WorldWideScience

Sample records for daily pan evaporation

  1. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

    Science.gov (United States)

    Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty

    2017-09-01

    In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

  2. Climate Prediction Center (CPC) U.S. Pan Evaporation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily pan evaporation (1200 UTC to 1200 UTC) are made by members of the NWS Cooperative Network (COOP) or supplemental networks of NOAA's...

  3. A spatial neural fuzzy network for estimating pan evaporation at ungauged sites

    Directory of Open Access Journals (Sweden)

    C.-H. Chung

    2012-01-01

    Full Text Available Evaporation is an essential reference to the management of water resources. In this study, a hybrid model that integrates a spatial neural fuzzy network with the kringing method is developed to estimate pan evaporation at ungauged sites. The adaptive network-based fuzzy inference system (ANFIS can extract the nonlinear relationship of observations, while kriging is an excellent geostatistical interpolator. Three-year daily data collected from nineteen meteorological stations covering the whole of Taiwan are used to train and test the constructed model. The pan evaporation (Epan at ungauged sites can be obtained through summing up the outputs of the spatially weighted ANFIS and the residuals adjusted by kriging. Results indicate that the proposed AK model (hybriding ANFIS and kriging can effectively improve the accuracy of Epan estimation as compared with that of empirical formula. This hybrid model demonstrates its reliability in estimating the spatial distribution of Epan and consequently provides precise Epan estimation by taking geographical features into consideration.

  4. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression

    Science.gov (United States)

    Almedeij, Jaber

    2012-01-01

    Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values. PMID:23226984

  5. A new two-Dimensional Physical Basis for the Complementary Relation Between Terrestrial and pan Evaporation

    Science.gov (United States)

    Pettijohn, J. C.; Salvucci, G. D.

    2008-12-01

    Archived global measurements of water loss from evaporation pans constitute an important indirect measure of evaporative flux. Historical data from evaporation pans shows a decreasing trend over the last half century, but the relationship between pan evaporation and moisture-limited terrestrial evaporation is complex, leading to ambiguities in the interpretation of this data. Under energy-limited conditions, pan evaporation (Epan) and moisture-limited terrestrial evaporation (E) increase or decrease together, while in moisture- limited conditions these fluxes form a complementary relation in which increases in one rate accompany decreases in the other. This has lead to debate about the meaning of the observed trends in the context of changing climate. Here a two-dimensional numerical model of a wet pan in a drying landscape is used to demonstrate that, over a wide range of realistic atmospheric and surface conditions, the influence that changes in E have on Epan (1) are complementary and linear, (2) do not depend upon surface wind speed, and (3) are strikingly asymmetrical, in that a unit decrease in E causes approximately a five-fold increase in Epan, as found in a recent analysis of daily evaporation from US grasslands (Kahler and Brutsaert, 2006). Previous attempts to explain the CR have been based on one dimensional diffusion and energy balance arguments, leading to analytic solutions based on Penman-type bulk difference equations. But without acknowledging the spatially complex multidimensional humidity and temperature field around the pan, and specifically how these fields change as the contrast between the wet pan and the drying land surface increases, such integrated bulk difference equations are a priori incomplete (they ignore important divergence terms), and thus these explanations must be considered physically incomplete. Results of the present study improve the theoretical foundation of the CR, thus increasing the reliability with which it can be

  6. From evaporating pans to transpiring plants (John Dalton Medal Lecture)

    Science.gov (United States)

    Roderick, Michael

    2013-04-01

    The name of the original inventor of irrigated agriculture is lost to antiquity. Nevertheless, one can perhaps imagine an inquisitive desert inhabitant noting the greener vegetation along a watercourse and putting two and two together. Once water was being supplied and food was being produced it would be natural to ask a further question: how much water can we put on? No doubt much experience was gained down through the ages, but again, one can readily imagine someone inverting a rain gauge, filling it with water and measuring how fast the water evaporated. The inverted rain gauge measures the demand for water by the atmosphere. We call it the evaporative demand. I do not know if this is what actually happened but it sure makes an interesting start to a talk. Evaporation pans are basically inverted rain gauges. The rain gauge and evaporation pan measure the supply and demand respectively and these instruments are the workhorses of agricultural meteorology. Rain gauges are well known. Evaporation pans are lesser known but are in widespread use and are a key part of several national standardized meteorological networks. Many more pans are used for things like scheduling irrigation on farms or estimating evaporation from lakes. Analysis of the long records now available from standardized networks has revealed an interesting phenomenon, i.e., pan evaporation has increased in some places and decreased in other but when averaged over large numbers of pans there has been a steady decline. These independent reports from, for example, the US, Russia, China, India, Thailand, are replicated in the southern hemisphere in, for example, Australia, New Zealand and South Africa. One often hears the statement that because the earth is expected to warm with increasing greenhouse gas emissions then it follows that water will evaporate faster. The pan evaporation observations show that this widely held expectation is wrong. When expectations disagree with observations, it is the

  7. Evaluation of water balance parameters from isotopic measurements in evaporation pans

    International Nuclear Information System (INIS)

    Allison, G.B.

    1979-01-01

    The evaluation of the parameters governing the isotopic composition of evaporating water bodies was attempted by means of evaporation pans. The instability of the meteorological conditions, however, makes it virtually impossible to evaluate the atmospheric relative humidity and its isotopic composition with pans. Pans are only suitable to obtain seasonal trends of the isotopic composition of the net evaporated water. For this, a technique based on two pans is also proposed. (author)

  8. Solar Irradiance and Pan Evaporation Estimation from Meteorological Satellite Data

    Directory of Open Access Journals (Sweden)

    Ming-Ren Syu

    2016-04-01

    Full Text Available Knowledge about spatial and temporal variations in surface global solar radiation (GSR and evaporative water loss from the ground are important issues to many researches and applications. In this study empirical relationships suitable for Taiwan were established for GSR retrieval from geostationary satellite images using the Heliosat method for the period from 2011 - 2013. The derived GSR data has been used to generate consecutive maps of 10-day averaged pan evaporation (Epan as the basis to produce regional ET estimation using a strategy that does not require remote sensed land surface temperatures (LST. The retrieved daily GSR and the derived 10-day averaged Epan were validated against pyranometer and class-A pan measurements at selected Central Weather Bureau (CWB stations spread across various climatic regions in Taiwan. Compared with the CWB observed data the overall relative mean bias deviations (MBD% and root mean square differences (RMSD% in daily solar irradiance retrieval were about 5 and 15%, respectively. Seasonally, the largest MBD% and RMSD% of retrieved daily solar irradiance occur in spring (9.5 and 21.3% on average, while the least MBD% (-0.3% on average and RMSD% (9.7% on average occur in autumn and winter, respectively. For 10-day averaged Epan estimation, the mean MBD% and RMSD% for stations located in the coastal plain areas were 0.1 and 16.9%, respectively. However, in mountainous areas the mean MBD% and RMSD% increased to 30.2 and 34.5%, respectively. This overestimation was due mainly to the large differences in surrounding micro-environments between the mountainous and plain areas.

  9. Using Of Learning Vector Quantization Network for Pan Evaporation Estimation

    Directory of Open Access Journals (Sweden)

    Kamil7 A. Abdulmohsen

    2013-05-01

    Full Text Available A modern technique is presented to study the evaporation process which is considered as an important component of the hydrological cycle. The Pan Evaporation depth is estimated depending upon four metrological factors viz. (temperature, relative humidity, sunshine, and wind speed. Unsupervised Artificial Neural Network has been proposed to accomplish the study goal, specifically, a type called Linear Vector Quantitization, (LVQ.  A step by step method is used to cope with difficulties that usually associated with computation procedures inherent in these kind of networks. Such systematic approach may close the gap between the hesitation of the user to make use of the capabilities of these type of neural networks and the relative complexity involving the computations procedures. The results reveal the possibility of using LVQ for of Pan Evaporation depth estimation where a good agreement has been noticed between the outputs of the proposed network and the observed values of the Pan Evaporation depth with a correlation coefficient of 0.986. 

  10. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    Science.gov (United States)

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  11. Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary?

    Science.gov (United States)

    Michael T. Hobbins; Jorge A. Ramirez; Thomas C. Brown

    2004-01-01

    Pan evaporation (ETpan) has decreased at 64% of pans in the conterminous U.S. over the past half-century. Comparing trends in ETpan and water budget-derived actual evapotranspiration (ET*a), we observe the so-called ‘‘Pan Evaporation Paradox,’’ which we confirm is no more than a...

  12. Dynamic analysis of pan evaporation variations in the Huai River Basin, a climate transition zone in eastern China.

    Science.gov (United States)

    Li, Meng; Chu, Ronghao; Shen, Shuanghe; Islam, Abu Reza Md Towfiqul

    2018-06-01

    Pan evaporation (E pan ), which we examine in this study to better understand atmospheric evaporation demand, represents a pivotal indicator of the terrestrial ecosystem and hydrological cycle, particularly in the Huai River Basin (HRB) in eastern China, where high potential risks of drought and flooding are commonly observed. In this study, we examine the spatiotemporal trend patterns of climatic factors and E pan by using the Mann-Kendall test and the Theil-Sen estimator based on a daily meteorological dataset from 89 weather stations during 1965-2013 in the HRB. Furthermore, the PenPan model is employed to estimate E pan at a monthly time scale, and a differential equation method is applied to quantify contributions from four meteorological variables to E pan trends. The results show that E pan significantly decreased (P<0.001) at an average rate of -8.119mm·a -2 at annual time scale in the whole HRB, with approximately 90% of stations occupied. Meanwhile, the generally higher E pan values were detected in the northern HRB. The values of the aerodynamic components in the PenPan model were much greater than those of the radiative components, which were responsible for the variations in the E pan trend. The significantly decreasing wind speed (u 2 ) was the most dominant factor that controlled the decreasing E pan trend at each time scale, followed by the notable decreasing net radiation (R n ) at the annual time scale also in growing season and summer. However, the second dominant factor shifted to the mean temperature (T a ) during the spring and winter and the vapor pressure deficit (vpd) during the autumn. These phenomena demonstrated a positive link between the significance of climate variables and their control over the E pan trend. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    Science.gov (United States)

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam

  14. Modelling a model?!! Prediction of observed and calculated daily pan evaporation in New Mexico, U.S.A.

    Science.gov (United States)

    Beriro, D. J.; Abrahart, R. J.; Nathanail, C. P.

    2012-04-01

    Data-driven modelling is most commonly used to develop predictive models that will simulate natural processes. This paper, in contrast, uses Gene Expression Programming (GEP) to construct two alternative models of different pan evaporation estimations by means of symbolic regression: a simulator, a model of a real-world process developed on observed records, and an emulator, an imitator of some other model developed on predicted outputs calculated by that source model. The solutions are compared and contrasted for the purposes of determining whether any substantial differences exist between either option. This analysis will address recent arguments over the impact of using downloaded hydrological modelling datasets originating from different initial sources i.e. observed or calculated. These differences can be easily be overlooked by modellers, resulting in a model of a model developed on estimations derived from deterministic empirical equations and producing exceptionally high goodness-of-fit. This paper uses different lines-of-evidence to evaluate model output and in so doing paves the way for a new protocol in machine learning applications. Transparent modelling tools such as symbolic regression offer huge potential for explaining stochastic processes, however, the basic tenets of data quality and recourse to first principles with regard to problem understanding should not be trivialised. GEP is found to be an effective tool for the prediction of observed and calculated pan evaporation, with results supported by an understanding of the records, and of the natural processes concerned, evaluated using one-at-a-time response function sensitivity analysis. The results show that both architectures and response functions are very similar, implying that previously observed differences in goodness-of-fit can be explained by whether models are applied to observed or calculated data.

  15. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration

    Science.gov (United States)

    Sumner, D.M.; Jacobs, J.M.

    2005-01-01

    Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

  16. Does evaporation paradox exist in China?

    Directory of Open Access Journals (Sweden)

    Z. T. Cong

    2009-03-01

    Full Text Available One expected consequence of global warming is the increase in evaporation. However, lots of observations show that the rate of evaporation from open pans of water has been steadily decreasing all over the world in the past 50 years. The contrast between expectation and observation is called "evaporation paradox". Based on data from 317 weather stations in China from 1956 to 2005, the trends of pan evaporation and air temperature were obtained and evaporation paradox was analyzed. The conclusions include: (1 From 1956 to 2005, pan evaporation paradox existed in China as a whole while pan evaporation kept decreasing and air temperature became warmer and warmer, but it does not apply to Northeast and Southeast China; (2 From 1956 to 1985, pan evaporation paradox existed narrowly as a whole with unobvious climate warming trend, but it does not apply to Northeast China; (3 From 1986 to 2005, in the past 20 years, pan evaporation paradox did not exist for the whole period while pan evaporation kept increasing, although it existed in South China. Furthermore, the trend of other weather factors including sunshine duration, windspeed, humidity and vapor pressure deficit, and their relations with pan evaporation are discussed. As a result, it can be concluded that pan evaporation decreasing is caused by the decreasing in radiation and wind speed before 1985 and pan evaporation increasing is caused by the decreasing in vapor pressure deficit due to strong warming after 1986. With the Budyko curve, it can be concluded that the actual evaporation decreased in the former 30 years and increased in the latter 20 year for the whole China.

  17. Changes in Pan Evaporation and Their Attribution to Climate Factors in the Zoige Alpine Wetland, the Eastern Edge of the Tibetan Plateau (1969–2014

    Directory of Open Access Journals (Sweden)

    Nana Zhao

    2017-12-01

    Full Text Available Decreases in pan evaporation (Epan over the last decades have been reported in many regions of the world. In this study, changes of Epan in the Zoige Plateau alpine wetland (hereinafter referred to as “Zoige wetland” and its peripheral regions from 1969 to 2014 were investigated using the PenPan model based on the long-term meteorological data. The contribution of climate factors to Epan change were quantified by using partial derivatives of the PenPan model. Results indicated that Epan in Zoige wetland exhibited an obvious decreasing trend before 1989, but rapidly increased after 1990. The increase in Epan in the Zoige wetland is more significant than that in its peripheral regions and the entire Tibetan Plateau, which contributed to the more significant warming in the Zoige wetland. The pan evaporation in Zoige wetland after 1990 could be mostly attributed to changes in the aerodynamic component, and the decreasing radiation and wind speed is the primary contributor to the decline of pan evaporation during 1969–1989, while increasing air temperature and vapor pressure deficit were the major contributors to the increase of pan evaporation after 1990.

  18. Lake Evaporation in a Hyper-Arid Environment, Northwest of China—Measurement and Estimation

    OpenAIRE

    Xiao Liu; Jingjie Yu; Ping Wang; Yichi Zhang; Chaoyang Du

    2016-01-01

    Lake evaporation is a critical component of the hydrological cycle. Quantifying lake evaporation in hyper-arid regions by measurement and estimation can both provide reliable potential evaporation (ET0) reference and promote a deeper understanding of the regional hydrological process and its response towards changing climate. We placed a floating E601 evaporation pan on East Juyan Lake, which is representative of arid regions’ terminal lakes, to measure daily evaporation and conducted simulta...

  19. Measurements of evaporation from a mine void lake and testing of modelling approaches

    Science.gov (United States)

    McJannet, David; Hawdon, Aaron; Van Niel, Tom; Boadle, Dave; Baker, Brett; Trefry, Mike; Rea, Iain

    2017-12-01

    Pit lakes often form in the void that remains after open cut mining operations cease. As pit lakes fill, hydrological and geochemical processes interact and these need to be understood for appropriate management actions to be implemented. Evaporation is important in the evolution of pit lakes as it acts to concentrate various constituents, controls water level and changes the thermal characteristics of the water body. Despite its importance, evaporation from pit lakes is poorly understood. To address this, we used an automated floating evaporation pan and undertook measurements at a pit lake over a 12 month period. We also developed a new procedure for correcting floating pan evaporation estimates to lake evaporation estimates based on surface temperature differences. Total annual evaporation was 2690 mm and reflected the strong radiation inputs, high temperatures and low humidity experienced in this region. Measurements were used to test the performance of evaporation estimates derived using both pan coefficient and aerodynamic modelling techniques. Daily and monthly evaporation estimates were poorly reproduced using pan coefficient techniques and their use is not recommended for such environments. Aerodynamic modelling was undertaken using a range of input datasets that may be available to those who manage pit lake systems. Excellent model performance was achieved using over-water or local over-land meteorological observations, particularly when the sheltering effects of the pit were considered. Model performance was reduced when off-site data were utilised and differences between local and off-site vapor pressure and wind speed were found to be the major cause.

  20. Effect of submerged, freshwater aquatic macrophytes and littoral sediments on pan evaporation in the Lake Balaton region, Hungary

    Science.gov (United States)

    Anda, A.; Simon, B.; Soos, G.; Teixeira da Silva, J. A.; Kucserka, T.

    2016-11-01

    The evaporation (Ep) of a US Class A pan (C) with submerged, freshwater aquatic macrophytes (Potamogeton perfoliatus, Myriophyllum spicatum and Najas marina), hereafter macrophytes (Ps) and a sediment-covered bottom (S) was measured in Hungary during 2014-2015 using reference E of Shuttleworth (Eo) and Penman-Monteith crop reference evapotranspiration (crop ETo). There were two main climatic controls affecting variation in E: direct (air and water temperature) and indirect (wind-mediated change affecting the penetration of sunlight; precipitation inflow, impacting plant emergence). Lower seasonal mean Ep rates of 2.75 ± 0.89, 2.83 ± 0.91 and 3.06 ± 1.14 mm day-1 were observed in C, S and Ps, respectively, during the wet 2014. In the 2015 season, higher overall daily mean Ep rates for C, S and Ps were 3.76 ± 1.3, 4.19 ± 1.34 and 4.65 ± 1.52 mm day-1, respectively. A comparison of US Class A pan Ep containing macrophytes/sediments with that of a standard US Class A pan showed that pan coefficients (Kap and Kas) might allow for more accurate on-site lake E estimates. In 2014, seasonal mean Kas and Kap were 1.04 ± 0.14 and 1.09 ± 0.18, respectively. Slightly higher Ka values were observed during the warm and dry 2015 (Kas: 1.15 ± 0.22; Kap: 1.26 ± 0.23). A Ka value greater than 1 indicates that the Ep of a US Class A pan containing macrophytes and sediment is always higher than that of C. The calculated Eo overestimated measured Ep of Ps during the course of this study. During the warm-dry growing season, crop ETo was closest to Ep of Ps. Empirical coefficients can be useful for estimating E of lakes with submerged macrophytes more precisely. The accuracy of the estimate of Keszthely Bay's E improved by 9.85% when Ka was determined on site.

  1. Trends in evaporation of a large subtropical lake

    Science.gov (United States)

    Hu, Cheng; Wang, Yongwei; Wang, Wei; Liu, Shoudong; Piao, Meihua; Xiao, Wei; Lee, Xuhui

    2017-07-01

    How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade-1 according to the lake model and 25.4 mm decade-1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade-1).

  2. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1989-present, Evaporation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Evaporation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  3. Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961-2011)

    KAUST Repository

    Azorin-Molina, Cesar

    2015-04-01

    We analyzed the spatio-temporal evolution of evaporation observations from Piché atmometers (1961-2011; 56 stations) and Pan evaporimeters (1984-2011; 21 stations) across Spain, and compared both measurements with evaporation estimates obtained by four physical models: i.e., Food and Agricultural Organization-56 Penman-Monteith, Food and Agricultural Organization-Pan, PenPan and Penman, based on climate data. In this study we observed a positive and statistically significant correlation between Piché and Pan evaporation measurements during the common period (1984-2011; 19 stations), mainly in summer. When evaporation observations and estimates were compared, we detected positive and statistically significant correlations with the four methods, except for winter. Among the four physical models, the FAO-Pan showed the best fitting to both Piché and Pan evaporation measurements; the PenPan model overestimated evaporation rates; and the FAO-Penman-Monteith and Penman methods underestimated evaporation observations. We also observed a better spatial agreement between Pan evaporation and estimates than that obtained by Piché measurements. Annual and seasonal trends of evaporation estimates show a statistically significant increase for 1961-2011, which do not agree with long-term Piché evaporation trends; e.g. a discontinuity was found around the 1980s. Radiative and aerodynamic driving factors suggest that this discontinuity, and the observed evaporation trends across Spain could be associated with the abrupt increase in air temperature observed during last few decades (i.e., global warming). Further investigations using available Piché evaporation observations for other regions are needed to better understand physical components influencing long-term trends of evaporation.

  4. Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961-2011)

    KAUST Repository

    Azorin-Molina, Cesar; Vicente-Serrano, Sergio M.; Sanchez-Lorenzo, Arturo; McVicar, Tim R.; Morá n-Tejeda, Enrique; Revuelto, Jesú s; El Kenawy, Ahmed M.; Martí n-Herná ndez, Natalia; Tomà s, M.

    2015-01-01

    We analyzed the spatio-temporal evolution of evaporation observations from Piché atmometers (1961-2011; 56 stations) and Pan evaporimeters (1984-2011; 21 stations) across Spain, and compared both measurements with evaporation estimates obtained by four physical models: i.e., Food and Agricultural Organization-56 Penman-Monteith, Food and Agricultural Organization-Pan, PenPan and Penman, based on climate data. In this study we observed a positive and statistically significant correlation between Piché and Pan evaporation measurements during the common period (1984-2011; 19 stations), mainly in summer. When evaporation observations and estimates were compared, we detected positive and statistically significant correlations with the four methods, except for winter. Among the four physical models, the FAO-Pan showed the best fitting to both Piché and Pan evaporation measurements; the PenPan model overestimated evaporation rates; and the FAO-Penman-Monteith and Penman methods underestimated evaporation observations. We also observed a better spatial agreement between Pan evaporation and estimates than that obtained by Piché measurements. Annual and seasonal trends of evaporation estimates show a statistically significant increase for 1961-2011, which do not agree with long-term Piché evaporation trends; e.g. a discontinuity was found around the 1980s. Radiative and aerodynamic driving factors suggest that this discontinuity, and the observed evaporation trends across Spain could be associated with the abrupt increase in air temperature observed during last few decades (i.e., global warming). Further investigations using available Piché evaporation observations for other regions are needed to better understand physical components influencing long-term trends of evaporation.

  5. [Optimal irrigation index for cotton drip irrigation under film mulching based on the evaporation from pan with constant water level].

    Science.gov (United States)

    Shen, Xiao-Jun; Zhang, Ji-Yang; Sun, Jing-Sheng; Gao, Yang; Li, Ming-Si; Liu, Hao; Yang, Gui-Sen

    2013-11-01

    A field experiment with two irrigation cycles and two irrigating water quotas at squaring stage and blossoming-boll forming stage was conducted in Urumqi of Xinjiang Autonomous Region, Northwest China in 2008-2009, aimed to explore the high-efficient irrigation index of cotton drip irrigation under film mulching. The effects of different water treatments on the seed yield, water consumption, and water use efficiency (WUE) of cotton were analyzed. In all treatments, there was a high correlation between the cotton water use and the evaporation from pan installed above the plant canopy. In high-yield cotton field (including the treatment T4 which had 10 days and 7 days of irrigation cycle with 30.0 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2008, and the treatment T1 having 7 days of irrigation cycle with 22.5 mm and 37.5 mm of irrigating water quota at squaring stage and blossoming-boll forming stage, respectively in 2009), the pan-crop coefficient (Kp) at seedling stage, squaring stage, blossoming-boll forming stage, and boll opening stage was 0.29-0.30, 0.52-0.53, 0.74-0.88, and 0.19-0.20, respectively. As compared with the other treatments, T4 had the highest seed cotton yield (5060 kg x hm(-2)) and the highest WUE (1.00 kg x m(-3)) in 2008, whereas T1 had the highest seed cotton yield (4467 kg x hm(-2)) and the highest WUE (0.99 kg x m(-3)) in 2009. The averaged cumulative pan evaporation in 7 days and 10 days at squaring stage was 40-50 mm and 60-70 mm, respectively, and that in 7 days at blossoming-boll forming stage was 40-50 mm. It was suggested that in Xinjiang cotton area, irrigating 45 mm water for seedling emergence, no irrigation both at seedling stage and at boll opening stage, and irrigation was started when the pan evaporation reached 45-65 mm and 45 mm at squaring stage and blossoming-boll stage, respectively, the irrigating water quota could be determined by multiplying cumulative

  6. The evaporation pan technique revisited: Old theory and a new application for time-weighted synoptic tracing of the isotopic composition of atmospheric vapour

    International Nuclear Information System (INIS)

    Gibson, J.J.; Edwards, T.W.D.

    1999-01-01

    Reliable and consistent characterization of the stable isotope composition of atmospheric water vapour and its temporal variability are important prerequisites to the wider application of isotope mass balance methods in atmospheric and water balance studies. A new approach is proposed which utilizes standard class-A evaporation pans, which have sufficient volume to buffer short-term transient variations in atmospheric conditions, justifying the assumption of constant kinetic isotopic fractionation effects in concert with precisely measured temperature and relative humidity to derive vapour isotopic composition. The results of the studies suggest that isotopic sampling of existing, conventionally operated class-A evaporation pans could offer a straightforward and cost-effective solution to the problem of documenting the shifting isotopic distribution in atmospheric moisture

  7. Simple model for daily evaporation from fallow tilled soil under spring conditions in a temperate climate.

    NARCIS (Netherlands)

    Boesten, J.J.T.I.; Stroosnijder, L.

    1986-01-01

    A simple parametric model is presented to estimate daily evaporation from fallow tilled soil under spring conditions in a temperate climate. In this model, cumulative actual evaporation during a drying cycle is directly proportional to the square root of cumulative potential evaporation. The model

  8. TAO/TRITON, RAMA, and PIRATA Buoys, Daily, 1997-present, Evaporation Minus Precipitation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has daily Evaporation Minus Precipitation data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  9. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    Science.gov (United States)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  10. Evaporative demand, transpiration, and photosynthesis: How are they changing?

    Science.gov (United States)

    Farquhar, G. D.; Roderick, M. L.

    2009-04-01

    Carbon dioxide concentration is increasing. This affects photosynthesis via increases in substrate availability (Farquhar et al. 1980). It reduces the amount of water transpired by plants to fix a given amount of carbon into an organic form; i.e it increases transpiration efficiency (Wong et al. 1979). It also warms the earth's surface. It is commonly supposed that this warming causes an increase in evaporative demand - the rate of water loss from a wet surface. This supposition has then been extended to effects on plant water availability, with the idea that there would be offsets to the gains in productivity associated with increased transpiration efficiency. The assumption that increased temperature means increased evaporative demand has also been applied to global maps of changes in soil water content. However, observations of pan evaporation rate show that this measure of evaporative demand has been decreasing in most areas examined over the last few decades. We reconcile these observations with theory by noting that, on long time scales, warming also involves water bodies, so that the vapour pressure at the earth's surface also increases. Using the physics of pan evaporation (Rotstayn et al. 2006) we show that the reduction in evaporative demand has been associated with two main effects, (1) "dimming", a reduction in sunlight received at the earth's surface because of aerosols and clouds, being the first phenomenon identified (Roderick and Farquhar 2002), and (2) "stilling", a reduction in wind speed, being the second (Roderick et al. 2007). We show that better accounting for changes in evaporative demand is important for estimating soil water changes, particularly in regions where precipitation exceeds evaporative demand (i.e where there are rivers) (Hobbins et al. 2008). We synthesise some of these results with others on vegetation change. References: Farquhar, GD, von Caemmerer, S, and Berry, JA, 1980: A biochemical model of photosynthetic CO2 assimilation

  11. Spectral model for long-term computation of thermodynamics and potential evaporation in shallow wetlands

    Science.gov (United States)

    de la Fuente, Alberto; Meruane, Carolina

    2017-09-01

    Altiplanic wetlands are unique ecosystems located in the elevated plateaus of Chile, Argentina, Peru, and Bolivia. These ecosystems are under threat due to changes in land use, groundwater extractions, and climate change that will modify the water balance through changes in precipitation and evaporation rates. Long-term prediction of the fate of aquatic ecosystems imposes computational constraints that make finding a solution impossible in some cases. In this article, we present a spectral model for long-term simulations of the thermodynamics of shallow wetlands in the limit case when the water depth tends to zero. This spectral model solves for water and sediment temperature, as well as heat, momentum, and mass exchanged with the atmosphere. The parameters of the model (water depth, thermal properties of the sediments, and surface albedo) and the atmospheric downscaling were calibrated using the MODIS product of the land surface temperature. Moreover, the performance of the daily evaporation rates predicted by the model was evaluated against daily pan evaporation data measured between 1964 and 2012. The spectral model was able to correctly represent both seasonal fluctuation and climatic trends observed in daily evaporation rates. It is concluded that the spectral model presented in this article is a suitable tool for assessing the global climate change effects on shallow wetlands whose thermodynamics is forced by heat exchanges with the atmosphere and modulated by the heat-reservoir role of the sediments.

  12. An experimental detrending approach to attributing change of pan evaporation in comparison with the traditional partial differential method

    Science.gov (United States)

    Wang, Tingting; Sun, Fubao; Xia, Jun; Liu, Wenbin; Sang, Yanfang

    2017-04-01

    In predicting how droughts and hydrological cycles would change in a warming climate, change of atmospheric evaporative demand measured by pan evaporation (Epan) is one crucial element to be understood. Over the last decade, the derived partial differential (PD) form of the PenPan equation is a prevailing attribution approach to attributing changes to Epan worldwide. However, the independency among climatic variables required by the PD approach cannot be met using long term observations. Here we designed a series of numerical experiments to attribute changes of Epan over China by detrending each climatic variable, i.e., an experimental detrending approach, to address the inter-correlation among climate variables, and made comparison with the traditional PD method. The results show that the detrending approach is superior not only to a complicate system with multi-variables and mixing algorithm like aerodynamic component (Ep,A) and Epan, but also to a simple case like radiative component (Ep,R), when compared with traditional PD method. The major reason for this is the strong and significant inter-correlation of input meteorological forcing. Very similar and fine attributing results have been achieved based on detrending approach and PD method after eliminating the inter-correlation of input through a randomize approach. The contribution of Rh and Ta in net radiation and thus Ep,R, which has been overlooked based on the PD method but successfully detected by detrending approach, provides some explanation to the comparing results. We adopted the control run from the detrending approach and applied it to made adjustment of PD method. Much improvement has been made and thus proven this adjustment an effective way in attributing changes to Epan. Hence, the detrending approach and the adjusted PD method are well recommended in attributing changes in hydrological models to better understand and predict water and energy cycle.

  13. Analysis of a resistance-energy balance method for estimating daily evaporation from wheat plots using one-time-of-day infrared temperature observations

    Science.gov (United States)

    Choudhury, B. J.; Idso, S. B.; Reginato, R. J.

    1986-01-01

    Accurate estimates of evaporation over field-scale or larger areas are needed in hydrologic studies, irrigation scheduling, and meteorology. Remotely sensed surface temperature might be used in a model to calculate evaporation. A resistance-energy balance model, which combines an energy balance equation, the Penman-Monteith (1981) evaporation equation, and van den Honert's (1948) equation for water extraction by plant roots, is analyzed for estimating daily evaporation from wheat using postnoon canopy temperature measurements. Additional data requirements are half-hourly averages of solar radiation, air and dew point temperatures, and wind speed, along with reasonable estimates of canopy emissivity, albedo, height, and leaf area index. Evaporation fluxes were measured in the field by precision weighing lysimeters for well-watered and water-stressed wheat. Errors in computed daily evaporation were generally less than 10 percent, while errors in cumulative evaporation for 10 clear sky days were less than 5 percent for both well-watered and water-stressed wheat. Some results from sensitivity analysis of the model are also given.

  14. PENGARUH PARAMETER CUACA TERHADAP PROSES EVAPORASI PADA INTERVAL WAKTU YANG BERBEDA

    Directory of Open Access Journals (Sweden)

    Trinah Wati

    2016-03-01

    Full Text Available Evaluasi perbandingan, analisis korelasi dan regresi antara evaporasi panci dengan parameter cuaca dilakukan pada interval waktu harian, dasarian dan bulanan untuk mempelajari ketergantungan evaporasi panci terhadap parameter cuaca dan untuk menduga evaporasi panci menggunakan parameter cuaca di stasiun Darmaga Bogor, Semarang dan Karangploso. Variasi lima faktor utama yang mengendalikan proses evaporasi antara lain radiasi matahari (lama penyinaran, defisit tekanan uap air, kelembaban relative, kecepatan angin dan suhu udara telah dibandingkan dengan variasi evaporasi panci pada interval waktu harian, dasarian dan bulanan. Defisit tekanan uap air memiliki pengaruh dominan dengan evaporasi panci pada semua interval waktu di Darmaga dan Semarang, sedangkan di Karangploso pada interval waktu harian dan dasarian. Kecepatan angin juga memiliki pengaruh dominan dengan evaporasi panci di Karangploso pada interval waktu dasarian dan bulanan. Pemodelan evaporasi panci menggunakan parameter cuaca yang dominan berpengaruh terhadap proses evaporasi menghasilkan persamaan model yang cukup baik dengan nilai R2 > 0,50, berdasarkan validasi data model dengan observasi memiliki. secara keseluruhan kesalahan hasil validasi antara data model dengan data pengamatan kurang dari 12%.. Tren evaporasi panci di Darmaga menunjukkan peningkatan dengan koefisien determinansi > 0.5, sedangkan di Semarang dan Karangploso secara statistik belum mengalami kecenderungan perubahan evaporasi.   Comparative evaluation, correlation and regression analysis of pan evaporation with other meteorological variables at daily, 10-daily and monthly time-scales were conducted to learn the dependence of pan evaporation to other meteorological variables and to estimate pan evaporation using other meteorological variables at Darmaga Bogor station, Semarang and Karangploso. Five major factors that control evaporation were solar radiation (sunshine duration, vapour pressure deficit, relative

  15. Open fibre reinforced plastic (FRP) flat plate collector (FPC) and spray network systems for augmenting the evaporation rate of tannery effluent (soak liquor)

    International Nuclear Information System (INIS)

    Srithar, K.; Mani, A.

    2007-01-01

    Presently, tanneries in Tamilnadu, India are required to segregate the effluent of soaking and pickling sections from other wastewater streams and send it to shallow solar pans for evaporation to avoid land pollution. A large area of solar pans is required for evaporating the water in the effluent at salt concentration in the range of 4-5%. An experimental study has been made by using fibre reinforced plastic flat plate collector (FRP-FPC) and spray system in a pilot plant with a capacity to handle 5000 l per day, which increases the evaporation rate. After increasing the salt concentration level to near saturation limit, the concentrated liquid was sent to conventional solar pans for its continued evaporation and recovery of salt. In this improved system, the rate of evaporation was found to be 30-40% more than that in the conventional solar pans. The performance is compared with the theoretically simulated performance. (author)

  16. Isolation of hydrolase producing bacteria from Sua pan solar ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... sp. Sua-BAC020 were studied further. Isolate Sua-BAC005 affiliated with Bacillus amyloliquefaciens secreted ... halotolerant eubacteria from Sua pan evaporator ponds in ... PCR fragments were ligated into pGEM-T Easy.

  17. Influence of three different concentration techniques on evaporation rate, color and phenolics content of blueberry juice.

    Science.gov (United States)

    Elik, Aysel; Yanık, Derya Koçak; Maskan, Medeni; Göğüş, Fahrettin

    2016-05-01

    The present study was undertaken to assess the effects of three different concentration processes open-pan, rotary vacuum evaporator and microwave heating on evaporation rate, the color and phenolics content of blueberry juice. Kinetics model study for changes in soluble solids content (°Brix), color parameters and phenolics content during evaporation was also performed. The final juice concentration of 65° Brix was achieved in 12, 15, 45 and 77 min, for microwave at 250 and 200 W, rotary vacuum and open-pan evaporation processes, respectively. Color changes associated with heat treatment were monitored using Hunter colorimeter (L*, a* and b*). All Hunter color parameters decreased with time and dependently studied concentration techniques caused color degradation. It was observed that the severity of color loss was higher in open-pan technique than the others. Evaporation also affected total phenolics content in blueberry juice. Total phenolics loss during concentration was highest in open-pan technique (36.54 %) and lowest in microwave heating at 200 W (34.20 %). So, the use of microwave technique could be advantageous in food industry because of production of blueberry juice concentrate with a better quality and short time of operation. A first-order kinetics model was applied to modeling changes in soluble solids content. A zero-order kinetics model was used to modeling changes in color parameters and phenolics content.

  18. On the Increase in Evaporation, Climate Change Dissent

    Science.gov (United States)

    DeVore, M. E.

    2017-12-01

    To better understand the effects of global warming, I analyzed the Pan Evaporation Rate and Precipitation data in the Global Historical Climatology Dataset provided by NOAA. With this data, I show a clear increase in temperature resulting in an anomaly in the Pan Evaporation Rate that is then confirmed in the analysis of the precipitation dataset. In comparing the behavior of the data before 2005 to the data from 2005 and later, I will show a significant change that warrents greater investigation. In particular, I will show how the behavior of the NOAA data closely correlates with that of Solar Cycle 24, as opposed to other man-made causes as suggested by current theory. Due to the distinct nature and timing of the anomaly, this analysis of the NOAA data set provides a counter-argument to anthropogenic climate change.

  19. Evaluation of evaporation-measuring equipments for estimating evapotranspiration within a greenhouse Avaliação de equipamentos de medida da evaporação para estimativa da evapotranspiração dentro de um ambiente protegido

    Directory of Open Access Journals (Sweden)

    Flávio F. Blanco

    2004-12-01

    Full Text Available With the objective of evaluating the performance of simple evaporation measuring equipments in estimating the evapotranspiration in greenhouse, an experiment was conducted in Piracicaba, SP, during a tomato-growing season. Daily water evaporation rate from Piche atmometer, modified atmometer and a reduced evaporation pan installed inside the greenhouse and a Class A pan installed outside were compared to the evapotranspiration rates calculated with Penman-Monteith equation. Results showed that atmometers had the best performance in estimating the crop evapotranspiration in greenhouse and could be used advantageously in relation to the evaporation pans.Conduziu-se um experimento em Piracicaba, SP, durante um cultivo de tomateiro, com o propósito de se avaliar a performance de equipamentos simples baseados na evaporação na estimativa da evapotranspiração em ambiente protegido. As taxas diárias de evaporação de um atmômetro de Piche, um atmômetro modificado e de um tanque de evaporação reduzido instalados dentro do ambiente protegido, e de um tanque Classe A instalado no ambiente externo, foram comparadas à evapotranspiração calculada com a equação de Penman-Monteith. Os resultados mostraram que os atmômetros tiveram o melhor desempenho na estimativa da evapotranspiração da cultura e podem ser utilizados com vantagens em relação aos tanques de evaporação.

  20. A comparison of daily evaporation downscaled using WRFDA model and GLEAM dataset over the Iberian Peninsula.

    Science.gov (United States)

    José González-Rojí, Santos; Sáenz, Jon; Ibarra-Berastegi, Gabriel

    2017-04-01

    GLEAM dataset was presented a few years ago and since that moment, it has just been used for validation of evaporation in a few places of the world (Australia and Africa). The Iberian Peninsula is composed of different soil types and it is affected by different weather regimes, with different climate regions. It is this feature which makes it a very interesting zone for the study of the meteorological cycle, including evaporation. For that purpose, a numerical downscaling exercise over the Iberian Peninsula was run nesting the WRF model inside ERA Interim. Two model configurations were tested in two experiments spanning the period 2010-2014 after a one-year spin-up (2009). In the first experiment (N), boundary conditions drive the model. The second experiment (D) is configured the same way as the N case, but 3DVAR data assimilation is run every six hours (00Z, 06Z, 12Z and 18Z) using observations obtained from the PREPBUFR dataset. For both N and D runs and ERA Interim, the evaporation of the model runs was compared to GLEAM v3.0b and v3.0c datasets over the Iberian Peninsula, both at the daily and monthly time scales. GLEAM v3.0a was not used for validation as it uses for forcing radiation and air temperature data from ERA Interim. Results show that the experiment with data assimilation (D) improve the results obtained for N experiment. Moreover, correlations values are comparable to the ones obtained with ERA Interim. However, some negative correlation values are observed at Portuguese and Mediterranean coasts for both WRF runs. All of these problematic points are considered as urban sites by the NOAH land surface model. Because of that, the model is not able to simulate a correct evaporation value. Even with these discrepancies, better results than for ERA Interim are observed for seasonal Biases and daily RMSEs over Iberian Peninsula, obtaining the best values inland. Minimal differences are observed for the two GLEAM datasets selected.

  1. Artificial weathering of oils by rotary evaporator

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Hollebone, B.P.; Singh, N.R.; Tong, T.S.; Mullin, J.

    2009-01-01

    Oil weathering has a considerable affect on the behaviour, impact and ultimate fate of an oil spill. As such, efforts have been made to study weathering as a whole using bench-scale procedures. The studies are generally divided into individual processes where the effect of other major processes are introduce as an amended sample input rather than a concurrent process. The weathering process that has the greatest effect immediately following an oil spill is evaporation, particularly for lighter oils. The rotary evaporator apparatus offers a convenient means of producing artificially weathered oil for laboratory studies. This paper reported on a study that examined the representativeness of samples obtained by this method compared to pan evaporation and the impact of changes to the apparatus or method parameters on sample chemistry. Experiments were performed on Alberta Sweet Mixed Blend no. 5 in a rotary evaporator under varying conditions of temperature and air flow at ambient pressure using 2 apparatus. The rate of mass loss increased with temperature and air flow rate as expected, but the quantitative relationships could not be defined from the data due to contributions by other uncontrolled factors. It was concluded that the rotary evaporator is not suited for evaporation rate studies, but rather for producing samples suitable for use in other studies. Chemical analysis showed that the relative abundance distributions of target n-alkane hydrocarbons varied with the degree of weathering of an oil in a consistent manner at ambient pressure, regardless of the temperature, rate of air exchange or other factors related to the apparatus and procedure. The composition of the artificially weathered oil was also consistent with that from an open pan simulation of a weathered oil slick. Loss of water content varied with the conditions of evaporation because of the differential rates of evaporation due to relative humidity considerations. It was concluded that weathering

  2. Estimating soil water evaporation using radar measurements

    Science.gov (United States)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  3. Spatio-temporal trends in monthly pan evaporation in Aguascalientes, Mexico

    Science.gov (United States)

    Ruiz-Alvarez, Osias; Singh, Vijay P.; Medina, Juan Enciso; Munster, Clyde; Kaiser, Ronald; Ontiveros-Capurata, Ronald Ernesto; Diaz-Garcia, Luis Antonio; dos Santos, Carlos Antonio Costa

    2018-05-01

    Emission of greenhouse gases is being alleged to be causing climate change in different regions of the world. The objective of this study was to analyze the spatio-temporal trends of monthly evaporation at 52 weather stations in the state of Aguascalientes (Mexico) which have hydrometeorological records of long periods. The autocorrelation was eliminated with an auto-regressive model, and the trend was determined using the Spearman (S) and Kendall (K) tests. The statistical significance of the trend was determined with the Spearman correlation coefficient (r s) and the Z statistic (the test statistic of the normal distribution) both indicated that that there were statistically significant trends in 107 time series, of these 88 series had negative trends and 19 series had positive trends. Negative trends were present in all months of the year, while positive trends occurred from February to May and from October to December only. The reduction of evaporation from - 4.10 to - 20.50 mm/month/year from June to September showed a hopeful future scenario for rainfed agriculture. Irrigated agriculture during dry months could have a reduction of irrigation requirements as a consequence of the reduction in reference and crop evapotranspiration. The evaporation increase during dry months could increase irrigation requirements and pumping, mainly in March, April, and November when there are trends with increases of about 26.90, 24.60, and 23.90 mm/month/year, respectively. The spatial variability of evaporation trend means that other effects of climate change could vary in different parts of the state. Results of this study will be useful for farmers and institutions in charge of the administration of water resources for developing adaptation and mitigation strategies to climate change.

  4. Quantification of soil water evaporation using TDR-microlysimetry

    Science.gov (United States)

    Soil water evaporation is conventionally measured using microlysimeters by evaluating the daily change in mass. Daily removal is laborious and replacement immediately after irrigation events is impractical because of field wetness which leads to delays and an underestimation of evaporation. Irrigati...

  5. Experimental study of relationship between average isotopic fractionation factor and evaporation rate

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2010-12-01

    Full Text Available Isotopic fractionation is the basis of tracing the water cycle using hydrogen and oxygen isotopes. Isotopic fractionation factors in water evaporating from free water bodies are mainly affected by temperature and relative humidity, and vary significantly with these atmospheric factors over the course of a day. The evaporation rate (E can reveal the effects of atmospheric factors. Therefore, there should be a certain functional relationship between isotopic fractionation factors and E. An average isotopic fractionation factor (α* was defined to describe isotopic differences between vapor and liquid phases in evaporation with time intervals of days. The relationship between α* and E based on the isotopic mass balance was investigated through an evaporation pan experiment with no inflow. The experimental results showed that the isotopic compositions of residual water were more enriched with time; α* was affected by air temperature, relative humidity, and other atmospheric factors, and had a strong functional relation with E. The values of α* can be easily calculated with the known values of E, the initial volume of water in the pan, and isotopic compositions of residual water.

  6. Lake and Reservoir Evaporation Estimation: Sensitivity Analysis and Ranking Existing Methods

    Directory of Open Access Journals (Sweden)

    maysam majidi

    2016-02-01

    Full Text Available Introduction: Water when harvested is commonly stored in dams, but approximately up to half of it may be lost due to evaporation leading to a huge waste of our resources. Estimating evaporation from lakes and reservoirs is not a simple task as there are a number of factors that can affect the evaporation rate, notably the climate and physiography of the water body and its surroundings. Several methods are currently used to predict evaporation from meteorological data in open water reservoirs. Based on the accuracy and simplicity of the application, each of these methods has advantages and disadvantages. Although evaporation pan method is well known to have significant uncertainties both in magnitude and timing, it is extensively used in Iran because of its simplicity. Evaporation pan provides a measurement of the combined effect of temperature, humidity, wind speed and solar radiation on the evaporation. However, they may not be adequate for the reservoir operations/development and water accounting strategies for managing drinking water in arid and semi-arid conditions which require accurate evaporation estimates. However, there has not been a consensus on which methods were better to employ due to the lack of important long-term measured data such as temperature profile, radiation and heat fluxes in most lakes and reservoirs in Iran. Consequently, we initiated this research to find the best cost−effective evaporation method with possibly fewer data requirements in our study area, i.e. the Doosti dam reservoir which is located in a semi-arid region of Iran. Materials and Methods: Our study site was the Doosti dam reservoir located between Iran and Turkmenistan borders, which was constructed by the Ministry of Water and Land Reclamation of the Republic of Turkmenistan and the Khorasan Razavi Regional Water Board of the Islamic Republic of Iran. Meteorological data including maximum and minimum air temperature and evaporation from class A pan

  7. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.

