    International Nuclear Information System (INIS)

    Dorval, E.L.; Arribere, M.A.; Kestelman, A.J.; Comision Nacional de Energia Atomica, Cuyo Nacional Univ., Bariloche; Ribeiro Guevara, S.; Cohen, I.M.; Ohaco, R.A.; Segovia, M.S.; Yunes, A.N.; Arrondo, M.; Comision Nacional de Energia Atomica, Buenos Aires

    2006-01-01

    We have measured the cross sections, averaged over a 235 U fission neutron spectrum, for the two high threshold reactions: 75 As(n,p) 75 mGe and 75 As(n,2n) 74 As. The measured averaged cross sections are 0.292±0.022 mb, referred to the 3.95±0.20 mb standard for the 27 Al(n,p) 27 Mg averaged cross section, and 0.371±0.032 mb referred to the 111±3 mb standard for the 58 Ni(n,p) 58m+g Co averaged cross section, respectively. The measured averaged cross sections were also evaluated semi-empirically by numerically integrating experimental differential cross section data extracted for both reactions from the current literature. The calculations were performed for four different representations of the thermal-neutron-induced 235 U fission neutron spectrum. The calculated cross sections, though depending on analytical representation of the flux, agree with the measured values within the estimated uncertainties. (author)

  1. Precise measurements of neutron capture cross sections for FP

    International Nuclear Information System (INIS)

    Nakamura, Shoji; Harada, Hideo; Katoh, Toshio

    2000-01-01

    The thermal neutron capture cross sections (σ 0 ) and the resonance integrals (I 0 ) of some fission products (FP), such as 137 Cs, 90 Sr, 99 Tc, 129 I and 135 Cs, were measured by the activation and γ-ray spectroscopic methods. Moreover, the cross section measurements were done for other FP elements, such as 127 I, 133 Cs and 134 Cs. This paper provides the summary of the FP cross section measurements, which have been performed by authors. (author)

  2. Habit, Production, and the Cross-Section of Stock Returns

    OpenAIRE

    Chen, Andrew Y.

    2014-01-01

    Solutions to the equity premium puzzle should inform us about the cross-section of stock returns. An external habit model with heterogeneous firms reproduces numerous stylized facts about both the equity premium and the value premium. The equity premium is large, time-varying, and linked with consumption volatility. The cross-section of expected returns is log-linear in B/M, and the slope matches the data. The explanation for the value premium lies in the interaction between the cross-section...

  3. Drell-Yan cross section in the jet calculus scheme

    International Nuclear Information System (INIS)

    Tanaka, Hidekazu; Kobayashi, Hirokazu

    2009-01-01

    We calculate factorized cross sections for lepton pair production mediated by a virtual photon in hadron-hadron collisions using the jet calculus scheme, in which a kinematical constraint due to parton radiation is taken into account. This method guarantees a proper phase space boundary for subtraction terms. Some properties of the calculated cross sections are examined. We also discuss matching between the hard scattering cross sections and parton showers at the next-to-leading logarithmic (NLL) order of quantum chromodynamics (QCD). (author)

  4. Testing of cross section libraries for TRIGA criticality benchmark

    International Nuclear Information System (INIS)

    Snoj, L.; Trkov, A.; Ravnik, M.

    2007-01-01

    Influence of various up-to-date cross section libraries on the multiplication factor of TRIGA benchmark as well as the influence of fuel composition on the multiplication factor of the system composed of various types of TRIGA fuel elements was investigated. It was observed that keff calculated by using the ENDF/B VII cross section library is systematically higher than using the ENDF/B-VI cross section library. The main contributions (∼ 2 20 pcm) are from 235 U and Zr. (author)

  5. Cross-section sensitivity analyses for a Tokamak Experimental Power Reactor

    International Nuclear Information System (INIS)

    Simmons, E.L.; Gerstl, S.A.W.; Dudziak, D.J.

    1977-09-01

    The objectives of this report were (1) to determine the sensitivity of neutronic responses in the preliminary design of the Tokamak Experimental Power Reactor by Argonne National Laboratory, and (2) to develop the use of a neutron-gamma coupled cross-section set in the calculation of cross-section sensitivity analysis. Response functions such as neutron plus gamma kerma, Mylar dose, copper transmutation, copper dpa, and activation of the toroidal field coil dewar were investigated. Calculations revealed that the responses were most sensitive to the high-energy group cross sections of iron in the innermost regions containing stainless steel. For example, both the neutron heating of the toroidal field coil and the activation of the toroidal field coil dewar show an integral sensitivity of about -5 with respect to the iron total cross sections. Major contributors are the scattering cross sections of iron, with -2.7 and -4.4 for neutron heating and activation, respectively. The effects of changes in gamma cross sections were generally an order of 10 lower

  6. Evaluation of covariance for 238U cross sections

    International Nuclear Information System (INIS)

    Kawano, Toshihiko; Nakamura, Masahiro; Matsuda, Nobuyuki; Kanda, Yukinori

    1995-01-01

    Covariances of 238 U are generated using analytic functions for representation of the cross sections. The covariances of the (n,2n) and (n,3n) reactions are derived with a spline function, while the covariances of the total and the inelastic scattering cross section are estimated with a linearized nuclear model calculation. (author)

  7. Implementation of the rapid cross section adjustment approach at General Electric

    International Nuclear Information System (INIS)

    Cowan, C.L.; Kujawski, E.; Protsik, R.

