WorldWideScience

Sample records for dalat nuclear research

  1. Operation and utilizations of Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  2. Physical Characteristics of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Ngo Quang Huy

    1994-10-01

    The operation of the TRIGA MARK II reactor of nominal power 250 KW has been stopped as all the fuel elements have been dismounted and taken away in 1968. The reconstruction of the reactor was accomplished with Russian technological assistance after 1975. The nominal power of the reconstructed reactor is of 500 KW. The recent Dalat reactor is unique of its kind in the world: Russian-designed core combined with left-over infrastructure of the American-made TRIGA II. The reactor was loaded in November 1983. It has reached physical criticality on 1/11/1983 (without central neutron trap) and on 18/12/1983 (with central neutron trap). The power start up occurred in February 1984 and from 20/3/1984 the reactor began to be operated at the nominal power 500 KW. The selected reports included in the proceedings reflect the start up procedures and numerous results obtained in the Dalat Nuclear Research Institute and the Centre of Nuclear Techniques on the determination of different physical characteristics of the reactor. These characteristics are of the first importance for the safe operation of the Dalat reactor

  3. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Nguyen Ngoc [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  4. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Tuan, Nguyen Ngoc

    2003-01-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  5. The Utilization of Dalat nuclear research reactor for education and training purposes

    International Nuclear Information System (INIS)

    Luong, Ba Vien; Nguyen, Nhi Dien; Le, Vinh Vinh; Nguyen, Xuan Hai

    2017-01-01

    The Dalat Nuclear Research Reactor (DNRR) with the nominal power of 500 kWt is today the unique one in Vietnam. It was designed for the purposes of radioisotope production, neutron activation analysis, basic and applied researches, and nuclear education and training. With the rising demand in development of human resources for utilization of atomic energy in the country, the DNRR has been playing an important role in the nuclear education and training for students from universities and professionals who are interested in reactor engineering. At present, the Dalat Nuclear Research Institute (DNRI) offers two types of training course utilizing the research reactor: an one-week practical training course is applied for undergraduate students and a two-week training course on reactor engineering is applied for the professionals. This paper presents the reactor facility and experiments performed at the DNRR for education and training purposes. In addition, the co-operation between the DNRI with national and international educational organizations for nuclear human resource development for national and regional demands is also mentioned in the paper. (author)

  6. Overview of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Nguyen Thai Sinh; Luong Ba Vien

    2016-01-01

    The present reactor called Dalat Nuclear Research Reactor (DNRR) has been reconstructed from the former TRIGA Mark II reactor which was designed by General Atomic (GA, San Diego, California, USA), started building in early 1960s, put into operation in 1963 and operated until 1968 at nominal power of 250 kW. In 1975, all fuel elements of the reactor were unloaded and shipped back to the USA. The DNRR is a 500-kW pool-type research reactor using light water as both moderator and coolant. The reactor is used as a neutron source for the purposes of: (1) radioactive isotope production; (2) neutron activation analysis; and (3) research and training

  7. Experimental and calculational works on characteristics of the Dalat Nuclear Research Reactor. Second edition

    International Nuclear Information System (INIS)

    Pham Ngoc Khoi; Nguyen Kim Dung

    2016-03-01

    Recognizing the significant value and necessity of publishing the scientific document of experimental and calculational works on the Dalat Nuclear Research Reactor (DNRR) physics and engineering for research, operation, training activities as well as for international scientific exchange, Vietnam Atomic Energy Agency (VAEA) and Vietnam Atomic Energy Institute have completed editing to publish the “Experimental and Calculational Works on Characteristics of THE DALAT NUCLEAR RESEARCH REACTOR” which consists of 26 typical papers representing the most important experimental and calculational results of the DNRR physics and engineering obtained during 30 years of operation and exploitation with the contribution of Vietnamese and former USSR’s experts, especially scientists and engineers working at the Reactor Center of the NRI

  8. The gamma two-step cascade method at Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Pham Dinh Khang; Nguyen Nhi Dien; Nguyen Xuan Hai; Tran Tuan Anh; Ho Huu Thang; Pham Ngoc Son; Mangengo Lumengano

    2014-01-01

    The event-event coincidence spectroscopy system was successfully established and operated on thermal neutron beam of channel No. 3 at Dalat Nuclear Research Reactor (DNRR) with resolving time value of about 10 ns. The studies on level density, gamma strength function and decay scheme of intermediate-mass and heavy nuclei have been performed on this system. The achieved results are opening a new research of nuclear structure based on (n, 2γ) reaction. (author)

  9. Current status of operation, utilization and refurbishment of the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Pham Duy Hien.

    1993-01-01

    The reconstructed nuclear research reactor at Dalat, Vietnam has been put into operation since March 1984. Up to present a cumulative operation time of 13,172 hrs at nominal power (500 kW) has been recorded. Production of radioisotopes for medical uses, element analysis by using activation techniques, as well as fundamental and applied research with filtered neutrons are the main activities of reactor utilizations. The problems facing Dalat Nuclear Research Institute are the ageing of the re-used TRIGA-MARK-II reactor components (especially the corrosion of the reactor tank), as well as the obsolescence of many equipment and components of the reactor control and instrumentation system. Refurbishment works are being in process with the technical and financial supports from the Vietnam government and the IAEA. (author). 7 refs, 2 tabs, 10 figs

  10. Experimental determination of fuel surface temperature in the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Khang, Ngo Phu; Huy, Ngo Quang; An, Tran Khac; Lam, Pham Van [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Measured fuel surface temperatures, obtained at various locations of the core of the Dalat Nuclear Research Reactor under normal operating conditions, are presented, and some thermal characteristics of the reactor are discussed. (author). 2 refs., 11 figs., 2 tabs.

  11. Thermohydraulic characteristics under some transient conditions of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang; Khang, Ngo Phu; An, Tran Khac; Nghiem, Huynh Ton [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Some experimental and theoretical thermal hydraulic characteristics of the Dalat Nuclear Research Reactor are presented, together with some general assessments, from a thermal hydraulic point of view, of its safety under transient conditions. (author). 3 refs., 9 figs., 7 tabs.

  12. Kinetic characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    An, Tran Khac; Dien, Nguyen Nhi; Hien, Pham Duy [Nuclear Research Inst., Da Lat (Viet Nam); and others

    1994-10-01

    Kinetic characteristics of the reconstructed nuclear reactor in Dalat is investigated. Experimental parameters measured consist of: temperature coefficient of reactivity for water moderator, xenon poisoning, contribution of delayed photoneutrons induced by Be({gamma}, n) reactions and positive reactivity insertion behavior. (author). 6 refs. 4 figs.

  13. Kinetic characteristics of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Tran Khac An; Nguyen Nhi Dien; Pham Duy Hien

    1994-01-01

    Kinetic characteristics of the reconstructed nuclear reactor in Dalat is investigated. Experimental parameters measured consist of: temperature coefficient of reactivity for water moderator, xenon poisoning, contribution of delayed photoneutrons induced by Be(γ, n) reactions and positive reactivity insertion behavior. (author). 6 refs. 4 figs

  14. Utilizations of filtered neutron beams at Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.D.; Chau, L.N.; Tan, V.H.; Hiep, N.T.; Phuong, L.B.

    1992-01-01

    Neutron beam utilizations in basic and applied researches have been important activities at the Dalat nuclear reactor. The neutron filters with single crystal of silicon are used to produce thermal neutrons at the tangential horizontal channel and quasi-monoenergetic 144 KeV and 54 KeV neutrons at the piercing beam tube. The paper presents some relevant characteristics of the filtered neutron beams at the two horizontal channels. Applications of neutron beams in prompt gamma-ray activation analysis and in nuclear data measurements are briefly described. (author)

  15. Safe operation of existing radioactive waste management facilities at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Pham Van Lam; Ong Van Ngoc; Nguyen Thi Nang

    2000-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the former TRIGA MARK-II in 1982 and put into operation in March 1984. The combined technology for radioactive waste management was newly designed and put into operation in 1984. The system for radioactive waste management at the Dalat Nuclear Research Institute (DNRI) consists of radioactive liquid waste treatment station and disposal facilities. The treatment methods used for radioactive liquid waste are coagulation and precipitation, mechanical filtering and ion- exchange. Near-surface disposal of radioactive wastes is practiced at DNRI In the disposal facilities eight concrete pits are constructed for solidification and disposal of low level radioactive waste. Many types of waste generated in DNRI and in some Nuclear Medicine Departments in the South of Vietnam are stored in the disposal facilities. The solidification of sludge has been done by cementation. Hydraulic compactor has done volume reduction of compatible waste. This paper presents fifteen-years of safe operation of radioactive waste management facilities at DNRI. (author)

  16. Delayed photoneutrons of the of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Ngo Quang Huy; Ha Van Thong; Vu Hai Long; Ngo Phu Khang; Nguyen Nhi Dien; Pham Van Lam; Huynh Dong Phuong; Luong Ba Vien; Le Vinh Vinh

    1994-01-01

    Time spectrum of delayed neutrons of the Dalat nuclear research reactor is measured and analyzed. It corresponds to a shut-down neutron fluxes of about 10 5 /10 8 n/cm 2 /sec after 100 hours continuous reactor operation at steady power level of 500 kW. Data processing of experimental time neutron spectrum gives 16 exponents, of which 10, resulting from photoneutrons due to (γ,n) reactions on beryllium used inside the reactor core, are obtained by using successive exponential stripping fitting method. For the Dalat reactor, the effective delayed photoneutron fraction relative to the total effective delayed neutron fraction is β B e eff =0.49%β eff for a beryllium weight relative to U 235 fuel of m B e/m U = 8.5. This result is acceptable in comparison to those obtained for other Be-U 235 media. (author). 5 refs., 2 figs., 4 tabs

  17. The Preliminary Decommissioning Plan of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Pham Van; Vien, Luong Ba; Vinh, Le Vinh; Nghiem, Huynh Ton; Tuan, Nguyen Minh; Phuong, Pham Hoai [Nuclear Research Institute, Da Lat (Viet Nam)

    2013-08-15

    Recently, after 25 years of operation, a preliminary decommissioning plan for the Dalat Nuclear Research Reactor (DNRR) has been produced but as yet it has not been implemented due to the continued operations of the reactor. However, from the early phases of facility design and construction and during operation, the aspects that facilitate decommissioning process have been considered. This paper outlines the DNRR general description, the organization that manages the facility, the decommissioning strategy and associated project management, and the expected decommissioning activities. The paper also considers associated cost and funding, safety and environmental issues and waste management aspects amongst other considerations associated with decommissioning a nuclear research reactor. (author)

  18. Status report of the program on neutron beam utilization at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1996-08-01

    The thermal reactor is an intense source not only of thermal neutron, but also intermediate as well as fast neutrons. Using the filtered neutron beam technique at steady state atomic reactor allows receiving the neutrons in the intermediate energy region with the most available intense flux at present. In the near time at the Dalat reactor the filtered neutron beam technique has been applied. Utilization of the filtered neutron beams in basic and applied researches has been a important activity of the Dalat Nuclear Research Institute (DNRI). This report presents some relevant characteristics of the filtered neutron beams and their utilization in nuclear data measurements, neutron capture gamma ray spectroscopy, neutron radiography, neutron dose calibration and other applications. (author). 3 refs, 2 figs

  19. Delayed photoneutrons of the of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Dien, Nguyen Nhi; Lam, Pham Van; Phuong, Huynh Dong; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Time spectrum of delayed neutrons of the Dalat nuclear research reactor is measured and analyzed. It corresponds to a shut-down neutron fluxes of about 10{sup 5}/10{sup 8} n/cm{sup 2}/sec after 100 hours continuous reactor operation at steady power level of 500 kW. Data processing of experimental time neutron spectrum gives 16 exponents, of which 10, resulting from photoneutrons due to ({gamma},n) reactions on beryllium used inside the reactor core, are obtained by using successive exponential stripping fitting method. For the Dalat reactor, the effective delayed photoneutron fraction relative to the total effective delayed neutron fraction is {beta}{sup B}e{sub eff}=0.49%{beta}{sub eff} for a beryllium weight relative to U{sup 235} fuel of m{sub B}e/m{sub U} = 8.5. This result is acceptable in comparison to those obtained for other Be-U{sup 235} media. (author). 5 refs., 2 figs., 4 tabs.

  20. Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Luong Ba Vien; Nguyen Minh Tuan; Nguyen Kien Cuong; Pham Quang Huy; Tran Tri Vien

    2015-01-01

    The project Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education performed by Dalat Nuclear Research Institute and financed by Ministry of Science and Technology aimed at strengthening the training capability of nuclear human resources. The content of this work includes: i) Improvement of experimental equipment; ii) Compilation of training material for experiments with the improved equipment systems on the reactor; iii) Compilation of training material for reactor calculations includes the following areas: neutronics, hydrothermal, safety analysis and accident consequence analysis. Results of the project provide important conditions to support practical educational and training curriculums in nuclear science and technology. (author)

  1. Calculational prediction of fuel burn-up for the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Phuoc Lan; Do Quang Binh

    2016-01-01

    In this paper, the method of expanding operators and functions in the neutron diffusion equations as chains of time variable is used for calculation of fuel burn-up of the Dalat nuclear reactors. A computer code, named BURREF, programmed in language Fortran-77 running on IBM PC-AT, has been developed based on this method to predict the fuel burn-up of the Dalat reactor. Some results will be presented here. (author)

  2. Facility and application of nuclear and supplementary analytical techniques at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Nguyen Mong Sinh; Ho Manh Dung; Nguyen Thanh Binh

    2006-01-01

    The main applications of the nuclear and supplementary analytical techniques (N and SATs) in the Dalat Nuclear Research Institute (DNRI) and the facilities for the techniques are presented. The NATs in DNRI include the neutron activation analysis (NAA) with instrumental, radiochemical and prompt gamma methods (INAA, RNAA, PGNAA), the X-ray fluorescence analysis (XRFA) and the low-level counting and spectrometry. The sample irradiation sites for NAA, the automatic and manual pneumatic transfer systems, were installed at channels 7-1 and 13-2 and rotary rack on the Dalat research reactor. An ORTEC automatic sample changer (model ASC2) for γ-ray counting was equipped. A computer software for NAA based on the k 0 -standardization method for calculation of elemental concentration was developed. The low-level counting and spectrometry techniques have been setup. The devices required for sampling, sample preparation and data processing have also been equipped. The applications of N and SATs for determination of elemental composition, particularly important in providing data so-called trace elements, radionuclides and multi-element have been enlarged for objects of geology, archaeology, bio-agriculture, health-nutrition and environment. The implementation a quality system for N and SATs has been planned and initiated. (author)

  3. Investigation of the basic reactor physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Khang, Ngo Phu [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The Dalat nuclear research reactor was reconstructed from TRIGA MARK II reactor, built in 1963 with nominal power of 250 KW, and reached its planned nominal power of 500 kW for the first time in Feb. 1984. The Dalat reactor has some characteristics distinct from the former TRIGA reactor. Investigation of its characteristics is carried out by the determination of the reactor physics parameters. This paper represents the experimental results obtained for the effective fraction of the delayed photoneutrons, the extraneous neutron source left after the reactor is shut down, the lowest power levels of reactor critical states, the relative axial and radial distributions of thermal neutrons, the safe positive reactivity inserted into the reactor at deep subcritical state, the reactivity temperature coefficient of water, the temperature on the surface of the fuel elements, etc. (author). 10 refs., 10 figs., 2 tabs.

  4. Main safety lessons from 5-year operation of the renovated Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Anh, T.H.; Lam, P.V.; An, T.K.; Khang, N.P.; Tan, D.Q.

    1989-01-01

    The paper presents main safety related characteristics of the Dalat Nuclear Research Reactor (DNRR), which was reconstructed in 1982 at the site of the former TRIGA Mark II, while retaining some of its structures. Experience acquired from reactor operation is analysed. The programme of investigations aimed at better ensuring nuclear safety of the reactor, together with some of its results are presented. Finally some propositions to improve the present situation are suggested. (Authors). (2 Tables, 2 fig.)

  5. Results of Operation and Utilization of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Luong Ba Vien; Le Vinh Vinh; Duong Van Dong; Nguyen Xuan Hai; Pham Ngoc Son; Cao Dong Vu

    2014-01-01

    The Dalat Nuclear Research Reactor (DNRR) with the nominal power of 500 kW was reconstructed and upgraded from the USA 250-kW TRIGA Mark-II reactor built in early 1960s. The renovated reactor was put into operation on 20 March 1984. It was designed for the purposes of radioisotope production (RI), neutron activation analysis (NAA), basic and applied researches, and nuclear education and training. During the last 30 years of operation, the DNRR was efficiently utilized for producing many kinds of radioisotopes and radiopharmaceuticals used in nuclear medicine centers and other users in industry, agriculture, hydrology and scientific research; developing a combination of nuclear analysis techniques (INAA, RNAA, PGNAA) and physic-chemical methods for quantitative analysis of about 70 elements and constituents in various samples; carrying out experiments on the reactor horizontal beam tubes for nuclear data measurement, neutron radiography and nuclear structure study; and establishing nuclear training and education programs for human resource development. This paper presents the results of operation and utilization of the DNRR. In addition, some main reactor renovation projects carried out during the last 10 years are also mentioned in the paper. (author)

  6. Status of neutron beam utilization at the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Dien, Nguyen Nhi; Hai, Nguyen Canh

    2003-01-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  7. Calculation of fuel burn-up and fuel reloading for the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Nguyen Phuoc; Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Binh, Do Quang [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Calculation of fuel burnup and fuel reloading for the Dalat Nuclear Research Reactor was carried out by using a new programme named HEXA-BURNUP, realized in a PC. The programme is used to calculate the following parameters of the Dalat reactor: a/Critical configurations of the core loaded with 69, 72, 74, 86, 88, 89 and 92 fuel elements. The effective multiplication coefficients equal 1 within the error ranges of less than 0.38%. b/ The thermal neutron flux distribution in the reactor. The calculated results agree with the experimental data measured at 11 typical positions. c/The average fuel burn-up for the period from Feb. 1984 to Sep. 1992. The difference between calculation and experiment is only about 1.9%. 10 fuel reloading versions are calculated, from which an optimal version is proposed. (author). 9 refs., 4 figs., 5 tabs.

  8. Present status of contamination monitoring at the Dalat Nuclear Research Institute (DNRI)

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hoang Van [Dalat Nuclear Research Inst. (Viet Nam)

    1997-06-01

    The Dalat nuclear research reactor was renovated and upgraded from the previous TRIGA reactor. In Vietnam, it is a unique nuclear device having suitable neutron flux for the radioisotope production and neutron activation analysis. Soon after the reactor reached its initial criticality in November 1983, a programme has been formed to develop the application of nuclear techniques in various fields. In addition, the use of radioisotopes for diagnostic, therapeutic and other research purposes has been in progress. In order to support these activities, the radiation protection, especially the radiation contamination monitoring has been properly paid attention to. In DNRI, the Radiation Protection Department is responsible for controlling and supervising radiation and working safety for all activities. In this paper, the following items are described on radiation contamination monitoring: controlled area, surface contamination monitoring, and airborne concentration monitoring. (G.K.)

  9. Safety evaluation of the Dalat research reactor operation

    International Nuclear Information System (INIS)

    Long, V.H.; Lam, P.V.; An, T.K.

    1989-01-01

    After an introduction presenting the essential characteristics of the Dalat Nuclear Research Reactor, the document presents i) The safety assurance condition of the reactor, ii) Its safety behaviour after 5 years of operation, iii) Safety research being realized on the reactor. Following is questionnaire of safety evaluation and a list of attachments, which concern the reactor

  10. Neutronics analysis of Dalat Nuclear Research Reactor by MVP/GMVP code

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Toru Obara

    2008-01-01

    The paper presents neutronics calculation for Dalat Nuclear Research Reactor (DNRR) to validate MVP/GMVP Code. Beside fresh core calculation, burnt core and burn up distribution were also carried out and compared with experimental data or result obtained from other codes. With complex geometry and operating history like DNRR, burn up calculation by Monte Carlo Method is the better choice owing to the use of exact geometry description and continuous neutron energy in calculation. The discrepancy between calculated data and experimental data is good to compare. By using Monte Carlo method, continuous neutron energy from JENDL3.3 library and combined with burn up calculation, MVP/GMVP Code is a very useful tool for reactor calculation. (author)

  11. Research on application of system of neutron, thermohydraulic and safety analysis codes in order to simulation of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Le Vinh Vinh; Huynh Ton Nghiem

    2004-01-01

    Requirements of neutron, thermohydraulic and safety analysis calculation are very important because of issuing new version of SAR for DNRR, research on construction of new research reactor and nuclear power plant. Research on application of system of neutron, thermohydraulic and safety analysis codes in order to simulation of the Dalat Nuclear Research Reactor has been done in the frame work of research theme in the year 2002-2003. The purposes of the research are maintaining safety operation of the DNRR and enhancement of man power and calculation and safety analysis tool potential. (author)

  12. Progress of the radioactive waste management at the Dalat Nuclear Research Institute and the role of an IAEA technical co-operation project in this process

    International Nuclear Information System (INIS)

    Nang, N.T.; Ngoc, O.V.; Nhu Thuy, T.T.; Nghi, D.V.; Thu, N.T.

    2002-01-01

    At present, the main radioactive waste generator in Vietnam is the Dalat Nuclear Research Institute (DNRI). For safe management of radioactive waste generated from this nuclear center, in 1982 Soviet specialists newly constructed one combined technology system for low level radioactive waste management. The existing system consists of two main parts, a Liquid Radioactive Waste Treatment Station and a Storage/Disposal Facility. The liquid treatment station can in principle meet the needs for this nuclear center but disposal technology and storage/disposal facilities are not good enough both with respect to safety and economy, especially the storage/disposal facility placed in Dalat, the tourist city. In order to help DNRI and Vietnam to solve the radioactive waste management problem, the IAEA Technical Co-operation (TC) project VIE/9/007 was implemented in Vietnam. The facilities and IAEA experts provided under this project gradually help to develop radioactive waste management at DNRI, Vietnam. This paper outlines progress under way in the management of the radioactive waste at the Nuclear Research Institute (NRI), Dalat, Vietnam, and the role of the IAEA Technical Co-operation (TC) project in this process. (author)

  13. Bio dosimetry- present situation and solution for application at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Tran Que; Hoang Hung Tien; Hoang Van Nguyen

    2000-01-01

    Studies on using technique of chromosome aberration analysis of Human lymphocytes for biodosimetry included the study on spontaneous frequencies of chromosome aberrations (background), the study on dosimetric calibrations, and the study on the solutions for personal biodosimetry at Dalat Nuclear Reactor. The results of these studies were published and the solutions for personal biodosimetry were recommended. (author)

  14. Current status and ageing management of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Nhi Dien [Nuclear Research Institute, Dalat (Viet Nam)

    2000-10-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW swimming pool type reactor loaded with the Soviet WWR-M2 fuel elements, moderated and cooled by light water. It was reconstructed and upgraded from the former 250 kW TRIGA Mark-II reactor built in 1963. The first criticality of the renovated reactor was in November 1983 and it has been put in regular operation at nominal power since March 1984. The DNRR is operated mainly in continuous runs of 100 hrs every 4 weeks, for radioisotope production, neutron activation analyses and other research purposes. The remaining time is devoted to maintenance work and to short runs for reactor physics studies as well. From its first start-up to the end of 1998, it totaled about 20,000 hrs of operation at nominal power. After ten years of operation, reactor general inspection and refurbishment were implemented in the 1992-1996 period. In April 1994, refueling work was executed with adding of 11 fresh fuel elements to the reactor core. At present, the reactor has been working with 100-fuel element configuration. Corrosion study has been implemented by visual inspection of the reactor pool tank and some other inside components which remain unchanged from the previous TRIGA reactor. The inspections were carried out with the assistance of some experts from other countries. Some visual inspection results have been obtained and the nature of the electrochemical corrosion and related aspects were little by little identified. In this paper, the operation status of the Dalat reactor is presented, and some activities related to the ageing management of the reactor pool tank and its inside components are also discussed. (author)

  15. Current status and ageing management of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien

    2000-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW swimming pool type reactor loaded with the Soviet WWR-M2 fuel elements, moderated and cooled by light water. It was reconstructed and upgraded from the former 250 kW TRIGA Mark-II reactor built in 1963. The first criticality of the renovated reactor was in November 1983 and it has been put in regular operation at nominal power since March 1984. The DNRR is operated mainly in continuous runs of 100 hrs every 4 weeks, for radioisotope production, neutron activation analyses and other research purposes. The remaining time is devoted to maintenance work and to short runs for reactor physics studies as well. From its first start-up to the end of 1998, it totaled about 20,000 hrs of operation at nominal power. After ten years of operation, reactor general inspection and refurbishment were implemented in the 1992-1996 period. In April 1994, refueling work was executed with adding of 11 fresh fuel elements to the reactor core. At present, the reactor has been working with 100-fuel element configuration. Corrosion study has been implemented by visual inspection of the reactor pool tank and some other inside components which remain unchanged from the previous TRIGA reactor. The inspections were carried out with the assistance of some experts from other countries. Some visual inspection results have been obtained and the nature of the electrochemical corrosion and related aspects were little by little identified. In this paper, the operation status of the Dalat reactor is presented, and some activities related to the ageing management of the reactor pool tank and its inside components are also discussed. (author)

  16. Production of Radioisotopes and Radiopharmaceuticals at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Duong Van Dong; Pham Ngoc Dien; Bui Van Cuong; Mai Phuoc Tho; Nguyen Thi Thu; Vo Thi Cam Hoa

    2014-01-01

    After reconstruction, the Dalat Nuclear Research Reactor (DNRR) was inaugurated on March 20th, 1984 with the nominal power of 500 kW. Since then the production of radioisotopes and labelled compounds for medical use was started. Up to now, DNRR is still the unique one in Vietnam. The reactor has been operated safely and effectively with the total of about 37,800 hrs (approximately 1,300 hours per year). More than 90% of its operation time and over 80% of its irradiation capacity have been exploited for research and production of radioisotopes. This paper gives an outline of the radioisotope production programme using the DNRR. The production laboratory and facilities including the nuclear reactor with its irradiation positions and characteristics, hot cells, production lines and equipment for the production of Kits for labelling with 99m Tc and for quality control, as well as the production rate are mentioned. The methods used for production of 131 I, 99m Tc, 51 Cr, 32 P, etc. and the procedures for preparation of radiopharmaceuticals are described briefly. Status of utilization of domestic radioisotopes and radiopharmaceuticals in Vietnam is also reported. (author)

  17. Diagnosis of electric equipment at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Truong Sinh

    1999-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type of its kind in the world: Soviet-designed core and control system harmoniously integrated into the left-over infrastructure of the former American-made TRIGA MARK II reactor, which includes the reactor tank and shielding, graphite reflector, beam tubes and thermal column. The reactor is mainly used for radioisotope and radiopharmaceutical production, elemental analysis using neutron activation techniques, neutron beam exploitation, silicon doping, and reactor physics experimentation. For safe operation of the reactor maintenance work has been carried out for the reactor control and instrumentation, reactor cooling, ventilation, radiomonitoring, mechanical, normal electric supply systems as well as emergency electric diesel generators and the water treatment station. Technical management of the reactor includes periodical maintenance as required by technical specifications, training, re-training and control of knowledge for reactor staff. During recent years, periodic preventive maintenance (PPM) has been carried out for the electric machines of the technological systems. (author)

  18. Physical Characteristics of the Dalat Nuclear Research Reactor; Cac dac trung vat ly lo cua lo phan ung hat nhan Da Lat

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [ed.; Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The operation of the TRIGA MARK II reactor of nominal power 250 KW has been stopped as all the fuel elements have been dismounted and taken away in 1968. The reconstruction of the reactor was accomplished with Russian technological assistance after 1975. The nominal power of the reconstructed reactor is of 500 KW. The recent Dalat reactor is unique of its kind in the world: Russian-designed core combined with left-over infrastructure of the American-made TRIGA II. The reactor was loaded in November 1983. It has reached physical criticality on 1/11/1983 (without central neutron trap) and on 18/12/1983 (with central neutron trap). The power start up occurred in February 1984 and from 20/3/1984 the reactor began to be operated at the nominal power 500 KW. The selected reports included in the proceedings reflect the start up procedures and numerous results obtained in the Dalat Nuclear Research Institute and the Centre of Nuclear Techniques on the determination of different physical characteristics of the reactor. These characteristics are of the first importance for the safe operation of the Dalat reactor.

  19. Safety And Transient Analyses For Full Core Conversion Of The Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong

    2011-01-01

    Preparing for full core conversion of Dalat Nuclear Research Reactor (DNRR), safety and transient analyses were carried out to confirm about ability to operate safely of proposed Low Enriched Uranium (LEU) working core. The initial LEU core consisting 92 LEU fuel assemblies and 12 Beryllium rods was analyzed under initiating events of uncontrolled withdrawal of a control rod, cooling pump failure, earthquake and fuel cladding fail. Working LEU core response were evaluated under these initial events based on RELAP/Mod3.2 computer code and other supported codes like ORIGEN, MCNP and MACCS2. Obtained results showed that safety of the reactor is maintained for all transients/accidents analyzed. (author)

  20. Determination of the lowest critical power levels of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Binh, Do Quang; Nghiem, Huynh Ton; Tuan, Nguyen Minh; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    This paper presents the experimental methods for determining critical states of the Dalat Nuclear Research Reactor containing an extraneous neutron source induced by gamma ray reactions on beryllium in the reactor. The lowest critical power levels are measured at various moments after the reactor is shut down following 100 hours of its continuous operation. Th power levels vary from (0.5-1.2) x 10{sup -4} of P{sub n}, i.e. (25-60)W to (1.1-1.6) x 10{sup -5} of P{sub n}, i.e. (5.5-8)W at corresponding times of 4 days to 13 days after the reactor is shut down. However the critical power must be chosen greater than 500 W to sustain the steady criticality of the reactor for a long time. (author). 3 refs. 4 figs. 1 tab.

  1. Fuel Management at the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham, V.L.; Nguyen, N.D.; Luong, B.V.; Le, V.V.; Huynh, T.N.; Nguyen, K.C. [Nuclear Research Institute, 01 Nguyen Tu Luc Street, Dalat City (Viet Nam)

    2011-07-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the old 250 kW TRIGA-MARK II reactor. The spent fuel storage was newly designed and installed in the place of the old thermalizing column for biological irradiation. The core was loaded by Russian WWR-M2 fuel assemblies (FAs) with 36% enrichment. The reconstructed reactor reached its initial criticality in November 1983 and attained it nominal power of 500 kW in February 1984. The first fuel reloading was executed in April 1994 after more than 10 years of operation with 89 highly enriched uranium (HEU) FAs. The third fuel reloading by shuffling of HEU FAs was executed in June 2004. After the shuffling the working configuration of reactor core kept unchanged of 104 HEU FAs. The fourth fuel reloading was executed in November 2006. The 2 new HEU FAs were loaded in the core periphery, at previous locations of wet irradiation channel and dry irradiation channel. After reloading the working configuration of reactor core consisted of 106 HEU FAs. Contracts for reactor core conversion between USA, Russia, Vietnam and the International Atomic Energy Agency for Nuclear fuel manufacture and supply for DNRR and Return of Russian-origin non-irradiated highly enriched uranium fuel to the Russian Federation have been realized in 2007. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory and Vietnam Atomic Energy Institute the mixed core configurations of irradiated HEU and new low enriched uranium (LEU) FAs has been created on 12 September, 2007 and on 20 July, 2009. After reloading in 2009, the 14 HEU FAs with highest burnup were removed from the core and put in the interim storage in reactor pool. The works on full core conversion for the DNRR are being realized in cooperation with the organizations, DOE and IAEA. Contract for Nuclear fuel manufacture and supply of 66 LEU FAs for DNRR

  2. Distribution of the thermal neutron field around the graphite reflector of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Thermal neutron flux distributions around the graphite reflector of the Dalat Nuclear Research Reactor are determined by the method for neutron activating Cu foils. The major results are as follows: a/The axial distributions at the inner and outer margins of the graphite reflector have unsymmetrical shapes, similar to axial distributions in the core. There is a dissimilarity between the distribution curves at the inner margin and those at the outer margin of the reflector. b/ The radial distribution on the upper surface of the graphite reflector is measured and is described by the two-group neutron diffusion theory. The maximal value of the curve lies at the position of R{sub m}ax = 22.5 cm. c/ The distribution in the twenty water irradiation holes around the rotary specimen rack is obtained. (author). 3 refs., 5 figs., 1 tab.

  3. Utilization of the Dalat Research Reactor for Radioisotope Production, Neutron Activation Analysis, Research and Training

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Duong Van Dong; Cao Dong Vu; Nguyen Xuan Hai

    2013-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW pool type reactor loaded with a mixed core of HEU (36% enrichment) and LEU (19.75% enrichment) fuel assemblies. The reactor is used as a neutron source for the purposes of radioisotopes production, neutron activation analysis, basic and applied research and training. The reactor is operated mainly in continuous runs of 108 hours for cycles of 3–4 weeks for the above mentioned purposes. The current status of safety, operation and utilization of the reactor is given and some aspects for improvement of commercial products and services of the DNRR are also discussed in this paper. (author)

  4. Emergency planning and preparedness of the Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Luong, B.V.

    2001-01-01

    The effectiveness of measures taken in case of accident or emergency to protect the site personnel, the general public and the environment will depend heavily on the adequacy of the emergency plan prepared in advance. For this reason, an emergency plan of the operating organization shall cover all activities planned to be carried out in the event of an emergency, allow for determining the level of the emergency and corresponding level of response according to the severity of the accident condition, and be based on the accidents analysed in the SAR as well as those additionally postulated for emergency planning purposes. The purpose of this paper is to present the practice of the emergency planning and preparedness in the Dalat Nuclear Research Institute (DNRI) for responding to accidents/incidents that may occur at the DNRI. The DNRI emergency plan and emergency procedures developed by the DNRI will be discussed. The information in the DNRI emergency plan such as the emergency organization, classification and identification of emergencies; intervention measures; the co-ordination with off-site organizations; and emergency training and drills will be described in detail. The emergency procedures in the form of documents and instructions for responding to accidents/incidents such as accidents in the reactor, accidents out of the reactor but with significant radioactive contamination, and fire and explosion accidents will be mentioned briefly. As analysed in the Safety Analysis Report for the DNRI, only the in-site actions are presented in the paper and no off-site emergency measures are required. (author)

  5. Some Main Results of Commissioning of the Dalat Research Reactor with Low Enriched Fuel

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Luong Ba Vien; Pham Van Lam; Le Vinh Vinh; Huynh Ton Nghiem

    2014-01-01

    After completion of design calculation of the Dalat Nuclear Research Reactor (DNRR) for conversion from high-enriched uranium fuel (HEU) to low-enriched uranium (LEU) fuel, the commissioning programme for DNRR with entire core loaded with LEU fuel was successfully carried out from 24 November 2011 to 13 January 2012. The experimental results obtained during the implementation of commissioning programme showed a good agreement with design calculations and affirmed that the DNRR with LEU core have met all safety and exploiting requirements. (author)

  6. Related activities on management of ageing of Dalat Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Pham Van [Reactor Dept., Nuclear Research Institute, Dalat (Viet Nam)

    1998-10-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the previous 250 kW TRIGA-MARK II reactor. The reactor core, the control and instrumentation system, the primary and secondary cooling systems as well as other associated systems were newly designed and installed. The renovated reactor reached its initial criticality in November 1983 and attained its nominal power of 500 kW in February 1984. Since then DNRR has been operated safely. Retained structures of the former reactor such as the reactor aluminum tank, the graphite reflector, the thermal column, the horizontal beam tubes and the radiation concrete shielding are 35 years old. During the recent years, in-service inspection has been carried out, the reactor control and instrumentation system were renovated due to ageing and obsolescence of its components, reactor general inspection and refurbishment were performed. Efforts are being made to cope with ageing of old reactor components to maintain safe operation of the DNRR. (author)

  7. Study and application of k0-IAEA program on the Dalat Research Reactor

    International Nuclear Information System (INIS)

    Cao Dong Vu; Tran Quang Thien; Nguyen Thi Sy; Ho Manh Dung; Nguyen Nhi Dien

    2011-01-01

    The pneumatic 7-1 and rotary rack (lazy susan) facilities are two main irradiation channels for neutron activation analysis at Dalat research reactor. The experiments for characterizing these two irradiation facilities at June, July and August, 2010 by k 0 -IAEA using Al-0.1% Au, Al-0.1% Lu, 99.98% Ni and 99.8% Zr monitors were done. The neutron spectrum parameters include: (1) Thermal neutron flux (Φ th ); (2) The ratio between thermal neutron flux and epi-thermal neutron flux (f); (3) The α factor describing the neutron flux distribution 1/E 1+α , and (4) The neutron temperature (T n ). This study provides the first database for further studying and applying k 0 -IAEA at Dalat Research Reactor in the future. (author)

  8. Application of ko-NAA technique on Dalat research reactor for human hair analysis in environmental pollution study

    International Nuclear Information System (INIS)

    Ho Manh Dung; Mai Van Nhon

    2006-01-01

    The k o -standardization method of neutron activation analysis (k o -NAA) has recently been developed on Dalat research reactor. However, in order to apply the k o -NAA technique for practical research objects, it is necessary to establish different experimental procedures for each object. This work is aiming at establishing such a k o -NAA procedure on Dalat research reactor for human hair samples to solve the environmental pollution study prob;em. Therefore, the sample collection and preparation, irradiation, gamma-ray spectrum measurement and data processing, as well as quality assurance and quality control of the k o -NAA procedure for human hair samples have been assessed by comparing with elemental concentrations in terms of the experimental to certified values ratio and U-score. The experimental results showed that the k o -NAA for multi-element in human hair sample analysis is able to apply on Dalat research reactor with a rather good analytical quality. (author)

  9. Vietnam Project For Production Of Radioactive Beam Based On ISOL Technique With The Dalat Reactor

    International Nuclear Information System (INIS)

    Le Hong Khiem; Phan Viet Cuong; Fadi Ibrahim

    2011-01-01

    The presence in Vietnam of Dalat nuclear reactor dedicated to fundamental studies is a unique opportunity to produce Radioactive Ion (RI) Beams with the fission of a 235 U induced by the thermal neutrons produced by the reactor. We propose to produce RI beams at the Dalat nuclear reactor using ISOL (Isotope Separation On-Line) technique. This project should be a unique opportunity for Vietnamese nuclear physics community to use its own facilities to produce RI beams for studying nuclear physics at an international level. (author)

  10. Progress report on research of nuclear data and applied nuclear physics at nuclear research institute Viet Nam. For the period January 1 - December 31 1996

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1997-03-01

    This report contains information on activities of nuclear data and applied physics at the Nuclear Research Institute, Dalat, Vietnam for the period January 1st-December 31st 1996. The specific topics covered are the following: Development of filtered neutron beams. Investigation of average characteristics of nuclei in the unresolved enrgy region, Nuclear structure, Nuclear data for applications, Neutron beam utilization for applications, Nuclear analytical techniques and sedimentology

  11. Comparative Analysis of the Dalat Nuclear Research Reactor with HEU Fuel Using SRAC and MCNP5

    Directory of Open Access Journals (Sweden)

    Giang Phan

    2017-01-01

    Full Text Available Neutronics analysis has been performed for the 500 kW Dalat Nuclear Research Reactor loaded with highly enriched uranium fuel using the SRAC code system. The effective multiplication factors, keff, were analyzed for the core at criticality conditions and in two cases corresponding to the complete withdrawal and the full insertion of control rods. MCNP5 calculations were also conducted and compared to that obtained with the SRAC code. The results show that the difference of the keff values between the codes is within 55 pcm. Compared to the criticality conditions established in the experiments, the maximum differences of the keff values obtained from the SRAC and MCNP5 calculations are 119 pcm and 64 pcm, respectively. The radial and axial power peaking factors are 1.334 and 1.710, respectively, in the case of no control rod insertion. At the criticality condition these values become 1.445 and 1.832 when the control rods are partially inserted. Compared to MCNP5 calculations, the deviation of the relative power densities is less than 4% at the fuel bundles in the middle of the core, while the maximum deviation is about 7% appearing at some peripheral bundles. This agreement indicates the verification of the analysis models.

  12. Some corrosion effects of the aluminum tank surface of Dalat research reactor

    International Nuclear Information System (INIS)

    Nguyen Mong Sinh

    1995-01-01

    The Dalat Nuclear Research Reactor was reconstructed from the TRIGA-MARK-II reactor installed in 1963 with a nominal power of 250 kW. Reconstruction and upgrading of this reactor to nominal power of 500 kW had been completed in the end of 1983. The reactor was commissioned in the beginning of March 1984. The aluminum reactor tank and some components of the former reactor are more than 30 year old. The good quality of reactor water minimized the total corrosion rate of reactor material surface. But some local corrosion had been found out at the tank bottom especially in water stagnant areas. The corrosion processes could be due to the electrochemical reactions associated with different metals and alloys in the reactor water and keeping in touch with the surface of aluminum reactor tank. (orig.)

  13. Development of a computer code for Dalat research reactor transient analysis

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Nguyen Thai Sinh; Huynh Ton Nghiem; Luong Ba Vien; Pham Van Lam; Nguyen Kien Cuong

    2003-01-01

    DRSIM (Dalat Reactor SIMulation) computer code has been developed for Dalat reactor transient analysis. It is basically a coupled neutronics-hydrodynamics-heat transfer code employing point kinetics, one dimensional hydrodynamics and one dimensional heat transfer. The work was financed by VAEC and DNRI in the framework of institutional R and D programme. Some transient problems related to reactivity and loss of coolant flow was carried out by DRSIM using temperature and void coefficients calculated by WIMS and HEXNOD2D codes. (author)

  14. Study On Analytical Methods Of Tellurium Content In Natriiodide (Na131I) Radiopharmaceutical Solution Produced In The Dalat Nuclear Reactor

    International Nuclear Information System (INIS)

    Vo Thi Cam Hoa; Duong Van Dong; Nguyen Thi Thu; Chu Van Khoa

    2007-01-01

    This report describes the practical methods for analyzing of Tellurium content in Na 131 I solution produced at the Dalat Nuclear Research Institute. We studied analytical methods to control Tellurium content in final Na 131 I solution product used in medical purposes by three methods such as: spot test, gamma spectrometric and spectrophotometric methods. These investigation results are shown that the spot test method is suitable for controlling Tellurium trace in the final product. This spot test can be determinate Tellurium trace less than 10 ppm and are used to quality control of Na 131 I solution using in medical application. (author)

  15. Neutronics analysis of Dalat Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong; Nguyen Manh Hung; Pham Hong Son; Tran Quoc Duong

    2006-01-01

    Many neutronics codes have been used to calculate for Dalat Research Reactor (DRR) from 1983 (the first critical of DRR in December, 1983). The purposes of all calculations are to know exactly many important parameters related to Reactor Physics and Neutron Physics in reactor core. The results from calculation play important role in core and fuel management for DRR. Especially basing on the results we can predict about fuel cycle, fuel burn up distribution and plan for using optimize remain fresh fuel assemblies of DRR. By using system neutronics code including transport codes, diffusion codes and Mote Carlo code, many characteristics of fuel assemblies and other parameters of whole core were received such as main features of VVR-M2 fuel assembly type, multiplication factor, neutron flux distribution, power distribution, burn up distribution, excess reactivity, control rods worth, neutron spectrum, temperature reactivity coefficient ect. In the paper, brief description all computer codes to being used in DRR and the calculation results from the codes above are presented. (author)

  16. Experimental investigation of the neutron physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang; Thong, Ha Van [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The investigation of the neutron physics characteristics of the Dalat Reactor has obtained the results as follows: 1/ The effective fraction of delayed photoneutrons and the extraneous neutron source left after reactor shut down are measured. 2/ The lowest power levels of critical states of the reactor are determined. 3/The perturbation effect is investigated when a water column or a plexiglass rod is substituted for a fuel element. 4/ The relative axial and radial distributions of the thermal neutrons measured and the geometrical parameters of the core such as the inhomogeneous coefficients, the buckling, the effective height and radius, the extrapolated distances are obtained. 4/ The thermal neutron distributions are measured around the old graphite reflector. (author). 10 refs., 10 figs., 2 tabs.