    Science.gov (United States)

    Boopathy, R; Sekaran, G

    2013-09-15

    The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm(-2) was 0.41 kWh m(-3) for the removal of COD and 2.57 kWh m(-3) for the removal of TKN. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry

    International Nuclear Information System (INIS)

    Boopathy, R.; Sekaran, G.

    2013-01-01

    Highlights: • Electrochemical treatment of evaporated residue of soak liquor (ERSL) generated in Tannery. • Copper coating on electrode surface and horizontal mounting of electrodes for ERSL treatment. • Electrochemical oxidation of organic pollutants under high saline condition. • The treated solution may be evaporated to dryness to get NaCl salt for hide/skin preservation. -- Abstract: The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (k m ) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm −2 was 0.41 kWh m −3 for the removal of COD and 2.57 kWh m −3 for the removal of TKN

  9. Stable isotope characterization of pan-derived and directly sampled atmospheric water vapour

    International Nuclear Information System (INIS)

    Maric, R.; St. Amour, N.A.; Gibson, J.J.; Edwards, T.W.D.

    2002-01-01

    Isotopic characterization of atmospheric water vapour, δ A , and its temporal variability are important prerequisites for quantifying water balance of surface reservoirs and partitioning of evaporation and transpiration fluxes using isotope techniques. Here we present results from a detailed comparison of several methods for determining δ A in field situations, (i) by back-calculation from isotopic and micrometeorological monitoring of a steady-state terminal reservoir (standard Class-A evaporation pan) using boundary-layer mass transfer models [1], (ii) through direct (cryogenic) sampling of ambient atmospheric moisture, and (iii) using the precipitation-equilibrium approximation (i.e., δ A =δ P - ε*)

  10. Experimental study on isotope fractionation of evaporating water of different initial isotopic composition

    International Nuclear Information System (INIS)

    Pooja Devi; Jain, A.K.; Rao, M.S.; Kumar, B.

    2014-01-01

    The studies of evaporative isotopic fractionation in controlled conditions are of particular importance for understanding the mechanism of evaporation fractionation in natural conditions. We present the measurements of the average isotopic fractionation factors during the evaporation of water having different initial isotopic compositions at constant temperature. The results show that the isotopic composition of residual water become more enriched over the time and the initial isotopic composition of evaporating water has considerable effect on the average isotopic fractionation factors. The average isotopic fractionation factors in evaporation of Water A and Water B under the present experimental conditions were found to be 0.9817 ± 0.0044 and 0.9887 ± 0.0031 for oxygen and 0.9178 ± 0.0182 and 0.9437 ± 0.0169 for hydrogen, respectively. The findings of this work should lead to a better understanding and use of stable isotope techniques in isotope hydrology by using a simple technique of evaporation pan. (author)

  11. [Measurement and estimation methods and research progress of snow evaporation in forests].

    Science.gov (United States)

    Li, Hui-Dong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Yuan, Feng-Hui; Wu, Jia-Bing

    2013-12-01

    Accurate measurement and estimation of snow evaporation (sublimation) in forests is one of the important issues to the understanding of snow surface energy and water balance, and it is also an essential part of regional hydrological and climate models. This paper summarized the measurement and estimation methods of snow evaporation in forests, and made a comprehensive applicability evaluation, including mass-balance methods (snow water equivalent method, comparative measurements of snowfall and through-snowfall, snow evaporation pan, lysimeter, weighing of cut tree, weighing interception on crown, and gamma-ray attenuation technique) and micrometeorological methods (Bowen-ratio energy-balance method, Penman combination equation, aerodynamics method, surface temperature technique and eddy covariance method). Also this paper reviewed the progress of snow evaporation in different forests and its influencal factors. At last, combining the deficiency of past research, an outlook for snow evaporation rearch in forests was presented, hoping to provide a reference for related research in the future.

  12. Some feature of evaporarion from the ground suface of tibetan plateau

    OpenAIRE

    ZHANG, Yinsheng; YABUKI, Hironori; YAO, Tandong; PU, Jianchen; OHATA, Tetsuo

    1997-01-01

    [ABSTRACT] The processes of evaporation on the ground in Dongkemadi River Basin near the Tanggula Pass were observed with weighting-lysimeter method from May to September 1993, and some preliminary results were got. Evaporation mainly occurred from May to September and the daily mean soil evaporation in July is higher than in other months; there is a nice linear relationship between the soil evaporation and water evaporation which observed in 20 cm evaporation pan; the soil evaporation is muc...

  13. Pan-pan Girls: Humiliating Liberation in Postwar Japanese Literature

    Directory of Open Access Journals (Sweden)

    Rumi Sakamoto

    2010-09-01

    Full Text Available This paper looks at some literary representations of the ‘pan-pan girls’ in postwar Japan. ‘Pan-pan’ is a derogatory term for street prostitutes who (mostly served the soldiers of the occupying forces. Immediately after World War II, the Japanese government established the RAA (Recreation Amusement Association and employed several thousand women to provide sexual services for foreign soldiers, ostensibly to protect Japanese women of middle and upper classes from rape and other violence. When the RAA was closed down in 1946 due to the US concern over widespread VD, many of the women who lost their jobs went out on the street and became private and illegal prostitutes – the pan-pan girls. With their red lipstick, cigarettes, nylon stockings and high-heel shoes, often holding onto the arms of tall, uniformed American GIs, the ‘pan-pan girls’ became a symbol of the occupation, and have been textually reproduced throughout the postwar period. This paper analyses the images and representations of the ‘pan-pan girls’ in postwar Japanese literature, to consider how the ‘pan-pan girls’ have functioned as a metaphor for the occupation and contributed to the public memory construction of the occupation. I identify some major codes of representations (victimisation, humiliation, and national trauma; eroticism and decadence; sexual freedom and materialism and argue that the highly gendered and sexualised bodies of the ‘pan-pan girls’ have continued to allow simplistic and selective remembering of the occupation at the expense of recalling the pivotal role of Japanese patriarchy in the postwar period.

  14. Magnitude and variability of land evaporation and its components at the global scale

    NARCIS (Netherlands)

    Miralles, D.G.; de Jeu, R.A.M.; Gash, J.H.C.; Holmes, T.R.H.; Dolman, A.J.

    2011-01-01

    A process-based methodology is applied to estimate land-surface evaporation from multi-satellite information. GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology) combines a wide range of remotely-sensed observations to derive daily actual evaporation and its different components. Soil

  15. Public information use in chimpanzees (Pan troglodytes) and children (Homo sapiens)

    DEFF Research Database (Denmark)

    Vale, Gill L; Flynn, Emma G; Lambeth, Susan P

    2014-01-01

    The discernment of resource quality is pertinent to many daily decisions faced by animals. Public information is a critical information source that promotes quality assessments, attained by monitoring others' performance. Here we provide the first evidence, to our knowledge, that chimpanzees (Pan...

  16. Source analysis of peroxyacetyl nitrate (PAN) in Guangzhou, China: a yearlong observation study

    Science.gov (United States)

    Wang, B. G.; Zhu, D.; Zou, Y.; Wang, H.; Zhou, L.; Ouyang, X.; Shao, H. F.; Deng, X. J.

    2015-06-01

    In recent years, photochemical smog has been a major cause of air pollution in the metropolitan area of Guangzhou, China, with a continuing increase in the concentrations of photochemical pollutants. The concentration of peroxyacetyl nitrate (PAN) has often been found to reach very high levels, posing a potential threat to the public health. To better understand the changes in PAN concentration and its sources, a study was carried from January to December of 2012 at the Guangzhou Panyu Atmospheric Composition Station (GPACS) to measure the atmospheric concentrations of PAN as well as those of ozone (O3), nitrogen oxides (NOx), and non-methane hydrocarbon (NMHC). These data were analyzed to investigate the quantitative relationships between PAN and its precursors. In the study period, the hourly concentrations of PAN varied from below instrument detection limit to 12.0 ppbv. The yearly mean concentration of PAN was 0.84 ppbv, with the daily mean concentration exceeding 5 ppbv in 32 of the total observation days. Calculations indicate that among the measured NMHC species, alkenes accounted for 53 % of the total NMHC contribution to the PAN production, with aromatics and alkanes accounting for about 11 and 7 % of the total, respectively. During the period of our observation only a modest correlation was found between the concentrations of PAN and O3 for daytime hours, and observed PAN concentrations were relatively high even though the observed NMHCs/NOx ratio was low. This suggests regional air mass transport of pollutants had a major impact on the PAN concentrations in Guangzhou area.

  17. Application of the Generalized Nonlinear Complementary Relationship for Estimating Evaporation in North China

    Science.gov (United States)

    Yu, M.; Wu, B.

    2017-12-01

    As an important part of the coupled Eco-Hydrological processes, evaporation is the bond for exchange of energy and heat between the surface and the atmosphere. However, the estimation of evaporation remains a challenge compared with other main hydrological factors in water cycle. The complementary relationship which proposed by Bouchet (1963) has laid the foundation for various approaches to estimate evaporation from land surfaces, the essence of the principle is a relationship between three types of evaporation in the environment. It can simply implemented with routine meteorological data without the need for resistance parameters of the vegetation and bare land, which are difficult to observed and complicated to estimate in most surface flux models. On this basis the generalized nonlinear formulation was proposed by Brutsaert (2015). The daily evaporation can be estimated once the potential evaporation (Epo) and apparent potential evaporation (Epa) are known. The new formulation has a strong physical basis and can be expected to perform better under natural water stress conditions, nevertheless, the model has not been widely validated over different climate types and underlying surface patterns. In this study, we attempted to apply the generalized nonlinear complementary relationship in North China, three flux stations in North China are used for testing the universality and accuracy of this model against observed evaporation over different vegetation types, including Guantao Site, Miyun Site and Huailai Site. Guantao Site has double-cropping systems and crop rotations with summer maize and winter wheat; the other two sites are dominated by spring maize. Detailed measurements of meteorological factors at certain heights above ground surface from automatic weather stations offered necessary parameters for daily evaporation estimation. Using the Bowen ratio, the surface energy measured by the eddy covariance systems at the flux stations is adjusted on a daily scale

  18. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    Science.gov (United States)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601

  19. Evaporation estimates from the Dead Sea and their implications on its water balance

    Science.gov (United States)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  20. A comparison between evaporation ponds and evaporation surfaces as a source of the concentrated salt brine for salt gradient maintenance at Tajoura solar pond

    International Nuclear Information System (INIS)

    Ramadan, Abdulghani M.; Agha, Khairy R.; Abughres, M.

    2012-01-01

    One of the main problems that negatively affect the operation of salt gradient solar ponds and influence its thermal stability is the maintenance of salt gradient profile. Evaporation pond (EP) is designed to generate the salt which lost upward salt diffusion from the lower convective zone (LCZ) of the solar pond. Another attractive method is the evaporation surface facility (ES). Regions with moderate to high precipitation favor Evaporation Surface over Evaporation Ponds. Dry climates will generally favor Evaporation Ponds for the brine re-concentration. In previous studies [1-3], the authors have shown that the (EP) of Tajoura's Experimental Solar Pond (TESP) is under sized and can provide only about 30% of the salt required by a Salt Gradient Solar Pond (SGSP). The anticipated size of (EP) was estimated and presented in those studies under different design conditions, including Summer, Autumn and Spring designs, while the winter design was excluded due to the low rates of net evaporation during the winter season. In addition, the results presented were predicted for the first three years of operation. The daily variations of brine concentration in the (EP) of (TESP) and those based on different designs were predicted and discussed under different scenarios. The quantities of brine provided by the evaporation pond and that required by SGSP were predicted for both cases of surface water flushing (fresh water and sea-water) under the different design conditions as shown in Table 1. This paper investigates the differences between (EP) and (ES) both as a source for salt brine generation by evaporation. The effect of (EP) depth on the area ratio and daily variations of salt concentrations for three years of operation is shown. Results show that evaporation can be a reasonable method for salt brine generation. Reducing the depth of (EP) improves the capability of (EP) for brine re-concentration. It also increases the (EP) surface area for the same quantity of

  1. Pan-FGFR inhibition leads to blockade of FGF23 signaling, soft tissue mineralization, and cardiovascular dysfunction.

    Science.gov (United States)

    Yanochko, Gina M; Vitsky, Allison; Heyen, Jonathan R; Hirakawa, Brad; Lam, Justine L; May, Jeff; Nichols, Tim; Sace, Frederick; Trajkovic, Dusko; Blasi, Eileen

    2013-10-01

    The fibroblast growth factor receptors (FGFR) play a major role in angiogenesis and are desirable targets for the development of therapeutics. Groups of Wistar Han rats were dosed orally once daily for 4 days with a small molecule pan-FGFR inhibitor (5mg/kg) or once daily for 6 days with a small molecule MEK inhibitor (3mg/kg). Serum phosphorous and FGF23 levels increased in all rats during the course of the study. Histologically, rats dosed with either drug exhibited multifocal, multiorgan soft tissue mineralization. Expression levels of the sodium phosphate transporter Npt2a and the vitamin D-metabolizing enzymes Cyp24a1 and Cyp27b1 were modulated in kidneys of animals dosed with the pan-FGFR inhibitor. Both inhibitors decreased ERK phosphorylation in the kidneys and inhibited FGF23-induced ERK phosphorylation in vitro in a dose-dependent manner. A separate cardiovascular outcome study was performed to monitor hemodynamics and cardiac structure and function of telemetered rats dosed with either the pan-FGFR inhibitor or MEK inhibitor for 3 days. Both compounds increased blood pressure (~+ 17 mmHg), decreased heart rate (~-75 bpm), and modulated echocardiography parameters. Our data suggest that inhibition of FGFR signaling following administration of either pan-FGFR inhibitor or MEK inhibitor interferes with the FGF23 pathway, predisposing animals to hyperphosphatemia and a tumoral calcinosis-like syndrome in rodents.

  2. Intrinsic Evaporative Cooling by Hygroscopic Earth Materials

    Directory of Open Access Journals (Sweden)

    Alexandra R. Rempel

    2016-08-01

    Full Text Available The phase change of water from liquid to vapor is one of the most energy-intensive physical processes in nature, giving it immense potential for cooling. Diverse evaporative cooling strategies have resulted worldwide, including roof ponds and sprinklers, courtyard fountains, wind catchers with qanats, irrigated green roofs, and fan-assisted evaporative coolers. These methods all require water in bulk liquid form. The evaporation of moisture that has been sorbed from the atmosphere by hygroscopic materials is equally energy-intensive, however, yet has not been examined for its cooling potential. In arid and semi-arid climates, hygroscopic earth buildings occur widely and are known to maintain comfortable indoor temperatures, but evaporation of moisture from their walls and roofs has been regarded as unimportant since water scarcity limits irrigation and rainfall; instead, their cool interiors are attributed to well-established mass effects in delaying the transmission of sensible gains. Here, we investigate the cooling accomplished by daily cycles of moisture sorption and evaporation which, requiring only ambient humidity, we designate as “intrinsic” evaporative cooling. Connecting recent soil science to heat and moisture transport studies in building materials, we use soils, adobe, cob, unfired earth bricks, rammed earth, and limestone to reveal the effects of numerous parameters (temperature and relative humidity, material orientation, thickness, moisture retention properties, vapor diffusion resistance, and liquid transport properties on the magnitude of intrinsic evaporative cooling and the stabilization of indoor relative humidity. We further synthesize these effects into concrete design guidance. Together, these results show that earth buildings in diverse climates have significant potential to cool themselves evaporatively through sorption of moisture from humid night air and evaporation during the following day’s heat. This finding

  3. Superficial Velocity Effects on HZ-PAN and AgZ-PAN for Kr/Xe Capture

    Energy Technology Data Exchange (ETDEWEB)

    Welty, Amy Keil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, Troy Gerry [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenhalgh, Mitchell Randy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    Nearly all previous testing of HZ-PAN and AgZ-PAN was conducted at the same flow rate in order to maintain consistency among tests. This testing was sufficient for sorbent capacity determinations, but did not ensure that sorbents were capable of functioning under a range of flow regimes. Tests were conducted on both HZ-PAN and AgZ-PAN at superficial velocities between 20 and 700 cm/min. For HZ-PAN, Kr capacity increased from 60 mmol/kg to 110 mmol/kg as superficial velocity increased from 21 to 679 cm/min. Results for AgZ-PAN were similar, with capacity ranging from 72 to 124 mmol/kg over the same range of superficial. These results are promising for scaling up to process flows, demonstrating flexibility to operate in a broad range of superficial velocities while maintaining sorbent capacity. While preparing for superficial velocity testing it was also discovered that AgZ-PAN Xe capacity, previously observed to diminish over time, could be recovered with increased desorption temperature. Further, a substantial Xe capacity increase was observed. Previous room temperature capacities in the range of 22-25 mmol Xe/kg AgZ-PAN were increased to over 60 mmol Xe/kg AgZ-PAN. While this finding has not yet been fully explored to optimize activation and desorption temperatures, it is encouraging.

  4. A remote sensing method for estimating regional reservoir area and evaporative loss

    Science.gov (United States)

    Zhang, Hua; Gorelick, Steven M.; Zimba, Paul V.; Zhang, Xiaodong

    2017-12-01

    Evaporation from the water surface of a reservoir can significantly affect its function of ensuring the availability and temporal stability of water supply. Current estimations of reservoir evaporative loss are dependent on water area derived from a reservoir storage-area curve. Such curves are unavailable if the reservoir is located in a data-sparse region or questionable if long-term sedimentation has changed the original elevation-area relationship. We propose a remote sensing framework to estimate reservoir evaporative loss at the regional scale. This framework uses a multispectral water index to extract reservoir area from Landsat imagery and estimate monthly evaporation volume based on pan-derived evaporative rates. The optimal index threshold is determined based on local observations and extended to unobserved locations and periods. Built on the cloud computing capacity of the Google Earth Engine, this framework can efficiently analyze satellite images at large spatiotemporal scales, where such analysis is infeasible with a single computer. Our study involves 200 major reservoirs in Texas, captured in 17,811 Landsat images over a 32-year period. The results show that these reservoirs contribute to an annual evaporative loss of 8.0 billion cubic meters, equivalent to 20% of their total active storage or 53% of total annual water use in Texas. At five coastal basins, reservoir evaporative losses exceed the minimum freshwater inflows required to sustain ecosystem health and fishery productivity of the receiving estuaries. Reservoir evaporative loss can be significant enough to counterbalance the positive effects of impounding water and to offset the contribution of water conservation and reuse practices. Our results also reveal the spatially variable performance of the multispectral water index and indicate the limitation of using scene-level cloud cover to screen satellite images. This study demonstrates the advantage of combining satellite remote sensing and

  5. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  6. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  7. Effects of peroxyacetyl nitrate (PAN) on vegetation. I. Herbaceous plants PAN injury symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Nouchi, I.; Iijima, T.; Oodaira, T.

    1975-01-01

    A series of exposure experiments were conducted in a controlled-atmosphere exposure chamber equipped with artificial light apparatus, using PAN synthesized from ultraviolet irradiation of ethyl nitrite vapor in oxygen. Exposures of 6 approx. 16 hours and 10 pphm PAN caused serious damage like caving with glazing or bronzing in caved lesions to the lower surface of younger leaves. Leaves of white-flowered petunia were found to be most sensitive to PAN and were damaged even by a 3 pphm exposure. Microscopic examinations showed that the PAN characteristically caused injuries of spongy cells and that these cells collapsed and turned brown. Leaf injury symptoms on herbaceous plants caused by synthesized PAN in the exposure experiments were found to be quite similar to those seen in the field under high oxidant emergence. Therefore, it seems that the said type of injuries to leaf beet, kidney bean, and head lettuce observed in the field were caused by PAN. 21 references. 4 figures, 3 tables.

  8. Analysis list: pan [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available pan Embryo,Larvae,Pupae + dm3 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target.../pan.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/target/pan.5.tsv http://dbarchive.biosciencedbc.jp.../kyushu-u/dm3/target/pan.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/pan.Embryo.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/dm3/colo/pan.Larvae.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/dm3/colo/pan.Pupae.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/colo/Embryo.gml,http://dbarchive.bioscience

  9. On the remote measurement of evaporation rates from bare wet soil under variable cloud cover

    Science.gov (United States)

    Auer, S.

    1976-01-01

    Evaporation rates from a natural wet soil surface are calculated from an energy balance equation at 0.1-hour intervals. A procedure is developed for calculating the heat flux through the soil surface from a harmonic analysis of the surface temperature curve. The evaporation integrated over an entire 24-hour period is compared with daily evaporation rates obtained from published models.

  10. Dew Point Evaporative Comfort Cooling

    Science.gov (United States)

    2012-11-01

    Multiple DASs were installed at Fort Carson, and the data from all the sensors were stored and partially processed on Campbell Scientific Data Loggers. The...evaporative cooling technologies would be expected to easily overcome utility- scale water withdrawal rates. As an example, an evaluation of an...Ambient pressure Outdoor Setra 276 1% of full scale Pyranometer Horizontal Campbell Scientific CS300 5% of daily total The OAT measurement has an

  11. A review of HTO evaporation studies at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Brown, R.M.; Barry, P.J.

    1979-01-01

    Results of the tritium evaporation and exchange studies on Perch Lake are discussed. A model is used to describe the tritium distribution in the atmospheric moisture above the lake. The model, however, underestimates the tritium content at heights above 5 m; such a discrepancy is attributed to the characteristics of the wind speed variation with height, by which vertical diffusion proceeds at somewhat greater rate than expected. Therefore, to represent the Perch Lake system adequately, a three-layer model is required, incorporating a thin laminar layer at the surface, a growing turbulent internal boundary layer and a third layer with high eddy diffusivity. Pan experiments have been used to determine the exponent n=(h-epsilon)/(1-h+Δepislon) of the equation describing the change in isotopic composition during evaporation. The agreement between the experimental and the theoretical values is good for high to middle relative humidities, but significant deviations are shown at low humidities. (author)

  12. Performance of solar still with a concave wick evaporation surface

    International Nuclear Information System (INIS)

    Kabeel, A.E.

    2009-01-01

    Surfaces used for evaporation and condensation phenomenon play important roles in the performance of basin type solar still. In the present study, a concave wick surface was used for evaporation, whereas four sides of a pyramid shaped still were used for condensation. Use of jute wick increased the amount of absorbed solar radiation and enhanced the evaporation surface area. A concave shaped wick surface increases the evaporation area due to the capillary effect. Results show that average distillate productivity in day time was 4.1 l/m 2 and a maximum instantaneous system efficiency of 45% and average daily efficiency of 30% were recorded. The maximum hourly yield was 0.5 l/h. m 2 after solar noon. An estimated cost of 1 l of distillate was 0.065 $ for the presented solar still.

  13. HOW TO PAN-SHARPEN IMAGES USING THE GRAM-SCHMIDT PAN-SHARPEN METHOD – A RECIPE

    Directory of Open Access Journals (Sweden)

    T. Maurer

    2013-05-01

    Full Text Available Since its publication in 1998 (Laben and Brower, 2000, the Gram-Schmidt pan-sharpen method has become one of the most popular algorithms to pan-sharpen multispectral (MS imagery. It outperforms most other pan-sharpen methods in both maximizing image sharpness and minimizing color distortion. It is, on the other hand, also more complex and computationally expensive than most other methods, as it requires forward and backward transforming the entire image. Another complication is the lack of a clear recipe of how to compute the sensor dependent MS to Pan weights that are needed to compute the simulated low resolution pan band. Estimating them from the sensor’s spectral sensitivity curves (in different ways, or using linear regression or least square methods are typical candidates which can include other degrees of freedom such as adding a constant offset or not. As a result, most companies and data providers do it somewhat differently. Here we present a solution to both problems. The transform coefficients can be computed directly and in advance from the MS covariance matrix and the MS to Pan weights. Once the MS covariance matrix is computed and stored with the image statistics, any small section of the image can be pan-sharpened on the fly, without having to compute anything else over the entire image. Similarly, optimal MS to Pan weights can be computed directly from the full MS-Pan covariance matrix, guaranteeing optimal image quality and consistency.

  14. O pan das ánimas

    OpenAIRE

    Antón, Fina; Mandianes Castro, Manuel

    1996-01-01

    O pan, ademais de cumprir una función alimenticia de primeira orde, está revestido dunha significación simbólica importante. O pan durante a vida axuda a pasa-los límites, a da-lo paso, a integrarse entre os cristiáns por cousa do bautismo e a integrarse no grupo dos homes e mulleres co adaxo da boda, pero o pan axuda, sobre todo, a pasa-lo río Xordán, que é, sen dúbida o límite que separa este mundo do outro; a serpe e as ánimas constitúen un límite e o pan facilita o seu paso. O pan está in...

  15. Evaporation

    International Nuclear Information System (INIS)

    Delaney, B.T.; Turner, R.J.

    1989-01-01

    Evaporation has long been used as a unit operation in the manufacture of various products in the chemical-process industries. In addition, it is currently being used for the treatment of hazardous wastes such as radioactive liquids and sludges, metal-plating wastes, and other organic and inorganic wastes. Design choice is dependent on the liquid to be evaporated. The three most common types of evaporation equipment are the rising-film, falling-film, and forced-circulation evaporators. The first two rely on boiling heat transfer and the latter relies on flash vaporization. Heat exchangers, flash tanks, and ejectors are common auxiliary equipment items incorporated with evaporator bodies to complete an evaporator system. Properties of the liquid to be evaporated are critical in final selection of an appropriate evaporator system. Since operating costs are a significant factor in overall cost, heat-transfer characteristics and energy requirements are important considerations. Properties of liquids which are critical to the determination of final design include: heat capacity, heat of vaporization, density, thermal conductivity, boiling point rise, and heat-transfer coefficient. Evaporation is an expensive technology, both in terms of capital costs and operating costs. Additionally, mechanical evaporation produces a condensate and a bottoms stream, one or both of which may require further processing or disposal. 3 figs

  16. Performance of solar still with a concave wick evaporation surface

    Energy Technology Data Exchange (ETDEWEB)

    Kabeel, A.E. [Mechanical Power Department, Faculty of Engineering, Tanta University (Egypt)

    2009-10-15

    Surfaces used for evaporation and condensation phenomenon play important roles in the performance of basin type solar still. In the present study, a concave wick surface was used for evaporation, whereas four sides of a pyramid shaped still were used for condensation. Use of jute wick increased the amount of absorbed solar radiation and enhanced the evaporation surface area. A concave shaped wick surface increases the evaporation area due to the capillary effect. Results show that average distillate productivity in day time was 4.1 l/m{sup 2} and a maximum instantaneous system efficiency of 45% and average daily efficiency of 30% were recorded. The maximum hourly yield was 0.5 l/h. m{sup 2} after solar noon. An estimated cost of 1l of distillate was 0.065 $ for the presented solar still. (author)

  17. The evolution of 17O-excess in surface water of the arid environment during recharge and evaporation.

    Science.gov (United States)

    Surma, J; Assonov, S; Herwartz, D; Voigt, C; Staubwasser, M

    2018-03-21

    This study demonstrates the potential of triple O-isotopes to quantify evaporation with recharge on a salt lake from the Atacama Desert, Chile. An evaporative gradient was found in shallow ponds along a subsurface flow-path from a groundwater source. Total dissolved solids (TDS) increased by 177 g/l along with an increase in δ 18 O by 16.2‰ and in δD by 65‰. 17 O-excess decreased by 79 per meg, d-excess by 55‰. Relative humidity (h), evaporation over inflow (E/I), the isotopic composition of vapor ( * R V ) and of inflowing water ( * R WI ) determine the isotope distribution in 17 O-excess over δ 18 O along a well-defined evaporation curve as the classic Craig-Gordon model predicts. A complementary on-site simple (pan) evaporation experiment over a change in TDS, δ 18 O, and 17 O-excess by 392 g/l, 25.0‰, and -130 per meg, respectively, was used to determine the effects of sluggish brine evaporation and of wind turbulence. These effects translate to uncertainty in E/I rather than h. The local composition of * R V relative to * R WI pre-determines the general ability to resolve changes in h. The triple O-isotope system is useful for quantitative hydrological balancing of lakes and for paleo-humidity reconstruction, particularly if complemented by D/H analysis.

  18. Radiochemical neutron activation analysis for trace elements of basic ingredients of pan

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Arif, M.; Fatima, I; Qureshi, I.H.

    2002-01-01

    Extensive use of pan, by one-tenth of world's population, entails the evaluation of trace element contents in its ingredients. Radiochemical neutron activation analysis (RNAA) was developed and successfully employed to determine the concentration of 36 trace elements (essential, toxic and nonessential) in its four basic ingredients, leaf of betel pepper, betel nut, catechu and lime. The radiochemical separation methodology has significantly improved the detection limits of most of these elements due to suppression of Compton background. Base-line values of certain toxic and essential elements in these ingredients is provided. The daily intake of essential and toxic elements through pan was estimated and compared with the recommended values. The cumulative intake of Mn is four times higher than the recommended value and that of toxic elements is well below the tolerance limits. (author)

  19. Building analytical platform with Big Data solutions for log files of PanDA infrastructure

    Science.gov (United States)

    Alekseev, A. A.; Barreiro Megino, F. G.; Klimentov, A. A.; Korchuganova, T. A.; Maendo, T.; Padolski, S. V.

    2018-05-01

    The paper describes the implementation of a high-performance system for the processing and analysis of log files for the PanDA infrastructure of the ATLAS experiment at the Large Hadron Collider (LHC), responsible for the workload management of order of 2M daily jobs across the Worldwide LHC Computing Grid. The solution is based on the ELK technology stack, which includes several components: Filebeat, Logstash, ElasticSearch (ES), and Kibana. Filebeat is used to collect data from logs. Logstash processes data and export to Elasticsearch. ES are responsible for centralized data storage. Accumulated data in ES can be viewed using a special software Kibana. These components were integrated with the PanDA infrastructure and replaced previous log processing systems for increased scalability and usability. The authors will describe all the components and their configuration tuning for the current tasks, the scale of the actual system and give several real-life examples of how this centralized log processing and storage service is used to showcase the advantages for daily operations.

  20. Experimental Investigation of Double Effect Evaporative Cooling Unit

    Directory of Open Access Journals (Sweden)

    Ahmed Abd Mohammad Saleh

    2018-03-01

    Full Text Available This work presents the experimental investigation of double effect evaporative cooling unit with approximate capacity 7 kW. The unit consisted of two stages, the sensible heat exchanger and the cooling tower composing the external indirect regenerative evaporative cooling stage where a direct evaporative cooler represent the second stage. Testing results showed a maximum capacity and lowest supplied air temperature when the water flow rate in heat exchanger was 0.1 L/s. The experiment recorded the unit daily readings at two airflow rates (0.425 m3/s, 0.48 m3/s. The reading shows that unit inlet DBT is effect positively on unit wet bulb effectiveness and unit COP at constant humidity ratio. The air extraction ratio effected positively on the unit wet bulb effectiveness within a certain limit where maximum COP recorded 11.4 when the extraction ratio equal to 40%.

  1. CRESCIMENTO INICIAL DO PINHÃO-MANSO (Jatropha curcas L. EM FUNÇÃO DA IRRIGAÇÃO, ADUBAÇÃO ORGÂNICA E COBERTURA DO SOLO

    Directory of Open Access Journals (Sweden)

    JORGE ALVES DE SOUSA

    2012-01-01

    Full Text Available The aim of the present paper was to evaluate the Jathropa curcas L response to different doses of nitrogen, water regimes and soil surface nature. The experiment was conducted from May 2009 to February 2010 under greenhouse conditions at the Sustainable Development Center of the Federal University of Paraiba in Sumé-PB. A factorial experiment in blocks was used with four organic fertilizer (0, 50, 100 and 150 kg of N/ ha, four irrigation levels (50, 75, 100 and 125% the Class A pan evaporation and four additional treatments with soil mulching. Sixty plastic vases 100 l capacity were used to cultivate the plants during 257 days and a Class A Evaporation Pan was installed in the greenhouse to monitor daily water evaporation. The plant variables evaluated were plant height, stem diameter, leaf area, total aerial and root dry mass. The increase of the soil water content and soil mulching had significant effect on the evaluated plant variables.

  2. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes), Bonobos (Pan paniscus), and Humans (Homo sapiens).

    Science.gov (United States)

    Potau, J M; Arias-Martorell, J; Bello-Hellegouarch, G; Casado, A; Pastor, J F; de Paz, F; Diogo, R

    2018-01-01

    We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) and compared them to anatomic variations in these muscles in humans (Homo sapiens) . We have macroscopically dissected these muscles in six adult Pan troglodytes , five Pan paniscus of ages ranging from fetus to adult, and five adult Homo sapiens . Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we have identified this muscle in three of the Pan troglodytes ; none of the Pan paniscus , however, had this muscle. We have also found deep supernumerary fascicles in the pectoralis major of two Pan troglodytes and all five Pan paniscus . In all six Pan troglodytes , the pectoralis minor was inserted at the supraspinatus tendon, while, in Pan paniscus and Homo sapiens , it was inserted at the coracoid process of the scapula. Some of the anatomic features and variations of these muscles in common chimpanzees and bonobos are similar to those found in humans, therefore enhancing our knowledge of primate comparative anatomy and evolution and also shedding light on several clinical issues.

  3. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes, Bonobos (Pan paniscus, and Humans (Homo sapiens

    Directory of Open Access Journals (Sweden)

    J. M. Potau

    2018-01-01

    Full Text Available We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan troglodytes and bonobos (Pan paniscus and compared them to anatomic variations in these muscles in humans (Homo sapiens. We have macroscopically dissected these muscles in six adult Pan troglodytes, five Pan paniscus of ages ranging from fetus to adult, and five adult Homo sapiens. Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we have identified this muscle in three of the Pan troglodytes; none of the Pan paniscus, however, had this muscle. We have also found deep supernumerary fascicles in the pectoralis major of two Pan troglodytes and all five Pan paniscus. In all six Pan troglodytes, the pectoralis minor was inserted at the supraspinatus tendon, while, in Pan paniscus and Homo sapiens, it was inserted at the coracoid process of the scapula. Some of the anatomic features and variations of these muscles in common chimpanzees and bonobos are similar to those found in humans, therefore enhancing our knowledge of primate comparative anatomy and evolution and also shedding light on several clinical issues.

  4. Spatial and Temporal Variability of Potential Evaporation across North American Forests

    Directory of Open Access Journals (Sweden)

    Robbie A. Hember

    2017-01-01

    Full Text Available Given the widespread ecological implications that would accompany any significant change in evaporative demand of the atmosphere, this study investigated spatial and temporal variation in several accepted expressions of potential evaporation (PE. The study focussed on forest regions of North America, with 1 km-resolution spatial coverage and a monthly time step, from 1951–2014. We considered Penman’s model (EPen, the Priestley–Taylor model (EPT, ‘reference’ rates based on the Penman–Monteith model for grasslands (ERG, and reference rates for forests that are moderately coupled (ERFu and well coupled (ERFc to the atmosphere. To give context to the models, we also considered a statistical fit (EPanFit to measurements of pan evaporation (EPan. We documented how each model compared with EPan, differences in attribution of variance in PE to specific driving factors, mean spatial patterns, and time trends from 1951–2014. The models did not agree strongly on the sensitivity to underlying drivers, zonal variation of PE, or on the magnitude of trends from 1951–2014. Sensitivity to vapour pressure deficit (Da differed among models, being absent from EPT and strongest in ERFc. Time trends in reference rates derived from the Penman–Monteith equation were highly sensitive to how aerodynamic conductance was set. To the extent that EPanFit accurately reflects the sensitivity of PE to Da over land surfaces, future trends in PE based on the Priestley–Taylor model may underestimate increasing evaporative demand, while reference rates for forests, that assume strong canopy-atmosphere coupling in the Penman–Monteith model, may overestimate increasing evaporative demand. The resulting historical database, covering the spectrum of different models of PE applied in modern studies, can serve to further investigate biosphere-hydroclimate relationships across North America.

  5. ATLAS BigPanDA Monitoring

    CERN Document Server

    Padolski, Siarhei; The ATLAS collaboration; Klimentov, Alexei; Korchuganova, Tatiana

    2017-01-01

    BigPanDA monitoring is a web based application which provides various processing and representation of the Production and Distributed Analysis (PanDA) system objects states. Analyzing hundreds of millions of computation entities such as an event or a job BigPanDA monitoring builds different scale and levels of abstraction reports in real time mode. Provided information allows users to drill down into the reason of a concrete event failure or observe system bigger picture such as tracking the computation nucleus and satellites performance or the progress of whole production campaign. PanDA system was originally developed for the Atlas experiment and today effectively managing more than 2 million jobs per day distributed over 170 computing centers worldwide. BigPanDA is its core component commissioned in the middle of 2014 and now is the primary source of information for ATLAS users about state of their computations and the source of decision support information for shifters, operators and managers. In this wor...

  6. ATLAS BigPanDA Monitoring

    CERN Document Server

    Padolski, Siarhei; The ATLAS collaboration

    2017-01-01

    BigPanDA monitoring is a web-based application that provides various processing and representation of the Production and Distributed Analysis (PanDA) system objects states. Analysing hundreds of millions of computation entities such as an event or a job BigPanDA monitoring builds different scale and levels of abstraction reports in real time mode. Provided information allows users to drill down into the reason of a concrete event failure or observe system bigger picture such as tracking the computation nucleus and satellites performance or the progress of whole production campaign. PanDA system was originally developed for the Atlas experiment and today effectively managing more than 2 million jobs per day distributed over 170 computing centers worldwide. BigPanDA is its core component commissioned in the middle of 2014 and now is the primary source of information for ATLAS users about state of their computations and the source of decision support information for shifters, operators and managers. In this work...

  7. Water addition, evaporation and water holding capacity of poultry litter.

    Science.gov (United States)

    Dunlop, Mark W; Blackall, Patrick J; Stuetz, Richard M

    2015-12-15

    Litter moisture content has been related to ammonia, dust and odour emissions as well as bird health and welfare. Improved understanding of the water holding properties of poultry litter as well as water additions to litter and evaporation from litter will contribute to improved litter moisture management during the meat chicken grow-out. The purpose of this paper is to demonstrate how management and environmental conditions over the course of a grow-out affect the volume of water A) applied to litter, B) able to be stored in litter, and C) evaporated from litter on a daily basis. The same unit of measurement has been used to enable direct comparison-litres of water per square metre of poultry shed floor area, L/m(2), assuming a litter depth of 5cm. An equation was developed to estimate the amount of water added to litter from bird excretion and drinking spillage, which are sources of regular water application to the litter. Using this equation showed that water applied to litter from these sources changes over the course of a grow-out, and can be as much as 3.2L/m(2)/day. Over a 56day grow-out, the total quantity of water added to the litter was estimated to be 104L/m(2). Litter porosity, water holding capacity and water evaporation rates from litter were measured experimentally. Litter porosity decreased and water holding capacity increased over the course of a grow-out due to manure addition. Water evaporation rates at 25°C and 50% relative humidity ranged from 0.5 to 10L/m(2)/day. Evaporation rates increased with litter moisture content and air speed. Maintaining dry litter at the peak of a grow-out is likely to be challenging because evaporation rates from dry litter may be insufficient to remove the quantity of water added to the litter on a daily basis. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  8. Estimating evaporative vapor generation from automobiles based on parking activities

    International Nuclear Information System (INIS)

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S.

    2015-01-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade–Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5–8% less than calculation without considering parking activity. - Highlights: • We applied real parking distribution data to estimate evaporative vapor generation. • We applied real hourly temperature data to estimate hourly incremental vapor generation rate. • Evaporative emission for Florence is estimated based on parking distribution and hourly rate. - A new approach is proposed to quantify the weighted evaporative vapor generation based on parking distribution with an hourly incremental vapor generation rate

  9. Energy and water management in evaporative cooling systems in Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Abdel-wahab S. (Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Hassa (Saudi Arabia))

    1994-11-01

    A mathematical model was developed to estimate water evaporation rate, airflow rate and cooling effect in an evaporative cooling system for farm structures. The model was only applied to evaporative cooling systems for greenhouses. The effect of ambient air temperature, solar radiation and system efficiency on water evaporation rate, airflow rate and the resulting cooling effect were studied. Generally, water flow rate and air flow rate are adjusted based on daily maximum temperature. However, a substantial saving in energy and water consumption in the cooling system would be achieved by regulating water flow rate and air flow rate to follow the diurnal variation on temperature. Improving the cooling efficiency and covering the roof of the greenhouse with an external shading would save an appreciable amount of energy and water consumption. The model could also be applied to other farm structures such as animal shelters

  10. Evaporation estimation of rift valley lakes: comparison of models.

    Science.gov (United States)

    Melesse, Assefa M; Abtew, Wossenu; Dessalegne, Tibebe

    2009-01-01

    Evapotranspiration (ET) accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method) of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE) methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  11. Evaporation Estimation of Rift Valley Lakes: Comparison of Models

    Directory of Open Access Journals (Sweden)

    Tibebe Dessalegne

    2009-12-01

    Full Text Available Evapotranspiration (ET accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux.

  12. Playa Soil Moisture and Evaporation Dynamics During the MATERHORN Field Program

    Science.gov (United States)

    Hang, Chaoxun; Nadeau, Daniel F.; Jensen, Derek D.; Hoch, Sebastian W.; Pardyjak, Eric R.

    2016-06-01

    We present an analysis of field data collected over a desert playa in western Utah, USA in May 2013, the most synoptically active month of the year, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. The results show that decreasing surface albedo, decreasing Bowen ratio and increasing net radiation with increasing soil moisture sustained a powerful positive feedback mechanism promoting large evaporation rates immediately following rain events. Additionally, it was found that, while nocturnal evaporation was negligible during dry periods, it was quite significant (up to 30 % of the daily cumulative flux) during nights following rain events. Our results further show that the highest spatial variability in surface soil moisture is found under dry conditions. Finally, we report strong spatial heterogeneities in evaporation rates following a rain event. The cumulative evaporation for the different sampling sites over a five-day period varied from ≈ 0.1 to ≈ 6.6 mm. Overall, this study allows us to better understand the mechanisms underlying soil moisture dynamics of desert playas as well as evaporation following occasional rain events.

  13. Evaporation components of a boreal forest: variations during the growing season

    Science.gov (United States)

    Grelle, A.; Lundberg, A.; Lindroth, A.; Morén, A.-S.; Cienciala, E.

    1997-10-01

    To improve the understanding of interactions between the boreal forest and the climate system as a key issue for global climate change, the water budget of a mixed pine and spruce forest in central Sweden was estimated by measurements of the water flux components and the total evaporation flux during the period 16 May-31 October 1995. Total evaporation was measured using eddy correlation and the components were obtained using measurements of precipitation, throughfall, tree transpiration, and forest floor evaporation. On a daily basis, tree transpiration was the dominant evaporation component during the vegetation period. However, it could be efficiently blocked by a wet canopy associated with large interception evaporation. The accumulated total evaporation was 399 mm, transpiration was 243 mm, forest floor evaporation was 56 mm and interception evaporation was 74 mm. The accumulated sum of interception, transpiration, and floor evaporation was 51 mm larger than the actual measured total evaporation. This difference was mainly attributed to the fact that transpiration was measured in a rather dense 50-year-old stand while total evaporation represented the average conditions of older, roughly 100-year-old stands. To compare eddy-correlation measurements with small-scale measurements of evaporation components, a source area analysis was made to select the flux data that give the best representation of the investigated stand. Especially under stable atmospheric conditions the requirements for surface homogeneity were very high and extreme care had to be taken to be aware of the flux source areas. Canopy water storage was determined by two methods: by the water balance of the canopy, which gave a result of 3.3 mm; and by the so-called minimum method based on plots of throughfall versus precipitation, which gave a much lower value of 1.5 mm. Seasonal interception evaporation constituted 30% of the precipitation.

  14. Modelling hourly rates of evaporation from small lakes

    Directory of Open Access Journals (Sweden)

    R. J. Granger

    2011-01-01

    Full Text Available The paper presents the results of a field study of open water evaporation carried out on three small lakes in Western and Northern Canada. In this case small lakes are defined as those for which the temperature above the water surface is governed by the upwind land surface conditions; that is, a continuous boundary layer exists over the lake, and large-scale atmospheric effects such as entrainment do not come into play. Lake evaporation was measured directly using eddy covariance equipment; profiles of wind speed, air temperature and humidity were also obtained over the water surfaces. Observations were made as well over the upwind land surface.

    The major factors controlling open water evaporation were examined. The study showed that for time periods shorter than daily, the open water evaporation bears no relationship to the net radiation; the wind speed is the most significant factor governing the evaporation rates, followed by the land-water temperature contrast and the land-water vapour pressure contrast. The effect of the stability on the wind field was demonstrated; relationships were developed relating the land-water wind speed contrast to the land-water temperature contrast. The open water period can be separated into two distinct evaporative regimes: the warming period in the Spring, when the land is warmer than the water, the turbulent fluxes over water are suppressed; and the cooling period, when the water is warmer than the land, the turbulent fluxes over water are enhanced.

    Relationships were developed between the hourly rates of lake evaporation and the following significant variables and parameters (wind speed, land-lake temperature and humidity contrasts, and the downwind distance from shore. The result is a relatively simple versatile model for estimating the hourly lake evaporation rates. The model was tested using two independent data sets. Results show that the modelled evaporation follows the observed values

  15. Precision Photometry and Astrometry from Pan-STARRS

    Science.gov (United States)

    Magnier, Eugene A.; Pan-STARRS Team

    2018-01-01

    The Pan-STARRS 3pi Survey has been calibrated with excellent precision for both astrometry and photometry. The Pan-STARRS Data Release 1, opened to the public on 2016 Dec 16, provides photometry in 5 well-calibrated, well-defined bandpasses (grizy) astrometrically registered to the Gaia frame. Comparisons with other surveys illustrate the high quality of the calibration and provide tests of remaining systematic errors in both Pan-STARRS and those external surveys. With photometry and astrometry of roughly 3 billion astronomical objects, the Pan-STARRS DR1 has substantial overlap with Gaia, SDSS, 2MASS and other surveys. I will discuss the astrometric tie between Pan-STARRS DR1 and Gaia and show comparisons between Pan-STARRS and other large-scale surveys.

  16. Fuel and energy saving in open pan furnace used in jaggery making through modified juice boiling/concentrating pans

    International Nuclear Information System (INIS)

    Anwar, S.I.