    1978-01-01

    The General Electric rapid cross section adjustment approach was developed to use the shielding factor method for formulating multigroup cross sections. In this approach, space- and composition-dependent cross sections for a particular reactor or shield design are prepared from a generalized cross section library by the use of resonance self-shielding factors, and by the adjustment of elastic scattering cross sections for the local neutron flux spectra. The principal tool in the cross section adjustment package is the data processing code TDOWN. This code was specified to give the user a high degree of flexibility in the analysis of advanced reactor designs. Of particular interest in the analysis of critical experiments is the ability to carry out cell heterogeneity self-shielding calculations using a multiregion equivalence relationship, and the homogenization of the cross sections over the specified cell with the flux weighting obtained from transport theory calculations. Extensive testing of the rapid cross section adjustment approach, including comparisons with Monte Carlo methods, indicated that this approach can be utilized with a high degree of confidence in the design analysis of complex fast reactor systems. 2 figures, 1 table

  8. Reference Cross Sections for Charged-particle Monitor Reactions

    Science.gov (United States)

    Hermanne, A.; Ignatyuk, A. V.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G.; Kondev, F. G.; Hussain, M.; Lebeda, O.; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takács, S.; Tárkányi, F. T.; Verpelli, M.

    2018-02-01

    Evaluated cross sections of beam-monitor reactions are expected to become the de-facto standard for cross-section measurements that are performed over a very broad energy range in accelerators in order to produce particular radionuclides for industrial and medical applications. The requirements for such data need to be addressed in a timely manner, and therefore an IAEA coordinated research project was launched in December 2012 to establish or improve the nuclear data required to characterise charged-particle monitor reactions. An international team was assembled to recommend more accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction with a limited number of measurements and more extensive evaluations of the decay data of specific radionuclides. Least-square evaluations of monitor-reaction cross sections including uncertainty quantification have been undertaken for charged-particle beams of protons, deuterons, 3He- and 4He-particles. Recommended beam monitor reaction data with their uncertainties are available at the IAEA-NDS medical portal http://www-nds.iaea.org/medical/monitor_reactions.html.

  9. Total and partial recombination cross sections for F6+

    International Nuclear Information System (INIS)

    Mitnik, D.M.; Pindzola, M.S.; Badnell, N.R.

    1999-01-01

    Total and partial recombination cross sections for F 6+ are calculated using close-coupling and distorted-wave theory. For total cross sections, close-coupling and distorted-wave results, which include interference between the radiative and dielectronic pathways, are found to be in good agreement with distorted-wave results based on a sum of independent processes. Total cross sections near zero energy are dominated by contributions from low-energy dielectronic recombination resonances. For partial cross sections, the close-coupling and distorted-wave theories predict strong interference for recombination into the final recombined ground state 1s 2 2s 21 S 0 of F 5+ , but only weak interference for recombination into the levels of the 1s 2 2s2p configuration. copyright 1999 The American Physical Society

  10. Absolute cross-section measurements of inner-shell ionization

    Science.gov (United States)

    Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer

    1994-12-01

    Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.

  11. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    Science.gov (United States)

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  12. From ZZ to ZH: How Low Can These Cross Sections Go or Everybody, Let's Cross Section Limbo

    International Nuclear Information System (INIS)

    Strauss, Emanuel Alexandre

    2009-01-01

    We report on two searches performed at the D0 detector at the Fermi National Laboratory. The first is a search for Z di-boson production with a theoretical cross section of 1.4 pb. The search was performed on 2.6 fb -1 of data and contributed to the first observation of ZZ production at a hadron collider. The second is a search for a low mass Standard Model Higgs in 4.2 fb -1 of data. The Higgs boson is produced in association with a Z boson where the Higgs decays hadronically and the Z decays to two leptons. The ZZ search was performed in both the di-electron and di-muon channels. For the ZH search, we will focus on the muonic decays where we expanded the traditional coverage by considering events in which one of the two muons fails the selection requirement, and is instead reconstructed as an isolated track. We consider Higgs masses between 100 and 150 GeV, with theoretical cross sections ranging from 0.17 to 0.042 pb, and set upper limits on the ZH production cross-section at 95% confidence level

  13. Ligamentous Injuries and the Risk of Associated Tissue Damage in Acute Ankle Sprains in Athletes: A Cross-sectional MRI Study.