  17. Assessment Of Source Term And Radiological Consequences For Design Basis Accident And Beyond Design Basis Accident Of The Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Luong Ba Vien; Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong; Tran Tri Vien

    2011-01-01

    The paper presents results of the assessment of source terms and radiological consequences for the Design Basis Accident (DBA) and Beyond Design Basis Accident (BDBA) of the Dalat Nuclear Research Reactor. The dropping of one fuel assembly during fuel handling operation leading to the failure of fuel cladding and the release of fission products into the environment was selected as a DBA for the analysis. For the BDBA, the introduction of a step positive reactivity due to the falling of a heavy block from the rotating bridge crane in the reactor hall onto a part of the platform where are disposed the control rod drives is postulated. The result of the radiological consequence analyses shows that doses to members of the public are below annual dose limit for both DBA and BDBA events. However, doses from exposure to operating staff and experimenters working inside the reactor hall are predicted to be very high in case of BDBA and therefore the protective actions should be taken when the accident occurs. (author)

  18. Physical start up of the Dalat nuclear research reactor with the core configuration exempt from neutron trap

    International Nuclear Information System (INIS)

    Pham Duy Hien; Ngo Quang Huy; Vu Hai Long; Tran Khanh Mai

    1994-01-01

    The nominal power of the reconstructed Dalat reactor is of 500 KW. After a meticulous preparation the Russian and Vietnamese teams have proceeded to the physical reactor start-up in November 1983 with the core configuration exempt from the neutron trap. The reactor has reached the physical criticality at 19h50 on 1 November 1983. The report delineates different steps of the start-up procedure. 2 refs., 3 figs., 7 tabs

  19. Current status of operation and utilization of the Dalat research reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Le Van So

    2004-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW swimming pool type reactor using the Soviet WWR-SM fuel assembly with 36% enrichment of U-235. It was upgraded from the USA 250 kW TRIGA Mark-II reactor. The first criticality of the renovated reactor was in November 1983 and its regular operation at nominal power of 500 kW has been since March 1984. The DNRR is operated mainly in continuous runs of 100 hrs, once every 4 weeks, for radioisotope production, neutron activation analyses and research purposes. The remaining time between two continuous runs is devoted to maintenance activities and also to short run for physics experiments and training purpose. From the first start-up to the end of December 2002, it totaled about 24,700 hrs of operation and the total energy released was 490 MWd. After 10 years of operation with the core of 89-fuel assembly configuration, in April 1994, the first refueling work was done and the 100-fuel assembly configuration was set-up. The second fuel reloading was executed in March 2002. At present time, the working configuration of the reactor core consists of 104 fuel assemblies. This fuel reloading will ensure efficient exploitation of the reactor for about 3 years with 1200-1300 hrs per year at nominal power. The current status of operation and utilization and some activities related to the reactor core management of the DNRR are presented and discussed in this paper. (author)

  20. Current status of operation and utilization of the Dalat Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien

    2006-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW pool-type reactor using the Soviet VVR-M2 fuel assembly with 36% enrichment of U-235. It was renovated and upgraded from the USA 250 kW TRIGA Mark-II reactor. The first criticality of the renovated reactor was in November 1983 and its regular operation at nominal power of 500 kW has been since March 1984. The DNRR is operated mainly in continuous runs of 100 hrs, once every 4 weeks, for radioisotope production, neutron activation analysis, scientific research and training. The remaining time between two continuous runs is devoted to maintenance activities and also to short run for reactor physics and thermal hydraulics experiments. From the first start-up to the end of December 2003, it totaled about 26,000 hrs of operation and the total energy released was about 515 MWd. After 10 years of operation with the core of 89-fuel assembly configuration, in April 1994, the first refueling work was done and the 100-fuel assembly configuration was set-up. The second fuel reloading was executed in March 2002. At present time, the working configuration of the reactor core consists of 104 fuel assemblies. The next fuel reloading has been planned at the end of 2004. The current status of operation and utilization of the DNRR is presented and discussed in this paper. (author)

  1. Current status of operation and utilization of the Dalat Research Reactor

    International Nuclear Information System (INIS)

    Dien, Nguyen Nhi

    2006-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW pool-type reactor using the HEU (36% enrichment) WWR-M2 fuel assemblies. It was renovated and upgraded from the USA 250 kW TRIGA Mark-II reactor. The first criticality of the renovated reactor was in the 1st November 1983 and its regular operation at nominal power of 500 kW has been since March 1984. The DNRR is operated mainly in continuous runs of 100 hrs, once every 4 weeks, for radioisotope production, neutron activation analysis, scientific research and training. The remaining time between two continuous runs is devoted to maintenance activities and also to short run for reactor physics and thermal hydraulics experiments. From the first start-up to the end of December 2004, it totaled about 27,253 hrs of operation and the total energy released was about 543 MWd. The first fuel reloading was executed in April 1994 after more than 10 years of operation with 89 fuel assemblies (FA). The 11 new FAs were added in the core periphery, at previous beryllium element locations. After reloading the working configuration of reactor core consisted of 100 FAs. The second fuel reloading was executed in March 2002. The 4 new FAs were added in the core periphery, at previous beryllium element locations. The working configuration of 104 FAs ensured efficient exploitation of the DNRR at nominal power for about 3000 hrs since March 2002. In order to provide excess reactivity for the reactor operation without the need to discharge high burned FAs, in June 2004, the fuel shuffling of the reactor core was done. 16 FAs with low burn-up from the core periphery were moved toward the core center and 16 FAs with high-burn-up from the core center were moved toward the core periphery. This operation provided additional reactivity of about 0.85 β eff that the current reactor configuration using re-shuffled HEU fuel is expected to allow normal operation until June 2006. In 1999, the request of returning to Russia HEU fuels from foreign

  2. The radial distribution of the neutron field in the core of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Determination of the radial distribution of the thermal neutron field in the core of the Dalat reactor is done by the Cu foil activation method. The measured data are fitted by the least square method to determine several physical parameters of the reactor, as follows: 1. Buckling B{sub r}{sup 2}=(84.6{+-}5.5)10{sup -4}/cm{sup 2}. 2. The effective radius R{sub eff}=(27.6{+-}1.0)cm. 3. The extrapolation distance {lambda}=(8.7{+-}1.0)cm. 4. The unequal coefficient of the effective multiplication K{sub r}=1.77{+-}0.11. (author). 2 refs., 4 figs., 1 tab.

  3. Analysis of Angolan human hair samples by the k0-NAA technique on the Dalat research reactor

    International Nuclear Information System (INIS)

    Lemos, P.C.D; Ho Manh Dung; Cao Dong Vu; Nguyen Thi Sy; Nguyen Mong Sinh

    2006-01-01

    There is personal difference in concentrations of trace elements in the human hair according to human life or history such as occupation, sex, age, food, habit, social condition and so on. It is also found that the individual's deviation of elemental concentrations reflecting the degree of environmental pollutants exposure to the human body, intakes of food and metabolism. The k 0 -standardization method of neutron activation analysis (k 0 -NAA) on research reactor has been recommended by WHO and IAEA as a main analytical technique with the advantages of sensitivity, precision, accuracy, multi-element and routine. This report presents the results of determination of about 20 elements in 23 human hair samples, which have been collected from different places in Angola by using k 0 -NAA technique on Dalat nuclear research reactor. Accuracy of the method was ascertained by analysis of two human hair certified reference materials (CRMs), i.e. NIES-5 and GBW-09101 and assessed by the deviation of experiment to certified values generally within 10% and U-score values mostly lower 2. (author)

  4. Nuclear Human Resources Development Program using Educational Core Simulator

    International Nuclear Information System (INIS)

    Choi, Yu Sun; Hong, Soon Kwan

    2015-01-01

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides

  5. Nuclear Human Resources Development Program using Educational Core Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu Sun; Hong, Soon Kwan [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    KHNP-CRI(Korea Hydro and Nuclear Power Co.-Central Research Institute) has redesigned the existing Core Simulator(CoSi) used as a sort of training tools for reactor engineers in operating nuclear power plant to support Nuclear Human Resources Development (NHRD) Program focusing on the nuclear department of Dalat university in Vietnam. This program has been supported by MOTIE in Korea and cooperated with KNA(Korea Nuclear Association for International Cooperation) and HYU(Hanyang University) for enhancing the nuclear human resources of potential country in consideration with Korean Nuclear Power Plant as a next candidate energy sources. KHNP-CRI has provided Edu-CoSi to Dalat University in Vietnam in order to support Nuclear Human Resources Development Program in Vietnam. Job Qualification Certificates Program in KHNP is utilized to design a training course for Vietnamese faculty and student of Dalat University. Successfully, knowhow on lecturing the ZPPT performance, training and maintaining Edu-CoSi hardware are transferred by several training courses which KHNP-CRI provides.

  6. Status of Dalat research reactor and progress of new reactor plan in Vietnam

    International Nuclear Information System (INIS)

    Dien, Nguyen Nhi; Vien, Luong Ba

    2005-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500-kW pool-type reactor loaded with the Soviet WWR-M2 Fuel Assemblies (FA), moderated and cooled by light water. The reactor was reconstructed from the USA 250-kW TRIGA Mark-II reactor built in early 1960s. The first criticality of the renovated reactor was achieved on 1 st November 1983, and then on 20 March 1984 the reactor was officially inaugurated and its activities restarted. During the last twenty years, the DNRR has played an important role as a large national research facility to implement researches and applications, and its utilization has been broadened in various fields of human life. However, due to the limitation of the neutron flux and power level, the out-of date design of the experimental facilities and the ageing of the reactor facilities, it cannot meet the increasing user's demands even in the existing utilization areas. In addition, the utilization demands of the Research Reactor (RR) will be increased along with the development of the nation's economy growth. In this aspect, it is necessary to have in Vietnam a new high performance multipurpose RR with a sufficient neutron flux and power level. According to the last draft of a national strategy for atomic energy development submitted to the Government for consideration and approval, it is expected that a new high power RR would be put into operation before 2020. The operation and utilization status of the DNRR is presented and some preliminary results of the national research project on new reactor plan for Vietnam are discussed in this paper

  7. The upgrading of the cyclic neutron activation analysis facility at the Dalat research reactor

    International Nuclear Information System (INIS)

    Van Doanh Ho; Manh Dung Ho; Quang Thien Tran; Dong Vu Cao; Thanh Viet Ha

    2018-01-01

    The cyclic neutron activation analysis (CNAA) facility based on a pneumatic transfer system for short irradiation and rapid counting has recently been upgraded at the Dalat research reactor. The original facility was only designed for single irradiation. Therefore, this work has aimed to upgrade both hardware and software for the cyclic irradiation. In this paper, the upgrading of the facility for CNAA was described. Irradiation time of the facility were calibrated, thereby reducing irradiation time to seconds with precision. The accuracy and sensitivity of CNAA based-on the upgraded facility were assessed by determination of some short-lived nuclides. (author)

  8. Control of the integrity of the fuel elements and the 30 years old reactor tank at the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.D.; Binh, N.T.; Ngo, N.T.; Nang, N.T.; Phuong, T.T.; Khang, N.P.; Bac, V.T.

    1992-01-01

    The aluminum tank of the Dalat nuclear research reactor is three decades old. Recent underwater optical inspection has revealed a number of corrosion spots, causing a certain concern about its longevity. Concerning the fuel assemblies of the Russian type VVR-M2 a regular radioactivity monitoring of air and reactor coolant water has not observed so far any anomaly related to the leakage of fission products. However, with more than 11,000 operating hours at nominal power since 1984 some fuel assemblies are now approaching the last stage of their lifetime and early detection of fuel failure must be paid due attention. Appropriate measures have been taken to maintain as good as possible the parameters of the primary coolant water during reactor shut-down periods, especially in the stagnant zones of the pool. Routine low-level measurements of fission products allow the early detection of anomaly leakage of the whole core as minor as 0.03 mCi/h of Xe-135 released into the pool water. Accurate account of the pool water loss and replenishment ensures the detection of invisible water leakage through the aluminum tank as low as 10 liters/week. Results of corrosion products monitoring show a slight increasing trend of corrosion rate of the whole primary coolant system. However from these data it is hard to conclude about the development status of the corrosion observed optically in the reactor tank.(Authors)(4 Fig. 4 Tables)

  9. Control of the integrity of the fuel elements and the 30-years old reactor tank at the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Pham Zuy Hien; Nguyen Thanh Binh; Nguyen Trong Ngo; Nguyen Thi Nang; Tran Thu Phuong; Ngo Phu Khang; Vuong Thu Bac.

    1992-01-01

    The aluminum tank of the Dalat nuclear research reactor is three decades old. Recent underwater optical inspection has revealed a number of corrosion spots, causing a certain concern about its longevity. Concerning the fuel assemblies of the Russian type VVR-M2 a regular radioactivity monitoring of air and reactor coolant water has not observed so far any anomaly related to the leakage of fissio products. However, with more than 11,000 operating hours at nominal power since 1984 some fuel assemblies are now approaching the last stage of their lifetime and early detection of fuel failure must be paid due attention. Appropriate measures have been taken to maintain as good as possible the parameters of the primary coolant water during reactor shut-down periods, especially in the stagnant zones of the pool. Routine low-level measurements of fission products allow the early detection of anomal leakage of the whole core as minor as 0.03 mCi/h of Xe-135 released into the pool water. Accurate account of the pool water loss and replenishment ensures the detection of invisible water leakage through the aluminum tank as low as 10 liters/week. Results of corrosion products monitoring show a slight increasing trend of corrosion rate of the whole primary coolant system. However from these data it is hard to conclude about the development status of the corrosion observed optically in the reactor tank. (author). 4 refs, 4 tabs, 4 figs

  10. Investigation for calculation methods used in analyzing the physics characteristics of nuclear power reactor

    International Nuclear Information System (INIS)

    Nguyen Tuan Khai; Hoang Van Khanh; Phan Quoc Vuong; Tran Viet Phu; Tran Vinh Thanh; Nguyen Thi Mai Huong; Nguyen Thi Dung; Le Tran Chung; Nguyen Minh Tuan; Tran Quoc Duong

    2014-01-01

    The project aims at nuclear human resource development and enhancement in research capability in reactor physics and kinetics at Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat). The main research items of the project can be summarized as follows: i) Considering possibility on using modern calculation techniques and methods in investigating neutronic characteristics and neutronics-thermal hydraulics coupling. This item is proposed to carry out based on international collaboration with Prof. Le Trong Thuy, San Jose University, US; ii) Carrying out the collaborative activities in research and training between Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat); iii) Opening two-week training course on nuclear reactor engineering (25 Nov - 12 Dec 2013) in collaboration with Japan Atomic Energy Agency (JAEA). (author)

  11. Analyses for inserting fresh LEU fuel assemblies instead of fresh HEU fuel assemblies in the Dalat Nuclear Research Reactor in Vietnam

    International Nuclear Information System (INIS)

    Hanan, N. A.; Deen, J.R.; Matos, J.E.

    2005-01-01

    Analyses were performed by the RERTR Program to replace 36 burned HEU (36%) fuel assemblies in the Dalat Nuclear Research Reactor in Vietnam with either 36 fresh fuel assemblies currently on-hand at the reactor or with LEU fuel assemblies to be procured. The study concludes that the current HEU (36%) WWR-M2 fuel assemblies can be replaced with LEU WWR-M2 fuel assemblies that are fully-qualified and have been commercially available since 2001 from the Novosibirsk Chemical Concentrates Plant in Russia. The current reactor configuration using re-shuffled HEU fuel began in June 2004 and is expected to allow normal operation until around August 2006. If 36 HEU assemblies each with 40.2 g 235 U are inserted without fuel shuffling over the next five operating cycles, the core could operate for an additional 10 years until June 2016. Alternatively, inserting 36 LEU fuel assemblies each containing 49.7 g 235 U without fuel shuffling over five operating cycles would allow normal operation for about 14 years from August 2006 until October 2020. The main reason for the longer service life of the LEU fuel is that its 235 U content is higher than the 235 U content needed simply to match the service life of the HEU fuel. Fast neutron fluxes in the experiment regions would be very nearly the same in both the HEU and LEU cores. Thermal neutron fluxes in the experiment regions would be lower by 1-5%, depending on the experiment type and location. (author)

  12. Development of new techniques and enhancement of automatic capability of neutron activation analysis at the Dalat Research Reactor

    International Nuclear Information System (INIS)

    Ho Manh Dung; Ho Van Doanh; Tran Quang Thien; Pham Ngoc Tuan; Pham Ngoc Son; Tran Quoc Duong; Nguyen Van Cuong; Nguyen Minh Tuan; Nguyen Giang; Nguyen Thi Sy

    2017-01-01

    The techniques of neutron activation analysis (NAA) including cyclic, epithermal and prompt-gamma (CNAA, ENAA and PGNAA, respectively) have been developed at the Dalat research reactor (DRR). In addition, the efforts has been spent to improve the automatic capability of irradiation, measurement and data processing of NAA. The renewal of necessary devices/tools for sample preparation have also been done. Eventually, the performance and the utility in terms of sensitivity, accuracy and stability of the analytical results generated by NAA at DRR have significantly been improved. The main results of the project are: 1) Upgrading of the fast irradiation system on Channel 13-2/TC to allow the cyclic irradiations; 2) Development of CNAA; 3) Development of ENAA; 4) Application of k0-method for PGNAA; 5) Investigation of the automatic sample changer (ASC2); 6) Upgrading of Ko-DALAT software for ENAA and modification of k0-IAEA software for CNAA and PGNAA; and 7) Optimization of irradiation and measurement facilities as well as sample preparation devices/tools. A set of procedures of relevant developed techniques in the project were established. The procedures have been evaluated by analysis of the reference materials for which they are meeting the requirements of multi-element analysis for the intended applications. (author)

  13. Design and the construction of some functional electronics modular for (n,2γ) spectrometer at a horizontal channel in the Dalat research reactor

    International Nuclear Information System (INIS)

    Dang Lanh; Nguyen Nhi Dien; Pham Dinh Khang; Pham Ngoc Son and others

    2004-01-01

    As the nuclear disintegration is characteristic for a given isotope, specific measurements can be performed by means of coincidence techniques, whereby correlated phenomena must be simultaneously detected in order to be counted. As well bete-gamma as gamma-gamma cascades of the disintegration, which occur within very short time intervals, are suitable for these purposes. Also both annihilation gamma rays can be measured in coincidence. The pulses coming from the components of the cascades can be selected in energy by means of a pulse height analyser, and are fed into the coincidence circuit. In order to be counted, two pulses must arrive within the resolving time τ of the coincidence unit. Typical values of τ are of the order of the as for 'slow' coincidence and down to the ns for 'fast' coincidence. Actually, Coincidence and Linear amplifier units are two important pieces of the measuring system. The main task of the interbal sub-project is to study on and to design these NIM-standard blocks those are able to combine with other needed electronics modulars for the performance of a gamma-gamma coincidence system with the sake of nuclear structure research at a horizontal channel in the research reactor Dalat. (author)

  14. Application for airborne particulate matter as a demonstration using k0-NAA method in Dalat nuclear research institute of Vietnam

    International Nuclear Information System (INIS)

    Ho Manh Dung; Cao Dong Vu; Nguyen Thi Sy; Truong Y; Nguyen Thanh Binh

    2004-01-01

    The airborne particulate samples have been collected using two types of polycarbonate membrane filter PM 2.5 and PM 2-5-10 in two typical sites of industrial (Ho Chi Minh City) and rural (Dateh) regions in south of Vietnam. The concentration of trace elements in the samples has been determined by the k 0 -NAA procedure developed in Dalat NRI. In order to check the developed k 0 -NAA procedure for the airborne particulate matter, two standard reference materials (SRMs) Urban Particulate NIST-1648 and Vehicle Exhaust Particulates NIES-8 were analyzed and the obtained results have been compared and interpreted in term of deviation between experimental results and the certified values. (author)

  15. Conceptual Nuclear Design Of Two Models Of Research Reactor Proposed For Vietnam

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Huynh Ton Nghiem; Le Vinh Vinh; Vo Doan Hai Dang

    2007-01-01

    The joint study on the development of a new research reactor model for Vietnam was done. The KAERI (Korea Atomic Energy Research Institute) experts and DNRI (Dalat Nuclear Research Institute) researchers developed an advanced HANARO reactor (AHR), a 20-MW open-tank-in-pool type reactor, upward cooled and moderated by light water, reflected by heavy water and rod type fuel assemblies used. Based on the AHR model, a MTR reactor with plate fuel assemblies was developed. Computer codes named MCNP and MVP/BURN were used. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worth, etc. in both with clean, unperturbed core and equilibrium core condition. In case of AHR model, calculation results using MVP/BURN and MCNP codes were compared with the results using HELIOS and MCNP codes by KAERI experts and they are in a good agreement. (author)

  16. Calculation of photon dose for Dalat research reactor in case of loss of reactor tank water

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Nguyen Kien Cuong

    2007-01-01

    Photon sources of actinides and fission products were estimated by ORIGEN2 code with the modified cross-section library for Dalat research reactor (DRR) using new cross-section generated by WIMS-ANL code. Photon sources of reactor tank water calculated from the experimental data. MCNP4C2 with available non-analog Monte Carlo model and ANSI/ANL-6.1.1-1977 flux-to-dose factors were used for dose estimation. The agreement between calculation results and those of measurements showed that the methods and models used to get photon sources and dose were acceptable. In case the reactor water totally leaks out from the reactor tank, the calculated dose is very high at the top of reactor tank while still low in control room. In the reactor hall, the operation staffs can access for emergency works but with time limits. (author)

  17. Instrument of neutron activation analysis for environmental administration

    International Nuclear Information System (INIS)

    Nguyen Giang; Nguyen Mong Sinh; Nguyen Ngoc Tuan

    2007-01-01

    Dalat Nuclear Research Reactor with thermal power of 500 kW has become a scientific facility for carrying out NAA. During the past two decades, based on NAA methods in combination with other analytical techniques, Dalat Nuclear Research Institute (DNRI) has carried out many programs such as: National Research and Development Programs, Co-ordinated Research Projects with other organizations in Vietnam. (author)

  18. The neutron field perturbation effect in the Dalat Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The perturbation effect of the thermal neutron field of the Dalat reactor is investigated when a fuel element is replaced by a water column or a plexiglass rod. In consequence, it is possible to replace the measurement of the relative distribution of the thermal neutron field on the surface of fuel element by that in the water column or in the plexiglass rod. (author). 5 refs. 4 figs. 4 tabs.

  19. Assessment of structural materials inside the reactor pool of the Dalat research reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Luong Ba Vien; Nguyen Minh Tuan; Trang Cao Su

    2010-01-01

    Originally the Dalat Nuclear Research Reactor (DNRR) was a 250-kW TRIGA MARK II reactor, started building from early 1960s and achieved the first criticality on February 26, 1963. During the 1982-1984 period, the reactor was reconstructed and upgraded to 500kW, and restarted operation on March 20, 1984. From the original TRIGA reactor, only the pool liner, beam ports, thermal columns, and graphite reflector have been remained. The structural materials of pool liner and other components of TRIGA were made of aluminum alloy 6061 and aluminum cladding fuel assemblies. Some other parts, such as reactor core, irradiation rotary rack around the core, vertical irradiation facilities, etc. were replaced by the former Soviet Union's design with structural materials of aluminum alloy CAV-1. WWR-M2 fuel assemblies of U-Al alloy 36% and 19.75% 235 U enrichment and aluminum cladding have been used. In its original version, the reactor was setting upon an all-welded aluminum frame supported by four legs attached to the bottom of the pool. After the modification made, the new core is now suspended from the top of the pool liner by means of three aluminum concentric cylindrical shells. The upper one has a diameter of 1.9m, a length of 3.5m and a thickness of 10mm. This shell prevents from any visual access to the upper part of the pool liner, but is provided with some holes to facilitate water circulation in the 4cm gap between itself and the reactor pool liner. The lower cylindrical shells act as an extracting well for water circulation. As reactor has been operated at low power of 500 kW, it was no any problem with degradation of core structural materials due to neutron irradiation and thermal heat, but there are some ageing issues with aluminum liner and other structures (for example, corrosion of tightening-up steel bolt in the fourth beam port and flood of neutron detector housing) inside the reactor pool. In this report, the authors give an overview and assessment of

  20. Study on neutron capture cross sections using the filtered neutron beams of 55 keV and 144 keV at the Dalat reactor and related applications

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Nguyen Canh Hai; Pham Ngoc Son; Tran Tuan Anh

    2007-01-01

    In this fundamental research project on nuclear physics in period of 2006, the neutron capture cross sections for the reactions of 139 La (n,γ) 140 La, 152 Sm (n,γ) 153 Sm, 191 Ir (n,γ) 192 Ir and 193 Ir (n,γ) 194 Ir have been measured at 55 keV and 144 keV by the activation method using the filtered neutron beams of the Dalat nuclear research reactor. The cross sections were determined relative to the standard capture cross sections of 197 Au. The samples and standard were prepaid from high purity (99.99%) foil of Au and natural oxide powders of La 2 O 3 , Sm 2 O 3 and IrO 2 . A high efficient HPGe detector (58%) was used to detect the gamma rays, emitted from the activated samples. The absolute efficiency curve of the detector has been precisely calibrated thanks to a set of standard radioisotope sources and a multi-nuclide standard solution, supported by IAEA. The present results were compared with the previous measurements from EXFOR-2003, and the evaluated values of JENDL 3.3 and ENDF/B-6.8. (author)

  1. Nuclear research reactor of Da Lat. Final report for the period 15 December 1987 - 14 December 1988

    Energy Technology Data Exchange (ETDEWEB)

    Long, Vu Hai [Viet Nam Atomic Energy Committee, Da Lat (Viet Nam). Dept. of Reactor Physics and Engineering

    1991-12-31

    This Safety Analysis Report aims at setting-up the balance of all the safety problems of the Dalat Nuclear Reactor with the standpoint and experience of 5 years operation and exploitation. It presents the characteristics of the site, the architecture and construction of the reactor, the design characteristics of the reactor core, control and instrumentation, radiation protection and environment radioactivity, safety analysis of abnormal situations, organization and administrative measures to ensure the safe operation and exploitation of the reactor. Refs, figs and tabs.

  2. Nuclear research reactor of Da Lat. Final report for the period 15 December 1987 - 14 December 1988

    International Nuclear Information System (INIS)

    Vu Hai Long

    1990-01-01

    This Safety Analysis Report aims at setting-up the balance of all the safety problems of the Dalat Nuclear Reactor with the standpoint and experience of 5 years operation and exploitation. It presents the characteristics of the site, the architecture and construction of the reactor, the design characteristics of the reactor core, control and instrumentation, radiation protection and environment radioactivity, safety analysis of abnormal situations, organization and administrative measures to ensure the safe operation and exploitation of the reactor. Refs, figs and tabs

  3. Physical start up of the Dalat nuclear research reactor with the core configuration exempt from neutron trap; Khoi dong vat ly lo phan ung hat nhan Da Lat voi cau hinh vung hoat khong co bay notron

    Energy Technology Data Exchange (ETDEWEB)

    Hien, Pham Duy; Huy, Ngo Quang; Long, Vu Hai; Mai, Tran Khanh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The nominal power of the reconstructed Dalat reactor is of 500 KW. After a meticulous preparation the Russian and Vietnamese teams have proceeded to the physical reactor start-up in November 1983 with the core configuration exempt from the neutron trap. The reactor has reached the physical criticality at 19h50 on 1 November 1983. The report delineates different steps of the start-up procedure. 2 refs., 3 figs., 7 tabs.

  4. A desk evaluation review of project VIE/4/009 design and production of nuclear instruments. Project desk evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-09

    A Project Desk Evaluation (PDE) is an intensive review process, using agreed guidelines, of the design, implementation, and the output of a project. This project is exclusively dealing with the design and production of nuclear instruments. The aim of this project would be to develop a viable capability for maintenance and repair of the nuclear instruments at the Dalat Research Institute (DNRI), the premier nuclear centre in Viet Nam, and also to meet the steadily increasing needs of DNRI, as well as of other national institutions, hospitals and universities engaged in the application of nuclear technologies, particularly in the southern part of the country. Project Summary with financial data is given along with training programme. 1 tab.

  5. A desk evaluation review of project VIE/4/009 design and production of nuclear instruments. Project desk evaluation

    International Nuclear Information System (INIS)

    1994-01-01

    A Project Desk Evaluation (PDE) is an intensive review process, using agreed guidelines, of the design, implementation, and the output of a project. This project is exclusively dealing with the design and production of nuclear instruments. The aim of this project would be to develop a viable capability for maintenance and repair of the nuclear instruments at the Dalat Research Institute (DNRI), the premier nuclear centre in Viet Nam, and also to meet the steadily increasing needs of DNRI, as well as of other national institutions, hospitals and universities engaged in the application of nuclear technologies, particularly in the southern part of the country. Project Summary with financial data is given along with training programme. 1 tab

  6. Determination of trace elements in some fruits collected in Vietnam and Korea by neutron activation analysis on Dalat and HANARO research reactors

    International Nuclear Information System (INIS)

    Nguyen Thi Sy; Ho Manh Dung; Ho Van Doanh; Tran Quang Thien; Chung Yong-Sam

    2015-01-01

    The k_0-based neutron activation analysis (k_0-NAA) has been applied for determination of trace multi-element in 5 fruits: orange, tomato, persimmon, pear and apple. The samples were collected in Vietnam and Korea, and dried-frozen in laboratory at a temperature of -65"oC, weighed approximately 50 mg or 100 mg each sample, and put in clean polyethylene bags for short and long time irradiations, respectively. The NIST-1547 (Peach Leaves) and IAEA-V-10 (Hay Powder) were used for the purpose of quality control. Both analytical and standard samples were irradiated in the 500 kW Dalat research reactor (Vietnam) and the 20 MW HANARO research reactor (Korea). Concentration of 16 elements: Al, As, Au, Br, Ca, Cl, Co, Eu, Fe, K, La, Mg, Mn, Na, Rb and Zn were determined. By comparison the concentrations of trace elements in the investigated Vietnam and Korea fruits, revealed that they are mostly similar between two places. However, the Ca concentration in orange from Vietnam was approximately 2.5 times higher than that one from Korea, whereas the Ca concentration in pear from Vietnam was approximately 21 times lower than that one from Korea. The Mn concentrations in all of fruits that collected in Vietnam were mostly higher than those collected in Korea, ranging between 1.4 to 2.2 times. (author)

  7. Proceedings of the FNCA 2003 workshop on the utilization of research reactors (Contract research)

    International Nuclear Information System (INIS)

    2006-03-01

    The FNCA 2003 Workshop on the Utilization of Research Reactors, which is the twelfth workshop on the theme of research reactor utilization, was held in Dalat, Vietnam and Jakarta and Serpong, Indonesia from January 12 to 16, 2004. This workshop was executed based on the agreement in the fourth Coordinator's Meeting of Forum for Nuclear Cooperation in Asia (FNCA) held in Tokyo, March 2003. The workshop consisted of four groups under the theme of the following fields; 1) Neutron Activation Analysis, 2) Research Reactors, 3) Tc-99m Generator Technology and 4) Neutron Scattering. The total number of participants for the workshop was 93 people from 8 countries; China, Indonesia, Korea, Malaysia, the Philippines, Thailand, Vietnam and Japan. The 30 of the presented papers are indexed individually. (J.P.N.)

  8. Formation of Cretaceous Cordilleran and post-orogenic granites and their microgranular enclaves from the Dalat zone, southern Vietnam: Tectonic implications for the evolution of Southeast Asia

    Science.gov (United States)

    Shellnutt, J. Gregory; Lan, Ching-Ying; Van Long, Trinh; Usuki, Tadashi; Yang, Huai-Jen; Mertzman, Stanley A.; Iizuka, Yoshi; Chung, Sun-Lin; Wang, Kuo-Lung; Hsu, Wen-Yu

    2013-12-01

    Cordilleran-type batholiths are useful in understanding the duration, cyclicity and tectonic evolution of continental margins. The Dalat zone of southern Vietnam preserves evidence of Late Mesozoic convergent zone magmatism superimposed on Precambrian rocks of the Indochina Block. The Dinhquan, Deoca and Ankroet plutons and their enclaves indicate that the Dalat zone transitioned from an active continental margin producing Cordilleran-type batholiths to highly extended crust producing within-plate plutons. The Deoca and Dinhquan plutons are compositionally similar to Cordilleran I-type granitic rocks and yield mean zircon U/Pb ages between 118 ± 1.4 Ma and 115 ± 1.2 Ma. Their Sr-Nd whole rock isotopes (ISr = 0.7044 to 0.7062; εNd(T) = - 2.4 to + 0.2) and zircon Hf isotopes (εHf(T) = + 8.2 ± 1.2 and + 6.4 ± 0.9) indicate that they were derived by mixing between a mantle component and an enriched component (i.e. GLOSS). The Ankroet pluton is chemically similar to post-orogenic/within-plate granitic rocks and has a zircon U/Pb age of 87 ± 1.6 Ma. Geobarometric calculations indicate that amphibole within the Ankroet pluton crystallized at a depth of ~ 6 kbar which is consistent with the somewhat more depleted Sr-Nd isotope (ISr = 0.7017 to 0.7111; εNd(T) = - 2.8 to + 0.6) and variable εHf(T) compositions suggesting a stronger influence of crustal material in the parental magma. The compositional change of the Dalat zone granitic rocks during the middle to late Cretaceous indicates that the tectonic regime evolved from a continental arc environment to one of post-orogenic extension. The appearance of sporadic post-90 Ma magmatism in the Dalat zone and along the eastern margin of Eurasian indicates that there was no subsequent orogenic event and the region was likely one of highly extended crust that facilitated the opening of the South China Sea during the latter half of the Cenozoic.

  9. Variations of caesium isotope concentrations in air and fallout at Dalat, South Vietnam, 1986-1991

    International Nuclear Information System (INIS)

    Pham Zuy Hien; Nguyen Thanh Binh; Truong Y.; Vuong Thu Bac; Nguyen Trong Ngo.

    1993-01-01

    Monthly records of Cs-137 and Cs-134 concentrations in air and fallout at Dalat for the period 1986-1991 are presented and discussed. The concentration variations exhibit distinct maxima during December-January, when dry fallout dominated. These peaks are explained by the intrusion of more radioactive cold air masses from temperate northern latitudes during the development of large-scale anticyclones frequently observed in the most active winter monsoon period. High dry fallout velocities (about 10 cm/s) determined from this data clearly demonstrate one of the most relevant characteristics of cold air masses: behind the cold front, vertical air motion is descending

  10. Calculation And Design Of A New Configuration For Radiation Shielding At Neutron Beam No.3 For Fundamental And Applied Researches

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Tran Tuan Anh; Nguyen Kien Cuong; Nguyen Canh Hai; Nguyen Xuan Hai; Pham Ngoc Son; Ho Huu Thang

    2011-01-01

    The tangential horizontal channel of No. 3 of the Dalat Research Reactor has been opened and used during the 1990s. The utilizations of the thermal neutron beam at this channel were the Neutron Radiography and the Prompt Gamma Neutron Activation Analysis method (PGNAA). At present, the neutron beam used for nuclear structure data researches based on the Summing of Amplitude Coincident Pulses system (SACP). Beside, several related research equipments have been set up and operated for the research purposes. A renovation of the neutron channel, therefore, will play an important role in safe and effective utilizations of the neutron beam in fields of nuclear physic training and researches. A new configuration for radiation shielding has been simulated by MCNP code. The calculated results of dose rates for neutron and gamma at working positions are in range of dose rate limit. (author)

  11. Development Of A Method For Measurement Of Total Neutron Cross Sections Based On The Neutron Transmission Method Using A He-3 Counter On Filtered Neutron Beams At Dalat Research Reactor

    International Nuclear Information System (INIS)

    Tran Tuan Anh; Dang Lanh; Nguyen Canh Hai; Nguyen Xuan Hai; Pham Kien; Nguyen Thuy Nham; Pham Ngoc Son; Ho Huu Thang

    2007-01-01

    Determination of total neutron cross sections and average resonance parameters in the energy range from tens keV to hundreds keV is important for fast reactors calculations and designs because this energy range gives the most output of all neutron induced reactions in the spectrum of fast reactors. Besides, the total neutron cross section measurement is also one of the methods for determination of s, p and d-wave neutron strength functions. The purpose of this project is to develop a method for measurement of total neutron cross sections based on the neutron transmission technique using a He-3 counter. The average total neutron cross sections of 238 U were obtained from neutron transmission measurements on filtered neutron beams of 55 keV and 144 keV at the horizontal channel No.4 of the Dalat research reactor. The present results have been compared with the previous measurements, and the evaluated data from ENDF/B-6.8 library. (author)

  12. Power start up of the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Pham Duy Hien; Ngo Quang Huy; Vu Hai Long; Tran Khanh Mai

    1994-01-01

    After accomplishing the physical start-up of the reactor, the power start-up was carried out in February 1984. The power of the reactor has reached: 10 KW on 6/2/1984, 100 KW on 7/2/1984, 200 KW and 300 KW on 8/2/1984; 400 KW and nominal power 500 KW on 9/2/1984. The reactivity temperature coefficient and the xenon poisoning were determined. 3 figs., 12 tabs

  13. Construction of the monitoring, processing and logging systems supporting for management, operation and maintenance of the Dalat reactor control system

    International Nuclear Information System (INIS)

    Trinh Dinh Hai; Nguyen Thanh Cuong; Huynh Ton Nghiem; Phan Quoc Minh; Nguyen Duc Tuan; Nguyen Nhi Dien

    2004-01-01

    From 1/2002 to 12/2003, we implemented successfully a project, entitled 'Construction of the monitoring, processing and logging systems supporting for management, operation and maintenance of the Dalat reactor control system' under the assistance of the Ministry of Science and Technology. Its main results such as Testing Apparatus based on microcontroller for all functional boards of the Control Logic System of the Reactor Control System (RCS). Technical support CD - ROM for Process Instrumentation System, software for logging automatically information from important systems of the RCS through LAN, program for failure management of Process Instrumentation System have been playing an important role for observation, operation support, maintenance of the RCS. Through this project, the implementation group has grown up rapidly. The control and instrumentation group has been provided with some modern equipment, electronic components, and materials for maintenance work and research development in the years to come. This paper presents typical results and discussions. (author)

  14. JPRS Report, Proliferation Issues

    Science.gov (United States)

    1992-10-21

    Russia, India, Cuba, Ukraine, and countries in the Asian Defence Minister Najib Razak said Friday Japan should Pacific region, the Dalat Nuclear Research...34 he told reporters. tion of natural resources and minerals; agricultural, industrial, and export production; and to the work of Najib was commenting

  15. An integrated expert system for optimum in core fuel management

    International Nuclear Information System (INIS)

    Abd Elmoatty, Mona S.; Nagy, M.S.; Aly, Mohamed N.; Shaat, M.K.

    2011-01-01

    Highlights: → An integrated expert system constructed for optimum in core fuel management. → Brief discussion of the ESOIFM Package modules, inputs and outputs. → Package was applied on the DALAT Nuclear Research Reactor (0.5 MW). → The Package verification showed good agreement. - Abstract: An integrated expert system called Efficient and Safe Optimum In-core Fuel Management (ESOIFM Package) has been constructed to achieve an optimum in core fuel management and automate the process of data analysis. The Package combines the constructed mathematical models with the adopted artificial intelligence techniques. The paper gives a brief discussion of the ESOIFM Package modules, inputs and outputs. The Package was applied on the DALAT Nuclear Research Reactor (0.5 MW). Moreover, the data of DNRR have been used as a case study for testing and evaluation of ESOIFM Package. This paper shows the comparison between the ESOIFM Package burn-up results, the DNRR experimental burn-up data, and other DNRR Codes burn-up results. The results showed good agreement.

  16. Sister Lab Program Prospective Partner Nuclear Profile: Vietnam

    International Nuclear Information System (INIS)

    Bissani, M; Tyson, S

    2006-01-01

    Vietnam's nuclear program began in the 1960s with the installation at Dalat of a 250 kW TRIGA Mk-II research reactor under the U.S. Atoms for Peace Program. The reactor was shut down and its core removed only a few years later, and the nuclear research program was suspended until after the end of the civil war in the late 1970s. The Soviet Union assisted Vietnam in restoring the Dalat reactor to an operational status in 1984, trained a cadre of scientific and technical staff in its operation, and contributed to the development of nuclear science for the medical and agricultural sectors. In the agricultural area in particular, Vietnamese experts have been very successful in developing mutant strains of rice, and continue to work with the IAEA to yield strains that have a shorter growing period, increased resistance to disease, and other desirable characteristics. Rice has always been the main crop in Vietnam, but technical cooperation with the IAEA and other states has enabled the country to become one of the top rice producers in the world, exporting much of its annual crop to over two dozen countries annually. More recently, Vietnam's government has shown increasing interest in developing a civil nuclear program to supplement its fossil fuel and other energy resources. Projections from a variety of open sources, ranging from the IAEA, the U.S. Department of Energy's Energy Information Administration (EIA), the Vietnamese government, energy corporations, and think tanks all predict a massive increase in energy consumption--especially electricity--within Vietnam and the region as a whole. This growth in consumption will require a corresponding increase in energy production, which in Vietnam is currently satisfied mainly by fossil fuels (coal) and renewable energy (hydropower and biomass); Vietnam has a refining capacity of about 800 barrels/day. Most of its crude oil is exported to generate export income, and is not used to generate electricity. Although Vietnam is

  17. Report of Activities 1986-1990

    International Nuclear Information System (INIS)

    Pham Duy Hien; Tran Ha Anh; Ton That Con; Nguyen Gia Viet Hoa

    1991-01-01

    The significant progresses reached by the Nuclear research Institute (Dalat) in the period 1986-1990 are presented. Three important areas of activities which have been carried out simultaneously are: 1/to build up suitable infrastructure and laboratories for full exploitation of the newly reconstructed nuclear research reactor (put into operation in 1984); 2/to develop practical application of nuclear techniques related to using the reactor and the Co-60 irradiator; 3/to stimulate and to support the establishment of nationwide laboratories and centres for application of radioisotopes and nuclear techniques. (N.H.A)

  18. Some results of NAA collaborative study in white rice performed at Dalat Nuclear Research Institute

    International Nuclear Information System (INIS)

    Thien, T.Q.; Vu, C.D.; Doanh, H.V.; Sy, N.T.

    2014-01-01

    White rice is a main food for Asian people. In the framework of Forum for Nuclear Cooperation in Asia (FNCA), therefore, the eight Asian countries: China, Indonesia, Japan, Korea, Malaysia, the Philippines, Thailand and Vietnam selected white rice as a common target sample for a collaboration study since 2008. Accordingly, rice samples were purchased and prepared by following a protocol that had been proposed for this study. The groups of elements that were analyzed by using neutron activation analysis in the white rice samples were toxic elements and nutrient elements, including: Al, As, Br, Ca, Cl, Co, Cr, Cs, Fe, K, Mg, Mn, Na, Rb and Zn. The analytical results were compared between the different countries and evaluated by using the Tolerable Intake Level of World Health Organization (WHO) and Recommended Dietary Allowance or Adequate Intake (AI) of the U.S. Institute of Medicine (IOM) guideline values. These data will be very useful in the monitoring of the levels of food contamination and in the evaluation of the nutritional status for people living in Vietnam and other Asian countries. (author)

  19. Viet Nam National Atomic Energy Commission

    International Nuclear Information System (INIS)

    1992-01-01

    Vietnam National Atomic Energy Commission (VINATOM) is a governmental body in charge of organizing and coordinating activities related to use of nuclear energy for peaceful purpose. VINATOM in structure consists of the Nuclear Research Institute (Dalat), the Institute of Nuclear Science and Technology (Hanoi), the Institute for Technology of Radioactive and Rare Elements (Hanoi), and the Centre for Nuclear Technique Application (Ho Chi Minh City). This catalogue introduces profiles of nuclear R and D activities under management by VINATOM. (N.H.A)

  20. The application of bentonite in the atomic energy field and some research results of the sorption of uranium on Vietnam bentonite

    International Nuclear Information System (INIS)

    Than Van Lien; Do Qui Son; Le Thi Kim Dung

    2008-01-01

    The properties of bentonite can be summarised as follows: low gas permeability, low hydraulic conductivity, high radionuclide retardation capacity, high swelling potential, that is why bentonite has been widely used in the atomic energy fields in many countries all over the world. Vietnam has bentonite deposits that is exploited and used in some fields. In order to use bentonite - available and abandon resources in our country for atomic energy many research activities on the field of bentonite applications have been carried out in Institute for Technology of Radioactive and Rare Elements and Dalat Nuclear Research Institute. In this content, this article introduces the application of bentonite in radioactive waste management and treatment fields (bentonite used as barrier in the deep repository for spent nuclear fuel, as barriers in landfills to prevent contamination of soil and groundwater by leachates containing radioactive, bentonite is also used as sorbent for nuclear reactor activation products (Co, Cr in the waste effluents). At the some time it is present some research results of the sorption of uranium on Vietnamese bentonite. (author)

  1. Improving Quality Of Spectrum Measurement By Event - Event Coincidence Technique

    International Nuclear Information System (INIS)

    Pham Dinh Khang; Doan Trong Thu; Nguyen Duc Hoa; Nguyen An Son; Nguyen Xuan Hai; Ho Huu Thang

    2011-01-01

    To improve the quality of measurement data for the research levels density and gamma strength function in intermediate energy region below the neutron binding energy (B n ), a new method was developed at the Dalat Nuclear Research Institute. This method improve the ratio of the count of peak per compton background more times. This results are evaluated, compared with other methods. (author)

  2. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  3. Establishing the fuel burn-up measuring system for 106 irradiated assemblies of Dalat reactor by using gamma spectrometer method

    International Nuclear Information System (INIS)

    Nguyen Minh Tuan; Pham Quang Huy; Tran Tri Vien; Trang Cao Su; Tran Quoc Duong; Dang Tran Thai Nguyen

    2013-01-01

    The fuel burn-up is an important parameter needed to be monitored and determined during a reactor operation and fuel management. The fuel burn-up can be calculated using computer codes and experimentally measured. This work presents the theory and experimental method applied to determine the burn-up of the irradiated and 36% enriched VVR-M2 fuel type assemblies of Dalat reactor. The method is based on measurement of Cs-137 absolute specific activity using gamma spectrometer. Designed measuring system consists of a collimator tube, high purity Germanium detector (HPGe) and associated electronics modules and online computer data acquisition system. The obtained results of measurement are comparable with theoretically calculated results. (author)

  4. Determination of Cobalt in Seawater Using Neutron Activation Analysis after Preconcentration by Adsorption onto γ-MnO2 Nanomaterial

    Directory of Open Access Journals (Sweden)

    Van-Phuc Dinh

    2018-01-01

    Full Text Available The γ-MnO2 nanomaterial has been used to adsorb cobalt in the seawater at Phan Thiet City, Binh Thuan Province, Vietnam. Its concentration is determined by using the neutron activation analysis (NAA method at the Dalat nuclear research reactor. Factors affecting the uptake of cobalt on the γ-MnO2 material such as the pH, adsorption time, and initial cobalt(II concentration are investigated. The irradiated experiment data are calculated using the K0-Dalat program. The results obtained show that the trace dissolved cobalt in Phan Thiet seawater is found equal to 0.25 ± 0.04 μg/L (n=5, P=95% with the adsorption efficiency being higher than 95% (n=4, P=95%.