    2010-01-01

    In this paper the concept of fins has been used for heating purpose for improving efficiency of open pan jaggery making furnace. Pan is the integral part of these furnaces where boiling/concentration of sugarcane juice take place. Parallel fins were provided to the bottom of main pan and gutter pan of IISR Lucknow 2-pan furnace. Choice for type of fins was based on movement of flames and hot flue gases generated due to combustion of bagasse. Fins helped in more heat transfer to the sugarcane juice being concentrated. Considerable improvement in heat utilization efficiency (9.44%) was observed which resulted in saving of fuel and energy (31.34%).

  17. Pan-tropical monitoring of deforestation

    International Nuclear Information System (INIS)

    Achard, F; DeFries, R; Eva, H; Hansen, M; Mayaux, P; Stibig, H-J

    2007-01-01

    This paper reviews the technical capabilities for monitoring deforestation from a pan-tropical perspective in response to the United Nations Framework Convention on Climate Change (UNFCCC) process, which is studying the technical issues surrounding the ability to reduce greenhouse gas emissions from deforestation in developing countries. The successful implementation of such policies requires effective forest monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented from national to pan-tropical levels. Remotely sensed data, supported by ground observations, are crucial to such efforts. Recent developments in global to regional monitoring of forests can contribute to reducing the uncertainties in estimates of emissions from deforestation. Monitoring systems at national levels in developing countries can also benefit from pan-tropical and regional observations, mainly by identifying hot spots of change and prioritizing areas for monitoring at finer spatial scales. A pan-tropical perspective is also required to ensure consistency between different national monitoring systems. Data sources already exist to determine baseline periods in the 1990s as historical reference points. Key requirements for implementing such monitoring programs, both at pan-tropical and at national scales, are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standardized, consensus protocols for data interpretation and analysis

  18. Inter- and Intraspecific Variations in the Pectoral Muscles of Common Chimpanzees (Pan troglodytes), Bonobos (Pan paniscus), and Humans (Homo sapiens)

    OpenAIRE

    Potau, J. M.; Arias-Martorell, J.; Bello-Hellegouarch, G.; Casado, A.; Pastor, J. F.; de Paz, F.; Diogo, R.

    2018-01-01

    We have analyzed anatomic variations in the pectoralis major and pectoralis minor muscles of common chimpanzees (Pan\\ud troglodytes) and bonobos(Pan paniscus) and compared them to anatomic variations in these muscles in humans(Homo sapiens). We\\ud have macroscopically dissected these muscles in six adult Pan troglodytes, five Pan paniscus of ages ranging from fetus to adult, and\\ud five adult Homo sapiens. Although Pan troglodytes are thought to lack a separate pectoralis abdominis muscle, we...

  19. Miniature electron bombardment evaporation source: evaporation rate measurement

    International Nuclear Information System (INIS)

    Nehasil, V.; Masek, K.; Matolin, V.; Moreau, O.

    1997-01-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialized in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications such as heteroepitaxial thin film growth requiring a very low and well controlled deposition rate. A simple and easily applicable method of evaporation rate control is proposed. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. The absolute evaporation flux values were measured by means of the Bayard-Alpert ion gauge, which enabled the ion current vs evaporation flux calibration curves to be plotted. (author). 1 tab., 4 figs., 6 refs

  20. Estimating total evaporation at the field scale using the SEBS model ...

    African Journals Online (AJOL)

    Estimating total evaporation at the field scale using the SEBS model and data infilling ... of two infilling techniques to create a daily satellite-derived ET time series. ... and produced R2 and RMSE values of 0.33 and 2.19 mm∙d-1, respectively, ...

  1. Investigation of needleless electrospun PAN nanofiber mats

    Science.gov (United States)

    Sabantina, Lilia; Mirasol, José Rodríguez; Cordero, Tomás; Finsterbusch, Karin; Ehrmann, Andrea

    2018-04-01

    Polyacrylonitrile (PAN) can be spun from a nontoxic solvent (DMSO, dimethyl sulfoxide) and is nevertheless waterproof, opposite to the biopolymers which are spinnable from aqueous solutions. This makes PAN an interesting material for electrospinning nanofiber mats which can be used for diverse biotechnological or medical applications, such as filters, cell growth, wound healing or tissue engineering. On the other hand, PAN is a typical base material for producing carbon nanofibers. Nevertheless, electrospinning PAN necessitates convenient spinning parameters to create nanofibers without too many membranes or agglomerations. Thus we have studied the influence of spinning parameters on the needleless electrospinning process of PAN dissolved in DMSO and the resulting nanofiber mats.

  2. Peter Pan-demien

    DEFF Research Database (Denmark)

    Holm, Claus

    2009-01-01

    Ungdommelig opførsel er moderne. I gamle dage skulle vi blive voksne. I dag skal selv gamle mænd og kvinder holde sig unge. Peter Pan-panikken er i os, og en af vores væsentligste sociale lidelser er umodenhed.......Ungdommelig opførsel er moderne. I gamle dage skulle vi blive voksne. I dag skal selv gamle mænd og kvinder holde sig unge. Peter Pan-panikken er i os, og en af vores væsentligste sociale lidelser er umodenhed....

  3. Specialized moisture retention eyewear for evaporative dry eye.

    Science.gov (United States)

    Waduthantri, Samanthila; Tan, Chien Hua; Fong, Yee Wei; Tong, Louis

    2015-05-01

    To evaluate the suitablity of commercially available moisture retention eyewear for treating evaporative dry eye. Eleven patients with evaporative dry eyes were prescibed moisture retention eyewear for 3 months in addition to regular lubricant eye drops. Frequency and severity of dry eye symptoms, corneal fluorescein staining and tear break up time (TBUT) were evaluated at baseline and 3-month post-treatment. Main outcome measure was global symptom score (based on severity and frequency of dry eye symptoms on a visual analog scale) and secondary outcomes were changes in sectoral corneal fluorescein staining and tear break up time (TBUT) from pre-treatment level. There was a significant improvement in dry eye symptoms after using moisture retention eyewear for 3 months (p eyes improved significantly (p dry eye symptoms in windy, air-conditioned environments or when doing vision-related daily tasks. This study shows that moisture retention eyewear might be a valuable adjunct in management of evaporative dry eye and this new design of commercially available eyewear could have a good acceptability rate.

  4. Computing Evaporation Using Meteorological Data for Hydrological Budget of Lake Wapalanne in NJ School of Conservation

    Science.gov (United States)

    Jordan, J. J.; Barrett, K. R.; Galster, J. C.; Ophori, D. U.; Flores, D.; Kelly, S. A.; Lutey, A. M.

    2011-12-01

    Lake Wapalanne is small manmade lake about 5.4 hectares in northwest New Jersey in the Highlands Physiographic province within permanently protected land. The lake's surrounding area consists of forested vegetation and is relatively unoccupied which minimizes human influence. The lake's small size, minimal external influence, geographic isolation, and protected status provide an optimal research environment to record meteorological data used in calculation of potential evaporation. Between July 7h and August 3rd meteorological data was collected from a professional weather station placed on an island directly in the center of Lake Wapalanne. The Vantage Pro2 weather station provided accurate readings of temperate, humidity, wind-speed and direction, precipitation, and atmospheric pressure. A bathometric survey of the lake was conducted to determine the surface area with variations in depth of the lake's water level. Using the collected weather station data, a rate of potential evaporation was determined with several evaporation equations. A quantified volume was then derived from the rate and surface area of the lake. Using small scale evaporation measurements of known volumes of water within small pans placed in the lake water and National Oceanic and Atmospheric Administration evaporation stations near the experiment site, a comparison and validation of the calculated potential evaporation accuracy and regional evaporation is achieved. This three year study is part of an ongoing NSF Research Experience for Undergraduates (REU) project that encompasses additional topics of lake research; see abstract from Kelly et al. AGU 2011 for more information on the lake's hydrologic budget. The results and methods of this study will be of use in future forecasting and baseline measurements of hydrologic budgets for lakes and reservoirs within regional proximity, which provide drinking water to over five million people in the State of New Jersey.

  5. Damage of plants due to peroxyacyl nitrates (PAN)

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, H.; Terakado, K.

    1974-02-01

    In Japan plant damages began to resemble those due to PAN about 1972. Exposure experiments with artifically synthesized PAN in an environment simulation room determined the concentration of PAN and its duration to examine the relationship between these data in the field and crop damage. Synthesized PAN created by irradiating a mixture of ethyl nitrate and oxygen with ultraviolet light gave results similar to those seen in fields. From the end of April to the end of November, damages to petunias seemingly due to PAN appeared 15 times. The symptoms differed with the variety of petunia. After 14 experiments in fields from September 20 to November 30 with a continuous determination of the environmental concentration of PAN, damages to petunia were confirmed on 6 days when the maximum PAN concentration range was 3.0-6.7 ppb. The duration of concentrations higher than 3 ppb was 2-13 hr. The most serious damage appeared on September 20 when a concentration of more than 5 ppb continued for 7 hours. No damage appeared with a long continuation (6-12 hr) of a lower concentration of PAN of 2 ppb. Inter-varietal grafting showed that the symptoms and the degree of damage due to PAN were influenced only by the physiological specificity of the aerial portion of the plant. Leaves which are most affected by PAN differed with the variety of petunia.

  6. Evaporators

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard

    1996-01-01

    Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients.......Type of evaporators. Regulation. Thermal dimensioning. Determination of pressure loss and heat transfer coefficients....

  7. Applying Big Data solutions for log analytics in the PanDA infrastructure

    CERN Document Server

    Alekseev, Aleksandr; The ATLAS collaboration

    2017-01-01

    PanDA is the workflow management system of the ATLAS experiment at the LHC and is responsible for generating, brokering and monitoring up to two million jobs per day across 150 computing centers in the Worldwide LHC Computing Grid. The PanDA core consists of several components deployed centrally on around 20 servers. The daily log volume is around 400GB per day. In certain cases, troubleshooting a particular issue on the raw log files can be compared to searching for a needle in a haystack and requires a high level of expertise. Therefore we decided to build on trending Big Data solutions and utilize the ELK infrastructure (Filebeat, Logstash, Elastic Search and Kibana) to process, index and analyze our log files. This allows to overcome troubleshooting complexity, provides a better interface to the operations team and generates advanced analytics to understand our system. This paper will describe the features of the ELK stack, our infrastructure, optimal configuration settings and filters. We will provide ex...

  8. Concentration of uranium on TiO-PAN and NaTiO-PAN composite absorbers

    International Nuclear Information System (INIS)

    Motl, Alois; Sebesta, Ferdinand; John, Jan; Spendlikova, Irena; Nemec, Mojmir

    2013-01-01

    Inorganic ion exchangers have been extensively tested for use in separation and concentration of uranium from Surface water. Except for separation of uranium from uranium -Contaminated waste water (e.g. waste water from mining and milling of uranium, Waste from nuclear fuel reprocessing) their main area of application has been foreseen to be their use for extraction of uranium from sea water which could partially cover future needs of uranium. Another perspective area of application is pre-concentration of uranium from natural waters followed by uranium determination via various specialized techniques such as TRLFS or AMS. Possibilities of uranium extraction from sea water have been subject of several international conferences (e.g. Topical meetings on the Recovery of Uranium from Seawater in 1980's, ACS National Meetings 2012 etc.) and are critically evaluated in a review by Bitte or recently by Kim. In the Czech Republic uranium-selective inorganic ion exchangers might be applied for treatment of various wastes from uranium industry, namely underground Water, uranium milling over-balance water, or acid waste water from underground uranium leaching and also like in other countries for determination of uranium isotopic composition focusing on anthropogenic and natural 236 U content. Among the best performing inorganic ion exchangers for the above listed purposes hydrated titanium dioxide (abbreviated as TiO) and sodium titanate (abbreviated as NaTiO) can be listed. Properties of TiO and NaTiO were reviewed by Lehto. From the point of view of ion-exchange, properties of hydrated titanium oxide and sodium titanate are very similar. The main disadvantage of these ion exchangers for industrial-scale application is their insufficient mechanical stability. To improve this property, the sorption materials can be embedded into a binding matrix. Modified polyacrylonitrile (PAN) has been proposed at the Czech Technical University in Prague as a universal binding matrix for

  9. ATLAS BigPanDA Monitoring and Its Evolution

    CERN Document Server

    Wenaus, Torre; The ATLAS collaboration; Korchuganova, Tatiana

    2016-01-01

    BigPanDA is the latest generation of the monitoring system for the Production and Distributed Analysis (PanDA) system. The BigPanDA monitor is a core component of PanDA and also serves the monitoring needs of the new ATLAS Production System Prodsys-2. BigPanDA has been developed to serve the growing computation needs of the ATLAS Experiment and the wider applications of PanDA beyond ATLAS. Through a system-wide job database, the BigPanDA monitor provides a comprehensive and coherent view of the tasks and jobs executed by the system, from high level summaries to detailed drill-down job diagnostics. The system has been in production and has remained in continuous development since mid 2014, today effectively managing more than 2 million jobs per day distributed over 150 computing centers worldwide. BigPanDA also delivers web-based analytics and system state views to groups of users including distributed computing systems operators, shifters, physicist end-users, computing managers and accounting services. Provi...

  10. Analysis of G × E interaction using the additive main effects and ...

    African Journals Online (AJOL)

    This experiment were conducted on the 3 cultivars of potato (Agria, Satina and Caesar) and 4 irrigation regimes (after 30 mm evaporation from class A evaporation pan, after 30 mm evaporation from class A evaporation pan with spraying by potassium humate, after 60 mm evaporation with spraying by potassium humate ...

  11. Panning artifacts in digital pathology images

    Science.gov (United States)

    Avanaki, Ali R. N.; Lanciault, Christian; Espig, Kathryn S.; Xthona, Albert; Kimpe, Tom R. L.

    2017-03-01

    In making a pathologic diagnosis, a pathologist uses cognitive processes: perception, attention, memory, and search (Pena and Andrade-Filho, 2009). Typically, this involves focus while panning from one region of a slide to another, using either a microscope in a traditional workflow or software program and display in a digital pathology workflow (DICOM Standard Committee, 2010). We theorize that during panning operation, the pathologist receives information important to diagnosis efficiency and/or correctness. As compared to an optical microscope, panning in a digital pathology image involves some visual artifacts due to the following: (i) the frame rate is finite; (ii) time varying visual signals are reconstructed using imperfect zero-order hold. Specifically, after pixel's digital drive is changed, it takes time for a pixel to emit the expected amount of light. Previous work suggests that 49% of navigation is conducted in low-power/overview with digital pathology (Molin et al., 2015), but the influence of display factors has not been measured. We conducted a reader study to establish a relationship between display frame rate, panel response time, and threshold panning speed (above which the artifacts become noticeable). Our results suggest visual tasks that involve tissue structure are more impacted by the simulated panning artifacts than those that only involve color (e.g., staining intensity estimation), and that the panning artifacts versus normalized panning speed has a peak behavior which is surprising and may change for a diagnostic task. This is work in progress and our final findings should be considered in designing future digital pathology systems.

  12. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion

    Science.gov (United States)

    Ma, Ning; Szilagyi, Jozsef; Niu, Guo-Yue; Zhang, Yinsheng; Zhang, Teng; Wang, Binbin; Wu, Yanhong

    2016-06-01

    Previous studies have shown that the majority of the lakes in the Tibetan Plateau (TP) started to expand rapidly since the late 1990s. However, the causes are still not well known. For Nam Co, being a closed lake with no outflow, evaporation (EL) over the lake surface is the only way water may leave the lake. Therefore, quantifying EL is key for investigating the mechanism of lake expansion in the TP. EL can be quantified by Penman- and/or bulk-transfer-type models, requiring only net radiation, temperature, humidity and wind speed for inputs. However, interpolation of wind speed data may be laden with great uncertainty due to extremely sparse ground meteorological observations, the highly heterogeneous landscape and lake-land breeze effects. Here, evaporation of Nam Co Lake was investigated within the 1979-2012 period at a monthly time-scale using the complementary relationship lake evaporation (CRLE) model which does not require wind speed data. Validations by in-situ observations of E601B pan evaporation rates at the shore of Nam Co Lake as well as measured EL over an adjacent small lake using eddy covariance technique suggest that CRLE is capable of simulating EL well since it implicitly considers wind effects on evaporation via its vapor transfer coefficient. The multi-year average of annual evaporation of Nam Co Lake is 635 mm. From 1979 to 2012, annual evaporation of Nam Co Lake expressed a very slight decreasing trend. However, a more significant decrease in EL occurred during 1998-2008 at a rate of -12 mm yr-1. Based on water-level readings, this significant decrease in lake evaporation was found to be responsible for approximately 4% of the reported rapid water level increase and areal expansion of Nam Co Lake during the same period.

  13. Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley-Taylor, and Penman estimates

    Science.gov (United States)

    Metzger, Jutta; Nied, Manuela; Corsmeier, Ulrich; Kleffmann, Jörg; Kottmeier, Christoph

    2018-02-01

    The Dead Sea is a terminal lake, located in an arid environment. Evaporation is the key component of the Dead Sea water budget and accounts for the main loss of water. So far, lake evaporation has been determined by indirect methods only and not measured directly. Consequently, the governing factors of evaporation are unknown. For the first time, long-term eddy covariance measurements were performed at the western Dead Sea shore for a period of 1 year by implementing a new concept for onshore lake evaporation measurements. To account for lake evaporation during offshore wind conditions, a robust and reliable multiple regression model was developed using the identified governing factors wind velocity and water vapour pressure deficit. An overall regression coefficient of 0.8 is achieved. The measurements show that the diurnal evaporation cycle is governed by three local wind systems: a lake breeze during daytime, strong downslope winds in the evening, and strong northerly along-valley flows during the night. After sunset, the strong winds cause half-hourly evaporation rates which are up to 100 % higher than during daytime. The median daily evaporation is 4.3 mm d-1 in July and 1.1 mm d-1 in December. The annual evaporation of the water surface at the measurement location was 994±88 mm a-1 from March 2014 until March 2015. Furthermore, the performance of indirect evaporation approaches was tested and compared to the measurements. The aerodynamic approach is applicable for sub-daily and multi-day calculations and attains correlation coefficients between 0.85 and 0.99. For the application of the Bowen ratio energy budget method and the Priestley-Taylor method, measurements of the heat storage term are inevitable on timescales up to 1 month. Otherwise strong seasonal biases occur. The Penman equation was adapted to calculate realistic evaporation, by using an empirically gained linear function for the heat storage term, achieving correlation coefficients between 0

  14. Prevalence of oral lesions in pan vendor

    Directory of Open Access Journals (Sweden)

    Prakash Gadodia

    2011-01-01

    Full Text Available Background: Being a portal of entry to various smoking and smokeless tobacco products, oral cavity is prone to deleterious effects. Present study consist of epidemiological survey to elucidate oral lesions in pan vendors. Aims and objectives: To detect oral lesions in pan vendors and compare it with controls. To detect habit pattern and prevalence of OSMF and other lesions in pan vendors as compared to controls- To identify, recognize and evaluate the possible etiology for OSMF, encompassing various chewing and smoking habits. Materials and methods: Study population consist of 170 pan vendors with age ranging from 15 to 55 years and equal number of sex matched controls selected randomly. Results: Prevalence of oral lesions in pan vendors is statistically significantly higher as compared to controls. The habit of arecanut chewing in various forms was present in all cases. The habit of smoking and smokeless tobacco products was present in all cases. Conclusion: Pan vendors are at higher risk for oral lesions than controls. There is increase in relative risk with increase in duration and frequency of habit.

  15. Flash evaporator

    OpenAIRE

    1997-01-01

    A device and method for flash evaporating a reagent includes an evaporation chamber that houses a dome on which evaporation occurs. The dome is solid and of high thermal conductivity and mass, and may be heated to a temperature sufficient to vaporize a specific reagent. The reagent is supplied from an external source to the dome through a nozzle, and may be supplied as a continuous stream, as a shower, and as discrete drops. A carrier gas may be introduced into the evaporation chamber and cre...

  16. Archives: Pan African Medical Journal

    African Journals Online (AJOL)

    Items 1 - 28 of 28 ... Archives: Pan African Medical Journal. Journal Home > Archives: Pan African Medical Journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 28 of 28 Items ...

  17. GLEAM version 3: Global Land Evaporation Datasets and Model

    Science.gov (United States)

    Martens, B.; Miralles, D. G.; Lievens, H.; van der Schalie, R.; de Jeu, R.; Fernandez-Prieto, D.; Verhoest, N.

    2015-12-01

    Terrestrial evaporation links energy, water and carbon cycles over land and is therefore a key variable of the climate system. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to limitations in in situ measurements. As a result, several methods have risen to estimate global patterns of land evaporation from satellite observations. However, these algorithms generally differ in their approach to model evaporation, resulting in large differences in their estimates. One of these methods is GLEAM, the Global Land Evaporation: the Amsterdam Methodology. GLEAM estimates terrestrial evaporation based on daily satellite observations of meteorological variables, vegetation characteristics and soil moisture. Since the publication of the first version of the algorithm (2011), the model has been widely applied to analyse trends in the water cycle and land-atmospheric feedbacks during extreme hydrometeorological events. A third version of the GLEAM global datasets is foreseen by the end of 2015. Given the relevance of having a continuous and reliable record of global-scale evaporation estimates for climate and hydrological research, the establishment of an online data portal to host these data to the public is also foreseen. In this new release of the GLEAM datasets, different components of the model have been updated, with the most significant change being the revision of the data assimilation algorithm. In this presentation, we will highlight the most important changes of the methodology and present three new GLEAM datasets and their validation against in situ observations and an alternative dataset of terrestrial evaporation (ERA-Land). Results of the validation exercise indicate that the magnitude and the spatiotemporal variability of the modelled evaporation agree reasonably well with the estimates of ERA-Land and the in situ

  18. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Overview of ATLAS PanDA Workload Management

    Science.gov (United States)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G. A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  20. Overview of ATLAS PanDA Workload Management

    International Nuclear Information System (INIS)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G.A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.

    2011-01-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  1. Student-Centered Designs of Pan-African Literature Courses

    Science.gov (United States)

    M'Baye, Babacar

    2010-01-01

    A student-centered teaching methodology is an essential ingredient of a successful Pan-African literary course. In this article, the author defines Pan-Africanism and how to go about designing a Pan-African literature course. The author combines reading assignments with journals, film presentations, and lectures in a productive learning…

  2. Remotely monitoring evaporation rate and soil water status using thermal imaging and "three-temperatures model (3T Model)" under field-scale conditions.

    Science.gov (United States)

    Qiu, Guo Yu; Zhao, Ming

    2010-03-01

    Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.

  3. Is Pan-Asian Economic Integration Moving Forward?: Evidence from Pan-Asian Trade Statistics

    OpenAIRE

    Sapkota, Jeet Bahadur; Shuto, Motoko

    2016-01-01

    Asia is growing economically faster than any other region in the world; this led to the shift of the center of gravity of the global economy from the West to the East. However, it is not clear whether the Asian economy is integrating regionally or globally. In the context of the growing efforts of regional or sub-regional pan-Asian integration, it is worthwhile to explore the pan-Asian trade flows regionally as well as globally. Thus, this paper examines the trend and determinants of economic...

  4. Electrically controllable artificial PAN muscles

    Science.gov (United States)

    Salehpoor, Karim; Shahinpoor, Mohsen; Mojarrad, Mehran

    1996-02-01

    Artificial muscles made with polyacrylonitrile (PAN) fibers are traditionally activated in electrolytic solution by changing the pH of the solution by the addition of acids and/or bases. This usually consumes a considerable amount of weak acids or bases. Furthermore, the synthetic muscle (PAN) itself has to be impregnated with an acid or a base and must have an appropriate enclosure or provision for waste collection after actuation. This work introduces a method by which the PAN muscle may be elongated or contracted in an electric field. We believe this is the first time that this has been achieved with PAN fibers as artificial muscles. In this new development the PAN muscle is first put in close contact with one of the two platinum wires (electrodes) immersed in an aqueous solution of sodium chloride. Applying an electric voltage between the two wires changes the local acidity of the solution in the regions close to the platinum wires. This is because of the ionization of sodium chloride molecules and the accumulation of Na+ and Cl- ions at the negative and positive electrode sites, respectively. This ion accumulation, in turn, is accompanied by a sharp increase and decrease of the local acidity in regions close to either of the platinum wires, respectively. An artificial muscle, in close contact with the platinum wire, because of the change in the local acidity will contract or expand depending on the polarity of the electric field. This scheme allows the experimenter to use a fixed flexible container of an electrolytic solution whose local pH can be modulated by an imposed electric field while the produced ions are basically trapped to stay in the neighborhood of a given electrode. This method of artificial muscle activation has several advantages. First, the need to use a large quantity of acidic or alkaline solutions is eliminated. Second, the use of a compact PAN muscular system is facilitated for applications in active musculoskeletal structures. Third, the

  5. El pan y el vino en el judaísmo antiguo y medieval

    Directory of Open Access Journals (Sweden)

    Enrique Cantera Montenegro

    2006-01-01

    Full Text Available En este trabajo se estudia la importancia que el pan y el vino tuvieron en la alimentación cotidiana de los judíos a lo largo de la Antigüedad y la Edad Media, así como el lugar que estos productos ocupan en el culto judío del Templo y en la liturgia de algunas de las más importantes celebraciones religiosas de carácter familiar. Los judíos, como todos los demás pueblos de civilización mediterránea, han basado tradicionalmente su agricultura en la llamada tríada mediterránea —cereal, vid y olivo—, lo que se refleja en su alimentación cotidiana, que se sustenta, en buena medida, en el consumo de pan y vino. Del mismo modo, desde la Antigüedad tardía y hasta tiempos actuales, el pan y el vino son elementos fundamentales en la celebración familiar de algunas de las principales festividades del calendario litúrgico judío, en particular el Sábado (Shabat y la Pascua (Pésah.In this work is studied the importance that bread and wine had in the daily feeding of the Jews throughout the Antiquity and in the Middle Ages, as well as the role that these products played in the Jewish cult of the Temple and in the liturgy of some of the most important familiar religious celebrations. The Jews, like all the other peoples of Mediterranean civilization, have traditionally based their agriculture on the Mediterranean Triad —cereal, grapevine and olive tree—, that is reflected in their daily feeding, that sustains themselves, to a great extent, in bread and wine consumption. Thus, from the late Antiquity to now, bread and wine are fundamental elements in the family celebrations of some of the main festivities of the Jewish Liturgical Calendar, in particular, the Saturday (Shabat and the Passover (Pésah.

  6. A PanDA backend for the ganga analysis interface

    International Nuclear Information System (INIS)

    Vanderster, D C; Elmsheuser, J; Walker, R; Liko, D; Maeno, T; Wenaus, T; Nilsson, P

    2010-01-01

    Ganga provides a uniform interface for running ATLAS user analyses on a number of local, batch, and grid backends. PanDA is a pilot-based production and distributed analysis system developed and used extensively by ATLAS. This work presents the implementation and usage experiences of a PanDA backend for Ganga. Built upon reusable application libraries from GangaAtlas and PanDA, the Ganga PanDA backend allows users to run their analyses on the worldwide PanDA resources, while providing the ability for users to develop simple or complex analysis workflows in Ganga. Further, the backend allows users to submit and manage 'personal' PanDA pilots: these pilots run under the user's grid certificate and provide a secure alternative to shared pilot certificates while enabling the usage of local resource allocations.

  7. Evaporational losses under different soil moisture regimes and atmospheric evaporativities using tritium

    International Nuclear Information System (INIS)

    Saxena, P.; Chaudhary, T.N.; Mookerji, P.

    1991-01-01

    Tritium as tracer was used in a laboratory study to estimate the contribution of moisture from different soil depths towards actual soil water evaporation. Results indicated that for comparable amounts of free water evaporation (5 cm), contribution of moisture from 70-80 cm soil layer towards total soil moisture loss through evaporation increased nearly 1.5 to 3 folds for soils with water table at 90 cm than without water table. Identical initial soil moistures were exposed to different atmospheric evaporativities. Similarly, for a given initial soil moisture status, upward movement of moisture from 70-80 cm soil layer under low evaporativity was nearly 8 to 12 times that of under high evaporativity at 5 cm free water evaporation value. (author). 6 refs., 4 tabs., 2 figs

  8. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses.

    Science.gov (United States)

    Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Howell, Katie A; Patel, Sonal J; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R; Frei, Julia C; Nyakatura, Elisabeth K; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L; Froude, Jeffrey W; Saphire, Erica Ollmann; Herbert, Andrew S; Wirchnianski, Ariel S; Lear-Rooney, Calli M; Alter, Galit; Dye, John M; Glass, Pamela J; Warfield, Kelly L; Aman, M Javad

    2016-01-01

    The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross

  9. Heat and mass transfer analogies for evaporation models at high evaporation rate

    OpenAIRE

    Trontin , P.; Villedieu , P.

    2014-01-01

    International audience; In the framework of anti and deicing applications, heated liquid films can appear above the ice thickness, or directly above the wall. Then, evaporation plays a major role in the Messinger balance and evaporated mass has to be predicted accurately. Unfortunately, it appears that existing models under-estimate evaporation at high temperature. In this study, different evaporation models at high evaporation rates are studied. The different hypothesis on which these models...

  10. Development and characterization of highly oriented PAN nanofiber

    Directory of Open Access Journals (Sweden)

    M. Sadrjahani

    2010-12-01

    Full Text Available A simple and non-conventional electrospinning technique was employed for producing highly oriented Polyacrylonitrile (PAN nanofibers. The PAN nanofibers were electrospun from 14 wt% solution of PAN in dimethylformamid (DMF at 11 kv on a rotating drum with various linear speeds from 22.5 m/min to 67.7 m/min. The influence of take up velocity was investigated on the degree of alignment, internal structure and mechanical properties of collected PAN nanofibers. Using an image processing technique, the best degree of alignment was obtained for those nanofibers collected at a take up velocity of 59.5 m/min. Moreover, Raman spectroscopy was used for measuring molecular orientation of PAN nanofibers. Similarly, a maximum chain orientation parameter of 0.25 was determined for nanofibers collected at a take up velocity of 59.5 m/min.

  11. Evaporator Cleaning Studies

    International Nuclear Information System (INIS)

    Wilmarth, W.R.

    1999-01-01

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning

  12. Mixed phase evaporation source

    International Nuclear Information System (INIS)

    1975-01-01

    Apparatus for reducing convection current heat loss in electron beam evaporator is described. A material to be evaporated (evaporant) is placed in the crucible of an electron beam evaporation source along with a porous mass formed of a powdered or finely divided solid to act as an impedance to convection currents. A feed system is employed to replenish the supply of evaporant as it is vaporized

  13. Migration of ATLAS PanDA to CERN

    International Nuclear Information System (INIS)

    Stewart, Graeme Andrew; Klimentov, Alexei; Maeno, Tadashi; Nevski, Pavel; Nowak, Marcin; De Castro Faria Salgado, Pedro Emanuel; Wenaus, Torre; Koblitz, Birger; Lamanna, Massimo

    2010-01-01

    The ATLAS Production and Distributed Analysis System (PanDA) is a key component of the ATLAS distributed computing infrastructure. All ATLAS production jobs, and a substantial amount of user and group analysis jobs, pass through the PanDA system, which manages their execution on the grid. PanDA also plays a key role in production task definition and the data set replication request system. PanDA has recently been migrated from Brookhaven National Laboratory (BNL) to the European Organization for Nuclear Research (CERN), a process we describe here. We discuss how the new infrastructure for PanDA, which relies heavily on services provided by CERN IT, was introduced in order to make the service as reliable as possible and to allow it to be scaled to ATLAS's increasing need for distributed computing. The migration involved changing the backend database for PanDA from MySQL to Oracle, which impacted upon the database schemas. The process by which the client code was optimised for the new database backend is discussed. We describe the procedure by which the new database infrastructure was tested and commissioned for production use. Operations during the migration had to be planned carefully to minimise disruption to ongoing ATLAS offline computing. All parts of the migration were fully tested before commissioning the new infrastructure and the gradual migration of computing resources to the new system allowed any problems of scaling to be addressed.

  14. Evaporation from a central Siberian pine forest

    Science.gov (United States)

    Kelliher, F. M.; Lloyd, J.; Arneth, A.; Byers, J. N.; McSeveny, T. M.; Milukova, I.; Grigoriev, S.; Panfyorov, M.; Sogatchev, A.; Varlargin, A.; Ziegler, W.; Bauer, G.; Schulze, E.-D.

    1998-03-01

    Total forest evaporation, E, understorey evaporation, Eu, and environmental variables were measured for 18 consecutive mid-summer days during July 1996 in a 215-year-old stand of Pinus sylvestris L. trees located 40 km southwest of the village of Zotino in central siberia, Russia (61°N, 89°E, 160 m asl). Tree and lichen ( Cladonia and Cladina spp.) understorey one-sided leaf and surface-area indices were 1.5 and 6.0, respectively. Daily E, measured by eddy covariance, was 0.8-2.3 mm day -1 which accounted for 15-67% of the available energy, Ra. Following 12 mm rainfall, daily E reached a maximum on the second day (the first clear day) but declined rapidly thereafter to reach minimum rates within one week. The sandy soil had a range of water content equivalent to only 4 mm water per 100 mm depth of soil. It was estimated that 38% of soil water was utilised before water deficit began to limit E. Eu, also measured by eddy covariance and by lysimeters, was 0.5 to 1.6 mm day -1 or 33-92% of E. Eu was proportional to Ra, but in response to soil drying, the slope of this linear relation declined by a factor of three to a minimum value only three days after the rainfall. Based on the measurements and climatological data, including average annual precipitation of 600 mm year -1 with half as rain during the nominal growing season (1 May to 30 September), water balance calculations suggested E was 265 mm per growing season.

  15. An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions

    NARCIS (Netherlands)

    Heusinkveld, B.G.; Berkowicz, S.M.; Jacobs, A.F.G.; Holtslag, A.A.M.; Hillen, W.C.A.M.

    2006-01-01

    The development of a simple and low-cost portable weighing microlysimeter that makes use of a load cell for automated recording and for studying daily dew formation, rate of accumulation, and subsequent evaporation in arid or semiarid regions during rainless seasons is presented. The sampling cup is

  16. Multi-Column Xe/Kr Separation with AgZ-PAN and HZ-PAN

    International Nuclear Information System (INIS)

    Greenhalgh, Mitchell Randy; Garn, Troy Gerry; Welty, Amy Keil; Watson, Tony Leroy

    2016-01-01

    Previous multi-column xenon/krypton separation tests have demonstrated the capability of separating xenon from krypton in a mixed gas feed stream. The results of this initial testing with AgZ-PAN and HZ-PAN indicated that an excellent separation of xenon from krypton could be achieved. Building upon these initial results, a series of additional multi-column testing were performed in FY-16. The purpose of this testing was to scale up the sorbent beds, test a different composition of feed gas and attempt to improve the accuracy of the analysis of the individual capture columns' compositions. Two Stirling coolers were installed in series to perform this testing. The use of the coolers instead of the cryostat provided two desired improvements, 1) removal of the large dilution due to the internal volume of the cryostat adsorption chamber, and 2) ability to increase the sorbent bed size for scale-up. The AgZ-PAN sorbent, due to its xenon selectivity, was loaded in the first column to capture the xenon while allowing the krypton to flow through and be routed to a second column containing the HZ-PAN for capture and analysis. The gases captured on both columns were sampled with evacuated sample bombs and subsequently analyzed via GC-MS for both krypton and xenon. The results of these tests can be used to develop the scope of future testing and analysis using this test bed for demonstrating the capture and separation of xenon and krypton using sorbents, for demonstrating desorption and regeneration of the sorbents, and for determining compositions of the desorbed gases. They indicate a need for future desorption studies in order to better quantify co-adsorbed species and final krypton purity.

  17. Multi-Column Xe/Kr Separation with AgZ-PAN and HZ-PAN

    Energy Technology Data Exchange (ETDEWEB)

    Greenhalgh, Mitchell Randy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, Troy Gerry [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy Keil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Previous multi-column xenon/krypton separation tests have demonstrated the capability of separating xenon from krypton in a mixed gas feed stream. The results of this initial testing with AgZ-PAN and HZ-PAN indicated that an excellent separation of xenon from krypton could be achieved. Building upon these initial results, a series of additional multi-column testing were performed in FY-16. The purpose of this testing was to scale up the sorbent beds, test a different composition of feed gas and attempt to improve the accuracy of the analysis of the individual capture columns’ compositions. Two Stirling coolers were installed in series to perform this testing. The use of the coolers instead of the cryostat provided two desired improvements, 1) removal of the large dilution due to the internal volume of the cryostat adsorption chamber, and 2) ability to increase the sorbent bed size for scale-up. The AgZ-PAN sorbent, due to its xenon selectivity, was loaded in the first column to capture the xenon while allowing the krypton to flow through and be routed to a second column containing the HZ-PAN for capture and analysis. The gases captured on both columns were sampled with evacuated sample bombs and subsequently analyzed via GC-MS for both krypton and xenon. The results of these tests can be used to develop the scope of future testing and analysis using this test bed for demonstrating the capture and separation of xenon and krypton using sorbents, for demonstrating desorption and regeneration of the sorbents, and for determining compositions of the desorbed gases. They indicate a need for future desorption studies in order to better quantify co-adsorbed species and final krypton purity.

  18. Hydrologic characterization for Spring Creek and hydrologic budget and model scenarios for Sheridan Lake, South Dakota, 1962-2007

    Science.gov (United States)

    Driscoll, Daniel G.; Norton, Parker A.

    2009-01-01

    Sheridan Lake for the historical pass-through operating system. Two inflow components (stream inflow and precipitation) and one outflow component (evaporation) were considered. The hydrologic budget uses monthly time steps within a computational year that includes two 6-month periods - May through October, for which evaporation is accounted for, and November through April, when evaporation is considered negligible. Results indicate that monthly evaporation rates can substantially exceed inflow during low-flow periods, and potential exists for outflows to begin approaching zero-flow conditions substantially prior to the onset of zero-inflow conditions, especially when daily inflow and evaporation are considered. Results also indicate that September may be the month for greatest potential benefit for enhancing fish habitat and other ecosystem values in downstream reaches of Spring Creek with managed releases of cool water. Computed monthly outflows from Sheridan Lake for September are less than 1.0 ft3/s for 8 of the 44 years (18 percent) and are less than 2.0 ft3/s for 14 of the 44 years (32 percent). Conversely, none of the computed outflows for May are less than 2.0 ft3/s. A short-term (July through September 2007) data set was used to calculate daily evaporation from Sheridan Lake and to evaluate the applicability of published pan coefficients. Computed values of pan coefficients of approximately 1.0 and 1.1 for two low-flow periods are larger than the mean annual pan coefficient of 0.74 for the area that is reported in the literature; however, the computed values are consistent with pan coefficients reported elsewhere for similar late summer and early fall periods. Thus, these results supported the use of variable monthly pan coefficients for the long-term hydrologic budget. A hydrologic model was developed using the primary components of the hydrologic budget and was used to simulate monthly storage deficits and drawdown for Sheridan Lake using hypothetical

  19. The occurrence of large branchiopod crustaceans in perennial pans ...

    African Journals Online (AJOL)

    Pans are isolated, shallow depressions that are endorheic in nature. Because of the natural hydrological functioning of pans, these systems are usually restricted to arid regions and complete desiccation occurs seasonally. In the eastern provinces of South Africa many pans are perennial in nature often remaining inundated ...

  20. La dionisización del dios Pan

    Directory of Open Access Journals (Sweden)

    Silvia Porres Caballero

    2012-09-01

    Full Text Available Pan is a god peculiar in many respects. In contrast to the other gods of the Greek pantheon, he is not anthropomorphic, but he has the legs, tail and horns of a goat. These features show his age. A god like Pan can only survive in Arcadia, a region that preserves many religious archaisms. However, from 490 BC, when his cult is established in Athens, this god begins to change. In his evolution, Pan becomes increasingly assimilated the god Dionysus. The rapprochement between the two gods left his mark on the mythology, but especially in the cult of Pan. Thus, a god who was worshiped in Arcadia in sanctuaries built by men, in the rest of Greece is worshiped in wild shrines, mainly caves. Out of Arcadia, the grotto also is the place reserved for the mystery cults, including the Dionysian ones. Does not seem a coincidence

  1. Forest evaporation models: Relationships between stand growth and evaporation

    CSIR Research Space (South Africa)

    Le Maitre, David C

    1997-06-01

    Full Text Available The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation...

  2. PanJen

    DEFF Research Database (Denmark)

    Jensen, Cathrine Ulla; Panduro, Toke Emil

    functional transformations, driven by an a priori and theory-based hypothesis. The plots and model fit metrics enable users to make an informed choice of how to specify the functional form the regression. We show that the PanJen ranking outperforms the Box-Tidwell transformation, especially in the presence...... of inefficiency, heteroscedasticity or endogeneity....

  3. Evaporative cooling: Effective latent heat of evaporation in relation to evaporation distance from the skin

    NARCIS (Netherlands)

    Havenith, G.; Bröde, P.; Hartog, E.A. den; Kuklane, K.; Holmer, I.; Rossi, R.M.; Richards, M.; Farnworth, B.; Wang, X.

    2013-01-01

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has

  4. 75 FR 47262 - Federal Consistency Appeal by Pan American Grain Co.

    Science.gov (United States)

    2010-08-05

    ... by Pan American Grain Co. AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department..., closure of the decision record in an administrative appeal filed by Pan American Grain Co. (Pan American..., 2010, Pan American Grain Co. filed notice of an appeal with the Secretary of Commerce (Secretary...

  5. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    Science.gov (United States)

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Crop maize evapotranspiration; 2: ratios between the evapotranspiration to class A pan evaporation, to the reference evapotranspiration and to global solar radiation, at three sowing dates

    International Nuclear Information System (INIS)

    Matzenauer, R.; Bergamashi, H.; Berlato, M.A.

    1998-01-01

    Water availability is the most limiting factor for growth and grain yield of maize in the State of Rio Grande do Sul, Brazil, reducing frequently this production. Therefore, studies involving the determination of the water requirements are important for irrigation management to minimize the water availability problem. The main objective of this study was to calculate ratios between the maize crop evapotranspiration (ETm) to the class A pan evaporation (Eo), to the reference evapotranspiration (ETo) and to global solar radiation (Rs), in order to obtain ralations between ETm/Eo, ETm/ETo and ETm/Rs, at different crop stages for three different sowing dates. Field experiments were carried out at the Experimental Station of Taquari/RS, 29°48’ of south latitude, 51°49’of west longitude, and 76m of altitude, from 1976/77 to 1988/89. ETm was measured using drainage lysimeters (Thornthwaite-Mather type). The average ratio between ETm and Eo for whole crop cycle (from sowing to physiological maturity) was 0.66, 0.72, and 0.68, respectively, in crops sown on September, October, and November. The average ratio between ETm and ETo for whole crop cycle was 0.74, 0.81, and 0.8, in crops sown on September, October, and November, while the average ratio between ETm and Rs was 0.45, 0.51, and 0.49 for the same sowing dates. The higher average values of crop coefficients occured from tasseling to the milk grain stage, when ETm/Eo was 0.81, 0.92, and 0.81; ETm/ETo was 0.97, 1.05, and 0.96, whereas ETm/Rs was 0.6, 0.68, and 0.6 for crops sown on September, October, and November, respectively [pt

  7. Status and Evolution of ATLAS Workload Management System PanDA

    CERN Document Server

    AUTHOR|(CDS)2067365; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC uses a sophisticated workload management system, PanDA, to provide access for thousands of physicists to distributed computing resources of unprecedented scale. This system has proved to be robust and scalable during three years of LHC operations. We describe the design and performance of PanDA in ATLAS. The features which make PanDA successful in ATLAS could be applicable to other exabyte scale scientific projects. We describe plans to evolve PanDA towards a general workload management system for the new BigData initiative announced by the US government. Other planned future improvements to PanDA will also be described

  8. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  9. Evaporation in hydrology and meteorology

    OpenAIRE

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the theory. Further, special conditions in evaporation are considered, followed by a fotmulation of the difficulties in determining evaporation, The last part of the paper gives a short discussion about ...

  10. Optimization of Pan Bread Prepared with Ramie Powder and Preservation of Optimized Pan Bread Treated by Gamma Irradiation during Storage

    International Nuclear Information System (INIS)

    Lee, H.J.; Joo, N.M.

    2012-01-01

    This study was conducted to develop an optimal composite recipe for pan bread with ramie powder that has high sensory approval with all age groups and to estimate the DPPH radical scavenging activity and the pan bread shelf life after gamma irradiation. The sensory evaluation results showed significant differences in flavor (p less than 0.05), appearance (p less than 0.01), color (p less than 0.01), moistness (p less than 0.01), and overall quality (p less than 0.05) based on the amount of ramie powder added. As a result, the optimum formulations by numerical and graphical methods were calculated to be as follows: ramie powder 2.76 g (0.92%) and water 184.7 mL. Optimized pan bread with ramie powder and white pan bread were irradiated with gamma-rays at doses of 0, 10, 15, and 20 kGy. The total bacterial growth increased with the longer storage time and the least amount of ramie powder added. Consequently, these results suggest that the addition of ramie powder to pan bread provides added value to the bread in terms of increased shelf life

  11. Radioimmunodetection of human pancreatic tumor xenografts using DU-PAN II monoclonal antibody

    International Nuclear Information System (INIS)

    Nakamura, Kayoko; Kubo, Atsushi; Hashimoto, Shozo; Furuuchi, Takayuki; Abe, Osahiko; Takami, Hiroshi.

    1988-01-01

    The potential of DU-PAN II, monoclonal antibody (IgM), which was raised against the human tumor cell line, was evaluated for radioimmunodetection of human pancreatic tumors (PAN-5-JCK and EXP-58) grown in nude mice. 125 I-labeled DU-PAN II was accumulated into PAN-5-JCK producing DU-PAN II antigen with a tumor-to-blood ratio of 2.72 ± 3.00, but it did not localize in EXP-58 because of insufficient DU-PAN II. There was no significant uptake of 125 I-nonimmunized IgM in PAN-5-JCK. These facts indicated the specific tumor uptake of DU-PAN II. Excellent images of the tumor PAN-5-JCK were obtained 3 days after the injection of 125 I-DU-PAN II. Gel chromatography was also investigated with respect to the plasma taken from mice injected with antibody, or incubated with antibody in vitro. The results indicate that circulating antigen affected the tumor uptake of DU-PAN II: The more the tumor grew, the higher the amount of antigen excreted into the blood, leading to the degradation of DU-PAN II before it reached the tumor sites. Consequently, the immunoscintigram of the small tumor was remarkably clear. The catabolism and the radiolysis of the labeled IgM injected are critical points in applying immunoscintigraphy. (author)

  12. Continuous measurement of soil evaporation in a drip-irrigated wine vineyard in a desert area

    Science.gov (United States)

    Evaporation from the soil surface (E) can be a significant source of water loss in arid areas. In sparsely vegetated systems, E is expected to be a function of soil, climate, irrigation regime, precipitation patterns, and plant canopy development, and will therefore change dynamically at both daily ...