    Science.gov (United States)

    Roemer, Frank W; Jomaah, Nabil; Niu, Jingbo; Almusa, Emad; Roger, Bernard; D'Hooghe, Pieter; Geertsema, Celeste; Tol, Johannes L; Khan, Karim; Guermazi, Ali

    2014-07-01

    Ankle joint injuries are extremely common sports injuries, with the anterior talofibular ligament involved in the majority of ankle sprains. There have been only a few large magnetic resonance imaging (MRI) studies on associated structural injuries after ankle sprains. To describe the injury pattern in athletes who were referred to MRI for the assessment of an acute ankle sprain and to assess the risk of associated traumatic tissue damage including lateral and syndesmotic ligament involvement. Cross-sectional study; Level of evidence, 3. A total of 261 ankle MRI scans of athletes with acute ankle sprains were evaluated for: lateral and syndesmotic ligament injury; concomitant injuries to the deltoid and spring ligaments and sinus tarsi; peroneal, flexor, and extensor retinacula and tendons; traumatic and nontraumatic osteochondral and osseous changes; and joint effusion. Patients were on average 22.5 years old, and the average time from injury to MRI was 5.7 days. Six exclusive injury patterns were defined based on lateral and syndesmotic ligament involvement. The risk for associated injuries was assessed by logistic regression using ankles with no or only low-grade lateral ligament injuries and no syndesmotic ligament damage as the reference. With regard to the injury pattern, there were 103 ankles (39.5%) with complete anterior talofibular ligament disruption and no syndesmotic injury, and 53 ankles (20.3%) had a syndesmotic injury with or without lateral ligament damage. Acute osteochondral lesions of the lateral talar dome were seen in 20 ankles (7.7%). The percentage of chronic lateral osteochondral lesions was 1.1%. The risk for talar bone contusions increased more than 3-fold for ankles with complete lateral ligament ruptures (adjusted odds ratio [aOR], 3.43; 95% CI, 1.72-6.85) but not for ankles with syndesmotic involvement. The risk for associated deltoid ligament injuries increased for ankles with complete lateral ligament injuries (aOR, 4.04; 95% CI, 1

  14. Resonance parameters for measured keV neutron capture cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, A.R. de L

    1969-05-01

    All available neutron capture cross sections in the keV region ({approx} to 100 keV) have been fitted with resonance parameters. Capture cross sections for nuclides with reasonably well known average s-wave parameters, but no measured cross section, have been calculated and tabulated using p-and d- wave strength functions interpolated between fitted values. Several of these nuclides are of interest in the theory of slow nucleosynthesis of heavy elements in stars, and the product of cosmic abundance (due to the s-process) and capture cross section at 30 keV has been plotted versus mass number. (author)

  15. Measurement of 76Se and 78Se (γ, n) cross sections

    International Nuclear Information System (INIS)

    Kitatani, Fumito; Harada, Hideo; Goko, Shinji; Utsunomiya, Hiroaki; Akimune, Hidetoshi; Toyokawa, Hiroyuki; Yamada, Kawakatsu

    2011-01-01

    The (γ, n) cross sections of Se isotopes ( 76 Se, 78 Se) were measured to supply fundamental data for estimating the inverse reaction cross section, i.e., the 79 Se(n, γ) 80 Se cross section. The enriched samples and a reference 197 Au sample were irradiated with laser-Compton scattering (LCS) γ-rays. The excitation function of each (γ, n) cross section was determined for the energy range from each near neutron separation energy to the threshold energy of (γ, 2n) reaction. The energy point corresponding to each cross section was deduced using the accurately determined energy distribution of LCS γ-rays. Systematic (γ, n) cross sections for Se isotopes including 80 Se were compared with those calculated by using a statistical model calculation code TALYS. (author)

  16. Determination of neutron cross sections and resonance parameters for the stable tellurium isotopes for thallium 205 and for the osmium isotopes. Progress report, October 1, 1978-March 1, 1979

    International Nuclear Information System (INIS)

    Winters, R.R.