  5. Nuclear safety research

    International Nuclear Information System (INIS)

    1999-01-01

    The NNSA checked and coordinated in 1999 the research project of the Surveillance Technology on Nuclear Installations under the National 9th-Five-Year Program to promote the organizations that undertake the research work on schedule and lay a foundation of obtaining achievements and effectiveness for the 9th-five-year plan on nuclear safety research

  6. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  7. Nuclear Research and Compliance

    International Nuclear Information System (INIS)

    Noramly Muslim

    2012-01-01

    In his speech, Professor Noramly stressed on any research conducted in Malaysian Nuclear Agency must be comply with the national and international regulations. This to avoid any problems in the future. Moreover, research conducted in Malaysian Nuclear Agency are based on nuclear matters that seems sensitive to the public communities. In order to attract the publics on the benefit of nuclear technologies in many applications, researcher also must aware about the regulations and must take care on their safety during their experiment and working. This to make the public feels that nuclear are not the bad things and erased the worseness of nuclear technology into public minds. This strategies can be used for Malaysia in embarking for their first nuclear power program and the public feels that nuclear power are not threatened to them and consequently, they will accept that program without any issues. (author)

  8. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  9. Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam

    International Nuclear Information System (INIS)

    Long, N.Q.; Giap, T.V.; Phan, N.T.; Truong, Y.; Binh, N.T; Sieu, L.N.; Hien, P.D.

    2012-01-01

    Radionuclides from the reactor accident at the Fukushima Dai-ichi Nuclear Power Plant were observed in the surface air at stations in Hanoi, Dalat and Ho Chi Minh City (HCMC) in Vietnam, about 4500 km southwest of Japan, during the period from March 27 to April 22, 2011. The maximum activity concentrations in the air measured at those three sites were 193, 33 and 37 μBq m -3 for 131 I, 134 Cs and 137 Cs, respectively. Peaks of radionuclide concentrations in the air corresponded to arrival of the air mass from Fukushima to Vietnam after traveling for 8 days over the Pacific Ocean. Cesium-134 was detected with the 134 Cs/ 137 Cs activity ratio of about 0.85 in line with observations made elsewhere. The 131 I/ 137 Cs activity ratio was observed to decrease exponentially with time as expected from radioactive decay. The ratio at Dalat, where is 1500 m high, was higher than those at Hanoi and HCMC in low lands, indicating the relative enrichment of the iodine in comparison to cesium at high altitudes. The time-integrated surface air concentrations of the Fukushima-derived radionuclides in the Southeast Asia showed exponential decrease with distance from Fukushima. (author)

  10. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  12. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  13. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  14. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  15. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  16. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  17. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  18. Effective height of the core of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam); Martin, D P; Yip, F G [High Institute of Nuclear Sciences and Technology (Cuba)

    1994-10-01

    Measurements of thermal neutron relative distributions in axial direction at different positions in the reactor core and for various control rod configurations have been carried out, and axial buckling and effective height of the core deduced. (author). 4 refs., 3 figs., 1 tab.

  19. HSE Nuclear Safety Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Bagley, M.J. [Health and Safety Executive, Sheffield (United Kingdom)

    1995-12-31

    HSE funds two programmes of nuclear safety research: a programme of {approx} 2.2M of extramural research to support the Nuclear Safety Division`s regulatory activities and a programme of {approx} 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author).

  20. HSE Nuclear Safety Research Program

    International Nuclear Information System (INIS)

    Bagley, M.J.

    1995-01-01

    HSE funds two programmes of nuclear safety research: a programme of ∼ 2.2M of extramural research to support the Nuclear Safety Division's regulatory activities and a programme of ∼ 11M of generic safety research managed by the Nuclear Safety Research Management Unit (NSRMU) in Sheffield, UK. This paper is concerned only with the latter programme; it describes how it is planned and procured and outlines some of the work on structural integrity problems. It also describes the changes that are taking place in the way nuclear safety research is procured in the UK. (author)

  1. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  2. Progress of nuclear safety research. 2001

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Sasajima, Hideo; Nishiyama, Yutaka (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-10-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy or the Safety Research Annual Plan issued by the Japanese government. The safety research at JAERI concerns the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety. This report summarizes the nuclear safety research activities of JAERI from April 1999 through March 2001. (author)

  3. Status of nuclear safety research - 2000

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Sasajima, Hideo; Umemoto, Michitaka; Yamamoto, Toshihiro; Tanaka, Tadao; Togashi, Yoshihiro; Nakata, Masahito

    2000-11-01

    The nuclear safety research at JAERI is performed in accordance with the long term plan on nuclear research, development and use and the safety research yearly plan determined by the government and under close relationship to the related departments in and around the Nuclear Safety Research Center. The criticality accident having occurred in Tokai-mura in 1999 has been the highest level nuclear accident in Japan and ensuring safety in whole nuclear cycle is severely questioned. The causes of such an accident have to be clarified not only technical points but also organizational points, and it is extremely important to make efforts in preventing recurrence, to fulfill emergency plan and to improve the safety of whole nuclear fuel cycle for restoring the reliability by the people to nuclear energy system. The fields of conducting safety research are engineering safety research on reactor facilities and nuclear fuel cycle facilities including research on radioactive waste processing and disposal and research and development on future technology for safety improvement. Also, multinational cooperation and bilateral cooperation are promoted in international research organizations in the center to internationally share the recognition of world-common issues of nuclear safety and to attain efficient promotion of research and effective utilization of research resources. (author)

  4. From nuclear research to multidisciplinary research

    International Nuclear Information System (INIS)

    Theenhaus, R.; Baurmann, K.W.

    1996-01-01

    Forty years ago, the North Rhine-Westphalian State Government founded the then Juelich Nuclear Research Center. After a growth period of the reactor engineering program until 1980, claiming a share of 42% of R and D resources, that share declined continuously to a present level of 8%. This development is an expression of the activities successfully completed in the past, of progress achieved in industrial reactor development, but also of the fact that the high temperature reactor, which had been run successfully for twenty years, failed as a technical scale THTR-300 version. The Center has reorientated its line of research in a process of structural reshuffle beginning some fifteen years ago and still going on. Information technology, materials research, life sciences, environmental research, and energy technology have become main activities of equal weight. Activities specific to nuclear reactors have been incorporated in this new line of work as nuclear safety research and work on safe repository storage. (orig.) [de

  5. Overview of research potential of Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Ciocanescu, Marin

    2007-01-01

    The main organizations involved in nuclear power production in Romania, under supervision of Presidency, Prime Minister and Parliament are: CNCAN (National Commission for Nuclear Activities Control), Nuclear Agency, Ministry of Economy and Commerce, ANDRAD (Waste Management Agency), SNN (Nuclearelectrica National Society), RAAN (Romanian Authority for Nuclear Activities), ICN (Institute for Nuclear Research - Pitesti), SITON (Center of Design and Engineering for Nuclear Projects- Bucharest); ROMAG-PROD (Heavy Water Plant), CNE-PROD (Cernavoda Nuclear Power Plant - Production Unit), CNE-INVEST (Cernavoda Nuclear Power Plant -Investments Unit), FCN (Nuclear Fuel Factory). The Institute for Nuclear Research, Pitesti INR, Institute for Nuclear Research, Pitesti is endowed with a TRIGA Reactor, Hot Cells, Materials Laboratories, Nuclear Fuel, Nuclear Safety Laboratories, Nuclear Fuel, Nuclear Safety. Waste management. Other research centers and laboratories implied in nuclear activities are: ICIT, National Institute for cryogenics and isotope technologies at Rm Valcea Valcea. with R and D activity devoted to heavy water technologies, IFIN, Institute for nuclear physics and engineering, Bucharest, as well as the educational institutions involved in atomic energy applications and University research, Politechnical University Bucharest, University of Bucharest, University of Pitesti, etc. The INR activity outlined, i.e. the nuclear power research as a scientific and technical support for the Romanian nuclear power programme, mainly dedicated to the existing NPP in the country (CANDU). Focused with priority are: - Nuclear Safety (behavior of plant materials, components, installations during accident conditions and integrity investigations); - Radioactive Waste Management Radioactive; - Radioprotection; Product and services supply for NPP. INR Staff numbers 320 R and D qualified and experienced staff, 240 personnel in devices and prototype workshops and site support

  6. Tehran Nuclear Research Center

    International Nuclear Information System (INIS)

    Taherzadeh, M.

    1977-01-01

    The Tehran Nuclear Research Center was formerly managed by the University of Tehran. This Center, after its transformation to the AEOI, has now become a focal point for basic research in the area of Nuclear Energy in Iran

  7. Nuclear energy research in Indonesia

    International Nuclear Information System (INIS)

    Supadi, S.; Soentono, S.; Djokolelono, M.

    1988-01-01

    Indonesia's National Atomic Energy Authority, BATAN (Badan Tenaga Atom Nasional), was founded to implement, regulate and monitor the development and launching of programs for the peaceful uses of nuclear power. These programs constitute part of the efforts made to change to a more industrialized level the largely agricultural society of Indonesia. BATAN elaborated extensive nuclear research and development programs in a variety of fields, such as medicine, the industrial uses of isotopes and radiation, the nuclear fuel cycle, nuclear technology and power generation, and in fundamental research. The Puspiptek Nuclear Research Center has been equipped with a multi-purpose research reactor and will also have a fuel element fabrication plant, a facility for treating radioactive waste, a radiometallurgical laboratory, and laboratories for working with radioisotopes and for radiopharmaceutical research. (orig.) [de

  8. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  9. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  10. Progress of nuclear safety research-2004

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Ebine, Noriya; Chuto, Toshinori; Sato, Satoshi; Ishikawa, Jun; Yamamoto, Toshihiro; Munakata, Masahiro; Asakura, Toshihide; Yamaguchi, Tetsuji; Kida, Takashi; Matsui, Hiroki; Haneishi, Akihiro; Araya, Fumimasa

    2005-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2002 through March 2004 and utilized facilities. (author)

  11. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  12. Nuclear energy research in Germany 2009

    International Nuclear Information System (INIS)

    2010-01-01

    Research and development (R and D) in the fields of nuclear reactor safety and safety of nuclear waste and spent fuel management in Germany are carried out at research centers and, in addition, some 32 universities. In addition, industrial research is conducted by plant vendors, and research in plant and operational safety of power plants in operation is organized by operators and by organizations of technical and scientific research and expert consultant organizations. This summary report presents nuclear energy research conducted at research centers and universities in Germany in 2009, including examples of research projects and descriptions of the situation of research and teaching. These are the organizations covered: - Hermann von Helmholtz Association of German Research Centers, - Karlsruhe Institute of Technology (KIT, responsibility of the former Karlsruhe Research Center), - Juelich Research Center (FZJ), - Nuclear Technology Competence Center East, - Dresden-Rossendorf Research Center (FZD), - Rossendorf Nuclear Process Technology and Analysis Association (VKTA), - Dresden Technical University, - Zittau/Goerlitz University of Applied Science, - Institute of Nuclear Energy and Energy Systems (IKE) of the University of Stuttgart. (orig.)

  13. Progress of nuclear safety research. 2002

    Energy Technology Data Exchange (ETDEWEB)

    Anoda, Yoshinari; Kudo, Tamotsu; Tobita, Tohru (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2002-11-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2000 through April 2002 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001. (author)

  14. Nuclear physics research report 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the 1988 Nuclear Physics Research Report for the University of Surrey, United Kingdom. The report includes both experimental nuclear structure physics and theoretical nuclear physics research work. The experimental work has been carried out predominantly with the Nuclear Structure Facility at the SERC Daresbury Laboratory, and has concerned nuclear shapes, shape coexistence, shape oscillations, single-particle structures and neutron-proton interaction. The theoretical work has involved nuclear reactions with a variety of projectiles below 1 GeV per nucleon incident energy, and aspects of hadronic interactions at intermediate energies. (U.K.)

  15. Nuclear safety research in HGF 2012

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German Federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out safe is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the partners in the

  16. Thailand's nuclear research centre

    International Nuclear Information System (INIS)

    Yamkate, P.

    2001-01-01

    The Office of Atomic Energy for Peace, Thailand, is charged with three main tasks, namely, Nuclear Energy development Plan, Utilization of Nuclear Based technology Plan and Science and Technology Plan. Its activities are centred around the research reactor TRR-1/M1. The main areas of contribution include improvement in agricultural production, nuclear medicine and nuclear oncology, health care and nutrition, increasing industrial productivity and efficiency and, development of cadre competent in nuclear science and technology. The office also has the responsibility of ensuring nuclear safety, radiation safety and nuclear waste management. The office has started a new project in 1997 under which a 10 MWt research reactor, an isotope production facility and a waste processing and storage facility would be set up by General Atomic of USA. OAEP has a strong linkage with the IAEA and has been an active participant in RCA programmes. In the future OAEP will enhance its present capabilities in the use of radioisotopes and radiation and look into the possibility of using nuclear energy as an alternative energy resource. (author)

  17. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  18. Progress of nuclear safety research. 2003

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amagai, Masaki; Tobita, Tohru

    2004-03-01

    JAERI is conducting nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Annual Plan for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI are the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI has conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI has taken a responsible role by providing technical experts and investigation for assistance to the government or local public body. This report summarizes the nuclear safety research activities of JAERI from April 2001 through March 2003 and utilized facilities. This report also summarizes the examination of the ruptured pipe performed for assistance to the Nuclear and Industrial Safety Agency (NISA) for investigation of the accident at the Hamaoka Nuclear Power Station Unit-1 on November, 2001, and the integrity evaluation of cracked core shroud of BWRs of the Tokyo Electric Power Company performed for assistance to the Nuclear Safety Commission in reviewing the evaluation reports by the licensees. (author)

  19. Experimental nuclear physics research in Hungary

    International Nuclear Information System (INIS)

    Koltay, Ede.

    1984-01-01

    The status and recent results of experimental nuclear physics in Hungary is reviewed. The basic nuclear sciences, instrumental background and international cooperation are discussed. Personal problems and the effects of the international scientific deconjuncture are described. The applied nuclear and interdisciplinary researches play an important role in Hungarian nuclear physics. Some problems of cooperation of Hungarian nuclear and other research institutes applying or producing nuclear analytical technology are reviewed. The new instrument, the Debrecen cyclotron under construction gives new possibilities to basic and applied researches. A new field of Hungarian nuclear physics is the fusion and plasma research using tokamak equipment, the main topics of which are plasma diagnostics and fusion control systems. Some practical applications of Hungarian nuclear physical results, e.g. establishment of new analytical techniques like PIXE, RBS, PIGE, ESCA, etc. are summarized. (D.Gy.)

  20. Karlsruhe Nuclear Research Center. Research and development program 1991

    International Nuclear Information System (INIS)

    1990-01-01

    The R and D activities of the KfK are classified in 8 main research activities: 1) project nuclear fusion; 2) project pollutant mitigation in the environment; 3) solid state and materials research; 4) nuclear and elementary particle physics; 5) microtechnics e.g. X-ray lithography; 6) materials handling; 7) project nuclear safety research; 8) radioactive waste management. (orig.) [de

  1. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J. R. [ed.

    1977-01-01

    The topics considered in the seven sessions were nuclear methods in atmospheric research; nuclear and atomic methodology; nuclear methods in tracer applications; energy exploration, production, and utilization; nuclear methods in environmental monitoring; nuclear methods in water research; and nuclear methods in biological research. Individual abstracts were prepared for each paper. (JSR)

  2. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1977-04-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in various institutions. The major experimental facilities consist of: A 5 Megawatt swimming pool enriched uranium reactor at the Soreq Nuclear Research Centre; A 26 Megawatt heavy water tank-type natural uranium reactor at the Negev Research Centre; A 6-million volt EN tandem accelerator at the Weizmann Institute of Science, Rehovot; The new most modern high energy 14 UD pelletron accelerator manufactured by the National Electrostatic Corporation of Middleton, Wisconsin, installed inside the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot. Brief abstracts of the research work, both published and unpublished, listed according to the various laboratories, are reported in the following pages. (author)

  3. Applications of radioisotopes in industry and healthcare in Vietnam

    International Nuclear Information System (INIS)

    Dien, N.N.; Quang, N.H.

    1997-01-01

    Nowadays, in Vietnam radioisotopes have been used very widely in various socio-economic branches, especially in industry and healthcare. Applications of radioisotopes have significant meaning in economic development, people health protection, as well as in scientific research. In this paper, the present status and main applications of radiation and radioactive isotopes in industry and healthcare in Vietnam are reported. In order to control and monitor industrial processes, nucleonic control systems and radioactive tracer techniques have been utilized. Actually, sealed source applications are popular in Vietnam industry. A number of nuclear control devices and gauges have been used in the various industrial factories, such as liquid level gauges in steel industry, cement and beverage factories; density and moisture gauges in paper industry, etc. Tracer technique and sealed source applications have also been utilized in industrial production plants and in trouble-shooting in the petroleum industry. For medicine purposes, two departments of nuclear medicine were primarily established at the beginning of the 1970s. At the present time, a number of nuclear medicine departments have been set up and they have been equipped with advanced equipment. Main activities are focused on thyroid function studies, nuclear cardiology, brain scans, gastrointestinal studies, bone scans, etc. Since march 1984 Dalat nuclear research reactor of nominal power of 500 kW has been reconstructed and put into operation. This reactor is unique in Vietnam and has become an important scientific tool for development of nuclear techniques and radioisotope applications for socio-economic progress. Thanks to this important scientific tool, a variety of radioisotopes for medicine and industry applications as well as for scientific research has been produced. Utilization of the Dalat research reactor for radioisotope production is also summarized in this paper

  4. Applications of radioisotopes in industry and healthcare in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Dien, N.N.; Quang, N.H. [Nucealr Research Institute, Dalat, (Viet Nam)

    1997-10-01

    Nowadays, in Vietnam radioisotopes have been used very widely in various socio-economic branches, especially in industry and healthcare. Applications of radioisotopes have significant meaning in economic development, people health protection, as well as in scientific research. In this paper, the present status and main applications of radiation and radioactive isotopes in industry and healthcare in Vietnam are reported. In order to control and monitor industrial processes, nucleonic control systems and radioactive tracer techniques have been utilized. Actually, sealed source applications are popular in Vietnam industry. A number of nuclear control devices and gauges have been used in the various industrial factories, such as liquid level gauges in steel industry, cement and beverage factories; density and moisture gauges in paper industry, etc. Tracer technique and sealed source applications have also been utilized in industrial production plants and in trouble-shooting in the petroleum industry. For medicine purposes, two departments of nuclear medicine were primarily established at the beginning of the 1970s. At the present time, a number of nuclear medicine departments have been set up and they have been equipped with advanced equipment. Main activities are focused on thyroid function studies, nuclear cardiology, brain scans, gastrointestinal studies, bone scans, etc. Since march 1984 Dalat nuclear research reactor of nominal power of 500 kW has been reconstructed and put into operation. This reactor is unique in Vietnam and has become an important scientific tool for development of nuclear techniques and radioisotope applications for socio-economic progress. Thanks to this important scientific tool, a variety of radioisotopes for medicine and industry applications as well as for scientific research has been produced. Utilization of the Dalat research reactor for radioisotope production is also summarized in this paper

  5. Nuclear research center transformation experience

    International Nuclear Information System (INIS)

    Diaz, J. L.; Jimenez, J. M.

    2001-01-01

    As consequence of the changes in the energy polities of each countries in the 80th. many of the Nuclear Research Centres suffered a transformation (more of less deep) in other Research and Development Centres with a wider spectrum that the exclusively nuclear one. This year is the 50 anniversary of the Spanish Centre of Nuclear Research-Junta de Energia Nuclear.The JEN the same as other suffered a deep renovation to become the CIEMAT Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (Research Centre for Energy, Environment and Technology). This paper is focussed on the evolution of JEN to CIEMAT besides analysing the reach of this re-foundation considering the political reasons and technical aspect that justified it and the laws in those it is based on. (Author)

  6. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  7. The Russian nuclear data research programme

    International Nuclear Information System (INIS)

    1995-11-01

    The report contains the Russian programme of nuclear data research, approved by the Russian Nuclear Data Committee on 16 December 1994. It gives surveys on nuclear data needs, on the structure of nuclear data activities, on experimental facilities for nuclear data measurements at five Russian institutes, on theoretical model work, nuclear data evaluation, and nuclear data testing. It describes four Russian nuclear data centers and their relations to the International Nuclear Data Centres Network, and their holdings of nuclear data libraries of Russian and international origin. A summary of nuclear data applications in energy and non-energy fields is given. An appendix contains a detail nuclear data research programme for the years 1995 - 2005. (author). 16 refs, 1 fig., 6 tabs

  8. Nuclear generation cost and nuclear research development fund

    International Nuclear Information System (INIS)

    Kim, S. S.; Song, G. D.

    2000-01-01

    The main objective of this study is to analyze the effects of nuclear R and D fund to nuclear generation cost and to assess the adaptability of fund size through the comparison with the nuclear research fund in Japan. It was estimated that nuclear R and D fund increased the average annual unit cost of nuclear power generation by 1.14 won/kWh. When the size of nuclear R and D fund is compared with that in Japan, this study suggests that the current nuclear R and D fund should be largely increased taking into consideration the ratio of R and D fund to nuclear generation

  9. Research for nuclear power. A Swiss perspective

    International Nuclear Information System (INIS)

    Foskolos, K.; Yadigaroglu, G.; Chawla, R.; Paul Scherrer Inst., Villigen

    1996-01-01

    Nuclear energy research in Switzerland is concentrated in the Department for Nuclear Energy and Safety Research of the Paul Scherrer Institute (PSI). Nuclear research at PSI is structured around three main poles: safety and related operational issues for existing NPPs, nuclear waste management, and safety characteristics of future reactor concepts. Further, global aspects of energy systems are examined with regard to safety, economics and environmental impact. Presently, a total effort of about 200 py/a is invested in the nuclear research. Government funding of nuclear research was relatively stable during recent years, reaching about 35 MCHF/a. External funding of about 15 MCHF/a is expected to remain stable. (R.P.)

  10. An overview of nuclear physics research

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    2010-01-01

    This overview is aimed to give a general picture of the global developments in nuclear physics research over the years since the beginning. It is based on the inaugural talk given at the 54th annual nuclear physics symposium organized by the Department of Atomic Energy, which was held as an International Symposium at BARC, Mumbai during Dec 8-12, 2009. The topics of nuclear fission, nuclear shell effects, super-heavy nuclei, and expanding frontiers of nuclear physics research with the medium to ultra-relativistic energy heavy-ion reactions are in particular highlighted. Accelerator driven sub-critical reactor system (ADS) is briefly described in the end as an example of spin-off of nuclear physics research. (author)

  11. NuclearFACTS: public engagement about the impacts of nuclear research

    Energy Technology Data Exchange (ETDEWEB)

    Dalzell, M.T.J.; Alexander, R.N.; Main, M.G., E-mail: matthew.dalzell@fedorukcentre.ca [Sylvia Fedoruk Canadian Centre for Nuclear Innovation, Saskatoon, SK, (Canada)

    2015-07-01

    The Forum for Accountability and Communities Talking nuclear Science - nuclearFACTS - is a cornerstone of the Sylvia Fedoruk Canadian Centre for Nuclear Innovation's efforts to engage the people of Saskatchewan in evidence-based conversations about the impacts of the nuclear research, development and training activities supported by the Fedoruk Centre. The second annual nuclearFACTS public colloquium was held 20 November 2014, and featured the participation of 16 research projects. This paper discusses the continued development of the nuclearFACTS concept and its role in the Fedoruk Centre's upstream engagement efforts. (author)

  12. Coordinating Space Nuclear Research Advancement and Education

    International Nuclear Information System (INIS)

    Bess, John D.; Webb, Jonathon A.; Gross, Brian J.; Craft, Aaron E.

    2009-01-01

    The advancement of space exploration using nuclear science and technology has been a goal sought by many individuals over the years. The quest to enable space nuclear applications has experienced many challenges such as funding restrictions; lack of political, corporate, or public support; and limitations in educational opportunities. The Center for Space Nuclear Research (CSNR) was established at the Idaho National Laboratory (INL) with the mission to address the numerous challenges and opportunities relevant to the promotion of space nuclear research and education.1 The CSNR is operated by the Universities Space Research Association and its activities are overseen by a Science Council comprised of various representatives from academic and professional entities with space nuclear experience. Program participants in the CSNR include academic researchers and students, government representatives, and representatives from industrial and corporate entities. Space nuclear educational opportunities have traditionally been limited to various sponsored research projects through government agencies or industrial partners, and dedicated research centers. Centralized research opportunities are vital to the growth and development of space nuclear advancement. Coordinated and focused research plays a key role in developing the future leaders in the space nuclear field. The CSNR strives to synchronize research efforts and provide means to train and educate students with skills to help them excel as leaders.

  13. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  14. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  15. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)

  16. Nuclear safety research

    International Nuclear Information System (INIS)

    1996-01-01

    The topics 'Large-sized PWR-NPP Safety Techniques Research',and 'The Key Techniques Research on the Safety Supervision and Control for Operation of Nuclear Installations' have been adopted as an apart of 'the National 9th five Year Programs for Tacking the Key Scientific and Technical Topics' which are organized by the State Planning Commission (SPC) and State Science and Technology Commission (SSTC) respectively, and have obtained a financial support from them. To play a better role with the limited fund, the NNSA laid special stress on selecting key sub-topics on nuclear safety, and carefully choosing units which would undertake sub-topics and signing technical contracts with them

  17. Nuclear methods in environmental and energy research

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, J R [ed.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research.

  18. Nuclear methods in environmental and energy research

    International Nuclear Information System (INIS)

    Vogt, J.R.

    1980-01-01

    A total of 75 papers were presented on nuclear methods for analysis of environmental and biological samples. Sessions were devoted to software and mathematical methods; nuclear methods in atmospheric and water research; nuclear and atomic methodology; nuclear methods in biology and medicine; and nuclear methods in energy research

  19. Termination of past nuclear activities at the nuclear research institute

    International Nuclear Information System (INIS)

    Janzekovic, H.; Krizman, M.

    2006-01-01

    Many countries, particularly in Europe, started with nuclear programs in the fifties of the last century. As a consequence nuclear research institutes were established, among them also the Institute Jozef Stefan (IJS) in Slovenia. The nuclear activities at the IJS were related to the development of uranium ore processing technology and technologies comprising uranium oxide and hexafluoride. After very intensive period of nuclear activities the decline began step by step due to different reasons. Various approaches of the termination and decommissioning of facilities were used. The inspectors of the Slovenian Nuclear Safety Administration (SNSA), the responsible authority, started intensive activities at the IJS at the end of 2004. All together 22 research laboratories or research units were included in the inspection program and around 50 researchers of the IJS were involved into the inspection procedures. The inspection was very intensive in the laboratories and storages where past nuclear activities took place and were later on abandoned. As a result several contaminated equipments and sites in addition to around 200 unregistered sources were found. The majority of these sources is related to past nuclear activities. The inspection program related to the terminated research activities is still in progress. The IJS immediately started with the remediation activities including the development of methodology related to decontamination of radioactive liquids. The decontamination of two nuclear laboratories and three different storages of radioactive waste at its sites is in progress. Sixty of the above mentioned sources have been already stored in the Central Interim Storage for Radioactive Waste. (author)

  20. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  1. Summaries of FY 1978 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Programs funded in Fiscal Year 1978 by the Division of Nuclear Physics Office of High Energy and Nuclear Physics, U.S. Department of Energy are briefly summarized. Long-range goals and major objectives of nuclear physics are stated. Research projects are listed alphabetically by institution under the following headings: medium-energy nuclear physics--research; medium-energy nuclear physics--operations; heavy-ion nuclear physics--research; heavy-ion nuclear physics--operations; and nuclear theory. (RWR)

  2. Karlsruhe nuclear research center. Main activities

    International Nuclear Information System (INIS)

    The article reports on problems of securing the fuel supply for nuclear power generation, on reprocessing and ultimate storage of radioactive material, on the safety of nuclear facilities, on new technologies and basic research, and on the infrastructure of the Karlsruhe nuclear research center, as well as finance and administration. (HK) [de

  3. Status of the study on PZC based Tc-99m generator and potential of its commercial production in VIETNAM

    International Nuclear Information System (INIS)

    Dong, Duong Van

    2007-01-01

    Tc-99m is the most widely used radioisotope in nuclear medicine. It has been almost produced from the decay of its parent 99 Mo by using the (n,γ) nuclear reaction with natural molybdenum. The technology requirement for this processing is simple, and is used in the most developing countries operating research reactor. Under the framework of Forum for Nuclear Cooperation in Asia (FNCA) cooperation program, the PZC based technology for production of Tc-99m generator has been studied at Dalat Nuclear Research Institute (DNRI) in the past several years. Some main activities and results of the study on PZC based Tc-99m generator at DNRI so far are given, and the estimation of future applications of PZC-type Tc-99m generator in Vietnam is also discussed in this report. (author)

  4. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  5. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  6. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  7. Design and construction of a preamplifier for research reactor control system using Russia’s neutron detectors

    International Nuclear Information System (INIS)

    Trinh Dinh Hai; Vo Van Tai; Le Van Diep; Nguyen Nhi Dien

    2016-01-01

    This paper presents the design and construction of a preamplifier device for Research Reactor Control System, using Russia’s Neutron Detectors of ionization and fission chambers. In this work, the preamplifier device which consists of a wide range Current to Frequency Converter block used with a compensation ionization chamber type KNK-3 to measure the thermal neutron flux in the range of 1x10"6 - 1x10"1"1 n/cm"2.s, a Pulse Preamplifier block used with a fission chamber type KNK-15 to measure the thermal neutron flux in the range of 1x10"0 - 1x10"6 n/cm"2.s, and a Power Supply block, was designed and tested in different conditions in the laboratory and at Dalat Nuclear Research Reactor (DNRR). Obtained results show that, the above blocks have almost design specifications as equivalent or better in comparison with the same function blocks of the DNRR Control System which were designed by the former Soviet Union. They also meet the utilization requirements as well as the experimental and training purposes. (author)

  8. The nuclear research centre at Bariloche, Argentina

    International Nuclear Information System (INIS)

    Abriata, J.P.

    2001-01-01

    The nuclear research centre at Bariloche (CAB) is one of the four centres under the Atomic Energy Commission of Argentina (CNEA). The research programme of CAB addresses various issues like nuclear reactor development, nuclear fuel and fuel cycle, applications of radioisotopes and radiation, and waste management. There is also a basic nuclear science component. The human resource development in the areas of physics and nuclear engineering is done in an associated Balseiro Institute which has undergraduate and graduate programmes as well as doctoral and postdoctoral research. The Centre interacts well with the society and provides services in the nuclear area. It has a close interaction with the nuclear sector of Argentina as also with many international organisations. Regulatory control over the Centre is carried out by the Nuclear Regulatory Authority of Argentina. (author)

  9. Research program on nuclear technology and nuclear safety

    International Nuclear Information System (INIS)

    Dreier, J.

    2010-04-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning nuclear technology and nuclear safety. Work carried out, knowledge gained and results obtained in the various areas are reported on. These include projects carried out in the Laboratory for Reactor Physics and System Behaviour LRS, the LTH Thermohydraulics Laboratory, the Laboratory for Nuclear Materials LNM, the Laboratory for Final Storage Safety LES and the Laboratory for Energy Systems Analysis LEA of the Paul Scherrer Institute PSI. Work done in 2009 and results obtained are reported on, including research on transients in Swiss reactors, risk and human reliability. Work on the 'Proteus' research reactor is reported on, as is work done on component safety. International co-operation in the area of serious accidents and the disposal of nuclear wastes is reported on. Future concepts for reactors and plant life management are discussed. The energy business in general is also discussed. Finally, national and international co-operation is noted and work to be done in 2010 is reviewed

  10. Basis for snubber aging research: Nuclear Plant Aging Research Program

    International Nuclear Information System (INIS)

    Brown, D.P.; Palmer, G.R.; Werry, E.V.; Blahnik, D.E.

    1990-01-01

    This report describes a research plan to address the safety concerns of aging in snubbers used on piping and equipment in commercial nuclear power plants. The work is to be performed under Phase 2 of the Snubber Aging Study of the Nuclear Plant Aging Research Program of the US Nuclear Regulatory Commission with the Pacific Northwest Laboratory (PNL) as the prime contractor. Research conducted by PNL under Phase 1 provided an initial assessment of snubber operating experience and was primarily based on a review of licensee event reports. The work proposed is an extension of Phase 1 and includes research at nuclear power plants and in test laboratories. Included is technical background on the design and use of snubbers in commercial nuclear power applications; the primary failure modes of both hydraulic and mechanical snubbers are discussed. The anticipated safety, technical, and regulatory benefits of the work, along with concerns of the NRC and the utilities, are also described. 21 refs., 7 figs., 1 tab

  11. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  12. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  13. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  14. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  15. Medical applications in a nuclear research centre

    International Nuclear Information System (INIS)

    Vanhavere, F.; Eggermont, G.

    2001-01-01

    In these days of public aversion to nuclear power, it can be important to point at the medical applications of ionising radiation. Not only the general public, but also the authorities and research centres have to be aware of these medical applications, which are not without risk for public health. Now that funding for nuclear research is declining, an opening to the medical world can give new opportunities to a nuclear research centre. A lot of research could be done where the tools developed for the nuclear power world are very useful. Even new applications for the research reactors like BNCT (boron neutron capture therapy) can be envisaged for the near future. In this contribution an overview will be given of the different techniques used in the medical world with ionising radiation. The specific example of the Belgian Nuclear Research Centre will be given where the mission statement was changed to include a certain number of medical research topics. (authors)

  16. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1987-02-01

    This annual Research Programme Plan covers the nuclear related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1987 and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT itself

  17. Nuclear Physics Research at ELI-NP

    Science.gov (United States)

    Zamfir, N. V.

    2018-05-01

    The new research facility Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.

  18. Nuclear Research and Society: Introduction

    International Nuclear Information System (INIS)

    Meskens, G.

    2007-01-01

    Throughout the last decades, the ever growing use of technology in our society has brought along the need to reflect on the related impact on the ecosystem and on society as such. There is growing evidence that the complexity of issues of risk governance and ethics coming with applications of nuclear technology, fossil fuels, human cloning and genetically modified crops cannot be tackled by pure rational technological and economical reasoning alone. In order to provide an answer to the concerns of civil society, this complexity needs a transdisciplinary approach, taking into account social and ethical aspects. Starting from the insight that a full understanding of the benefits and risks of applications of radioactivity and nuclear technology requires also an understanding of the context of application and a sense for the social and ethical aspects of the situation, SCK-CEN started in 1999 with its PISA research programme (Programme of Integration of Social Aspects into nuclear research). The aim of the research was (and still is) to give the nuclear researchers more insight into the complex social and ethical aspects of nuclear applications and to shed at the same time new lights on how to organise in a more effective way the dialogue and interaction with civil society. Originally, the programme was set up along thematic research tracks, involving nuclear scientists, engineers, philosophers and social scientists, and focussing on specific projects carried out by way of PhD- or post-doc research in cooperation with universities. The research tracks focussed on themes such as Sustainability and nuclear development, Transgenerational ethics of radioactive waste management, Legal aspects and liability, Risk governance and Expert culture. In addition to this thematic research, PISA organised reflection groups in interaction with universities, authorities and private actors. These interdisciplinary discussion sessions aimed to exchange knowledge and views on typical

  19. The Belgian nuclear research centre

    International Nuclear Information System (INIS)

    Moons, F.

    2001-01-01

    The Belgian Nuclear Research Centre is almost exclusively devoted to nuclear R and D and services and is able to generate 50% of its resources (out of 75 million Euro) by contract work and services. The main areas of research include nuclear reactor safety, radioactive waste management, radiation protection and safeguards. The high flux reactor BR2 is extensively used to test fuel and structural materials. PWR-plant BR3 is devoted to the scientific analysis of decommissioning problems. The Centre has a strong programme on the applications of radioisotopes and radiation in medicine and industry. The centre has plans to develop an accelerator driven spallation neutron source for various applications. It has initiated programmes to disseminate correct information on issues of nuclear energy production and non-energy nuclear applications to different target groups. It has strong linkages with the IAEA, OECD-NEA and the Euratom. (author)

  20. Nuclear physics and heavy element research at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, M A; Ahle, L E; Becker, J A; Bernstein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, J M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J; Wiedeking, M; Wilk, P A; Wu, C Y

    2009-05-11

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  1. Summaries of FY 1986 research in nuclear physics

    International Nuclear Information System (INIS)

    1987-03-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics

  2. Current status of nuclear safety research

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Efforts at nuclear safety research have expanded year by year in Japan, in term of money and technical achievement. The Atomic Energy Commission set last year the five year nuclear safety research program, a guideline by which various research institutes will be able to develop their own efforts in a concerted manner. From the results of the nuclear safety research which cover very wide areas ranging from reactor engineering safety, safety of nuclear fuel cycle facilities, prevention of radiation hazards to the adequate treatment and disposal of radioactive wastes, AIJ hereafter focuses of LWR engineering safety and prevents two articles, one introducing the current results of the NSSR program developed by JAERI and the other reporting the LWR reliability demonstration testing projects being promoted by MITI. The outline of these demonstration tests was reported in this report. The tests consist of earthquake resistance reliability test of nuclear power plants, steam generator reliability tests, valve integrity tests, fuel assembly reliability tests, reliability tests of heat affected zones and reliability tests of pumps. (Kobatake, H.)

  3. Nuclear wastes: research programs

    International Nuclear Information System (INIS)

    Anon.

    2003-01-01

    The management of long-living and high level radioactive wastes in France belongs to the framework of the December 30, 1991 law which defines three ways of research: the separation and transmutation of radionuclides, their reversible storage or disposal in deep geologic formations, and their processing and surface storage during long duration. Research works are done in partnership between public research and industrial organizations in many French and foreign laboratories. Twelve years after its enforcement, the impact of this law has overstepped the simple research framework and has led to a deep reflection of the society about the use of nuclear energy. This short paper presents the main results obtained so far in the three research ways, the general energy policy of the French government, the industrial progresses made in the framework of the 1991 law and the international context of the management of nuclear wastes. (J.S.)

  4. Karlsruhe Nuclear Research Center. Research and development program 1992

    International Nuclear Information System (INIS)

    1991-01-01

    The KfK R and D activities are classified by ten point-of-main-effort projects: 1) low-pollution/low-waste methods, 2) environmental energy and mass transfers, 3) nuclear fusion, 4) nuclear saftey research, 5) radioactive waste management, 6) superconduction, 7) microtechnics, 8) materials handling, 9) materials and interfaces, 10) basic physical research. (orig.) [de

  5. Research method of nuclear patent information

    International Nuclear Information System (INIS)

    Mo Dan; Gao An'na; Sun Chenglin; Wang Lei; You Xinfeng

    2010-01-01

    When faced with a huge amount of nuclear patent information, the key to effective research include: (1) Choose convenient way to search, quick access to nuclear technology related patents; (2) To overcome the language barrier, analysis the technical content of patent information; (3) Organize the publication date of retrieved patent documents, analysis the status and trends of nuclear technology development; (4) Research the patented technology of main applicants; (5) Always pay attention to the legal status of patent information, free use the invalid patents, at the same time avoid the patent infringement. Summary, patent information is important to obtain the latest technical information source, and the research work of patent information is a comprehensive understanding and mastery way for advanced nuclear technology. (authors)

  6. Strategic Nuclear Research Collaboration - FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  7. ENSAR, a Nuclear Science Project for European Research Area

    NARCIS (Netherlands)

    Turzó, Ketel; Lewitowicz, Marek; Harakeh, Muhsin N.

    2015-01-01

    During the period from September 2010 to December 2014, the European project European Nuclear Science and Applications Research (ENSAR) coordinated research activities of the Nuclear Physics community performing research in three major subfields: Nuclear Structure, Nuclear Astrophysics, and Nuclear

  8. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1978-07-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in the various institutions listed in previous Progress Reports (LS-270 for 1976). The latest major experimental facility, the 14 UD pelletron, was installed in the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot, and accepted on April 1st 1977. A report in Revue de Physique Appliquee of October 1977 including a description of the facility, acceptance performance, as well as some supplementary devices, is reproduced in the beginning of this report. Brief abstracts of the research work, both published and unpublished, are presented. (author)

  9. Summaries of FY 1988 research in nuclear physics

    International Nuclear Information System (INIS)

    1989-02-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics, during FY 1986. This Division is a component of the Office of Energy Research, the basic research branch of the US Department of Energy, and provides about 80% of the funding for nuclear physics research in the United States. The objective of the Nuclear Physics program is to understand the interactions, properties, and structures of nuclei and nuclear matter and to understand the fundamental forces of nature as manifested in atomic nuclei. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. The nuclear physics research summaries in this document were initially prepared by the investigators, then reviewed and edited by DOE staff. They describe the general character and goals of the research programs, current research efforts, especially significant recent results, and plans for the near future. The research summaries are organized into two groups: research programs at national laboratories and those at universities, with the material arranged alphabetically by institution. The names of all Ph.D.-level personnel who are primarily associated with the work are included. The FY 1988 funding levels are also provided. Included for the first time are activities of the nuclear data program, which was incorporated within nuclear physics in FY 1987. We remind the readers that this compilation is just an overview of the Nuclear Physics program. Primary publications should be used for reference to the work and for a more complete and accurate understanding

  10. Development of a graphical interface computer code for reactor fuel reloading optimization

    International Nuclear Information System (INIS)

    Do Quang Binh; Nguyen Phuoc Lan; Bui Xuan Huy

    2007-01-01

    This report represents the results of the project performed in 2007. The aim of this project is to develop a graphical interface computer code that allows refueling engineers to design fuel reloading patterns for research reactor using simulated graphical model of reactor core. Besides, this code can perform refueling optimization calculations based on genetic algorithms as well as simulated annealing. The computer code was verified based on a sample problem, which relies on operational and experimental data of Dalat research reactor. This code can play a significant role in in-core fuel management practice at nuclear research reactor centers and in training. (author)

  11. Application of atomic absorption spectrophotometry to determine Cd, Cu, Pb, Zn,...in vegetable samples in Dalat

    Energy Technology Data Exchange (ETDEWEB)

    Giang, Nguyen; Tam, Nguyen Thanh; Ngoc Trinh, Le Thi; Mai, Truong Phuong; Minh, Nguyen Van [Nuclear Research Institute, Dalat (Viet Nam)

    2004-08-01

    Nowadays atomic absorption spectrometry has become valuable method for trace element analysis because high specificity; low detection litmus, easy to use; easy sample preparation, low investment and running costs... atomic absorption spectrometry is generally accepted as one the most suitable method for single - element analysis of trace elements in various kinds of materiel. In 2003, we applied flame - atomic absorption spectrometry for analyzing Ca, Cd, Cu, Pb, Zn...in vegetables and their extracted juices were collected form 11 locations of Dalat, including two kinds of vegetables (goods and safety) in both the summer and winter. Average concentration of Ca = 240 mg/kg wet, Cd = 0.035 mg/kg wet, Cu = 0.67 mg/kg wet, Mg = 131 mg/kg wet, Fe = 8.1/kg wet, Mn = 3.1/kg wet, Na = 3266 mg/kg wet, Pb = 0.345 mg/kg wet and Zn = 3.3 mg wet. In their extracted juices: Ca = 89 mg/kg wet, Cd = 0.008 mg/kg wet, Cu = 0.19 mg/kg wet, Mg = 43 mg/kg wet, Fe = 2.3 mg/kg wet, Mn = 0.61 mg/kg wet, Na = 971 mg/kg wet, Pb = 0.107 mg/kg wet and Zn = 0.65 mg/kg wet. (author)

  12. Application of atomic absorption spectrophotometry to determine Cd, Cu, Pb, Zn,...in vegetable samples in Dalat

    International Nuclear Information System (INIS)

    Nguyen Giang; Nguyen Thanh Tam; Le Thi Ngoc Trinh; Truong Phuong Mai; Nguyen Van Minh

    2004-01-01

    Nowadays atomic absorption spectrometry has become valuable method for trace element analysis because high specificity; low detection litmus, easy to use; easy sample preparation, low investment and running costs... atomic absorption spectrometry is generally accepted as one the most suitable method for single - element analysis of trace elements in various kinds of materiel. In 2003, we applied flame - atomic absorption spectrometry for analyzing Ca, Cd, Cu, Pb, Zn...in vegetables and their extracted juices were collected form 11 locations of Dalat, including two kinds of vegetables (goods and safety) in both the summer and winter. Average concentration of Ca = 240 mg/kg wet, Cd = 0.035 mg/kg wet, Cu = 0.67 mg/kg wet, Mg = 131 mg/kg wet, Fe = 8.1/kg wet, Mn = 3.1/kg wet, Na = 3266 mg/kg wet, Pb = 0.345 mg/kg wet and Zn = 3.3 mg wet. In their extracted juices: Ca = 89 mg/kg wet, Cd = 0.008 mg/kg wet, Cu = 0.19 mg/kg wet, Mg = 43 mg/kg wet, Fe = 2.3 mg/kg wet, Mn = 0.61 mg/kg wet, Na = 971 mg/kg wet, Pb = 0.107 mg/kg wet and Zn = 0.65 mg/kg wet. (author)

  13. PSI nuclear energy research progress report 1988

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-07-01

    The progress report at hand deals with nuclear energy research at PSI. The collection of articles covers a large number of topics: different reactor systems, part of the fuel cycle, the behaviour of structural materials. Examples of the state of knowledege in different disciplines are given: reactor physics, thermal-hydraulics, heat transfer, fracture mechanics, instrumental analysis, mathematical modelling. The purpose of this collection is to give a fair account of nuclear energy research at PSI. It should demonstrate that nuclear energy research is a central activity also in the new institute, the scientific basis for the continuing exploitation of nuclear power in Switzerland is preserved, work has continued not only along established lines but also new research topics were tackled, the quality of work corresponds to international standards and in selected areas is in the forefront, the expertise acquired also finds applications in non-nuclear research tasks. (author) 92 figs., 18 tabs., 316 refs

  14. A Study on Research Trend in Nuclear Forensics

    International Nuclear Information System (INIS)

    Kim, Kyungmin; Yim, Hobin; Lee, Seungmin; Hong, Yunjeong; Kim, Jae Kwang

    2014-01-01

    The international community has recognized the serious threat posed by nuclear and other radioactive material out of regulatory control. To address these concerns, the Office of Nuclear Security of the international Atomic Energy Agency (IAEA) is developing, inter alia, guidance for nuclear forensics to assist Member States. According to the IAEA Incident and Trafficking Database (ITDB) of the IAEA to record the illegal trade and trafficking incidents of nuclear material or other radioactive material, incidents of 2331 have been reported in 1993 to 2012. These incidents mean that we are not safe for nuclear material. In order to solve the case generated by the illicit trafficking of nuclear material and the efficient management of nuclear material, the study of nuclear forensics is very important. In this study, we investigated the analytical techniques and the current status of nuclear forensics research. In this study, we investigated the current status of research of nuclear forensics, procedures for analysis and nuclear forensics analysis technique. A result of the study, we have been found that the major institutes and laboratory actively research on analysis technique and nuclear forensics. However, research on nuclear forensics is still in early stage, ROK is necessary preliminary survey of analysis technique and foundation of physical, chemical, and morphology characteristics of nuclear materials

  15. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-06-01

    The introductory section describes the goals, main thrusts, and interrelationships between the various activities in the program and principal achievements of the Stony Brook Nuclear Theory Group during 1992--93. Details and specific accomplishments are related in abstract form. Current research is taking place in the following areas: strong interaction physics (the physics of hadrons, QCD and the nucleus, QCD at finite temperature and high density), relativistic heavy-ion physics, nuclear structure and nuclear many- body theory, and nuclear astrophysics

  16. Karlsruhe Nuclear Research Center. Research and development programme 1989

    International Nuclear Information System (INIS)

    1988-01-01

    The R and D activities of the KfK are classified in 10 main research activities: 1) Project fast breeder; 2) separation nozzle method; 3) project nuclear fusion; 4) project reprocessing and waste processing; 5) ultimate storage; 6) environment and safety; 7) solid-state and materials research; 8) nuclear and elementary particle physics; 9) microtechnics e.g. X-ray lithography; 10) materials handling. (HP) [de

  17. Role and position of Nuclear Power Plants Research Institute in nuclear power industry

    International Nuclear Information System (INIS)

    Metke, E.