  13. PanViz: interactive visualization of the structure of functionally annotated pangenomes

    DEFF Research Database (Denmark)

    Pedersen, Thomas Lin; Nookaew, Intawat; Wayne Ussery, David

    2017-01-01

    with gene ontology based navigation of gene groups. Furthermore it allows for rich and complex visual querying of gene groups in the pangenome. PanViz visualizations require no external programs and are easily sharable, allowing for rapid pangenome analyses. PanViz is written entirely in Java......PanViz is a novel, interactive, visualization tool for pangenome analysis. PanViz allows visualization of changes in gene group (groups of similar genes across genomes) classification as different subsets of pangenomes are selected, as well as comparisons of individual genomes to pangenomes......Script and is available on https://github.com/thomasp85/PanViz A companion R package that facilitates the creation of PanViz visualizations from a range of data formats is released through Bioconductor and is available at https://bioconductor.org/packages/PanVizGenerator CONTACT: thomasp85@gmail...

  14. Ecophysiological Evaluation of Three Maize (Zea mays L. Cultivars under Irrigation Regimes and Use of Super Absorbent

    Directory of Open Access Journals (Sweden)

    Allahyar Hassanzadeh

    2016-03-01

    Full Text Available To evaluate the effects of using super absorbent and irrigation regimes on seed yield and yield components of maize cultivars a split plot experiment based on randomized complete block design with three replications was performed at the Research Field of Malekan Islamic Azad University. Main factor consisted of three irrigation regimes (irrigation after 70, 110 and 150 mm evaporation from pan and subfactor of two levels of super absorbent applications (application and without application and three maize cultivars (704, Iranian maxima and overseas maxima. Based on the results obtained it was revealed that highest seed yield (985 g/m2 belonged to the plants irrigated after 70 mm evaporation from the pan without using super absorbent. Irrigation after evaporation of 150 mm from the pan decreased both seed numbers per plant and 100 seed weight, and seed yield loss amounted to be 46.1% as compared with irrigation after 70 mm evaporation from the pan. Without using super absorbent and irrigation after 150 mm evaporation from the pan decreased seed number per ear by 38.8% and 100 seed weight by 13.8%. However, application of super absorbent and irrigation of plants after 150 mm evaporation from the pan increased by grain yield 38% as compared with out using super absorbent. There were not significant difference between cultivars for seed yield and yield components. It could be concluded that application of super absorbent under water shortage conditions may reduce crop yield losses.

  15. On the link between potential evaporation and regional evaporation from a CBL perspective

    Science.gov (United States)

    Lhomme, J. P.; Guilioni, L.

    2010-07-01

    The relationship between potential evaporation and actual evaporation was first examined by Bouchet (Proc Berkeley Calif Symp IAHS Publ, 62:134-142, 1963) who considered potential evaporation as the consequence of regional evaporation due to atmospheric feedbacks. Using a heuristic approach, he derived a complementary relationship which, despite no real theoretical background, has proven to be very useful in interpreting many experimental data under various climatic conditions. Here, the relationship between actual and potential evaporation is reinterpreted in the context of the development of the convective boundary layer (CBL): first, with a closed-box approach, where the CBL has an impermeable lid; and then with an open system, where air is exchanged between the CBL and its external environment. By applying steady forcing to these systems, it is shown that an equilibrium state is reached, where potential evaporation has a specific equilibrium formulation as a function of two parameters: one representing large-scale advection and the other the feedback effect of regional evaporation on potential evaporation, i.e. a kind of “medium-scale advection”. It is also shown that the original form of Bouchet’s complementary relationship is not verified in the equilibrium state. This analysis leads us to propose a new and more rational approach of the relationship between potential and actual evaporation through the effective surface resistance of the region.

  16. EVAPORATION FORM OF ICE CRYSTALS IN SUBSATURATED AIR AND THEIR EVAPORATION MECHANISM

    OpenAIRE

    ゴンダ, タケヒコ; セイ, タダノリ; Takehiko, GONDA; Tadanori, SEI

    1987-01-01

    The evaporation form and the evaporation mechanism of dendritic ice crystals grown in air of 1.0×(10)^5 Pa and at water saturation and polyhedral ice crystals grown in air of 4.0×10 Pa and at relatively low supersaturation are studied. In the case of dendritic ice crystals, the evaporation preferentially occurs in the convex parts of the crystal surfaces and in minute secondary branches. On the other hand, in the case of polyhedral ice crystals, the evaporation preferentially occurs in the pa...

  17. Thermal and radiochemical degradation of some PAN copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Jipa, S. [INCDIE, ICPE CA, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); ' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania); Zaharescu, T. [' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania)], E-mail: traian_zaharescu@yahoo.com; Setnescu, R. [INCDIE, ICPE CA, 313 Splaiul Unirii, P.O. Box 149, Bucharest 030138 (Romania); ' Valachia' University of Targoviste, 18-22 Unirii Av., Targoviste 130082 (Romania); Dragan, E.S.; Dinu, M.V. [' Petru Poni' Institute of Macromolecular Chemistry, Iasi 700487 (Romania)

    2008-12-01

    Polyacrylonitrile (PAN) and some copolymers of acrylonitrile with divinylbenzene (AN-DVB) were investigated by the characterization of their thermal and radiation stabilities. The contribution of DVB to the thermal stability of PAN by the modification in the amount of unsaturated hydrocarbon between 6 and 20% was revealed by the evaluation of oxidation induction periods and required activation energies. The exposure of these materials to the action of {gamma}-radiation points out the higher stability of copolymers (AN-DVB) in comparison to the relative stability of PAN.

  18. Desalting of sea water by a wall-less evaporation process

    International Nuclear Information System (INIS)

    Kassel, C.; Sachine, P.; Vuillemey, R.

    1966-06-01

    The need for fresh water supplies in many parts of the globe has given a great impetus to the study of the desalting of sea-water. Research into this problem has been very varied. Although it is possible in the more-or-less near future that methods based on freezing may be developed, only evaporation methods have industrial applications at the present time. Amongst the many techniques using this method, the most favorably placed installations from the technical and economic points of view are those based on multiple effects and wall-less heat transfer. We have defined the characteristics of a wall-less evaporation process using the various factors involved in this evaporation: energy source, corrosion, furring, heat transfer, maximum temperature, etc... The unit considered in this work has a daily output of 100,000 m 3 , and makes use of the multi-stage technique with an organic heat-carrier. The maximum temperature of the first stage is 150 deg C and the evaporation factor is 0.4. After the description of the process and, the calculation of the equipment, an economic estimate is given of the cost-price : 1.49 F/m 3 . It is likely that more detailed study of the process (technique, equipment and energy consumed) should make it possible to obtain a significant improvement in the process and to reduce the price to 1 F/m 3 . (authors) [fr

  19. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  20. On linearity of pan-integral and pan-integrable functions space

    Czech Academy of Sciences Publication Activity Database

    Ouyang, Y.; Li, J.; Mesiar, Radko

    2017-01-01

    Roč. 90, č. 1 (2017), s. 307-318 ISSN 0888-613X Institutional support: RVO:67985556 Keywords : linearity * monotone measure * Pan-integrable space Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/E/mesiar-0477549.pdf

  1. Preparation and performance of biofouling resistant PAN/chitosan hollow fiber membranes.

    Science.gov (United States)

    Shanthana Lakshmi, D; Jaiswar, Santlal; Saxena, Mayank; Tasselli, Franco; Raval, Hiren D

    2017-07-01

    The preparation of polyacrylonitrile (PAN) hollow fiber (HF) membranes has been carried out by dry-jet wet spinning. PAN HF membranes were coated with chitosan biopolymers 2 wt% by dip coating and further crosslinked by chemical reagents (Tri sodium polyphosphate). PAN HF (Virgin) and PAN/chitosan coated membrane were characterized by SEM and tested for water flux. Proteins Pepsin, Albumin, and Clay of 1000 ppm concentration were tested for separation efficiency. In addition, bacterial species Escherichia coli and Bacillus subtilis were tested for fouling control efficiency and found out that PAN/chitosan membranes were quite superior to virgin PAN fibers. The adhesion of bacterial cells on the surface of the hollow fiber membranes assessed through alcian blue staining and SEM analysis. It was observed that PAN/chitosan membranes (310A and 310C) possessed best antibacterial activities (based on SEM results), qualifying them as a very promising candidates for anti-biofouling coatings.

  2. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to

  3. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  4. Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study

    Directory of Open Access Journals (Sweden)

    F. C. Sperna Weiland

    2012-03-01

    Full Text Available Potential evaporation (PET is one of the main inputs of hydrological models. Yet, there is limited consensus on which PET equation is most applicable in hydrological climate impact assessments. In this study six different methods to derive global scale reference PET daily time series from Climate Forecast System Reanalysis (CFSR data are compared: Penman-Monteith, Priestley-Taylor and original and re-calibrated versions of the Hargreaves and Blaney-Criddle method. The calculated PET time series are (1 evaluated against global monthly Penman-Monteith PET time series calculated from CRU data and (2 tested on their usability for modeling of global discharge cycles.

    A major finding is that for part of the investigated basins the selection of a PET method may have only a minor influence on the resulting river flow. Within the hydrological model used in this study the bias related to the PET method tends to decrease while going from PET, AET and runoff to discharge calculations. However, the performance of individual PET methods appears to be spatially variable, which stresses the necessity to select the most accurate and spatially stable PET method. The lowest root mean squared differences and the least significant deviations (95% significance level between monthly CFSR derived PET time series and CRU derived PET were obtained for a cell-specific re-calibrated Blaney-Criddle equation. However, results show that this re-calibrated form is likely to be unstable under changing climate conditions and less reliable for the calculation of daily time series. Although often recommended, the Penman-Monteith equation applied to the CFSR data did not outperform the other methods in a evaluation against PET derived with the Penman-Monteith equation from CRU data. In arid regions (e.g. Sahara, central Australia, US deserts, the equation resulted in relatively low PET values and, consequently, led to relatively high discharge values for dry basins (e

  5. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the

  6. Microstructural characterization of PAN based carbon fiber reinforced nylon 6 polymer composites

    Science.gov (United States)

    Munirathnamma, L. M.; Ningaraju, S.; Kumar, K. V. Aneesh; Ravikumar, H. B.

    2018-04-01

    Microstructural characterization of nylon 6/polyacrolonitrile based carbon fibers (PAN-CFs) of 10 to 40 wt% has been performed by positron lifetime technique (PLT). The positron lifetime parameters viz., o-Ps lifetime (τ3), o-Ps intensity (I3) and fractional free volume (Fv) of nylon 6/PAN-CF composites are correlated with the mechanical properties viz., Tensile strength and Young's modulus. The Fv show negative deviation with the reinforcement of 10 to 40 wt% of PAN-CF from the linear additivity relation. The negative deviation in nylon 6/PAN-CF composite suggests the induced molecular packing due to the chemical interaction between the polymeric chains of nylon 6 and PAN-CF. This is evident from Fourier Transform Infrared Spectrometry (FTIR) studies. The FTIR results suggests that observed negative deviation in PALS results of nylon 6/PAN-CF reinforced polymer composites is due to the induced chemical interaction at N-H-O sites. The improved tensile strength (TS) and Young's modulus (YM) in nylon 6/PAN-CF reinforced polymer composites is due to AS4C (surface treated and epoxy coated) PAN-CF has shown highest adhesion level due to better stress transfer between nylon 6 and PAN-CF.

  7. Nuclear security in major public events: the XV Pan American Games and the III Para-Pan American Games in Brazil

    International Nuclear Information System (INIS)

    Mello, Luiz A. de; Monteiro Filho, Joselio S.; Belem, Lilia M.J.; Torres, Luiz F.B.

    2009-01-01

    The organization of a major public event involving large numbers of spectators and participants, presents important security challenges. Taking this into consideration, the Brazilian Nuclear Energy Commission (CNEN) has been requested, by the National Secretary of Public Security/ Ministry of Justice (SENASP/MJ), by the end of 2006, to participate on the security actions to be implemented in both the XV Pan American Games and III Para Pan American Games. The XV Pan American Games 2007 and the III Para Pan American Games were held in Rio de Janeiro, Brazil from 13 to 29 July 2007 and from 12 to 19 August 2007, respectively. Those events had 8700 participants between athletes, coaches and referees from 42 countries. More than 300 competition events were held at 17 different venues and were covered by 4910 professionals from TV, radio and written press. Around 2 million tickets have been sold or distributed and 18,000 volunteers participated on the organization. The participation of CNEN was concentrated on the implementation of specific nuclear and radiological security measures to be applied at those events. This was part of a multi-institutional plan for the security of the Games, coordinated by the National Secretary of Public Security of the Ministry of Justice (SENASP/MJ). The support provided by IAEA under a Cooperation Arrangement with the Brazilian authorities was a key factor for the success of the whole operation. The actions taken and the lessons identified by the Brazilian Nuclear Energy Commission related to nuclear and radiological security for the Pan American Games and for the Para Pan American Games are presented. (author)

  8. 75 FR 61698 - Federal Consistency Appeal by Pan American Grain Co.

    Science.gov (United States)

    2010-10-06

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Federal Consistency Appeal by Pan American Grain Co. AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department... Commerce (Secretary) by Pan American Grain Co. (Pan American) has closed. No additional information, briefs...

  9. Using TES retrievals to investigate PAN in North American biomass burning plumes

    Science.gov (United States)

    Fischer, Emily V.; Zhu, Liye; Payne, Vivienne H.; Worden, John R.; Jiang, Zhe; Kulawik, Susan S.; Brey, Steven; Hecobian, Arsineh; Gombos, Daniel; Cady-Pereira, Karen; Flocke, Frank

    2018-04-01

    Peroxyacyl nitrate (PAN) is a critical atmospheric reservoir for nitrogen oxide radicals, and plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES) PAN observations over North America from July 2006 to July 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer (˜ 750 hPa) even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS) smoke plumes. Depending on the year, 15-32 % of cases where elevated PAN is identified in TES observations (retrievals with degrees of freedom (DOF) > 0.6) overlap smoke plumes during July. Of all the retrievals attempted in the July 2006 to July 2009 study period, 18 % is associated with smoke . A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO) > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.

  10. Application of Modular Modeling System to Predict Evaporation, Infiltration, Air Temperature, and Soil Moisture

    Science.gov (United States)

    Boggs, Johnny; Birgan, Latricia J.; Tsegaye, Teferi; Coleman, Tommy; Soman, Vishwas

    1997-01-01

    Models are used for numerous application including hydrology. The Modular Modeling System (MMS) is one of the few that can simulate a hydrology process. MMS was tested and used to compare infiltration, soil moisture, daily temperature, and potential and actual evaporation for the Elinsboro sandy loam soil and the Mattapex silty loam soil in the Microwave Radiometer Experiment of Soil Moisture Sensing at Beltsville Agriculture Research Test Site in Maryland. An input file for each location was created to nut the model. Graphs were plotted, and it was observed that the model gave a good representation for evaporation for both plots. In comparing the two plots, it was noted that infiltration and soil moisture tend to peak around the same time, temperature peaks in July and August and the peak evaporation was observed on September 15 and July 4 for the Elinsboro Mattapex plot respectively. MMS can be used successfully to predict hydrological processes as long as the proper input parameters are available.

  11. The Pan-STARRS1 Surveys

    Science.gov (United States)

    Chambers, Kenneth; Pan-STARRS Team

    2018-01-01

    The Pan-STARRS1 Surveys are complete and the first data release, DR1, is available from the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute. The data include a database of measured attributes of 3 billion objects, stacked images, and metadata of the 3pi Steradian Survey. The DR1 contains all stationary objects with mean and stack photometry registered on the GAIA astrometric frame. DR2 is in preparation and will be released this winter with all the individual epoch images and time domain photometry and forced photometry on the individual epoch images. The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Measured attributes include PSF model magnitudes, aperture magnitudes, Kron Magnitudes, radial moments, Petrosian magnitudes, DeVaucoulers, Exponential, and Sersic magnitudes for extended objects. Images include total intensity, variance, and masks.An overview of the Pan-STARRS1 Surveys and data releases will be presented together with a brief description of the data collected since the end of the PS1 Science Consortium surveys, and the plans for the upcoming survey with PS1 and PS2 begining in February 2018.

  12. Effects of straw mulching on soil evaporation during the soil thawing period in a cold region in northeastern China

    Science.gov (United States)

    Fu, Qiang; Yan, Peiru; Li, Tianxiao; Cui, Song; Peng, Li

    2018-04-01

    To study the effect of straw mulching on soil water evaporation, it is necessary to measure soil water evaporation under different conditions of straw mulching during the soil thawing period. A field experiment was conducted in winter, and soil evaporation was measured using a microlysimeter on bare land (LD) and 4500 (GF4500), 9000 (GF9000) and 13500 kg/hm2 (GF13500) straw mulch. The influence of different quantities of straw mulch on soil water evaporation during the thawing period was analyzed using the Mallat algorithm, statistical analysis and information cost function. The results showed that straw mulching could delay the thawing of the surface soil by 3-6 d, decrease the speed at which the surface soil thaws by 0.40-0.80 cm/d, delay the peak soil liquid water content, increase the soil liquid water content, reduce the cumulative evaporation by 2.70-7.40 mm in the thawing period, increase the range of soil evaporation by 0.04-0.10 mm in the early stage of the thawing period, and reduce the range of soil evaporation by 0.25-0.90 mm in the late stage of the thawing period. Straw mulching could reduce the range of and variation in soil evaporation and can reduce the effect of random factors on soil evaporation. When the amount of straw mulch exceeded 9000 kg/hm2, the effect of increasing the amount of straw mulch on daily soil water evaporation was small.

  13. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Towards a holistic review of Pan-Africanism: linking the idea and the movement.

    Science.gov (United States)

    Young, Kurt B

    2010-01-01

    This article explores two general approaches to defining Pan-Africanism. Traditional Pan-Africanism reflects definitions of Pan-Africanism that begin with the assumption that distinctions must be made between early "ideas" of group identification with Africa versus modern organizational activities. However, holistic approaches emphasize the interconnectivity of Pan-African ideas and concrete activities. This discussion explores these approaches and their implications for contemporary analyses of Pan-Africanism. The essay concludes that the holistic line is best suited for developing a new model in Pan-Africanism.

  15. Damage symptoms of plants due to PAN exposure

    Energy Technology Data Exchange (ETDEWEB)

    Nouchi, I; Sawada, T; Ohashi, T; Odaira, T

    1974-11-01

    In order to identify the cause of plant damage which differed from that by ozone, a series of exposure experiments was carried out on Beta vulgaris, Japanese radish, French bean, luthern, tomato, and spinach in a controlled weather room by artificially synthesized PAN (peroxyacetyl nitrate). The damage appeared generally on younger leaves as a lustering and bronzing on the lower surface; there was a specific symptom in which the interveinary part of the lower surface depressed, leaving the veins in relief. At higher concentrations of PAN, damages appeared on the upper surface of leaves, however, bronzing and lustering were clearer during exposure to lower concentrations of PAN. The position of the leaves and the part of a leaf which was damaged were constant in the petunia, morning glory, and tobacco. There was a hyperbolic relationship between the concentration of PAN and the time period of appearance of the damage as was seen during sulfur dioxide and ozone exposures.

  16. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    Science.gov (United States)

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  17. In-air PIXE for analyzing heavy metals in water boiled in pans

    International Nuclear Information System (INIS)

    Tomita, M.; Haruyama, Y.; Saito, M.

    1993-01-01

    The release rates of heavy metals from pans were measured for boiling water as well as for an acidic solution prior to an investigation on the release or sorption of trace elements due to cooking of food by boiling. The boiled samples were condensed and analyzed by means of in-air PIXE. The release of heavy metals was measured for five kinds of pans. For all pans the release rates were considerably more increased by boiling of a 5% solution of acetic acid. Furthermore it was found that by using the alumina coated aluminum pan (alumina pan) the respective release rates of Fe, Cu and Zn were all less than 50 μg per 100 cm 2 of the pan surface dipped in the solution, and that monitoring of the contents of aluminum in the boiled solution enabled the estimation of the contribution of metal elements from the pan wall. (orig.)

  18. The Pan-STARRS1 Survey Data Release

    Science.gov (United States)

    Chambers, Kenneth C.; Pan-STARRS Team

    2017-01-01

    The first Pan-STARRS1 Science Mission is complete and an initial Data Release 1, or DR1, including a database of measured attributes, stacked images, and metadata of the 3PI Survey, will be available from the STScI MAST archive. This release will contain all stationary objects with mean and stack photometry registered on the GAIA astrometric frame.The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Measured attributes include PSF model magnitudes, aperture magnitudes, Kron Magnitudes, radial moments, Petrosian magnitudes, DeVaucoulers, Exponential, and Sersic magnitudes for extended objects. Images include total intensity, variance, and masks.An overview of both DR1 and the second data release DR2, to follow in the spring of 2017, will be presented. DR2 will add all time domain data and individual warped images. We will also report on the status of the Pan-STARRS2 Observatory and ongoing science with Pan-STARRS. The science from the PS1 surveys has included results in many t fields of astronomy from Near Earth Objects to cosmology.The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; the National Aeronautics and Space Administration under Grants No. NNX08AR22G, NNX12AR65G, NNX14AM74G issued through the Planetary Science Division of the NASA Science Mission Directorate; the National Science Foundation under Grant No. AST

  19. Reply to comment by Ma and Zhang on "Rescaling the complementary relationship for land surface evaporation"

    Science.gov (United States)

    Crago, Richard; Qualls, Russell; Szilagyi, Jozsef; Huntington, Justin

    2017-07-01

    Ma and Zhang (2017) note a concern they have with our rescaled Complementary Relationship (CR) for land surface evaporation when daily average wind speeds are very low (perhaps less than 1 m/s). We discuss conditions and specific formulations that lead to this concern, but ultimately argue that under these conditions, a key assumption behind the CR itself may not be satisfied at the daily time scale. Thus, careful consideration of the reliability of the CR is needed when wind speeds are very low.

  20. Using TES retrievals to investigate PAN in North American biomass burning plumes

    Directory of Open Access Journals (Sweden)

    E. V. Fischer

    2018-04-01

    Full Text Available Peroxyacyl nitrate (PAN is a critical atmospheric reservoir for nitrogen oxide radicals, and plays a lead role in their redistribution in the troposphere. We analyze new Tropospheric Emission Spectrometer (TES PAN observations over North America from July 2006 to July 2009. Using aircraft observations from the Colorado Front Range, we demonstrate that TES can be sensitive to elevated PAN in the boundary layer (∼ 750 hPa even in the presence of clouds. In situ observations have shown that wildfire emissions can rapidly produce PAN, and PAN decomposition is an important component of ozone production in smoke plumes. We identify smoke-impacted TES PAN retrievals by co-location with NOAA Hazard Mapping System (HMS smoke plumes. Depending on the year, 15–32 % of cases where elevated PAN is identified in TES observations (retrievals with degrees of freedom (DOF > 0.6 overlap smoke plumes during July. Of all the retrievals attempted in the July 2006 to July 2009 study period, 18 % is associated with smoke . A case study of smoke transport in July 2007 illustrates that PAN enhancements associated with HMS smoke plumes can be connected to fire complexes, providing evidence that TES is sufficiently sensitive to measure elevated PAN several days downwind of major fires. Using a subset of retrievals with TES 510 hPa carbon monoxide (CO > 150 ppbv, and multiple estimates of background PAN, we calculate enhancement ratios for tropospheric average PAN relative to CO in smoke-impacted retrievals. Most of the TES-based enhancement ratios fall within the range calculated from in situ measurements.

  1. Research work on the water and heat balance of a paddy field

    International Nuclear Information System (INIS)

    Oue, A.; Kamii, Y.

    2002-01-01

    Daily water consumption and seepage of a rice paddy field with acreage of 3086 m 2 in Noichi Town was investigated from April 10, 2001 to August 6, 2001. The soil of the paddy field is highly permeable, and 'Shirokaki' (paddling) was performed elaborately before 'Taue' (rice seedlings transplanting). The result is as follows. 1) Since the soil is highly permeable, a lot of seepage into the ground was observed after the development of crack by 'Nakaboshi' (intermittent full drainage of paddy field water) performed from the end of May to the first one third of June. 2) It is found that water temperatures of the paddy field near water inlet are lower and temperature far from the inlet is higher. 3) At the earlier stage of rice cultivation, the water temperature of the paddy field was higher than the air temperature, but at the last stage, both temperatures approached closer. 4) The seepage given by seepage meter varies much, but the seepage values calculated from daily water consumption (mm/d) minus estimated evapotranspiration by Penman's method gave rather stable seepage values. 5) The interrelationships between large scale pan evaporation (class A pan), small scale pan evaporation (with 20 cm diameter) and Penman's potential evapotranspiration were investigated by simple regressional analysis. The results were not so remarkable and not so highly interrelated. 6) After 'Nakaboshi' it was hard to calculate effective rain, because if all the water percolated into the soil should be counted as effective rainfall, we have enormous effective rainfall after Nakaboshi because of improved permeability

  2. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  3. Drivers of atmospheric evaporative demand during African droughts

    Science.gov (United States)

    Blakeley, S. L.; Harrison, L.; Hobbins, M.; Dewes, C.; Funk, C. C.; Shukla, S.; Husak, G. J.

    2017-12-01

    Seeking to advance the practice of famine early warning across sub-Saharan Africa we illuminate past drivers of high-impact droughts to gain a better understanding of the evaporative processes involved in drought dynamics. Atmospheric evaporative demand (ETo) is often used to estimate plant water balance and drought impacts to vegetation, and previously demonstrated linkages between precipitation, temperature, and ETo need to be better understood. This work is timely as new data streams will enable near-real-time monitoring of ETo and incorporation of ETo forecasts into seasonal outlooks for African growing seasons. For historical droughts during major growing seasons in sub-Saharan Africa, we evaluate ETo and identify main drivers for drought cases-identified based on below-normal precipitation during the wettest three months of the growing season-and contrast these with the ETo drivers that dominate in wetter years (we also consider droughts triggered by above normal ETo). Our focus is on regions of Africa where adequate precipitation is important for productive agriculture and pastoral activities and where evaporative demand might exacerbate moisture limitations. It is expected that important ETo drivers are partly connected with precipitation-related processes but that there are variations between regions and events. The goal here is to provide a generalized understanding of what aspects of evaporative demand historically have posed an additional hazard to plant stress and how precipitation outcomes are responsible for the ETo drivers. In addition, we explore whether there have been discernible changes through time in regard to ETo drivers during below-normal precipitation seasons. Upper and lower terciles of CHIRPS precipitation are used to identify anomalous dry and wet cases. The ETo dataset spans the 1980-near present period and is calculated following ASCE's formulation of Penman-Monteith method driven by daily temperature, humidity, wind speed, and solar

  4. Sampling bee communities using pan traps: alternative methods increase sample size

    Science.gov (United States)

    Monitoring of the status of bee populations and inventories of bee faunas require systematic sampling. Efficiency and ease of implementation has encouraged the use of pan traps to sample bees. Efforts to find an optimal standardized sampling method for pan traps have focused on pan trap color. Th...

  5. Compilation of PRF Canyon Floor Pan Sample Analysis Results

    Energy Technology Data Exchange (ETDEWEB)

    Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wahl, Jon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greenwood, Lawrence R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coffey, Deborah S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McNamara, Bruce K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scheele, Randall D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Garrett N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clark, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    On September 28, 2015, debris collected from the PRF (236-Z) canyon floor, Pan J, was observed to exhibit chemical reaction. The material had been transferred from the floor pan to a collection tray inside the canyon the previous Friday. Work in the canyon was stopped to allow Industrial Hygiene to perform monitoring of the material reaction. Canyon floor debris that had been sealed out was sequestered at the facility, a recovery plan was developed, and drum inspections were initiated to verify no additional reactions had occurred. On October 13, in-process drums containing other Pan J material were inspected and showed some indication of chemical reaction, limited to discoloration and degradation of inner plastic bags. All Pan J material was sealed back into the canyon and returned to collection trays. Based on the high airborne levels in the canyon during physical debris removal, ETGS (Encapsulation Technology Glycerin Solution) was used as a fogging/lock-down agent. On October 15, subject matter experts confirmed a reaction had occurred between nitrates (both Plutonium Nitrate and Aluminum Nitrate Nonahydrate (ANN) are present) in the Pan J material and the ETGS fixative used to lower airborne radioactivity levels during debris removal. Management stopped the use of fogging/lock-down agents containing glycerin on bulk materials, declared a Management Concern, and initiated the Potential Inadequacy in the Safety Analysis determination process. Additional drum inspections and laboratory analysis of both reacted and unreacted material are planned. This report compiles the results of many different sample analyses conducted by the Pacific Northwest National Laboratory on samples collected from the Plutonium Reclamation Facility (PRF) floor pans by the CH2MHill’s Plateau Remediation Company (CHPRC). Revision 1 added Appendix G that reports the results of the Gas Generation Rate and methodology. The scope of analyses requested by CHPRC includes the determination of

  6. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  7. Evolution of the ATLAS PanDA Workload Management System for Exascale Computational Science

    CERN Document Server

    Maeno, T; The ATLAS collaboration; Klimentov, A; Nilsson, P; Oleynik, D; Panitkin, S; Petrosyan, A; Schovancova, J; Vaniachine, A; Wenaus, T; Yu, D

    2013-01-01

    An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated a...

  8. Evolution of the ATLAS PanDA Workload Management System for Exascale Computational Science

    CERN Document Server

    Maeno, T; The ATLAS collaboration; Klimentov, A; Nilsson, P; Oleynik, D; Panitkin, S; Petrosyan, A; Schovancova, J; Vaniachine, A; Wenaus, T; Yu, D

    2014-01-01

    An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated a...

  9. Pan-sharpening via compressed superresolution reconstruction and multidictionary learning

    Science.gov (United States)

    Shi, Cheng; Liu, Fang; Li, Lingling; Jiao, Licheng; Hao, Hongxia; Shang, Ronghua; Li, Yangyang

    2018-01-01

    In recent compressed sensing (CS)-based pan-sharpening algorithms, pan-sharpening performance is affected by two key problems. One is that there are always errors between the high-resolution panchromatic (HRP) image and the linear weighted high-resolution multispectral (HRM) image, resulting in spatial and spectral information lost. The other is that the dictionary construction process depends on the nontruth training samples. These problems have limited applications to CS-based pan-sharpening algorithm. To solve these two problems, we propose a pan-sharpening algorithm via compressed superresolution reconstruction and multidictionary learning. Through a two-stage implementation, compressed superresolution reconstruction model reduces the error effectively between the HRP and the linear weighted HRM images. Meanwhile, the multidictionary with ridgelet and curvelet is learned for both the two stages in the superresolution reconstruction process. Since ridgelet and curvelet can better capture the structure and directional characteristics, a better reconstruction result can be obtained. Experiments are done on the QuickBird and IKONOS satellites images. The results indicate that the proposed algorithm is competitive compared with the recent CS-based pan-sharpening methods and other well-known methods.

  10. Experience with ATLAS MySQL PanDA database service

    International Nuclear Information System (INIS)

    Smirnov, Y; Wlodek, T; Hover, J; Smith, J; Wenaus, T; Yu, D; De, K; Ozturk, N

    2010-01-01

    The PanDA distributed production and analysis system has been in production use for ATLAS data processing and analysis since late 2005 in the US, and globally throughout ATLAS since early 2008. Its core architecture is based on a set of stateless web services served by Apache and backed by a suite of MySQL databases that are the repository for all PanDA information: active and archival job queues, dataset and file catalogs, site configuration information, monitoring information, system control parameters, and so on. This database system is one of the most critical components of PanDA, and has successfully delivered the functional and scaling performance required by PanDA, currently operating at a scale of half a million jobs per week, with much growth still to come. In this paper we describe the design and implementation of the PanDA database system, its architecture of MySQL servers deployed at BNL and CERN, backup strategy and monitoring tools. The system has been developed, thoroughly tested, and brought to production to provide highly reliable, scalable, flexible and available database services for ATLAS Monte Carlo production, reconstruction and physics analysis.

  11. Experience with ATLAS MySQL PanDA database service

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Y; Wlodek, T; Hover, J; Smith, J; Wenaus, T; Yu, D [Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); De, K; Ozturk, N [Department of Physics, University of Texas at Arlington, Arlington, TX, 76019 (United States)

    2010-04-01

    The PanDA distributed production and analysis system has been in production use for ATLAS data processing and analysis since late 2005 in the US, and globally throughout ATLAS since early 2008. Its core architecture is based on a set of stateless web services served by Apache and backed by a suite of MySQL databases that are the repository for all PanDA information: active and archival job queues, dataset and file catalogs, site configuration information, monitoring information, system control parameters, and so on. This database system is one of the most critical components of PanDA, and has successfully delivered the functional and scaling performance required by PanDA, currently operating at a scale of half a million jobs per week, with much growth still to come. In this paper we describe the design and implementation of the PanDA database system, its architecture of MySQL servers deployed at BNL and CERN, backup strategy and monitoring tools. The system has been developed, thoroughly tested, and brought to production to provide highly reliable, scalable, flexible and available database services for ATLAS Monte Carlo production, reconstruction and physics analysis.

  12. PanDA Beyond ATLAS: Workload Management for Data Intensive Science

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Klimentov, A; Maeno, T; Nilsson, P; Oleynik, D; Panitkin, S; Petrosyan, A; Vaniachine, A; Wenaus, T; Yu, D

    2013-01-01

    The PanDA Production ANd Distributed Analysis system has been developed by ATLAS to meet the experiment's requirements for a data-driven workload management system for production and distributed analysis processing capable of operating at LHC data processing scale. After 7 years of impressively successful PanDA operation in ATLAS there are also other experiments which can benefit from PanDA in the Big Data challenge, with several at various stages of evaluation and adoption. The new project "Next Generation Workload Management and Analysis System for Big Data" is extending PanDA to meet the needs of other data intensive scientific applications in HEP, astro-particle and astrophysics communities, bio-informatics and other fields as a general solution to large scale workload management. PanDA can utilize dedicated or opportunistic computing resources such as grids, clouds, and High Performance Computing facilities, and is being extended to leverage next generation intelligent networks in automated workflow mana...

  13. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.

    Science.gov (United States)

    Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-03-04

    The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.

  14. Isotope and hydrochemical models for evaluation the water loss by evaporation and groundwater flow of dams

    International Nuclear Information System (INIS)

    Santiago, M.F.; Reboucas, A.C.; Frischkorn, H.

    1986-01-01

    Two different approaches are made: an isotope model, based on the observation of the 180/160 ratio of the water, and an hydrochemical model, using the Cl - concentration, are described and applied to determine the evaporation and groundwater flow rates from or to dams. During a period of three years the dams Pereira de Miranda and Caxitore in Pentecostes - Ceara-Brazil (80 Km west of Fortaleza), located in the Precambrian cristalline rock area, were studies. The results show that the models have a good applicability, to estimate the average daily depth of evaporation from free-water surfaces, from nearby porous media or the groundwater inflow or outflow. (author) [pt

  15. Microbial comparative pan-genomics using binomial mixture models

    Directory of Open Access Journals (Sweden)

    Ussery David W

    2009-08-01

    Full Text Available Abstract Background The size of the core- and pan-genome of bacterial species is a topic of increasing interest due to the growing number of sequenced prokaryote genomes, many from the same species. Attempts to estimate these quantities have been made, using regression methods or mixture models. We extend the latter approach by using statistical ideas developed for capture-recapture problems in ecology and epidemiology. Results We estimate core- and pan-genome sizes for 16 different bacterial species. The results reveal a complex dependency structure for most species, manifested as heterogeneous detection probabilities. Estimated pan-genome sizes range from small (around 2600 gene families in Buchnera aphidicola to large (around 43000 gene families in Escherichia coli. Results for Echerichia coli show that as more data become available, a larger diversity is estimated, indicating an extensive pool of rarely occurring genes in the population. Conclusion Analyzing pan-genomics data with binomial mixture models is a way to handle dependencies between genomes, which we find is always present. A bottleneck in the estimation procedure is the annotation of rarely occurring genes.

  16. Thermogravimetric analysis of fuel film evaporation

    Institute of Scientific and Technical Information of China (English)

    HU Zongjie; LI Liguang; YU Shui

    2006-01-01

    Thermogravimetric analysis (TGA) was compared with the petrochemical distillation measurement method to better understand the characteristics of fuel film evaporation at different wall tem- peratures. The film evaporation characteristics of 90# gasoline, 93# gasoline and 0# diesel with different initial thicknesses were investigated at different environmental fluxes and heating rates. The influences of heating rate, film thickness and environmental flux on fuel film evaporation for these fuels were found. The results showed that the environmental conditions in TGA were similar to those for fuel films in the internal combustion engines, so data from TGA were suitable for the analysis of fuel film evaporation. TGA could simulate the key influencing factors for fuel film evaporation and could investigate the basic quantificational effect of heating rate and film thickness. To get a rapid and sufficient fuel film evaporation, sufficiently high wall temperature is necessary. Evaporation time decreases at a high heating rate and thin film thickness, and intense gas flow is important to promoting fuel film evaporation. Data from TGA at a heating rate of 100℃/min are fit to analyze the diesel film evaporation during cold-start and warming-up. Due to the tense molecular interactions, the evaporation sequence could not be strictly divided according to the boiling points of each component for multicomponent dissolved mixture during the quick evaporation process, and the heavier components could vaporize before reaching their boiling points. The 0# diesel film would fully evaporate when the wall temperature is beyond 250℃.

  17. Radiological Protection Measurements Implemented during the 16. Pan American and 4. ParaPan American Games: Guadalajara, Mexico, 2011

    International Nuclear Information System (INIS)

    2014-02-01

    Terrorism remains a threat to international stability and security. Often national and international high level public events are the subject of much public interest and receive extensive coverage in the media. In this sense, it is well known that there is a real threat of a terrorist attack in important public events, such as major economic summits, high level political meetings or sporting events. In 1955 and 1975, the 2nd and 7th Pan American Games were organized by the City of Mexico. In 2011, the Pan American Games was the third event of its kind held in Guadalajara, Jalisco. At the national level, the implementation of nuclear security measures in the Pan American Games laid the foundations for a sustainable national nuclear security framework that will continue long after the event. The political decision, the existing legal basis and structure, agency coordination facilitated the incorporation of nuclear security measures. It was also a challenge to integrate all the relevant organizations, provide focus to the threat of terrorism linked to weapons of mass destruction for security games, plan resources and execute the project on time, among other details. For this reason, information and lessons learned that are reported in this document, received in Mexico during the 16th edition of the Pan American Games will be useful for the implementation of nuclear security measures in States with similar situations

  18. Pan-European stochastic flood event set

    Science.gov (United States)

    Kadlec, Martin; Pinto, Joaquim G.; He, Yi; Punčochář, Petr; Kelemen, Fanni D.; Manful, Desmond; Palán, Ladislav

    2017-04-01

    Impact Forecasting (IF), the model development center of Aon Benfield, has been developing a large suite of catastrophe flood models on probabilistic bases for individual countries in Europe. Such natural catastrophes do not follow national boundaries: for example, the major flood in 2016 was responsible for the Europe's largest insured loss of USD3.4bn and affected Germany, France, Belgium, Austria and parts of several other countries. Reflecting such needs, IF initiated a pan-European flood event set development which combines cross-country exposures with country based loss distributions to provide more insightful data to re/insurers. Because the observed discharge data are not available across the whole Europe in sufficient quantity and quality to permit a detailed loss evaluation purposes, a top-down approach was chosen. This approach is based on simulating precipitation from a GCM/RCM model chain followed by a calculation of discharges using rainfall-runoff modelling. IF set up this project in a close collaboration with Karlsruhe Institute of Technology (KIT) regarding the precipitation estimates and with University of East Anglia (UEA) in terms of the rainfall-runoff modelling. KIT's main objective is to provide high resolution daily historical and stochastic time series of key meteorological variables. A purely dynamical downscaling approach with the regional climate model COSMO-CLM (CCLM) is used to generate the historical time series, using re-analysis data as boundary conditions. The resulting time series are validated against the gridded observational dataset E-OBS, and different bias-correction methods are employed. The generation of the stochastic time series requires transfer functions between large-scale atmospheric variables and regional temperature and precipitation fields. These transfer functions are developed for the historical time series using reanalysis data as predictors and bias-corrected CCLM simulated precipitation and temperature as

  19. WTP Pilot-Scale Evaporation Tests

    International Nuclear Information System (INIS)

    QURESHI, ZAFAR

    2004-01-01

    This report documents the design, assembly, and operation of a Pilot-Scale Evaporator built and operated by SRTC in support of Waste Treatment Plant (WTP) Project at the DOE's Hanford Site. The WTP employs three identical evaporators, two for the Waste Feed and one for the Treated LAW. The Pilot-Scale Evaporator was designed to test simulants for both of these waste streams. The Pilot-Scale Evaporator is 1/76th scale in terms of evaporation rates. The basic configuration of forced circulation vacuum evaporator was employed. A detailed scaling analysis was performed to preserve key operating parameters such as basic loop configuration, system vacuum, boiling temperature, recirculation rates, vertical distances between important hardware pieces, reboiler heat transfer characteristics, vapor flux, configuration of demisters and water spray rings. Three evaporation test campaigns were completed. The first evaporation run used water in order to shake down the system. The water runs were important in identifying a design flaw that inhibited mixing in the evaporator vessel, thus resulting in unstable boiling operation. As a result the loop configuration was modified and the remaining runs were completed successfully. Two simulant runs followed the water runs. Test 1: Simulated Ultrafiltration Recycles with HLW SBS, and Test 2: Treated AN102 with Envelop C LAW. Several liquid and offgas samples were drawn from the evaporator facility for regulatory and non-regulatory analyses. During Test 2, the feed and the concentrate were spiked with organics to determine organic partitioning. The decontamination factor (DF) for Test 1 was measured to be 110,000 (more than the expected value of 100,000). Dow Corning Q2-3183A antifoam agent was tested during both Tests 1 and 2. It was determined that 500 ppm of this antifoam agent was sufficient to control the foaminess to less than 5 per cent of the liquid height. The long-term testing (around 100 hours of operation) did not show any

  20. Clash of pans: pan-Africanism and pan-Anglo-Saxonism and the global colour line, 1919–1945

    OpenAIRE

    Ledwidge, M.; Parmar, I.

    2017-01-01

    The article demonstrates both conceptually and empirically that pan-Anglo-Saxonist knowledge networks reconstructed and reimagined an apparently de-racialised, scientific, sober and liberal world order that outwardly abandoned, but did not eradicate the twin phenomena of racism and imperialism. Rather the new liberal (imperial) internationalists, organised in newly formed “think tanks” such as Chatham House and the Council on Foreign Relations, and through their increasingly global elite netw...

  1. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    Science.gov (United States)

    Xiao, K.; Griffis, T. J.; Baker, J. M.; Bolstad, P. V.; Erickson, M. D.; Lee, X.; Wood, J. D.; Hu, C.

    2017-12-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. For example, the water level of White Bear Lake (WBL) declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The annual evaporation for years 2014 through 2016 were 559±22 mm, 779±81 mm, and 766±11 mm, respectively. The larger evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicated that WBL evaporation increased by about 3.8 mm yr-1. Mass balance analysis implied that the lake level declines at WBL during 1986-1990 and 2003-2012 were mainly caused by the coupled low precipitation and high evaporation. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm yr-1 over this century, which is largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan

  2. Evaporation of Lennard-Jones clusters

    International Nuclear Information System (INIS)

    Roman, C.E.; Garzon, I.L.

    1991-01-01

    Extensive molecular dynamics simulations have been done to study the evaporation of a 13-atom Lennard-Jones cluster. The survival probability and the evaporative lifetime are calculated as a function of the cluster total energy from a classical trajectory analysis. The results are interpreted in terms of the RRK theory of unimolecular dissociation. The calculation of the binding energy of the evaporated species from the evaporation rate and the average kinetic energy release is discussed. (orig.)

  3. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  4. PanCoreGen – profiling, detecting, annotating protein-coding genes in microbial genomes

    Science.gov (United States)

    Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V.

    2015-01-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen – a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars – Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. PMID:26456591

  5. The future of PanDA in ATLAS distributed computing

    Science.gov (United States)

    De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favour of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addition to new challenges of scale, heterogeneity and increasing user base. PanDA will need to handle rapidly changing computing infrastructure, will require factorization of code for easier deployment, will need to incorporate additional information sources including network metrics in decision making, be able to control network circuits, handle dynamically sized workload processing, provide improved visualization, and face many other challenges. In this talk we will focus on the new features, planned or recently implemented, that are relevant to the next decade of distributed computing workload management using PanDA.

  6. Evolution of the ATLAS PanDA workload management system for exascale computational science

    International Nuclear Information System (INIS)

    Maeno, T; Klimentov, A; Panitkin, S; Schovancova, J; Wenaus, T; Yu, D; De, K; Nilsson, P; Oleynik, D; Petrosyan, A; Vaniachine, A

    2014-01-01

    An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated at a very large scale the value of automated dynamic brokering of diverse workloads across distributed computing resources. The next generation of PanDA will allow other data-intensive sciences and a wider exascale community employing a variety of computing platforms to benefit from ATLAS' experience and proven tools.

  7. Development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    Syed Mohd Saufi

    2002-11-01

    Full Text Available This paper reports the development and characterization of polyacrylonitrile (PAN based carbon hollow fiber membrane. Nitrogen was used as an inert gas during pyrolysis of the PAN hollow fiber membrane into carbon membrane. PAN membranes were pyrolyzed at temperature ranging from 500oC to 800oC for 30 minutes of thermal soak time. Scanning Electron Microscope (SEM, Fourier Transform Infrared Spectroscopy (FTIR and gas sorption analysis were applied to characterize the PAN based carbon membrane. Pyrolysis temperature was found to significantly change the structure and properties of carbon membrane. FTIR results concluded that the carbon yield still could be increased by pyrolyzing PAN membranes at temperature higher than 800oC since the existence of other functional group instead of CH group. Gas adsorption analysis showed that the average pore diameter increased up to 800oC.