    1979-01-01

    Initial measurements by LLL and NBS of the ratio of the 186 Os capture cross section to that of 187 Os near 30 keV, provided a crucial input parameter for use of the Re-Os chronometer to estimate the duration of nucleosynthesis and hence the age of the universe. The resulting estimate of approx. = 20 billion years was much longer than the estimate from the only other method, U-Th dating. The Re-Os chronometer requires, however, not ratios of cross sections measured at laboratory temperatures, but rather the ratio appropriate to the stellar environment in which nucleosynthesis by the s-process occurs. Hence capture from low lying excited states is important. The capture cross section from the 9.75 keV first excited 187 Os state must be calculated using Hauser--Feshbach calculations. These calculations require estimates of level densities, neutron transmission functions (for ground and excited states) and radiative transmission functions. These calculations can be experimentally checked by measurements of the total and inelastic cross sections near threshold. The inelastic experiment is particularly difficult because of the requirement of low background and relatively high efficiency for detection of approx. = 30 keV neutrons. A proton-recoil detector has been developed which appears to provide adequate efficiency and energy resolution. A novel filter composed of alternate layers of iron, aluminum and air has been designed to eliminate neutrons other than those in the 25 keV Fe and Al window. Major problems in background reduction persist and might be helped with a sample of 187 Os of isotopic greater than that of the presently available 70% 187 Os sample

  17. Perception, Knowledge and Behaviors Related to Typhoon: A Cross Sectional Study among Rural Residents in Zhejiang, China

    OpenAIRE

    Zhang, Wenchao; Wang, Wei; Lin, Junfen; Zhang, Ying; Shang, Xiaopeng; Wang, Xin; Huang, Meilin; Liu, Shike; Ma, Wei

    2017-01-01

    (1) The objective of this study was to assess the risk perceptions, attitudes, knowledge, and behaviors related to typhoon among rural residents in Zhejiang province of China. A cross-sectional study was conducted among rural residents in Zhejiang province, China. Information was collected from 659 participants using a structured questionnaire. Univariate analysis and multivariable analysis were used to analyze the data. Participants were most concerned about property damage, followed by thei...

  18. Can cross sections be accurately known for priori?

    International Nuclear Information System (INIS)

    Pigni, M.T.; Dietrich, F.S.; Herman, M.; Oblozinsky, P.

    2008-01-01

    Distinct maxima and minima in the neutron total cross section uncertainties were observed in our large scale covariance calculations using a spherical optical potential. In this contribution we investigate the physical origin of this oscillating structure. Specifically, we analyze the case of neutron reactions on 56 Fe, for which total cross section uncertainties are characterized by the presence of five distinct minima at 0.1, 1.1, 5, 25, and 70 MeV. To investigate their origin, we calculated total cross sections by perturbing the real volume depth V v by its expected uncertainty ±ΔV v . Inspecting the effect of this perturbation on the partial wave cross sections we found that the first minimum (at 0.1 MeV) is exclusively due to the contribution of the s-wave. On the other hand, the same analysis at 1.1 MeV showed that the minimum is the result of the interplay between s-, p-, and d-waves; namely the change in the s-wave happens to be counterbalanced by changes in the p- and d-waves. Similar considerations can be extended for the third minimum, although it can be also explained in terms of the Ramsauer effect as well as the other ones (at 25 and 70 MeV). We discuss the potential importance of these minima for practical applications as well as the implications of this work for the uncertainties in total and absorption cross sections

  19. Models for Pooled Time-Series Cross-Section Data

    Directory of Open Access Journals (Sweden)

    Lawrence E Raffalovich

    2015-07-01

    Full Text Available Several models are available for the analysis of pooled time-series cross-section (TSCS data, defined as “repeated observations on fixed units” (Beck and Katz 1995. In this paper, we run the following models: (1 a completely pooled model, (2 fixed effects models, and (3 multi-level/hierarchical linear models. To illustrate these models, we use a Generalized Least Squares (GLS estimator with cross-section weights and panel-corrected standard errors (with EViews 8 on the cross-national homicide trends data of forty countries from 1950 to 2005, which we source from published research (Messner et al. 2011. We describe and discuss the similarities and differences between the models, and what information each can contribute to help answer substantive research questions. We conclude with a discussion of how the models we present may help to mitigate validity threats inherent in pooled time-series cross-section data analysis.

  20. Damage severity estimation from the global stiffness decrease

    International Nuclear Information System (INIS)

    Nitescu, C; Gillich, G R; Manescu, T; Korka, Z I; Abdel Wahab, M

    2017-01-01

    In actual damage detection methods, localization and severity estimation can be treated separately. The severity is commonly estimated using fracture mechanics approach, with the main disadvantage of involving empirically deduced relations. In this paper, a damage severity estimator based on the global stiffness reduction is proposed. This feature is computed from the deflections of the intact and damaged beam, respectively. The damage is always located where the bending moment achieves maxima. If the damage is positioned elsewhere on the beam, its effect becomes lower, because the stress is produced by a diminished bending moment. It is shown that the global stiffness reduction produced by a crack is the same for all beams with a similar cross-section, regardless of the boundary conditions. One mathematical relation indicating the severity and another indicating the effect of removing damage from the beam. Measurements on damaged beams with different boundary conditions and cross-sections are carried out, and the location and severity are found using the proposed relations. These comparisons prove that the proposed approach can be used to accurately compute the severity estimator. (paper)

  1. Homogenized group cross sections by Monte Carlo

    International Nuclear Information System (INIS)

    Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.