    1984-01-01

    The Nuclear Power Plants Research Institute carries out applied and experimental research of the operating states of nuclear power plants, of new methods of surveillance and diagnosis of technical equipment, it prepares training of personnel, carries out tests, engineering and technical consultancy and the research of automated control systems. The main research programme of the Institute is the rationalization of raising the safety and operating reliability of WWER nuclear power plants. The Institute is also concerned with quality assurance of selected equipment of nuclear power plants and assembly works, with radioactive waste disposal and the decommissioning of nuclear power plants as well as with the preparation and implementation of the nuclear power plant start-up. The Research Institute is developing various types of equipment, such as equipment for the decontamination of the primary part of the steam generator, a continuous analyzer of chloride levels in water, a gas monitoring instrument, etc. The prospects are listed of the Research Institute and its cooperation with other CMEA member countries. (M.D.)

  18. Summaries of FY 1992 research in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed.

  19. Summaries of FY 1992 research in nuclear physics

    International Nuclear Information System (INIS)

    1993-07-01

    This report summarizes the research projects supported by the Division of Nuclear Physics in the Office of High Energy and Nuclear Physics during FY 1992. This Division is a component of the Office of Energy Research and provides about 85% of the funding for nuclear physics research in the United States. The objectives of the Nuclear Physics Program are two-fold: (1) to understand the interactions and structures of atomic nuclei and nuclear matter and the fundamental forces of nature as manifested in nuclear matter and (2) to foster application of this knowledge to other sciences and technical disciplines. These summaries are intended to provide a convenient guide for those interested in the research supported by the Division of Nuclear Physics. We remind the readers that this compilation is just an overview of the Nuclear Physics Program. What we attempt to portray correctly is the breadth of the program and level of activity in the field of nuclear physics research as well as the new capabilities and directions that continually alter the public face of the nuclear sciences. We hope that the limitations of space, constraints of fon-nat, and rigors of editing have not extinguished the excitement of the science as it was originally portrayed

  20. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)

  1. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de

  2. Safety research in nuclear fuel cycle at PNC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF{sub 6}, uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  3. Safety research in nuclear fuel cycle at PNC

    International Nuclear Information System (INIS)

    1998-09-01

    This report collects the results of safety research in nuclear fuel cycle at Power Reactor and Nuclear Fuel Development Corporation, in order to answer to the Questionnaire of OECD/NEA. The Questionnaire request to include information concerning to research topic, description, main results (if available), reference documents, research institutes involved, sponsoring organization and other pertinent information about followings: a) Recently completed research projects. b) Ongoing (current) research projects. Achievements on following items are omitted by the request of OECD/NEA, uranium mining and milling, uranium refining and conversion to UF 6 , uranium enrichment, fuel manufacturers, spent fuel storage, radioactive waste management, transport of radioactive materials, decommissioning. We select topics from the fields of a) nuclear installation, b) seismic, and c) PSA, in projects from frame of annual safety research plan for nuclear installations established by Nuclear Safety Commission. We apply for the above a) and b) projects as follows: a) Achievements in Safety Research, fiscal 1991-1995, b) fiscal 1996 Safety Research Achievements: Progress. (author)

  4. Research in nuclear chemistry: current status and future perspectives

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2007-01-01

    Research in nuclear chemistry has seen a huge growth over the last few decades. The large umbrella of nuclear chemistry includes several research areas such as nuclear fission, reactions, spectroscopy, nuclear probes and nuclear analytical techniques. Currently, nuclear chemistry research has extended its horizon into various applications like nuclear medicine, isotopes for understanding physico chemical processes, and addressing environmental and biomedical problems. Tremendous efforts are going on for synthesizing new elements (isotopes), isolating physically or chemically wherever possible and investigating their properties. Theses studies are useful to understand nuclear and chemical properties at extreme ends of instability. In addition, nuclear chemists are making substantial contribution to astrophysics and other related areas. During this talk, a few of the contributions made by nuclear chemistry group of BARC will be discussed and possible future areas of research will be enumerated. (author)

  5. Current research and development at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Kuesters, H.

    1982-01-01

    The Nuclear Research Center Karlsruhe (KfK) is funded to 90% by the Federal Republic of Germany and to 10% by the State of Baden-Wuerttemberg. Since its foundation in 1956 the main objective of the Center is research and development (R and D) in the aera of the nuclear technology and about 2/3 of the research capacity is now devoted to this field. Since 1960 a major activity of KfK is R and D work for the design of fast breeder reactors, including material research, physics, and safety investigations; a prototype of 300 MWe is under construction now in the lower Rhine Valley. For enrichment of 235 U fissile material KfK developed the separation nozzle process; its technical application is realized within an international contract between the Federal Republic of Germany and Brazil. Within the frame of the European Programme on fusion technology KfK develops and tests superconducting magnets for toroidal fusion systems; a smaller activity deals with research on inertial confinement fusion. A broad research programme is carried through for safety investigations of nuclear installations, especially for PWRs; this activity is supplemented by research and development in the field of nuclear materials' safeguards. Development of fast reactors has to initiate research for the reprocessing of spent fuel and waste disposal. In the pilot plant WAK spent fuel from LKWs is reprocessed; research especially tries e.g. to improve the PUREX-process by electrochemical means, vitrification of high active waste is another main activity. First studies are being performed now to clarify the necessary development for reprocessing fast reactor fuel. About 1/3 of the research capacity of KfK deals with fundamental research in nuclear physics, solid state physics, biology and studies on the impact of technology on environment. Promising new technologies as e.g. the replacement of gasoline by hydrogen cells as vehicle propulsion are investigated. (orig.)

  6. Outline of research proposals selected in the Nuclear Energy Research Initiative (NERI) program

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Usui, Shuji

    1999-08-01

    The U.S. Department of Energy (DOE) created a new R and D program called Nuclear Energy Research Initiative (NERI)' in FY 1999 with the appropriation of $19 million. The major objectives of the NERI program is to preserve the nuclear science and engineering infrastructure in the U.S. and to maintain a competitive position in the global nuclear market in the 21st century. In may, 1999, the DOE selected 45 research proposals for the first year of the NERI program. The proposals are classified into the following five R and D areas: Proliferation Resistant Reactors and/or Fuel Cycles, New Reactor Designs, Advanced Nuclear Fuel, New Technology for Management of Nuclear Waste, Fundamental Nuclear Science. Since the NERI is a very epoch-making and strategic nuclear research program sponsored by the U.S. government, the trend of the NERI is considered to affect the future R and D programs in Japanese nuclear industries and research institutes including JAERI. The present report summarizes the analyzed results of the selected 45 research proposals. Staffs comments are made on each proposal in connection with the R and D activities in JAERI. (author)

  7. The Neutron Spectrometry System Using 3He Counter

    International Nuclear Information System (INIS)

    Dang Lanh; Pham Ngoc Tuan; Tuong Thi Thu Huong; Nguyen Nhi Dien; Nguyen Van Hung

    2011-01-01

    A spectrometry system was designed for neutron counting at the horizontal channels of Dalat nuclear reactor. The system is able to interface to PC via EZ-USB with full speed. The designed system can be installed for operation not only at the channel No. 4 of the reactor, but also operated with the neutron Howitzer system installed at the Training Center of Nuclear Research Institute for training purposes. Almost results can be achieved effectively while choosing the shaping time of 2 μs of amplifier unit; and an appropriate preamplifier is used to measure neutron spectra. In this work, the multi-channel spectrometer for measuring neutron was designed and tested. (author)

  8. Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Eggermont, G.

    2001-01-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised

  9. Research Facilities for the Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Ait Abderrahim, H.

    1996-01-01

    The proceedings of the ENS Class 1 Topical Meeting on Research facilities for the Future of Nuclear Energy include contributions on large research facilities, designed for tests in the field of nuclear energy production. In particular, issues related to facilities supporting research and development programmes in connection to the operation of nuclear power plants as well as the development of new concepts in material testing, nuclear data measurement, code validation, fuel cycle, reprocessing, and waste disposal are discussed. The proceedings contain 63 papers

  10. Nuclear safety research at the European Commission's Joint Research Centre

    International Nuclear Information System (INIS)

    Toerroenen, K.

    2003-01-01

    Nuclear power plants currently generate some 35 % of electricity used in the European Union and applicant countries. Nuclear safety will therefore remain a priority for the EU, particularly in view of enlargement, the need to monitor ageing nuclear installations and the licencing of advanced new reactor systems. The European Commission's Joint Research Centre (JRC), with its long involvement and recognised competence in nuclear safety related activities, provides direct support to the European Commission services responsible for nuclear safety and civil protection. (author)

  11. Present status of nuclear fusion research and development

    International Nuclear Information System (INIS)

    Discussions are included on the following topics: (1) plasma confinement theoretical research, (2) torus plasma research, (3) plasma measurement research, (4) technical development of equipment, (5) plasma heating, (6) vacuum wall surface phenomena, (7) critical plasma test equipment design, (8) noncircular cross-sectional torus test equipment design, (9) nuclear fusion reactor design, (10) nuclear fusion reactor engineering, (11) summary of nuclear fusion research in foreign countries, and (12) long range plan in Japan

  12. Perspectives of experimental nuclear physics research at RBI Croatia

    International Nuclear Information System (INIS)

    Soic, N.

    2009-01-01

    Experimental nuclear physics has been one of the top research activities at the Rudjer Boskovic Institute, the largest and leading Croatian research center in science and applications. The RBI nuclear physics group has strong link with the researchers at the University of Zagreb. RBI scientists perform experiments at the RBI Tandem accelerator facility and at the top European experimental facilities in collaboration with the prominent research groups in the field. Current status of the RBI experimental nuclear physics research and our recent activities aimed to strengthen our position at the RBI and to increase our international reputation and impact in collaborative projects will be presented. Part of these activities is focused on local accelerator facilities, at present mainly used for application research, and their increased usage for nuclear physics research and for development and testing of novel research equipment for large international facilities. Upgrade of the local research equipment is on the way through FP7 REGPOT project 'CLUNA: Clustering phenomena in nuclear physics: strengthening of the Zagreb-Catania-Birmingham partnership'. Recently, steps to exploit potential of the facility for nuclear astrophysics research have been initiated. Possible future actions for further strengthening of the RBI experimental nuclear physics research will be discussed.(author)

  13. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-01-01

    Research in progress and plans for future investigations are briefly summarized for the following areas: light-ion structure and reactions; nuclear structure; peripheral heavy-ion reactions at medium and high energy; medium-energy heavy-ion collisions and properties of highly excited nuclear matter; and high-energy heavy-ion collisions and QCD plasma

  14. Research in nuclear astrophysics

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1989-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and the supernova phenomenon; in fact, nuclear matter properties, especially at supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered in the one and one half years prior to its explosion in February 1987. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We propose to modify it to use implicit differencing and to include multi-group neutrino diffusion and General Relativity. In parallel, we are extending calculations of the birth of a neutron star to include convection and mass accretion, by incorporating a hydrodynamic envelope onto a hydrostatic core. In view of the possible recent discovery of a pulsar in SN1987A, we are including the effects of rotation. We are undertaking a detailed comparison of current equations of state, focusing on disagreements regarding the nuclear incompressibly, symmetry energy and specific heat. Especially important is the symmetry energy, which below nuclear density controls free proton fractions and weak interaction rates and above this density critically influences the neutron star maximum mass and binding energy. 60 refs

  15. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  16. Safety research programs sponsored by Office of Nuclear Regulatory Research

    International Nuclear Information System (INIS)

    Weiss, A.J.; Azarm, A.; Baum, J.W.

    1989-07-01

    This progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the Division of Regulatory Applications, Division of Engineering, Division of Safety Issue Resolution, and Division of Systems Research of the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research following the reorganization in July 1988. The previous reports have covered the period October 1, 1976 through September 30, 1988

  17. Japan's contribution to nuclear medical research

    International Nuclear Information System (INIS)

    Rahman, M.; Sakamoto, Junichi; Fukui, Tsuguya

    2002-01-01

    We investigated the degree of Japan's contribution to the nuclear medical research in the last decade. Articles published in 1991-2000 in highly reputed nuclear medical journals were accessed through the MEDLINE database. The number of articles having affiliation with a Japanese institution was counted along with publication year. In addition, shares of top-ranking countries were determined along with their trends over time. Of the total number of articles (7,788), Japan's share of articles in selected nuclear medical journals was 11.4% (889 articles) and ranked 2nd in the world after the USA (2,645 articles). The recent increase in the share was statistically significant for Japan (p=0.02, test for trend). Japan's share in nuclear medical research output is much higher than that in other biomedical fields. (author)

  18. Nuclear Explosion Monitoring History and Research and Development

    Science.gov (United States)

    Hawkins, W. L.; Zucca, J. J.

    2008-12-01

    Within a year after the nuclear detonations over Hiroshima and Nagasaki the Baruch Plan was presented to the newly formed United Nations Atomic Energy Commission (June 14, 1946) to establish nuclear disarmament and international control over all nuclear activities. These controls would allow only the peaceful use of atomic energy. The plan was rejected through a Security Council veto primarily because of the resistance to unlimited inspections. Since that time there have been many multilateral, and bilateral agreements, and unilateral declarations to limit or eliminate nuclear detonations. Almost all of theses agreements (i.e. treaties) call for some type of monitoring. We will review a timeline showing the history of nuclear testing and the more important treaties. We will also describe testing operations, containment, phenomenology, and observations. The Comprehensive Nuclear Test Ban Treaty (CTBT) which has been signed by 179 countries (ratified by 144) established the International Monitoring System global verification regime which employs seismic, infrasound, hydroacoustic and radionuclide monitoring techniques. The CTBT also includes on-site inspection to clarify whether a nuclear explosion has been carried out in violation of the Treaty. The US Department of Energy (DOE) through its National Nuclear Security Agency's Ground-Based Nuclear Explosion Monitoring R&D Program supports research by US National Laboratories, and universities and industry internationally to detect, locate, and identify nuclear detonations. This research program builds on the broad base of monitoring expertise developed over several decades. Annually the DOE and the US Department of Defense jointly solicit monitoring research proposals. Areas of research include: seismic regional characterization and wave propagation, seismic event detection and location, seismic identification and source characterization, hydroacoustic monitoring, radionuclide monitoring, infrasound monitoring, and

  19. Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2001-04-01

    In 1998, an initiative was taken by SCK-CEN to include social sciences and humanities into its research programme. As a result, two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of nuclear experts. The general objectives of SCK-CEN's social sciences programme are: (1) to improve the nuclear research approach by integrating social sciences - where needed- to solve complex problems in interaction with society; (2) to stimulate university collaboration with social disciplines in learning process towards transdisciplinary and improved social responsibility; (3) to improve the training of nuclear experts of SCK-CEN by gaining insight in their expert culture and implicit ethical choices; (4) to develop projects and an original transdisciplinary programme and project management by involving young and senior scientists, a variety of university opinions and relevant actors from industry and society. Along these lines, projects were developed on sustainability and nuclear development, transgenerational ethics related to disposal of long-lived radioactive waste and cognitive dissonance effects, legal aspects and liability, non-radiological aspects of nuclear emergencies and safety. Progress and major achievements in SCK-CEN's social science programme in 2000 are summarised.

  20. Spanish Nuclear Safety Research under International Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, L. E.; Reventos, F.; Ahnert, C.; Jimenez, G.; Queral, C.; Verdu, G.; Miro, R.; Gallardo, S.

    2013-10-01

    The Nuclear Safety research requires a wide international collaboration of several involved groups. In this sense this paper pretends to show several examples of the Nuclear Safety research under international frameworks that is being performed in different Universities and Research Institutions like CIEMAT, Universitat Politecnica de Catalunya (UPC), Universidad Politecnica de Madrid (UPM) and Universitat Politenica de Valencia (UPV). (Author)

  1. Role of nuclear safety research and future plan

    International Nuclear Information System (INIS)

    Kim, W. S.; Lee, J. I.; Kang, S. C.; Park, Y. W.; Lee, J. H.; Kim, M. W.; Lee, C. J.; Park, Y. I.

    2000-01-01

    For promoting and improving nuclear safety research activities, this report gives an insight on the scope of safety research and its role in the safety management of nuclear installations, and suggests measures to adequately utilize the research results through taking an optimized role share among research organizations. Several measures such as cooperative planning of common research areas and proper role assignment, improvement of the interfaces among researchers, and reflection of end-users' opinion in the course of planning and conducting research to promote application of research results are identified. It is expected that the identified measures will contribute to enhancing the efficiency and effectiveness of nuclear safety research, if they are implemented after deliberating with the government and safety research organizations

  2. A world class nuclear research reactor complex for South Africa's nuclear future

    International Nuclear Information System (INIS)

    Keshaw, Jeetesh

    2008-01-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  3. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  4. Program nuclear safety research: report 2000

    International Nuclear Information System (INIS)

    Muehl, B.

    2001-09-01

    The reactor safety R and D work of forschungszentrum karlsruhe (FZK) had been part of the nuclear safety research project (PSF) since 1990. In 2000, a new organisational structure was introduced and the Nuclear Safety Research Project was transferred into the nuclear safety research programme (NUKLEAR). In addition to the three traditional main topics - Light Water Reactor safety, Innovative systems, Studies related to the transmutation of actinides -, the new Programme NUKLEAR also covers Safety research related to final waste storage and Immobilisation of HAW. These new topics, however, will only be dealt with in the next annual report. Some tasks related to the traditional topics have been concluded and do no longer appear in the annual report; other tasks are new and are described for the first time. Numerous institutes of the research centre contribute to the work programme, as well as several external partners. The tasks are coordinated in agreement with internal and external working groups. The contributions to this report, which are either written in German or in English, correspond to the status of early/mid 2001. (orig.)

  5. Preparation fo nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  6. Preparation of nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN, are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  7. Nuclear power reactor safety research activities in CIAE

    International Nuclear Information System (INIS)

    Pu Shendi; Huang Yucai; Xu Hanming; Zhang Zhongyue

    1994-01-01

    The power reactor safety research activities in CIAE are briefly reviewed. The research work performed in 1980's and 1990's is mainly emphasised, which is closely related to the design, construction and licensing review of Qinshan Nuclear Power Plant and the safety review of Guangdong Nuclear Power Station. Major achievements in the area of thermohydraulics, nuclear fuel, probabilistic safety assessment and severe accident researches are summarized. The foreseeable research plan for the near future, relating to the design and construction of 600 MWe PWR NPP at Qinshan Site (phase II development) is outlined

  8. Karlsruhe Nuclear Research Centre. Report on the results of research and development 1985

    International Nuclear Information System (INIS)

    1986-01-01

    The report contains a description of the research projects, a list of the institutes and departments of the scientific-technical range with short articles concerning the results of the institutional work, and a bibliography of all publications of 1985. The main aspects of the projects and research programs are fast breeder, separation nozzle process, nuclear fusion, waste recycling and reprocessing, final storage, nuclear safety, the range of technique-man-environment, solid state and materials research, nuclear and elementary particle physics, and research programs of different institutes. (HK)

  9. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  10. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  11. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Udagawa, T.

    1993-11-01

    This report describes the accomplishments in basic research in nuclear physics carried out by the theoretical nuclear physics group in the Department of Physics at the University of Texas at Austin, during the period of November 1, 1992 to October 31, 1993. The work done covers three separate areas, low-energy nuclear reactions, intermediate energy physics, and nuclear structure studies. Although the subjects are thus spread among different areas, they are based on two techniques developed in previous years. These techniques are a powerful method for continuum-random-phase-approximation (CRPA) calculations of nuclear response and the breakup-fusion (BF) approach to incomplete fusion reactions, which calculation on a single footing of various incomplete fusion reaction cross sections within the framework of direct reaction theories. The approach was developed as a part of a more general program for establishing an approach to describing all different types of nuclear reactions, i.e., complete fusion, incomplete fusion and direct reactions, in a systematic way based on single theoretical framework

  12. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  13. Challenges faced by nuclear research centres in Indonesia

    International Nuclear Information System (INIS)

    Subki, I.R.; Soentono, S.

    2001-01-01

    Nuclear research centres in Indonesia are mainly owned and operated by the National Nuclear Energy Agency, covering basically various research and development facilities for non-energy and energy related activities. The research and development activities cover a broad spectrum of basic, applied, and developmental research involving nuclear science and technology in supporting various fields ranging from basic human needs, e.g. food and health; natural resources and nuclear and environmental safety; as well as industry. Recent economic crisis, triggered by monetary turmoil, has dictated the IAEA to face new challenges and to give more efforts on the application of the so called 'instant technology' i.e. the technology which has been developed and is ready for implementation, especially on food and health, to be better utilized to overcome various problems in the society. Various short and medium term programmes on the application of isotopes, radiation, and nuclear techniques for non-energy related activities have emerged in accord with these efforts. In this regard, besides the intensification of the instant technology implementation on food and health, the nuclear research and development on food plant mutation, fertilizers, radio-vaccines, production of meat and milk, production processes of various radiopharmaceuticals, and radioisotopes as well as radiation processing related to agro-industry have to be intensified using the available laboratories processing facilities. The possibility of the construction of irradiators for post harvesting processes in some provinces is being studied, while the designing and manufacturing of various prototypes of devices, equipment, and instruments for nuclear techniques in health and industry are continued. Considering the wide applications of accelerators for non-energy and energy related research and development, construction of accelerator-based laboratories is being studied. In energy related research the feasibility of

  14. Programme of basic nuclear research and associated fields 1977-1981

    International Nuclear Information System (INIS)

    1978-01-01

    Nuclear research and development have been intensively pursued in West Germany by the Government and the Laender since 1955. In this period, the aims and official measures for fostering the research and use of nuclear power for peaceful purposes were laid down in four nuclear programmes. The 4th Nuclear Programme covers the period 1973 to 1976. From 1977, nuclear development became part of the energy research programme which was published by the West German Government in the spring of 1977. The basic nuclear research, however, was regarded as part of a total concept for fostering basic research (to be developed). While all the activities of research in the natural sciences and arts fostered by the West German Ministry of Research and Technology were to be co-ordinated in a more schematic form in the plan for 'Basic Research', it is the aim of the present statement to take stock of the present situation in 'Basic Nuclear Research' including the associated fields of 'Nuclear Solid Research' and 'Synchrotron Radiation', to analyse their structure, to describe the scientific aims for the next five years and to determine the total financial requirements. The basis for determining the financial programme worked out by the expert committee on 'Physical Research in the Nuclear Field' and the other committees in this field. The plans are in agreement with the medium term plan of the West German Ministry of Research and Technology (at 27.10.1977) and their contents correspond to the state of affairs at the end of 1977. (orig./UA) [de

  15. Central Institute for Nuclear Research (1956 - 1979)

    International Nuclear Information System (INIS)

    Flach, G.; Bonitz, M.

    1979-12-01

    The Central Institute for Nuclear Research (ZfK) of the Academy of Sciences of the GDR is presented. This first overall survey covers the development of the ZfK since 1956, the main research activities and results, a description of the departments responsible for the complex implementation of nuclear research, the social services for staff and the activities of different organizations in the largest central institute of the Academy of Sciences of the GDR. (author)

  16. Introduction of nuclear medicine research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inubushi, Masayuki [Kawasaki Medical School, Division of Nuclear Medicine, Department of Radiology, Kurashiki, Okayama (Japan); Higashi, Tatsuya [National Institutes of Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Chiba (Japan); Kuji, Ichiei [Saitama Medical University International Medical Center, Department of Nuclear Medicine, Hidaka-shi, Saitama (Japan); Sakamoto, Setsu [Dokkyo University School of Medicine, PET Center, Mibu, Tochigi (Japan); Tashiro, Manabu [Tohoku University, Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Miyagi (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Department of Diagnostic Imaging and Nuclear Medicine, Tokyo (Japan)

    2016-12-15

    There were many interesting presentations of unique studies at the Annual Meeting of the Japanese Society of Nuclear Medicine, although there were fewer attendees from Europe than expected. These presentations included research on diseases that are more frequent in Japan and Asia than in Europe, synthesis of original radiopharmaceuticals, and development of imaging devices and methods with novel ideas especially by Japanese manufacturers. In this review, we introduce recent nuclear medicine research conducted in Japan in the five categories of Oncology, Neurology, Cardiology, Radiopharmaceuticals and Technology. It is our hope that this article will encourage the participation of researchers from all over the world, in particular from Europe, in scientific meetings on nuclear medicine held in Japan. (orig.)

  17. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  18. Radiant research prospects? A review of nuclear waste issues in social science research

    International Nuclear Information System (INIS)

    Bergquist, Ann-Kristin

    2007-05-01

    The present report has been put together on behalf of KASAM and constitutes a review of social science research and literature that been produced on the nuclear waste issue in Sweden, with focus on recent research. The aim with the investigation has been to map the scope of and the direction of the independent research about nuclear waste in Sweden, in relation to the research that has been initiated and financed by the stakeholders that are participating in the decision-making process in the nuclear waste issue. Another aim has been to point out areas that have not been taken into consideration

  19. Nuclear data usage for research reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Soyama, Kazuhiko; Amano, Toshio

    1996-01-01

    In the department of research reactor, many neutronics calculations have been performed to construct, to operate and to modify research reactors of JAERI with several kinds of nuclear data libraries. This paper presents latest two neutronic analyses on research reactors. First one is design work of a low enriched uranium (LEU) fuel for JRR-4 (Japan Research Reactor No.4). The other is design of a uranium silicon dispersion type (silicide) fuel of JRR-3M (Japan Research Reactor No.3 Modified). Before starting the design work, to estimate the accuracy of computer code and calculation method, experimental data are calculated with several nuclear data libraries. From both cases of calculations, it is confirmed that JENDL-3.2 gives about 1 %Δk/k higher excess reactivity than JENDL-3.1. (author)

  20. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  1. Research activities of the nuclear graphite research group at the University of Manchester, UK

    International Nuclear Information System (INIS)

    Marsden, B.J.; Fok, A.S.L.; Marrow, J.; Mummery, P.

    2004-01-01

    In 2001 the Nuclear Safety Division (NSD) of the UK Health and Safety Executive (HSE) decided to underwrite the Nuclear Graphite Research Group (NGRG) at the University of Manchester, UK with the aim of providing a source of independent research and advice to the HSE (NSD). Since then the group has rapidly expanded to 16 members and attracted considerable funding from the nuclear power industry and the regulator for a wide range of research and consultancy work. It is now also part of the Material Performance Centre within the BNFL Universities Research Alliance. Extensive collaboration exists between the group and other nuclear research institutes, both in the UK and overseas. This paper briefly describes some of the research programmes being carried out by the NGRG at Manchester. (author)

  2. Impact of nuclear research on the future technology of nuclear power

    International Nuclear Information System (INIS)

    Iyengar, P.K.

    1979-01-01

    Policy makers in the developing countries tend to assess the value of any research project by its end-results. As research projects in the field of applied science or technology promise immediate and tangible benefits to the society, high priority is given to such projects in fund allocation by policy makers. On the other hand, basic or ''pure'' science is usually viewed as pursuit of knowledge for its own sake. It has been pointed out that such a view is a mistaken one and there is no real demarcation between basic science and applied science. More often than not, results of research in basic science form the basis of transforming old technologies into better ones and giving rise to new ones. On this background, a case has been emphatically put forward: (1) to identify areas of science, particularly in nuclear science, which may not appear relevant to the immediate problems but look promising in their application and (2) to make investments, even though heavy, for research in such areas. In case of nuclear science, research areas of potential application are high energy accelerators, implosion, fusion reactions, laser fusion, tokamak devices, fusion-fission hybrid reactor systems, breeding of fissile materials from fertile ones by accelerator based neutron sources. Impact of research in these areas on and its relevance to nuclear power generation is indicated and the-state-of-art in these areas in India is described. An appendix lucidly explains generation of nuclear energy from fission and discusses thermal and fast breeder reactors. (M.G.B.)

  3. Inr training programme in nuclear research

    International Nuclear Information System (INIS)

    Cretu, I.; Ionila, M.; Gyongyosi, E.; Dragan, E.; Petra, M.

    2013-01-01

    The field of scientific research goes through rapid changes to which organizations must dinamically and efficiently adapt, which leads to the need to develop a continuous learning process that should be the basis for a long-term operational performance. Thus, human resource management systems and continuous learning should be perfectly correlated/alligned with the organizational strategy and knowledge. The research institutes through the nature of their activity are constantly undergoing a transformation process by exploring new research areas which presumes ensuring competent human resources who have to continuously learn and improve. The «learning organization » concept represents a metaphor rooted in the search of a strategy for promoting the personal development of the individual within an organization through a continuous transformation. Learning is associated with the idea of continuous transformation based on the individual and organizational development. Within « learning organizations » the human development strategy occupies a central role in management strategies. It was learned that organizations which perform excellently depend on the employees committment, especially in the budget constraints environment. For this, the human resources have to be used at maximum capacity but this is possible only with an increased committment of the employee towards the organization. The purpose of this paper is to present the basic training programme for the new employees which is part of the training strategy which carry out activities in the nuclear field of SCN Pitesti. With the majority of the research personnel aged between 45 and 60 years old there is the risk of loosing the knowledge gained in this domain. The expertise gained by experienced experts in the institute nationally and internationally can be exploited through the knowledge transfer to the new employees by organizing training programmes. The knowledge transfer between generations is one of the

  4. Creation of a new-generation research nuclear facility

    International Nuclear Information System (INIS)

    Girchenko, A.A.; Matyushin, A.P.; Kudryavtsev, E.M.; Skopin, V.P.; Shchepelev, R.M.

    2013-01-01

    The SO-2M research nuclear facility operated on the industrial area of the institute. The facility is now removed from service. In view of this circumstance, it is proposed to restore the facility at the new qualitative level, i.e., to create a new-generation research nuclear facility with a very high safety level consisting of a subcritical bench and a proton accelerator (electronuclear facility). Competitive advantages and design features have been discussed and the productive capacity of the research nuclear facility under development has been evaluated [ru

  5. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1992-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  6. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1993-06-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  7. JYT - Publicly financed nuclear waste management research programme

    International Nuclear Information System (INIS)

    Vuori, S.

    1991-07-01

    The nuclear waste management research in Finland is funded both by the state and the utilities (represented in cooperation by the Nuclear Waste Commission of the Finnish power companies). A coordinated research programme (JYT) comprising the publicly financed waste management studies was started in 1989 and continues until 1993. The utilities continue to carry out a parallel research programme according to their main financial and operational responsibility for nuclear waste management. The research programme covers the following main topic areas: (1) Bedrock characteristics, groundwater and repository, (2) Release and transport of radionuclides, (3) Performance and safety assessment of repositories, and (4) Waste management technology and costs

  8. Nuclear safety research collaborations between the US and Russian Federation international nuclear safety centers

    International Nuclear Information System (INIS)

    Hill, D.J; Braun, J.C; Klickman, A.E.; Bugaenko, S.E; Kabanov, L.P; Kraev, A.G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the U.S. Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the U. S. Center at Argonne National Laboratory in October 1995. MINATOM established the Russian Center at the Research and Development Institute of Power Engineering in Moscow in July 1996. In April 1998 the Russian center became an independent, autonomous organization under MINATOM. The goals of the centers are to: cooperate in the development of technologies associated with nuclear safety in nuclear power engineering. be international centers for the collection of information important for safety and technical improvements in nuclear power engineering. maintain a base for fundamental knowledge needed to design nuclear reactors.The strategic approach that is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors

  9. Nuclear instrumentation for research reactors; Instrumentacion nuclear para reactores nucleares de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividades de Reactores y Centrales Nucleares. Sector Instrumentacion y Control

    1997-10-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70`. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs.

  10. Preservation of the first research nuclear reactor in Korea

    International Nuclear Information System (INIS)

    2008-06-01

    This book describes preservation of the first research nuclear reactor in Korea and necessity of building memorial hall, sale of the Institute of Atomic Energy Research in Seoul and dismantlement of the first and the second nuclear reactor, preservation of the first research nuclear reactor and activity about memorial hall of the atomic energy reactor, assignment and leaving the report, and the list of related data.

  11. Feasibility study for the Nuclear Research Centre of the Nuclear Energy Commission

    International Nuclear Information System (INIS)

    1985-01-01

    The feasibility study was carried out in order to evaluate the possibility of building a Nuclear Research Centre in Uruguay, which would support a wide range of nuclear related technological activities. A market research was carried out, of the products to be manufactured at the Nuclear Centre, regarding the size of production. A detailed list of the main products considered is enclosed. The siting study was performed through the analysis of the incidental factors, such as environment, technical scope and socio-ecomonic factors. An engineering study for the main installations was done. The investment and financial sources were also studied

  12. System and Field Devices (non Nuclear) in Agriculture Research in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Shyful Azizi Abdul Rahman; Abdul Rahim Harun

    2015-01-01

    Research to improve productivity on an ongoing basis in the agricultural sector is essential to ensure and guarantee the country's food security. Malaysian Nuclear Agency, agricultural research had begun in 1981 in which the focus of research is related to mutation breeding, irradiation and the use of isotopes in the study of plant nutrition. Although projects agricultural research carried out based on nuclear technology, other information relating to agricultural research such as agronomy, plant physiology, meteorology and ecology, soil characteristics and water is essential to obtain the understanding and research results that are relevant and significant. Data acquisition for other aspects also need a system and a modern and efficient equipment, in accordance with current technological developments. This paper describes the use, function and capabilities of the existing field equipment available in Agrotechnology and Biosciences Division, Malaysian Nuclear Agency in acquiring data related to weather, measurement and control of ground water, soil nutrients assessment and monitoring of plant physiology. The latest technological developments in sensor technology, computer technology and communication is very helpful in getting data more easily, quickly and accurately. Equipment and the data obtained is also likely to be used by researchers in other fields in Nuclear Malaysia. (author)

  13. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  14. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  15. Experiment research on cognition reliability model of nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Bingquan; Fang Xiang

    1999-01-01

    The objective of the paper is to improve the reliability of operation on real nuclear power plant of operators through the simulation research to the cognition reliability of nuclear power plant operators. The research method of the paper is to make use of simulator of nuclear power plant as research platform, to take present international research model of reliability of human cognition based on three-parameter Weibull distribution for reference, to develop and get the research model of Chinese nuclear power plant operators based on two-parameter Weibull distribution. By making use of two-parameter Weibull distribution research model of cognition reliability, the experiments about the cognition reliability of nuclear power plant operators have been done. Compared with the results of other countries such USA and Hungary, the same results can be obtained, which can do good to the safety operation of nuclear power plant

  16. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  17. LAMPF: a nuclear research facility

    International Nuclear Information System (INIS)

    Livingston, M.S.

    1977-09-01

    A description is given of the recently completed Los Alamos Meson Physics Facility (LAMPF) which is now taking its place as one of the major installations in this country for the support of research in nuclear science and its applications. Descriptions are given of the organization of the Laboratory, the Users Group, experimental facilities for research and for applications, and procedures for carrying on research studies

  18. The role of nuclear research centres in the introduction of a nuclear power programme

    International Nuclear Information System (INIS)

    Afgan, N.; Anastasijevic, P.; Kolar, D.; Strohal, P.

    1977-01-01

    Full development of nuclear energy has imposed a new role on nuclear energy centres. Nuclear technology for different reactor concepts is also now in a phase of high development. Several reactor concepts have been developed for industrial use and electric power production. Development of fast reactors is still under way and needs further research efforts. Having in mind these two main guidelines, research programmes in nuclear energy centres should be geared to the development of the activities vital to the implementation of national nuclear energy programmes. In this respect, national nuclear centres should devote their attention to three major tasks. First, to establish a background for the introduction of nuclear energy into the national energy system and to support a national safety system. Secondly, to support the national programme by skilled manpower, to provide the basic training in nuclear technology for future staff of nuclear power stations and to assist the universities in establishing the necessary educational programme in nuclear energy. Thirdly, to follow the development of nuclear energy technology for fast breeder reactor concepts. (author)

  19. Research on nuclear energy within the European Commission Research Framework Programme

    International Nuclear Information System (INIS)

    Forsstroem, H.

    2000-01-01

    The strategic goal of the 5 th EURATOM RTD Framework Programme (FP5) is to help exploit the full potential of nuclear energy in a sustainable manner, by making current technologies even safer and more economical and by exploring promising new concepts. The programme covers nuclear fusion, nuclear fission and radiation protection. Part of the programme on nuclear fission and radiation protection is being implemented through ''indirect actions'', i.e. research co-sponsored (up to 50% of total costs) and co-ordinated by DG RESEARCH of the European Commission (EC) but carried out by external public and private organisations as multi-partner projects. The budget available for these indirect actions during FP5 (1998-2002) is 191 MEuro. The programme covers four different areas: safety of existing reactors, including plant life management, severe accident management and development of evolutionary systems; safety of the fuel cycle, including radioactive waste management and disposal, partitioning and transmutation and decommissioning of nuclear installation; safety of future systems, including new or revisited reactor or fuel cycle concepts; radiation protection and radiological sciences, including both basic radiobiology and radiophysics and issues connected to the application of radiation protection. After the first calls for proposals of FP5, which were evaluated in 1999 about 140 research projects have been selected for funding and is now in the process of starting. In parallel the research projects that were supported in the 4th Framework Programme (1994 - 1998) are coming to an end, and being reported, at the same time as the first thoughts on the 6 t h FP are discussed.An important new component for the future research in Europe is the concept of a European Research Area (ERA). The purpose of ERA is to create better overall framework conditions for research in Europe. Some of the concepts being discussed in this context are networking of centres of excellence, a

  20. Nuclear medicine research: an evaluation of the ERDA program

    International Nuclear Information System (INIS)

    1976-08-01

    Legislation which established the Energy Research and Development Administration (ERDA) January 19, 1975, stipulated that this new agency should be responsible for all activities previously assigned to the Atomic Energy Commission (AEC) and not specifically assigned to other agencies. Such activities included the nuclear medicine research program of the AEC Division of Biomedical and Environmental Research (DBER). To determine whether continuation of this program under the broader ERDA mission of energy-related research was in fact appropriate, a special task force was appointed in January 1975 by Dr. James L. Liverman, the director of DBER. This task force, comprised of established scientists knowledgeable about issues related to nuclear medicine either currently or in the past, was charged specifically to assess the historical impact of the AEC/ERDA nuclear medicine program on the development of nuclear medicine, the current status of this program, and its future role within the structure of ERDA. The specific recommendations, in brief form, are as follows: the federal government should continue to support the medical application of nuclear technology; ERDA should retain primary responsibility for support and management of federal nuclear medicine research programs; and management and emphasis of the ERDA nuclear medicine program require modification in certain areas, which are set forth

  1. Cyberattack analysis through Malaysian Nuclear Agency experience as nuclear research center

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Fauzi Haris; Saaidi Ismail; Nurbahyah Hamdan

    2011-01-01

    As a nuclear research center, Nuclear Malaysia is one of the Critical National Information Infrastructure (CNII) in the country. One of the easiest way to launch a malicious attack is through the online system, whether main web site or online services. Recently, we also under port scanning and hack attempts from various sources. This paper will discuss on analysis based on Nuclear Malaysia experience regarding these attempts which keep arising nowadays. (author)

  2. Activation Analysis and Nuclear Research in Burma

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, R. W.

    1971-07-01

    Research endeavours in the field of Nuclear Sciences in Burma appear to be concentrated in three main Institutions. These are the Chemistry and Physics Departments of the Rangoon Arts & Science University and the Union of Burma Applied Research Institute (UBARI). In view of possible forthcoming developments an expanded research programme, which is to be implemented on the basis of a five year plan, has been drawn up. Research topics included in this programme are predominantly of practical interest and aimed at a contribution by nuclear methods, in particular activation analysis, to the technological and industrial needs of the country.

  3. Nuclear Research Centre of Maamora Morocco

    International Nuclear Information System (INIS)

    Marfak, T.; Boufraqech, A.

    2010-01-01

    Morocco has a long and rich history in nuclear technology which began in the 1950s with the development of nuclear techniques in several important socio-economic fields such as medicine, agriculture and industrial applications. The development of nuclear technology evolved over various organizations, primarily within the Ministry of Education. However, with the formation of the National Centre for Nuclear Energy and Technology (CNESTEN) the development of nuclear technology in Morocco has been reinforced. Morocco is looking forward and actively pursuing alternative sources of energy and has a very strong interest in nuclear power generation and associated technologies such as nuclear desalination. Entry into these new technologies is required since there are no natural sources of energy, Morocco currently imports most of its energy needs from abroad and has a rapidly expanding energy need. In this paper, we present CNESTEN and its main facilities, missions, research programmes, human resources, training, education, national and international cooperation, etc

  4. National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.

    2018-05-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.

  5. Reliability research to nuclear power plant operators based on several methods

    International Nuclear Information System (INIS)

    Fang Xiang; Li Fu; Zhao Bingquan

    2009-01-01

    The paper utilizes many kinds of international reliability research methods, and summarizes the review of reliability research of Chinese nuclear power plant operators in past over ten years based on the simulator platform of nuclear power plant. The paper shows the necessity and feasibility of the research to nuclear power plant operators from many angles including human cognition reliability, fuzzy mathematics model and psychological research model, etc. It will be good to the safe operation of nuclear power plant based on many kinds of research methods to the reliability research of nuclear power plant operators. (authors)

  6. Nuclear platform research and development - 2008-09 highlights

    International Nuclear Information System (INIS)

    Sadhankar, R.R.

    2009-08-01

    The Nuclear Platform R and D Program has lead responsibility for the maintenance and further development of the CANDU intellectual property covering the safety, licensing and design basis for nuclear facilities. The Nuclear Platform R and D Program is part of the Research and Technology Operation (RTO) unit of AECL and is managed through the Research and Development division, which has responsibility for maintaining and enhancing the knowledge and technology base. The RTO is also responsible for managing AECL's nuclear facilities and infrastructure (including laboratories and R and D facilities), the nuclear waste management program and other legacy liabilities (e.g., decommissioning) to demonstrate and grow shareholder value. The Nuclear Platform also provides the technology base from which new products and services can be developed to meet customer needs (including ACR and commercial products and services). (author)

  7. Nuclear Plant Aging Research (NPAR) program plan

    International Nuclear Information System (INIS)

    1991-06-01

    A comprehensive Nuclear Plant Aging Research (NPAR) Program was implemented by the US NRC office of Nuclear Regulatory Research in 1985 to identify and resolve technical safety issues related to the aging of systems, structures, and components in operating nuclear power plants. This is Revision 2 to the Nuclear Plant Aging Research Program Plant. This planes defines the goals of the program the current status of research, and summarizes utilization of the research results in the regulatory process. The plan also describes major milestones and schedules for coordinating research within the agency and with organizations and institutions outside the agency, both domestic and foreign. Currently the NPAR Program comprises seven major areas: (1) hardware-oriented engineering research involving components and structures; (2) system-oriented aging interaction studies; (3) development of technical bases for license renewal rulemaking; (4) determining risk significance of aging phenomena; (5) development of technical bases for resolving generic safety issues; (6) recommendations for field inspection and maintenance addressing aging concerns; (7) and residual lifetime evaluations of major LWR components and structures. The NPAR technical database comprises approximately 100 NUREG/CR reports by June 1991, plus numerous published papers and proceedings that offer regulators and industry important insights to aging characteristics and aging management of safety-related equipment. Regulatory applications include revisions to and development of regulatory guides and technical specifications; support to resolve generic safety issues; development of codes and standards; evaluation of diagnostic techniques; (e.g., for cables and valves); and technical support for development of the license renewal rule. 80 refs., 25 figs., 10 tabs

  8. EARTHQUAKE RESEARCH PROBLEMS OF NUCLEAR POWER GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Housner, G. W.; Hudson, D. E.