  8. A Real-Time Semiautonomous Audio Panning System for Music Mixing

    Directory of Open Access Journals (Sweden)

    Perez_Gonzalez Enrique

    2010-01-01

    Full Text Available A real-time semiautonomous stereo panning system for music mixing has been implemented. The system uses spectral decomposition, constraint rules, and cross-adaptive algorithms to perform real-time placement of sources in a stereo mix. A subjective evaluation test was devised to evaluate its quality against human panning. It was shown that the automatic panning technique performed better than a nonexpert and showed no significant statistical difference to the performance of a professional mixing engineer.

  9. The ATLAS PanDA Monitoring System and its Evolution

    Science.gov (United States)

    Klimentov, A.; Nevski, P.; Potekhin, M.; Wenaus, T.

    2011-12-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.

  10. The ATLAS PanDA Monitoring System and its Evolution

    International Nuclear Information System (INIS)

    Klimentov, A; Nevski, P; Wenaus, T; Potekhin, M

    2011-01-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.

  11. Evaluation of transpiration properties of wall greening using evaporation efficiency rate as an index

    International Nuclear Information System (INIS)

    Suzuki, H.; Misaka, I.; Tashiro, Y.

    2007-01-01

    In this study, the evaporation efficiency, which is a heat balance parameter necessary for numerical simulation of greening effects, was derived in order quantitatively to evaluate the effects of wall greening panels on improving the thermal environment. The efficiency was determined by monitoring the amount of evapotranspiration from wall greening panels on which either Hedera helix or Euonymus fortunei was planted, calculating the sensible heat-flux from SAT measurements, and determining the convective heat transfer rate, material transfer rate and the difference between the measured and calculated amounts of evapotranspiration. The results showed that: 1) both the convection heat transfer rate and material transfer rate were highly correlated to wind speed, and the derived equations for calculating the rates were functions of wind speed, 2) the mean evaporation efficiency for the monitoring period was 0.25 for Hedera helix and 0.26 for Euonymus fortunei, and 3) the amounts of evaporation from the wall greening panels tested were 4 to 5 mm for both plant species and showed correlations to daily cumulative irradiation

  12. The ATLAS PanDA Monitoring System and its Evolution

    CERN Document Server

    Klimentov, A; The ATLAS collaboration; Potekhin, M; Wenaus, T

    2011-01-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on PanDA design in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Important to meeting these and other requirements is a comprehensive monitoring system. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. We decided to migrat...

  13. The ATLAS PanDA Monitoring System and its Evolution

    CERN Document Server

    Klimentov, A; The ATLAS collaboration; Potekhin, M; Wenaus, T

    2010-01-01

    The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on PanDA design in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Important to meeting these and other requirements is a comprehensive monitoring system. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. We decided to migrat...

  14. The Future of PanDA in ATLAS Distributed Computing

    CERN Document Server

    De, Kaushik; The ATLAS collaboration; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Petrosyan, Artem; Schovancova, Jaroslava; Vaniachine, Alexandre; Wenaus, Torre

    2015-01-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyze the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favor of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addi...

  15. Evaporative and Convective Instabilities for the Evaporation of a Binary Mixture in a Bilayer System

    Science.gov (United States)

    Guo, Weidong; Narayanan, Ranga

    2006-11-01

    Evaporative convection in binary mixtures arises in a variety of industrial processes, such as drying of paint and coating technology. There have been theories devoted to this problem either by assuming a passive vapor layer or by isolating the vapor fluid dynamics. Previous work on evaporative and convective instabilities in a single component bilayer system suggests that active vapor layers play a major role in determining the instability of the interface. We have investigated the evaporation convection in binary mixtures taking into account the fluid dynamics of both phases. The liquid mixture and its vapor are assumed to be confined between two horizontal plates with a base state of zero evaporation but with linear vertical temperature profile. When the vertical temperature gradient reaches a critical value, the evaporative instability, Rayleigh and Marangoni convection set in. The effects of vapor and liquid depth, various wave numbers and initial composition of the mixture on the evaporative and convective instability are determined. The physics of the instability are explained and detailed comparison is made between the Rayleigh, Marangoni and evaporative convection in pure component and those in binary mixtures.

  16. Liquid evaporation process and evaporator

    International Nuclear Information System (INIS)

    Bergey, Claude; Ravenel, Jacques.

    1975-01-01

    The process described enables a liquid to be evaporated rapidly without any projection. A jet of hot gas is applied to the liquid, the power and angle of the jet being chosen so as to spin the liquid. It is particularly used in the case of radioactive products [fr

  17. Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran)

    Science.gov (United States)

    Zamani Losgedaragh, Saeideh; Rahimzadegan, Majid

    2018-06-01

    Evapotranspiration (ET) estimation is of great importance due to its key role in water resource management. Surface energy modeling tools such as Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration with Internalized Calibration (METRIC), and the Surface Energy Balance System (SEBS) can estimate the amount of evapotranspiration for every pixel of the satellite images. The main objective of this research is evaporation investigation from the freshwater bodies using SEBAL, METRIC, and SEBS. For this purpose, the Amirkabir dam reservoir and its nearby agricultural lands in a semi-arid climate were selected and studied from 2011 to 2017 as the study area. The implementations of this study were accomplished on 16 satellite images of Landsat TM5 and OLI. Then, SEBAL, METRIC, and SEBS were implemented on the selected images. Moreover, the corresponding pan evaporate measurements on the reservoir bank were considered as the ground truth data. Regarding to the results, SEBAL is not a reliable method to evaluate freshwater evaporation with the coefficient of determination (R2) of 0.36 and the Root Mean Square Error (RMSE) of 5.1 mm. On the other hand, METRIC with RMSE and R2 of 0.57 and 2.02 mm and SEBS with RMSE and R2 of 0.93 and 0.62 demonstrated a relatively good performance.

  18. Effectiveness of KNIFC-PAN Resin in Absorbing Radiocesium in Seawater

    International Nuclear Information System (INIS)

    Nurrul Assyikeen Mohd Jaffary; Abdul Kadir Ishak; Zal Uyun Wan Mahmood; Wo, Y.M.; Norfaizal Mohamed; Mohd Tarmizi Ishak

    2016-01-01

    The effectiveness of KNiFC-PAN absorber, potassium-nickel hexacyanoferrate (II) (KNiFC) bound into modified polyacrylonitrile (PAN) have been tested for capability in absorbing radiocesium in seawater samples. The efficiency of the KNiFC-PAN were measured by the different activity of the radiocesium measured using Hyper Pure Germanium Detector (HPGe) in initial spiked seawater and eluent seawater after passed through 5 ml of KNiFC absorber. Study showed 87 % effectiveness of the KNiFC-PAN in absorbing radiocesium. Further study conducted to illustrate relation between spiked seawater and activity measured for 5 ml of KniFC passed through spiked seawater in packed column. This study suggested this relative 15L cubitainer method can be used to monitor the radiocesium in emergency situation for the fast and reliable result. (author)

  19. El Abasto de Pan en el Madrid del Siglo XVII

    Directory of Open Access Journals (Sweden)

    José Ignacio ANDRÉS UCENDO

    2012-12-01

    Full Text Available El mercado del pan era el más importante de los mercados de abastos, pero también el que contaba con el más complejo sistema de intervención. Los objetivos de la política de abastos eran asegurar un suministro continuo a precios estables y moderados.Los instrumentos incluían la regulación de los precios del grano y el pan, la provisión directa a través del pósito municipal y, en el caso de la corte, el pan de registro. En este trabajo examinamos la política de tasas, las disposiciones del gobierno y el comportamiento de los precios del pan en Madrid y del trigo en los mercados de origen.

  20. Preparation of Ag/HBP/PAN Nanofiber Web and Its Antimicrobial and Filtration Property

    Directory of Open Access Journals (Sweden)

    Li-Rong Yao

    2016-01-01

    Full Text Available To widen the application of nanofibers web in the field of medical health materials, a new Ag/amino-terminated hyperbranched polymer (HBP/polyacrylonitrile (PAN nanofiber web with excellent antimicrobial activity and filtration property was produced with Ag/HBP dispersion solution and PAN nanofiber. Ag/HBP dispersion solution was prepared with HBP as reducer and stabilizer, and Ag/HBP/PAN nanofiber was prepared by modifying electrospun PAN nanofiber with Ag/HBP aqueous solution. The characterization results showed that spherical Ag nanoparticles were prepared and they had a narrow distribution in HBP aqueous solution. The results of Ag/HBP/PAN nanofiber characterized with SEM and EDS showed that the content of silver nanoparticles on the surface of PAN nanofiber was on the increase when the treating temperature rose. The bacterial reduction rates of HBP-treated PAN nanofiber against S. aureus and E. coli were about 89%, while those of the Ag/HBP/PAN nanofiber against S. aureus and E. coli were 99.9% and 99.96%, respectively, due to the cooperative effects from the amino groups in HBP and Ag nanoparticles. Moreover, the small pores and high porosity in Ag/HBP/PAN nanofiber web resulted in high filtration efficiency (99.9% for removing smaller particles (0.1 μm~0.7 μm, which was much higher than that of the gauze mask.

  1. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

    Science.gov (United States)

    Xiao, Ke; Griffis, Timothy J.; Baker, John M.; Bolstad, Paul V.; Erickson, Matt D.; Lee, Xuhui; Wood, Jeffrey D.; Hu, Cheng; Nieber, John L.

    2018-06-01

    Lakes provide enormous economic, recreational, and aesthetic benefits to citizens. These ecosystem services may be adversely impacted by climate change. In the Twin Cities Metropolitan Area of Minnesota, USA, many lakes have been at historic low levels and water augmentation strategies have been proposed to alleviate the problem. White Bear Lake (WBL) is a notable example. Its water level declined 1.5 m during 2003-2013 for reasons that are not fully understood. This study examined current, past, and future lake evaporation to better understand how climate will impact the water balance of lakes within this region. Evaporation from WBL was measured from July 2014 to February 2017 using two eddy covariance (EC) systems to provide better constraints on the water budget and to investigate the impact of evaporation on lake level. The estimated annual evaporation losses for years 2014 through 2016 were 559 ± 22 mm, 779 ± 81 mm, and 766 ± 11 mm, respectively. The higher evaporation in 2015 and 2016 was caused by the combined effects of larger average daily evaporation and a longer ice-free season. The EC measurements were used to tune the Community Land Model 4 - Lake, Ice, Snow and Sediment Simulator (CLM4-LISSS) to estimate lake evaporation over the period 1979-2016. Retrospective analyses indicate that WBL evaporation increased during this time by about 3.8 mm year-1, which was driven by increased wind speed and lake-surface vapor pressure gradient. Using a business-as-usual greenhouse gas emission scenario (RCP8.5), lake evaporation was modeled forward in time from 2017 to 2100. Annual evaporation is expected to increase by 1.4 mm year-1 over this century, largely driven by lengthening ice-free periods. These changes in ice phenology and evaporation will have important implications for the regional water balance, and water management and water augmentation strategies that are being proposed for these Metropolitan lakes.

  2. Putting evaporators to work: wiped film evaporator for high level wastes

    International Nuclear Information System (INIS)

    Dierks, R.D.; Bonner, W.F.

    1976-01-01

    At Battelle, Pacific Northwest Laboratories, a pilot scale, wiped film evaporator was tested for concentrating high level liquid wastes from Purex-type nuclear fuel recovery processes. The concentrates produced up to 60 wt-percent total solids; and the simplicity of operation and design of the evaporator gave promise for low maintenance and high reliability

  3. The ATLAS PanDA Pilot in Operation

    International Nuclear Information System (INIS)

    Nilsson, P; De, K; Stradling, A; Caballero, J; Maeno, T; Wenaus, T

    2011-01-01

    The Production and Distributed Analysis system (PanDA) was designed to meet ATLAS requirements for a data-driven workload management system capable of operating at LHC data processing scale. Submitted jobs are executed on worker nodes by pilot jobs sent to the grid sites by pilot factories. This paper provides an overview of the PanDA pilot system and presents major features added in light of recent operational experience, including multi-job processing, advanced job recovery for jobs with output storage failures, gLExec based identity switching from the generic pilot to the actual user, and other security measures. The PanDA system serves all ATLAS distributed processing and is the primary system for distributed analysis; it is currently used at over 100 sites worldwide. We analyze the performance of the pilot system in processing real LHC data on the OSG, EGI and Nordugrid infrastructures used by ATLAS, and describe plans for its evolution.

  4. Evaporating firewalls

    Science.gov (United States)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  5. El pan nuestro de cada mes

    Directory of Open Access Journals (Sweden)

    Dora Cecilia Ramírez

    1989-01-01

    Full Text Available Comenzar escribiendo que Pan fue una revista singular sería caer en un lugar común. Lo más fácil sería decir que Pan fue o es una caja de sorpresas. Corre 1935. Colombia es un país rural; cobija una sociedad que se resiste, a pesar de los discursos progresistas, a ese proceso de transformación que ya anuncia el comercio cafetero y las primeras huelgas. Es la época de auge de los ferrocarriles nacionales, cuando se toma Cafiaspirina y Griperol, se viaja a Nueva York vía La Habana en lujosos trasatlánticos y, por supuesto, no existe la televisión. La mujer está en la casa en "lo suyo" el hombre por fuera también en "lo suyo", "las ventanas de acero se imponen en las construcciones modernas" y la soledad del ser es la misma de hoy. Se respira una gran mediocridad nacional y los escritores adoran la retórica. Entonces aparece Pan, con su formato de 15 por 23 centímetros y sus ochenta y cuatro páginas.

  6. PD2P : PanDA Dynamic Data Placement for ATLAS

    OpenAIRE

    Maeno, T; De, K; Panitkin, S

    2012-01-01

    The PanDA (Production and Distributed Analysis) system plays a key role in the ATLAS distributed computing infrastructure. PanDA is the ATLAS workload management system for processing all Monte-Carlo (MC) simulation and data reprocessing jobs in addition to user and group analysis jobs. The PanDA Dynamic Data Placement (PD2P) system has been developed to cope with difficulties of data placement for ATLAS. We will describe the design of the new system, its performance during the past year of d...

  7. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  8. Kinematic measurement from panned cinematography.

    Science.gov (United States)

    Gervais, P; Bedingfield, E W; Wronko, C; Kollias, I; Marchiori, G; Kuntz, J; Way, N; Kuiper, D

    1989-06-01

    Traditional 2-D cinematography has used a stationary camera with its optical axis perpendicular to the plane of motion. This method has constrained the size of the object plane or has introduced potential errors from a small subject image size with large object field widths. The purpose of this study was to assess a panning technique that could overcome the inherent limitations of small object field widths, small object image sizes and limited movement samples. The proposed technique used a series of reference targets in the object field that provided the necessary scales and origin translations. A 102 m object field was panned. Comparisons between criterion distances and film measured distances for field widths of 46 m and 22 m resulted in absolute mean differences that were comparable to that of the traditional method.

  9. RPAN: rice pan-genome browser for ∼3000 rice genomes.

    Science.gov (United States)

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-25

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Evaporation of Lennard-Jones fluids.

    Science.gov (United States)

    Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S

    2011-06-14

    Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.

  11. Disordered eating and food restrictions in children with PANDAS/PANS.

    Science.gov (United States)

    Toufexis, Megan D; Hommer, Rebecca; Gerardi, Diana M; Grant, Paul; Rothschild, Leah; D'Souza, Precilla; Williams, Kyle; Leckman, James; Swedo, Susan E; Murphy, Tanya K

    2015-02-01

    Sudden onset clinically significant eating restrictions are a defining feature of the clinical presentation of some of the cases of pediatric acute-onset neuropsychiatric syndrome (PANS). Restrictions in food intake are typically fueled by contamination fears; fears of choking, vomiting, or swallowing; and/or sensory issues, such as texture, taste, or olfactory concerns. However, body image distortions may also be present. We investigate the clinical presentation of PANS disordered eating and compare it with that of other eating disorders. We describe 29 patients who met diagnostic criteria for PANS. Most also exhibited evidence that the symptoms might be sequelae of infections with Group A streptococcal bacteria (the pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections [PANDAS] subgroup of PANS). The clinical presentations are remarkable for a male predominance (2:1 M:F), young age of the affected children (mean=9 years; range 5-12 years), acuity of symptom onset, and comorbid neuropsychiatric symptoms. The food refusal associated with PANS is compared with symptoms listed for the new Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-V) diagnosis of avoidant/restrictive food intake disorder (ARFID). Treatment implications are discussed, as well as directions for further research.

  12. Pan Drug-Resistant Environmental Isolate of Acinetobacter baumannii from Croatia.

    Science.gov (United States)

    Goic-Barisic, Ivana; Seruga Music, Martina; Kovacic, Ana; Tonkic, Marija; Hrenovic, Jasna

    2017-06-01

    Acinetobacter baumannii is an emerging nosocomial pathogen with also emerging resistance to different antibiotics. Multidrug and pan drug-resistant clinical isolates were reported worldwide. Here we report the first evidence of pan drug-resistant environmental isolate of A. baumannii. The isolate was recovered from the effluent of secondary treated municipal wastewater of the City of Zagreb, Croatia. The isolate was resistant to penicillins/β-lactamase inhibitors, carbapenems, fluoroquinolones, aminoglycosides, folate pathway inhibitors, and polymyxins, except intermediately susceptible to minocycline and tigecycline. Intrinsic chromosomally located bla OXA-51-like gene and acquired plasmid-located bla OXA-23-like gene were related to clinical isolates. Pan drug-resistant A. baumannii can occur in natural environments outside of the hospital. Secondary treated municipal wastewater represents a potential epidemiological reservoir of pan drug-resistant A. baumannii and carbapenem resistance gene.

  13. Film flow analysis for a vertical evaporating tube with inner evaporation and outer condensation

    International Nuclear Information System (INIS)

    Park, Il Seouk

    2008-01-01

    A numerical study for the flow, heat and mass transfer characteristics of the evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation occurs at the free surface of the inside film. The transport equations for momentum and energy are parabolized by the boundary-layer approximation and solved by using the marching technique. The calculation domain of 2 film flow regions (evaporating and condensation films at the inside and outside tube wall respectively) and tube wall is solved simultaneously. The coupling technique for the problem with the 3 different regions and the 2 interfaces of them has been developed to calculated the temperature field. The velocity and temperature fields and the amount of the condensed and evaporated mass as well as the position where the evaporating film is completely dried out are successfully predicted for various inside pressures and inside film inlet flow rates

  14. The development and evolution of Etosha Pan, Namibia

    OpenAIRE

    Hipondoka, Martin H.T.

    2005-01-01

    This study explores and examines the geomorphology of a large endorheic basin, approximately twice the size of Luxemburg, situated in the Etosha National Park, Namibia. The main focus is directed on how and when this depression, known as Etosha Pan, came into being. Geomorphological investigation was complemented and guided primarily by the application and interpretation of satellite-derived information. Etosha Pan has attracted scientific investigations for nearly a century. Unfortunately, t...

  15. THE USE OF POROUS CERAMICS FOR EVAPORATIVE AND EVAPORATIVE – VAPOR –COMPRESSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheban D.N.

    2013-04-01

    Full Text Available The use of natural evaporative cooling is one of technical solutions of problem of energy efficiency in air conditioning systems. The use of evaporative cooling in the first combined cooling stage allows reducing the load on the condenser of the cooling machine due to reducing of the condensing temperature. This combination allows the use of this type of system in any climatic conditions, including regions with small water resources. Multi-porous ceramic structure is used in evaporative air coolers and water coolers in this case. The objective of this paper is to show advantages of the using of porous ceramic as a working attachment, and to show advantages of the proposed scheme of compression-evaporation systems in comparison with standard vapor compression systems. Experimental research proved the fact, that in the film mode cooling efficiency of air flow is between EA=0,6÷0,7 and is slightly dependent of water flow. For countries with hot and dry climate where reserves of water are limited, it is recommended to use cyclical regime with EA≈0,65 value, or to use channel regime with a value of EA≈0,55. This leads to considerable energy savings. It has been determined, that combined air conditioning system is completely closed on the consumption of water at the parameters of the outside air equal to tA =32ºC and XA>13g/kg (in system with direct evaporative cooling machine, and tA=32ºC and XA>12g/kg (in system with indirect evaporative cooling machine. With these parameters, the cost of water in evaporative cooling stage can be fully compensated by condensate from the evaporator chiller.

  16. Optimizing new components of PanDA for ATLAS production on HPC resources

    CERN Document Server

    Maeno, Tadashi; The ATLAS collaboration

    2017-01-01

    The Production and Distributed Analysis system (PanDA) has been used for workload management in the ATLAS Experiment for over a decade. It uses pilots to retrieve jobs from the PanDA server and execute them on worker nodes. While PanDA has been mostly used on Worldwide LHC Computing Grid (WLCG) resources for production operations, R&D work has been ongoing on cloud and HPC resources for many years. These efforts have led to the significant usage of large scale HPC resources in the past couple of years. In this talk we will describe the changes to the pilot which enabled the use of HPC sites by PanDA, specifically the Titan supercomputer at Oakridge National Laboratory. Furthermore, it was decided in 2016 to start a fresh redesign of the Pilot with a more modern approach to better serve present and future needs from ATLAS and other collaborations that are interested in using the PanDA System. Another new project for development of a resource oriented service, PanDA Harvester, was also launched in 2016. The...

  17. Fabrication of an aluminum, Caribbean-style, musical pan: Metallurgical and acoustical characterization

    International Nuclear Information System (INIS)

    Murr, L.E.; Esquivel, E.V.; Lawrie, S.C.; Lopez, M.I.; Lair, S.L.; Soto, K.F.; Gaytan, S.M.; Bujanda, D.; Kerns, R.G.; Guerrero, P.A.; Flores, J.A.

    2006-01-01

    We report herein the first development and fabrication of a 6061 aluminum alloy pan and compare its tuning and acoustic spectra for selected notes with a standard low-carbon steel Caribbean pan fabricated from a 210-L barrel. The experimental aluminum alloy pan was completely manufactured by welding a 1.68-mm-thick head sheet to a 9-mm 2 aluminum alloy hoop, sinking the head by pneumatic hammering and welding a 1.15-mm-thick aluminum alloy side or skirt to the hoop. This experimental pan was 0.66 m in diameter, in contrast to the 210-L steel barrel standard, which had a diameter of 0.57 m. Chromatic tones were observed for most rim notes on the aluminum alloy pan, but the highest octave range notes at the pan bottom were not tuned. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated the necessity for high dislocation densities and associated hardness in order to stabilize the notes and to assure their chromatic tuning

  18. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  19. Desalting of sea water by a wall-less evaporation process; Dessalement de l'eau de mer par un procede d'evaporation sans paroi

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, C; Sachine, P; Vuillemey, R [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-06-01

    The need for fresh water supplies in many parts of the globe has given a great impetus to the study of the desalting of sea-water. Research into this problem has been very varied. Although it is possible in the more-or-less near future that methods based on freezing may be developed, only evaporation methods have industrial applications at the present time. Amongst the many techniques using this method, the most favorably placed installations from the technical and economic points of view are those based on multiple effects and wall-less heat transfer. We have defined the characteristics of a wall-less evaporation process using the various factors involved in this evaporation: energy source, corrosion, furring, heat transfer, maximum temperature, etc... The unit considered in this work has a daily output of 100,000 m{sup 3}, and makes use of the multi-stage technique with an organic heat-carrier. The maximum temperature of the first stage is 150 deg C and the evaporation factor is 0.4. After the description of the process and, the calculation of the equipment, an economic estimate is given of the cost-price : 1.49 F/m{sup 3}. It is likely that more detailed study of the process (technique, equipment and energy consumed) should make it possible to obtain a significant improvement in the process and to reduce the price to 1 F/m{sup 3}. (authors) [French] Le probleme de l 'approvisionnement en eau de nombreuses regions du globe a mis a 1'ordre du jour le dessalement de l'eau de mer. Des recherches sur cette question ont ete faites dans de multiples directions. Si dans un avenir plus ou moins proche les procedes par congelation peuvent se developper, actuellement seules les methodes d'evaporation ont des applications industrielles. Parmi les nombreuses techniques qui visent a mettre en oeuvre ce principe, les installations a multiples effets et transfert de chaleur sans paroi semblent les mieux placees du point de vue technique et economique. A partir des divers

  20. Mutagenicity of pan residues and gravy from fried meat.

    Science.gov (United States)

    Overvik, E; Nilsson, L; Fredholm, L; Levin, O; Nord, C E; Gustafsson, J A

    1987-02-01

    Lean pork meat was fried with or without the addition of frying-fat at 200 or 250 degrees C. The pan residues were collected by washing the hot pan with boiling water. When producing thickened gravy the water was substituted by a mixture of water and flour, milk and flour or cream and flour. The basic extracts were tested for mutagenicity in Ames' Salmonella test on strain TA98 with the addition of S9 mix. High amounts of mutagenicity were found in all samples. The amounts of mutagenicity in the pan residues were at a comparable level of the amounts found in the meat crusts. Thickening of the gravy caused only small changes in the mutagenicity.

  1. Effective crop evapotranspiration measurement using time-domain reflectometry technique in a sub-humid region

    Science.gov (United States)

    Srivastava, R. K.; Panda, R. K.; Halder, Debjani

    2017-08-01

    The primary objective of this study was to evaluate the performance of the time-domain reflectometry (TDR) technique for daily evapotranspiration estimation of peanut and maize crop in a sub-humid region. Four independent methods were used to estimate crop evapotranspiration (ETc), namely, soil water balance budgeting approach, energy balance approach—(Bowen ratio), empirical methods approach, and Pan evaporation method. The soil water balance budgeting approach utilized the soil moisture measurement by gravimetric and TDR method. The empirical evapotranspiration methods such as combination approach (FAO-56 Penman-Monteith and Penman), temperature-based approach (Hargreaves-Samani), and radiation-based approach (Priestley-Taylor, Turc, Abetw) were used to estimate the reference evapotranspiration (ET0). The daily ETc determined by the FAO-56 Penman-Monteith, Priestley-Taylor, Turc, Pan evaporation, and Bowen ratio were found to be at par with the ET values derived from the soil water balance budget; while the methods Abetw, Penman, and Hargreaves-Samani were not found to be ideal for the determination of ETc. The study illustrates the in situ applicability of the TDR method in order to make it possible for a user to choose the best way for the optimum water consumption for a given crop in a sub-humid region. The study suggests that the FAO-56 Penman-Monteith, Turc, and Priestley-Taylor can be used for the determination of crop ETc using TDR in comparison to soil water balance budget.

  2. Microbial comparative pan-genomics using binomial mixture models

    DEFF Research Database (Denmark)

    Ussery, David; Snipen, L; Almøy, T

    2009-01-01

    The size of the core- and pan-genome of bacterial species is a topic of increasing interest due to the growing number of sequenced prokaryote genomes, many from the same species. Attempts to estimate these quantities have been made, using regression methods or mixture models. We extend the latter...... approach by using statistical ideas developed for capture-recapture problems in ecology and epidemiology. RESULTS: We estimate core- and pan-genome sizes for 16 different bacterial species. The results reveal a complex dependency structure for most species, manifested as heterogeneous detection...... probabilities. Estimated pan-genome sizes range from small (around 2600 gene families) in Buchnera aphidicola to large (around 43000 gene families) in Escherichia coli. Results for Echerichia coli show that as more data become available, a larger diversity is estimated, indicating an extensive pool of rarely...

  3. Metallurgical and acoustical characterization of a hydroformed, 304 stainless steel, Caribbean-style musical pan

    International Nuclear Information System (INIS)

    Murr, L.E.; Gaytan, S.M.; Lopez, M.I.; Bujanda, D.E.; Martinez, E.Y.; Whitmyre, G.; Price, H.

    2008-01-01

    We report herein the metallurgical and acoustical characterization of hydroformed 304 stainless steel, Caribbean pans. These pans were fully tuned to chromatic tones and compared to a manufactured, low-carbon, Caribbean steel pan standard. Hydroformed platforms had a Vickers microindentation hardness of HV 345, which was reduced by annealing during pan fabrication to HV 270. Skirts welded to the hydroformed head had a microindentation hardness of HV 440. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated microstructures (including grain structures) characteristic of these pan microindentation hardnesses

  4. The Salmonella enterica Pan-genome

    DEFF Research Database (Denmark)

    Jacobsen, Annika; Hendriksen, Rene S.; Aarestrup, Frank Møller

    2011-01-01

    Salmonella enterica is divided into four subspecies containing a large number of different serovars, several of which are important zoonotic pathogens and some show a high degree of host specificity or host preference. We compare 45 sequenced S. enterica genomes that are publicly available (22......, and the core and pan-genome of Salmonella were estimated to be around 2,800 and 10,000 gene families, respectively. The constructed pan-genomic dendrograms suggest that gene content is often, but not uniformly correlated to serotype. Any given Salmonella strain has a large stable core, whilst...... there is an abundance of accessory genes, including the Salmonella pathogenicity islands (SPIs), transposable elements, phages, and plasmid DNA. We visualize conservation in the genomes in relation to chromosomal location and DNA structural features and find that variation in gene content is localized in a selection...

  5. PanDA for COMPASS at JINR

    Science.gov (United States)

    Petrosyan, A. Sh.

    2016-09-01

    PanDA (Production and Distributed Analysis System) is a workload management system, widely used for data processing at experiments on Large Hadron Collider and others. COMPASS is a high-energy physics experiment at the Super Proton Synchrotron. Data processing for COMPASS runs locally at CERN, on lxbatch, the data itself stored in CASTOR. In 2014 an idea to start running COMPASS production through PanDA arose. Such transformation in experiment's data processing will allow COMPASS community to use not only CERN resources, but also Grid resources worldwide. During the spring and summer of 2015 installation, validation and migration work is being performed at JINR. Details and results of this process are presented in this paper.

  6. 242-A evaporator safety analysis report

    International Nuclear Information System (INIS)

    CAMPBELL, T.A.

    1999-01-01

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR

  7. 242-A evaporator safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  8. Evolution of the ATLAS PanDA Workload Management System for Exascale Computational Science

    OpenAIRE

    Maeno, T; De, K; Klimentov, A; Nilsson, P; Oleynik, D; Panitkin, S; Petrosyan, A; Schovancova, J; Vaniachine, A; Wenaus, T; Yu, D

    2013-01-01

    An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of othe...

  9. Recent Improvements in the ATLAS PanDA Pilot

    International Nuclear Information System (INIS)

    Nilsson, P; De, K; Bejar, J Caballero; Maeno, T; Potekhin, M; Wenaus, T; Compostella, G; Contreras, C; Dos Santos, T

    2012-01-01

    The Production and Distributed Analysis system (PanDA) in the ATLAS experiment uses pilots to execute submitted jobs on the worker nodes. The pilots are designed to deal with different runtime conditions and failure scenarios, and support many storage systems. This talk will give a brief overview of the PanDA pilot system and will present major features and recent improvements including CernVM File System integration, the job retry mechanism, advanced job monitoring including JEM technology, and validation of new pilot code using the HammerCloud stress-testing system. PanDA is used for all ATLAS distributed production and is the primary system for distributed analysis. It is currently used at over 130 sites worldwide. We analyze the performance of the pilot system in processing LHC data on the OSG, EGI and Nordugrid infrastructures used by ATLAS, and describe plans for its further evolution.

  10. The Pan-STARRS PS1 Image Processing Pipeline

    Science.gov (United States)

    Magnier, E.

    The Pan-STARRS PS1 Image Processing Pipeline (IPP) performs the image processing and data analysis tasks needed to enable the scientific use of the images obtained by the Pan-STARRS PS1 prototype telescope. The primary goals of the IPP are to process the science images from the Pan-STARRS telescopes and make the results available to other systems within Pan-STARRS. It also is responsible for combining all of the science images in a given filter into a single representation of the non-variable component of the night sky defined as the "Static Sky". To achieve these goals, the IPP also performs other analysis functions to generate the calibrations needed in the science image processing, and to occasionally use the derived data to generate improved astrometric and photometric reference catalogs. It also provides the infrastructure needed to store the incoming data and the resulting data products. The IPP inherits lessons learned, and in some cases code and prototype code, from several other astronomy image analysis systems, including Imcat (Kaiser), the Sloan Digital Sky Survey (REF), the Elixir system (Magnier & Cuillandre), and Vista (Tonry). Imcat and Vista have a large number of robust image processing functions. SDSS has demonstrated a working analysis pipeline and large-scale databasesystem for a dedicated project. The Elixir system has demonstrated an automatic image processing system and an object database system for operational usage. This talk will present an overview of the IPP architecture, functional flow, code development structure, and selected analysis algorithms. Also discussed is the HW highly parallel HW configuration necessary to support PS1 operational requirements. Finally, results are presented of the processing of images collected during PS1 early commissioning tasks utilizing the Pan-STARRS Test Camera #3.

  11. EFEITO DE DIFERENTES NÍVEIS DE IRRIGAÇÃO BASEADAS EM FRAÇÕES DO TANQUE CLASSE SOBRE A PRODUÇÃO DE RABANETE (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Patricia Angélica Alves MARQUES

    2005-12-01

    Full Text Available The radish (Raphanus sativus L. is a herbaceous plant which roots present high nutritious value. One of the more used methods of the cultures evapotranspiration estimative (Eto is the pan evaporation. This method integrated the effects of solar radiation, wind, temperature and relative humidity based on the water evaporation of a free surface. This work studied the effect of different irrigation levels, based on pan evaporation (ECA - 80% ECA; 100% ECA; 120% ECA and hydric stress (0% ECA, about the 'Crinson Giant' radish production cultivated in pots. The fractions of pan evaporation tested didn't cause a reduction in the radish production in relation to the total irrigation (100% ECA. However the plants submitted to the hydric stress (0% ECA had presented a reduction in dry matter of 42% and 64% in aerial part and roots, respectively, when compared to the control (100% ECA.

  12. Spatial and diurnal below canopy evaporation in a desert vineyard: Measurements and modeling

    OpenAIRE

    Kool, D; Ben-Gal, A; Agam, N; Šimůnek, J; Heitman, JL; Sauer, TJ; Lazarovitch, N

    2014-01-01

    Evaporation from the soil surface (E) can be a significant source of water loss in arid areas. In sparsely vegetated systems, E is expected to be a function of soil, climate, irrigation regime, precipitation patterns, and plant canopy development and will therefore change dynamically at both daily and seasonal time scales. The objectives of this research were to quantify E in an isolated, drip-irrigated vineyard in an arid environment and to simulate below canopy E using the HYDRUS (2-D/3-D) ...

  13. Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sardeshpande, Vishal R.; Shendage, D.J.; Pillai, Indu R. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India)

    2010-12-15

    The jaggery making from sugarcane is one of the traditional process industries contributing to the local employment and entrepreneurship opportunities to the rural population. Jaggery is a condensed form of sugarcane juice produced by evaporation of moisture. Bagasse which is internally generated during juice extraction from sugarcane is used as the fuel for evaporation in a jaggery furnace. Any efficiency improvement in the thermal performance of a jaggery furnace leads to bagasse saving which provides additional revenue for the jaggery manufacturer. A procedure for thermal evaluation using mass and energy balance for a jaggery furnace is proposed to establish furnace performance and loss stream analysis. The proposed method is used to investigate a four pan traditional jaggery furnace in India. The loss stream analysis indicates that the theoretical energy required for jaggery processing is only 29% of total energy supplied by bagasse combustion. The major loss is associated with heat carried in flue gas and wall losses. The air available for combustion depends upon the draft created by chimney in natural draft furnaces. The oxygen content in the flue gas is a measure of degree of combustion. A controlled fuel feeding based on the oxygen percentage in the flue gases is proposed and demonstrated. The traditional practice of fuel feeding rate is changed to control feeding rate leading to reduction in specific fuel consumption from 2.39 kg bagasse/kg jaggery to 1.73 kg bagasse/kg jaggery. This procedure can be used for evaluation of jaggery furnaces for identification and quantification of losses, which will help in improving thermal energy utilization. (author)

  14. Evaporation Kinetics of Polyol Droplets: Determination of Evaporation Coefficients and Diffusion Constants

    Science.gov (United States)

    Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.

    2017-11-01

    In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.

  15. File list: Unc.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.10.AllAg.Pancreas mm9 Unclassified Pancreas Pancreas SRX1125784,SRX1125785,...1125798 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.10.AllAg.Pancreas.bed ...

  16. File list: Unc.Pan.20.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.20.AllAg.Pancreas mm9 Unclassified Pancreas Pancreas SRX1125784,SRX1125785,...1125798 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.20.AllAg.Pancreas.bed ...

  17. File list: Unc.Pan.50.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.50.AllAg.Pancreas mm9 Unclassified Pancreas Pancreas SRX1125784,SRX1125785,...1125791 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.50.AllAg.Pancreas.bed ...

  18. Tibet- Himalayan Analogs of Pan-African Shear Zones : Implications for Neoproterozoic Tectonics

    Science.gov (United States)

    Attoh, K.; Brown, L. D.

    2009-12-01

    Large-scale shear zones are distinct features of Tibet-Himalayan orogen and the Pan-African Trans-Saharan belt. Prominent examples in the Pan-African-belt extend for ~2500 km from the Sahara to the Gulf of Guinea and are characterized by right-slip movements. The NS shear zones, such as 4°50’-Kandi shear zone (KSZ) are complemented by NE-SW shear zones that preserve a record of sinistral movements and are represented by the Central Cameroon shear zone (CCSZ) in the eastern part of the Pan-African domain. The West African shear zones project into similar structures in the Borborema Province of northeast Brazil. In addition, the Pan-African belt preserves structures and rock assemblages that indicate subduction-collision tectonics We propose that structures of Tibet-Himalayan collisional orogen are instructive analogs of the Pan-African structures where: (i) the Pan-African front corresponds to the Main Himalayan thrust and it’s splays; (ii) the main Pan-African suture zone is analogous to the Indus-Tsangpo suture in the Tibet-Himalayan belt; (iii) the 4°50’-KSZ corresponds to Karakoram and it’s linkages with Jiali fault system and (iv) left-slip CCSZ and related shear zones are analogs of Altyn Tagh and Kumlun faults and their splays. This suggests the operation of escape-type tectonics in the Neoproterozoic belt of West-Africa and predicts the nature of the deep structures in the Cenozoic Tibet-Himalayan orogen.

  19. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  20. Lake Nasser evaporation reduction study

    Directory of Open Access Journals (Sweden)

    Hala M.I. Ebaid

    2010-10-01

    Full Text Available This study aims to evaluate the reduction of evaporation of Lake Nasser’s water caused by disconnecting (fully or partially some of its secondary channels (khors. This evaluation integrates remote sensing, Geographic Information System (GIS techniques, aerodynamic principles, and Landsat7 ETM+ images. Three main procedures were carried out in this study; the first derived the surface temperature from Landsat thermal band; the second derived evaporation depth and approximate evaporation volume for the entire lake, and quantified evaporation loss to the secondary channels’ level over one month (March by applied aerodynamic principles on surface temperature of the raster data; the third procedure applied GIS suitability analysis to determine which of these secondary channels (khors should be disconnected. The results showed evaporation depth ranging from 2.73 mm/day at the middle of the lake to 9.58 mm/day at the edge. The evaporated water-loss value throughout the entire lake was about 0.86 billion m3/month (March. The analysis suggests that it is possible to save an approximate total evaporation volume loss of 19.7 million m3/month (March, and thus 2.4 billion m3/year, by disconnecting two khors with approximate construction heights of 8 m and 15 m. In conclusion, remote sensing and GIS are useful for applications in remote locations where field-based information is not readily available and thus recommended for decision makers remotely planning in water conservation and management.

  1. Estrategias mundiales en la reducción de sal/sodio en el pan

    OpenAIRE

    Mónica Valverde Guillén; Jennifer Picado Pérez

    2013-01-01

    Objetivo: Proporcionar información sobre las acciones mundiales en la reducción de sal/sodio en el pan para generar datos útiles en la implementación de estrategias que busquen la disminución del consumo de sal/sodio a partir de productos panificados. Método: Se realizó una búsqueda de información en las bases de datos de Binass, PubMed, Scielo e instituciones gubernamentales. Las palabras claves fueron: contenido de sodio en el pan, menos sodio en pan, acciones para reducir sal en el pan, co...

  2. BRDF of Salt Pan Regolith Samples

    Science.gov (United States)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory Bi-directional Reflectance Distribution Function (BRDF) measurements of salt pan regolith samples are presented in this study in an effort to understand the role of spatial and spectral variability of the natural biome. The samples were obtained from Etosha Pan, Namibia (19.20 deg S, 15.93 deg E, alt. 1100 m). It is shown how the BRDF depends on the measurement geometry - incident and scatter angles and on the sample particle sizes. As a demonstration of the application of the results, airborne BRDF measurements acquires with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the regolith samples were collected are compared with the laboratory results. Good agreement between laboratory measured and field measured BRDF is reported.

  3. Pan masala advertisements are surrogate for tobacco products

    OpenAIRE

    Sushma C; Sharang C

    2005-01-01

    BACKGROUND: Pan masala is a comparatively recent habit in India and is marketed with and without tobacco. Advertisements of tobacco products have been banned in India since 1st May 2004. The advertisements of plain pan masala, which continue in Indian media, have been suspected to be surrogate for tobacco products bearing the same name. The study was carried out to assess whether these advertisements were for the intended product, or for tobacco products with same brand name. MATERIALS AND ...

  4. Integration of PanDA workload management system with Titan supercomputer at OLCF

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00300320; Klimentov, Alexei; Oleynik, Danila; Panitkin, Sergey; Petrosyan, Artem; Vaniachine, Alexandre; Wenaus, Torre; Schovancova, Jaroslava

    2015-01-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, next LHC data taking run will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modi ed PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multi-core worker nodes. It also gives PanDA new capability to collect, in real time, information about unused...

  5. Integration of PanDA workload management system with Titan supercomputer at OLCF

    CERN Document Server

    Panitkin, Sergey; The ATLAS collaboration; Klimentov, Alexei; Oleynik, Danila; Petrosyan, Artem; Schovancova, Jaroslava; Vaniachine, Alexandre; Wenaus, Torre

    2015-01-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently uses more than 100,000 cores at well over 100 Grid sites with a peak performance of 0.3 petaFLOPS, next LHC data taking run will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). Current approach utilizes modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multi-core worker nodes. It also gives PanDA new capability to collect, in real tim...

  6. Global heterogeneous resource harvesting: the next-generation PanDA Pilot for ATLAS

    CERN Document Server

    Nilsson, Paul; The ATLAS collaboration

    2017-01-01

    The Production and Distributed Analysis system (PanDA), used for workload management in the ATLAS Experiment for over a decade, has in recent years expanded its reach to diverse new resource types such as HPCs, and innovative new workflows such as the Event Service. PanDA meets the heterogeneous resources it harvests in the PanDA pilot, which has embarked on a next-generation reengineering to efficiently integrate and exploit the new platforms and workflows. The new modular architecture is the product of a year of design and prototyping in conjunction with the design of a completely new component, Harvester, that will mediate a richer flow of control and information between pilot and PanDA. Harvester will enable more intelligent and dynamic matching between processing tasks and resources, with an initial focus on HPCs, simplifying the operator and user view of a PanDA site but internally leveraging deep information gathering on the resource to accrue detailed knowledge of a site's capabilities and dynamic sta...

  7. Global heterogeneous resource harvesting: the next-generation PanDA pilot for ATLAS

    CERN Document Server

    Nilsson, Paul; The ATLAS collaboration

    2017-01-01

    The Production and Distributed Analysis system (PanDA), used for workload management in the ATLAS Experiment for over a decade, has in recent years expanded its reach to diverse new resource types such as HPCs, and innovative new workflows such as the event service. PanDA meets the heterogeneous resources it harvests in the PanDA pilot, which has embarked on a next-generation reengineering to efficiently integrate and exploit the new platforms and workflows. The new modular architecture is the product of a year of design and prototyping in conjunction with the design of a completely new component, Harvester, that will mediate a richer flow of control and information between pilot and PanDA. Harvester will enable more intelligent and dynamic matching between processing tasks and resources, with an initial focus on HPCs, simplifying the operator and user view of a PanDA site but internally leveraging deep information gathering on the resource to accrue detailed knowledge of a site's capabilities and dynamic sta...

  8. PD2P: PanDA Dynamic Data Placement for ATLAS

    International Nuclear Information System (INIS)

    Maeno, T; Panitkin, S; De, K

    2012-01-01

    The PanDA (Production and Distributed Analysis) system plays a key role in the ATLAS distributed computing infrastructure. PanDA is the ATLAS workload management system for processing all Monte-Carlo (MC) simulation and data reprocessing jobs in addition to user and group analysis jobs. The PanDA Dynamic Data Placement (PD2P) system has been developed to cope with difficulties of data placement for ATLAS. We will describe the design of the new system, its performance during the past year of data taking, dramatic improvements it has brought about in the efficient use of storage and processing resources, and plans for the future.

  9. File list: Unc.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.05.AllAg.Pancreas mm9 Unclassified Pancreas Pancreas SRX527836,SRX1125784,S...X527839 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.05.AllAg.Pancreas.bed ...

  10. The evaporative vector: Homogeneous systems

    International Nuclear Information System (INIS)

    Klots, C.E.

    1987-05-01

    Molecular beams of van der Waals molecules are the subject of much current research. Among the methods used to form these beams, three-sputtering, laser ablation, and the sonic nozzle expansion of neat gases - yield what are now recognized to be ''warm clusters.'' They contain enough internal energy to undergo a number of first-order processes, in particular that of evaporation. Because of this evaporation and its attendant cooling, the properties of such clusters are time-dependent. The states of matter which can be arrived at via an evaporative vector on a typical laboratory time-scale are discussed. Topics include the (1) temperatures, (2) metastability, (3) phase transitions, (4) kinetic energies of fragmentation, and (5) the expression of magical properties, all for evaporating homogeneous clusters

  11. Hydrological analysis relevant to surface water storage at Jabiluka. Supervising Scientist report 142

    International Nuclear Information System (INIS)

    Chiew, F.H.S.; Wang, Q.J.