    2006-01-01

    Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)

  2. Double-differential heavy-ion production cross sections

    International Nuclear Information System (INIS)

    Miller, T. M.; Townsend, L. W.

    2004-01-01

    Current computational tools used for space or accelerator shielding studies transport energetic heavy ions either using a one-dimensional straight-ahead approximation or by dissociating the nuclei into protons and neutrons and then performing neutron and proton transport using Monte Carlo techniques. Although the heavy secondary particles generally travel close to the beam direction, a proper treatment of the light ions produced in these reactions requires that double-differential cross sections should be utilised. Unfortunately, no fundamental nuclear model capable of serving as an event generator to provide these cross sections for all ions and energies of interest exists currently. Herein, we present a model for producing double-differential heavy-ion production cross sections that uses heavy-ion fragmentation yields produced by the NUCFRG2 fragmentation code coupled with a model of energy degradation in nucleus-nucleus collisions and systematics of momentum distributions to provide energy and angular dependences of the heavy-ion production. (authors)

  3. Prospects for Precision Neutrino Cross Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A. [Fermilab

    2016-01-28

    The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.

  4. Measurements of neutron cross sections of radioactive waste nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi

    1998-01-01

    Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)

  5. Development of automatic cross section compilation system for MCNP

    International Nuclear Information System (INIS)

    Maekawa, Fujio; Sakurai, Kiyoshi

    1999-01-01

    A development of a code system to automatically convert cross-sections for MCNP is in progress. The NJOY code is, in general, used to convert the data compiled in the ENDF format (Evaluated Nuclear Data Files by BNL) into the cross-section libraries required by various reactor physics codes. While the cross-section library: FSXLIB-J3R2 was already converted from the JENDL-3.2 version of Japanese Evaluated Nuclear Data Library for a continuous energy Monte Carlo code MCNP, the library keeps only the cross-sections at room temperature (300 K). According to the users requirements which want to have cross-sections at higher temperature, say 600 K or 900 K, a code system named 'autonj' is under development to provide a set of cross-section library of arbitrary temperature for the MCNP code. This system can accept any of data formats adopted JENDL that may not be treated by NJOY code. The input preparation that is repeatedly required at every nuclide on NJOY execution is greatly reduced by permitting the conversion process of as many nuclides as the user wants in one execution. A few MCNP runs were achieved for verification purpose by using two libraries FSXLIB-J3R2 and the output of autonj'. The almost identical MCNP results within the statistical errors show the 'autonj' output library is correct. In FY 1998, the system will be completed, and in FY 1999, the user's manual will be published. (K. Tsuchihashi)

  6. Fully differential cross sections for the single ionization of helium by fast ions: Classical model calculations

    Science.gov (United States)

    Sarkadi, L.

    2018-04-01

    Fully differential cross sections (FDCSs) have been calculated for the single ionization of helium by 1- and 3-MeV proton and 100-MeV/u C6 + ion impact using the classical trajectory Monte Carlo (CTMC) method in the nonrelativistic, three-body approximation. The calculations were made employing a Wigner-type model in which the quantum-mechanical position distribution of the electron is approximated by a weighted integral of the microcanonical distribution over a range of the binding energy of the electron. In the scattering plane, the model satisfactorily reproduces the observed shape of the binary peak. In the region of the peak the calculated FDCSs agree well with the results of continuum-distorted-wave calculations for all the investigated collisions. For 1-MeV proton impact the experimentally observed shift of the binary peak with respect to the first Born approximation is compared with the shifts obtained by different higher-order quantum-mechanical theories and the present CTMC method. The best result was achieved by CTMC, but still a large part of the shift remained unexplained. Furthermore, it was found that the classical theory failed to reproduce the shape of the recoil peak observed in the experiments, it predicts a much narrower peak. This indicates that the formation of the recoil peak is dominated by quantum-mechanical effects. For 100-MeV/u C6 + ion impact the present CTMC calculations confirmed the existence of the "double-peak" structure of the angular distribution of the electron in the plane perpendicular to the momentum transfer, in accordance with the observation, the prediction of an incoherent semiclassical model, and previous CTMC results. This finding together with wave-packet calculations suggests that the "C6 + puzzle" may be solved by considering the loss of the projectile coherence. Experiments to be conducted using ion beams of anisotropic coherence are proposed for a more differential investigation of the ionization dynamics.