    1963-10-15

    Earthquake problems associated with the construction of nuclear power generators require a more extensive and a more precise knowledge of earthquake characteristics and the dynamic behavior of structures than was considered necessary for ordinary buildings. Economic considerations indicate the desirability of additional research on the problems of earthquakes and nuclear reactors. The nature of these earthquake-resistant design problems is discussed and programs of research are recommended. (auth)

  9. Nuclear safety research collaborations between the U.S. and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Hill, D. J.; Braun, J. C.; Klickman, A. E.; Bougaenko, S. E.; Kabonov, L. P.; Kraev, A. G.

    2000-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) have formed International Nuclear Safety Centers to collaborate on nuclear safety research. USDOE established the US Center (ISINSC) at Argonne National Laboratory (ANL) in October 1995. MINATOM established the Russian Center (RINSC) at the Research and Development Institute of Power Engineering (RDIPE) in Moscow in July 1996. In April 1998 the Russian center became a semi-independent, autonomous organization under MINATOM. The goals of the center are to: Cooperate in the development of technologies associated with nuclear safety in nuclear power engineering; Be international centers for the collection of information important for safety and technical improvements in nuclear power engineering; and Maintain a base for fundamental knowledge needed to design nuclear reactors. The strategic approach is being used to accomplish these goals is for the two centers to work together to use the resources and the talents of the scientists associated with the US Center and the Russian Center to do collaborative research to improve the safety of Russian-designed nuclear reactors. The two centers started conducting joint research and development projects in January 1997. Since that time the following ten joint projects have been initiated: INSC databases--web server and computing center; Coupled codes--Neutronic and thermal-hydraulic; Severe accident management for Soviet-designed reactors; Transient management and advanced control; Survey of relevant nuclear safety research facilities in the Russian Federation; Computer code validation for transient analysis of VVER and RBMK reactors; Advanced structural analysis; Development of a nuclear safety research and development plan for MINATOM; Properties and applications of heavy liquid metal coolants; and Material properties measurement and assessment. Currently, there is activity in eight of these projects. Details on each of these

  10. Past and present situation of nuclear research at Forschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    Scholtyssek, W.

    2001-01-01

    The case of Forschungszentrum Karlsruhe is presented which had to transform from a centre devoted to nuclear power R and D to one in which this activity is allocated only 20% of the resources. A large number of operating nuclear power reactors coupled with the Government decision to phase out nuclear power is causing serious concerns regarding the availability of human resources for meeting the long term needs of nuclear facilities. The Energy Division of the research centre currently focuses mainly on safety research and on nuclear fusion. Another Division of the centre has nuclear facility decommissioning as one of the programmes. Independent research in areas of essential need for nuclear facilities must be carried out to maintain know how. (author)

  11. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  12. Nuclear Physics Research Activity In Vietnam During Period From 2005 To 2007

    International Nuclear Information System (INIS)

    Tran Duc Thiep

    2008-01-01

    During the recent years though the difficult conditions as the limit in research budget, the lack in experimental facilities and in manpower, the Nuclear Physics Research in Vietnam still continues to develop and has achieved promising results. This expresses the efforts from the Government as well as from the nuclear physics scientists. In this report we would like to present the Nuclear Physics Research Activity and the achieved results in Vietnam during period from 2005 to 2007 in following directions: Nuclear Reaction and Structure, Nuclear Matter and Nuclear Data, Nuclear Reactor Physics, Nuclear Physics Research based on Accelerators, Physics of Cosmic Rays, Nuclear Physics Related Researches. The report also concerns the problems of manpower, the joining of research institutes in the Country and the expansion of international collaborations in the coming period of the Nuclear Physics Research Activity. The Report was prepared mainly on the basis of the reports that will be presented at the 7th National Conference on Nuclear Science and Technology, held from 30-31 August 2007 in Danang city. (author)

  13. Nuclear research and development in the European community

    International Nuclear Information System (INIS)

    1979-01-01

    Research programmes undertaken by the European Atomic Energy Community and the European Economic Community are discussed. These programmes are carried out both at the Communities own Joint Research Centres (at Ispra, Karlsruhe, Geel and Petten) and also, although centrally managed by the Commission, at research organizations in the Member States. Such research projects include radioactive waste management and storage, decommissioning of nuclear power stations and nuclear fusion. Culham Laboratory is not only the centre for the UKAEA's research into controlled thermonuclear fusion but is also host to the Joint European Torus Joint Undertaking. (U.K.)

  14. Proceedings of national symposium on advanced instrumentation for nuclear research

    International Nuclear Information System (INIS)

    1993-01-01

    The National Symposium on Advanced Instrumentation for Nuclear Research was held in Bombay during January 27-29, 1993 at BARC. Progress of modern nuclear research is closely related to the availability of state of the art instruments and systems. With the advancements in experimental techniques and sophisticated detector developments, the performance specifications have become more stringent. State of the art techniques and diverse applications of sophisticated nuclear instrumentation systems are discussed along with indigenous efforts to meet the specific instrumentation needs of research programs in nuclear sciences. Papers of relevance to nuclear science and technology are indexed separately. (original)

  15. A world class nuclear research reactor complex for South Africa's nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Keshaw, Jeetesh [South African Young Nuclear Professional Society, PO Box 9396, Centurion, 0157 (South Africa)

    2008-07-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  16. The Karlsruhe Nuclear Research Centre is being re-equipped

    International Nuclear Information System (INIS)

    Boehm, H.; Koerting, K.; Huncke, W.; Knapp, W.

    1986-01-01

    The Nuclear Research Centre in Karlsruhe was established over 25 years ago for the express purpose of studying nuclear engineering and its peaceful use. This goal has been achieved - what now. For some time a change has been taking place at the Research Centre: in the direction of man and environmental engineering. 'Bild der Wwissenschaft' has talked to Professor Horst Boehm, the chairman of the Nuclear Centre, about this change and the new areas of research to be concentrated on. (orig.) [de

  17. Nuclear safety research in France

    International Nuclear Information System (INIS)

    Tanguy, P.

    1976-01-01

    As a consequence of the decision of choosing light water reactors (PWR) for the French nuclear plants of the next ten years, a large safety program has been launched referring to three physical barriers against fission product release: the fuel element cladding, main primary system boundary and the containment. The parallel development of French-designed fast breeder reactors involved safety studies on: sodium boiling, accidental fuel behavior, molten fuel-sodium interaction, core accident and protection, and external containment. The rapid development of nuclear energy resulted in a corresponding development of safety studies relating to nuclear fuel facilities. French regulations also required a special program to be developed for the realistic evaluation of the consequences of external agressions, the French cooperation to multinational safety research being also intensive

  18. Nuclear technology in research and everyday life

    International Nuclear Information System (INIS)

    2015-12-01

    The paper.. discusses the impact of nuclear technology in research and everyday life covering the following issues: miniaturization of memory devices, neutron radiography in material science, nuclear reactions in the universe, sterilization of food, medical applies, cosmetics and packaging materials using beta and gamma radiation, neutron imaging for radioactive waste analysis, microbial transformation of uranium (geobacter uraniireducens), nuclear technology knowledge preservation, spacecrafts voyager 1 and 2, future fusion power plants, prompt gamma activation analysis in archeology, radiation protection and radioecology and nuclear medicine (radiotherapy).

  19. Nuclear I and C research and education under UNENE program

    International Nuclear Information System (INIS)

    Jiang, J.

    2006-01-01

    Univ. Network of Excellence in Nuclear Engineering (UNENE) is a not-for-profit organization. It is a unique industry - Univ. alliance in carrying out research to support Canadian nuclear industries. At this time, there are six major research areas in this network. One of them is Control, Instrumentation, and Electrical Systems for Nuclear Power plants. In this paper, a brief description of the structure and research activities of nuclear I and C at the Univ. of Western Ontario is provided. (authors)

  20. Information for nuclear medicine researchers and practitioners

    International Nuclear Information System (INIS)

    Bartlett, W.

    1987-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has a major research program in nuclear medicine; this article describes the information support given to the program by the Lucas Heights Research Laboratories (LHRL) Library. The INIS database is a prime indicator of the information held at LHRL Library, however, other databases also cover nuclear medicine. As part of the Australian library system the ANSTO Library's resources are accessed by subscription. The ANSTO Library staff can also search INIS for a fee for external enquiries but the other databases can presently only be searched for LHRL staff and affiliates. Even so, most major library and information services can provide access to these databases

  1. Graduate nuclear engineering programmes motivate educational and research activities

    International Nuclear Information System (INIS)

    Mavko, B.

    2000-01-01

    Some fifteen years ago the University of Ljubljana, Faculty for Mathematics and Physics together with the national research organisation the J. Stefan jointly established a Graduate programme of Nuclear Engineering. From the onset, the programme focused on nuclear technology, nuclear safety, and reactor physics and environment protection. Over the years this graduate programme has became the focal point of nuclear related, research and educational activities in Slovenia. It has grown into a meeting ground for recognised national and distinguished foreign educators and experienced professionals from the industry. In conjunction with an important national project, supported by the Slovenian government, entitled 'Jung Researcher' it also enhances the knowledge transfer to the next generation. Since the programme was introduced, the interest for this programme has been steadily growing. Accordingly, a number of PhD and MS degrees in NE have been awarded. The graduates of this programme have encountered very good job opportunities in nuclear as well as in non-nuclear sector. (author)

  2. The role of nuclear research centers for the introduction of a nuclear power programme

    International Nuclear Information System (INIS)

    Perovic, B.; Frlec, B.; Kundic, V.

    1977-01-01

    Full development of nuclear energy has imposed a new role on nuclear energy centers. Nuclear technology for different reactor concepts is also now in a phase of high development. Several reactor concepts have been developed for industrial use and electric power production. Development of fast reactors is still under way and needs further research efforts. Having in mind these two main guidelines, research programmes in nuclear energy centers should be geared to the development of the activities vital to the implementation of national nuclear energy programmes. In this respect, national nuclear centers should devote their attention to three major tasks. First, to establish a background for the introduction of nuclear energy into the national energy system and to support a national safety system. Second, to support the national programme by skilled manpower, to provide the basic training in nuclear technology for future staff of nuclear power stations and to assist the universities in establishing the necessary educational programme in nuclear energy. Third, to follow the development of nuclear energy technology for the fast breeder reactor concepts. This paper describes some experience in introducing a new programme to the national nuclear energy centers in Yugoslavia. Recently, Yugoslavia has started building its first nuclear power station. Further introduction of nuclear power stations in the national electric energy system is also planned. This implies the need to reconsider the current nuclear energy programme in the nuclear energy centers. It has been decided to evaluate past experience and further needs for research activities regarding the nuclear power programme. Yugoslavia has three main nuclear energy centers whose activities are devoted to the development of national manpower in the field of nuclear sciences. Besides these three organizations, there are several others whose activities are concentrated on specific tasks in nuclear technology. In the

  3. The Nordic Nuclear Safety Research (NKS) programme. Nordic cooperation on nuclear safety

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kasper G. [Technical Univ. of Denmark, Roskilde (Denmark). National Lab. for Sustainable Energy; Ekstroem, Karoliina [Fortum Power and Heat, Fortum (Finland); Gwynn, Justin P. [Norwegian Radiation Protection Authority, Tromsoe (Norway). Fram Centre; Magnusson, Sigurdur M. [Icelandic Radiation Safety Authority, Reykjavik (Iceland); Physant, Finn C. [NKS-Sekretariatet, Roskilde (Denmark)

    2012-07-01

    The roots of the current Nordic Nuclear Safety Research (NKS) programme can be traced back to the recommendation by the Nordic Council in the late 1950s for the establishment of joint Nordic committees on the issues of nuclear research and radiation protection. One of these joint Nordic committees, the 'Kontaktorgan', paved the way over its 33 years of existence for the future of Nordic cooperation in the field of nuclear safety, through the formation of Nordic groups on reactor safety, nuclear waste and environmental effects of nuclear power in the late 1960s and early 1970s. With an increased focus on developing nuclear power in the wake of the energy crisis on the 1970s, the NKS was established by the Nordic Council to further develop the previous strands of Nordic cooperation in nuclear safety. NKS started its first programme in 1977, funding a series of four year programmes over the next 24 years covering the areas of reactor safety, waste management, emergency preparedness and radioecology. Initially funded directly from the Nordic Council, ownership of NKS was transferred from the political level to the national competent authorities at the beginning of the 1990s. This organizational and funding model has continued to the present day with additional financial support from a number of co-sponsors in Finland, Norway and Sweden. (orig.)

  4. Research and development for the future nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Hideo [Japan International Cooperation Agency, Tokyo (Japan)

    2002-11-01

    This paper consists of nuclear power technologies in Japan, its states of other countries, the today's objects, investment, change of the research and development paradigm, new type of reactor, public research and target research and resource. The new types of reactor investigated in Japan are FBR, 4S, aqueous homogenous reactor, gas reactor and molten-salt reactor. On the basis of correspondence to environment of market and materialization of business model, nuclear power has to cooperate with electric power side. The international joint research should be investigated, because the investment is limited. There are three references such as Report of nuclear power section in the total source energy investigation (2001): http://www.meti.go.jp/report/data/g10627aj.html, OECD/NEA (2002): http://www.neafr/html/ndd/reports/2002/nea3969.html and public research: http://www.iae.or.jp/koubo/koubo.html. (S.Y.)

  5. Research and development for the future nuclear power

    International Nuclear Information System (INIS)

    Morimoto, Hideo

    2002-01-01

    This paper consists of nuclear power technologies in Japan, its states of other countries, the today's objects, investment, change of the research and development paradigm, new type of reactor, public research and target research and resource. The new types of reactor investigated in Japan are FBR, 4S, aqueous homogenous reactor, gas reactor and molten-salt reactor. On the basis of correspondence to environment of market and materialization of business model, nuclear power has to cooperate with electric power side. The international joint research should be investigated, because the investment is limited. There are three references such as Report of nuclear power section in the total source energy investigation (2001): http://www.meti.go.jp/report/data/g10627aj.html, OECD/NEA (2002): http://www.neafr/html/ndd/reports/2002/nea3969.html and public research: http://www.iae.or.jp/koubo/koubo.html. (S.Y.)

  6. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  7. Assessment of benefits of research reactors in less developed countries. A case study of the Dalat reactor in Vietnam

    International Nuclear Information System (INIS)

    Hien, P.D.

    1999-01-01

    The analysis of data on nuclear research reactor (NRR) and socio-economic conditions across countries reveals highly significant relationships of reactor power with GDP and R and D expenditure. The trends revealed can be used as preliminary guides for feasibility assessment of investment in a NRR. Concerning reactor performance, i.e. the number of reactor operation days per year, the covariation with R and D expenditure is most significant, but moderate, implying that there are other controlling factors, e.g. the engagement of country in nuclear power development. Thus, the size of the R and D fund is a most significant indicator to look at in reactor planning. Unfortunately, the lack of adequate R and D funding is a common and chronic problem in less developed countries. As NRR is among the biggest R and D investment in less developed countries, adequate cost benefit assessment is rightfully required. In the case of Vietnam, during 15 years of operation of a 500 kW NRR 2300 Ci of radioisotopes were delivered and 45,000 samples were analysed for multielemental compositions. From a pure financial viewpoint these figures would still be insignificant to justify the investment. However, the impact of the reactor on the technological development seems not to be a matter of pro and cons. The status of reactor utilization and lessons learned are presented and discussed. (author)

  8. Assessment of benefits of research reactors in less developed countries. A case study of the Dalat reactor in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Hien, P.D. [Vietnam Atomic Energy Agency, Hanoi (Viet Nam)

    1999-08-01

    The analysis of data on nuclear research reactor (NRR) and socio-economic conditions across countries reveals highly significant relationships of reactor power with GDP and R and D expenditure. The trends revealed can be used as preliminary guides for feasibility assessment of investment in a NRR. Concerning reactor performance, i.e. the number of reactor operation days per year, the covariation with R and D expenditure is most significant, but moderate, implying that there are other controlling factors, e.g. the engagement of country in nuclear power development. Thus, the size of the R and D fund is a most significant indicator to look at in reactor planning. Unfortunately, the lack of adequate R and D funding is a common and chronic problem in less developed countries. As NRR is among the biggest R and D investment in less developed countries, adequate cost benefit assessment is rightfully required. In the case of Vietnam, during 15 years of operation of a 500 kW NRR 2300 Ci of radioisotopes were delivered and 45,000 samples were analysed for multielemental compositions. From a pure financial viewpoint these figures would still be insignificant to justify the investment. However, the impact of the reactor on the technological development seems not to be a matter of pro and cons. The status of reactor utilization and lessons learned are presented and discussed. (author)

  9. Disposition of recommendations of the National Research Council in the report ''Revitalizing Nuclear Safety Research''

    International Nuclear Information System (INIS)

    1988-06-01

    On December 8, 1986, the Committee on Nuclear Safety Research of the National Research Council submitted its report, ''Revitalizing Nuclear Safety Research,'' to the US Nuclear Regulatory Commission (NRC). The Commission and its staff have carefully reviewed the Committee's report and have extensively examined the planning, implementation, and management of NRC research programs in order to respond most effectively to the Committee's recommendations. This report presents the Commission's view of the Committee's report and describes the actions that are under way in response to its recommendations

  10. Progress of laser nuclear fusion research

    International Nuclear Information System (INIS)

    Shiraga, Hiroyuki

    2017-01-01

    This paper describes the principle and features of nuclear fusion using laser, as well as its basic concepts such as high-temperature / high-density implosion system and fast ignition of fuel. At present, researches aiming at nuclear fusion ignition have been developing. As the current state of researches, this paper reviews the situations of FIREX (Fast Ignition Realization Experiment) project of Japan focusing on direct irradiation implosion and fast ignition system, as well as NIF (National Ignition Facility) project of the U.S. aiming at ignition combustion based on indirect irradiation implosion and central ignition system. In collaboration with the National Institute for Fusion Science, Osaka University started FIREX-1 project in 2003. It built a heating laser LFEX of 10 kJ/1 to 10ps, and started an implosion/heating integration experiment in 2009. Currently, it is developing experiment to achieve heating to 5 keV. At NIF, the self-heating of central sparks via energy of α particles generated in the nuclear fusion reaction has been realized. This paper also overviews R and D issues surrounding the lasers for reactors for use in laser nuclear fusion power generators. (A.O.)

  11. Research reactors spent fuel management in the Nuclear Research Institute Rez

    International Nuclear Information System (INIS)

    Rychecky, J.

    2001-01-01

    In Czech Republic 3 research and testing nuclear reactors are operated at present time, with the biggest one being the Nuclear Research Institute (NRI) reactor LVR-15, operated with maximum power 10 MW. This reactor serves as a radiation source for material testing, producing of ionizing radiation sources, theoretical studies, and, most recently, for boron neutron capture therapy. Another NRI reactor LR-0 is a reactor of zero power used mainly for the studies of WWER 1000 spent fuel criticality. For training of students the reactor called VRABEC (VR-1), operated also with very low power, serves since 1990 at the Faculty of Nuclear Engineering, of Czech Technical University. The similar testing type reactor (SR-0), already decommissioned, was also used since 1974 to 1989 in Skoda, Nuclear Machinery, Plzen. This contribution summarizes the present state of the spent fuel (SF) management of these nuclear reactors. As the SF management is different for very low or zero power reactors and power reactors, the first type will be only briefly discussed, and then the main attention will be devoted to SF management of the NRI experimental reactor LVR-15

  12. Research reactors spent fuel management in the Nuclear Research Institute Rez

    Energy Technology Data Exchange (ETDEWEB)

    Rychecky, J. [Nuclear Research Institute, 25068 Rez (Czech Republic)

    2001-07-01

    In Czech Republic 3 research and testing nuclear reactors are operated at present time, with the biggest one being the Nuclear Research Institute (NRI) reactor LVR-15, operated with maximum power 10 MW. This reactor serves as a radiation source for material testing, producing of ionizing radiation sources, theoretical studies, and, most recently, for boron neutron capture therapy. Another NRI reactor LR-0 is a reactor of zero power used mainly for the studies of WWER 1000 spent fuel criticality. For training of students the reactor called VRABEC (VR-1), operated also with very low power, serves since 1990 at the Faculty of Nuclear Engineering, of Czech Technical University. The similar testing type reactor (SR-0), already decommissioned, was also used since 1974 to 1989 in Skoda, Nuclear Machinery, Plzen. This contribution summarizes the present state of the spent fuel (SF) management of these nuclear reactors. As the SF management is different for very low or zero power reactors and power reactors, the first type will be only briefly discussed, and then the main attention will be devoted to SF management of the NRI experimental reactor LVR-15.

  13. Collective statement on the role of research in a nuclear regulatory context

    International Nuclear Information System (INIS)

    2001-01-01

    In the present context of deregulation and privatisation of the nuclear industry, maintaining an adequate level of nuclear safety research is a primary concern for nuclear regulators, researchers and nuclear power plant licensees, as well as for government officials and the public. While these different stakeholders may have common concerns and interests, there may also be differences. At the international level, it is important to understand that divisions exist both within and among countries, not only in national cultures but also in the way regulators, researchers and licensees view the rote of research. An international gathering under the auspices of the OECD Nuclear Energy Agency (NEA) took place in June 2001, bringing together heads of nuclear regulatory bodies of NEA Member countries, senior regulators, senior executives of research organisations and leaders from the nuclear industry to discuss their perceptions of the rote of research in a nuclear regulatory context. This collective statement represents an international consensus on a rationale for regulatory research for currently operating nuclear reactors and for future reactors, and sets forth specific recommendations to NEA standing technical committees and Member countries. The intended audience is primarily nuclear safety regulators, senior researchers and industry leaders. Government authorities, nuclear power plant operators and the general public may also be interested. (author)

  14. Activities report 1991-1992: Nuclear Research Center of Strasbourg

    International Nuclear Information System (INIS)

    1993-01-01

    This activities report of the Nuclear Research Centre of Strasbourg for the years 1991 and 1992, presents nine research axis: theoretical physics, mechanisms of reactions and nuclear structure, extreme forms of nuclei, exotic nuclei, hot and dense nuclear matter, ultra-relativistic heavy ions, physics of LEP (European Large Electron-Positron storage ring) at 'DELPHI', chemistry and physics of radiations, physics and applications of semi-conductors

  15. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1990-01-01

    Research programs in nuclear theory are discussed in this paper. The topics discussed are: neutron stars and pulsars; transverse momentum distribution; intermittency and other correlations; photon and delepton production; electroweak theory at high temperature; and fractional statistics

  16. Proceedings of second JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Anoda, Yoshinari; Araya, Fumimasa; Yamaguchi, Toshio

    2004-08-01

    The second JAERI-JNC Joint Conference on Nuclear Safety Research was held on February 6, 2004 in Tokyo for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety in the New Organization. A total of 259 people participated in the conference mainly from the nuclear industries and regulatory organizations and the number was much larger than that in the last conference of 188. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Higashi, the Nuclear Safety Commissioner, made a special lecture on the radiation protection from the high-level radioactive waste disposal. Finally, a panel discussion was conducted with the title of ''how to conduct efficiently the nuclear safety research in the New Organization'' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from the regulatory organizations, nuclear industry, JAERI and JNC discussed the subject together with the participants on the floor. The panelists not from JAERI and JNC expressed their views and opinions on how to conduct efficiently the nuclear safety research in the New Organization that were valuable inputs for developing

  17. In-depth research of domestic nuclear patent information

    International Nuclear Information System (INIS)

    Mo Dan; Gao Anna; Li Dongbin; Lu Yanjia; Ren Chao

    2014-01-01

    Based on the domestic patent information, combined with examples, this article makes an in-depth discussion on the domestic nuclear patent information. The author puts forward for the patent information research, the appropriate retrieval of patent documents is the basis,and the correct quantitative statistical analysis of patent documents is the key, and in-depth qualitative analysis of patent documents is the core. It is expected to provide information support and guarantee for the technical innovation and scientific research personnel in the nuclear field through in-depth study of domestic nuclear information. (authors)

  18. Twenty-fifth anniversary of the Juelich Nuclear Research Center

    International Nuclear Information System (INIS)

    Haefele, W.

    1982-01-01

    On December 10, 1981, KFA Juelich celebrated its 25th year of existence; on December 11, 1956, the land parliament of North Rhine Westphalia had decided in favour of the erection of a joint nuclear research facility of the land of North Rhine Westphalia. In contrast to other nuclear research centers, the Juelich centre was to develop and operate large-scale research equipment and infrastructure for joint use by the universities of the land. This cooperation has remained an important characteristic in spite of the independent scientific work of KFA institutes, Federal government majorities, and changes in research fields and tasks. KFA does fundamental research in nuclear and plasma physics, solid state research, medicine, life sciences, and environmental research; other activities are R + D tasks for the HTR reactor and its specific applications as well as energy research in general. (orig.) [de

  19. Nuclear research centres in Pakistan: Status and prospects

    International Nuclear Information System (INIS)

    Akhtar, K.M.; Khan, H.A.

    2001-01-01

    Nuclear research centres (NRCs) played an important role in the introduction of nuclear techniques in their respective countries. These centres are now faced with changes in public and government attitudes, pressures from anti-nuclear groups, competition from non-nuclear technologies, budget cuts and privatization, etc. These NRCs are still making useful contribution in the field of science and technology but need to change their strategy to operate under these pressures. The Pakistan Institute of Nuclear Science and Technology (PINSTECH) has a record of 34 years of successful operation. Salient features and achievements of this Institute are presented as a model for a research centre in a developing country. The elements that are contributed for the success are described. The IAEA and other cooperative agencies can help to overcome the negative factors posed to these NRCs. (author)

  20. Knowledge Management for Nuclear Research and Development Organizations

    International Nuclear Information System (INIS)

    2012-05-01

    This publication elaborates on the role of nuclear knowledge management in a research and development (R and D) context, and on the importance of facilitating innovation and future development of nuclear technologies for nuclear power, its associated fuel cycles and nuclear applications in medicine, industry and agriculture. It highlights aspects including transferring and preserving knowledge, exchanging information, establishing and supporting cooperative networks, and training the next generation of nuclear experts. It concludes with basic concepts, trends and key drivers for nuclear knowledge management to R and D project managers and other workers from nuclear R and D organizations.

  1. Linhchi mushrooms as biological monitors for 137Cs pollution

    International Nuclear Information System (INIS)

    Tran Van, L.; Le Duy, T.

    1991-01-01

    Radioactivity of Linhchi mushrooms (Ganoderma Lucidum) cultivated in laboratory and production conditions has been measured in the Environmental Laboratory of Nuclear Research Institute (NRI), Dalat, Vietnam. The results showed that Linhchi mushroom has a high radioactive concentration of 137 Cs, which is about 20 Bq kg -1 fresh weight. In addition, the radioactive contents of substrata before and after cultivation were insignificant. This suggested that Linhchi mushroom should only accumulate the 137 Cs radioisotope from the atmosphere, directly. Therefore, it should be considered as a bio-indicator for environmental monitoring. (author) 13 refs.; 3 figs.; 2 tabs

  2. Research and exploration on nuclear safety culture construction

    International Nuclear Information System (INIS)

    Zhang Lifang; Zhao Hongtao; Wang Hongwei

    2012-01-01

    This thesis mainly researched the definition, characteristics, development stage and setup procedure concerning nuclear safety culture, based on practice and experiences in Technical Physics Institute of Heilongjian. Academy of Science. The author discussed the importance of nuclear safety culture construction for an enterprise of nuclear technology utilization, and emphasized all the enterprise and individual who engaged in nuclear and radiation safety should acquire good nuclear safety culture quality, and ensure the application and development of the nuclear safety cult.ure construction in the enterprises of nu- clear technological utilization. (authors)

  3. The United Nuclear Research Institute

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    The UNRI, the only common institute of the socialist countries was founded in 1956 in Dubna. The scientists of small countries have the opportunity to take part in fundamental research with very expensive devices which are usually not available for them. There are six research laboratories and one department in the UNRI namely: the theoretical physical laboratory; the laboratory of high energies - there is a synchrophasotron of 1a GeV there; the laboratory of nuclear problems - there is a synchrocyclotron of 680 MeV there; the laboratory of nuclear reactions with the cyclotron U-300 which can accelerate heavy ions; the neutronphysical laboratory with the impulse reactor IBM-30; the laboratory of computation and automatization with two big computers; the department of new acceleration methods. The main results obtained by Hungarian scientist in Dubna are described. (V.N.)

  4. A Strategy for Nuclear Energy Research and Development

    International Nuclear Information System (INIS)

    Bennett, Ralph G.

    2008-01-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: (1) Increase the electricity generated by non-emitting sources to mitigate climate change, (2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, (3) Reduce the transportation sector's dependence on imported fossil fuels, and (4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy's share will require a coordinated research effort-combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R and D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R and D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally

  5. Filtered thermal neutron captured cross sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Pham Ngoc Son; Vuong Huu Tan

    2015-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R ed ) of 420 and neutron flux (Φ th ) of 1.6*10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross sections for nuclide of 51 V, by the activation method relative to the standard reaction 197 Au(n,γ) 198 Au. In addition to the activities of neutron capture cross sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U are introduced in this report. (author)

  6. Processing of LLRW arising from AECL nuclear research centres

    International Nuclear Information System (INIS)

    Buckley, L.P.; Le, V.T.; Beamer, N.V.; Brown, W.P.; Helbrecht, R.A.

    1988-11-01

    Operation of nuclear research reactors and laboratories results in the generation of a wide variety of solid and liquid radioactive wastes. This paper describes practical experience with processing of low-level radioactive wastes at two major nuclear research centres in Canada

  7. Neutrons in basic and applied nuclear research - a review

    International Nuclear Information System (INIS)

    Bhattacharya, Sailajananda

    2013-01-01

    Energetic neutron sources, both white and mono-energetic, are widely used In basic nuclear physics as well as various multidisciplinary research. Precise measurement of various neutron induced reaction cross-sections are crucial for the design and development of new generation of reactors, like accelerator driven subcritical systems, nuclear incinerators, etc. A review of some recent trends in neutron induced basic and applied nuclear research will be presented in this talk. (author)

  8. National Nuclear Research Institute (NNRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The 2015 report of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission (GAEC) lists various programmes undertaken by the Institute under the following headings: Water resources programme, Energy Research programme, Environmental and Health Safety Programme, Digital Instrumentation programme, Nuclear Applications and Materals programme and Radiation Occupational safety programme. Also, included are abstracts of publications and technical reports.

  9. Proceedings of the specialist research meeting on nuclear science information, (5)

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Takeuchi, Takayuki; Mizuma, Mitsuo

    1985-02-01

    The Research Reactor Institute of Kyoto University held two meetings on nuclear science information in the academic year of 1984. The titles of the presented papers are: (1) Information retieval in nuclear safety; (2) Information retrieval in high-pressure gas safety; (3) Construction of nuclear science information data base at the Research Reactor Institute of Kyoto University (II); (4) Nuclear science information data base at the Research Reactor Institute of Kyoto University (KURRIP)*; (5) Nuclear structure and disintegration data base; (6) Evaluated nuclear structure data file and (7) World climate data file. This report contains the full text of these papers. (author)

  10. Research achievements in Bangladesh agriculture using nuclear techniques

    International Nuclear Information System (INIS)

    Sattar, M.A.

    1997-01-01

    Application of isotope and radiation techniques in Bangladesh agriculture has been initiated in 1961 with the establishment of Atomic Energy Agricultural Research Centre, Dhaka under the then Pakistan Atomic Energy Commission. The activity of the centre was strengthened and upgraded to the level of an institute as a constituent organization of Bangladesh Atomic Energy Commission in 1972. It was further reorganized, made an autonomous research organization under the Ministry of Agriculture in 1982 and renamed as Bangladesh Institute of Nuclear Agriculture. The other organizations involved in nuclear agricultural research are Institute of Food and Radiation Biology and Bangladesh Agricultural University. A number of technologies have been developed using nuclear techniques that imparted on agricultural development. Sixteen new crops were developed using physical (200-700 Gy gamma rays) and chemical mutagen (NaN 3 ). Soil fertility and plant nutrition technologies were developed using both stable and radio isotopes. The improved feeding strategies and utilization of locally available low quality feed material (rice straw) were determined using 51 Cr-EDTA and 125 I in order to have better livestock growth and reproduction ability. Several constraints related to nuclear research were identified. Increased government commitment and international cooperation are of the utmost importance for effective utilization of the benefits of nuclear technology and to face the increasing demand for food for the ever increasing population in years to come

  11. Status of nuclear regulatory research and its future perspectives

    International Nuclear Information System (INIS)

    Lee, J. I.; Kim, W. S.; Kim, M. W.

    1999-01-01

    A comprehensive investigation of the regulatory research comprising an examination of the research system, its areas and contents, and the goals and financial resources is undertaken. As a result of this study, the future direction of regulatory research and its implementation strategies are suggested to resolve the current issues emerging from this examination. The major issues identified in the study are; (a) an insufficient investment in nuclear regulatory and safety research, (b) an interfacial discrepancy between similar research areas, and (c) a limitation of utilizing research results. To resolve these issues, several measures are proposed : (1) developing a lead project to establish a comprehensive infrastructure for enhancing research cooperation between nuclear organizations including institutes, industry, and universities, with an aim to improve cooperation between projects and to strengthen overall coordination functions among research projects, (2) introducing a certification system on research outcome to promote the proliferation of both research results themselves and their application with a view to enhancing the research quality, (3) strengthening the cooperative system to promote the international cooperative research, and (4) digitalizing all documents and materials relevant to safety and regulatory research to establish KIMS (knowledge and information based management system). It is expected that the aforementioned measures suggested in this study will enhance the efficiency and effectiveness of both nuclear regulatory and safety research, if they are implemented after deliberating with the government and related nuclear industries in the near future

  12. Applications of nuclear techniques and research 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The application of nuclear techniques, i.e. those techniques where use is made of isotopes and radiation, continues to contribute to progress in science, technology, agriculture, industry and medicine. Nuclear applications found their way into the IAEA's activities from the very beginning, and their promotion constitutes today a substantial fraction of the IAEA's Technical Co-operation and Research Contract Programmes. The 1990 selection is opened by a review of the role and function of the IAEA's Research Contract Programme, which is one of the Agency's most effective tools for promoting and developing nuclear applications. Applications in agriculture are covered in two articles dealing respectively with issues affecting the acceptance of food irradiation by governments, the food industry and consumers and with the use of radiation to induce plant mutation, a practical tool available to plant breeders in their effort to develop better quality crops. The following article deals with a typical nuclear application in medicine, i.e. the use of radionuclides in the diagnosis of lung diseases and in investigations related to the respiratory function. The use of environmental isotopes to assess the energy potential of geothermal fields is the next subject, a good example of nuclear methods applied to the evaluation of natural resources. The 1990 review concludes with a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme

  13. Revisiting the nuclear age : state of the art research in nuclear history

    NARCIS (Netherlands)

    Kalmbach, K.

    This article provides an overview of recent research developments in the field of nuclear history, focusing on Western European and Northern American research perspectives and topics. The analysis of these developments reveals under-researched areas which merit more focus from humanities and social

  14. Da Lat Nuclear Research Reactor. Role and perspective in the development of radioisotope and nuclear technique application in Vietnam

    International Nuclear Information System (INIS)

    Tran Ha Anh; Tran Khac An; Ngo Phu Khang; Nguyen Mong Sinh

    1995-01-01

    The Da Lat Nuclear Research Reactor is playing a central role in the development of both the Nuclear Research Institute and nuclear application in our country. Thanks to this main scientific tool, the Nuclear Research Institute nearly 10 years after the completion of its renovation from the previous American-made TRIGA MARK 2 reactor is being able to implement numerous scientific and technological research projects and to develop significant applications of radioisotopes and various nuclear techniques. A general overview of the research and development activities of the Institute based on the Da Lat Nuclear Research Reactor is given as well as those aiming at ensuring its safe, reliable and efficient operation and at enlarging the perspectives of its utilisation in the future. (authors). 5 refs., 1 fig., 1 tab

  15. Nuclear Safety Research Department annual report 2000

    DEFF Research Database (Denmark)

    Majborn, B.; Nielsen, Sven Poul; Damkjær, A.

    2001-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addtion the department...

  16. Nuclear Safety Research Department annual report 2001

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Nielsen, Sven Poul

    2002-01-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2001. The department's research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and "Radioecology andTracer Studies". In addition the department...

  17. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  18. On-going research projects at Ankara Nuclear research center in agriculture and animal science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text:The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  19. On-going research projects at Ankara Nuclear Research Center in Agriculture and Animal Science

    International Nuclear Information System (INIS)

    Tukenmez, I.

    2004-01-01

    Full text: The research and development activities of Ankara Nuclear Research Center in Agriculture and Animal Science(ANRCAA) are concentrated on the contribution of atomic energy to peace by the use of nuclear and related techniques in food, agriculture and animal science. Nuclear techniques are used in the above fields in two ways: in vitro or in vivo radio tracing the substances and processes of biological importance, and irradiation of biological materials for preservation and quality modification. Research projects are carried out by interdisciplinary studies with well equipped laboratories at the Center. The projects in progress conducted by the Center comprises nuclear-aided researches in soil fertility, plant nutrition, plant protection, improvement of field crops, improvement of horticultural plants and forest trees by mutation breeding, in vitro culture technique with mutagen treatments, use of phosphogypsum in soil amelioration, sterilization of medical supplies, wastewater treatment, animal nutrition, animal health and productivity and accreditation. The on-going projects with the above subjects will be summarized for possible collaborations

  20. Proceedings of third JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Oikawa, Tetsukuni; Araya, Fumimasa; Suzuki, Tsugio

    2006-03-01

    The present report is the proceedings of the third JAERI-JNC joint conference on nuclear safety research held on July 29, 2005 in Tokyo before integration of JAERI and JNC to JAEA. The conference was held for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety research in the new organization. A total of 234 people participated in the conference mainly from the nuclear industries and regulatory organizations. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Suzuki, deputy chairperson of NSC, made a special lecture on recent trends in nuclear safety regulation and expectation for the new organization. Finally, a panel discussion was conducted with the title of 'how to conduct efficiently the nuclear safety research in the new organization' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from JAERI and JNC presented and discussed the subject together with the participants on the floor. Through vigorous exchange of views in the panel discussion and descriptions on the questionnaires, it was obviously expressed that expectation to the safety research of the new

  1. Bolivia. The new nuclear research center in El Alto

    International Nuclear Information System (INIS)

    Nogarin, Mauro

    2016-01-01

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  2. Bolivia. The new nuclear research center in El Alto

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2016-05-15

    Research reactors in Latin America have become a priority in public policy in the last decade. Bolivia wants to become the 8th country to implement peaceful nuclear technology in this area with the new Center for Research and Development in the Nuclear Technology. The Center will be the most advanced in Latin America. It will provide for a wide use of radiation technologies in agriculture, medicine, and industry. After several negotiations Bolivia and the Russian Federation signed the Intergovernmental Agreement on cooperation in the peaceful use of atomic energy and the construction of the Nuclear Research and Technology Center.

  3. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  4. Quality assurance activities in nuclear research and development

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mitsutoshi; Ishikawa, Hirohisa [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-03-01

    A case study into the quality management system of the Associated Nuclear Research Association has been performed with reference to the fast breeder reactor (FBR) cycle and high-level waste management (HLWM) research fields. The Japan Nuclear Cycle Development Institute's major research and development projects are in these fields. Progress in the quality management system for research subjects has been compared and analyzed by comparing with both the development level of individual projects and the external environment. Computer-assisted performance assessment systems analysis (CAPASA) in high-level waste management is described as a practical example. (author)

  5. CESAR robotics and intelligent systems research for nuclear environments

    International Nuclear Information System (INIS)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developing highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs

  6. Brief overview of American Nuclear Society's research reactor standards

    International Nuclear Information System (INIS)

    Richards, Wade J.

    1984-01-01

    The American Nuclear Society (ANS) established the research reactor standards group in 1968. The standards group, known as ANS-15, was established for the purpose of developing, preparing, and maintaining standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training

  7. Nuclear research in Strasbourg. The first ten years 1941-1951

    International Nuclear Information System (INIS)

    Casel, R.

    1993-01-01

    The story of the first decade of the nuclear research in Strasbourg includes three different periods. During the war there is the installation as part of the Reichsuniversitaet Strassburg (november 1941-november 1944) of one 'Medical Research Institute' the physics department of which is equipped with a very important equipment for the period, particularly a connection generator of 1.5 MeV. For the Liberation, the civil hospices and the Strasbourg Medicine Faculty decide to create from the old german installations an artificial radioisotope production laboratory: the 'Strasbourg Nuclear Research Institute' (N.R.I) which was born in 1947 as interfaculty Institute (Medicine, Science, Pharmacy). But the N.R.I doesn't make for the applied research but for the fundamental research. To the nuclear research institute will be added in 1950 the corpuscular physics and the nuclear chemistry laboratories. 163 refs., 20 figs

  8. Voluntary research results for five years along the master plan on nuclear safety research. FY 2001 - 2005

    International Nuclear Information System (INIS)

    Sato, Yoshinori

    2006-05-01

    Safety Research has been conducted from FY 2001 to FY 2005 according to the Master Plan on Nuclear Safety Research (FY 2001-2005) in Japan Atomic Energy Agency which took over former Japan Nuclear Cycle Development Institute. This report shows the voluntary research results for five years conducted from FY 2001 to FY 2005 according to the Master Plan on Nuclear Safety Research (FY 2001-2005). (author)

  9. Euratom research and training in nuclear reactor safety: Towards European research and the higher education area

    International Nuclear Information System (INIS)

    Goethem, G. van

    2004-01-01

    In this invited lecture, research and training in nuclear fission are looked at from a European perspective with emphasis on the three success factors of any European policy, namely: common needs, vision and instruments, that ought to be strongly shared amongst the stakeholders across the Member States concerned. As a result, the following questions are addressed: What is driving the current EU trend towards more research, more education and more training, in general? Regarding nuclear fission, in particular, who are the end-users of Euratom 'research and training' and what are their expectations from EU programmes? Do all stakeholders share the same vision about European research and training in nuclear fission? What are the instruments proposed by the European Commission (EC) to conduct joint research programmes of common interest for the nuclear fission community? In conclusion, amongst the stakeholders in Europe, there seems to be a wide consensus about common needs and instruments, but not about a common vision regarding nuclear. (author)

  10. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  11. Joint nuclear safety research projects between the US and Russian Federation International Nuclear Safety Centers

    International Nuclear Information System (INIS)

    Bougaenko, S.E.; Kraev, A.E.; Hill, D.L.; Braun, J.C.; Klickman, A.E.

    1998-01-01

    The Russian Federation Ministry for Atomic Energy (MINATOM) and the US Department of Energy (USDOE) formed international Nuclear Safety Centers in October 1995 and July 1996, respectively, to collaborate on nuclear safety research. Since January 1997, the two centers have initiated the following nine joint research projects: (1) INSC web servers and databases; (2) Material properties measurement and assessment; (3) Coupled codes: Neutronic, thermal-hydraulic, mechanical and other; (4) Severe accident management for Soviet-designed reactors; (5) Transient management and advanced control; (6) Survey of relevant nuclear safety research facilities in the Russian Federation; (8) Advanced structural analysis; and (9) Development of a nuclear safety research and development plan for MINATOM. The joint projects were selected on the basis of recommendations from two groups of experts convened by NEA and from evaluations of safety impact, cost, and deployment potential. The paper summarizes the projects, including the long-term goals, the implementing strategy and some recent accomplishments for each project

  12. The Institute for Nuclear Research and Nuclear Energy - present state and future prospects

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy is the biggest one within Bulgarian Academy of Sciences and it is a leading complex center for research and application of the nuclear physics in Bulgaria. The year 2003 was the first for the functioning of the new organization structure of INRNE consisting of 26 laboratories and 4 scientific experimental bases joined according their thematic in 7 scientific directions governed by the correspondent Expert Councils and Specialised Seminars. The scientific staff of the Institute has been worked on about 104 problems during the 2003 mainly on our traditional scientific areas, in particular, in the field of: theory of the elementary particles, field theory, atomic nuclei and quantum phenomena; experimental physics of the elementary particles, nuclear reactions, structure of atomic nuclei, cosmic rays and gamma-astrophysics at ultra high energies; neutron interactions and cross sections, physics of the fission; reactor physics, nuclear energy and nuclear safety and security ect. Now the results are already present and, as can been seen, almost half of the developments are connected with the problems of scientific support of the national nuclear energy production, radioactive waste, monitoring and management of the environment. With few exceptions, all these tasks are financially supported by national, foreign and international organizations. The fundamental end applied research results for 2003 have been accepted for publication or published in more than 300 articles in journals and proceeding of many international conferences. Large amount of these results has been obtained in close collaboration with international and foreign research centers, universities and institutions. Essential progress was obtained by the modernization of the scientific experimental bases of INRNE. The technical design project for the reconstruction of the old research reactor IRT 2000 in the new IRT 200 was successfully finished. The

  13. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  14. Public sector's research programme on nuclear waste management

    International Nuclear Information System (INIS)

    Vuori, S.