    1999-01-01

    The report is prepared for the Supervising Scientist at Jabiru. It describes part of an investigation into hydrological issues relating to the water management system proposed for the Jabiluka project. Specifically, the objective is to estimate the water storage capacity required to store surface runoff and other water within the total containment zone (TCZ) of the Jabiluka project. The water storage volume is calculated for a range of probabilities up to 0.002% that the pond design volume would be exceeded over a 30-year mine life. In this study, 50 000 sets of 30 years of daily rainfall and monthly pan evaporation data are stochastically generated to simulate the storage water balance. The approach used by Kinhill and Energy Resources of Australia (ERA) is reviewed and the pond design compared with the estimates derived here. The Kinhill-ERA approach is described in the Jabiluka Mill Alternative Public Environment Report and the Jabiluka Mill Alternative Public Environment Report Technical Appendices (hereon referred to as Jabiluka PER Appendices) (1998). The two reports also provide background to many other issues. The structural design of the storage and other features of the mine site are not considered here. This study also assumes that the bunds and other drainage diversion structures will prevent all water outside the TCZ from entering the TCZ and vice versa. The storage water balance components are discussed in section 2. Some of the water inflows into the storage and losses from the storage are discussed in detail, while elsewhere, the values used by Kinhill-ERA are adopted. Section 3 describes the selection of the climate stations used here, the rainfall and pan evaporation characteristics in the area and the stochastic generation of 1.5 million years of daily rainfall and monthly pan evaporation data. Section 4 describes the approach used to estimate the storage capacity, and presents the storage capacity estimates for various probabilities of

  12. Measurements of the evaporation rate upon evaporation of thin layer at different heating modes

    OpenAIRE

    Gatapova E.Ya.; Korbanova E.G.

    2017-01-01

    Technique for measurements of the evaporation rate of a heated liquid layer is presented. The local minimum is observed which is associated with the point of equilibrium of the liquid–gas interface. It is shown when no heat is applied to the heating element temperature in gas phase is larger than in liquid, and evaporation occurs with the rate of 0.014–0.018 μl/s. Then evaporation rate is decreasing with increasing the heater temperature until the equilibrium point is reached at the liquid–ga...

  13. PNL1 and PNL2 : Arabidopsis homologs of maize PAN1

    OpenAIRE

    Clark, Lauren Gail

    2010-01-01

    PNL1 and PNL2 are the closest Arabidopsis relatives of maize pan1. pan1 and the PNL family of 11 genes encode leucine-rich repeat, receptor-like kinases, however none of these putative kinases is predicted to have actual kinase function, due to one or more amino acid substitutions in residues necessary for kinase function. Because PAN1 plays a role in subsidiary cell formation in maize, it is hypothesized that PNL1 and PNL2 are involved in stomatal formation in Arabidopsis. YFP fusions of the...

  14. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo droplet

    NARCIS (Netherlands)

    Tan, H.; Diddens, C.; Lv, P.; Kuerten, J.G.M.; Zhang, X.; Lohse, D.

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even

  15. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NARCIS (Netherlands)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J.G.M.; Zhang, Xuehua; Lohse, Detlef

    2016-01-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even

  16. Longitudinal Changes in Tear Evaporation Rates After Eyelid Warming Therapies in Meibomian Gland Dysfunction.

    Science.gov (United States)

    Yeo, Sharon; Tan, Jen Hong; Acharya, U Rajendra; Sudarshan, Vidya K; Tong, Louis

    2016-04-01

    Lid warming is the major treatment for meibomian gland dysfunction (MGD). The purpose of the study was to determine the longitudinal changes of tear evaporation after lid warming in patients with MGD. Ninety patients with MGD were enrolled from a dry eye clinic at Singapore National Eye Center in an interventional trial. Participants were treated with hot towel (n = 22), EyeGiene (n = 22), or Blephasteam (n = 22) twice daily or a single 12-minute session of Lipiflow (n = 24). Ocular surface infrared thermography was performed at baseline and 4 and 12 weeks after the treatment, and image features were extracted from the captured images. The baseline of conjunctival tear evaporation (TE) rate (n = 90) was 66.1 ± 21.1 W/min. The rates were not significantly different between sexes, ages, symptom severities, tear breakup times, Schirmer test, corneal fluorescein staining, or treatment groups. Using a general linear model (repeat measures), the conjunctival TE rate was reduced with time after treatment. A higher baseline evaporation rate (≥ 66 W/min) was associated with greater reduction of evaporation rate after treatment. Seven of 10 thermography features at baseline were predictive of reduction in irritative symptoms after treatment. Conjunctival TE rates can be effectively reduced by lid warming treatment in some MGD patients. Individual baseline thermography image features can be predictive of the response to lid warming therapy. For patients that do not have excessive TE, additional therapy, for example, anti-inflammatory therapy, may be required.

  17. Design of an Enterobacteriaceae Pan-genome Microarray Chip

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2010-01-01

    -density microarray chip has been designed, using 116 Enterobacteriaceae genome sequences, taking into account the enteric pan-genome. Probes for the microarray were checked in silico and performance of the chip, based on experimental strains from four different genera, demonstrate a relatively high ability...... to distinguish those strains on genus, species, and pathotype/serovar levels. Additionally, the microarray performed well when investigating which genes were found in a given strain of interest. The Enterobacteriaceae pan-genome microarray, based on 116 genomes, provides a valuable tool for determination...

  18. 242-A evaporator hazards assessment

    International Nuclear Information System (INIS)

    Johnson, T.L.

    1998-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the 242-A Evaporator, on the Hanford Site. Through this document the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated. The evaporator sues a conventional, forced-circulation, vacuum evaporation system to concentrate radioactive waste solutions. This concentration results in the reduction in waste volume and reduces the number of double-shelled tanks required to store the waste

  19. File list: ALL.Pan.50.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Pancreas mm9 All antigens Pancreas Pancreas SRX111395,ERX651337,SR...ERX383750,SRX672452 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.50.AllAg.Pancreas.bed ...

  20. File list: ALL.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Pancreas mm9 All antigens Pancreas Pancreas SRX111395,ERX651337,SR...ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.10.AllAg.Pancreas.bed ...

  1. File list: ALL.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreas mm9 All antigens Pancreas Pancreas ERX651337,SRX527836,SR...ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.05.AllAg.Pancreas.bed ...

  2. File list: ALL.Pan.20.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.20.AllAg.Pancreas mm9 All antigens Pancreas Pancreas SRX111395,ERX651337,SR...ERX383750,SRX672452 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.20.AllAg.Pancreas.bed ...

  3. Drop evaporation and triple line dynamics

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  4. Desalting of sea water by a wall-less evaporation process; Dessalement de l'eau de mer par un procede d'evaporation sans paroi

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, C.; Sachine, P.; Vuillemey, R. [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-06-01

    The need for fresh water supplies in many parts of the globe has given a great impetus to the study of the desalting of sea-water. Research into this problem has been very varied. Although it is possible in the more-or-less near future that methods based on freezing may be developed, only evaporation methods have industrial applications at the present time. Amongst the many techniques using this method, the most favorably placed installations from the technical and economic points of view are those based on multiple effects and wall-less heat transfer. We have defined the characteristics of a wall-less evaporation process using the various factors involved in this evaporation: energy source, corrosion, furring, heat transfer, maximum temperature, etc... The unit considered in this work has a daily output of 100,000 m{sup 3}, and makes use of the multi-stage technique with an organic heat-carrier. The maximum temperature of the first stage is 150 deg C and the evaporation factor is 0.4. After the description of the process and, the calculation of the equipment, an economic estimate is given of the cost-price : 1.49 F/m{sup 3}. It is likely that more detailed study of the process (technique, equipment and energy consumed) should make it possible to obtain a significant improvement in the process and to reduce the price to 1 F/m{sup 3}. (authors) [French] Le probleme de l 'approvisionnement en eau de nombreuses regions du globe a mis a 1'ordre du jour le dessalement de l'eau de mer. Des recherches sur cette question ont ete faites dans de multiples directions. Si dans un avenir plus ou moins proche les procedes par congelation peuvent se developper, actuellement seules les methodes d'evaporation ont des applications industrielles. Parmi les nombreuses techniques qui visent a mettre en oeuvre ce principe, les installations a multiples effets et transfert de chaleur sans paroi semblent les mieux placees du point de vue technique et economique. A

  5. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  6. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  7. Treatment of liquid radioactive waste: Evaporation

    International Nuclear Information System (INIS)

    Pfeiffer, R.

    1982-01-01

    About 10.000 m 3 of low active liquid waste (LLW) arise in the Nuclear Research Center Karlsruhe. Chemical contents of this liquid waste are generally not declared. Resulting from experiments carried out in the Center during the early sixties, the evaporator facility was built in 1968 for decontamination of LLW. The evaporators use vapor compression and concentrate recirculation in the evaporator sump by pumps. Since 1971 the medium active liquid waste (MLW) from the Karlsruhe Reprocessing Plant (WAK) was decontaminated in this evaporator facility, too. By this time the amount of low liquid waste (LLW) had been decontaminated without mentionable interruptions. Afterwards a lot of interruptions of operations occurred, mainly due to leakages of pumps, valves and pipes. There was also a very high radiation level for the operating personnel. As a consequence of this experience a new evaporator facility for decontamination of medium active liquid waste was built in 1974. This facility started operation in 1976. The evaporator has natural circulation and is heated by steam through a heat exchanger. (orig./RW)

  8. Next Generation PanDA Pilot for ATLAS and Other Experiments

    CERN Document Server

    Nilsson, P; The ATLAS collaboration; Caballero Bejar, J; De, K; Hover, J; Love, P; Maeno, T; Medrano Llamas, R; Walker, R; Wenaus, T

    2013-01-01

    The Production and Distributed Analysis system (PanDA) has been in use in the ATLAS Experiment since 2005. It uses a sophisticated pilot system to execute submitted jobs on the worker nodes. While originally designed for ATLAS, the PanDA Pilot has recently been refactored to facilitate use outside of ATLAS. Experiments are now handled as plug-ins such that a new PanDA Pilot user only has to implement a set of prototyped methods in the plug-in classes, and provide a script that configures and runs the experiment specific payload. We will give an overview of the Next Generation PanDA Pilot system and will present major features and recent improvements including live user payload debugging, data access via the Federated XRootD system, stage-out to alternative storage elements, support for the new ATLAS DDM system (Rucio), and an improved integration with glExec, as well as a description of the experiment specific plug-in classes. The performance of the pilot system in processing LHC data on the OSG, LCG and Nord...

  9. Next Generation PanDA Pilot for ATLAS and Other Experiments

    CERN Document Server

    Nilsson, P; The ATLAS collaboration; Caballero Bejar, J; De, K; Hover, J; Love, P; Maeno, T; Medrano Llamas, R; Walker, R; Wenaus, T

    2014-01-01

    The Production and Distributed Analysis system (PanDA) has been in use in the ATLAS Experiment since 2005. It uses a sophisticated pilot system to execute submitted jobs on the worker nodes. While originally designed for ATLAS, the PanDA Pilot has recently been refactored to facilitate use outside of ATLAS. Experiments are now handled as plug-ins such that a new PanDA Pilot user only has to implement a set of prototyped methods in the plug-in classes, and provide a script that configures and runs the experiment specific payload. We will give an overview of the Next Generation PanDA Pilot system and will present major features and recent improvements including live user payload debugging, data access via the Federated XRootD system, stage-out to alternative storage elements, support for the new ATLAS DDM system (Rucio), and an improved integration with glExec, as well as a description of the experiment specific plug-in classes. The performance of the pilot system in processing LHC data on the OSG, LCG and Nord...

  10. The next generation of the ATLAS PanDA Monitoring System

    CERN Document Server

    Schovancova, J; The ATLAS collaboration; Klimentov, A; Love, P; Potekhin, M; Wenaus, T

    2014-01-01

    For many years the PanDA Workload Management System has been the basis for distributed production and analysis for the ATLAS experiment at the LHC. Since the start of data taking PanDA usage has ramped up steadily, with up to 1M completed jobs/day in 2013. The associated monitoring data volume has been rising as well, to levels that present a new set of challenges in the areas of database scalability and monitoring system performance and efficiency. Outside of ATLAS, the PanDA system is also being used in projects like AMS, LSST and a few others. It currently undergoes a significant redesign, both of the core server components responsible for workload management, brokerage and data access, and of the monitoring part, which is critically important for efficient execution of the workflow in a way that’s transparent to the user and also provides an effective set of tools for operational support. The new generation of the PanDA Monitoring Service is designed based on a proven, scalable, industry-standard Web Fr...

  11. PanDA Pilot Submission using Condor-G: Experience and Improvements

    CERN Document Server

    Zhao, Xin; The ATLAS collaboration; Wlodek, Tom; Wenaus, Torre; Frey, Jaime; Tannenbaum, Todd; Livny, Miron

    2010-01-01

    PanDA is the workload management system of the ATLAS experiment, used to run production and user analysis jobs on the grid. As a late-binding, pilot-based system, the maintenance of a smooth and steady stream of pilot jobs to all grid sites is critical for PanDA operation. The ATLAS Computing Facility (ACF) at BNL, as the ATLAS Tier 1 center in the US, operates the pilot submission systems for the US. This is done using the PanDA "AutoPilot" scheduler component which submits pilot jobs via Condor-G, a grid job scheduling system developed at the University of Wisconsin-Madison. In this talk, we discuss the operation and performance of the Condor-G pilot submission at BNL, with emphasis on the challenges and issues encountered in the real grid production environment. With the close collaboration of Condor and PanDA teams, the scalability and stability of the overall system has been greatly improved over the last year. We review improvements made to Condor-G resulting from this collaboration, including isolation...

  12. PanDA Pilot Submission using Condor-G: Experience and Improvements

    CERN Document Server

    Zhao, X; The ATLAS collaboration; Wlodek, T; Wenaus, T; Frey, J; Tannenbaum, T; Livny, M

    2011-01-01

    PanDA (Production and Distributed Analysis) is the workload management system of the ATLAS experiment, used to run managed production and user analysis jobs on the grid. As a late-binding, pilot-based system, the maintenance of a smooth and steady stream of pilot jobs to all grid sites is critical for PanDA operation. The ATLAS Computing Facility (ACF) at BNL, as the ATLAS Tier1 center in the US, operates the pilot submission systems for the US. This is done using the PanDA “AutoPilot” scheduler component which submits pilot jobs via Condor-G, a grid job scheduling system developed at the University of Wisconsin-Madison. In this paper, we discuss the operation and performance of the Condor-G pilot submission at BNL, with emphasis on the challenges and issues encountered in the real grid production environment. With the close collaboration of Condor and PanDA teams, the scalability and stability of the overall system has been greatly improved over the last year. We review improvements made to Condor-G resu...

  13. The evaporation of crude oil and petroleum products

    International Nuclear Information System (INIS)

    Fingas, M. F.

    1996-01-01

    The physics of oil and petroleum evaporation was studied by means of an experimental apparatus. The evaporation was determined by weight loss and recorded on a computer. Examination of the data showed that most oil and petroleum products (those with seven to ten components) evaporate at a logarithmic rate with respect to time, while other petroleum products (those with fewer chemical components) evaporate at a rate which is square root with respect to time. Evaporation of oil and petroleum was not strictly boundary-layer regulated because the typical oil evaporation rate rates do not exceed that of molecular diffusion and thus turbulent diffusion does not increase the evaporation rates. Overall, boundary layer regulation can be ignored in the prediction of oil and petroleum evaporation. The simple equation relating only the logarithm of time (or the square root of time in the case of narrow-cut products) and temperature are sufficient to accurately describe oil evaporation. refs., figs

  14. Water evaporation: a transition path sampling study.

    Science.gov (United States)

    Varilly, Patrick; Chandler, David

    2013-02-07

    We use transition path sampling to study evaporation in the SPC/E model of liquid water. On the basis of thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

  15. File list: ALL.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreas hg19 All antigens Pancreas Pancreas SRX347280,SRX134735,S...71,SRX342269,SRX188948,SRX188958 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.05.AllAg.Pancreas.bed ...

  16. File list: ALL.Pan.20.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.20.AllAg.Pancreas hg19 All antigens Pancreas Pancreas SRX136972,ERX103432,S...58,SRX188948,SRX270968,SRX347271 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.20.AllAg.Pancreas.bed ...

  17. File list: ALL.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.Pancreas hg19 All antigens Pancreas Pancreas SRX136972,SRX136967,S...71,SRX342269,SRX188948,SRX188958 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.10.AllAg.Pancreas.bed ...

  18. 75 FR 8919 - Federal Consistency Appeal by Pan American Grain Co.

    Science.gov (United States)

    2010-02-26

    ... by Pan American Grain Co. AGENCY: National Oceanic and Atmospheric Administration (NOAA), Department... Grain Co., has filed an administrative appeal with the Department of Commerce (Department), requesting..., 2010, Pan American Grain Co. filed notice of an appeal with the Secretary of Commerce (Secretary...

  19. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  20. Evaporation From Soil Containers With Irregular Shapes

    Science.gov (United States)

    Assouline, Shmuel; Narkis, Kfir

    2017-11-01

    Evaporation from bare soils under laboratory conditions is generally studied using containers of regular shapes where the vertical edges are parallel to the flow lines in the drying domain. The main objective of this study was to investigate the impact of irregular container shapes, for which the flow lines either converge or diverge toward the surface. Evaporation from initially saturated sand and sandy loam soils packed in cones and inverted cones was compared to evaporation from corresponding cylindrical columns. The initial evaporation rate was higher in the cones, and close to potential evaporation. At the end of the experiment, the cumulative evaporation depth in the sand cone was equal to that in the column but higher than in the inverted cone, while in the sandy loam, the order was cone > column > inverted cone. By comparison to the column, stage 1 evaporation was longer in the cones, and practically similar in the inverted cones. Stage 2 evaporation rate decreased with the increase of the evaporating surface area. These results were more pronounced in the sandy loam. For the sand column, the transition between stage 1 and stage 2 evaporation occurred when the depth of the saturation front was approximately equal to the characteristic length of the soil. However, for the cone and the inverted cone, it occurred for a shallower depth of the saturation front. It seems therefore that the concept of the characteristic length derived from the soil hydraulic properties is related to drying systems of regular shapes.

  1. Evaporative lithographic patterning of binary colloidal films.

    Science.gov (United States)

    Harris, Daniel J; Conrad, Jacinta C; Lewis, Jennifer A

    2009-12-28

    Evaporative lithography offers a promising new route for patterning a broad array of soft materials. In this approach, a mask is placed above a drying film to create regions of free and hindered evaporation, which drive fluid convection and entrained particles to regions of highest evaporative flux. We show that binary colloidal films exhibit remarkable pattern formation when subjected to a periodic evaporative landscape during drying.

  2. Evaporative cooling in polymer electrolyte fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Shimotori, S; Sonai, A [Toshiba Corp. Tokyo (Japan)

    1996-06-05

    The concept of the evaporative cooling for the internally humidified PEFC was confirmed by the experiment. The evaporative cooling rates at the anode and the cathode were mastered under the various temperatures and air utilizations. At a high temperature the proportion of the evaporative cooling rate to the heat generation rate got higher, the possibility of the evaporative cooling was demonstrated. 2 refs., 7 figs., 1 tab.

  3. PD2P : PanDA Dynamic Data Placement for ATLAS

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The PanDA Dynamic Data Placement (PD2P) system has been developed to cope with difficulties of data placement for ATLAS. PD2P is an intelligent subsystem of PanDA to distribute data by taking the following factors into account: popularity, locality, the usage pattern of the data, the distribution of CPU and storage resources, ...

  4. Towards a rational definition of potential evaporation

    Directory of Open Access Journals (Sweden)

    J.-P. Lhommel

    1997-01-01

    Full Text Available The concept of potential evaporation is defined on the basis of the following criteria: (i it must establish an upper limit to the evaporation process in a given environment (the term 'environment' including meteorological and surface conditions, and (ii this upper limit must be readily calculated from measured input data. It is shown that this upper limit is perfectly defined and is given by the Penman equation, applied with the corresponding meteorological data (incoming radiation and air characteristics measured at a reference height and the appropriate surface characteristics (albedo, roughness length, soil heat flux. Since each surface has its own potential evaporation, a function of its own surface characteristics, it is useful to define a reference potential evaporation as a short green grass completely shading the ground. Although the potential evaporation from a given surface is readily calculated from the Penman equation, its physical significance or interpretation is not so straightforward, because it represents only an idealized situation, not a real one. Potential evaporation is the evaporation from this surface, when saturated and extensive enough to obviate any effect of local advection, under the same meteorological conditions. Due to the feedback effects of evaporation on air characteristics, it does not represent the 'real' evaporation (i.e. the evaporation which could be physically observed in the real world from such an extensive saturated surface in these given meteorological conditions (if this saturated surface were substituted for an unsaturated one previously existing. From a rigorous standpoint, this calculated potential evaporation is not physically observable. Nevertheless, an approximate representation can be given by the evaporation from a limited saturated area, the dimension of which depends on the height of measurement of the air characteristics used as input in the Penman equation. If they are taken at a height

  5. Utilization of Prickly Pear Peels to Improve Quality of Pan Bread

    International Nuclear Information System (INIS)

    Anwar, M.M.; Sallam, E.M.

    2016-01-01

    This investigation aimed to study utilization of prickly pear peels to improve quality of pan bread. Prickly pear peels powder added to wheat flour 72 % at levels 1.0 and 2.0% to make pan beard. In this study, evaluation of nutrients and chemical constitutes and functional properties of prickly pear peels as well as the rheological properties of dough contained prickly pear peels at levels 1% and 2% has been conducted. Then evaluated organoleptic characteristics of pan bread made of it also determined staling rate. Results showed that prickly pear peels had higher content of 32.67 % fiber, 14.25 % pectin and 87.82 % ascorbic acid, and higher contents of antioxidant components. It consists of 441.11 mg/100 g, total phenols, 35.2 flavonoids mg/100 g and DPPH radical-scavenging 62.14%, also water holding capacity was 1.8 ml H 2 O / g , oil holding capacity 2.35 (ml oil/g) and foam stability 7.15%. The major phenolic compounds Oleuro 1264.407, pyrogallo 1149.68, Benzoic 982.37, 3-oH Tyrosol 588.53, Ellagic 413.26, Chorogenic 271.10, Protocatechuic acid 176.02, P-oH- Benzoic 112.78, Epicatechin105.99, Gallic acid 61.26 ppm. The results revealed that addition of prickly pear peels to wheat flour increased the nutrition values of pan bread made of it due to high contents of fiber, ascorbic acid and natural antioxidants, and also decreased staling which improves the quality of pan bread, as well as increases shelf-life of pan bread.

  6. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    of the refrigerant distribution is carried out for two channels in parallel and for two different cases. In the first case maldistribution of the inlet quality into the channels is considered, and in the second case a non-uniform airflow on the secondary side is considered. In both cases the total mixed superheat...... out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels.......The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...

  7. Is evaporative colling important for shallow clouds?

    Science.gov (United States)

    Gentine, P.; Park, S. B.; Davini, P.; D'Andrea, F.

    2017-12-01

    We here investigate and test using large-eddy simulations the hypothesis that evaporative cooling might not be crucial for shallow clouds. Results from various Shallow convection and stratocumulus LES experiments show that the influence of evaporative cooling is secondary compared to turbulent mixing, which dominates the buoyancy reversal. In shallow cumulus subising shells are not due to evaporative cooling but rather reflect a vortical structure, with a postive buoyancy anomaly in the core due to condensation. Disabling evaporative cooling has negligible impact on this vortical structure and on buoyancy reversal. Similarly in non-precipitating stratocumuli evaporative cooling is negeligible copmared to other factors, especially turbulent mixing and pressure effects. These results emphasize that it may not be critical to icnlude evaporative cooling in parameterizations of shallow clouds and that it does not alter entrainment.

  8. File list: Oth.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.Pancreas mm9 TFs and others Pancreas Pancreas SRX111395,SRX672451,...ERX383750,ERX383751,ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.AllAg.Pancreas.bed ...

  9. File list: Oth.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.10.AllAg.Pancreas mm9 TFs and others Pancreas Pancreas SRX111395,SRX672451,...ERX383750,ERX383751,ERX383754,ERX383752 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.10.AllAg.Pancreas.bed ...

  10. File list: Oth.Pan.20.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.20.AllAg.Pancreas mm9 TFs and others Pancreas Pancreas SRX111395,SRX672451,...ERX383752,ERX383751,ERX383754,ERX383750 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.20.AllAg.Pancreas.bed ...

  11. File list: Oth.Pan.50.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.50.AllAg.Pancreas mm9 TFs and others Pancreas Pancreas SRX111395,SRX672451,...ERX383752,ERX383751,ERX383754,ERX383750 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.50.AllAg.Pancreas.bed ...

  12. PanDA Pilot Submission using Condor-G: Experience and Improvements

    International Nuclear Information System (INIS)

    Zhao Xin; Hover, John; Wlodek, Tomasz; Wenaus, Torre; Frey, Jaime; Tannenbaum, Todd; Livny, Miron

    2011-01-01

    PanDA (Production and Distributed Analysis) is the workload management system of the ATLAS experiment, used to run managed production and user analysis jobs on the grid. As a late-binding, pilot-based system, the maintenance of a smooth and steady stream of pilot jobs to all grid sites is critical for PanDA operation. The ATLAS Computing Facility (ACF) at BNL, as the ATLAS Tier1 center in the US, operates the pilot submission systems for the US. This is done using the PanDA 'AutoPilot' scheduler component which submits pilot jobs via Condor-G, a grid job scheduling system developed at the University of Wisconsin-Madison. In this paper, we discuss the operation and performance of the Condor-G pilot submission at BNL, with emphasis on the challenges and issues encountered in the real grid production environment. With the close collaboration of Condor and PanDA teams, the scalability and stability of the overall system has been greatly improved over the last year. We review improvements made to Condor-G resulting from this collaboration, including isolation of site-based issues by running a separate Gridmanager for each remote site, introduction of the 'Nonessential' job attribute to allow Condor to optimize its behavior for the specific character of pilot jobs, better understanding and handling of the Gridmonitor process, as well as better scheduling in the PanDA pilot scheduler component. We will also cover the monitoring of the health of the system.

  13. Dual manifold heat pipe evaporator

    Science.gov (United States)

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  14. Radiant heat transfer during the natural evaporation from free surfaces exposed to solar radiation; Transferencia de calor radiante durante a evaporacao natural em superficies livres expostas a radiacao solar

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, C O.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Hackenberg, C M [Universidade Federal do Rio de Janeiro, RJ (Brazil). Escola de Quimica

    1985-12-31

    In this work a conductive-convective-radiant model which includes phase change behavior, is developed in order to determine the rate of evaporation from free surface exposed to solar radiation and consequently the most important parameters, and their effects, on the design of salt solutions concentrating natural evaporation reservoirs may be analysed. The numerical solutions of the resulting of system of equations are shown to represent very well the experimental results measured on evaporation chambers specially built for daily operations. The thermal effect of spectrally selective surfaces as coating agents for the reservoir is also analysed. (author). 11 refs., 8 figs

  15. Evaporation from a sphagnum moss surface

    Science.gov (United States)

    D.S. Nichols; J.M. Brown

    1980-01-01

    Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...

  16. Evaluation of chemopreventive effects of betel leaf on the genotoxicity of pan masala.

    Science.gov (United States)

    Trivedi, A H; Patel, R K; Rawal, U M; Adhvaryu, S G; Balar, D B

    1994-01-01

    The antigenotoxic effect of the aqueous extract of betel leaf (BL-ext.) against the pan masala was tested with the help of cytogenetic endpoints like chromosome aberration (CA) and sister chromatid exchange (SCE) utilizing Chinese hamster ovary (CHO) cells. Compared to the cultures treated with aqueous extract of pan masala alone, a reduction in CA and SCE frequencies in CHO cells was observed following a combined treatment with pan masala (with or without tobacco) extract and BL-ext. The protective effect of BL-ext. against the genomic damage caused by pan masala was statistically significant only after treating the cells for a longer period.

  17. Real-Time Penetrating Particle Analyzer (PAN)

    Science.gov (United States)

    Wu, X.; Ambrosi, G.; Bertucci, B.

    2018-02-01

    The PAN can measure penetrating particles with great precision to study energetic particles, solar activities, and the origin and propagation of cosmic rays. The real-time monitoring of penetrating particles is crucial for deep space human travel.

  18. Pan-Am seeks to salvage premature well investment

    Energy Technology Data Exchange (ETDEWEB)

    1965-01-18

    Whether accelerated oil production should be permitted when a waterflood project has been delayed came up in a rare ''show cause'' hearing before the Alberta Oil and Gas Conservation Board, January 12. The Board ordered Pan American Petroleum Corp. to show cause why an order giving it 80-acre instead of 160-acre spacing in a 2,040-acre sector of the Pembina Oil Field should not be rescinded because of extensive delays in getting a related water flood scheme into operation. Pan Am has $750,000 tied up in infill wells drilled in November and December, following the new spacing unit order issued Sept. 29, 1964, said G.J. Last. Pan Am applied Nov. 24 for deferment of injection to July 1, 1965, because of delays in getting the unit agreement completed and ordering equipment. However it wants to produce the new wells, which are expected to average 20 bbl per day each in this marginal area. The board granted the deferment Dec. 29, but instituted the hearing on the question of interim producing rates.

  19. Study of environmental isotope distribution in the Aswan High Dam Lake (Egypt) for estimation of evaporation of lake water and its recharge to adjacent groundwater

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Nada, A.; Awad, M.; Hamza, M.; Salem, W.M.

    1993-01-01

    Oxygen-18 ( 18 O) and deuterium isotopes were used to estimate the evaporation from the Aswan High Dam Lake and to investigate the inter-relation between the lake water and adjacent groundwater. According to stable isotopic analysis of samples taken in 1988 and 1989, the lake can be divided into two sections. In the first section extending between Abu Simbel and a point between El-Alaki and Krosko, a remarkable vertical gradient of 18 O and deuterium isotopic composition was observed. The second northern sector extending to the High Dam is characterised by a lower vertical isotopic gradient. In this sector in general, higher values of 18 O and deuterium contents were found at the top and lower values at the bottom. Also a strong horizontal increase of the heavy isotope content was observed. Thus, in the northern section evaporation is of dominating influence on the isotopic composition of the lake water. With the help of an evaporation pan experiment it was possible to calibrate the evaporative isotope enrichment in the lake and to facilitate a preliminary estimate of evaporative losses of lake water. The evaporation from the lake was estimated to be about 19% of the input water flow rate. The groundwater around the lake was investigated and samples from production wells and piezometers were subjected to isotopic analysis. The results indicate that recent recharge to the groundwater aquifer is limited to wells near to the lake and up to a maximum distance of about 10 km. The contribution of recent Nile water to the groundwater in these wells was estimated to range between 23 and 70%. Beyond this distance, palaeowater was observed with highly depleted deuterium and 18 O contents, which was also confirmed by 14c dating. The age of palaeo groundwater in this area can reach values of more than 26,000 years. Recommendations are given for efficient water management of the lake water. (Author)

  20. Afro-Americans and Early Pan-Africanism

    Science.gov (United States)

    Contee, Clarence G.

    1970-01-01

    History of the Pan-African movement, the roles of W.E.B.Du Bois and Marcus Garvey in the movement activities, and the shift to African based leadership of the movement in the 1940's are discussed. (KG)

  1. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.; Elwardani, Ahmed Elsaid; Gusev, Ivan G.; Xie, Jianfei; Shishkova, Irina N.; Cao, Bingyang; Snegirev, Alexander Yu.; Heikal, Morgan Raymond

    2013-01-01

    and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono

  2. KEPLER PLANETS: A TALE OF EVAPORATION

    International Nuclear Information System (INIS)

    Owen, James E.; Wu, Yanqin

    2013-01-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R ⊕ . Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M ⊕ and

  3. KEPLER PLANETS: A TALE OF EVAPORATION

    Energy Technology Data Exchange (ETDEWEB)

    Owen, James E. [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Wu, Yanqin, E-mail: jowen@cita.utoronto.ca, E-mail: wu@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada)

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above

  4. Pan-genome and phylogeny of Bacillus cereus sensu lato

    OpenAIRE

    Bazinet, Adam

    2017-01-01

    Background: Bacillus cereus sensu lato ( s . l .) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic traits (i.e., "pan-GWAS" analysis...

  5. Extending the ATLAS PanDA Workload Management System for New Big Data Applications

    CERN Document Server

    De, K; The ATLAS collaboration; Maeno, T; Nilsson, P; Panitkin, S; Vaniachine, A; Wenaus, T; Yu, D

    2013-01-01

    The LHC experiments are today at the leading edge of large scale distributed data-intensive computational science. The LHC's ATLAS experiment processes data volumes which are particularly extreme, over 130 PB to date, distributed worldwide at over of 120 sites. An important element in the success of the exciting physics results from ATLAS is the highly scalable integrated workflow and dataflow management afforded by the PanDA workload management system, used for all the distributed computing needs of the experiment. The PanDA design is not experiment specific and PanDA is now being extended to support other data intensive scientific applications. Alpha-Magnetic Spectrometer, an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid, an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. PanDA was cited as an example of "a high performance, fault tolerant software for fast, scalable access to data repositories of many kinds" during the "Big Data...

  6. PanDA: Exascale Federation of Resources for the ATLAS Experiment at the LHC

    Directory of Open Access Journals (Sweden)

    Megino Fernando Barreiro

    2016-01-01

    The PanDA (Production and Distributed Analysis system was developed in 2005 for the ATLAS experiment on top of this heterogeneous infrastructure to seamlessly integrate the computational resources and give the users the feeling of a unique system. Since its origins, PanDA has evolved together with upcoming computing paradigms in and outside HEP, such as changes in the networking model, Cloud Computing and HPC. It is currently running steadily up to 200 thousand simultaneous cores (limited by the available resources for ATLAS, up to two million aggregated jobs per day and processes over an exabyte of data per year. The success of PanDA in ATLAS is triggering the widespread adoption and testing by other experiments. In this contribution we will give an overview of the PanDA components and focus on the new features and upcoming challenges that are relevant to the next decade of distributed computing workload management using PanDA.

  7. "A Constant Transit of Finding": Fantasy as Realisation in "Pan's Labyrinth"

    Science.gov (United States)

    Clark, Roger; McDonald, Keith

    2010-01-01

    This article considers Guillermo Del Toro's "Pan's Labyrinth" as a text which utilises key codes and conventions of children's literature as a means of encountering the trauma of Fascism. The article begins by placing "Pan's Labyrinth" at a contextual crossroads involving fairy tale and a Spanish cinematic tradition and…

  8. Improvements for PanDA and intermediate layers

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Gen; Magradze, Erekle; Musheghyan, Haykuhi; Nadal, Jordi; Quadt, Arnulf; Rzehorz, Gerhard [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2015-07-01

    The PanDA Production and Distributed Analysis system is handling the ATLAS workload management for production and distributed analysis processing. It was designed for analysis as well as production for High Energy Physics. One of the advantages of this pilot based system is, that it has its own integrated monitoring solution. Monitoring is a method used in computing, it means that a certain process is observed and overseen and is usually also protocolled. In the case of a process or system failure, a responsible person should be notified and countermeasures taken. Since PanDA is very versatile, it can also be used to process jobs on a computing Cloud, instead of just using the Grid(WLCG). Cloud computing resources can be provided by private companies, that bill the resources that are actually being used, for example CPU power over time. The advantage of this is obvious if one looks at the cost. They are basically the same, whether a huge task is done on little CPU power over a long time or on plenty of CPU power in a short time. For these reasons, a close monitoring, for example by the PanDA system for the usage of Cloud resources is important.

  9. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    Science.gov (United States)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  10. Evaporation from water surfaces in urban environments, using Prague and Pilsen (Czech Republic as examples

    Directory of Open Access Journals (Sweden)

    Knozová Gražyna

    2016-12-01

    Full Text Available The subject of this study is an evaluation of the amount of evaporation from water surfaces (VVH, measured using EWM devices in two cities of different sizes, and located approximately 80 km from each other – Prague and Pilsen. The results were analyzed in the context of urban phenomena, which are pronounced especially in Prague, and also in the context of meteorological and morphological conditions in those locations. It was found that higher amounts of evaporation were measured at the meteorological station in Pilsen. The difference between the average sum of VVH per season (1st May to 30th September between 2005 and 2014 for the two locations is 33.3 mm. The difference between daily average values was 0.2 mm. Given the suburban nature of the two locations where measurements were taken, it was not possible to draw any conclusions about the effect of the urban heat island on the rate of evaporation and values of VVH. Factors significantly influencing VVH are surface roughness, which is higher in urban environments than in open landscapes. Based on the results it was concluded that at both a regional and a local scale, the rate of evaporation is more affected by wind speed than thermal conditions. The measured VVH values differ, not just because of the urban dimension of the two cities compared, but especially as a result of different topoclimatic location of the two stations.

  11. Improving Security in the ATLAS PanDA System

    International Nuclear Information System (INIS)

    Caballero, J; Maeno, T; Potekhin, M; Wenaus, T; Nilsson, P; Stewart, G

    2011-01-01

    The security challenges faced by users of the grid are considerably different to those faced in previous environments. The adoption of pilot jobs systems by LHC experiments has mitigated many of the problems associated with the inhomogeneities found on the grid and has greatly improved job reliability; however, pilot jobs systems themselves must then address many security issues, including the execution of multiple users' code under a common 'grid' identity. In this paper we describe the improvements and evolution of the security model in the ATLAS PanDA (Production and Distributed Analysis) system. We describe the security in the PanDA server which is in place to ensure that only authorized members of the VO are allowed to submit work into the system and that jobs are properly audited and monitored. We discuss the security in place between the pilot code itself and the PanDA server, ensuring that only properly authenticated workload is delivered to the pilot for execution. When the code to be executed is from a 'normal' ATLAS user, as opposed to the production system or other privileged actor, then the pilot may use an EGEE developed identity switching tool called gLExec. This changes the grid proxy available to the job and also switches the UNIX user identity to protect the privileges of the pilot code proxy. We describe the problems in using this system and how they are overcome. Finally, we discuss security drills which have been run using PanDA and show how these improved our operational security procedures.

  12. Next generation PanDA pilot for ATLAS and other experiments

    International Nuclear Information System (INIS)

    Nilsson, P; De, K; Megino, F Barreiro; Llamas, R Medrano; Bejar, J Caballero; Hover, J; Maeno, T; Wenaus, T; Love, P; Walker, R

    2014-01-01

    The Production and Distributed Analysis system (PanDA) has been in use in the ATLAS Experiment since 2005. It uses a sophisticated pilot system to execute submitted jobs on the worker nodes. While originally designed for ATLAS, the PanDA Pilot has recently been refactored to facilitate use outside of ATLAS. Experiments are now handled as plug-ins such that a new PanDA Pilot user only has to implement a set of prototyped methods in the plug-in classes, and provide a script that configures and runs the experiment-specific payload. We will give an overview of the Next Generation PanDA Pilot system and will present major features and recent improvements including live user payload debugging, data access via the Federated XRootD system, stage-out to alternative storage elements, support for the new ATLAS DDM system (Rucio), and an improved integration with glExec, as well as a description of the experiment-specific plug-in classes. The performance of the pilot system in processing LHC data on the OSG, LCG and Nordugrid infrastructures used by ATLAS will also be presented. We will describe plans for future development on the time scale of the next few years.

  13. Evaporation of Particle-Stabilized Emulsion Sunscreen Films.

    Science.gov (United States)

    Binks, Bernard P; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-08-24

    We recently showed (Binks et al., ACS Appl. Mater. Interfaces, 2016, DOI: 10.1021/acsami.6b02696) how evaporation of sunscreen films consisting of solutions of molecular UV filters leads to loss of UV light absorption and derived sun protection factor (SPF). In the present work, we investigate evaporation-induced effects for sunscreen films consisting of particle-stabilized emulsions containing a dissolved UV filter. The emulsions contained either droplets of propylene glycol (PG) in squalane (SQ), droplets of SQ in PG or droplets of decane in PG. In these different emulsion types, the SQ is involatile and shows no evaporation, the PG is volatile and evaporates relatively slowly, whereas the decane is relatively very volatile and evaporates quickly. We have measured the film mass and area, optical micrographs of the film structure, and the UV absorbance spectra during evaporation. For emulsion films containing the involatile SQ, evaporation of the PG causes collapse of the emulsion structure with some loss of specular UV absorbance due to light scattering. However, for these emulsions with droplets much larger than the wavelength of light, the light is scattered only at small forward angles so does not contribute to the diffuse absorbance and the film SPF. The UV filter remains soluble throughout the evaporation and thus the UV absorption by the filter and the SPF remain approximately constant. Both PG-in-SQ and SQ-in-PG films behave similarly and do not show area shrinkage by dewetting. In contrast, the decane-in-PG film shows rapid evaporative loss of the decane, followed by slower loss of the PG resulting in precipitation of the UV filter and film area shrinkage by dewetting which cause the UV absorbance and derived SPF to decrease. Measured UV spectra during evaporation are in reasonable agreement with spectra calculated using models discussed here.

  14. Water evaporation in silica colloidal deposits.

    Science.gov (United States)

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  16. Waste Feed Evaporation Physical Properties Modeling

    International Nuclear Information System (INIS)

    Daniel, W.E.

    2003-01-01

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software

  17. Spray and evaporation characteristics of ethanol and gasoline direct injection in non-evaporating, transition and flash-boiling conditions

    International Nuclear Information System (INIS)

    Huang, Yuhan; Huang, Sheng; Huang, Ronghua; Hong, Guang

    2016-01-01

    Highlights: • Sprays can be considered as non-evaporating when vapour pressure is lower than 30 kPa. • Ethanol direct injection should only be applied in high temperature engine environment. • Gasoline spray collapses at lower fuel temperature (350 K) than ethanol spray does (360 K). • Flash-boiling does not occur when fuel temperature reaches boiling point until ΔT is 14 K. • Not only spray evaporation mode but also breakup mechanism change with fuel temperature. - Abstract: Ethanol direct injection plus gasoline port injection (EDI + GPI) represents a more efficient and flexible way to utilize ethanol fuel in spark ignition engines. To exploit the potentials of EDI, the mixture formation characteristics need to be investigated. In this study, the spray and evaporation characteristics of ethanol and gasoline fuels injected from a multi-hole injector were investigated by high speed Shadowgraphy imaging technique in a constant volume chamber. The experiments covered a wide range of fuel temperature from 275 K (non-evaporating) to 400 K (flash-boiling) which corresponded to cold start and running conditions in an engine. The spray transition process from normal-evaporating to flash-boiling was investigated in greater details than the existed studies. Results showed that ethanol and gasoline sprays demonstrated the same patterns in non-evaporating conditions. The sprays could be considered as non-evaporating when vapour pressure was lower than 30 kPa. Ethanol evaporated more slowly than gasoline did in low temperature environment, but they reached the similar evaporation rates when temperature was higher than 375 K. This suggested that EDI should only be applied in high temperature engine environment. For both ethanol and gasoline sprays, when the excess temperature was smaller than 4 K, the sprays behaved the same as the subcooled sprays did. The sprays collapsed when the excess temperature was 9 K. Flash-boiling did not occur until the excess temperature

  18. Isotope Fractionation of Water During Evaporation Without Condensation

    International Nuclear Information System (INIS)

    Cappa, Christopher D.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.; Cohen, Ronald C.

    2005-01-01

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere.

  19. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  20. Evaluation of different methods of measuring evapotranspiration as a scheduling guide for drip-irrigated cotton

    International Nuclear Information System (INIS)

    Rawitz, E.; Marani, A.; Mahrer, Y.; Berkovich, D.

    1983-01-01

    Evapotranspiration in a drip-irrigated cotton field was estimated by the energy balance method, net radiation, standard evaporation pan, evaporation pan in the field at canopy height, and by the Penman equation, and the results were compared with the soil-water balance based on neutron meter and tensiometer data from seven observation sites. Evapotranspiration according to the soil-water balance was only about 85% of that determined by the energy balance method, and this is attributed to the fact that irrigation laterals were placed every second row, and the soil-water balance was determined in the irrigated rows. The crop also utilized moisture stored from winter rains in the unirrigated inter-row spaces, which was detected by the energy balance method. Actual evapotranspiration (ET) was 96% of potential ET (Penman), and the latter equalled 98% of net radiation energy. The actual ET equalled 90% of free water evaporation from the pan in the field at canopy height, and 88% of net radiation. The high-frequency drip regime maintained ET very close to potential ET, and under these conditions the field-installed evaporation pan, or the net radiometer, are good indicators of crop water use, with the latter being adaptable to computer-controlled irrigation. (author)

  1. An evaporation driven pump for microfluidics applications

    NARCIS (Netherlands)

    Nie, C.; Mandamparambil, R.; Frijns, A.J.H.; den Toonder, J.M.J.; Tadrist, L.; Graur, I.

    2014-01-01

    We present an evaporation driven micro-pump for micro fluidic applications on a foil. In such a device, the evaporation rate is controlled by the geometry of the channel outlet and its temperature. The evaporation is also influenced by environmental parameters such as air humidity and temperature.

  2. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  3. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  4. Snap evaporation of droplets on smooth topographies.

    Science.gov (United States)

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  5. Simultaneous spreading and evaporation: recent developments.

    Science.gov (United States)

    Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G

    2014-04-01

    The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been

  6. Pan-specific MHC class I predictors: A benchmark of HLA class I pan-specific prediction methods

    DEFF Research Database (Denmark)

    Zhang, Hao; Lundegaard, Claus; Nielsen, Morten

    2009-01-01

    not previously been compared using independent evaluation sets. Results: A diverse set of quantitative peptide binding affinity measurements was collected from IEDB, together with a large set of HLA class I ligands from the SYFPEITHI database. Based on these data sets, three different pan-specific HLA web...

  7. File list: NoD.Pan.20.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.20.AllAg.Pancreas mm9 No description Pancreas Pancreas ERX651337,ERX651340,...ERX651341,ERX651342 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Pan.20.AllAg.Pancreas.bed ...

  8. File list: NoD.Pan.05.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.05.AllAg.Pancreas mm9 No description Pancreas Pancreas ERX651337,ERX651340,...ERX651342,ERX651341 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Pan.05.AllAg.Pancreas.bed ...

  9. File list: NoD.Pan.10.AllAg.Pancreas [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.10.AllAg.Pancreas mm9 No description Pancreas Pancreas ERX651337,ERX651340,...ERX651342,ERX651341 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Pan.10.AllAg.Pancreas.bed ...

  10. Theory of evapotranspiration. 2. Soil and intercepted water evaporation

    OpenAIRE

    Budagovskyi, Anatolij Ivanovič; Novák, Viliam

    2011-01-01

    Evaporation of water from the soil is described and quantified. Formation of the soil dry surface layer is quantitatively described, as a process resulting from the difference between the evaporation and upward soil water flux to the soil evaporating level. The results of evaporation analysis are generalized even for the case of water evaporation from the soil under canopy and interaction between evaporation rate and canopy transpiration is accounted for. Relationships describing evapotranspi...