  7. EDDIX--a database of ionisation double differential cross sections.

    Science.gov (United States)

    MacGibbon, J H; Emerson, S; Liamsuwan, T; Nikjoo, H

    2011-02-01

    The use of Monte Carlo track structure is a choice method in biophysical modelling and calculations. To precisely model 3D and 4D tracks, the cross section for the ionisation by an incoming ion, double differential in the outgoing electron energy and angle, is required. However, the double differential cross section cannot be theoretically modelled over the full range of parameters. To address this issue, a database of all available experimental data has been constructed. Currently, the database of Experimental Double Differential Ionisation Cross sections (EDDIX) contains over 1200 digitalised experimentally measured datasets from the 1960s to present date, covering all available ion species (hydrogen to uranium) and all available target species. Double differential cross sections are also presented with the aid of an eight parameter functions fitted to the cross sections. The parameters include projectile species and charge, target nuclear charge and atomic mass, projectile atomic mass and energy, electron energy and deflection angle. It is planned to freely distribute EDDIX and make it available to the radiation research community for use in the analytical and numerical modelling of track structure.

  8. Handbook of LHC Higgs Cross Sections: 3. Higgs Properties Report of the LHC Higgs Cross Section Working Group

    CERN Document Server

    Heinemeyer, S; Passarino, G; Tanaka, R; Andersen, J R; Artoisenet, P; Bagnaschi, E A; Banfi, A; Becher, T; Bernlochner, F U; Bolognesi, S; Bolzoni, P; Boughezal, R; Buarque, D; Campbell, J; Caola, F; Carena, M; Cascioli, F; Chanon, N; Cheng, T; Choi, S Y; David, A; de Aquino, P; Degrassi, G; Del Re, D; Denner, A; van Deurzen, H; Diglio, S; Di Micco, B; Di Nardo, R; Dittmaier, S; Dührssen, M; Ellis, R K; Ferrera, G; Fidanza, N; Flechl, M; de Florian, D; Forte, S; Frederix, R; Frixione, S; Gangal, S; Gao, Y; Garzelli, M V; Gillberg, D; Govoni, P; Grazzini, M; Greiner, N; Griffiths, J; Gritsan, A V; Grojean, C; Hall, D C; Hays, C; Harlander, R; Hernandez-Pinto, R; Höche, S; Huston, J; Jubb, T; Kadastik, M; Kallweit, S; Kardos, A; Kashif, L; Kauer, N; Kim, H; Klees, R; Krämer, M; Krauss, F; Laureys, A; Laurila, S; Lehti, S; Li, Q; Liebler, S; Liu, X; Logan, E; Luisoni, G; Malberti, M; Maltoni, F; Mawatari, K; Maierhoefer, F; Mantler, H; Martin, S; Mastrolia, P; Mattelaer, O; Mazzitelli, J; Mellado, B; Melnikov, K; Meridiani, P; Miller, D J; Mirabella, E; Moch, S O; Monni, P; Moretti, N; Mück, A; Mühlleitner, M; Musella, P; Nason, P; Neu, C; Neubert, M; Oleari, C; Olsen, J; Ossola, G; Peraro, T; Peters, K; Petriello, F; Piacquadio, G; Potter, C T; Pozzorini, S; Prokofiev, K; Puljak, I; Rauch, M; Rebuzzi, D; Reina, L; Rietkerk, R; Rizzi, A; Rotstein-Habarnau, Y; Salam, G P; Sborlini, G; Schissler, F; Schönherr, M; Schulze, M; Schumacher, M; Siegert, F; Slavich, P; Smillie, J M; Stål, O; von Soden-Fraunhofen, J F; Spira, M; Stewart, I W; Tackmann, F J; Taylor, P T E; Tommasini, D; Thompson, J; Thorne, R S; Torrielli, P; Tramontano, F; Tran, N V; Trócsányi, Z; Ubiali, M; Vazquez Acosta, M; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Wagner, C; Walsh, J R; Wang, J; Weiglein, G; Whitbeck, A; Williams, C; Yu, J; Zanderighi, G; Zanetti, M; Zaro, M; Zerwas, P M; Zhang, C; Zirke, T J E; Zuberi, S

    2013-01-01

    This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered p...

  9. Highlights of top quark cross-section measurements at ATLAS

    Directory of Open Access Journals (Sweden)

    Berta Peter

    2017-01-01

    Full Text Available The highlights of the measurements of top quark production in proton-proton collisions at the Large Hadron Collider with the ATLAS detector are presented. The inclusive measurements of the top-pair production cross section have reached high precision and are compared to the best available theoretical calculations. The differential cross section measurements, including results using boosted top quarks, probe our understanding of top-pair production in the TeV regime. The results are compared to Monte Carlo generators implementing LO and NLO matrix elements matched with parton showers. Measurements of the single top quark production cross section are presented in the t-channel and s-channel, and with associated production with a W boson. For the t-channel production, results on the ratio between top quark and antitop quark production cross sections and differential measurements are also included.