    2000-06-01

    According to the Finnish nuclear energy legislation, each producer of nuclear waste is responsible for the safe handling, management and disposal of the waste as well as for the arising costs. Authorities supervise and control the implementation of the national waste management programme and set the necessary safety and other requirements. In these tasks the authorities are supported by a research programme on nuclear waste management that is independent of the implementing organisations and power companies. The main objective of the research programme has been to provide the authorities with information and research results relevant for the safety of nuclear waste management. The main emphasis in this research programme has been devoted to the final disposal of spent fuel. The whole area of the research programme has been subdivided into the following main topic areas: (1) Behaviour of bedrock (2) Geohydrology and geochemistry, (3) Release of radionuclides from repository and subsequent transport in bedrock, (4) Engineered safety barriers of the repository, system, (5) Performance and safety assessment of spent fuel disposal facilities, (6) Waste management technology and costs (7) Evaluation of the contents and scope of and observation of the realisation of the environmental impact assessment procedure for the siting of spent nuclear fuel disposal facility, and research on other societal and sociopolitical issues, and (8) Public information, attitude, and image issues for waste management facilities. The research programme has generated considerably increased information on the behaviour of the natural and technical release barriers of the disposal system and thereby contributed to building of confidence on the long-term safety of geological disposal of spent fuel. Furthermore, increased confidence among the public in the affected candidate municipalities has probably been achieved by the complementary studies conducted within the research programme on topics

  15. An outcome of nuclear safety research in JAERI. Predominance of research

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kawashima, Kei; Ito, Keishiro; Katsuki, Chisato

    2010-02-01

    Bibliometric study by means of research papers revealed the followings; (1) Nuclear Safety Research (NSR) performed in Japan is the 2nd highest in the world followed by USA. The share of JAERI for safety paper publication is about 25% in Japan (2) During past 25 years, JAERI is predominant at 39 safety fields out of 97, that is, 40% to the total. This is the fact revealed from comparison of published number of research papers with those of other organizations. (3) JAERI is recently changing its stress point from reactor-oriented accidents to the down stream of nuclear fuel cycling. There existed impact of TMI-2 accident on NSR-JAERI, especially in the field of thermal hydraulics, LOCA, severe accident and risk analysis. (author)

  16. Overview of the Nuclear Regulatory Commission's safety research program

    International Nuclear Information System (INIS)

    Beckjord, E.S.

    1989-01-01

    Accomplishments during 1988 of the Office of Nuclear Regulatory Research and the program of safety research are highlighted, and plans, expections, and needs of the next year and beyond are discussed. Topics discussed include: ECCS Appendix K Revision; pressurized thermal shock; NUREG-1150, or the PRA method performance document; resolution of station blackout; severe accident integration plan; nuclear safety research review committee; and program management

  17. Bordeaux Gradignan Nuclear Research Centre - CENBG - 2003-2004 Activity report

    International Nuclear Information System (INIS)

    2005-01-01

    The Bordeaux Gradignan Nuclear Research Centre (CENBG) is a joint research unit of the CNRS/IN2P3 and the University Bordeaux 1 'Science and Technology'. The laboratory is composed of permanent researchers, permanent engineers and technicians and PhD students, post-docs and visitors. The scientific program covers a broad range of topics in nuclear physics, particle physics, Astro-particle physics as well as applications of subatomic physics to different multidisciplinary fields. The main research subjects are: exotic nuclei far from the valley of beta stability and rare radioactive decays; neutrino physics (type and mass of the neutrino) and double beta decay; high energy gamma ray astronomy; innovative approaches to nuclear power generation and transmutation of nuclear waste; laser induced nuclear excitations; the effects of various environmental exposures studied via macro, micro or nano-ion beams using the new platform AIFIRA; and finally theoretical studies of nuclear and hadronic matter. All these activities take place within strong national and international collaborations involving the academic world and enabling the selection and training of high-quality students and post-doctoral researchers. To promote dissemination in the regional and national network, within the technologies developed at the laboratory in the domain of characterization with beams of ions or neutrons, there exists a transfer unit ARCANE which works through contracts. This document is the 2003-2004 Activity report of CNBG, content: 1 - Foreword; 2 - Research activities (Astro-particle, downstream of the fuel cycle and nuclear energy; laser nuclear excitations; physics-biology interface; neutrino and low radioactivities; exotic nuclei; theoretical physics); 3 - Services; 4 - Platform and cell facilities; 5 - other actions; 6 - scientific production; 7 - personnel

  18. Research achievements in Bangladesh agriculture using nuclear techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sattar, M.A. [Bangladesh Institute of Nuclear Agriculture, Mymensingh, (Bangladesh)

    1997-10-01

    Application of isotope and radiation techniques in Bangladesh agriculture has been initiated in 1961 with the establishment of Atomic Energy Agricultural Research Centre, Dhaka under the then Pakistan Atomic Energy Commission. The activity of the centre was strengthened and upgraded to the level of an institute as a constituent organization of Bangladesh Atomic Energy Commission in 1972. It was further reorganized, made an autonomous research organization under the Ministry of Agriculture in 1982 and renamed as Bangladesh Institute of Nuclear Agriculture. The other organizations involved in nuclear agricultural research are Institute of Food and Radiation Biology and Bangladesh Agricultural University. A number of technologies have been developed using nuclear techniques that imparted on agricultural development. Sixteen new crops were developed using physical (200-700 Gy gamma rays) and chemical mutagen (NaN{sub 3}). Soil fertility and plant nutrition technologies were developed using both stable and radio isotopes. The improved feeding strategies and utilization of locally available low quality feed material (rice straw) were determined using {sup 51}Cr-EDTA and {sup 125}I in order to have better livestock growth and reproduction ability. Several constraints related to nuclear research were identified. Increased government commitment and international cooperation are of the utmost importance for effective utilization of the benefits of nuclear technology and to face the increasing demand for food for the ever increasing population in years to come 32 refs., 1 tab.

  19. Karlsruhe Nuclear Research Center. Research and development programme 1988

    International Nuclear Information System (INIS)

    1987-01-01

    A general survey of planned activities and developmental trends of the nuclear research centre is followed by a more detailed account of projects and goals. The various institutes and laboratories are presented together with their specific task schedules. (UA) [de

  20. Managing nuclear safety research facilities and capabilities in a changing nuclear industry: the contribution of the OECD/NEA

    International Nuclear Information System (INIS)

    Royen, J.

    2000-01-01

    Although the safety level of nuclear power plants in OECD countries is very satisfactory and the technologies basic to the resolution of safety issues have advanced considerably, continued nuclear safety research work is necessary to address many of the residual concerns, and it remains an important element in ensuring the safe operation of nuclear power plants. However, the funding levels of national Government safety research programmes have been reduced over recent years. There is concern about the ability of OECD Member countries to sustain an adequate level of nuclear safety research capability. The OECD/NEA has a key role to play in organizing reflection and exchange of information on the most efficient use of available technical resources, and in the international management of nuclear safety research facilities and capabilities in a changing nuclear industry. Possible initiatives are mentioned in the paper. (author)

  1. Nuclear safety research in HGF 2011; Nukleare Energieforschung 2011. Forschungszentren. Status und Entwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Tromm, Walter [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Programm NUKLEAR

    2012-06-15

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities

  2. Progress report of Cekmece Nuclear Research and Training Center for 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Presented are the research works carried out in 1981 in Energy, Radiological Safety, Radioisotope, Application of Nuclear Techniques and Basic Research of Cekmece Nuclear Research and Training Center. (author)

  3. A plan for research by the atmospheric research section in support of Ontario Hydro's nuclear activities

    International Nuclear Information System (INIS)

    Ogram, G.L.; Melo, O.T.

    1984-01-01

    A plan for nuclear studies by the Atmospheric Research Section is presented. The need for research is discussed and research objectives are established. Recommended research activities include the study of fundamental processes governing the fate of emissions released to the atmosphere by Hydro's nuclear facilities and the development of improved transport models describing the fate of these emissions. A Sectional goal of providing technical expertise in the atmospheric sciences in support of Ontario Hydro's present and future nuclear activities is proposed. The plan covers a five-year time frame (1984-1988)

  4. Nuclear Structure Research at TRIUMF

    Science.gov (United States)

    Garrett, P. E.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Becker, J. A.; Boston, A. J.; Chakrawarthy, R. S.; Cline, D.; Cooper, R. J.; Churchman, R.; Cross, D.; Dashdorj, D.; Demand, G. A.; Dimmock, M. R.; Drake, T. E.; Finlay, P.; Gagon-Miosan, F.; Gallant, A. T.; Green, K. L.; Grint, A. N.; Grinyer, G. F.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Kanungo, R.; Kulp, W. D.; Leach, K. G.; Lee, G.; Leslie, J. R.; Martin, J.-P.; Mattoon, C.; Mills, W. J.; Morton, A. C.; Mythili, S.; Nelson, L.; Newman, O.; Nolan, P. J.; Padilla-Rodal, E.; Pearson, C. J.; Phillips, A. A.; Porter-Peden, M.; Ressler, J. J.; Roy, R.; Ruiz, C.; Savajols, H.; Sarazin, F.; Schumaker, M. A.; Scraggs, D. P.; Scraggs, H. C.; Strange, M. D.; Svensson, C. E.; Waddington, J. C.; Wan, J. M.; Whitbeck, A.; Williams, S. J.; Wong, J.; Wood, J. L.; Wu, C. Y.; Zganjar, E. F.

    2007-04-01

    The radioactive beam laboratory at TRIUMF is currently the highest power ISOL facility in the world. Taking advantage of the high-intensity beams, major programs in nuclear astrophysics, nuclear structure, and weak interaction studies have begun. The low-energy area, ISAC-I, is capable of delivering beams up to mass 30 at approx 1.7 MeV/u or 60 keV up to the mass of the primary target, whereas ISAC-II will ultimately provide beams up to mass 150 and approx 6.5 MeV/u. Major gamma -ray spectrometers for nuclear structure research consist of the 8pi spectrometer at ISAC-I, and the TIGRESS spectrometer now being constructed for ISAC-II. Results from recent experiments investigating the beta -decay of nuclei near N=90 and Coulomb excitation of 20,21Na are presented that highlight the capabilities of the spectrometers.

  5. PSI nuclear energy research progress report 1989

    International Nuclear Information System (INIS)

    Alder, H.P.; Wiedemann, K.H.

    1989-01-01

    This report gives on overview on the PSI's nuclear energy research in the field of reactor physics and systems, thermal-hydraulics, materials technology and nuclear processes, waste management program and LWR safety program. It contains also papers dealing with reactor safety, high temperature materials, decontamination, radioactive waste management and materials testing. 74 figs., 20 tabs., 256 refs

  6. Thermal-hydraulics associated with nuclear education and research

    International Nuclear Information System (INIS)

    Yokobori, Seiichi

    2011-01-01

    This article was the rerecording of the author's lecture at the fourth 'Future Energy Forum' (aiming at improving nuclear safety and economics) held in December 2010. The lecture focused on (1) importance of thermal hydraulics associated with nuclear education and research (critical heat flux, two-phase flow and multiphase flow), (2) emerging trend of maintenance engineering (fluid induced vibration, flow accelerated corrosion and stress corrosion cracks), (3) fostering sensible nuclear engineer with common engineering sense, (4) balanced curriculum of basics and advanced research, (5) computerized simulation and fluid mechanics, (6) crucial point of thermo hydraulics education (viscosity, flux, steam and power generation), (7) safety education and human resources development (indispensable technologies such as defence in depth) and (8) topics of thermo hydraulics research (vortices of curbed pipes and visualization of two-phase flow). (T. Tanaka)

  7. Annual report of Nuclear Science Research Institute, JFY2006

    International Nuclear Information System (INIS)

    2008-03-01

    Nuclear Science Research Institute (NSRI) is composed of Planning and Coordination Office and seven departments such as Department of Operational Safety Administration, Department of Radiation Protection, Department of Research Reactor and Tandem Accelerator, Department of Hot Laboratories and Facilities, Department of Criticality and Fuel Cycle Research Facilities, Department of Decommissioning and Waste Management, and Engineering Services Department. This annual report of JFY2006 summarizes the activities of NSRI, the R and D activities of the Research and Development Directorates and human resources development at site, and is expected to be referred to and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to 'Middle-term Plan' successfully and effectively. In chapter 1, outline of JFY2006 activities of NSRI is described. In chapter 2, the following activities made by the departments in NSRI are summarized, i.e., (1) operation and maintenance of research reactors (JRR-3, JRR-4, NSRR), criticality assemblies (STACY, TRACY, FCA, TCA), hot laboratories (BECKY, Reactor Fuel Examination Facility, WASTEF, Research Laboratory 4, Plutonium Research Laboratory 1, Tokai Hot Laboratory, etc), and large-scale facilities (Tandem accelerator, LSTF, THYNC, TPTF, etc), and (2) safety management, radiation protection, management of radioactive wastes, decommissioning of nuclear facilities, engineering services, utilities and maintenance, etc, all of which are indispensable for the stable and safe operation and utilization of the research facilities. The technical developments for the advancement of the related technologies are also summarized. In chapter 3, the R and D and human resources development activities are described including the topics of the research works and projects performed by the Research and Development Directorates at site, such as

  8. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  9. Progress of research and development of nuclear fusion and development of large nuclear fusion device technology

    International Nuclear Information System (INIS)

    1994-01-01

    In the last several years, the results of tokamak experiments were conspicuous, and the progress of plasma confinement performance, transport mechanism, divertors and impurities, helium transport and exhaust, electric current drive, magnetic field ripple effect and high speed particle transport and DT experiment are reported. The other confinement methods than tokamak, the related theories and reactor technology are described. The conceptual design of ITER was carried out by the cooperation of Japan, USA, EC and the former USSR. The projects of developing nuclear fusion in various countries, the design and the required research and development of ITER, the reconstruction and the required research and development of JT-60, JET and TFTR, the design and the required research and development of large helical device, the state of research and development of laser nuclear fusion and inversion magnetic field pinch nuclear fusion, the activities and roles of industrial circles in large nuclear fusion device technology, and the long term perspective of the technical development of nuclear fusion are described. (K.I.)

  10. Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within First Phase

    International Nuclear Information System (INIS)

    Nguyen Xuan Hai; Nguyen Nhi Dien; Pham Dinh Khang; Pham Ngoc Tuan; Tuong Thi Thu Huong

    2016-01-01

    This report presents results of a research project “Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within first phase”. In the frameworks of the project, a guiding document on 27 Ortec’s experiments was translated into Vietnamese. Several equipment are used in the experiments such as neutron howitzer, gamma counter, multi-channel analyzer and alpha-gamma coincidence spectroscopy were designed and fabricated. These products contributed to improving the ability of research and training of Training and Education Center, Nuclear Research Institute (NRI). (author)

  11. Nuclear Research and Development in the AEC Era

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    2014-01-01

    In 2015, South East Asian Countris are entering into the social, economic and security partnership. Nuclear Research and Development undoubtedly has important roles in all three pillars. Nuclear applications that are being realised in the region ranges from energy, mrdical to agricultural application.In this new era of cooperation, we are seeking for technologies that lead to solution to improve our ways of living. As all other research and development nuclear research has been carried out in all countries in the region. However, it does have its critiques on safety issues based on people capability in the region. In order to make progress in research and development, human resource development is the key fundamental to its sucess. An experience of regional collaboration in developing pulsed neutron souurce is presented as an example. The research had been revived though collaoration of different research laboratories within ASEAN countries with support of Asian African Assosiation for Plasma Training (AAAPT). The 'low cost research theme' has fundamentally set up a platform for more future advanced research for fusion and for local industrial applications. It also increases experimental and theoretical research awareness among new generations that could be carried out in local laboratories. A device such as UNU-ICPT Plasma Focus has been explored, and it has been built, studied; both theoretical and experimental; and used for many different kind of applications.

  12. AEC sets five year nuclear safety research program

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The research by the government for the establishment of means of judging the adequacy of safety measures incorporated in nuclear facilities, including setting safety standards and collecting documents of general criteria, and the research by the industry on safety measures and the promotion of safety-related technique are stated in the five year program for 1976-80 reported by subcommittees, Atomic Energy Commission (AEC). Four considerations on the research items incorporated in the program are 1) technical programs relating to the safety of nuclear facilities and the necessary criteria, 2) priority of the relevant items decided according to their impact on circumstances, urgency, the defence-indepth concept and so on, 3) consideration of all relevant data and documents collected, and research subjects necessary to quantify safety measurement, and 4) consideration of technological actualization, the capability of each research body, the budget and the time schedule. In addition, seven major themes decided on the basis of these points are 1) reactivity-initiated accident, 2) LOCA, 3) fuel behavior, 4) structural safety, 5) radioactive release, 6) statistical method of safety evaluation, and 7) seismic characteristics. The committee has deliberated the appropriate division of researches between the government and the industry. A set of tables showing the nuclear safety research plan for 1976-80 are attached. (Iwakiri, K.)

  13. Nuclear material control at IEA-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    1988-01-01

    The control measurements system and verification of physical inventory for fuel elements used in the operation of IEA-R1 nuclear research reactor are described. The computer code used for burn-up calculation are shown. (E.G.) [pt

  14. US Department of Energy nuclear energy research initiative

    International Nuclear Information System (INIS)

    Ross, F.

    2001-01-01

    This paper describes the Department of Energy's (DOE's) Nuclear Energy Research Initiative (NERI) that has been established to address and help overcome the principal technical and scientific issues affecting the future use of nuclear energy in the United States. (author)

  15. Bordeaux Gradignan Nuclear Research Centre - CENBG - 2009-2012 Activity report

    International Nuclear Information System (INIS)

    2013-01-01

    The Bordeaux Gradignan Nuclear Research Centre (CENBG) is a joint research unit of the CNRS/IN2P3 and the University Bordeaux 1 'Science and Technology'. The laboratory is composed of permanent researchers, permanent engineers and technicians and PhD students, post-docs and visitors. The scientific program covers a broad range of topics in nuclear physics, particle physics, Astro-particle physics as well as applications of subatomic physics to different multidisciplinary fields. The main research subjects are: exotic nuclei far from the valley of beta stability and rare radioactive decays; neutrino physics (type and mass of the neutrino) and double beta decay; high energy gamma ray astronomy; innovative approaches to nuclear power generation and transmutation of nuclear waste; laser induced nuclear excitations; the effects of various environmental exposures studied via macro, micro or nano-ion beams using the new platform AIFIRA; and finally theoretical studies of nuclear and hadronic matter. All these activities take place within strong national and international collaborations involving the academic world and enabling the selection and training of high-quality students and post-doctoral researchers. To promote dissemination in the regional and national network, within the technologies developed at the laboratory in the domain of characterization with beams of ions or neutrons, there exists a transfer unit ARCANE which works through contracts. This document is the 2009-2012 Activity report of CNBG, content: 1 - Research activities (Exotic nuclei; theoretical physics; laser nuclear excitations; Astro-particles; neutrino and low radioactivities; downstream of the fuel cycle and nuclear energy; radioactivity and environment; physics-biology interface; publications (journals, conferences and workshops); 2 - Skills and technical realisations (Electronics dept.; Instrumentation/detectors dept.; administration; Information and technology Dept.; Mechanics Dept.; Platform

  16. Bordeaux Gradignan Nuclear Research Centre - CENBG - 2013-2014 Activity report

    International Nuclear Information System (INIS)

    2015-01-01

    The Bordeaux Gradignan Nuclear Research Centre (CENBG) is a joint research unit of the CNRS/IN2P3 and the University Bordeaux 1 'Science and Technology'. The laboratory is composed of permanent researchers, permanent engineers and technicians and PhD students, post-docs and visitors. The scientific program covers a broad range of topics in nuclear physics, particle physics, Astro-particle physics as well as applications of subatomic physics to different multidisciplinary fields. The main research subjects are: exotic nuclei far from the valley of beta stability and rare radioactive decays; neutrino physics (type and mass of the neutrino) and double beta decay; high energy gamma ray astronomy; innovative approaches to nuclear power generation and transmutation of nuclear waste; laser induced nuclear excitations; the effects of various environmental exposures studied via macro, micro or nano-ion beams using the new platform AIFIRA; and finally theoretical studies of nuclear and hadronic matter. All these activities take place within strong national and international collaborations involving the academic world and enabling the selection and training of high-quality students and post-doctoral researchers. To promote dissemination in the regional and national network, within the technologies developed at the laboratory in the domain of characterization with beams of ions or neutrons, there exists a transfer unit ARCANE which works through contracts. This document is the 2013-2014 Activity report of CNBG, content: 1 - Research activities (Exotic nuclei; theoretical physics; laser nuclear excitations; Astro-particles; neutrino and low radioactivities; downstream of the fuel cycle and nuclear energy; radioactivity and environment; physics-biology interface; chemical imaging and speciation; publications (journals, conferences and workshops); 2 - Skills and technical realisations (Electronics dept.; Instrumentation/detectors dept.; administration; Information and technology

  17. Dossier: management of nuclear wastes. Research, results

    International Nuclear Information System (INIS)

    Anon.

    2001-01-01

    The researches carried out since many years on nuclear wastes have led to two main ways of management: the long-term conditioning of radio-elements and their advanced separation. The French atomic energy commission (CEA) has chosen to take up also the transmutation challenge, a way to transform long-living radioactive wastes into short-living radioactive wastes or stable compounds. The transmutation programs are based both on simulation and experiments with a huge international collaboration. This dossier presents in a digest way the research activity carried out on nuclear wastes processing and management at the CEA. (J.S.)

  18. Application of nuclear techniques for analysis of Vietnamese coal and embedding rocks

    International Nuclear Information System (INIS)

    Vo Dac Bang; Pham Van Duong; Nguyen Thanh Binh; Le Tien Quan; Nguyen Manh Hung; Nguyen Thi Hong; Vu Hoang Lam

    1995-01-01

    In the paper the result of elemental analysis by Nuclear Techniques of Coal and Embedded rocks samples from Vietnamese Quang Ninh and Thai Nguyen basins were presented. Methods used were: Neutron activation Analysis at Dalat Reactor, low counting with HP-Ge and NaJ detectors and X-ray fluorescent analysis with planar Si (Si) detector. Mean concentrations of 19 elements in coal and 9 in rocks were determined. Correlation between concentrations of elements were found. It appears that the correlation between ash content and U, K, Th, concentrations was poor for Quang Ninh antracitecoal. Correlation coefficient was found to be 0,63 for ash range 0-40%. Content of Th in anthracite Quang Ninh coal was much higher than reported in literature for subbituminous, bituminous and lignite coals, while Thai Nguyen fat coal contains considerable amount of Cu, Pb, Zn. Obtained data were useful for evaluation of potential hazard for environment from using coal as fuel for coal fired power plants, for estimation of possibility of using nuclear technique in coal industry in Vietnam. They could be used also for geochemical investigations. The simple of-line coal ash gauge basing on attenuation of soft gamma radiation from Fe-55 was also described. (author). 6 refs, 3 figs, 8 tabs

  19. The situation of nuclear research in Brazil

    International Nuclear Information System (INIS)

    Alves, R.N.

    1989-04-01

    In order to understand the nuclear research situation in Brazil, one must examine the historical facts and their political, economical and social dimensions. In the first part of this work, the international aspects of the nuclear area and the corresponding measures adopted in Brazil are examined. The reasons that caused the country to adopt the current development model are presented. A proposal that will permit Brazil to develop and use nuclear energy in the way it wants and not as it might be imposed is presented. 4 tabs

  20. Proceedings of the seminar on nuclear safety research and the workshop on reactor safety research

    International Nuclear Information System (INIS)

    2001-07-01

    The seminar on the nuclear safety research was held on November 20, 2000 according to the start of new five year safety research plan (FY2001-2005: established by Nuclear Safety Commission) with 79 participants. In the seminar, Commissioner Dr. Kanagawa gave the outline of the next five year safety research plan. Following this presentation, progresses and future scopes of safety researches in the fields of reactor facility, fuel cycle facility, radioactive waste and environmental impact on radiation at Japan Atomic Energy Research Institute (JAERI) were reported. After the seminar, the workshop on reactor safety research was held on November 21-22, 2000 with 141 participants. In the workshop, four sessions titled safety of efficient and economic utilization of nuclear fuel, safety related to long-term utilization of power reactors, research on common safety-related issues and toward further improvement of nuclear safety were organized and, outcomes and future perspectives in these wide research R and D in the related area at other organizations including NUPEC, JAPEIC and Kansai Electric Power Co. was presented in each session. This report compiles outlines of the presentations and used materials in the seminar and the workshop to form the proceedings for the both meetings. (author)

  1. Funding nuclear power research 1956 to 2015. Update

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    In the debates about the use and the benefits of nuclear power plants the allegation is being made that nuclear power to this day had received public subsidies. That was the only reason why electricity from nuclear power plants was economically viable. That statement is wrong. A brief overview is given about the public funds for nuclear energy research and development. In relation to the electricity production less than 0.16 Euro Cents per kilowatt-hour have been spend by public funds for R and D.

  2. Significance and impact of nuclear research in developing countries

    International Nuclear Information System (INIS)

    1987-01-01

    The main purpose of this conference was to gather representatives of universities, research institutes, governmental agencies and industry, as well as IAEA staff, to report on and to assess the significance and impact of nuclear science and technology in developing countries. Thirty-four papers from 17 countries were presented, which are included in the proceedings, as well as reports of three workshops on ''Basic and applied research'', on ''The IAEA's involvement in the implementation of national nuclear programmes'', and on ''Policy and management issues''. The presentation of these reports clearly reflects the fact that all the nuclear activities involved in the programmes of industrialized countries are in progress in developing countries, i.e. most of the aspects of applications in the field of nuclear power, research reactors, food and agriculture, industry and earth sciences, and life sciences. A separate abstract was prepared for each of these papers

  3. Identification of High Confidence Nuclear Forensics Signatures. Results of a Coordinated Research Project and Related Research

    International Nuclear Information System (INIS)

    2017-08-01

    The results of a Coordinated Research Project and related research on the identification of high confidence nuclear forensic isotopic, chemical and physical data characteristics, or signatures, provides information on signatures that can help identify the origin and history of nuclear and other radioactive material encountered out of regulatory control. This research report compiles findings from investigations of materials obtained from throughout the nuclear fuel cycle to include radioactive sources. The report further provides recent results used to identify, analyse in the laboratory, predict and interpret these signatures relative to the requirements of a nuclear forensics examination. The report describes some of the controls on the incorporation and persistence of these signatures in these materials as well as their potential use in a national system of identification to include a national nuclear forensics library.

  4. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    International Nuclear Information System (INIS)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.; Montgomery, V. Trent; James, Ralph B.; Blackburn, Noel D.; Glenn, Chance M.

    2015-01-01

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrative curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and

  5. Integrative Curriculum Development in Nuclear Education and Research Vertical Enhancement Program

    Energy Technology Data Exchange (ETDEWEB)

    Egarievwe, Stephen U.; Jow, Julius O.; Edwards, Matthew E.; Montgomery, V. Trent [Nuclear Engineering and Radiological Science Center, Alabama A and M University, Huntsville, AL (United States); James, Ralph B.; Blackburn, Noel D. [Nonproliferation and National Security Department, Brookhaven National Laboratory, Upton, NY (United States); Glenn, Chance M. [College of Engineering, Technology and Physical Sciences, Alabama A and M University, Huntsville, AL (United States)

    2015-07-01

    Using a vertical education enhancement model, a Nuclear Education and Research Vertical Enhancement (NERVE) program was developed. The NERVE program is aimed at developing nuclear engineering education and research to 1) enhance skilled workforce development in disciplines relevant to nuclear power, national security and medical physics, and 2) increase the number of students and faculty from underrepresented groups (women and minorities) in fields related to the nuclear industry. The program uses multi-track training activities that vertically cut across the several education domains: undergraduate degree programs, graduate schools, and post-doctoral training. In this paper, we present the results of an integrative curriculum development in the NERVE program. The curriculum development began with nuclear content infusion into existing science, engineering and technology courses. The second step involved the development of nuclear engineering courses: 1) Introduction to Nuclear Engineering, 2) Nuclear Engineering I, and 2) Nuclear Engineering II. The third step is the establishment of nuclear engineering concentrations in two engineering degree programs: 1) electrical engineering, and 2) mechanical engineering. A major outcome of the NERVE program is a collaborative infrastructure that uses laboratory work, internships at nuclear facilities, on-campus research, and mentoring in collaboration with industry and government partners to provide hands-on training for students. The major activities of the research and education collaborations include: - One-week spring training workshop at Brookhaven National Laboratory: The one-week training and workshop is used to enhance research collaborations and train faculty and students on user facilities/equipment at Brookhaven National Laboratory, and for summer research internships. Participants included students, faculty members at Alabama A and M University and research collaborators at BNL. The activities include 1) tour and

  6. Nuclear Safety Research and Facilities Department. Annual report 1999

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  7. Nuclear Safety Research and Facilities Department annual report 1997

    International Nuclear Information System (INIS)

    Majborn, B.; Aarkrog, A.; Brodersen, K.

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department's research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  8. Nuclear Safety Research and Facilities Department annual report 1998

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E.

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  9. A safety decision analysis for Saudi Arabian nuclear research facility

    International Nuclear Information System (INIS)

    Abulfaraj, W.H.; Abdul-Fattah, A.F.

    1985-01-01

    Establishment of a nuclear research facility should be the first step in planning for introducing the nuclear energy to Saudi Arabia. The fuzzy set decision theory is selected among different decision theories to be applied for this analysis. Four research reactors from USA are selected for the present study. The IFDA computer code, based on the fuzzy set theory is applied. Results reveal that the FNR reactor is the best alternative for the case of Saudi Arabian nuclear research facility, and MITR is the second best. 17 refs

  10. Data base on nuclear power plant dose reduction research projects

    Energy Technology Data Exchange (ETDEWEB)

    Khan, T.A.; Baum, J.W.

    1986-10-01

    Staff at the ALARA Center of Brookhaven National Laboratory have established a data base of information about current research that is likely to result in lower radiation doses to workers. The data base, concerned primarily with nuclear power generation, is part of a project that the ALARA Center is carrying out for the Nuclear Regulatory Commission. This report describes its current status. A substantial amount of research on reducing occupational exposure is being done in the US and abroad. This research is beginning to have an impact on the collective dose expenditures at nuclear power plants. The collective radiation doses in Europe, Japan, and North America all show downward trends. A large part of the research in the US is either sponsored by the nuclear industry through joint industry organizations such as EPRI and ESEERCO or is done by individual corporations. There is also significant participation by smaller companies. The main emphasis of the research on dose reduction is on engineering approaches aimed at reducing radiation fields or keeping people out of high-exposure areas by using robotics. Effective ALARA programs are also underway at a large number of nuclear plants. Additional attention should be given to non-engineering approaches to dose reduction, which are potentially very useful and cost effective but require quantitative study and analysis based on data from nuclear power plants. 9 refs., 1 fig.

  11. Civil nuclear activities in Switzerland: status, legal framework, researches and harmonization

    International Nuclear Information System (INIS)

    2010-01-01

    This report gives an overview of the present status of nuclear activities in Switzerland. It indicates and comments the shares of the different sources of production of electricity, the electricity consumption, and electricity imports. It describes the structure of the sector. It proposes a history of nuclear development (first reactors, accidents, abandoned projects), describes the present nuclear plant stock, and the fuel cycle management (supply, waste management and storage, reprocessing). It presents the IFSN (the Swiss nuclear safety authority), the nuclear industry organization, and the professional bodies. Then, it describes the legal framework. It discusses the issue of nuclear plant replacement, and that of waste storage in deep geological layers, and comments the posture of the political parties on these issues. It gives a rather detailed overview of researches in the nuclear field (general framework and institutions, research reactors, researches in security and radioprotection, in nuclear safety, in controlled thermonuclear fusion, in waste management). Finally, it describes the harmonization efforts in relationship with international organizations (safety authorities and nuclear industries)

  12. The research strategy of the Swedish Nuclear Power Inspectorate

    International Nuclear Information System (INIS)

    2002-06-01

    In its directive to the Swedish Nuclear Power Inspectorate for 2001 and 2002, the Government asked for a report on SKI's future research strategy. This report is meant to describe future needs for SKI's regulatory and supervisory work, the need for expertise in Sweden and the possibility of international co-operation. SKI's research currently focuses on a number of strategically important areas such as reactor technology, materials and fuel issues, human factors, nuclear waste and nuclear safeguards. Over the past decade, the nuclear infrastructure has changed considerably. The nuclear power companies' previous organisations with specialist expertise and resources have been successively closed down or converted into consulting companies. Furthermore, education and research in the nuclear area at universities have been considerably reduced and expertise, resources and interest in the area have thereby decreased. A review of the availability of expertise in Sweden shows that, in many areas, resources are adequate, but that SKI, in certain cases, needs to provide focused support in order to maintain the expertise that SKI needs for its regulatory and supervisory activities. The analysis highlights two areas without any real education and research: 'Materials testing and control' and 'Management, control and organisation'. Education and research in the latter area lacks a safety perspective. SKI intends to take the initiative to conduct work within both of these areas. Since national research resources are limited, SKI has, for a long time, actively participated in international research. SKI is prioritising co-operation on research conducted in the OECD/NEA and is participating in a large number of projects organised within this framework. Since Sweden joined the EU, the importance of joint European work has increased. SKI is itself also actively participating and supporting Swedish organisations participating in European Commission projects and intends to support

  13. Central Institute of Nuclear Research Rossendorf 25 years old

    International Nuclear Information System (INIS)

    Hohmuth, K.; Kaun, K.H.; Schmidt, A.; Hennig, K.; Brinckmann, H.F.; Lehmann, E.; Rossbander, W.; Bitterlich, H.; Weibrecht, R.; Fuelle, R.; Nebel, D.; Reetz, T.; Beyer, G.J.; Muenze, R.

    1981-12-01

    A colloquium dedicated the 25th anniversary of the foundation of the Central Institute for Nuclear Research of the GDR Academy of Sciences was held on January, 21st, '81. 13 papers were given which dealt with aspects of the institute's history as well as with modern trends in nuclear and solid state physics, nuclear energy and chemistry, radioisotope production, radiation protection and nuclear information. (author)

  14. Japanese Strategy for Nuclear Energy Research and Development For the Future

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, Yoshinori [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1988-04-15

    As for the research and development of nuclear energy, the future is, I believe, very broad, deep and promising and there are still unnoticed frontiers whose development will give rise to the evolution of human society. In order to cultivate the frontiers we should have insight to distinguish what is fundamental and essential from what in not. We should also have a fighting spirit to challenge our dream. The Japan Atomic Energy Research Institute really wishes to become the place where many scientists and engineers from abroad meet and work with US with insight and a pioneering spirit. About thirty years ago, the first version of the Japanese 'Long-Term Program for Development and Utilization of Nuclear Energy' was drawn up by the Atomic Energy Commission for the first time. Since then, the Long-Term Program has been revised once every five years. The research, development and utilization of nuclear energy in Japan have been guided by the Long-Term Program, and it has clearly shown the Japanese strategy for Nuclear Energy R and D for the future at each stage of the for Nuclear Energy R and D for the future at each stage of the history. The latest version of the Long-Term Program was published in June 1987. It defines the outline of the philosophy and the scheme for promoting the basic measures related to the research, development and utilization of nuclear energy up to the year 2000 based on the long-range nuclear energy policy towards the 21st century. This Long-Term Program was drawn up by taking into consideration the essential changes of the by taking into consideration the essential changes of the environment surrounding nuclear energy during recent years from the viewpoints of the supply and demand for energy, the rise of public concern for nuclear safety, the role of nuclear research and development for the advancement of science and technology, and the international nuclear energy issues. In this article, the author would like to describe the basic

  15. Japanese Strategy for Nuclear Energy Research and Development For the Future

    International Nuclear Information System (INIS)

    Ihara, Yoshinori

    1988-01-01

    As for the research and development of nuclear energy, the future is, I believe, very broad, deep and promising and there are still unnoticed frontiers whose development will give rise to the evolution of human society. In order to cultivate the frontiers we should have insight to distinguish what is fundamental and essential from what in not. We should also have a fighting spirit to challenge our dream. The Japan Atomic Energy Research Institute really wishes to become the place where many scientists and engineers from abroad meet and work with US with insight and a pioneering spirit. About thirty years ago, the first version of the Japanese 'Long-Term Program for Development and Utilization of Nuclear Energy' was drawn up by the Atomic Energy Commission for the first time. Since then, the Long-Term Program has been revised once every five years. The research, development and utilization of nuclear energy in Japan have been guided by the Long-Term Program, and it has clearly shown the Japanese strategy for Nuclear Energy R and D for the future at each stage of the for Nuclear Energy R and D for the future at each stage of the history. The latest version of the Long-Term Program was published in June 1987. It defines the outline of the philosophy and the scheme for promoting the basic measures related to the research, development and utilization of nuclear energy up to the year 2000 based on the long-range nuclear energy policy towards the 21st century. This Long-Term Program was drawn up by taking into consideration the essential changes of the by taking into consideration the essential changes of the environment surrounding nuclear energy during recent years from the viewpoints of the supply and demand for energy, the rise of public concern for nuclear safety, the role of nuclear research and development for the advancement of science and technology, and the international nuclear energy issues. In this article, the author would like to describe the basic

  16. Progress report of Cekmece Nuclear Research and Training Center for 1980

    International Nuclear Information System (INIS)

    1982-01-01

    Presented are the research works carried out in 1980 in Physics, Chemistry, Nuclear engineering, Radiobiology, Reactor operation and reactor enlargement, Health physics, Radioisotope production, Electronic, Industrial application of radioisotopes, Nuclear fuel technology, Technical services, Construction control, Publication and documentation, Training division of Cekmece Nuclear Research and Training Center

  17. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  18. Nuclear Safety Research and Facilities Department. Annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E. [eds.

    2000-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. The nuclear facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au)

  19. Nuclear Safety Research and Facilities Department annual report 1999

    DEFF Research Database (Denmark)

    Majborn, B.; Damkjær, A.; Jensen, Per Hedemann

    2000-01-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1999. The department´s research and development activities were organized in two research programmes: "Radiation Protection and Reactor Safety" and"Radioecology and Tracer Studies". The nuclear...... facilities operated by the department include the research reactor DR 3, the Isotope Laboratory, the Waste Management Plant, and the educational reactor DR 1. Lists of staff and publications are includedtogether with a summary of the staff´s participation in national and international committees....

  20. Nuclear Safety Research and Facilities Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Aarkrog, A.; Brodersen, K. [and others

    1998-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1997. The department`s research and development activities were organized in four research programmes: Reactor Safety, Radiation protection, Radioecology, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the educational reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 11 tabs., 39 ills.; 74 refs.

  1. Nuclear Safety Research and Facilities Department annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Hedemann Jensen, P.; Nielsen, S.P.; Nonboel, E

    1999-04-01

    The report present a summary of the work of the Nuclear Safety Research and Facilities Department in 1998. The department`s research and development activities were organized in two research programmes: `Radiation Protection and Reactor Safety` and `Radioecology and Tracer Studies`. The nuclear facilities operated by the department include the research reactor DR3, the Isotope Laboratory, the Waste Treatment plant, and the educational reactor DR1. Lsits of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au)

  2. Nuclear Safety Research and Facilities department annual report 1996

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Heydorn, K.; Oelgaard, P.L.

    1997-04-01

    The report presents a summary of the work of the Nuclear Safety Research and Facilities Department in 1996. The Department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 2 tabs., 28 ills

  3. Outline of research project on nuclear fusion, 1985

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1985-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, and develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interactions 2) science and engineering of tritium, and influence on living things, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal year 1984 of each research are outlined. (J.P.N.)

  4. Outline of research project on nuclear fusion, 1984

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1984-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, a nd develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interaction, 2) science and engineering of tritium and influence on living things, 3) fundamentals of core control, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal 1983 of each research are outlined. (J.P.N.)

  5. Research and service capabilities of the National Nuclear Forensic Research Laboratory

    International Nuclear Information System (INIS)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C.

    2016-09-01

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  6. Maintaining competence in nuclear safety and waste management research by BMBF

    International Nuclear Information System (INIS)

    Ehrlich, Alexander

    2012-01-01

    Germany is to undertake a structured phasing-out of power generation from nuclear energy. Until the last nuclear power plant is shut down, safety must be guaranteed in line with the very latest developments in science and technology. The R and D work performed is in accord with the resolution for the structured phasing-out of the use of nuclear power. The Federal Ministry of Education and Research (BMBF) with its 'Basic Energy Research 2020+' funding concept supplements institutionally funded work of Helmholtz Institutes in a few core areas to further extend co-operation with universities. Close coordination between institutional and project funding will be ensured via the Alliance for Competence in Nuclear Technology in Germany ('Kompetenzverbund Kerntechnik'). In the area of nuclear safety and disposal research, R and D is carried out on the scientific and technological aspects of safety in existing nuclear reactors, the safety of nuclear disposal, the minimisation of highly radioactive substances ultimately requiring disposal and radiation research. Special attention is to be paid within this concept to the funding of young scientists. In addition to doctorate posts in research projects, special funding instruments are to be offered to promote the next generation of scientists. (orig.)

  7. Achievements obtained in agricultural research by using nuclear techniques in Turkey

    International Nuclear Information System (INIS)

    Halitligil, M. B.

    2002-01-01

    Ankara Nuclear Research Center in Agriculture and Animal Sciences (ANRCAAS) is one of the four unique research centers belonging to Turkish Atomic Energy Authority. ANRCAAS is unique because it is the only center in Turkey which uses nuclear techniques as a tool to solve problems for agriculture or animal sciences which cannot be solved using conventional techniques. Training and Research in the areas of agriculture, animal science, food preservation and sterilization via nuclear techniques are among the objectives of the Center. In this paper, the research activities carried out and the achievements so far obtained in the agricultural specialties of Plant Breeding, Soil Fertility and Plant Nutrition, Plant Protection and Pesticide Residues -all by using nuclear techniques- are provided

  8. Nuclear Safety Research Review Committee

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1990-01-01

    The Nuclear Safety Research Review Committee has had a fundamental difficulty because of the atmosphere that has existed since it was created. It came into existence at a time of decreasing budgets. For any Committee the easiest thing is to tell the Director what additional to do. That does not really help him a lot in this atmosphere of reduced budgets which he reviewed for you on Monday. Concurrently the research arm of Nuclear Regulatory Commission has recognized that the scope of its activity needed to be increased rather than decreased. In the last two-and-a-half-year period, human factors work was reinstated, radiation and health effects investigations were reinvigorated, research in the waste area was given significant acceleration. Further, accident management came into being, and the NRC finally got back into the TMI-2 area. So with all of those activities being added to the program at the same time that the research budget was going down, the situation has become very strained. What that leads to regarding Committee membership is a need for technically competent generalists who will be able to sit as the Division Directors come in, as the contractors come in, and sort the wheat from the chaff. The Committee needs people who are interested in and have a broad perspective on what regulatory needs are and specifically how safety research activities can contribute to them. The author summarizes the history of the Committee, the current status, and plans for the future

  9. 30th anniversary of Karlsruhe Nuclear Research Centre

    International Nuclear Information System (INIS)

    Koerting, K.

    1986-01-01

    One of the main goals in mind in 1956 when the Karlsruhe Nuclear Research Centre was founded, was to promote the peaceful uses of nuclear energy in the Federal Republic of Germany. The work accomplished since then by the various institutes of the Centre was particularly successful in the following: Development and construction of the first research reactor as an entirely national achievement; installation and operation of the MZFR reactor, as well as the compact sodium-cooled KNK reactor; the Nuclear Safety Project; the development of the separation nozzle method for uranium enrichment; and specific methods and equipment developed for safeguards systems to prevent nuclear materials diversion. Looking into the future, the tasks ahead will concentrate on the technology of energy generation by thermonuclear fusion, and on environmental pollution control and related methods, as well as industrial processes such as materials handling and process control by PDV and CAD. (orig./PW) [de

  10. Advanced research workshop: nuclear materials safety

    International Nuclear Information System (INIS)

    Jardine, L J; Moshkov, M M.

    1999-01-01

    The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on the storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of

  11. AINSE's role in tertiary sector applied nuclear research

    International Nuclear Information System (INIS)

    Cooper, R.