  11. Peroxyacetyl nitrate (PAN and peroxyacetic acid (PAA measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes

    Directory of Open Access Journals (Sweden)

    G. J. Phillips

    2013-02-01

    Full Text Available We describe measurements of peroxyacetyl nitrate (CH3C(OO2NO2, PAN and peroxyacetic acid (CH3C(OOOH, PAA in the Boreal forest using iodide chemical ionization mass spectrometry (ICIMS. The measurements were made during the Hyytiälä United Measurement of Photochemistry and Particles – Comprehensive Organic Particle and Environmental Chemistry (HUMPPA-COPEC-2010 measurement intensive. Mixing ratios of PAN and PAA were determined by measuring the acetate ion signal (CH3C(OO, m/z = 59 resulting from reaction of CH3C(OO2 (from the thermal dissociation of PAN or CH3C(OOOH with iodide ions using alternatively heated and ambient temperature inlet lines. During some periods of high temperature (~ 30 °C and low NOx (< 1 ppbv, PAA mixing ratios were similar to, or exceeded those of PAN and thus contributed a significant fraction of the total acetate signal. PAA is thus a potential interference for ICIMS measurements of PAN, and especially eddy covariance flux measurements in environments where the PAA flux is likely to be a significant proportion of the (short timescale acetate ion variability. Within the range of mixing ratios of NOx measured during HUMPPA-COPEC, the modelled ratio of PAA-to-PAN was found to be sensitive to temperature (through the thermal decomposition rate of PAN and the HO2 mixing ratio, thus providing some constraint to estimates of photochemical activity and oxidation rates in the Boreal environment.

  12. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; A. Hossain; M. A. Islam

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  13. Eddy covariance fluxes of acyl peroxy nitrates (PAN, PPN and MPAN above a Ponderosa pine forest

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2009-01-01

    Full Text Available During the Biosphere Effects on AeRosols and Photochemistry EXperiment 2007 (BEARPEX-2007, we observed eddy covariance (EC fluxes of speciated acyl peroxy nitrates (APNs, including peroxyacetyl nitrate (PAN, peroxypropionyl nitrate (PPN and peroxymethacryloyl nitrate (MPAN, above a Ponderosa pine forest in the western Sierra Nevada. All APN fluxes are net downward during the day, with a median midday PAN exchange velocity of −0.3 cm s−1; nighttime storage-corrected APN EC fluxes are smaller than daytime fluxes but still downward. Analysis with a standard resistance model shows that loss of PAN to the canopy is not controlled by turbulent or molecular diffusion. Stomatal uptake can account for 25 to 50% of the observed downward PAN flux. Vertical gradients in the PAN thermal decomposition (TD rate explain a similar fraction of the flux, suggesting that a significant portion of the PAN flux into the forest results from chemical processes in the canopy. The remaining "unidentified" portion of the net PAN flux (~15% is ascribed to deposition or reactive uptake on non-stomatal surfaces (e.g. leaf cuticles or soil. Shifts in temperature, moisture and ecosystem activity during the summer – fall transition alter the relative contribution of stomatal uptake, non-stomatal uptake and thermochemical gradients to the net PAN flux. Daytime PAN and MPAN exchange velocities are a factor of 3 smaller than those of PPN during the first two weeks of the measurement period, consistent with strong intra-canopy chemical production of PAN and MPAN during this period. Depositional loss of APNs can be 3–21% of the gross gas-phase TD loss depending on temperature. As a source of nitrogen to the biosphere, PAN deposition represents approximately 4–19% of that due to dry deposition of nitric acid at this site.

  14. Integration Of PanDA Workload Management System With Supercomputers

    CERN Document Server

    Klimentov, Alexei; The ATLAS collaboration; Maeno, Tadashi; Mashinistov, Ruslan; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Read, Kenneth; Ryabinkin, Evgeny; Wenaus, Torre

    2015-01-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 100,000 co...

  15. Pan-genome and phylogeny of Bacillus cereus sensu lato.

    Science.gov (United States)

    Bazinet, Adam L

    2017-08-02

    Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes and novel bioinformatic workflows to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic traits (i.e., "pan-GWAS" analysis), and quantify the degree to which taxa sharing common attributes are phylogenetically clustered. A rapid k-mer based approach (Mash) was used to create reduced representations of selected Bacillus genomes, and a fast distance-based phylogenetic analysis of this data (FastME) was performed to determine which species should be included in B. cereus s. l. The complete genomes of eight B. cereus s. l. species were annotated de novo with Prokka, and these annotations were used by Roary to produce the B. cereus s. l. pan-genome. Scoary was used to associate gene presence and absence patterns with various phenotypes. The orthologous protein sequence clusters produced by Roary were filtered and used to build HaMStR databases of gene models that were used in turn to construct phylogenetic data matrices. Phylogenetic analyses used RAxML, DendroPy, ClonalFrameML, PAUP*, and SplitsTree. Bayesian model-based population genetic analysis assigned taxa to clusters using hierBAPS. The genealogical sorting index was used to quantify the phylogenetic clustering of taxa sharing common attributes. The B. cereus s. l. pan-genome currently consists of ≈60,000 genes, ≈600 of which are "core" (common to at least 99% of taxa sampled). Pan-GWAS analysis revealed genes associated with phenotypes such as isolation source, oxygen requirement, and ability to cause diseases such as anthrax or food poisoning. Extensive phylogenetic analyses using an unprecedented amount of data

  16. How internal drainage affects evaporation dynamics from soil surfaces ?

    Science.gov (United States)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  17. Exploring the emotional appeal of green and social Europe myths among pan-European Union organisations

    DEFF Research Database (Denmark)

    Lynggaard, Kennet

    2017-01-01

    : (1) pan-EU NGOs are receptive to political myths, including in the short term; (2) pan-EU NGOs contribute to the reproduction of myths, especially already-institutionalised myths and myths that resonate with their sectoral activities; and (3) pan-EU NGOs strategically use political myths to justify...

  18. The indicative map of the pan-European ecological network in Western Europe : technical background report

    NARCIS (Netherlands)

    Jongman, R.H.G.; Bouwma, I.M.; Doorn, van A.M.

    2006-01-01

    The Pan European Ecological Network for Western Europe is the third project in developing the Pan European Ecological Network The objective of the Pan-European Ecological Network is to develop a vision for a coherent network of high value areas for biodiversity, as internationally and nationally

  19. Portable brine evaporator unit, process, and system

    Science.gov (United States)

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  20. Pan-Domain Analysis of ZIP Zinc Transporters

    Directory of Open Access Journals (Sweden)

    Laura E. Lehtovirta-Morley

    2017-12-01

    Full Text Available The ZIP (Zrt/Irt-like protein family of zinc transporters is found in all three domains of life. However, little is known about the phylogenetic relationship amongst ZIP transporters, their distribution, or their origin. Here we employed phylogenetic analysis to explore the evolution of ZIP transporters, with a focus on the major human fungal pathogen, Candida albicans. Pan-domain analysis of bacterial, archaeal, fungal, and human proteins revealed a complex relationship amongst the ZIP family members. Here we report (i a eukaryote-wide group of cellular zinc importers, (ii a fungal-specific group of zinc importers having genetic association with the fungal zincophore, and, (iii a pan-kingdom supercluster made up of two distinct subgroups with orthologues in bacterial, archaeal, and eukaryotic phyla.

  1. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Science.gov (United States)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  2. Control of black hole evaporation?

    International Nuclear Information System (INIS)

    Ahn, Doyeol

    2007-01-01

    Contradiction between Hawking's semi-classical arguments and the string theory on the evaporation of a black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that the original Hawking effect can also be regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of the Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during the evaporation process and as a result the evaporation process itself, significantly

  3. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  4. Advanced evaporator technology progress report FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A. [and others

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  5. Advanced evaporator technology progress report FY 1992

    International Nuclear Information System (INIS)

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program open-quotes Technology Development for Concentrating Process Streams.close quotes The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report

  6. Steady Method for the Analysis of Evaporation Dynamics.

    Science.gov (United States)

    Günay, A Alperen; Sett, Soumyadip; Oh, Junho; Miljkovic, Nenad

    2017-10-31

    Droplet evaporation is an important phenomenon governing many man-made and natural processes. Characterizing the rate of evaporation with high accuracy has attracted the attention of numerous scientists over the past century. Traditionally, researchers have studied evaporation by observing the change in the droplet size in a given time interval. However, the transient nature coupled with the significant mass-transfer-governed gas dynamics occurring at the droplet three-phase contact line makes the classical method crude. Furthermore, the intricate balance played by the internal and external flows, evaporation kinetics, thermocapillarity, binary-mixture dynamics, curvature, and moving contact lines makes the decoupling of these processes impossible with classical transient methods. Here, we present a method to measure the rate of evaporation of spatially and temporally steady droplets. By utilizing a piezoelectric dispenser to feed microscale droplets (R ≈ 9 μm) to a larger evaporating droplet at a prescribed frequency, we can both create variable-sized droplets on any surface and study their evaporation rate by modulating the piezoelectric droplet addition frequency. Using our steady technique, we studied water evaporation of droplets having base radii ranging from 20 to 250 μm on surfaces of different functionalities (45° ≤ θ a,app ≤ 162°, where θ a,app is the apparent advancing contact angle). We benchmarked our technique with the classical unsteady method, showing an improvement of 140% in evaporation rate measurement accuracy. Our work not only characterizes the evaporation dynamics on functional surfaces but also provides an experimental platform to finally enable the decoupling of the complex physics governing the ubiquitous droplet evaporation process.

  7. Design and operation of evaporators for radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yamomoto, Y [comp.; Tokyo Univ. (Japan)

    1968-05-01

    A manual dealing with the application of evaporators to the treatment of liquid radioactive wastes. This book is the second of three commissioned by the IAEA on the three on the three principal techniques for concentrating radioactive wastes, namely chemical precipitation, evaporation and ion-exchange. Informations on different types of evaporators and related equipment and their operational procedures are given in this document. It also gives different means of disposal of evaporator condensates and concentrates and a rough estimate of costs of radioactive waste evaporator plant and its operation. 58 refs, 43 figs, 5 tabs.

  8. Design and operation of evaporators for radioactive wastes

    International Nuclear Information System (INIS)

    Yamomoto, Y.

    1968-01-01

    A manual dealing with the application of evaporators to the treatment of liquid radioactive wastes. This book is the second of three commissioned by the IAEA on the three on the three principal techniques for concentrating radioactive wastes, namely chemical precipitation, evaporation and ion-exchange. Informations on different types of evaporators and related equipment and their operational procedures are given in this document. It also gives different means of disposal of evaporator condensates and concentrates and a rough estimate of costs of radioactive waste evaporator plant and its operation. 58 refs, 43 figs, 5 tabs

  9. Low-temperature field evaporation of Nb3Sn compound

    International Nuclear Information System (INIS)

    Ksenofontov, V.A.; Kul'ko, V.B.; Kutsenko, P.A.

    1986-01-01

    Investigation results on field evaporation of superconducting Nb 3 Sn compound wth A15 lattice are presented. Compound evaporation is shown to proceed in two stages. Evaporation field and ionic composition of evaporating material are determined. It is found out that in strong electric fields compound surface represents niobium skeleton, wich does not form regular image. Comparison of ion-microscopic and calculated images formed by low-temperature field evaporation indicates to possibility of sample surface reconstruction after preferable tin evaporation

  10. Targeting the HER family with Pan-HER effectively overcomes resistance to cetuximab

    Science.gov (United States)

    Iida, Mari; Bahrar, Harsh; Brand, Toni M; Pearson, Hannah E; Coan, John P; Orbuch, Rachel A; Flanigan, Bailey G; Swick, Adam D; Prabakaran, Prashanth; Lantto, Johan; Horak, Ivan D.; Kragh, Michael; Salgia, Ravi; Kimple, Randy J; Wheeler, Deric L

    2016-01-01

    Cetuximab, an antibody against the Epidermal Growth Factor Receptor (EGFR) has shown efficacy in treating head and neck squamous cell carcinoma (HNSCC), metastatic colorectal cancer and non-small cell lung cancer (NSCLC). Despite the clinical success of cetuximab, many patients do not respond to cetuximab. Furthermore, virtually all patients who do initially respond become refractory, highlighting both intrinsic and acquired resistance to cetuximab as significant clinical problems. To understand mechanistically how cancerous cells acquire resistance, we previously developed models of acquired resistance using the H226 NSCLC and UM-SCC1 HNSCC cell lines. Cetuximab-resistant clones showed a robust upregulation and dependency on the HER family receptors EGFR, HER2 and HER3. Here, we examined Pan-HER, a mixture of six antibodies targeting these receptors on cetuximab-resistant clones. In cells exhibiting acquired or intrinsic resistance to cetuximab, Pan-HER treatment decreased all three receptors’ protein levels and down-stream activation of AKT and MAPK. This correlated with decreased cell proliferation in cetuximab-resistant clones. To determine whether Pan-HER had a therapeutic benefit in vivo, we established de novo cetuximab-resistant mouse xenografts and treated resistant tumors with Pan-HER. This regimen resulted in a superior growth delay of cetuximab-resistant xenografts compared to mice continued on cetuximab. Furthermore, intrinsically cetuximab-resistant HNSCC patient-derived xenograft tumors treated with Pan-HER exhibited significant growth delay compared to vehicle/cetuximab controls. These results suggest that targeting HER family receptors simultaneously with Pan-HER is a promising treatment strategy for tumors displaying intrinsic or acquired resistance to cetuximab. PMID:27422810

  11. Evaporation of nanofluid droplet on heated surface

    Directory of Open Access Journals (Sweden)

    Yeung Chan Kim

    2015-04-01

    Full Text Available In this study, an experiment on the evaporation of nanofluid sessile droplet on a heated surface was conducted. A nanofluid of 0.5% volumetric concentration mixed with 80-nm-sized CuO powder and pure water were used for experiment. Droplet was applied to the heated surface, and images of the evaporation process were obtained. The recorded images were analyzed to find the volume, diameter, and contact angle of the droplet. In addition, the evaporative heat transfer coefficient was calculated from experimental result. The results of this study are summarized as follows: the base diameter of the droplet was maintained stably during the evaporation. The measured temperature of the droplet was increased rapidly for a very short time, then maintained constantly. The nanofluid droplet was evaporated faster than the pure water droplet under the experimental conditions of the same initial volume and temperature, and the average evaporative heat transfer coefficient of the nanofluid droplet was higher than that of pure water. We can consider the effects of the initial contact angle and thermal conductivity of nanofluid as the reason for this experimental result. However, the effect of surface roughness on the evaporative heat transfer of nanofluid droplet appeared unclear.

  12. Comparing infant and juvenile behavior in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes): a preliminary study.

    Science.gov (United States)

    De Lathouwers, Mieke; Van Elsacker, Linda

    2006-10-01

    The dichotomy between the two Pan species, the bonobo (Pan paniscus) and chimpanzee (Pan troglodytes) has been strongly emphasized until very recently. Given that most studies were primarily based on adult individuals, we shifted the "continuity versus discontinuity" discussion to the infant and juvenile stage. Our aim was to test quantitatively, some conflicting statements made in literature considering species differences between immature bonobos and chimpanzees. On one hand it is suggested that infant bonobos show retardation in motor and social development when compared with chimpanzees. Additionally it is expected that the weaning process is more traumatic to chimpanzee than bonobo infants. But on the other hand the development of behaviors is expected to be very similar in both species. We observed eight mother-infant pairs of each species in several European zoos. Our preliminary research partially confirms that immature chimpanzees seem spatially more independent, spending more time at a larger distance from their mother than immature bonobos. However, the other data do not seem to support the hypothesis that bonobo infants show retardation of motor or social development. The development of solitary play, environmental exploration, social play, non-copulatory mounts and aggressive interactions do not differ between the species. Bonobo infants in general even groom other group members more than chimpanzee infants. We also found that older bonobo infants have more nipple contact than same aged chimpanzees and that the weaning process seems to end later for bonobos than for immature chimpanzee. Additionally, although immature bonobos show in general more signs of distress, our data suggest that the weaning period itself is more traumatic for chimpanzees.

  13. Evaporation rate-based selection of supramolecular chirality.

    Science.gov (United States)

    Hattori, Shingo; Vandendriessche, Stefaan; Koeckelberghs, Guy; Verbiest, Thierry; Ishii, Kazuyuki

    2017-03-09

    We demonstrate the evaporation rate-based selection of supramolecular chirality for the first time. P-type aggregates prepared by fast evaporation, and M-type aggregates prepared by slow evaporation are kinetic and thermodynamic products under dynamic reaction conditions, respectively. These findings provide a novel solution reaction chemistry under the dynamic reaction conditions.

  14. PanFP: pangenome-based functional profiles for microbial communities.

    Science.gov (United States)

    Jun, Se-Ran; Robeson, Michael S; Hauser, Loren J; Schadt, Christopher W; Gorin, Andrey A

    2015-09-26

    For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost-effective way to screen samples of interest for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. We present a computational method called pangenome-based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU's taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome's functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8-0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique

  15. CanWEA Pan-Canadian wind integration study paper

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, Martin [GL Garrad Hassan Canada Inc, Ottawa, ON (Canada); Gardner, Paul [GL Garrad Hassan and Partners, Glasgow (United Kingdom); Price, Doug; Le, Don [GL Garrad Hassan America, San Diego, CA (United States)

    2010-07-01

    GL Garrad Hassan has been contracted by CanWEA to undertake a scoping study for a future Pan-Canadian Wide-Scale Wind Integration Study. The scoping study provides the methodology and the rationale on which the actual wind integration study and request for proposals will be based on. Major system operators and owners of each Canadian Province along with experts involved in major US wind integration studies have been consulted and contributed to the decisional process. This paper provides a summary of the factors considered in the study and outline the actual methodology that was adopted for the future Pan-Canadian wind integration study. (orig.)

  16. EUPAN enables pan-genome studies of a large number of eukaryotic genomes.

    Science.gov (United States)

    Hu, Zhiqiang; Sun, Chen; Lu, Kuang-Chen; Chu, Xixia; Zhao, Yue; Lu, Jinyuan; Shi, Jianxin; Wei, Chaochun

    2017-08-01

    Pan-genome analyses are routinely carried out for bacteria to interpret the within-species gene presence/absence variations (PAVs). However, pan-genome analyses are rare for eukaryotes due to the large sizes and higher complexities of their genomes. Here we proposed EUPAN, a eukaryotic pan-genome analysis toolkit, enabling automatic large-scale eukaryotic pan-genome analyses and detection of gene PAVs at a relatively low sequencing depth. In the previous studies, we demonstrated the effectiveness and high accuracy of EUPAN in the pan-genome analysis of 453 rice genomes, in which we also revealed widespread gene PAVs among individual rice genomes. Moreover, EUPAN can be directly applied to the current re-sequencing projects primarily focusing on single nucleotide polymorphisms. EUPAN is implemented in Perl, R and C ++. It is supported under Linux and preferred for a computer cluster with LSF and SLURM job scheduling system. EUPAN together with its standard operating procedure (SOP) is freely available for non-commercial use (CC BY-NC 4.0) at http://cgm.sjtu.edu.cn/eupan/index.html . ccwei@sjtu.edu.cn or jianxin.shi@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

    Science.gov (United States)

    Combe, Nicole A; Donaldson, D James

    2017-09-28

    We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.

  18. Urban evaporation rates for water-permeable pavements.

    Science.gov (United States)

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  19. Systematics of evaporation

    International Nuclear Information System (INIS)

    Klots, C.E.

    1991-01-01

    Beginning with rather basic principles, general relations are obtained for evaporative rate constants. These are established both as a function of energy and of temperature. In parallel with this, expressions are developed for the kinetic energy distribution of the separating species. Explicit evaluation of the rate constants in the case of 'chemical' evaporation from an entity containing n monomeric units yields as a typical result k(T)(s -1 )=3.10 13 n 2/3 exp[6/n 1/3 ]exp(-ΔE a (n)/k B T). Experimental evidence in support of this relation is cited. Applications to thermionic emission are also noted. (orig.)

  20. Validation of a simple evaporation-transpiration scheme (SETS) to estimate evaporation using micro-lysimeter measurements

    Science.gov (United States)

    Ghazanfari, Sadegh; Pande, Saket; Savenije, Hubert

    2014-05-01

    Several methods exist to estimate E and T. The Penman-Montieth or Priestly-Taylor methods along with the Jarvis scheme for estimating vegetation resistance are commonly used to estimate these fluxes as a function of land cover, atmospheric forcing and soil moisture content. In this study, a simple evaporation transpiration method is developed based on MOSAIC Land Surface Model that explicitly accounts for soil moisture. Soil evaporation and transpiration estimated by SETS is validated on a single column of soil profile with measured evaporation data from three micro-lysimeters located at Ferdowsi University of Mashhad synoptic station, Iran, for the year 2005. SETS is run using both implicit and explicit computational schemes. Results show that the implicit scheme estimates the vapor flux close to that by the explicit scheme. The mean difference between the implicit and explicit scheme is -0.03 mm/day. The paired T-test of mean difference (p-Value = 0.042 and t-Value = 2.04) shows that there is no significant difference between the two methods. The sum of soil evaporation and transpiration from SETS is also compared with P-M equation and micro-lysimeters measurements. The SETS predicts the actual evaporation with a lower bias (= 1.24mm/day) than P-M (= 1.82 mm/day) and with R2 value of 0.82.

  1. The continuous similarity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.

  2. Form gene clustering method about pan-ethnic-group products based on emotional semantic

    Science.gov (United States)

    Chen, Dengkai; Ding, Jingjing; Gao, Minzhuo; Ma, Danping; Liu, Donghui

    2016-09-01

    The use of pan-ethnic-group products form knowledge primarily depends on a designer's subjective experience without user participation. The majority of studies primarily focus on the detection of the perceptual demands of consumers from the target product category. A pan-ethnic-group products form gene clustering method based on emotional semantic is constructed. Consumers' perceptual images of the pan-ethnic-group products are obtained by means of product form gene extraction and coding and computer aided product form clustering technology. A case of form gene clustering about the typical pan-ethnic-group products is investigated which indicates that the method is feasible. This paper opens up a new direction for the future development of product form design which improves the agility of product design process in the era of Industry 4.0.

  3. A Portable Burn Pan for the Disposal of Excess Propellants

    Science.gov (United States)

    2016-06-01

    2013 - 06/01/2016 A Portable Burn Pan for the Disposal of Excess Propellants Michael Walsh USA CRREL USA CRREL 72 Lyme Road Hanover, NH 03755...Army Alaska XRF X-Ray Florescence vii ACKNOWLEDGEMENTS Project ER-201323, A Portable Burn Pan for the Disposal of Gun Propellants, was a very...contamination problem while allowing troops to train as they fight, we have developed a portable training device for burning excess gun propellants. 1.1

  4. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo; Vella, Dominic; Yeomans, Julia M.

    2014-01-01

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  5. Lattice-Boltzmann simulations of droplet evaporation

    KAUST Repository

    Ledesma-Aguilar, Rodrigo

    2014-09-04

    © the Partner Organisations 2014. We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. This journal is

  6. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  7. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  8. Fundamentals of evaporation and condensation phenomena

    International Nuclear Information System (INIS)

    Munir, Z.A.

    1979-01-01

    Fundamental relationships governing evaporation and condensation processes are reviewed. The terrace-ledge-kink (TLK) model is discussed in terms of atomic steps comprising growth and evaporation of crystals. Recent results in the field are described

  9. The Rise of Pan-Islamism in Britain

    National Research Council Canada - National Science Library

    Shepard, Scott

    2006-01-01

    .... This thesis explains what is fueling the rise of pan-Islamism in Britain. For many Muslims, their religious identity is stronger than their British identity because they are alienated from the rest of society...

  10. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  11. Pan Am tar sand bid revealed

    Energy Technology Data Exchange (ETDEWEB)

    Gray, E

    1968-12-16

    Muskeg Oil Co., wholly-owned subsidiary of Pan American Canada Oil Co. Ltd., hopes to expand its proposed initial 8,000 bpd in situ Athabasca tar sand production scheme to an ultimate rate of 60,000 bpd. The Muskeg recovery process involves an in situ combustion technique developed by Pan American and applied successfully in experimental work in the Athabasca area. The underground burning process develops heat in the formation, reduces crude bitumen viscosity, and displaces the bitumen to the producing wells. Core analyses have been used to determine bitumen in place, wherever possible. Values for uncored wells were based on logs, through development of an empirical relationship between formation resistivity measured by focused logging devices and bitumen content determined by core analysis. The proposed recovery process is a 10-acre well spacing with 9-spot configuration. The McMurray Formation will be fractured hydraulically and preheated by a combustion process. The bitumen will be recovered by a combustion displacement process utilizing air and water.

  12. Simplified pilot module development and testing within the ATLAS PanDA Pilot 2.0 Project

    CERN Document Server

    Drizhuk, Daniil; The ATLAS collaboration; Nilsson, Paul

    2016-01-01

    The Production and Distributed Analysis (PanDA) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at the LHC data processing scale. The PanDA pilot is one of the major components in the PanDA system. It runs on a worker node and takes care of setting up the environment, fetching and pushing data to storage, getting jobs from the PanDA server and executing them. The original PanDA Pilot was designed over 10 years ago and has since then grown organically. Large parts of the original pilot code base are now getting old and are difficult to maintain. Incremental changes and refactoring have been pushed to the limit, and the time is now right for a fresh start, informed by a decade of experience, with the PanDA Pilot 2.0 Project. To create a testing environment for module development and automated unit and functional testing for next generation pilot tasks, a simple pilot version was developed. It resembles the basic workf...

  13. File list: Unc.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Pan.50.AllAg.Pancreatic_cancer_cells mm9 Unclassified Pancreas Pancreatic cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  14. STUDI EKSPERIMENTAL FALLING FILM EVAPORATOR PADA EVAPORASI NIRA KENTAL

    Directory of Open Access Journals (Sweden)

    Medya Ayunda Fitri

    2016-06-01

    Full Text Available Falling film evaporator is a constructed equipment for concentrating dilute solution that are sensitive to heat flowing form a thin film. This research aims to study the evaporation of cane juice concentrated with air flow on falling film evaporator and knowing evaporation rate occured in falling film evaporator used. In the process, cane juice from plant pumped to the falling film evaporator that used in this experiment. This research used concentrated cane juice and air flow rate for variables of this experiment. Cane juice flow from top of evaporator through distributor to form thin film and air flow from the bottom of evaporator. After that, temperatur of pipe wall, inlet and outlet temperature of cane juice and air were measured. This experiment concluded that the highest concentration of outlet solution is 59 brix for liquid flow rate 154 l/h and air flow rate 10 m3/h, and the other hand inlet solution concentration 51 brix. Optimum evaporation rate is 35 kg/m2.h for 51 brix and air flow rate 10 m3/h.

  15. Evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes

    International Nuclear Information System (INIS)

    Sebesta, F.; John, J.; Motl, A.; Stamberg, K.

    1995-11-01

    The chemical and radiation stability of polyacrylonitrile (PAN) in the form of beads (B-PAN), similar to the beads of composite absorbers, and one selected composite absorber (ammonium molybdophosphate, the active component in PAN binder [AMP-PAN], a prospective candidate for the treatment of acidic wastes) were studied. Aqueous 1M HNO 3 + 1M NaNO 3 , 1M NaOH + 1M NaNO 3 , and 1M NaOH were chosen as simulants of DOE acidic and alkaline wastes. In addition,radiation stability was determined indistilled water. The chemical stability of B-PAN and AMP-PAN beads was tested for a period up to one month of contact with the solution at ambient temperature. The radiation stability of the beads was checked in a radiation dose range 10 3 --10 6 Gy (10 5 --10 8 rads). In acidic solutions the stability of PAN binder was proved not to be limited by either chemical or radiation decomposition. PAN binder may thus be used for preparing composite absorbers for treatment of acid wastes from DOE facilities. The same conclusion is valid for alkaline solutions with pH up to 13. In highly alkaline solutions (concentration of NAOH higher than I M) and in the presence of NaNO 3 , the stability of the tested polyacrylonitrile polymer was sufficient for applications not extending over 10 days. Cross-linking of the polymer caused by ionizing radiation was found to have a positive influence on chemical stability. This effect enables a longer period of applicability of PAN-based composite absorbers. Because of the high sorption rate achievable with PAN-based absorbers, the stability achieved is sufficient for most applications in the DOE complex. The chemical stability of binding polymer may also be further improved by testing another, more suitable type of polymer from the broad family of polyacrylonitrile polymers

  16. Evaporative water loss, relative water economy and evaporative partitioning of a heterothermic marsupial, the monito del monte (Dromiciops gliroides).

    Science.gov (United States)

    Withers, Philip C; Cooper, Christine E; Nespolo, Roberto F

    2012-08-15

    We examine here evaporative water loss, economy and partitioning at ambient temperatures from 14 to 33°C for the monito del monte (Dromiciops gliroides), a microbiotheriid marsupial found only in temperate rainforests of Chile. The monito's standard evaporative water loss (2.58 mg g(-1) h(-1) at 30°C) was typical for a marsupial of its body mass and phylogenetic position. Evaporative water loss was independent of air temperature below thermoneutrality, but enhanced evaporative water loss and hyperthermia were the primary thermal responses above the thermoneutral zone. Non-invasive partitioning of total evaporative water loss indicated that respiratory loss accounted for 59-77% of the total, with no change in respiratory loss with ambient temperature, but a small change in cutaneous loss below thermoneutrality and an increase in cutaneous loss in and above thermoneutrality. Relative water economy (metabolic water production/evaporative water loss) increased at low ambient temperatures, with a point of relative water economy of 15.4°C. Thermolability had little effect on relative water economy, but conferred substantial energy savings at low ambient temperatures. Torpor reduced total evaporative water loss to as little as 21% of normothermic values, but relative water economy during torpor was poor even at low ambient temperatures because of the relatively greater reduction in metabolic water production than in evaporative water loss. The poor water economy of the monito during torpor suggests that negative water balance may explain why hibernators periodically arouse to normothermia, to obtain water by drinking or via an improved water economy.

  17. File list: His.Pan.20.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.20.AllAg.PANC-1 hg19 Histone Pancreas PANC-1 SRX825369,SRX101484,SRX101485,...SRX825383,SRX152077,SRX190044,SRX825376,SRX825390 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.20.AllAg.PANC-1.bed ...

  18. File list: His.Pan.05.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.05.AllAg.PANC-1 hg19 Histone Pancreas PANC-1 SRX825369,SRX101484,SRX101485,...SRX152077,SRX825383,SRX825376,SRX190044,SRX825390 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.05.AllAg.PANC-1.bed ...

  19. File list: His.Pan.10.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.AllAg.PANC-1 hg19 Histone Pancreas PANC-1 SRX825369,SRX101484,SRX101485,...SRX825383,SRX152077,SRX190044,SRX825376,SRX825390 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.10.AllAg.PANC-1.bed ...

  20. File list: His.Pan.50.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.AllAg.PANC-1 hg19 Histone Pancreas PANC-1 SRX825369,SRX101484,SRX825383,...SRX152077,SRX190044,SRX825390,SRX825376,SRX101485 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Pan.50.AllAg.PANC-1.bed ...

  1. Characterization of probiotic Escherichia coli isolates with a novel pan-genome microarray

    DEFF Research Database (Denmark)

    Willenbrock, Hanni; Hallin, Peter Fischer; Wassenaar, Trudy

    2007-01-01

    of the same species are rapidly becoming available, allowing for the definition and characterization of a whole species as a population of genomes - the 'pan-genome'. Results: Using 32 Escherichia coli and Shigella genome sequences we estimate the pan- and core genome of the species. We designed a high...

  2. File list: His.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.20.AllAg.Pancreatic_cancer_cells mm9 Histone Pancreas Pancreatic cancer cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  3. File list: His.Pan.10.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.10.AllAg.Pancreatic_cancer_cells mm9 Histone Pancreas Pancreatic cancer cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.10.AllAg.Pancreatic_cancer_cells.bed ...

  4. File list: Pol.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.50.AllAg.Pancreatic_cancer_cells mm9 RNA polymerase Pancreas Pancreatic cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  5. File list: His.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Pan.50.AllAg.Pancreatic_cancer_cells mm9 Histone Pancreas Pancreatic cancer cel...ls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  6. Activated carbon fiber obtained from textile PAN fiber to electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Silva, Elen Leal da; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Cuna, Andres; Rodrigues, Aline Castilho; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: Supercapacitors are devices for electrical energy storage with application in distribution power generation, electric vehicles, electronic equipment, among others. Current challenges in the development of supercapacitors focuses on making an increasing on system density of energy. An increase of energy accumulated in the supercapacitor electrode can be achieved by developing materials with high specific electrical capacitance and low electrical resistance. Furthermore, it is expected that the electrode material present a simple procedure for obtaining, low cost and environmentally friendly. Carbon fibers are interesting materials for use as a supercapacitor electrode. Among them are carbon fibers from polyacrylonitrile (PAN). In this work were studied activated carbon fibers obtained from textile polyacrylonitrile (ACF-PAN) with deposition of Fe particles aiming to use as active material of supercapacitor electrodes. ACFPAN and ACF-PAN-Fe were characterized by textural analysis, x-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive x-ray (SEM-EDX), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The behavior of the activated carbon fibers as a supercapacitor electrode was evaluated by galvanostatic charge and discharge curves, cyclic voltammetry and a electrochemical impedance using a symmetrical two-electrode Swagelok®-type cell and sulfuric acid as electrolyte. ACF-PAN had a high specific surface area, which makes it an interesting material for electrodes of supercapacitors. The electrical capacitance for the ACF-PAN is 96 F/g and ACF-PAN-Fe is 106 F/g both at a current density of 0.30 A/g. This increase in electrical capacitance can be related to the presence of iron oxides which are deposited on the activated carbon fiber. (author)

  7. Decomposition of thermally unstable substances in film evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Matz, G

    1982-10-01

    It is widely known that film evaporators are considered to permit really gentle evaporation of heat-sensitive substances. Nevertheless, decomposition of such substance still occurs to an extent depending upon the design and operation of the evaporator. In the following a distinction is made between evaporators with films not generated mechanically, namely the long tube evaporator (lTE) or climbing film evaporator, the falling film evaporator (FFE) and the multiple phase helical tube (MPT) or helical coil evaporators (TFE). Figs 1 and 2 illustrate the mode of operation. A theory of the decomposition of thermally unstable substances in these evaporators is briefly outlined and compared with measurements. Such a theory cannot be developed without any experimental checks; on the other hand, meausrements urgently need a theoretical basis if only to establish what actually has to be measured. All experiments are made with a system of readily adjustable decomposability, namely with aqueous solutions of saccharose; the thermal inversion of this compound can be controlled by addition of various amounts or concentrations of hydrochloric acid. In the absence of any catalysis by hydrochloric acid, the decomposition rates within in the temperature interval studied (60-130/sup 0/C) are so low that the experiments would take much too long and determination of the concentration differences (generally by polarimetric methods) would be very complicated. Such slight effects would also be very unfavourable for comparison with theory. (orig.)

  8. Prediction of water droplet evaporation on zircaloy surface

    International Nuclear Information System (INIS)

    Lee, Chi Young; In, Wang Kee

    2014-01-01

    In the present experimental study, the prediction of water droplet evaporation on a zircaloy surface was investigated using various initial droplet sizes. To the best of our knowledge, this may be the first valuable effort for understanding the details of water droplet evaporation on a zircaloy surface. The initial contact diameters of the water droplets tested ranged from 1.76 to 3.41 mm. The behavior (i.e., time-dependent droplet volume, contact angle, droplet height, and contact diameter) and mode-transition time of the water droplet evaporation were strongly influenced by the initial droplet size. Using the normalized contact angle (θ*) and contact diameter (d*), the transitions between evaporation modes were successfully expressed by a single curve, and their criteria were proposed. To predict the temporal droplet volume change and evaporation rate, the range of θ* > 0.25 and d* > 0.9, which mostly covered the whole evaporation period and the initial contact diameter remained almost constant during evaporation, was targeted. In this range, the previous contact angle functions for the evaporation model underpredicted the experimental data. A new contact angle function of a zircaloy surface was empirically proposed, which represented the present experimental data within a reasonable degree of accuracy. (author)

  9. Multilayer composite material and method for evaporative cooling

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  10. Modeling Coupled Evaporation and Seepage in Ventilated Cavities

    International Nuclear Information System (INIS)

    Ghezzehei, T.; Trautz, R.; Finsterle, S.; Cook, P.; Ahlers, C.

    2004-01-01

    Cavities excavated in unsaturated geological formations are important to activities such as nuclear waste disposal and mining. Such cavities provide a unique setting for simultaneous occurrence of seepage and evaporation. Previously, inverse numerical modeling of field liquid-release tests and associated seepage into cavities were used to provide seepage-related large-scale formation properties by ignoring the impact of evaporation. The applicability of such models was limited to the narrow range of ventilation conditions under which the models were calibrated. The objective of this study was to alleviate this limitation by incorporating evaporation into the seepage models. We modeled evaporation as an isothermal vapor diffusion process. The semi-physical model accounts for the relative humidity, temperature, and ventilation conditions of the cavities. The evaporation boundary layer thickness (BLT) over which diffusion occurs was estimated by calibration against free-water evaporation data collected inside the experimental cavities. The estimated values of BLT were 5 to 7 mm for the open underground drifts and 20 mm for niches closed off by bulkheads. Compared to previous models that neglected the effect of evaporation, this new approach showed significant improvement in capturing seepage fluctuations into open cavities of low relative humidity. At high relative-humidity values (greater than 85%), the effect of evaporation on seepage was very small

  11. Safety mechanism for evaporations apparatus for radioactive liquids

    International Nuclear Information System (INIS)

    1975-01-01

    The apparatus works as two step evaporator preferably using evaporation by expansion. The vapor coming from the first evaporation step is condensed in a mixed condenser which is fed over a circulating pump with a part of the liquid of the second step. The resulting mixture is then led to the second evaporation step. According to the invention between the first step vapor pipe and the mixed condensor there is arranged a flow regulator which causes a drop in pressure corresponding to the pressure difference between the first and second evaporation step, if the vapor flow is above normal operation but still admissible. (P.K.)

  12. The experience of liquid radwaste evaporator performance improvement

    International Nuclear Information System (INIS)

    Kwon, S. H.

    1997-01-01

    Ulchin NPP has only one monobloc evaporation column which treated all radwaste liquid for two units. Since commercial operation in 1988 the evaporator performance is very poor. I think that the bad condition of evaporator is because of the bad quality of liquid radwaste, the large volume of liquid radwaste to treated, the poor skill of operation and some mistake in equipment design. Because of above conditions the average released activity by liquid radwaste is 35.153mCi/year in last eight years(1988∼1995). So it is necessary that we have to improve the evaporator performance and to reduce the liquid radwaste volume to evaporate

  13. File list: Pol.Pan.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Pancre...as http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.05.RNA_polymerase_III.AllCell.bed ...

  14. File list: Pol.Pan.10.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Pancrea...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.10.RNA_Polymerase_III.AllCell.bed ...

  15. File list: DNS.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Pan.20.AllAg.Pancreatic_cancer_cells mm9 DNase-seq Pancreas Pancreatic cancer c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  16. File list: Pol.Pan.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Pancre...as http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.10.RNA_polymerase_III.AllCell.bed ...

  17. An electronic pan/tilt/magnify and rotate camera system

    International Nuclear Information System (INIS)

    Zimmermann, S.; Martin, H.L.

    1992-01-01

    A new camera system has been developed for omnidirectional image-viewing applications that provides pan, tilt, magnify, and rotational orientation within a hemispherical field of view (FOV) without any moving parts. The imaging device is based on the fact that the image from a fish-eye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high-speed electronic circuitry. More specifically, an incoming fish-eye image from any image acquisition source is captured in the memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment. As a result, this device can accomplish the functions of pan, tilt, rotation, and magnification throughout a hemispherical FOV without the need for any mechanical devices. Multiple images, each with different image magnifications and pan-tilt-rotate parameters, can be obtained from a single camera

  18. Properties and Structure of In Situ Transformed PAN-Based Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Jingjing Cao

    2018-06-01

    Full Text Available Carbon fibers in situ prepared during the hot-pressed sintering in a vacuum is termed in situ transformed polyacrylonitrile-based (PAN-based carbon fibers, and the fibrous precursors are the pre-oxidized PAN fibers. The properties and structure of in situ transformed PAN-based carbon fibers are investigated by Nano indenter, SEM, TEM, XRD, and Raman. The results showed that the microstructure of the fiber surface layer was compact, while the core was loose, with evenly-appearing microvoids. The elastic modulus and nanohardness of the fiber surface layer (303.87 GPa and 14.82 GPa were much higher than that of the core (16.57 GPa and 1.54 GPa, and its interlayer spacing d002 and crystallinity were about 0.347 nm and 0.97 respectively. It was found that the preferred orientation of the surface carbon layers with ordered carbon atomic arrangement tended to be parallel to the fiber axis, whereas the fiber core in the amorphous region exhibited a random texture and the carbon atomic arrangement was in a disordered state. It indicates that the in situ transformed PAN-based carbon fibers possess significantly turbostratic structure and anisotropy.

  19. File list: ALL.Pan.50.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.PANC-1 hg19 All antigens Pancreas PANC-1 SRX825369,SRX101484,SRX19...29,SRX190252,SRX825390,SRX644404,SRX825376,SRX101485 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.50.AllAg.PANC-1.bed ...

  20. File list: ALL.Pan.20.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.20.AllAg.PANC-1 hg19 All antigens Pancreas PANC-1 SRX825369,SRX101484,SRX19...12,SRX644404,SRX825376,SRX199860,SRX190029,SRX825390 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.20.AllAg.PANC-1.bed ...

  1. File list: ALL.Pan.10.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.10.AllAg.PANC-1 hg19 All antigens Pancreas PANC-1 SRX825369,SRX101484,SRX19...44,SRX190248,SRX199860,SRX190029,SRX825376,SRX825390 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Pan.10.AllAg.PANC-1.bed ...

  2. Evaporation of petroleum products from contaminated soils

    International Nuclear Information System (INIS)

    Kang, S.H.

    1996-01-01

    Bioremediation can remove petroleum products from soil that has been contaminated by leaking underground storage tanks, but abiotic processes such as evaporation can contribute significantly to the overall removal process. The mathematical model described in this paper was developed to predict the evaporation rate of volatile liquids from petroleum-contaminated sand. The model is based on simple concepts relating to molecular diffusion embodied in the theory underlying the estimation of binary diffusivities using measurements made with an Arnold diffusion cell. The model in its simplified form indicates that the rate of evaporation for a particular volatile liquid is proportional to the square root of the product of diffusivity and partial pressure divided by the molecular weight of the liquid. This in part explains why evaporative losses from sand are so much higher for gasoline than for diesel fuel. The model also shows that the time for evaporation is directly proportional to the square of the depth dried out and inversely proportional to the vapor pressure of the volatile liquid. The model was tested using gravimetric measurements of the evaporation of n-heptane, unleaded gasoline, and diesel fuel from sand under laboratory conditions

  3. Modelling evaporation from a drained and rewetted peatland

    NARCIS (Netherlands)

    Spieksma, J F M; Moors, EJ; Dolman, A J; Schouwenaars, J M

    1997-01-01

    Evaporation from a cutover raised bog in The Netherlands was modelled using a detailed, physically based evaporation model for heterogeneous vegetation and unsaturated soil water how ''SWAPS''. The model enables a quantification of the role of heterogeneity on evaporation. Micro-meteorological

  4. Exploring the correlation between annual precipitation and potential evaporation

    Science.gov (United States)

    Chen, X.; Buchberger, S. G.

    2017-12-01

    The interdependence between precipitation and potential evaporation is closely related to the classic Budyko framework. In this study, a systematic investigation of the correlation between precipitation and potential evaporation at the annual time step is conducted at both point scale and watershed scale. The point scale precipitation and potential evaporation data over the period of 1984-2015 are collected from 259 weather stations across the United States. The watershed scale precipitation data of 203 watersheds across the United States are obtained from the Model Parameter Estimation Experiment (MOPEX) dataset from 1983 to 2002; and potential evaporation data of these 203 watersheds in the same period are obtained from a remote-sensing algorithm. The results show that majority of the weather stations (77%) and watersheds (79%) exhibit a statistically significant negative correlation between annual precipitation and annual potential evaporation. The aggregated data cloud of precipitation versus potential evaporation follows a curve based on the combination of the Budyko-type equation and Bouchet's complementary relationship. Our result suggests that annual precipitation and potential evaporation are not independent when both Budyko's hypothesis and Bouchet's hypothesis are valid. Furthermore, we find that the wet surface evaporation, which is controlled primarily by short wave radiation as defined in Bouchet's hypothesis, exhibits less dependence on precipitation than the potential evaporation. As a result, we suggest that wet surface evaporation is a better representation of energy supply than potential evaporation in the Budyko framework.

  5. Water evaporation on highly viscoelastic polymer surfaces.

    Science.gov (United States)

    Pu, Gang; Severtson, Steven J

    2012-07-03

    Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.

  6. Sodium evaporation into a forced argon flow

    International Nuclear Information System (INIS)

    Kumada, Toshiaki; Kasahara, Fumio; Ishiguro, Ryoji

    1975-01-01

    Evaporation from a rectangular sodium free surface into an argon flow was measured. Tests were carried out with varying sodium temperature, argon velocity and argon temperature respectively under conditions of fog formation being possible. In order to clarify the enhancement of evaporation by fog formation, convection heat transfer from a plate of the same geometry into an air flow was also measured. The evaporation rate and Sherwood number were compared with those predicted by both the heat transfer experiment and the theory proposed by Hill and Szekely, and also a comparison was run with the previously reported experimental results of sodium evaporation. As a result it was shown that the sodium evaporation rate in this experiment is at least four times as large as that predicted by the heat transfer experiment and varies almost linearly with the heat transfer rate and the sodium vapour pressure. (auth.)

  7. File list: Pol.Pan.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Pancreas... SRX190244 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.10.RNA_polymerase_II.AllCell.bed ...

  8. File list: Pol.Pan.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Pancreas... SRX190244 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.50.RNA_polymerase_II.AllCell.bed ...

  9. File list: Pol.Pan.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Pancreas... SRX190244 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.05.RNA_polymerase_II.AllCell.bed ...

  10. Development of pan-Arctic database for river chemistry

    Science.gov (United States)

    McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.

    2008-01-01

    More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.