  10. Handbook of LHC Higgs Cross Sections: 2. Differential Distributions

    CERN Document Server

    Dittmaier, S; Passarino, G; Tanaka, R; Alekhin, S; Alwall, J; Bagnaschi, E A; Banfi, A; Blumlein, J; Bolognesi, S; Chanon, N; Cheng, T; Cieri, L; Cooper-Sarkar, A M; Cutajar, M; Dawson, S; Davies, G; De Filippis, N; Degrassi, G; Denner, A; D'Enterria, D; Diglio, S; Di Micco, B; Di Nardo, R; Ellis, R K; Farilla, A; Farrington, S; Felcini, M; Ferrera, G; Flechl, M; de Florian, D; Forte, S; Ganjour, S; Garzelli, M V; Gascon-Shotkin, S; Glazov, S; Goria, S; Grazzini, M; Guillet, J -Ph; Hackstein, C; Hamilton, K; Harlander, R; Hauru, M; Heinemeyer, S; Hoche, S; Huston, J; Jackson, C; Jimenez-Delgado, P; Jorgensen, M D; Kado, M; Kallweit, S; Kardos, A; Kauer, N; Kim, H; Kovac, M; Kramer, M; Krauss, F; Kuo, C -M; Lehti, S; Li, Q; Lorenzo, N; Maltoni, F; Mellado, B; Moch, S O; Muck, A; Muhlleitner, M; Nadolsky, P; Nason, P; Neu, C; Nikitenko, A; Oleari, C; Olsen, J; Palmer, S; Paganis, S; Papadopoulos, C G; Petersen, T C; Petriello, F; Petrucci, F; Piacquadio, G; Pilon, E; Potter, C T; Price, J; Puljak, I; Quayle, W; Radescu, V; Rebuzzi, D; Reina, L; Rojo, J; Rosco, D; Salam, G P; Sapronov, A; Schaarschmidt, J; Schonherr, M; Schumacher, M; Siegert, F; Slavich, P; Spira, M; Stewart, I W; Stirling, W J; Stockli, F; Sturm, C; Tackmann, F J; Thorne, R S; Tommasini, D; Torrielli, P; Tramontano, F; Trocsanyi, Z; Ubiali, M; Uccirati, S; Acosta, M Vazquez; Vickey, T; Vicini, A; Waalewijn, W J; Wackeroth, D; Warsinsky, M; Weber, M; Wiesemann, M; Weiglein, G; Yu, J; Zanderighi, G

    2012-01-01

    This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) focuses on predictions (central values and errors) for total Higgs production cross sections and Higgs branching ratios in the Standard Model and its minimal supersymmetric extension, covering also related issues such as Monte Carlo generators, parton distribution functions, and pseudo-observables. This second Report represents the next natural step towards realistic predictions upon providing results on cross sections with benchmark cuts, differential distributions, details of specific decay channels, and further recent developments.

  11. High-energy behaviour of e--H scattering cross section

    International Nuclear Information System (INIS)

    Saha, B.C.; Chaudhuri, J.; Ghosh, A.S.

    1976-01-01

    An integral form of the close coupling equation has been employed to investigate the high energy behaviour of the elastic and 2s excitation cross sections of hydrogen atom by electron impact retaining the 1s and 2s states. The results, with and without exchange, for both the total and the differential cross sections are presented. The effects of exchange as well as of couplings to the 1s-2s states on the elastic cross section have been studied. The FBA results for the elastic cross section differ from the present results appreciably in the energy range 100 to 200 eV where FBA is considered to be valid. On the other hand, the present 1s-2s excitation results are very close to the corresponding FBA results in the said energy region. (auth.)

  12. Neutron spectra, recoil momenta and PI0 production cross sections for reactions induced by 10-100 MeV/nucleon heavy ions

    International Nuclear Information System (INIS)

    Blann, M.

    1985-08-01

    The Boltzmann master equation model has been applied to the question of precompound nucleon de-excitation of reactions induced by 10 to 100 MeV/nucleon (c.m.) heavy ions. Test systems of 16 O + 60 Ni and 27 Al + 86 Kr were selected. Experimental neutron spectra in coincidence with evaporation residue and fission fragments from the 20 Ne + 165 Ho system (due to Holub, et al.) were reproduced quite well by the master equation with exciton numbers between 20 and 23. Results show major fractions of the excitation and up to 35 nucleons removed during the coalescence-equilibration period. The linear momentum transfer predicted by the master equation is shown to be in good agreement with a broad range of data. Extension of the master equation to predict sub-threshold PI 0 production cross sections is shown to give satisfactory agreement with a large number of experimental results. 48 refs., 8 figs., 7 tabs

  13. Collision processes of Li3+ with atomic hydrogen: cross section database

    International Nuclear Information System (INIS)

    Murakami, I.; Janev, R.K.; Kato, T.; Yan, J.; Sato, H.; Kimura, M.