    2001-01-01

    The Australian Institute of Nuclear Science and Engineering (AINSE) is a collaboration between the Universities and the Australian Nuclear Science and Technology Organisation (ANSTO). Its aim is to foster research and training in areas associated with the applications of Nuclear Science and allied techniques. AINSE is now into the fifth decade of this unique association and in 2001 can claim the active membership of thirty-six of the publicly funded Universities in Australia plus the University of Auckland and its NZ government partner the Institute for Geological and Nuclear Sciences (IGNS). The widespread membership has brought with it a breadth of research areas and the traditional domains of fundamental nuclear science and allied engineering have found that they are now the stable platforms from which are launched environmental, archaeological, biomedical and novel-materials science. ANSTO's fifth decade will see the replacement of HIFAR with a state of the art research reactor that will bring biological applications to a sharper focus. A new accelerator-mass spectrometer will be commissioned during 2002 and is funded, in part, by a $1 M RIEF grant which itself recognises the quality and track record of all AINSE members' research. It will significantly assist a wide range of dating applications and also provide support to ion beam analysis (IBA) experiments. AINSE will continue to aid community collaboration with its conferences, workshops and participation in national conferences such as the AIP Congress, Vacuum Society, etc. On the international scene it is actively participating in major conferences to be held in Australia. The winter school is a venture into the undergraduate sphere

  12. Progress and development trends of the research on public acceptance for nuclear power

    International Nuclear Information System (INIS)

    Li Jinbin; Fang Chao; Cao Jianzhu

    2014-01-01

    Scientists keep doing the research on public acceptance for nuclear power during tbe period of 30 years from TMI to Fukushima nuclear accidents. In this paper, the research methods on public acceptance for nuclear power are reviewed. The theoretical basis of the research methods (including social investigation and structural equation model), their essence of social psychology as well as the research methods for public nuclear power at different phases are respectively introduced. The current methods are divided into three stages according to the starting time and depth of the research, and their significance for the current research is discussed. Finally, it takes a close look at the trends of the research methods on public acceptance for nuclear power. (authors)

  13. The role of universities in the US nuclear research enterprise

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The vitally important role of the universities in nuclear research is embodied in the three functions of education, research, and policymaking. These three functions are discussed from the perspective of nuclear power's unique demands for quality and its pioneering interface with societal and environmental aspirations

  14. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  15. Nuclear physics methods in materials research

    International Nuclear Information System (INIS)

    1980-01-01

    The brochure contains the abstracts of the papers presented at the 7th EPS meeting 1980 in Darmstadt. The main subjects were: a) Neutron scattering and Moessbauer effect in materials research, b) ion implantation in micrometallurgy, c) applications of nuclear reactions and radioisotopes in research on solids, d) recent developments in activation analysis and e) pions, positrons, and heavy ions applied in solid state physics. (RW) [de

  16. Researches in nuclear safety

    International Nuclear Information System (INIS)

    Souchet, Y.

    2009-01-01

    This article comprises three parts: 1 - some general considerations aiming at explaining the main motivations of safety researches, and at briefly presenting the important role of some organisations in the international conciliation, and the most common approach used in safety researches (analytical experiments, calculation codes, global experiments); 2 - an overview of some of the main safety problems that are the object of worldwide research programs (natural disasters, industrial disasters, criticality, human and organisational factors, fuel behaviour in accidental situation, serious accidents: core meltdown, corium spreading, failure of the confinement building, radioactive releases). Considering the huge number of research topics, this part cannot be exhaustive and many topics are not approached; 3 - the presentation of two research programs addressing very different problems: the evaluation of accidental releases in the case of a serious accident (behaviour of iodine and B 4 C, air infiltration, fission products release) and the propagation of a fire in a facility (PRISME program). These two programs belong to an international framework involving several partners from countries involved in nuclear energy usage. (J.S.)

  17. The development of the nuclear physics in Latvia II. The building of the Research Nuclear Reactor IRT

    International Nuclear Information System (INIS)

    Ulmanis, U.

    2004-01-01

    Nuclear research reactor IRT of the Academy of Sciences was built near Riga in Salaspils. IRT is pool aqueous - aqueous reactor with nuclear fuel U-235 contained elements, located in the core at a depth of ∼ 7 m under distilled water. Ten horizontal and 10-15 vertical experimental channels are employed in experimental research with the use of neutron fluxes. For the research with gamma rays is constructed radiation loop facility with liquid In-Ga-SN solid solution as intensive gamma-ray sources. Main activities of IRT are to conduct research in nuclear spectroscopy, neutron activation analysis, neutron diffraction and radiation physics, chemistry and biology. (authors)

  18. Research at the Section of Experimental Nuclear Physics of ATOMKI

    International Nuclear Information System (INIS)

    Krasznahorkay, A.; Fenyes, T.; Dombradi, Zs.; Nyako, B.M.; Timar, J.; Algora, A.; Csatlos, M.; Csige, L.; Gacsi, Z.; Gulyas, J.

    2011-01-01

    Introduction. Nuclear physics research was started in Debrecen by Alexander Szalay (1909-1987) back in the 30's. He had been a postdoc of the Nobel-laureate biologist Albert Szent-Gyorgyi in Szeged and of Lord Rutherford in Cambridge. ATOMKI was founded in Debrecen later, in 1954. The Institute was meant to pursue scientific research in certain areas of experimental nuclear physics and to develop research instruments In the early years the country was pretty isolated, but the institute's state of isolation was gradually easing up from the mid-sixties. During the period 1962-1975 the research work was performed in collaboration with Joint Institute for Nuclear Research (Dubna), where up-to-date high-energy accelerators were available for the production of desired isotopes. After finishing the construction of a home-made 5 MV Van de Graaff accelerator (1972) and later on the installation of a K=20 light ion cyclotron (1985) the Institute has become the main centre of accelerator-based nuclear physics in Hungary. In the period 1975-1995 our group performed extensive nuclear structure studies in Debrecen by using γ and conversion electron spectroscopy. At the same time fruitful collaborations were initiated with Jyvaskyla (Finland), with University of Kentucky and University of Zagreb. In 1993 the former Nuclear Reaction Group (NRG) merged with our group. Parallel with this structural change, the main topics of our γ-spectroscopic work has also changed, which resulted that the location of our experiments were shifted from the home institute to foreign large-scale facilities. New topics were brought partly by the emerging NRG, partly by group members returning from postdoctoral fellowships. They also brought important non γ-spectroscopic topics, which enriched our research palette. These new topics have by now become joint endeavours involving more and more group members. The Nuclear Physics European Coordination Committee (NuPECC) has recently stated that the aim of

  19. Finnish research programmes on nuclear power plant safety

    International Nuclear Information System (INIS)

    Puska, E. K.

    2010-01-01

    The current Finnish national research programme on nuclear power plant safety SAFIR2010 for the years 2007-2010 as well as the coming SAFIR2014 programme for the years 2011-2014 are based on the chapter 7a, 'Ensuring expertise', of the Finnish Nuclear Energy Act. The objective of this chapter is realised in the research work and education of experts in the projects of these research programmes. SAFIR2010 research programme is divided in eight research areas that are Organisation and human, Automation and control room, Fuel and reactor physics, Thermal hydraulics, Severe accidents, Structural safety of reactor circuit, Construction safety, and Probabilistic Safety Analysis (PSA). All the research areas include both projects in their own area and interdisciplinary co-operational projects. Research projects of the programme are chosen on the basis of annual call for proposals. In 2010 research is carried out in 33 projects in SAFIR2010. VTT is the responsible research organisation in 26 of these projects and VTT is also the coordination unit of SAFIR2010 and SAFIR2014. In 2007-2009 SAFIR2010 produced 497 Specified research results (Deliverables), 618 Publications, and 33 Academic degrees. SAFIR2010 programme covers approximately half of the reactor safety research volume in Finland currently. In 2010 the programme volume is EUR 7.1 million and 47 person years. The major funding partners are VYR with EUR 2.96 million, VTT with EUR 2.66 million, Fortum with EUR 0.28 million, TVO with EUR 0.19 million, NKS with EUR 0.15 million, EU with only EUR 0.03 million and other partners with EUR 0.85 million. The new decisions-in-principle on Olkiluoto unit 4 for Teollisuuden Voima and new nuclear power plant for Fennovoima ratified by the Finnish Parliament on 1 July 2010 increase the annual funding collected according to the Finnish Nuclear Energy Act from Fennovoima, Fortum and Teollisuuden Voima for the SAFIR2014 programme to EUR 5.2 million from the current level of EUR 3

  20. System of institutional radioactive waste management in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Podlaha, J.; Burian, P.

    2005-01-01

    The Nuclear Research Institute Rez plc (NRI) is a leading institution in the area of nuclear Research and Development in the Czech Republic. The NRI has had a dominant position in the nuclear programme since it was established in 1955 as a state-owned research organization and it has developed to its current status. In December 1992 the NRI has been transformed into a joint-stock company. The NRI's activity encompasses nuclear physics, chemistry, nuclear power, experiments at the research reactor and many other topics. Main issues addressed in the NRI in the past decades were concentrated on research, development and services provided to the nuclear power plants operating WWER reactors, development of chemical technologies for fuel cycle and irradiation services to research and development in the industrial sector, agriculture, food processing and medicine. At present the research activities are mainly targeted to assist the State Office for Nuclear Safety -the nuclear safety regulating body, power plant operator and nuclear facilities contractors. Significant attention is also paid to the use of nuclear technology outside the nuclear power sector, providing a wide range of services to industry , medicine and the preparation of radiopharmaceuticals. NRI operates two research nuclear reactors and another facilities such as a hot cell facility , research laboratories, technology for radioactive waste (RAW) management, 60 Co irradiators, an electron accelerator, etc. In this paper the Centre of RAW management, system of RAW management, facilities for RAW management as well as decontamination and decommissioning activities of the NRI are presented. The NRI provides complex services in the area of RAW management and has gained many experience and full qualification not only in this area but also in the area of decontamination and decommissioning and spent fuel management. The NRI guarantees safe RAW and spent fuel management. (authors)

  1. Sustainability indicators to nuclear research centers in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A., E-mail: symonfonseca@yahoo.com.br, E-mail: vmfj@cdtn.br, E-mail: aab@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  2. Sustainability indicators to nuclear research centers in Brazil

    International Nuclear Information System (INIS)

    Alves, Simone F.; Feliciano, Vanusa Maria D.; Barreto, Alberto A.

    2015-01-01

    The relevance and applicability of sustainability indicators have been discussed in various international and national debates through forums, conferences, seminars and lectures. The information obtained from the use of these indicators is essential to the decision-making process, contributing to the creation of discussion channels and interaction with society; also it is useful for the design and implementation of environmental education programs, perception and risk communication. So far, at least in Brazil, existing indicators for the nuclear area are related only to power generation, as performance and safety in radioactive waste management. According to this reality we see the need to build indicators that contribute to the assessment of environmental, social, cultural, economic and institutional performance of a nuclear innovation and research institute in Brazil. This work aims to highlight, through literature review, the importance of developing sustainability indicators appropriate to nuclear research centers in Brazil, revealing how much they are strategic to measuring the sustainability of these endeavours. The main finding, after the literature review, is that this type of indicator is important not only to identify positive or negative impacts of a project focused on the research and innovation of nuclear area, but also for assessment of his commitment to the sustainable development. (author)

  3. Psychometric model for safety culture assessment in nuclear research facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, C.S. do, E-mail: claudio.souza@ctmsp.mar.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), Av. Professor Lineu Prestes 2468, 05508-000 São Paulo, SP (Brazil); Andrade, D.A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil); Mesquita, R.N. de, E-mail: rnavarro@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN – SP), Av. Professor Lineu Prestes 2242, 05508-000 São Paulo, SP (Brazil)

    2017-04-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  4. Psychometric model for safety culture assessment in nuclear research facilities

    International Nuclear Information System (INIS)

    Nascimento, C.S. do; Andrade, D.A.; Mesquita, R.N. de

    2017-01-01

    Highlights: • A psychometric model to evaluate ‘safety climate’ at nuclear research facilities. • The model presented evidences of good psychometric qualities. • The model was applied to nuclear research facilities in Brazil. • Some ‘safety culture’ weaknesses were detected in the assessed organization. • A potential tool to develop safety management programs in nuclear facilities. - Abstract: A safe and reliable operation of nuclear power plants depends not only on technical performance, but also on the people and on the organization. Organizational factors have been recognized as the main causal mechanisms of accidents by research organizations through USA, Europe and Japan. Deficiencies related with these factors reveal weaknesses in the organization’s safety culture. A significant number of instruments to assess the safety culture based on psychometric models that evaluate safety climate through questionnaires, and which are based on reliability and validity evidences, have been published in health and ‘safety at work’ areas. However, there are few safety culture assessment instruments with these characteristics (reliability and validity) available on nuclear literature. Therefore, this work proposes an instrument to evaluate, with valid and reliable measures, the safety climate of nuclear research facilities. The instrument was developed based on methodological principles applied to research modeling and its psychometric properties were evaluated by a reliability analysis and validation of content, face and construct. The instrument was applied to an important nuclear research organization in Brazil. This organization comprises 4 research reactors and many nuclear laboratories. The survey results made possible a demographic characterization and the identification of some possible safety culture weaknesses and pointing out potential areas to be improved in the assessed organization. Good evidence of reliability with Cronbach's alpha

  5. Karlsruhe Nuclear Research Center, Institute of Materials Research. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute consists of three parts IMF I, IMF II and IMF III. The tasks are divided into applied material physics (IMF I), material and structural mechanics (IMF II) and material process technology (IMF III). IMF I works preferably on the development of metallic, non-metallic and compound materials and on questions of the structure and properties of boundary surfaces and surface protection coatings. The main work of IMF II is the reliability of components, failure mechanics and the science of damage. IMF III examines process technology questions in the context of the manufacture of ceramic materials and fusion materials and the design of nuclear components. The Institute works on various main points of the Kernforschungszentrum in its research work, particularly in nuclear fusion, micro-system technique, nuclear safety research, superconductivity and in processes with little harmful substances and waste. Material and strength problems for future fusion reactors and fission reactors, in powerful micro systems and safety-related questions of nuclear technology are examined. Also, research not bound to projects in the field of metallic, ceramic and polymer materials for high stresses is carried out. (orig.) [de

  6. University Research Collaborations on Nuclear Technology: A Legal Framework

    International Nuclear Information System (INIS)

    Nagakoshi, Y.

    2016-01-01

    Full text: International nuclear research collaborations are becoming increasingly important as the need for environmentally sound and safe energy technology grows. Despite having its risk, the benefits of using nuclear energy cannot be overlooked considering the energy crisis the world is facing. In order to maximize the safety of existing technology and promoting safe ways of taking advantage of nuclear energy, collaborative efforts of all who are involved in nuclear technology is necessary, regardless of national borders or affiliation. Non-conventional use of nuclear energy shall also be sought after in order to reduce greenhouse gas emission and to overcome the energy crisis the world is facing. It is therefore important that international collaborations among research institutes are promoted. Collaboration amongst universities poses a series of legal questions on how to form the framework, how to protect individual and communal inventions and how to share the fruits of the invention. This paper proposes a possible framework of collaboration and elaborates on possible legal issues and solutions. (author

  7. Scientific and technological activity in the National Institute of Nuclear Research

    International Nuclear Information System (INIS)

    Escobar A, L.; Monroy G, F.; Morales R, P.; Romero H, S.

    2008-01-01

    The present book was published on the occasion of the 50 years of the existence of the Institute, from its creation in 1956 like National Commission of Nuclear Energy to 1979 that arises like National Institute of Nuclear Research. The objective of this publication is the one to leave a writing testimony of all the activities that are realized in the National Institute of Nuclear Research and an accessible language within the diverse subjects boarded. Referring subjects to the activities of nuclear physics, radiochemistry, research and development of materials, dosimetry, plasma physics, production of radiopharmaceuticals, tissue sterilization by radiation, food irradiation and other included. (Author)

  8. A proposal for cooperative activities between Japan and Indonesia in the field of nuclear research and nuclear education

    International Nuclear Information System (INIS)

    Subki, Iyos

    2008-01-01

    Development and realization of cooperative activities between Japan and Indonesia in nuclear research and education is indeed very important for scientists and engineers of both countries. This bilateral cooperation can easily be expanded into a regional cooperation benefiting the scholars from Asian region which is expecting a New Nuclear Age in the 21st Century. To develop and realize this cooperative activities, in the first step, we invite the ideas of our partners in the Nuclear Institution and in Universities. They are eager to have and undertake this cooperation effort. For nuclear research activities, they have proposed several topics which include: advanced radioactive waste technology and management in a nuclear power plant, innovative fuel development for LWR's, gas cooled reactor for electricity and hydrogen production and a topic on design and construction of high energy accelerator. Institute of Technology - Bandung (ITB), University of Gajah Mada (UGM) and School of Nuclear Technology (STTN/BATAN) are interested in cooperative works which include: joint development of standard curriculum for M.Sc. level in response to increased activities in nuclear research and nuclear power development, exchange of guest lecturers, and exchange of M.Sc. level students. With this cooperation, we want to put very special emphasis on nuclear human resources development (nuclear - HRD) in anticipation of the upcoming nuclear era. (author)

  9. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  10. Nuclear Research and Society

    Energy Technology Data Exchange (ETDEWEB)

    Eggermont, G

    2000-07-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised.

  11. Nuclear Research and Society

    International Nuclear Information System (INIS)

    Eggermont, G.

    2000-01-01

    In 1998, SCK-CEN took the initiative to include social sciences and humanities into its research programme. Within this context, four projects were defined, respectively on sustainability and nuclear development; transgenerational ethics related to the disposal of long-lived radioactive waste; legal aspects and liability; emergency communication and risk perception. Two reflection groups were established, on expert culture and ethical choices respectively, in order to deepen insight while creating exchange of disciplinary approaches of the committed SCK-CEN researchers and social scientists. Within the context of SCK-CEN's social sciences and humanities programme, collaborations with various universities were initiated, teams consisting of young doctorate and post-doctorate researchers and university promotors with experience in interaction processes of technology with society were established and steering committees with actors and external experts were set up for each project. The objectives and main achievements in the four projects are summarised

  12. DOE, IAEA collaborate to put decades of nuclear research online

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: Decades of nuclear research supported by the United States Department of Energy (DOE) and its predecessor agencies are being made searchable on the World Wide Web, as part of a collaborative effort between the DOE and the International Atomic Energy Agency (IAEA). The project aims to give researchers, academics, and the general public access to vast volumes of valuable nuclear-related research over the internet. As part of its knowledge preservation mandate, the IAEA' s International Nuclear Information System(INIS) works to preserve nuclear knowledge by digitizing historic nuclear energy research documents dating from 1970 through the early 1990s. Collections from over 29 countries are now digitally available and several additional digital preservation projects are ongoing or are being established, particularly in the Latin America and Caribbean regions. ''Thanks to the collaborative work of the IAEA and its Member States, scientists and students in the nuclear field now have instant access to important research and technical information over the internet,'' said IAEA Deputy Director General for Nuclear Energy Yury Sokolov. ''Our INIS programme continues to work to preserve and provide access to publications and documents on the peaceful applications of nuclear technology.'' The DOE project is one of the larger programmes in the INIS project, and includes more than 180,000 documents from the DOE Office of Scientific and Technical Information (OSTI). OSTI is the U.S. representative to INIS and has had its own digitization focus in recent years. The novel partnership highlights the longstanding mutual benefits of DOE participation in INIS. In essence, it opens up previous research on the safe and peaceful uses of nuclear energy by making it freely and quickly available to scientists and engineers. By making scientific data electronically available, the INIS database helps scientists and students to attain volumes of data that are otherwise inaccessible

  13. Institute of Nuclear Physics, mission and scientific research activities

    International Nuclear Information System (INIS)

    Zoto, J.; Zaganjori, S.

    2004-01-01

    The Institute of Nuclear Physics (INP) was established in 1971 as a scientific research institution with main goal basic scientific knowledge transmission and transfer the new methods and technologies of nuclear physics to the different economy fields. The organizational structure and main research areas of the Institute are described. The effects of the long transition period of the Albanian society and economy on the Institution activity are also presented

  14. NUCLEAR 2010 international conference on sustainable development through nuclear research and education.Part 2/2

    International Nuclear Information System (INIS)

    Turcu, Ilie

    2010-01-01

    The Proceedings of the 'NUCLEAR 2010 international conference on sustainable development through nuclear research and education' held at INR-Pitesti on May, 26 - 28 2010 contain communications published in two parts. The second part contains 34 talks adressing themes of nuclear energy, in the following three sections: Section 2.1 - Radioactive waste management (13 papers); Section 2.2 and 3 - Radioprotection and air, water and soil protection (12 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation, and knowledge transfer (1 paper); Section 3. - International Partnership for a sustainable development (2 papers); Section 3.4 - Research infrastructure (3 papers)

  15. Proceedings of the National Seminar on Research and Nuclear Devices Management

    International Nuclear Information System (INIS)

    Prayitno; Slamet Santosa; Darsono; Syarip; Agus Taftazani; Samin; Tri Mardji Atmono; Dwi Biyantoro; Herry Poernomo; Prajitno; Tjipto Sujitno; Gede Sutresna W; Djoko Slamet Pujorahardjo; Budi Setiawan; Bambang Siswanto; Endro Kismolo; Jumari

    2016-08-01

    The Proceedings of the National Seminar on Research and Nuclear Devices Management by Center for Accelerator Science and Technology in Yogyakarta with the theme of Universities and research and development institutions synergy in the development of basic science and nuclear technology held on Surakarta 9 August 2016. This seminar is an annual routine activities of Center for Accelerator Science and Technology for exchange research result among University and BATAN researcher for using nuclear technology. The proceeding consist of 3 article from keynotes’ speaker and 23 articles from BATAN participant as well as outside which have been indexed separately. (MPN)

  16. Yearly program of safety research in nuclear power facilities from fiscal 1981 to 1985

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Nuclear safety research plans for nuclear power facilities and others from fiscal 1981 to 1985 are presented for the following areas: the safety of LWR fuel, loss-of-coolant accidents, the structural safety of LWR installations, the reduction of radioactive material release from nuclear power facilities, the stochastic safety evaluation of nuclear power facilities, the aseismicity of nuclear power facilities, the safety of nuclear fuel facilities, and the safety of nuclear fuel transport vessels. In the respective areas, the needs for research and the outline of research works are summarized. Then, about the major research works in each area, the purpose, contents, term and responsible institution of the research are given. (Mori, K.)

  17. Nuclear materials teaching and research at the University of California, Berkeley

    International Nuclear Information System (INIS)

    Olander, D.R.; Roberts, J.T.A.

    1985-01-01

    In academic nuclear engineering departments, research and teaching in the specialized subdiscipline of nuclear materials is usually a one-person or at best a two-person operation. These subcritical sizes invariably result in inadequate overall representation of the many topics in nuclear materials in the research program of the department, although broader coverage of the field is possible in course offerings. Even in course-work, the full range of materials problems important in nuclear technology cannot be dealt with in detail because the small number of faculty involved restricts staffing to as little as a single summary course and generally no more than three courses in this specialty. The contents of the two nuclear materials courses taught at the University of California at Berkeley are listed. Materials research in most US nuclear engineering departments focuses on irradiation effects on metals, but at UC Berkeley, the principal interest is in the high-temperature materials chemistry of UO 2 fuel and Zircaloy cladding

  18. Research-based approaches to nuclear education

    Energy Technology Data Exchange (ETDEWEB)

    Donev, J.M.K.C., E-mail: jason.donev@ucalgary.ca [Univ. of Calgary, Calgary, AB (Canada); Carpenter, Y., E-mail: ycarpenter@gmail.com [Univ.ty of Colorado at Boulder, Boulder, CO (United States)

    2014-07-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  19. Research-based approaches to nuclear education

    International Nuclear Information System (INIS)

    Donev, J.M.K.C.; Carpenter, Y.

    2014-01-01

    Teaching nuclear power requires an expert to communicate a significant number of abstract concepts from diverse disciplines, and assemble these into a larger intellectual framework for the students. Scholarly education research, particularly in individual science disciplines, has provided significant advances in teaching core subject material by breaking away from traditional lecturing. Thus far, however,little work has applied these results to introductory nuclear power classes. This paper explores a method of engaging introductory nuclear students deeply by using a combination of Socratic and mastery methods of teaching. Students develop conceptual understanding of the material through the group work and the use of diverse resources, including textbooks, online references, and computer models that encourage free exploration of these concepts. Marks have improved considerably, and students engage with the material at a significantly deeper level than in previous lecture-based iterations of this course. (author)

  20. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C; Kanyukt, R; Pongpat, P [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  1. NRC [Nuclear Regulatory Commission] safety research in support of regulation, 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report, the third in a series of annual reports, was prepared in response to congressional inquiries concerning how nuclear regulatory research is used. It summarizes the accomplishments of the Office of Nuclear Regulatory Research during 1987. The goal of this office is to ensure that research provides the technical bases for rulemaking and for related decisions in support of NRC licensing and inspection activities. This report describes both the direct contributions to scientific and technical knowledge with regard to nuclear safety and their regulatory applications

  2. Nuclear waste repository research at the micro- to nanoscale

    Science.gov (United States)

    Schäfer, T.; Denecke, M. A.

    2010-04-01

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  3. Nuclear research with the electromagnetic probe. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, Z.E.

    1994-10-01

    This is the final report on the research carried at Stanford University under contract DE-FG03-88ER40439. All the work accomplished under this grant is reported in the publications listed as part of the Principal Investigator bibliography at the end of this report. In the last few years our research was directed at some of the forefront questions in nuclear physics. We investigated the nuclear medium effects on the intrinsic properties of bound nucleons, specifically the ectromagnetic form factors. For these studies we performed a number of specialized electron scattering experiments with specific sensitivity to nuclear medium effects. At the next level of structure, elementary constituents of matter are quarks and gluons. Defining the energy regime where the quark-gluon description of nuclear systems becomes more relevant than the nucleon-meson description is of great importance in thoroughly understanding the nuclear structure. To explore this transition region, we studied the scaling region in the disintegration of the deuteron, the simplest nuclear system with high energy photons. Finally we focused on the investigation of the nucleon internal spin structure along with the test of the Bjoerken sum rule a fundamental sum rule of QCD.

  4. Nuclear research with the electromagnetic probe. Final progress report

    International Nuclear Information System (INIS)

    Meziani, Z.E.

    1994-10-01

    This is the final report on the research carried at Stanford University under contract DE-FG03-88ER40439. All the work accomplished under this grant is reported in the publications listed as part of the Principal Investigator bibliography at the end of this report. In the last few years our research was directed at some of the forefront questions in nuclear physics. We investigated the nuclear medium effects on the intrinsic properties of bound nucleons, specifically the ectromagnetic form factors. For these studies we performed a number of specialized electron scattering experiments with specific sensitivity to nuclear medium effects. At the next level of structure, elementary constituents of matter are quarks and gluons. Defining the energy regime where the quark-gluon description of nuclear systems becomes more relevant than the nucleon-meson description is of great importance in thoroughly understanding the nuclear structure. To explore this transition region, we studied the scaling region in the disintegration of the deuteron, the simplest nuclear system with high energy photons. Finally we focused on the investigation of the nucleon internal spin structure along with the test of the Bjoerken sum rule a fundamental sum rule of QCD

  5. 30 years of Central Institute for Nuclear Research at Rossendorf

    International Nuclear Information System (INIS)

    Scheler, W.; Flach, G.; Hennig, K.; Collatz, S.; Muenze, R.; Baldeweg, F.

    1986-10-01

    A celebration and a scientific colloquium dedicated the 30th anniversary of the foundation of the Central Institute for Nuclear Research (CINR) of the GDR Academy of Sciences were held on January, 23rd and 24th, '86 at Rossendorf. The speaches and lectures given by the president of the GDR Academy of Sciences and by scientists of the CINR dealt with problems of policy of science, history of the CINR, nuclear methods, microelectronics, nuclear energy research, development and production of radioisotopes and scientific instruments. (author)

  6. Russian Minatom nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    Royen, J.

    1999-01-01

    An NEA study on safety research needs of Russian-designed reactors, carried out in 1996, strongly recommended that a strategic plan for safety research be developed with respect to Russian nuclear power plants. Such a plan was developed at the Russian International Nuclear Safety Centre (RINSC) of the Russian Ministry of Atomic Energy (Minatom). The Strategic Plan is designed to address high-priority safety-research needs, through a combination of domestic research, the application of appropriate foreign knowledge, and collaboration. It represents major progress toward developing a comprehensive and coherent safety-research programme for Russian nuclear power plants (NPPs). The NEA undertook its review of the Strategic Plan with the objective of providing independent verification on the scope, priority, and content of the research described in the Plan based upon the experience of the international group of experts. The principal conclusions of the review and the general comments of the NEA group are presented. (K.A.)

  7. Prospect and current situation survey of nuclear agricultural research in china

    International Nuclear Information System (INIS)

    Chai Lihong; Ye Qingfu; Hua Yuejin

    2008-01-01

    Based on the survey result, which investigated 22 related institutes and universities in the field of nuclear agricultural sciences in China in Sep. 2007, this paper introduces the current status of research conditions, existing facilities and research progress on isotope tracing technology, new biological resources creation, research of nuclear irradiation and irradiation processing technology form 1996 to 2006. Due to not enough financial supports on this field, the development of nuclear agricultural sciences was slow down. However, the solid basis set up during last several decades, and the great efforts made by all the researchers, significant social and economic achievements were gained. Some of the researches have already taken the leading position in the world. (authors)

  8. Research activities at nuclear research institute in water chemistry and corrosion

    International Nuclear Information System (INIS)

    Kysela, Jan

    2000-01-01

    Research activities at Nuclear Research Institute Rez (NRI) are presented. They are based on former heavy water reactor program and now on pressurized reactors VVER types which are operated on Czech republic. There is LVR-15 research reactor operated in NRI. The reactor and its experimental facilities is utilized for water chemistry and corrosion studies. NRI services for power plants involve water chemistry optimalization, radioactivity build-up, fuel corrosion and structural materials corrosion tests. (author)

  9. Research in theoretical nuclear physics. Progress report and research proposal, 1980-1981

    International Nuclear Information System (INIS)

    Bayman, B.F.; Ellis, P.J.; Tang, Y.C.

    1980-01-01

    Research performed during 1980 (and proposed for 1981) is summarized briefly in this administrative report. The main theme of the research is the mechanisms of light- and heavy-ion nuclear reactions and the relation between microscopic theories and phenomenological models. A publication list and budget are included

  10. Nuclear research centres in the 21st century: An AECL perspective

    International Nuclear Information System (INIS)

    Fehrenbach, P.J.

    2001-01-01

    The nuclear energy programme of Canada started at Chalk River Laboratories with the setting up of Zero Energy Experimental Site in 1945. One of the early research reactors of Canada, the National Research Universal (NRU) continues to provide 70% of the world requirement of isotopes for medical and industrial applications. A CANDU prototype (208 MW(e)) came on line in 1967 and based on this concept, Canada has a large nuclear power programme. The role of nuclear research centres has evolved with time starting with strategic research in the initial phases through to implementation of technology, building and supporting industry, and carrying out advanced technology development. Most of these centres have important assets in terms of licensed sites, trained personnel, research reactors, shielded facilities and expertise for handling large quantities of radioactivity and high tech laboratories for advanced R and D. These centres would, therefore, continue to play an important role in emission free and economic energy generation, nuclear medicine, food irradiation and industrial applications. Nuclear research centres in different countries are at various stages of development and have many unique features. However, there are generic issues and much will be gained by developing a shared vision for the future and implementing programmes in a collaborative manner. (author)

  11. Filtered thermal neutron captured cross-sections measurements and decay heat calculations

    International Nuclear Information System (INIS)

    Son, Pham Ngoc; Tan, Vuong Huu

    2014-01-01

    Recently, a pure thermal neutron beam has been developed for neutron capture measurements based on the horizontal channel No.2 of the research reactor at the Nuclear Research Institute, Dalat. The original reactor neutron spectrum is transmitted through an optimal composition of Bi and Si single crystals for delivering a thermal neutron beam with Cadmium ratio (R cd ) of 420 and neutron flux (Φ th ) of 1.6x10 6 n/cm 2 .s. This thermal neutron beam has been applied for measurements of capture cross-sections for nuclide of 51 V, 55 Mn, 180 Hf and 186 W by the activation method relative to the standard reaction 197 Au(n,g) 198 Au. In addition to the activities of neutron capture cross-sections measurements, the study on nuclear decay heat calculations has been also considered to be developed at the Institute. Some results on calculation procedure and decay heat values calculated with update nuclear database for 235 U, 238 U, 239 Pu and 232 Th are introduced in this report. (author)

  12. Position paper on main areas of nuclear chemistry research and application

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear chemistry, with its specialized areas of nuclear chemistry, radiochemistry, and radiation chemistry, mainly covers these fields: basic research in nuclear chemistry; actinide chemistry; radioanalysis; nuclear chemistry in the life sciences, geosciences, and cosmic chemistry; radiotracers in technology; nuclear power technology; nuclear waste management; tritium chemistry in fusion technology, and radiation protection and radioecology. In the more than one hundred years of history of this branch of science and technology, which was opened up by the discovery of radioactivity and of the radioelements, pioneering discoveries and developments have been made in many sectors. Far beyond the confines of this area of work, they have achieved overriding importance in applications in many fields of technology and industry and in the life sciences. Research and application in nuclear chemistry continue to be highly relevant to society, ecology, and the economy, and the potential of science and technology in this field in Germany is acknowledged internationally. In the light of this vast area of activity, and against the need to maintain competence in nuclear chemistry for the use of nuclear power, irrespective of the status of this continued use in Germany, nuclear chemistry is indispensable to the solution of future problems. The Nuclear Chemistry Group of the Gesellschaft Deutscher Chemiker therefore uses this position paper to draw attention to the urgent need to keep up and further advance nuclear chemistry applications in a variety of areas of science and technology, also as a public duty of thorough education and research. (orig.) [de

  13. Theory model and experiment research about the cognition reliability of nuclear power plant operators

    International Nuclear Information System (INIS)

    Fang Xiang; Zhao Bingquan

    2000-01-01

    In order to improve the reliability of NPP operation, the simulation research on the reliability of nuclear power plant operators is needed. Making use of simulator of nuclear power plant as research platform, and taking the present international reliability research model-human cognition reliability for reference, the part of the model is modified according to the actual status of Chinese nuclear power plant operators and the research model of Chinese nuclear power plant operators obtained based on two-parameter Weibull distribution. Experiments about the reliability of nuclear power plant operators are carried out using the two-parameter Weibull distribution research model. Compared with those in the world, the same results are achieved. The research would be beneficial to the operation safety of nuclear power plant

  14. Nuclear weapons research in Sweden. The co-operation between civilian and military research, 1947 - 1972

    International Nuclear Information System (INIS)

    Jonter, Thomas

    2002-05-01

    The Swedish nuclear weapons research began as early as 1945, shortly after the first atomic bombs fell over Japan. The assignment to look into the new weapon of mass destruction went to the Swedish National Defence Research Establishment (FOA). Admittedly, the main aim of the research initiated at that time was to find out how Sweden could best protect itself against a nuclear weapon attack. However, from the outset FOA was interested in investigating the possibilities of manufacturing what was then called an atomic bomb. A co-operation between FOA and AB Atomenergi (AE), which was created in 1947 in order to be responsible for the industrial development of civilian nuclear energy, was initiated. AE made several technical investigations within this co-operation regarding choice of reactors and preconditions for a production of weapons-grade plutonium. The first purpose of this report is therefore to investigate how this co-operation emerged and what consequences it had for the project to produce basic information for the Swedish manufacture of nuclear weapons. In general terms, the finding of this report is that FOA was responsible for the overall nuclear weapons research. For this reason, FOA was in charge of the construction of the nuclear device and the studies of its effects. Additionally, AE should deliver basic information of a possible production of weapons-grade plutonium and investigate the possibilities of a production or a procurement of inspection-free heavy water (i.e. without inspections by the supplying country). AE should also build a reprocessing plant and manufacture fuel elements to be used in the reactors for a production of weapons-grade plutonium. Furthermore, it is important to emphasise that both FOA and AE conducted plutonium research. The reason why FOA conducted this research was that the plutonium had to be in metallic form in order to be used in a nuclear weapons device. Therefore, FOA carried out research with the purpose of producing

  15. Nuclear research and nuclear technology in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The atomwirtschaft-atomtechnik has reflected the development of this quarter century. In this jubilee edition it describes the future lines of development. It has invited the Federal German companies and institutions of the branch to present their performance potential in the form of monography - more detailed than usually. This invitation was accepted by 81 of the most important enterprises. The figure also includes a number of important service companies, the research centres of the country, and last not least, a number of energy supply enterprises. Part 2 of this jubilee edition as a whole offers a crossection of the present performances offered in the German nuclear research, nuclear techniques, and the planning and service belonging to nuclear power operation. For the English-speaking readers, a digest part was set up in part 3 of the present edition. In part 4, the reader will find a product index in German and English. Each key-word indicates an offering firm by the page number allocated. Access to the monographies (part 2) and the digest (part 3) can be found in the listing of the monography-advertisers from page 102 on. The atw-jubilee edition closes with part 5, with product advertisements of companies from home and abroad. (orig./UA) [de

  16. Knowledge Management for Nuclear Research and Development Organizations (Russian Edition)

    International Nuclear Information System (INIS)

    2016-01-01

    This publication elaborates on the role of nuclear knowledge management in a research and development (R&D) context, and on the importance of facilitating innovation and future development of nuclear technologies for nuclear power, its associated fuel cycles, and nuclear applications in medicine, industry and agriculture. It highlights aspects such as transferring and preserving knowledge, exchanging information, establishing and supporting cooperative networks, and training the next generation of nuclear experts. It concludes with basic concepts, trends and key drivers for nuclear knowledge management for R&D project managers and other workers from nuclear R&D organizations.

  17. Karlsruhe Research Center, Nuclear Safety Research Project (PSF). Annual report 1994

    International Nuclear Information System (INIS)

    Hueper, R.

    1995-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZKA) has been part of the Nuclear Safety Research Projet (PSF) since 1990. The present annual report 1994 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1995. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  18. Proceedings of NUCLEAR 2009 international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2009-01-01

    The proceedings of the NUCLEAR 2009 international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 27 - 29 2009 contain 92 communications presented in two plenary sessions (6 and 4 talks, respectively) and three sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (8 papers); Section 1.2 - Nuclear reactors (15 papers); Section 1.3 - Nuclear technologies and materials (32 papers); Section 2.1 - Radioactive waste management (18 papers; Section 2.2 and Section 2.3 - Radioprotection and air, water and soil protection (12 papers); Section 3.1 - Education, continuous formation and knowledge transfer (9 papers); Section 3.2 -Strategies in energy (Round table) (5 papers). A number of 17 papers although programmed have not actually been presented within these proceedings. These papers are presented as abstracts in 'Nuclear 2009 - BOOK of ABSTRACTS', separately processed

  19. Nuclear power and the public: an update of collected survey research on nuclear power

    International Nuclear Information System (INIS)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues

  20. Nuclear power and the public: an update of collected survey research on nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  1. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  2. The U.S. Nuclear Regulatory Commission seismic safety research program

    International Nuclear Information System (INIS)

    Kenneally, R.M.; Guzy, D.J.; Murphy, A.J.

    1988-01-01

    The seismic safety research program sponsored by the U.S. Nuclear Regulatory Commission is directed toward improving the evaluation of potential earthquake effects on nuclear power plant operations. The research has been divided into three major program areas: earth sciences, seismic design margins, and fragilities and response. A major thrust of this research is to assess plant behavior for seismic events more severe and less probable than those considered in design. However, there is also research aimed at improving the evaluation of earthquake input and plant response at plant design levels

  3. Summary results of an assessment of research projects in the Nuclear Medicine Research program

    International Nuclear Information System (INIS)

    1988-01-01

    In May 1987, OHER management requested the Office of Program Analysis (OPA) to conduct a peer review of the projects of the DOE Nuclear Medicine Research program. This was done using procedures and a quantitative methodology OPA developed for assessing DOE research programs. Sixty-three individual nuclear medicine projects were reviewed by seven panels; one panel on isotopes and radioisotopes, three on radiopharmacology, two on clinical feasibility, and one on instrumentation. Each panel consisted of five to ten knowledgeable reviewers. 5 figs

  4. Research on the improvement of nuclear safety

    International Nuclear Information System (INIS)

    Yoo, Keon Joong; Kim, Dong Soo; Kim, Hui Dong; Park, Chang Kyu

    1993-06-01

    To improve the nuclear safety, this project is divided into three areas which are the development of safety analysis technology, the development of severe accident analysis technology and the development of integrated safety assessment technology. 1. The development of safety analysis technology. The present research aims at the development of necessary technologies for nuclear safety analysis in Korea. Establishment of the safety analysis technologies enables to reduce the expenditure both by eliminating excessive conservatisms incorporated in nuclear reactor design and by increasing safety margins in operation. It also contributes to improving plant safety through realistic analyses of the Emergency Operating Procedures (EOP). 2. The development of severe accident analysis technology. By the computer codes (MELCOR and CONTAIN), the in-vessel and the ex-vessel severe accident phenomena are simulated. 3. The development of integrated safety assessment technology. In the development of integrated safety assessment techniques, the included research areas are the improvement of PSA computer codes, the basic study on the methodology for human reliability analysis (HRA) and common cause failure (CCF). For the development of the level 2 PSA computer code, the basic research for the interface between level 1 and 2 PSA, the methodology for the treatment of containment event tree are performed. Also the new technologies such as artificial intelligence, object-oriented programming techniques are used for the improvement of computer code and the assessment techniques

  5. Biotechnology and Nuclear Agriculture Research Institute (BNARI) at a glance

    International Nuclear Information System (INIS)

    2007-01-01

    Biotechnology and Nuclear Agriculture Research Institute (BNARI) was established in 1993 as one of the research, development and technology transfer institutes of the Ghana Atomic Energy Commission (GAEC). This was to help the GAEC to expand its research and development in the area of biotechnology and nuclear agriculture, which have been found to have a major impact on the agricultural development in countries involved in peaceful application of nuclear energy. The main objective of the Institute is to explore and exploit the application of isotopes, ionizing radiation and biotechnologies for increased agricultural and economic development of Ghana and to help the Country attain self-sufficiency in food and agriculture in order to alleviate malnutrition, hunger and poverty. This brochure describes the organizational structure; research facilities and programmes; services of the various departments of the Institute as well as achievements

  6. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1990-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics has been examined. We have been actively researching both the astrophysics of gravitational collapse, neutron star birth, and the emission of neutrinos from supernovae, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; in fact, nuclear matter properties, especially supernuclear densities, might be best delineated by astrophysical considerations. Our research has also focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. The recent observations of neutrinos from SN 1987A proved to be in remarkable agreement with models we pioneered prior to its explosion. We have also developed a novel hydrodynamical code in which shocks are treated via Riemann resolution rather than with artificial viscosity. We have also extended models of the neutrino emission and cooling of neutron stars to include the effects of rotation. The Lattimer compressible liquid drop model is the basis of our equation of state. We have developed a rapid version for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. We have also focused on the nuclei-nuclear matter phase transition just below nuclear matter density, including the probable nuclear deformations and the possible ''inside-out'' phase of bubbles, which could be of major importance in supernovae models. Work also progressed toward understanding the origin of the r-process elements, through focusing on the neutron star decompression model

  7. Annual report of Nuclear Science Research Institute, JFY2005

    International Nuclear Information System (INIS)

    2007-04-01

    Japan Atomic Energy Agency (JAEA) was inaugurated on October 1st, 2005. Works for the operation and maintenance of various research facilities as well as safety management, radiation protection, and radioactive wastes management, which have been undertaken by departments in Tokai Research Establishment of Japan Atomic Energy Research Institute (JAERI), were inherited by newly established departments of Nuclear Science Research Institute (NSRI). The NSRI is composed of Planning and Coordination Office and seven departments such as Department of Operational Safety Administration, Department of Radiation Protection, Department of Research Reactor and Tandem Accelerator, Department of Hot Laboratories and Facilities, Department of Criticality and Fuel Cycle Research Facilities, Department of Decommissioning and Waste Management, and Engineering Services Department. This annual report of JFY 2005 summarizes the activities of NSRI and is expected to be referred to and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to Middle-term Plan' successfully and effectively. In chapter 1, outline of organization and administrative activities of NSRI is described. In chapter 2, the following activities made by the departments in NSRI are summarized, i.e., (1) operation and maintenance of research reactors (JRR-3, JRR-4, NSRR), criticality assemblies (STACY, TRACY, FCA, TCA), hot laboratories, (BECKY, Reactor Fuel Examination Facility, WASTEF, Research Laboratory 4, Plutonium Research Laboratory 1, Tokai Hot Laboratory, etc), and large-scale facilities (Tandem accelerator, LSTF, THYNC, TPTF, etc), and (2) safety management, radiation protection, management of radioactive wastes, decommissioning of nuclear facilities, engineering services, utilities and maintenance, etc, all of which are indispensable for the stable and safe operation and utilization of the

  8. Nuclear Security Management for Research Reactors and Related Facilities

    International Nuclear Information System (INIS)

    2016-03-01

    This publication provides a single source guidance to assist those responsible for the implementation of nuclear security measures at research reactors and associated facilities in developing and maintaining an effective and comprehensive programme covering all aspects of nuclear security on the site. It is based on national experience and practices as well as on publications in the field of nuclear management and security. The scope includes security operations, security processes, and security forces and their relationship with the State’s nuclear security regime. The guidance is provided for consideration by States, competent authorities and operators

  9. The current situation and prospect of fundamental research about nuclear logging technology

    International Nuclear Information System (INIS)

    Zhang Feng; Wang Xinguang; Yuan Chao

    2010-01-01

    Nuclear logging technology is one of the important methods to evaluate complex hydrocarbon reservoir in the process of petroleum exploration and development. The fundamental research of nuclear logging is an important step of logging technology innovation. Through analyzing the current situation of the development of nuclear logging technology at home and abroad in recent years, the problems and gaps are pointed out in the field of fundamental research of nuclear logging at home, and the future development of new nuclear logging technologies is concisely analyzed. Therefore, the optimal design and processing are conducted from aspects of ray source, detector, data acquisition and processing method. In addition, the fundamental research of LWD and pulsed neutron logging technology is taken as the main breach. In the fundamental research of nuclear logging technology, innovative thinking should be expressed and the innovation should be achieved in every field of the development of nuclear logging technology. Meanwhile, the logging key lab should be taken as the platform and the latest achievement in the field of nuclear logging technology should be fully utilized. Thus, the level of independent R and D and technology innovation of logging tools will be raised and service for the exploration and development of petroleum and other mineral resources. (authors)

  10. Nuclear Safety Research Department annual report 2000

    International Nuclear Information System (INIS)

    Majborn, B.; Damkjaer, A.; Nielsen, S.P.; Nonboel, E.