    2004-08-01

    Using the available experimental and theoretical data, as well as established cross section scaling relationships, a cross section database for excitation, ionization and charge exchange in collisions of Li 3+ ion with ground state and excited hydrogen atoms has been generated. The critically assessed cross sections are represented by analytic fit functions that have correct asymptotic behavior both at low and high collision energies. The derived cross sections are also presented in graphical form. (author)

  14. Damage functions generation for polyatomic materials irradiated in test reactors

    International Nuclear Information System (INIS)

    Alberman, A.; Lesueur, D.

    1987-06-01

    Neutron exposure parameters in polyatomic materials is of great importance for fusion technology programs. The COMPOSI code computes the number of displaced atoms of sub-lattice ''j'' induced by one atom of sub-lattice ''i'' either by direct collision or through intermediate knocked atom. The code uses Lindhard equations; it is solved by iterative process. The atomic displacements cross-sections, as a function of neutron energy are derived by folding previous results with ''i'' type PKA. Moreover the COMPOSI code may include recoils from charged particles e.g.: Alpha + Triton from Li 6 capture in Li Al 0 2 . These responses in various spectra are discussed [fr

  15. Fe L-shell Excitation Cross Section Measurements on EBIT-I

    Science.gov (United States)

    Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.

    2006-09-01

    We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.

  16. Neutron-induced capture cross sections via the surrogate reaction method

    International Nuclear Information System (INIS)

    Boutoux, G.; Jurado, B.; Aiche, M.; Barreau, G.; Capellan, N.; Companis, I.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Meot, V.; Bail, A.; Bauge, E.; Daugas, J. M.; Faul, T.; Gaudefroy, L.; Morel, P.; Pillet, N.; Roig, O.; Romain, P.; Taieb, J.; Theroine, C.; Burke, J.T.; Companis, I.; Derkx, X.; Gunsing, F.; Matea, I.; Tassan-Got, L.; Porquet, M.G.; Serot, O.

    2011-01-01

    The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This technique enables neutron-induced cross sections to be extracted for nuclear reactions on short-lived unstable nuclei that otherwise can not be measured. This technique has been successfully applied to determine the neutron-induced fission cross sections of several short-lived nuclei. In this work, we investigate whether this powerful technique can also be used to determine of neutron-induced capture cross sections. For this purpose we use the surrogate reaction 174 Yb( 3 He, pγ) 176 Lu to infer the well known 175 Lu(n, γ) cross section and compare the results with the directly measured neutron-induced data. This surrogate experiment has been performed in March 2010. The experimental technique used and the first preliminary results will be presented. (authors)

  17. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  18. Second order effects in adjustment processes of cross sections

    International Nuclear Information System (INIS)

    Silva, F.C. da; D'Angelo, A.; Gandini, A.; Rado, V.

    1982-01-01

    An iterative processe, that take in account the non linear effects of some integral quantities in relation to cross sections, is used to execute an adjustment of cross sections of some elements that constitute the fast reactors shielding. (E.G.) [pt

  19. Adjustement of multigroup cross sections using fast reactor integral data

    International Nuclear Information System (INIS)

    Renke, C.A.C.

    1982-01-01

    A methodology for the adjustment of multigroup cross section is presented, structured with aiming to compatibility the limitated number of measured values of integral parameters known and disponible, and the great number of cross sections to be adjusted the group of cross section used is that obtained from the Carnaval II calculation system, understanding as formular the sets of calculation methods and data bases. The adjustment is realized, using the INCOAJ computer code, developed in function of one statistical formulation, structural from the bayer considerations, taking in account the measurement processes of cross section and integral parameters defined on statistical bases. (E.G.) [pt

  20. Defining SNAP by cross-sectional and longitudinal definitions of neurodegeneration

    OpenAIRE

    Wisse, L.E.M.; Das, S.R.; Davatzikos, C.; Dickerson, B.C.; Xie, S.X.; Yushkevich, P.A.; Wolk, D.A.

    2018-01-01

    Introduction: Suspected non-Alzheimer's pathophysiology (SNAP) is a biomarker driven designation that represents a heterogeneous group in terms of etiology and prognosis. SNAP has only been identified by cross-sectional neurodegeneration measures, whereas longitudinal measures might better reflect “active” neurodegeneration and might be more tightly linked to prognosis. We compare neurodegeneration defined by cross-sectional ‘hippocampal volume’ only (SNAP/L−) versus both cross-sectional and ...