    2001-08-01

    The report presents a summary of the work of the Nuclear Safety Research Department in 2000. The department's research and development activities were organized in two research programmes: 'Radiation Protection and Reactor Safety' and 'Radioecology and Tracer Studies'. In addition the department was responsible for the tasks 'Applied Health Physics and Emergency Preparedness', 'Dosimetry', 'Environmental Monitoring', and Irradiation and Isotope Services'. Lists of publications, committee memberships and staff members are included. (au)

  11. International cooperation for promotion of nuclear science and engineering research

    International Nuclear Information System (INIS)

    Shibata, Toshikazu; Sugiyama, Kazusuke; Nakazawa, Masaharu; Katoh, Toshio; Kimura, Itsuro.

    1993-01-01

    For promotion of nuclear science and engineering research, examinations were made on the possibilities and necessary measures to extend joint research at international level. The present article is a summary of the reports of investigations performed during FY 1986 through 1991 by the Special Committee of the AESJ for Feasibility Study on International Cooperation for Promotion of Nuclear Science and Engineering Research, under contract with Science and Technology Agency of Japan. Background information was collected on the present status of scientific research facilities in US, European and Asian countries on one hand, and on the expectations and prospects of Japanese scientists on the other hand. Based on the analysis of these data, some measures necessary to expand the international cooperation were proposed. It was emphasized that international joint research on a reciprocal basis would be effective in order to strengthen the technological basis of peaceful uses of nuclear energy. Problems to be solved for the new development were also discussed. (author)

  12. Planning and implementation of nuclear research programmes

    International Nuclear Information System (INIS)

    Lopes, J.L.

    1986-01-01

    The planning and implementation of nuclear research programmes in developed and developing countries is discussed. The main aspects of these programmes in USA, France, Japan, India and Brazil are reported. (M.W.O.) [pt

  13. Shanghai institute of nuclear research, academia sinica annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Annual Report is a comprehensive review of achievements made by Shanghai Institute of Nuclear Research (SINR), Academia Sinica in 1991, Which concerns nuclear physics (theories, experimentation, and application), nuclear chemistry (radiochemistry, radiopharmaceuticals, labelled compounds, analytical chemistry), radiation chemistry, accelerator physics and technology, nuclear detectors, computer application and maintenance, laboratory engineering, radiation protection and waste treatment. The maintenance, reconstruction and operation of its major facilities are also described

  14. RECENT ACTIVITIES AT THE CENTER FOR SPACE NUCLEAR RESEARCH FOR DEVELOPING NUCLEAR THERMAL ROCKETS

    International Nuclear Information System (INIS)

    O'Brien, Robert C.

    2001-01-01

    Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.

  15. Institutional radioactive waste management in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Kovarik, P.; Svoboda, K.; Podlaha, J.

    2008-01-01

    Nuclear research institute Rez, plc. (mentioned below as NRI) has had a dominant position in the area of the nuclear research and development in the Czech Republic, the Central and the Eastern Europe. Naturally, the radioactive waste management is an integral part of the nuclear industry, research and development. For that reason, there is Centre of the radioactive waste management (mentioned below as Centre) in the NRI. This Centre is engaged in the radioactive waste treatment, decontamination, characterisation, decommissioning and other relevant activities. This paper describes the system of technology and other information about institutional radioactive waste management in the NRI. (authors)

  16. Joint DOE-PNC research on the use of transparency in support of Nuclear Nonproliferation

    International Nuclear Information System (INIS)

    Mochiji, Toshiro; Tazaki, Makiko; Keeney, Robin; Puckett, John; Stanbro, William; Nakhleh, Charles

    1998-01-01

    PNC and LANL collaborated in research on the concept of transparency in nuclear nonproliferation. The research was based on the Action Sheet no.21, which was signed in February 1996, 'The Joint Research on 'Transparency' in Nuclear Nonproliferation' under the 'Agreement between the Power Reactor and Nuclear Fuel Development Corporation of Japan (PNC) and the US Department of Energy (DOE) for Cooperation in Research and Development Concerning Nuclear Material Control and Accounting Measures for Safeguards and Nonproliferation.' The scope of the research was a fundamental study on transparency to clarify the means to improve worldwide acceptability of nuclear energy from a nuclear nonproliferation viewpoint. The research encompassed three main topics: the policy environment of transparency, the development of transparency options, and technical options for transparency. Each side performed independent research then joint workshops were held to exchange information and views. This paper summarizes the results of these workshops. (author)

  17. Decommissioning Operations at the Cadarache Nuclear Research Center

    International Nuclear Information System (INIS)

    Gouhier, E.

    2008-01-01

    Among the different activities of the CEA research center of Cadarache, located in the south of France, one of the most important involves decommissioning. As old facilities close, decommissioning activity increases. This presentation will give an overview of the existing organization and the different ongoing decommissioning and cleanup operations on the site. We shall also present some of the new facilities under construction the purpose of which is to replace the decommissioned ones. Cadarache research center was created on October 14, 1959. Today, the activities of the research center are shared out among several technological R and D platforms, essentially devoted to nuclear energy (fission and fusion) Acting as a support to these R and D activities, the center of Cadarache has a platform of services which groups the auxiliary services required by the nuclear facilities and those necessary to the management of nuclear materials, waste, nuclear facility releases and decommissioning. Many old facilities have shut down in recent years (replaced by new facilities) and a whole decommissioning program is now underway involving the dismantling of nuclear reactors (Rapsodie, Harmonie), processing facilities (ATUE uranium treatment facility, LECA UO 2 facility) as well as waste treatment and storage facilities (INB37, INB 56. In conclusion: other dismantling and cleanup operations that are now underway in Cadarache include the following: - Waste treatment and storage facilities, - Historical VLLW and HLW storage facility, - Fissile material storage building, - Historical spent fuel storage facility. Thanks to the project organization: - Costs and risks on these projects can be reduced. - Engineers and technicians can easily move from one project to another. In some cases, when a new facility is under construction for the purpose of replacing a decommissioned one, some of the project team can integrate the new facility as members of the operation team. Today

  18. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report. [Summaries of research activities at Carnegie-Mellon University

    Energy Technology Data Exchange (ETDEWEB)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed.

  19. Portuguese research program on nuclear fusion

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-01-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described

  20. RATU - Nuclear power plant structural safety research programme

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-07-01

    Studies on the structural materials in nuclear power plants create the experimental data and background information necessary for the structural integrity assessments of mechanical components. The research is carried out by developing experimental fracture mechanics methods including statistical analysis methods of materials property data, and by studying material ageing and, in particular, mechanisms of material deterioration due to neutron irradiation, corrosion and water chemistry. Besides material studies, new testing methods and sensors for measurement of loading and water chemistry parameters have been developed. The monitoring data obtained in real power plants has been used to simulate more precisely the real environment during laboratory tests. The research on structural analysis has focused on extending and verifying the analysis capabilities for structural assessments of nuclear power plants. A widely applicable system including various computational fracture assessment methods has been created with which different structural problems can be solved reliably and effectively. Research on reliability assessment of maintenance in nuclear power plants is directed to practical case studies on components and structures of safety importance, and to the development of models for maintenance related decision support. A systematic analysis of motor-operated valve has been performed

  1. A lead for transvaluation of global nuclear energy research and funded projects in Japan

    International Nuclear Information System (INIS)

    Kiriyama, Eriko; Kajikawa, Yuya; Fujita, Katsuhide; Iwata, Shuichi

    2013-01-01

    Highlights: • Chernobyl accident had limited influence on basic research in nuclear energy. • Budget allocation to R and D and number of published papers have recently decreased. • Citation network analysis revealed reactor safety and fusion as current research trend. • Nuclear energy research policy will change after Fukushima disaster. - Abstract: The decision-making process that precedes the introduction of a new energy system should strive for a balance among human security, environmental safeguards, energy security, proliferation risk, economic risks, etc. For nuclear energy, the Fukushima Daiichi nuclear disaster (Fukushima disaster) has brought forth a strong need for transvaluation of the present technology. Here, we analyzed bibliographic records of publications in nuclear science and technology to illustrate an overview and trends in nuclear energy technology and related fields by using citation network analysis. We also analyzed funding data and keywords assigned for each project by co-occurrence network analysis. This research integrates citation network analysis and bibliometric keyword analysis to compare the global trends in nuclear energy research and characteristics of research conducted at universities and institutes in Japan. We show that the Chernobyl accident had only a limited influence on basic research. The results of papers are dispersed in diverse areas of nuclear energy technology research, and the results of KAKEN projects in Japan are highly influenced by national energy policy with a focus on nuclear fuel cycle for energy security, although KAKEN allows much freedom in the selection of research projects to academic community

  2. The Nuclear Safeguards and Security Activities under Euratom Research and Training Programme

    International Nuclear Information System (INIS)

    Abousahl, S.; Palajova, Z.; Janssens, W.A.M.; Luetzenkirchen, K.; Goncalves, J.G.M.; Aregbe, Y.; )

    2015-01-01

    Nuclear safeguards and security are absolute priorities for the EU. At technical level, the Joint Research Centre (JRC) as the European Commission's in-house science service plays an important role in the field of nuclear research, training and education that include nuclear safety, safeguards and security. The JRC's nuclear research activities are defined in a Council Regulation on the research and training programme of the European Atomic Energy Community. The JRC works closely with EC safeguards authority, whose mission is to ensure that nuclear material within the EU is not diverted from its intended use according to Euratom treaty. Technologies, methodologies and trainings are developed according to the Euratom Safeguards inspectorate's needs. In the area of nuclear security, the JRC contributes to the development of specific expertise in the field of nuclear forensics and border security detection as well as related training efforts for first front-line responders and national experts. The JRC provides its expert support for the implementation of internal EU action plans mainly in the field of radiological and nuclear security. At an international level, the JRC cooperates with the IAEA mainly through the EC support programme on the control of nuclear materials and facilities in order to avoid proliferation or diversion. Close cooperation with IAEA nuclear security is developed through the recent signature of a dedicated practical arrangement. Key partnerships have also been developed in the field of safeguards and security with the US-DoE, Russia, Japan and China. In addition, JRC contributes significantly to the EU nuclear safeguards and security outreach activities implemented under the Instrument for Nuclear Safety Cooperation and Instrument contributing to Stability and Peace. In this paper we will highlight some of the JRC contributions to the enhancement of nuclear safeguards and security at EU and international levels. (author)

  3. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report

    International Nuclear Information System (INIS)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed

  4. Research on evacuation planning as nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Yamamoto, Kazuya

    2007-10-01

    The International Atomic Energy Agency (IAEA) has introduced new concepts of precautionary action zone (PAZ) and urgent protective action planning zone (UPZ) in 'Preparedness and Response for a Nuclear or Radiological Emergency' (GS-R-2 (2002)), in order to reduce substantially the risk of severe deterministic health effects. Open literature based research was made to reveal problems on evacuation planning and the preparedness for nuclear emergency arising from introduction of PAZ into Japan that has applied the emergency planning zone (EPZ) concept currently. In regard to application of PAZ, it should be noted that the requirements for preparedness and response for a nuclear or radiological emergency are not only dimensional but also timely. The principal issue is implementation of evacuation of precautionary decided area within several hours. The logic of evacuation planning for a nuclear emergency and the methods of advance public education and information in the U.S. is effective for even prompt evacuation to the outside of the EPZ. As concerns evacuation planning for a nuclear emergency in Japan, several important issues to be considered were found, that is, selection of public reception centers which are outside area of the EPZ, an unique reception center assigned to each emergency response planning area, public education and information of practical details about the evacuation plan in advance, and necessity of the evacuation time estimates. To establish a practical evacuation planning guide for nuclear emergencies, further researches on application of traffic simulation technology to evacuation time estimates and on knowledge of actual evacuation experience in natural disasters and chemical plant accidents are required. (author)

  5. Research in nuclear astrophysics: Stellar collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.; Yahil, A.

    1991-01-01

    The interaction between nuclear theory and some outstanding problems in astrophysics is examined. We are actively researching the astrophysics of gravitational collapse, neutron star birth and neutrino emission, and neutron star cooling, on the one hand, and the nuclear physics of the equation of state of hot, dense matter on the other hand. There is close coupling between nuclear theory and supernova and neutron star phenomenon; some nuclear matter properties might be best delineated by astrophysical considerations. Our research has focused on the neutrinos emitted from supernovae, since they are the only available observables of the internal supernova mechanism. We are modifying our hydrodynamical code to use implicit differencing and to include multi-group neutrino diffusion and general relativity. In parallel, we are extending calculations of core collapse supernovae to long times after collapse by using a hybrid explicit-implicit hydrodynamical code and by using simplified neutrino transport. We hope to establish the existence or non-existence of the so-called long-term supernova mechanism. We are also extending models of the neutrino emission and cooling of neutron stars to include the effects of rotation and the direct Urca process that we recently discovered to be crucial. We have developed a rapid version of the dense matter equation of state for use in hydrodynamic codes that retains essentially all the physics of earlier, more detailed equations of state. This version also has the great advantage that nuclear physics inputs, such as the nuclear incompressibility, symmetry, energy, and specific heat, can be specified

  6. Nuclear weapons research in Sweden. The co-operation between civilian and military research, 1947 - 1972

    Energy Technology Data Exchange (ETDEWEB)

    Jonter, Thomas [Uppsala Univ. (Sweden). Dept. of History

    2002-05-01

    The Swedish nuclear weapons research began as early as 1945, shortly after the first atomic bombs fell over Japan. The assignment to look into the new weapon of mass destruction went to the Swedish National Defence Research Establishment (FOA). Admittedly, the main aim of the research initiated at that time was to find out how Sweden could best protect itself against a nuclear weapon attack. However, from the outset FOA was interested in investigating the possibilities of manufacturing what was then called an atomic bomb. A co-operation between FOA and AB Atomenergi (AE), which was created in 1947 in order to be responsible for the industrial development of civilian nuclear energy, was initiated. AE made several technical investigations within this co-operation regarding choice of reactors and preconditions for a production of weapons-grade plutonium. The first purpose of this report is therefore to investigate how this co-operation emerged and what consequences it had for the project to produce basic information for the Swedish manufacture of nuclear weapons. In general terms, the finding of this report is that FOA was responsible for the overall nuclear weapons research. For this reason, FOA was in charge of the construction of the nuclear device and the studies of its effects. Additionally, AE should deliver basic information of a possible production of weapons-grade plutonium and investigate the possibilities of a production or a procurement of inspection-free heavy water (i.e. without inspections by the supplying country). AE should also build a reprocessing plant and manufacture fuel elements to be used in the reactors for a production of weapons-grade plutonium. Furthermore, it is important to emphasise that both FOA and AE conducted plutonium research. The reason why FOA conducted this research was that the plutonium had to be in metallic form in order to be used in a nuclear weapons device. Therefore, FOA carried out research with the purpose of producing

  7. Management of Spent Nuclear Fuel of Nuclear Research Reactor VVR-S at the National Institute of Physics and Nuclear Engineering, Bucharest, Romania

    Science.gov (United States)

    Biro, Lucian

    2009-05-01

    The Nuclear Research Reactor VVR-S (RR-VVR-S) located in Magurele-Bucharest, Romania, was designed for research and radioisotope production. It was commissioned in 1957 and operated without any event or accident for forty years until shut down in 1997. In 2002, by government decree, it was permanently shutdown for decommissioning. The National Institute of Physics and Nuclear Engineering (IFIN-HH) is responsible for decommissioning the RR-VVR-S, the first nuclear decommissioning project in Romania. In this context, IFIN-HH prepared and obtained approval from the Romanian Nuclear Regulatory Body for the Decommissioning Plan. One of the most important aspects for decommissioning the RR-VVR-S is solving the issue of the fresh and spent nuclear fuel (SNF) stored on site in wet storage pools. In the framework of the Russian Research Reactor Fuel Return Program (RRRFR), managed by the U.S. Department of Energy and in cooperation with the International Atomic Energy Agency and the Rosatom State Corporation, Romania repatriated all fresh HEU fuel to the Russian Federation in 2003 and the HEU SNF will be repatriated to Russia in 2009. With the experience and lessons learned from this action and with the financial support of the Romanian Government it will be possible for Romania to also repatriate the LEU SNF to the Russian Federation before starting the dismantling and decontamination of the nuclear facility. [4pt] In collaboration with K. Allen, Idaho National Laboratory, USA; L. Biro, National Commission for Nuclear Activities Control, Romania; and M. Dragusin, National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania.

  8. The Nordic Research programme on nuclear safety

    International Nuclear Information System (INIS)

    1992-06-01

    Only two of the five Nordic countries (Denmark, Iceland, Finland, Norway and Sweden) - Sweden and Finland - operate nuclear power plants, but there are a number of nuclear installations close to their borders. Regular 4-year programmes were initiated in 1977, designated NKS-programmes. (NKS: Nordisk KerneSikkerhedsforskning - Nordic nuclear-safety research). The current fourth NKS-programme is, influenced by the Chernobyl accident, dominated by the necessity for acquiring knowledge on unexpected events and release of radioactive material from nuclear installations. The present programme is divided into the areas of emergency preparedness, waste and decommissioning, radioecology and reactor safety. It comprises a total of 18 projects, the results of which will later be published in the form of handbooks for use in cases of emergency etc. The future of joint Nordic project work in the nuclear safety field must be seen in the light of changing conditions in and around the Nordic countries, such as the opening of relations to neighbours in the east, the move towards the European Communities and the need for training a new generation of specialists in the nuclear field etc. Each project is described in considerable detail and a list of reports resulting from the third NKS-programme 1985-1989 is given. (AB)

  9. History of Discharge of Radionuclide from Nuclear Malaysia Research Reactor

    International Nuclear Information System (INIS)

    Mohd Nahar Othman; Ismail Sulaiman

    2013-01-01

    After more than 40 years the operation of Malaysian Nuclear Agency research reactor, this is the first time, the discharge emission radionuclide to environment is recorded and analyzed in detail. Starting from 1984, radionuclide Ar-41 had been analyzed manually by Research Officers but their finding is not recorded in any Journal. That is responsible of Safety and Health Division to make sure the safety of the workers and public living around Malaysian Nuclear Agency receive safe dose. This paper will report dose that had been discharge to the environment starting from 1984 to 2012 and it detail calculations.After more than 40 years the operation of Malaysian Nuclear Agency research reactor, this is the first time, the discharge emission radionuclide to environment is recorded and analyzed in detail. Starting from 1984, radionuclide Ar-41 had been analyzed manually by Research Officers but their finding is not recorded in any Journal. That is responsible of Safety and Health Division to make sure the safety of the workers and public living around Malaysian Nuclear Agency receive safe dose. This paper will report dose that had been discharge to the environment starting from 1984 to 2012 and it detail calculations. (author)

  10. National nuclear power plant safety research 2011-2014. SAFIR2014 framework plan

    International Nuclear Information System (INIS)

    2010-01-01

    A country utilising nuclear energy is presumed to possess a sufficient infrastructure to cover the education and research in this field, besides the operating organisations of the plants and a regulatory body. The starting point of public nuclear safety research programmes is that they provide the necessary conditions for retaining the knowledge needed for ensuring the continuance of safe and economic use of nuclear power, for development of new know-how and for participation in international cooperation. In fact, the Finnish organisations engaged in research in this sector have been an important resource which the various ministries, the Radiation and Nuclear Safety Authority (STUK) and the power companies have had at their disposal. Ministry of employment and the economy appointed a group to write the Framework Plan of the new programme. This report contains a proposal for the general outline of the programme, entitled as SAFIR2014 (SAfety of Nuclear Power Plants - Finnish National Research Programme). The plan has been made for the period 2011-2014, but it is based on safety challenges identified for a longer time span as well. Olkiluoto 3, the new nuclear power plant unit under construction and new decisions-in-principle have also been taken into account in the plan. The safety challenges set by the existing plants and the new projects, as well as the ensuing research needs do, however, converge to a great extent. The research programme is strongly based on the Chapter 7a of the Finnish Nuclear Energy Act. The construction of new power plant units will increase the need for experts in the field in Finland. At the same time, the retirement of the existing experts is continuing. These factors together will call for more education and training, in which active research activities play a key role. This situation also makes long-term safety research face a great challenge. The Framework Plan aims to define the important research needs related to the safety

  11. State of the art and tendencies of development of factographic information systems in nuclear research and nuclear technology

    International Nuclear Information System (INIS)

    Jankowski, L.

    1983-01-01

    Factographic information systems for nuclear research and nuclear technology have become important preconditions of research and development process intensification in the CMEA member countries. Their consistent development and transformation into logical information systems calls for a new approach to the problems of computer technique and program development

  12. Availability analysis of the nuclear instrumentation of a research reactor

    International Nuclear Information System (INIS)

    Vianna Filho, Alfredo Marques

    2016-01-01

    The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system. (author)

  13. Nuclear safety research project. Annual report 1995

    International Nuclear Information System (INIS)

    Hueper, R.

    1996-08-01

    The reactor safety R and D work of the Karlsruhe Research Centre (FZK) has been part of the Nuclear Safety Research Project (PSF) since 1990. The present annual report 1995 summarizes the R and D results. The research tasks are coordinated in agreement with internal and external working groups. The contributions to this report correspond to the status of early 1996. An abstract in English precedes each of them, whenever the respective article is written in German. (orig.) [de

  14. Reliability research on nuclear I and C system at KAIST NIC laboratory

    International Nuclear Information System (INIS)

    Seong, Poong-Hyun

    1996-01-01

    As the use of computer systems becomes popular in nuclear industry, reliability assurance of digitized nuclear instrumentation and control systems is becoming one of hot issues. Some issues on this are S/W verification and validation, reliability estimation of digital systems, development strategy of high integrity knowledge base for expert systems, and so on. In order to address these issues, the Nuclear Instrumentation and Control (NIC) laboratory at KAIST is conducting some research projects. This paper describes some highlights of these research activities. The final goal of these research activities is to develop some useful methodologies and tools for development of dependable digital nuclear instrument and control systems. (author)

  15. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  16. Basic research on human reliability in nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Li; Deng Zhiliang

    1996-10-01

    Human reliability in nuclear power plants is one of key factors in nuclear safety and economic operation. According to cognitive science, behaviour theory and ergonomic and on the bases of human cognitive behaviour characteristics, performance shaping factors, human error mechanisms and organization management, the project systematically studied the human reliability in nuclear power plant systems, established the basic theory and methods for analyzing human factor accidents and suggested feasible approaches and countermeasures for precaution against human factor accidents and improving human reliability. The achievement has been applied in operation departments, management departments and scientific research institutions of nuclear power, and has produced guiding significance and practical value to design, operation and management in nuclear power plants. (11 refs.)

  17. Nuclear Research and Development Capabilities Needed to Support Future Growth

    Energy Technology Data Exchange (ETDEWEB)

    Wham, Robert M. [ORNL, P.O. Box 2008, Oak Ridge, TN 37831-6154 (United States); Kearns, Paul [Battelle Memorial Institute (United States); Marston, Ted [Marston Consulting (United States)

    2009-06-15

    The energy crisis looming before the United States can be resolved only by an approach that integrates a 'portfolio' of options. Nuclear energy, already an important element in the portfolio, should play an even more significant role in the future as the U.S. strives to attain energy independence and reduce carbon emissions. The DOE Office of Nuclear Energy asked Battelle Memorial Institute to obtain input from the commercial power generation industry on industry's vision for nuclear energy over the next 30-50 years. With this input, Battelle was asked to generate a set of research and development capabilities necessary for DOE to support the anticipated growth in nuclear power generation. This presentation, based on the report generated for the Office of Nuclear Energy, identifies the current and future nuclear research and development capabilities required to make this happen. The capabilities support: (1) continued, safe operation of the current fleet of nuclear plants; (2) the availability of a well qualified and trained workforce; (3) demonstration of the next generation nuclear plants; (4) development of a sustainable fuel cycle; (5) advanced technologies for maximizing resource utilization and minimization of waste and (6) advanced modeling and simulation for rapid and reliable development and deployment of new nuclear technologies. In order to assure these capabilities are made available, a Strategic Nuclear Energy Capability Initiative is proposed to provide the required resources during this critical period of time. (authors)

  18. Proceedings of NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education

    International Nuclear Information System (INIS)

    Constantin, Marin; Turcu, Ilie

    2008-01-01

    The proceedings of the NUCLEAR 2008 annual international conference on sustainable development through nuclear research and education held at INR-Pitesti on May, 28 - 30 2008 contain 88 communications presented in 3 sections addressing the themes of Nuclear energy, Environmental protection, and Sustainable development. In turn these sections are addressing the following items: Section 1.1 - Nuclear safety and severe accidents (12 papers); Section 1.2 - Nuclear reactors (11 papers); Section 1.3 - Nuclear technologies and materials (20 papers); Section 2.1 - Radioprotection (5 papers); Section 2.2 - Radioactive waste management (20 papers); Section 2.3 - air, water and soil protection (5 papers); Section 3.1 - Strategies in energy (3 papers); Section 3.2 - Education, continuous formation and knowledge transfer (8 papers); Section 3.3 - International partnership for a sustainable development (4 papers)

  19. Trends in Nuclear Explosion Monitoring Research & Development - A Physics Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Maceira, Monica [Los Alamos National Laboratory; Blom, Philip Stephen [Los Alamos National Laboratory; Maccarthy, Jonathan K. [Los Alamos National Laboratory; Marcillo, Omar Eduardo [Los Alamos National Laboratory; Euler, Garrett Gene [Los Alamos National Laboratory; Begnaud, Michael Lee [Los Alamos National Laboratory; Ford, Sean R. [Lawrence Livermore National Laboratory; Pasyanos, Michael E. [Lawrence Livermore National Laboratory; Orris, Gregory J. [Naval Research Laboratory; Foxe, Michael P. [Pacific Northwest National Laboratory; Arrowsmith, Stephen J. [Sandia National Laboratory; Merchant, B. John [Sandia National Laboratory; Slinkard, Megan E. [Sandia National Laboratory

    2017-06-01

    This document entitled “Trends in Nuclear Explosion Monitoring Research and Development – A Physics Perspective” reviews the accessible literature, as it relates to nuclear explosion monitoring and the Comprehensive Nuclear-Test-Ban Treaty (CTBT, 1996), for four research areas: source physics (understanding signal generation), signal propagation (accounting for changes through physical media), sensors (recording the signals), and signal analysis (processing the signal). Over 40 trends are addressed, such as moving from 1D to 3D earth models, from pick-based seismic event processing to full waveform processing, and from separate treatment of mechanical waves in different media to combined analyses. Highlighted in the document for each trend are the value and benefit to the monitoring mission, key papers that advanced the science, and promising research and development for the future.

  20. Probing vacuum structure in nuclear collisions. Research report period: 1992--1995

    International Nuclear Information System (INIS)

    Rafelski, J.

    1995-02-01

    This is a report of the research activities in the field of Relativistic Nuclear Collisions/Theoretical Nuclear Physics of Johann Refelski at University of Arizona, supported by the Department of Energy, Nuclear Physics Division under grant No. DE-FG02-92ER40733. This report comprises: Section 1 surveys the general context of the work and presents summary of wider research objectives; Section 2 reviews the progress in the interpretation of experimental data, primarily related to diagnosis of high density nuclear matter with strange particle production, in heavy ion collisions at 10--200 GeV A; Section 3 presents the status of the studies of a relativistic quantum transport theory and the related vacuum structure and particle production processes; Section 4 presents a compilation of research projects completed under auspices of this program, with a short narrative description of publication contents

  1. The Commission's research action programme on the development of nuclear fission energy

    International Nuclear Information System (INIS)

    1984-01-01

    For its 'Framework Programme 1984-1987' the Commission has defined the major goals for a European Scientific and Technical Strategy. One of the means to reduce the energy dependence of the Community, which is an important objective, is to favour the development of nuclear fission energy. As electricity production by nuclear reactors has reached industrial maturity, the Community activities are directed mainly to safety aspects, in order to ensure the protection of workers and the general public, against hazards linked to operations in the nuclear fuel cycle. A description of the main features of the five sub-programmes on nuclear fission energy is given below; these programmes are: reactor safety; nuclear fuels and actinides research; management of radioactive waste; safeguarding and management of fissile materials; decommissioning of nuclear installations. The research and development work is carried out either by the Commission's Joint Research Center or by organizations and companies of the Member Countries, with the Commission's financial support. (author)

  2. Finnish Research Programme on Nuclear Waste Management (KYT). Framework Programme for 2002-2005

    International Nuclear Information System (INIS)

    Rasilainen, K.

    2002-12-01

    The new Finnish research programme on nuclear waste management (KYT) will be conducted in 2002 - 2005. This framework programme describes the starting point, the basic aims and the organisation of the research programme. The starting point of the KYT programme is derived from the present state and future challenges of Finnish nuclear waste management. The research programme is funded mainly by the Ministry of Trade and Industry (KTM), the Radiation and Nuclear Safety Authority (STUK), Posiva Oy, Fortum Oyj, Teollisuuden Voima Oy (TVO), and the National Technology Agency (Tekes). As both regulators and implementors are involved, the research programme concentrates on neutral research topics that must be studied in any case. Methods and tools for experimental and theoretical studies fall in this category. State of the art -reviews on relevant topics also create national know-how. Topics that directly belong to licensing activities of nuclear waste management are excluded from the research programme. KYT carries out technical studies that increase national know-how in the area of nuclear waste management. The aim is to maintain and develop basic expertise needed in the operations derived from the national nuclear waste management plan. The studies have been divided into strategic studies and studies enhancing the long-term safety of spent nuclear fuel disposal. Strategic studies support the overall feasibility of Finnish nuclear waste management. These studies include basic options and overall safety principles related to nuclear fuel cycle and nuclear waste management. In addition, general cost estimates as well as general safety considerations related to transportations, low- and medium level wastes, and decommissioning are included in strategic studies. Studies supporting the long-term safety of spent fuel disposal include issues related to performance assessment methodology, release of radionuclides from the repository, behaviour of bedrock and groundwater

  3. Direct determination of Cd, Hg in liver and kidney by prompt gamma activation analysis

    International Nuclear Information System (INIS)

    Vuong Huu tan; Tran Tuan Anh; Nguyen Canh Hai; Le Van Lieu

    2000-01-01

    The development of a method for in-vivo measurement of some elemental concentration in organs making use of prompt gamma activation analysis with the filtered neutron beam at the Dalat reactor is being carried out. In this paper we present primary results in research and development of an IVPGNAA facility at the Dalat reactor. Beside the description of experimental set-up, it consists of determination of thermal neutron flux distribution in phantom, and the evaluation of the detection limit and analytical sensitivity for Cd and Hg in the kidney and the liver. Discussions are given to improve the IVPGNAA facility in the future. (author)

  4. Role of research in non-destructive evaluation for nuclear technology

    International Nuclear Information System (INIS)

    Jayakumar, T.; Rao, B.P.C.; Raj, Baldev

    2010-01-01

    This paper presents the role of research in non-destructive evaluation (NDE) of microstructures and mechanical properties in materials, assessment of manufacturing quality and early detection of in-service damage in nuclear components and structures. A few applications and case studies are discussed based on the results of systematic research and developmental activities pursued in different NDE techniques at the authors' laboratory for three different types of Indian nuclear reactors. (author)

  5. Nuclear and radiochemistry research: from development to deployment

    International Nuclear Information System (INIS)

    Tomar, B.S.

    2015-01-01

    Fundamental research in nuclear and radiochemistry is essential in building the expertise in quality assurance and quality control (QA/QC) of nuclear materials, which in turn is important for harnessing nuclear energy for peaceful purposes. Expansion of nuclear fuel cycle activities throws several new challenges before the nuclear scientists with regard to the chemical quality control, quality assurance, accounting of special nuclear materials, improving the detection limits of the trace elements, etc. Nondestructive assay (NDA) of nuclear materials is important from the point of view of nuclear material accounting and control. The requirement of QA/QC of finished products as well as accounting of special nuclear materials in waste packets can be met through NDA techniques. For this purpose passive gamma and neutron based techniques are employed for Pu based materials. On the other hand, NDA of uranium based fuels need active interrogation methods for quantitative assay in sealed packets, while isotopic composition can be measured using high resolution gamma ray spectrometry in suitable gamma energy region. Some of the other elements, such as, boron in finished products can be assayed using ion beam analysis techniques, such as proton induced gamma emission (PIGE) employing low energy proton beams. In the present talk, a few examples of such challenges and their possible solutions would be discussed. (author)

  6. Current Status and Issues of Nuclear Engineering Research and Educational Facilities in Universities

    International Nuclear Information System (INIS)

    2004-01-01

    It is important to discuss about nuclear engineering research and educational facilities in universities after new educational foundation. 12 universities investigated issues and a countermeasure of them. The results of a questionnaire survey, issues and countermeasure are shown in this paper. The questionnaire on the future nuclear researches, development of education, project, maintenance of nuclear and radioactive facilities and accelerator, control of uranium in subcritical test facilities, use of new corporation facilities, the fixed number of student, number of graduate, student experiments, themes of experiments and researches, the state of educational facilities are carried out. The results of questionnaire were summarized as followings: the fixed number of student (B/M/D) on nuclear engineering, exercise of reactor, education, themes, educational and research facilities, significance of nuclear engineering education in university and proposal. (S.Y.)

  7. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2011-01-01

    Due to the use of nuclear energy about 17.000 t (27.000 m 3 ) of high level waste and about 300.000 m 3 of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear graphite

  8. Institute of Energy and Climate Research IEK-6. Nuclear waste management and reactor safety report 2009/2010. Material science for nuclear waste management

    Energy Technology Data Exchange (ETDEWEB)

    Klinkenberg, M; Neumeier, S; Bosbach, D [eds.

    2011-07-01

    Due to the use of nuclear energy about 17.000 t (27.000 m{sup 3}) of high level waste and about 300.000 m{sup 3} of low and intermediated level waste will have accumulated in Germany until 2022. Research in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety Division focuses on fundamental and applied aspects of the safe management of nuclear waste - in particular the nuclear aspects. In principle, our research in Forschungszentrum Juelich is looking at the material science/solid state aspects of nuclear waste management. It is organized in several research areas: The long-term safety of nuclear waste disposal is a key issue when it comes to the final disposal of high level nuclear waste in a deep geological formation. We are contributing to the scientific basis for the safety case of a nuclear waste repository in Germany. In Juelich we are focusing on a fundamental understanding of near field processes within a waste repository system. The main research topics are spent fuel corrosion and the retention of radionuclides by secondary phases. In addition, innovative waste management strategies are investigated to facilitate a qualified decision on the best strategy for Germany. New ceramic waste forms for disposal in a deep geological formation are studied as well as the partitioning of long-lived actinides. These research areas are supported by our structure research group, which is using experimental and computational approaches to examine actinide containing compounds. Complementary to these basic science oriented activities, IEK-6 also works on rather applied aspects. The development of non-destructive methods for the characterisation of nuclear waste packages has a long tradition in Juelich. Current activities focus on improving the segmented gamma scanning technique and the prompt gamma neutron activation analysis. Furthermore, the waste treatment group is developing concepts for the safe management of nuclear

  9. k0-INAA for APM samples collected in period of June 2004 - March 2005 and some marine certified reference materials

    International Nuclear Information System (INIS)

    Dung, Ho Manh; Vu, Cao Dong; Y, Truong; Sy, Nguyen Thi

    2006-01-01

    The airborne particulate matter (APM) samples have been collected in 2004 using two types of polycarbonate membrane filter PM 2.5 and PM 2.5-10 at two sites of industrial (Ho Chi Mihn City) and rural (Dateh) regions in south of Vietnam. Three marine certified reference materials have been selected to establish a k0-NAA procedure for marine samples. The concentration of trace multi-element in the samples has been determined by the k 0 -INAA procedure using K o -DALAT software developed in Dalat NRI. About 28 elements in 224 APM samples collected at two areas of Dateh and HCMC of Vietnam in period from June, 2004 to March, 2005 were presented in report. The statistical analysis was applied to the data set to investigate the pollution source at sampling sites. The results proved that the k 0 -NAA on the Dalat research reactor is a reliable and effective analytical technique for characterization of trace multi-element in APM and marine samples for air and marine environmental pollution study in Vietnam. (author)

  10. Animals in nuclear research: where ethics and expediency meet

    International Nuclear Information System (INIS)

    Newton, P.J.F.

    1988-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has a direct involvement in nuclear medicine, microbiological and environmental studies which utilise animals in the research work. The opposition to experiments on animals is briefly discussed. The Australia codes of practice for the care and use of animals for experimental purposes are outlined

  11. Oil shale research related to proposed nuclear projects

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, H C; Sohns, H W; Dinneen, G U [Laramie Petroleum Research Center, Bureau of Mines, Department of the Interior, Laramie, WY (United States)

    1970-05-15

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  12. Oil shale research related to proposed nuclear projects

    International Nuclear Information System (INIS)

    Carpenter, H.C.; Sohns, H.W.; Dinneen, G.U.

    1970-01-01

    The Bureau of Mines is conducting research to develop data pertinent to in situ retorting of oil shale fractured by a nuclear explosion or other means. Maximum utilization of the Green River oil shale found in Colorado, Utah, and Wyoming, at depths ranging from outcrops to several thousand feet, requires development of several methods of processing. Early research was devoted to developing processes for application to oil shale occurring at depths suitable for mining. In present research, the emphasis is on in situ retorting and recovery processes that would be more satisfactory for oil shales occurring at greater depths. Development of an in situ process depends upon finding or establishing sufficient permeability in the oil shale beds for the passage of fluids which serve as a heat carrier in bringing the oil shale to retorting temperature. Use of a nuclear explosive seems to offer the best chance for successfully fracturing the thicker and more deeply buried portions of the deposit to give the required permeability. Processing the very large quantity of broken and fractured oil shale that would be produced presents many problems which require new background data for their solution. This paper describes research the Bureau of Mines is conducting to develop pertinent data. Primarily this research involves laboratory determination of properties of oil shale, pilot scale investigation of retorting characteristics of ungraded broken shale, and underground combustion of shale fractured by pressure and chemical explosives. Application of the research results should aid in designing the oil recovery phase and provide an estimate of the quantity of oil that may be obtained in a nuclear experiment in oil shale. (author)

  13. Research and development for the nuclear energy of the future

    International Nuclear Information System (INIS)

    Bernard, P.

    2002-01-01

    In the framework of the energy demand increase facing the environment protection, the three main objectives of the research and development for the nuclear energy are developed in this document: to support the today nuclear industry, to answer the public anxiety concerning the sanitary and environmental impact of nuclear activities, to design, evaluate and develop new reactors. (A.L.B.)

  14. Activities and cooperation opportunities at Cekmece Nuclear Research and Training Center

    International Nuclear Information System (INIS)

    Can, S.

    2004-01-01

    Turkey's familiarization with nuclear energy began in July 1955, when it signed a bilateral agreement with the USA to cooperate in the 'peaceful uses of nuclear energy'. In 1956, the Turkish Atomic Energy Commission (TAEK) was created. Cekmece Nuclear Research and Training Center (CNAEM) was formally established in 1962. Turkey's first research reactor, a pool-type 1 MW reactor at CNAEM site, known as TR-1, went critical in 1962 and was shut down in September 1977. Strong collaborations with national and international organizations have been achieved for the promotion of the peaceful uses of nuclear energy and its applications in Turkey. Meanwhile the TR-2 reactor (5 MW) was commissioned in 1984 in order to meet the increasing demand of radioisotopes.CNAEM as a subsidiary of TAEK is charged to perform R and D activities on whole area of nuclear science and technology, such as research reactor, nuclear safety, nuclear fuel technology and fuel analysis codes, nuclear materials, NDT, nuclear electronics, accelerator, radiobiology, cytogenetics (bio dosimetry), radioecology, marine radioactivity, radiation safety, dosimetry, radioactive waste management, calibration of nuclear instruments, environmental monitoring. Possible cooperation fields between CNAEM and other institutions are as follows: measurements of radioactivity in the environment, radioecological studies of radioactivity levels in environmental samples, indoor radon measurements, development and production of radiopharmaceuticals, radiation cytogenetics (bio dosimetry), training in NDT, certification of industrial workers who use non-destructive testing devices, production of UO 2 and (U,Th)O 2 based fuel material, development and construction of radiation measurement instrument, analysis of all kind of uranium and thorium, training on processing and storage of low level radioactive waste

  15. Activities and cooperation opportunities at Cekmece nuclear research and training center

    International Nuclear Information System (INIS)

    Can, S.

    2004-01-01

    Full text: Turkey's familiarization with nuclear energy began in July 1955, when it signed a bilateral agreement with the USA to cooperate in the p eaceful uses of nuclear energy . In 1956, the Turkish Atomic Energy Commission (TAEK) was created. Cekmece Nuclear Research and Training Center (CNAEM) was formally established in 1962. Turkey's first research reactor, a pool-type 1 MW reactor at CNAEM site, known as TR-1, went critical in 1962 and was shut down in September 1977. Strong collaborations with national and international organizations have been achieved for the promotion of the peaceful uses of nuclear energy and its applications in Turkey. Meanwhile the TR-2 reactor (5 MW) was commissioned in 1984 in order to meet the increasing demand of radioisotopes.CNAEM as a subsidiary of TAEK is charged to perform R and D activities on whole area of nuclear science and technology, such as research reactor, nuclear safety, nuclear fuel technology and fuel analysis codes, nuclear materials, NDT, nuclear electronics, accelerator, radiobiology, cytogenetics (bio dosimetry), radioecology, marine radioactivity, radiation safety, dosimetry, radioactive waste management, calibration of nuclear instruments, environmental monitoring. Possible cooperation fields between CNAEM and other institutions are as follows: measurements of radioactivity in the environment, radioecological studies of radioactivity levels in environmental samples, indoor radon measurements, development and production of radiopharmaceuticals, radiation cytogenetics (bio dosimetry), training in NDT, certification of industrial workers who use non-destructive testing devices, production of UO 2 and (U,Th)O 2 based fuel material, development and construction of radiation measurement instrument, analysis of all kind of uranium and thorium, training on processing and storage of low level radioactive waste

  16. Accounting for and control of nuclear material at the Central Institute of Nuclear Research, Rossendorf

    International Nuclear Information System (INIS)

    Heidel, S.; Rossbander, W.; Helming, M.

    1983-01-01

    A survey is given of the system of accounting for and control of nuclear material at the Central Institute for Nuclear Research, Rossendorf. It includes 3 material balance areas. Control is implemented at both the institute and the MBA levels on the basis of concepts which are coordinated with the national control authority of the IAEA. The system applied enables national and international nuclear material control to be carried out effectively and economically at a minimum of interference with operational procedures. (author)

  17. Nuclear plant-aging research on reactor protection systems

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed

  18. IAEA data base system for nuclear research reactors (RRDB)

    International Nuclear Information System (INIS)

    Lipscher, P.

    1986-01-01

    The IAEA Data Base System for Nuclear Research Reactors (RRDB) User's Guide is intended for the user who wishes to understand the concepts and operation of the RRDB system. The RRDB is a computerized system recording administrative, operational and technical data on all the nuclear research reactors currently operating, under construction, planned or shut down in IAEA Member States. The data is received by the IAEA from reactor centres on magnetic tapes or as responses to questionnaires. All the data on research, training, test and radioactive isotope production reactors and critical assemblies is stored on the RRDB system. A full set of RRDB programs (in NATURAL) are contained at the back of this Guide

  19. Nuclear emergency preparedness. Final report of the Nordic Nuclear Safety Research Project BOK-1

    DEFF Research Database (Denmark)

    Lauritzen, B.

    2002-01-01

    Final report of the Nordic Nuclear Safety Research project BOK-1. The BOK-1 project, “Nuclear Emergency Preparedness”, was carried out in 1998-2001 with participants from the Nordic and Baltic Sea regions. The project consists of six sub-projects:Laboratory measurements and quality assurance (BOK-1.......1); Mobile measurements and measurement strategies (BOK-1.2); Field measurements and data assimilation (BOK-1.3); Countermeasures in agriculture and forestry (BOK-1.4); Emergency monitoring in theNordic and Baltic Sea countries (BOK-1.5); and Nuclear exercises (BOK-1.6). For each sub-project, the project...

  20. Champion comparison of prestigious nuclear research institutes by thirty-year research papers written in nuclear advanced countries

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2010-08-01

    A champion of research paper at JAERI and those of foreign prestigious nuclear research institutes (5 from the U.S., 3 from the France and 2 from the Germany) was studied taking the timeframe as long as 30 years (1978-2007) Tools for this bibliometric study were INIS, ECD, WOS and SCOPUS. The former two were general database collected all papers related to nuclear, while the latter two were specified database collected research papers submitted to journals for natural, social sciences and human learning. (1) INIS for the world-wide general tool focused on nuclear judged that JAERI (32,859 papers) was the champion and ORNL (32,395 papers) was the second position. (2) ECD for the US-oriented energy database judged that the ranking was of the order of ORNL(36,608 papers), ANL(26,530) and SNL(24,687). (3) The trend observed in the WOS for the US-oriented database roughly coincided with that of ECD, where ORNL(34,331 papers) was the champion, where JAERI was the 7th position. (4) SCOPUS, basically originated from the Europe judged that that ORNL (32,728 papers) was the champion, where JAERI (16,860) was the 7th position. (5) Different characteristics exhibited by individual databases can sometimes generate conflicting bibliometric results. This was true among INIS, ECD, WOS and SCOPUS when looking at trends between 5-year periods. It implies that results from analytical tools used in bibliometric studies should be viewed with careful consideration to learn of any influencing factors. (6) Use of INIS has predominance in Japan, and use of ECD has predominance in the U.S. Users from developed and developing countries assigned as the Member State of IAEA would be better served using INIS and ECD as the intellectual data source. As the recent trend, WOS and SCOPUS are used as the evaluation tools. (author)