  11. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  12. PAN-DA and beyond: Data acquisition for the next generation experiments

    International Nuclear Information System (INIS)

    Pordes, R.; Anderson, J.; Berg, D.; Berman, E.; Brown, D.; Dorries, T.; Mackinnon, B.; Meadows, J.; Moore, C.; Nicinski, T.; Oleynik, G.; Petravick, D.; Rechenmacher, R.; Sergey, G.; Slimmer, D.; Streets, J.; Vittone, M.; Votava, M.; Wilcer, N.; White, V.

    1991-06-01

    We report on the status of the PAN-DA data acquisition system presented at the last Real Time Conference. Since that time, PAN-DA has been successfully used in the fixed target program at Fermilab. We also report on the plans and strategies for development of a new data acquisition system for the next generation of fixed target experiments at Fermilab. 10 refs., 3 figs

  13. gLExec Integration with the ATLAS PanDA Workload Management System

    CERN Document Server

    Edward Karavakis; The ATLAS collaboration; Campana, Simone; De, Kaushik; Di Girolamo, Alessandro; Maarten Litmaath; Maeno, Tadashi; Medrano Llamas, Ramon; Nilsson, Paul; Wenaus, Torre

    2015-01-01

    The ATLAS Experiment at the Large Hadron Collider has collected data during Run 1 and is ready to collect data in Run 2. The ATLAS data are distributed, processed and analysed at more than 130 grid and cloud sites across the world. At any given time, there are more than 150,000 concurrent jobs running and about a million jobs are submitted on a daily basis on behalf of thousands of physicists within the ATLAS collaboration. The Production and Distributed Analysis (PanDA) workload management system has proved to be a key component of ATLAS and plays a crucial role in the success of the large-scale distributed computing as it is the sole system for distributed processing of Grid jobs across the collaboration since October 2007. ATLAS user jobs are executed on worker nodes by pilots sent to the sites by pilot factories. This pilot architecture has greatly improved job reliability and although it has clear advantages, such as making the working environment homogeneous by hiding any potential heterogeneities, the ...

  14. Hydrothermal waves in evaporating sessile drops (APS 2009)

    OpenAIRE

    Brutin, D.; Rigollet, F.; LeNiliot, C.

    2009-01-01

    This fluid dynamics video was submitted to the Gallery of Fluid Motion for the 2009 APS Division of Fluid Dynamics Meeting in Minneapolis, Minnesota. Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge o...

  15. ATLAS WORLD-cloud and networking in PanDA

    Science.gov (United States)

    Barreiro Megino, F.; De, K.; Di Girolamo, A.; Maeno, T.; Walker, R.; ATLAS Collaboration

    2017-10-01

    The ATLAS computing model was originally designed as static clouds (usually national or geographical groupings of sites) around the Tier 1 centres, which confined tasks and most of the data traffic. Since those early days, the sites’ network bandwidth has increased at 0(1000) and the difference in functionalities between Tier 1s and Tier 2s has reduced. After years of manual, intermediate solutions, we have now ramped up to full usage of World-cloud, the latest step in the PanDA Workload Management System to increase resource utilization on the ATLAS Grid, for all workflows (MC production, data (re)processing, etc.). We have based the development on two new site concepts. Nuclei sites are the Tier 1s and large Tier 2s, where tasks will be assigned and the output aggregated, and satellites are the sites that will execute the jobs and send the output to their nucleus. PanDA dynamically pairs nuclei and satellite sites for each task based on the input data availability, capability matching, site load and network connectivity. This contribution will introduce the conceptual changes for World-cloud, the development necessary in PanDA, an insight into the network model and the first half-year of operational experience.

  16. Evaporation measurement in the validation drift - part 1

    International Nuclear Information System (INIS)

    Watanabe, Kunio

    1991-01-01

    Evaporation rate distribution over the wall surface of the validation drift was detaily mapped by using an equipment newly developed. The evaporation measurement was carried out to make clear the spatial variability of the inflow rate of groundwater seeping toward the tunnel. Air in the tunnel was warmed by an electric heater during the measurement period for reducing the relative humidity of air and for drying up the wall surface. Evaporation rates from rock matrix as well as from some major fractures were measured at about 500 points. Spatial distributions of evaporation rates over the tunnel wall were obtained under two different ventilation conditions. The average evaporation rates from the rock matrix of the wall were 0.29-0.35 mg/m 2 /s under these ventilation conditions. The average evaporation rate measured on some major fractures was about 1.3 mg/m 2 /s. The maximum evaporation rate measured was 12.8 mg/m 2 /s. Some spots of high evaporation rate were clearly found along some major fractures and these spots seemed to be the special seepage ways (channels) developed in those fractures. The fracture flow is relatively small compared with the matrix flow in the inner part of the drift. This measurement was performed about 1 month after the excavation of the validation drift. Groundwater flow around the tunnel might not be in a steady state because the period between tunnel excavation and the measurement was not so long. The evaporation rate distribution under the steady state of groundwater flow will be studied in 1991. (au)

  17. 242-A evaporator vacuum condenser system

    International Nuclear Information System (INIS)

    Smith, V.A.

    1994-01-01

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation

  18. Reference evapotranspiration estimation from class A pan in the northwest of Uruguay

    International Nuclear Information System (INIS)

    Otero, A.; Goni, C.; Castano, J.

    2012-01-01

    Efficient water management in agriculture requires accurate estimation of the evapotranspiration. The difficulty in obtaining records of all the variables needed to estimate reference evapotranspiration (E To) by the model proposed by Penman-Manhattan-FAO56 (Allen et al., 1998), leads to the use of alternative methods, such as pan evaporation class A (E o), which requires regional calibrations for successful implementation. This paper compares four methods for estimating the adjustment coefficient (Kp) of E o over ETo: i) the procedure proposed by Snyder (1992); i i) by Allen et al. (1998); III) by Pu ppo and Gar cia Petillo (2009); and i v) the Kp-combined obtained through the regression coefficient of E o to ETo for the region under study. The regression coefficient values of E o over ETo change slightly according to the average interval used, being 0.77, 0.75 and 0.73 for the monthly interval, de-iced (10 days) and weekly. The estimation error decreases as we average at longer intervals. The procedure i) significantly overestimated ETo, while i i) underestimated both, with a mean absolute error of 0.49 and 0.86 mm respectively, while in III) is 0.32 and the i v ) is 0.37 mm. Procedures III) and i v) with constant values of Kp had the best performance for the northwestern region of Uruguay

  19. Assessment of evaporative water loss from Dutch cities

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Elbers, J.A.; Brolsma, R.; Hartogensis, O.K.; Moors, E.J.; Rodríguez-CarreteroMárquez, M.T.; Hove, van B.

    2015-01-01

    Reliable estimates of evaporative water loss are required to assess the urban water budget in support of division of water resources among various needs, including heat mitigation measures in cities relying on evaporative cooling. We report on urban evaporative water loss from Arnhem and Rotterdam

  20. Evaporation equipment with electron beam heating for the evaporation of metals and other conducting materials

    International Nuclear Information System (INIS)

    Mueller, P.

    1977-01-01

    Equipment for the evaporation of metals and other conducting materials by electron beam heating is to be improved by surrou nding the evaporation equipment with a grid, which has a negative voltage compared to the cathode. This achieves the state where the cathode is hit and damaged less by the ions formed, so that its life period is prolonged. (UWI) [de

  1. Comparison of different methods for estimation of potential evapotranspiration

    International Nuclear Information System (INIS)

    Nazeer, M.

    2010-01-01

    Evapotranspiration can be estimated with different available methods. The aim of this research study to compare and evaluate the originally measured potential evapotranspiration from Class A pan with the Hargreaves equation, the Penman equation, the Penman-Montheith equation, and the FAO56 Penman-Monteith equation. The evaporation rate from pan recorded greater than stated methods. For each evapotranspiration method, results were compared against mean monthly potential evapotranspiration (PET) from Pan data according to FAO (ET/sub o/=K/sub pan X E/sub pan)), from daily measured recorded data of the twenty-five years (1984-2008). On the basis of statistical analysis between the pan data and the FAO56- Penman-Monteith method are not considered to be very significant (=0.98) at 95% confidence and prediction intervals. All methods required accurate weather data for precise results, for the purpose of this study the past twenty five years data were analyzed and used including maximum and minimum air temperature, relative humidity, wind speed, sunshine duration and rainfall. Based on linear regression analysis results the FAO56 PMM ranked first (R/sup 2/=0.98) followed by Hergreaves method (R/sup 2/=0.96), Penman-Monteith method (R/sup 2/=0.94) and Penman method (=0.93). Obviously, using FAO56 Penman Monteith method with precise climatic variables for ET/sub o/ estimation is more reliable than the other alternative methods, Hergreaves is more simple and rely only on air temperatures data and can be used alternative of FAO56 Penman-Monteith method if other climatic data are missing or unreliable. (author)

  2. Multi-scale Drivers of Variations in Atmospheric Evaporative Demand Based on Observations and Physically-based Modeling

    Science.gov (United States)

    Peng, L.; Sheffield, J.; Li, D.

    2015-12-01

    Evapotranspiration (ET) is a key link between the availability of water resources and climate change and climate variability. Variability of ET has important environmental and socioeconomic implications for managing hydrological hazards, food and energy production. Although there have been many observational and modeling studies of ET, how ET has varied and the drivers of the variations at different temporal scales remain elusive. Much of the uncertainty comes from the atmospheric evaporative demand (AED), which is the combined effect of radiative and aerodynamic controls. The inconsistencies among modeled AED estimates and the limited observational data may originate from multiple sources including the limited time span and uncertainties in the data. To fully investigate and untangle the intertwined drivers of AED, we present a spectrum analysis to identify key controls of AED across multiple temporal scales. We use long-term records of observed pan evaporation for 1961-2006 from 317 weather stations across China and physically-based model estimates of potential evapotranspiration (PET). The model estimates are based on surface meteorology and radiation derived from reanalysis, satellite retrievals and station data. Our analyses show that temperature plays a dominant role in regulating variability of AED at the inter-annual scale. At the monthly and seasonal scales, the primary control of AED shifts from radiation in humid regions to humidity in dry regions. Unlike many studies focusing on the spatial pattern of ET drivers based on a traditional supply and demand framework, this study underlines the importance of temporal scales when discussing controls of ET variations.

  3. File list: ALL.Pan.05.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.05.AllAg.Pancreatic_cancer_cells mm9 All antigens Pancreas Pancreatic cancer... cells SRX174586,SRX174585,SRX174587 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.05.AllAg.Pancreatic_cancer_cells.bed ...

  4. File list: Oth.Pan.20.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.20.AllAg.Pancreatic_cancer_cells mm9 TFs and others Pancreas Pancreatic cancer... cells SRX174585,SRX174586 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.20.AllAg.Pancreatic_cancer_cells.bed ...

  5. File list: Oth.Pan.05.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.Pancreatic_cancer_cells mm9 TFs and others Pancreas Pancreatic cancer... cells SRX174586,SRX174585 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Pan.05.AllAg.Pancreatic_cancer_cells.bed ...

  6. File list: ALL.Pan.50.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Pan.50.AllAg.Pancreatic_cancer_cells mm9 All antigens Pancreas Pancreatic cancer... cells SRX174585,SRX174586,SRX174587 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Pan.50.AllAg.Pancreatic_cancer_cells.bed ...

  7. Share your sweets: Chimpanzee (Pan troglodytes) and bonobo (Pan paniscus) willingness to share highly attractive, monopolizable food sources.

    Science.gov (United States)

    Byrnit, Jill T; Høgh-Olesen, Henrik; Makransky, Guido

    2015-08-01

    All over the world, humans (Homo sapiens) display resource-sharing behavior, and common patterns of sharing seem to exist across cultures. Humans are not the only primates to share, and observations from the wild have long documented food sharing behavior in our closest phylogenetic relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). However, few controlled studies have been made in which groups of Pan are introduced to food items that may be shared or monopolized by a first food possessor, and very few studies have examined what happens to these sharing patterns if the food in question is a highly attractive, monopolizable food source. The one study to date to include food quality as the independent variable used different types of food as high- and low-value items, making differences in food divisibility and size potentially confounding factors. It was the aim of the present study to examine the sharing behavior of groups of captive chimpanzees and bonobos when introducing the same type of food (branches) manipulated to be of 2 different degrees of desirability (with or without syrup). Results showed that the large majority of food transfers in both species came about as sharing in which group members were allowed to cofeed or remove food from the stock of the food possessor, and the introduction of high-value food resulted in more sharing, not less. Food sharing behavior differed between species in that chimpanzees displayed significantly more begging behavior than bonobos. Bonobos, instead, engaged in sexual invitations, which the chimpanzees never did. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  8. Coastal salt pans: strengthening the new emerging role of Maltese shore platforms for geo-tourism with GIS Mapping

    Science.gov (United States)

    Gauci, Ritienne; Schembri, John A.; Mizzi, Raphael; Inkpen, Rob

    2015-04-01

    Salt has been a foremost natural resource for millennia with a wide range of uses from preserving edible foods, and cooking with it, to cleaning, laundry, hygiene, and as a medicinal balm. The Mediterranean, with its long indented coastline, numerous islands and a distinctive climate has been a favourable area for salt production from sea water. It was the source of supply of salt to the Eurasian land mass, and trekking it through to sub-Saharan Africa. With a salinity of around 36 ppt, the Mediterranean is one of the most productive areas in the globe for salt yield per volume of water. In small islands with poor natural resources, the production of salt from sea water, through insolation, aeolian processes and intense human endeavour, offered economic benefits and created a socio-environmental cultural heritage around the sites of production of this staple resource. The Maltese Islands are no exception to this activity with rectangular or oblong pans etched on the softer surface limestone of Malta and Gozo. Located strategically on the foreshore, the rectangular (0.5-1.5 m2), shallow pits (ca 15cm), supplemented by larger reservoirs occupy significant areas as near to the shoreline as possible. There are about 40 artisanal sites along the littoral varying in area from one thousand to 17,000 m2and with their nearest point located between one and ten metres from the water's edge. Some are no longer in use. Their total area around the islands is about 170,000 m2. This aim of this paper is to explore the multiple geographies of still existing salt pans in selected sites on Malta. This research aims to map out the traditional but complex management system present at each selected shore platform site, some of which are considered the best preserved salt pans on the Islands. Consequently, they transform into focal touristic attractions, especially during the summer months when a daily display of soil harvesting work can be witnessed and admired. The mapping and

  9. The desorptivity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  10. Spent-fuel pool thermal hydraulics: The evaporation question

    International Nuclear Information System (INIS)

    Yilmaz, T.P.; Lai, J.C.

    1996-01-01

    Many nuclear power plants are currently using dense fuel arrangements that increase the number of spent fuel elements stored in their spent-fuel pools (SFPs). The denser spent-fuel storage results in higher water temperatures, especially when certain event scenarios are analyzed. In some of these event scenarios, it is conservative to maximize the evaporation rate, while in other circumstances it is required to minimize the evaporation rates for conservatism. Evaporation is such a fundamental phenomenon that many branches of engineering developed various equations based on theory and experiments. The evaporation rates predicted by existing equations present a wide range of variation, especially at water temperatures >40 degrees C. Furthermore, a study on which equations provide the highest and lowest evaporation rates has not been done until now. This study explores the sensitivity of existing evaporation equations to various parameters and recommends the limiting evaporation equations for use in the solution of SFP thermal problems. Note that the results of this study may be applicable to a much wider range of applications from irrigation ponds, cooling lakes, and liquid-waste management to calculating adequate air exchange rate for swimming pools and health spas

  11. Solubility of plutonium and waste evaporation

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1993-01-01

    Chemical processing of irradiated reactor elements at the Savannah River Site separates uranium, plutonium and fission products; fission products and process-added chemicals are mixed with an excess of NaOH and discharged as a basic slurry into large underground tanks for temporary storage. The slurry is composed of base-insoluble solids that settle to the bottom of the tank; the liquid supemate contains a mixture of base-soluble chemicals--nitrates, nitrites aluminate, sulfate, etc. To conserve space in the waste tanks, the supemate is concentrated by evaporation. As the evaporation proceeds, the solubilities of some components are exceeded, and these species crystallize from solution. Normally, these components are soluble in the hot solution discharged from the waste tank evaporator and do not crystallize until the solution cools. However, concern was aroused at West Valley over the possibility that plutonium would precipitate and accumulate in the evaporator, conceivably to the point that a nuclear accident was possible. There is also a concern at SRS from evaporation of sludge washes, which arise from washing the base-insoluble solids (open-quote sludge close-quote) with ca. 1M NaOH to reduce the Al and S0 4 -2 content. The sludge washes of necessity extract a low level of Pu from the sludge and are evaporated to reduce their volume, presenting the possibility of precipitating Pu. Measurements of the solubility of Pu in synthetic solutions of similar composition to waste supernate and sludge washes are described in this report

  12. Integration of PanDA workload management system with Titan supercomputer at OLCF

    Science.gov (United States)

    De, K.; Klimentov, A.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    The PanDA (Production and Distributed Analysis) workload management system (WMS) was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. While PanDA currently distributes jobs to more than 100,000 cores at well over 100 Grid sites, the future LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, ATLAS is engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF). The current approach utilizes a modified PanDA pilot framework for job submission to Titan's batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on Titan's multicore worker nodes. It also gives PanDA new capability to collect, in real time, information about unused worker nodes on Titan, which allows precise definition of the size and duration of jobs submitted to Titan according to available free resources. This capability significantly reduces PanDA job wait time while improving Titan's utilization efficiency. This implementation was tested with a variety of Monte-Carlo workloads on Titan and is being tested on several other supercomputing platforms. Notice: This manuscript has been authored, by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  13. Bioenergy and biodiversity: Key lessons from the Pan American region

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinelli, Fernanda Silva [UFRRJ/Conservation International Brazil, Seropedica (Brazil); Mayer, Audrey L. [Michigan Technological Univ., Houghton, MI (United States); Medeiros, Rodrigo [Federal Rural Univ. of Rio de Janeiro, Rio de Janeiro (Brazil); Oliveira, Camila Ortolan F. [Univ. of Campinas, Campinas (Brazil); Sparovek, Gerd [Univ. of Sao Paulo, Piracicaba (Brazil); Walter, Arnaldo [Univ. of Campinas, Campinas (Brazil); Venier, Lisa A. [Canadian Forest Service, Sault Ste. Marie (Canada). Great Lakes Forestry Centre

    2015-06-24

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. Lastly, we propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  14. PanDA for ATLAS Distributed Computing in the Next Decade

    CERN Document Server

    Barreiro Megino, Fernando Harald; The ATLAS collaboration

    2016-01-01

    The Production and Distributed Analysis (PanDA) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at the Large Hadron Collider (LHC) data processing scale. Heterogeneous resources used by the ATLAS experiment are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, dozens of scientific applications are supported, while data processing requires more than a few billion hours of computing usage per year. PanDA performed very well over the last decade including the LHC Run 1 data taking period. However, it was decided to upgrade the whole system concurrently with the LHC’s first long shutdown in order to cope with rapidly changing computing infrastructure. After two years of reengineering efforts, PanDA has embedded capabilities for fully dynamic and flexible workload management. The static batch job paradigm was discarde...

  15. PanDA for ATLAS distributed computing in the next decade

    CERN Document Server

    AUTHOR|(SzGeCERN)643806; The ATLAS collaboration; De, Kaushik; Klimentov, Alexei; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Padolski, Siarhei; Panitkin, Sergey; Wenaus, Torre

    2017-01-01

    The Production and Distributed Analysis (PanDA) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at the Large Hadron Collider (LHC) data processing scale. Heterogeneous resources used by the ATLAS experiment are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, dozens of scientific applications are supported, while data processing requires more than a few billion hours of computing usage per year. PanDA performed very well over the last decade including the LHC Run 1 data taking period. However, it was decided to upgrade the whole system concurrently with the LHC’s first long shutdown in order to cope with rapidly changing computing infrastructure. After two years of reengineering efforts, PanDA has embedded capabilities for fully dynamic and flexible workload management. The static batch job paradigm was discarde...

  16. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    Science.gov (United States)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  17. The next generation PanDA Pilot for and beyond the ATLAS experiment

    CERN Document Server

    Nilsson, Paul; The ATLAS collaboration

    2018-01-01

    The Production and Distributed Analysis system (PanDA) is a pilot-based workload management system that was originally designed for the ATLAS Experiment at the LHC to operate on grid sites. Since the coming LHC data taking runs will require more resources than grid computing alone can provide, the various LHC experiments are engaged in an ambitious program to extend the computing model to include opportunistically used resources such as High Performance Computers (HPCs), clouds and volunteer computers. To this end, PanDA is being extended beyond grids and ATLAS to be used on the new types of resources as well as by other experiments. A new key component is being developed, the next generation PanDA Pilot (Pilot 2). Pilot 2 is a complete rewrite of the original PanDA Pilot which has been used in the ATLAS Experiment for over a decade. The new Pilot architecture follows a component-based approach which improves system flexibility, enables a clear workflow control, evolves the system according to modern function...

  18. Fabrication of Josephson Junction without shadow evaporation

    Science.gov (United States)

    Wu, Xian; Ku, Hsiangsheng; Long, Junling; Pappas, David

    We developed a new method of fabricating Josephson Junction (Al/AlOX/Al) without shadow evaporation. Statistics from room temperature junction resistance and measurement of qubits are presented. Unlike the traditional ``Dolan Bridge'' technique, this method requires two individual lithographies and straight evaporations of Al. Argon RF plasma is used to remove native AlOX after the first evaporation, followed by oxidation and second Al evaporation. Junction resistance measured at room temperature shows linear dependence on Pox (oxidation pressure), √{tox} (oxidation time), and inverse proportional to junction area. We have seen 100% yield of qubits made with this method. This method is promising because it eliminates angle dependence during Junction fabrication, facilitates large scale qubits fabrication.

  19. Universal evaporation dynamics of a confined sessile droplet

    Science.gov (United States)

    Bansal, Lalit; Hatte, Sandeep; Basu, Saptarshi; Chakraborty, Suman

    2017-09-01

    Droplet evaporation under confinement is ubiquitous to multitude of applications such as microfluidics, surface patterning, and ink-jet printing. However, the rich physics governing the universality in the underlying dynamics remains grossly elusive. Here, we bring out hitherto unexplored universal features of the evaporation dynamics of a sessile droplet entrapped in a 3D confined fluidic environment. We show, through extensive set of experiments and theoretical formulations, that the evaporation timescale for such a droplet can be represented by a unique function of the initial conditions. Moreover, using same theoretical considerations, we are able to trace and universally merge the volume evolution history of the droplets along with evaporation lifetimes, irrespective of the extent of confinement. We also showcase the internal flow transitions caused by spatio-temporal variation of evaporation flux due to confinement. These findings may be of profound importance in designing functionalized droplet evaporation devices for emerging engineering and biomedical applications.

  20. Enhanced Evaporation and Condensation in Tubes

    Science.gov (United States)

    Honda, Hiroshi

    A state-of-the-art review of enhanced evaporation and condensation in horizontal microfin tubes and micro-channels that are used for air-conditioning and refrigeration applications is presented. The review covers the effects of flow pattern and geometrical parameters of the tubes on the heat transfer performance. Attention is paid to the effect of surface tension which leads to enhanced evaporation and condensation in the microfin tubes and micro-channels. A review of prior efforts to develop empirical correlations of the heat transfer coefficient and theoretical models for evaporation and condensation in the horizontal microfin tubes and micro-channels is also presented.

  1. Thermocapillary flow about an evaporating meniscus

    Science.gov (United States)

    Schmidt, G. R.; Chung, T. J.

    1992-01-01

    The steady motion and thermal behavior of an evaporating superheated liquid in a small cavity bounded by isothermal sidewalls is examined. Scaling analyses and a two-dimensional finite element model are used to investigate the influence of thermocapillarity, buoyancy, and temperature-dependent mass flux on flowfield, interfacial heat transfer, and meniscus morphology. Numerical investigations indicate the existence of two counter-rotating cells symmetric about the cavity center. Results also show that evaporation tends to counteract this circulation by directing flow toward the hotter sidewalls. Although thermocapillarity and evaporation yield different flowfield distributions, both effects tend to increase interfacial temperature and heat transfer.

  2. Accelerated evaporation of water on graphene oxide.

    Science.gov (United States)

    Wan, Rongzheng; Shi, Guosheng

    2017-03-29

    Using molecular dynamics simulations, we show that the evaporation of nanoscale volumes of water on patterned graphene oxide is faster than that on homogeneous graphene oxide. The evaporation rate of water is insensitive to variation in the oxidation degree of the oxidized regions, so long as the water film is only distributed on the oxidized regions. The evaporation rate drops when the water film spreads onto the unoxidized regions. Further analysis showed that varying the oxidation degree observably changed the interaction between the outmost water molecules and the solid surface, but the total interaction for the outmost water molecules only changed a very limited amount due to the correspondingly regulated water-water interaction when the water film is only distributed on the oxidized regions. When the oxidation degree is too low and some unoxidized regions are also covered by the water film, the thickness of the water film decreases, which extends the lifetime of the hydrogen bonds for the outmost water molecules and lowers the evaporation rate of the water. The insensitivity of water evaporation to the oxidation degree indicates that we only need to control the scale of the unoxidized and oxidized regions for graphene oxide to regulate the evaporation of nanoscale volumes of water.

  3. Optimized evaporation technique for leachate treatment: Small scale implementation.

    Science.gov (United States)

    Benyoucef, Fatima; Makan, Abdelhadi; El Ghmari, Abderrahman; Ouatmane, Aziz

    2016-04-01

    This paper introduces an optimized evaporation technique for leachate treatment. For this purpose and in order to study the feasibility and measure the effectiveness of the forced evaporation, three cuboidal steel tubs were designed and implemented. The first control-tub was installed at the ground level to monitor natural evaporation. Similarly, the second and the third tub, models under investigation, were installed respectively at the ground level (equipped-tub 1) and out of the ground level (equipped-tub 2), and provided with special equipment to accelerate the evaporation process. The obtained results showed that the evaporation rate at the equipped-tubs was much accelerated with respect to the control-tub. It was accelerated five times in the winter period, where the evaporation rate was increased from a value of 0.37 mm/day to reach a value of 1.50 mm/day. In the summer period, the evaporation rate was accelerated more than three times and it increased from a value of 3.06 mm/day to reach a value of 10.25 mm/day. Overall, the optimized evaporation technique can be applied effectively either under electric or solar energy supply, and will accelerate the evaporation rate from three to five times whatever the season temperature. Copyright © 2016. Published by Elsevier Ltd.

  4. Phamacognostical Evaluation and Determination of Total Phenols of Paeonia sinjiangensis K. Y. Pan

    Directory of Open Access Journals (Sweden)

    H. Y. Gong

    2012-01-01

    Full Text Available Paeonia sinjiangensis K. Y. Pan is a perennial herb belonging to the family Ranunculaceae which is one of the most important crude drugs in traditional Chinese medicine, used as an anti-inflammatory, analgesic and sedative agent. This paper deals with the detailed pharmacognostical evaluation of the crude drug P. sinjiangensis K. Y. Pan. The microscopic, physico-chemical, preliminary physicochemical parameters, total phenols contents presented in this paper may be proposed as parameters to establish the authenticity of P. sinjiangensis K. Y. Pan and can possibly help to differentiate the drug from its other species.

  5. File list: Oth.Pan.20.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.20.AllAg.PANC-1 hg19 TFs and others Pancreas PANC-1 SRX100415,SRX190241,SRX...100942,SRX644410,SRX825399,SRX1026679,SRX1026680,SRX1026681,SRX1026678,SRX190248,SRX190315 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Pan.20.AllAg.PANC-1.bed ...

  6. File list: Oth.Pan.50.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.50.AllAg.PANC-1 hg19 TFs and others Pancreas PANC-1 SRX100415,SRX825399,SRX...1026679,SRX1026680,SRX1026681,SRX1026678,SRX190315,SRX190248,SRX190241,SRX100942,SRX644410 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Pan.50.AllAg.PANC-1.bed ...

  7. File list: Oth.Pan.05.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.05.AllAg.PANC-1 hg19 TFs and others Pancreas PANC-1 SRX100942,SRX100415,SRX...190241,SRX190248,SRX190315,SRX644410,SRX825399,SRX1026680,SRX1026679,SRX1026678,SRX1026681 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Pan.05.AllAg.PANC-1.bed ...

  8. File list: Oth.Pan.10.AllAg.PANC-1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Pan.10.AllAg.PANC-1 hg19 TFs and others Pancreas PANC-1 SRX100942,SRX100415,SRX...190241,SRX644410,SRX825399,SRX190315,SRX1026680,SRX1026679,SRX1026681,SRX1026678,SRX190248 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Pan.10.AllAg.PANC-1.bed ...

  9. PERFORMING MANHOOD: GLAHN AND THE MASCULINITY CRISIS IN HAMSUN'S PAN

    Directory of Open Access Journals (Sweden)

    Chengzhou He

    2016-04-01

    Full Text Available In Hamsun’s novel Pan, Lieutenant Glahn holds an essentialist notion of masculinity that is somewhat outdated in the context of emerging Norwegian modernity. His acts of violence, which are performative of his male pride, not only bring harm to others, but also become destructive to himself. The masculinity crisis enacted in Pan is put into the context of the social, historical, and cultural changes related to gender and modernity that occurred during the end of the 19th century in Norway and beyond.

  10. Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets

    International Nuclear Information System (INIS)

    Smith, Jared D.; Cappa, Christopher D.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2006-01-01

    Recent theoretical and experimental studies of evaporation have suggested that on average, molecules in the higher-energy tail of the Boltzmann distribution are more readily transferred into the vapor during evaporation. To test these conclusions, the evaporative cooling rates of a droplet train of liquid water injected into vacuum have been studied via Raman thermometry. The resulting cooling rates are fit to an evaporative cooling model based on Knudsen's maximum rate of evaporation, in which we explicitly account for surface cooling. We have determined that the value of the evaporation coefficient (γ e ) of liquid water is 0.62 ± 0.09, confirming that a rate-limiting barrier impedes the evaporation rate. Such insight will facilitate the formulation of a microscopic mechanism for the evaporation of liquid water

  11. Evaporation and transpiration from forests in Central Europe - relevance of patch-level studies for spatial scaling

    Science.gov (United States)

    Köstner, B.

    Spatial scaling from patch to the landscape level requires knowledge on the effects of vegetation structure on maximum surface conductances and evaporation rates. The following paper summarizes results on atmospheric, edaphic, and structural controls on forest evaporation and transpiration observed in stands of Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and European beech (Fagus sylvatica). Forest canopy transpiration (Ec) was determined by tree sapflow measurements scaled to the stand level. Estimates of understory transpiration and forest floor evaporation were derived from lysimeter and chamber measurements. Strong reduction of Ec due to soil drought was only observed at a Scots pine stand when soil water content dropped below 16% v/v. Although relative responses of Ec on atmospheric conditions were similar, daily maximum rates of could differ more than 100% between forest patches of different structure (1.5-3.0mmd-1 and 2.6-6.4mmd-1 for spruce and beech, respectively). A significant decrease of Ecmax per leaf area index with increasing stand age was found for monocultures of Norway spruce, whereas no pronounced changes in were observed for beech stands. It is concluded that structural effects on Ecmax can be specified and must be considered for spatial scaling from forest stands to landscapes. Hereby, in conjunction with LAI, age-related structural parameters are important for Norway spruce stands. Although compensating effects of tree canopy layers and understory on total evaporation of forests were observed, more information is needed to quantify structure-function relationships in forests of heterogenous structure.

  12. Evaporative water loss from welded tuff

    International Nuclear Information System (INIS)

    Hadley, G.R.; Turner, J.R. Jr.

    1980-04-01

    Welded tuff is one of the many candidate rocks presently being considered as a host medium for the disposal of radioactive waste. In the case where the disposal site lies above the water table, the host rock will in general be only partially saturated. This condition leads to a number of mass transfer processes of interest, including evaporative drying, two-phase water flow due to pressure gradients, capillary movement, plus others. Although these processes have all been known about for decades, it is not clear at this time what the relative importance of each is with regard to geologic media in a waste disposal environment. In particular, there seems to be no data available for tuff that would allow an investigator to sort out mechanisms. This work is intended to be a start in that direction. This paper reports the measurement of water loss rate for welded tuff at various temperatures due to the action of evaporative drying. The initial saturation was unknown, but the average initial water content was found to be 7% by weight. The resulting data show that the water loss rate declines monotonically with time at a given temperature and increases with increasing temperature as expected. Somewhat surprising, however, is the fact that over 90% of the water from a sample was lost by evaporation at room temperature within 72 hours. All the water loss data, including that taken at temperatures as high as 150 0 C, are explained to within a factor of two by a simple evaporation front model. The latter assumes the water is lost by the molecular diffusion of water vapor from a receding evaporation front. The motion of the evaporation front seems to depend on mass balance rather than energy balance. Capillary forces and the resulting liquid diffusion are evidently not strong enough to wash out the evaporation front, since the front model seems to fit the data well

  13. The indicative map of the pan-European ecological network in Western Europe : technical background report

    OpenAIRE

    Jongman, R.H.G.; Bouwma, I.M.; Doorn, van, A.M.

    2006-01-01

    The Pan European Ecological Network for Western Europe is the third project in developing the Pan European Ecological Network The objective of the Pan-European Ecological Network is to develop a vision for a coherent network of high value areas for biodiversity, as internationally and nationally protected areas in combination with other suitable habitat areas for long term favourable conservation of Europe’s key ecosystems, habitats and species

  14. Evolution of the ATLAS PanDA Production and Distributed Analysis System

    International Nuclear Information System (INIS)

    Maeno, T; Wenaus, T; Fine, V; Potekhin, M; Panitkin, S; De, K; Nilsson, P; Stradling, A; Walker, R; Compostella, G

    2012-01-01

    The PanDA (Production and Distributed Analysis) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at LHC data processing scale. PanDA has performed well with high reliability and robustness during the two years of LHC data-taking, while being actively evolved to meet the rapidly changing requirements for analysis use cases. We will present an overview of system evolution including automatic rebrokerage and reattempt for analysis jobs, adaptation for the CernVM File System, support for the multi-cloud model through which Tier-2 sites act as members of multiple clouds, pledged resource management and preferential brokerage, and monitoring improvements. We will also describe results from the analysis of two years of PanDA usage statistics, current issues, and plans for the future.

  15. PanDA Beyond ATLAS : A Scalable Workload Management System For Data Intensive Science

    CERN Document Server

    Borodin, M; The ATLAS collaboration; Jha, S; Golubkov, D; Klimentov, A; Maeno, T; Nilsson, P; Oleynik, D; Panitkin, S; Petrosyan, A; Schovancova, J; Vaniachine, A; Wenaus, T

    2014-01-01

    The LHC experiments are today at the leading edge of large scale distributed data-intensive computational science. The LHC's ATLAS experiment processes data volumes which are particularly extreme, over 140 PB to date, distributed worldwide at over of 120 sites. An important element in the success of the exciting physics results from ATLAS is the highly scalable integrated workflow and dataflow management afforded by the PanDA workload management system, used for all the distributed computing needs of the experiment. The PanDA design is not experiment specific and PanDA is now being extended to support other data intensive scientific applications. PanDA was cited as an example of "a high performance, fault tolerant software for fast, scalable access to data repositories of many kinds" during the "Big Data Research and Development Initiative" announcement, a 200 million USD U.S. government investment in tools to handle huge volumes of digital data needed to spur science and engineering discoveries. In this talk...

  16. Water evaporation from substrate tooth surface during dentin treatments.

    Science.gov (United States)

    Kusunoki, Mizuho; Itoh, Kazuo; Gokan, Yuka; Nagai, Yoshitaka; Tani, Chihiro; Hisamitsu, Hisashi

    2011-01-01

    The purpose of this study was to evaluate changes in the quantity of water evaporation from tooth surfaces. The amount of water evaporation was measured using Multi probe adapter MPA5 and Tewameter TM300 (Courage+Khazaka Electric GmbH, Köln, Germany) after acid etching and GM priming of enamel; and after EDTA conditioning and GM priming of dentin. The results indicated that the amount of water evaporation from the enamel surface was significantly less than that from the dentin. Acid etching did not affect the water evaporation from enamel, though GM priming significantly decreased the evaporation (83.48 ± 15.14% of that before priming). The evaporation from dentin was significantly increased by EDTA conditioning (131.38 ± 42.08% of that before conditioning) and significantly reduced by GM priming (80.26 ± 7.43% of that before priming). It was concluded that dentin priming reduced water evaporation from the dentin surface.

  17. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.; Xie, Jianfei; Shishkova, Irina N.; Elwardani, Ahmed Elsaid; Heikal, Morgan Raymond

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation

  18. Control of Pan-tilt Mechanism Angle using Position Matrix Method

    Directory of Open Access Journals (Sweden)

    Hendri Maja Saputra

    2013-12-01

    Full Text Available Control of a Pan-Tilt Mechanism (PTM angle for the bomb disposal robot Morolipi-V2 using inertial sensor measurement unit, x-IMU, has been done. The PTM has to be able to be actively controlled both manually and automatically in order to correct the orientation of the moving Morolipi-V2 platform. The x-IMU detects the platform orientation and sends the result in order to automatically control the PTM. The orientation is calculated using the quaternion combined with Madwick and Mahony filter methods. The orientation data that consists of angles of roll (α, pitch (β, and yaw (γ from the x-IMU are then being sent to the camera for controlling the PTM motion (pan & tilt angles after calculating the reverse angle using position matrix method. Experiment results using Madwick and Mahony methods show that the x-IMU can be used to find the robot platform orientation. Acceleration data from accelerometer and flux from magnetometer produce noise with standard deviation of 0.015 g and 0.006 G, respectively. Maximum absolute errors caused by Madgwick and Mahony method with respect to Xaxis are 48.45º and 33.91º, respectively. The x-IMU implementation as inertia sensor to control the Pan-Tilt Mechanism shows a good result, which the probability of pan angle tends to be the same with yaw and tilt angle equal to the pitch angle, except a very small angle shift due to the influence of roll angle..

  19. A new stationary droplet evaporation model and its validation

    Directory of Open Access Journals (Sweden)

    Fang WANG

    2017-08-01

    Full Text Available The liquid droplet evaporation character is important for not only combustion chamber design process but also high-accuracy spray combustion simulation. In this paper, the suspended droplets’ evaporation character was measured in a quiescent high-temperature environment by micro high-speed camera system. The gasoline and kerosene experimental results are consistent with the reference data. Methanol, common kerosene and aviation kerosene droplet evaporation characteristics, as well as their evaporation rate changing with temperature, were obtained. The evaporation rate experimental data were compared with the prediction result of Ranz-Marshall boiling temperature model (RMB, Ranz-Marshall low-temperature model (RML, drift flux model (DFM, mass analogy model (MAM, and stagnant film model (SFM. The disparity between the experimental data and the model prediction results was mainly caused by the neglect of the natural convection effect, which was never introduced into the droplet evaporation concept. A new droplet evaporation model with consideration of natural convection buoyancy force effect was proposed in this paper. Under the experimental conditions in this paper, the calculation results of the new droplet evaporation model were agreed with the experimental data for kerosene, methanol and other fuels, with less than 20% relative deviations. The relative deviations between the new evaporation model predictions for kerosene and the experimental data from the references were within 10%.

  20. Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

    2004-01-01

    Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

  1. Parametric study of thin film evaporation from nanoporous membranes

    Science.gov (United States)

    Wilke, Kyle L.; Barabadi, Banafsheh; Lu, Zhengmao; Zhang, TieJun; Wang, Evelyn N.

    2017-10-01

    The performance and lifetime of advanced electronics are often dictated by the ability to dissipate heat generated within the device. Thin film evaporation from nanoporous membranes is a promising thermal management approach, which reduces the thermal transport distance across the liquid film while also providing passive capillary pumping of liquid to the evaporating interface. In this work, we investigated the dependence of thin film evaporation from nanoporous membranes on a variety of geometric parameters. Anodic aluminum oxide membranes were used as experimental templates, where pore radii of 28-75 nm, porosities of 0.1-0.35, and meniscus locations down to 1 μm within the pore were tested. We demonstrated different heat transfer regimes and observed more than an order of magnitude increase in dissipated heat flux by operating in the pore-level evaporation regime. The pore diameter had little effect on pore-level evaporation performance due to the negligible conduction resistance from the pore wall to the evaporating interface. The dissipated heat flux scaled with porosity as the evaporative area increased. Furthermore, moving the meniscus as little as 1 μm into the pore decreased the dissipated heat flux by more than a factor of two due to the added resistance to vapor escaping the pore. The experimental results elucidate thin film evaporation from nanopores and confirm findings of recent modeling efforts. This work also provides guidance for the design of future thin film evaporation devices for advanced thermal management. Furthermore, evaporation from nanopores is relevant to water purification, chemical separations, microfluidics, and natural processes such as transpiration.

  2. Uranium concentration monitor manual, secondary intermediate evaporator

    International Nuclear Information System (INIS)

    Russo, P.A.; Sprinkle, J.K. Jr.; Slice, R.W.; Strittmatter, R.B.

    1985-08-01

    This manual describes the design, operation, and measurement control procedures for the automated uranium concentration monitor on the secondary intermediate evaporator at the Oak Ridge Y-12 Plant. The nonintrusive monitor provides a near-real time readout of uranium concentration in the return loop of time recirculating evaporator for purposes of process monitoring and control. A detector installed near the bottom of the return loop is used to acquire spectra of gamma rays from the evaporator solutions during operation. Pulse height analysis of each spectrum gives the information required to deduce the concentration of uranium in the evaporator solution in near-real time. The visual readout of concentration is updated at the end of every assay cycle. The readout includes an alphanumeric display of uranium concentration and an illuminated, colored LED (in an array of colored LEDs) indicating whether the measured concentration is within (or above or below) the desired range. An alphanumeric display of evaporator solution acid molarity is also available to the operator. 9 refs., 16 figs., 4 tabs

  3. File list: InP.Pan.05.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.05.Input_control.AllCell hg19 Input control Input control Pancreas SRX19030...0794,SRX188948,SRX190029,SRX199860,SRX026707,SRX825393 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Pan.05.Input_control.AllCell.bed ...

  4. File list: InP.Pan.10.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.10.Input_control.AllCell hg19 Input control Input control Pancreas SRX19030...8948,SRX825393,SRX199860,SRX190029,SRX026707,SRX375320 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Pan.10.Input_control.AllCell.bed ...

  5. File list: InP.Pan.20.Input_control.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Pan.20.Input_control.AllCell hg19 Input control Input control Pancreas SRX34080...0803,SRX340794,SRX199860,SRX190029,SRX026707,SRX375320 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Pan.20.Input_control.AllCell.bed ...

  6. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C; Frijns, A J H; Mandamparambil, R; Zevenbergen, M A G; den Toonder, J M J

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30-250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  7. An evaporation based digital microflow meter

    NARCIS (Netherlands)

    Nie, C.; Frijns, A.J.H.; Mandamparambil, R.; Zevenbergen, M.A.G.; Toonder, den J.M.J.

    2015-01-01

    In this work, we present a digital microflow meter operating in the range 30–250 nl min-1 for water. The principle is based on determining the evaporation rate of the liquid via reading the number of wetted pore array structures in a microfluidic system, through which continuous evaporation takes

  8. Initial Burn Pan (JMTF) Testing Results

    Science.gov (United States)

    2016-03-01

    burn pan and one located high on the Ex-USS Shadwell. There were also a number of GoPro cameras (3-4) that were positioned to observe specific...locations around the test area. A remote control drone equipped with a GoPro camera was also used to video the third test. All recorded video and still

  9. Analysis of α-particle induced incomplete chromosome aberrations, using pan-centro metric and pan-telomeric DNA probes

    International Nuclear Information System (INIS)

    Mestres, M.; Schmid, E.; Stephan, G.; Barrios, L.; Caballin, M. R.; Barquinero, J. F.

    2004-01-01

    The aim of the present study has been the evaluation of the incompleteness of α-particle induced chromosome aberrations by the simultaneous detection of all centromeres and telomeres present in human lymphocytes. For this purpose attached lymphocytes were irradiated at doses of 0.2, 0.5,0.7 and 1 Gy in a ''241Am source. FISH techniques were applied using pan-centromeric and pan-telomeric probes. All abnormal cells were digitalised and analysed using a Cytovision FISH workstation. A total of 378 incomplete chromosomes plus incomplete acentrics was found. Cases with more than 92 telomeres were not detected. The ratio between total incomplete elements and multicentrics was 1.00. The total number of acentric fragments was 822; 57% of then were complete fragments ace (+.+), 26% incomplete fragments ace (+,-), and 17% interstitial fragment ace (-.-). The percentage of incomplete aberrations is higher after high-LET than described for low-LET exposure. The results seem to indicate that compared to low-LET. after α-particle exposure it is more likely to repair the centromere-containing elements. (Author) 30 refs

  10. Microdroplet evaporation in closed digital microfluidic biochips

    International Nuclear Information System (INIS)

    Ahmadi, Ali; Buat, Matthew D; Hoorfar, Mina

    2013-01-01

    In this paper, microdroplet evaporation in the closed digital microfluidic systems is studied for hydrophobic and hydrophilic surfaces. The contact angle and contact radius are measured by an enhanced automated polynomial fitting approach. It is observed that the contact angle for both hydrophobic and hydrophilic surfaces remains constant during the evaporation process. However, a higher evaporation rate is observed for hydrophilic droplets compared to the hydrophobic droplets. Since no contact line pinning is observed, first, an analytical model based on the uniform vapor mass flux along the liquid–vapor interface is proposed. Interestingly, it is observed that in the hydrophobic case, the analytical model gives a higher evaporation rate, whereas for the hydrophilic case, the analytical model gives a lower evaporation rate. The discrepancy between the results of the analytical modeling and the experimental values is hypothesized to be due the constant flux assumption. To verify the hypothesis, a finite volume-based numerical model is developed to find the local flux along the liquid–vapor interface. The numerical modeling results confirm that for hydrophilic droplets, the evaporation flux increases very close to the three-phase contact line. In the case of the hydrophobic droplets, on the other hand, the flux decreases close to the contact line due to vapor saturation; as a result the uniform flux assumption overestimates the mass loss. (paper)

  11. A Peptide-Fc Opsonin with Pan-Amyloid Reactivity

    Directory of Open Access Journals (Sweden)

    James S. Foster

    2017-09-01

    Full Text Available There is a continuing need for therapeutic interventions for patients with the protein misfolding disorders that result in systemic amyloidosis. Recently, specific antibodies have been employed to treat AL amyloidosis by opsonizing tissue amyloid deposits thereby inducing cell-mediated dissolution and organ improvement. To develop a pan-amyloid therapeutic agent, we have produced an Fc-fusion product incorporating a peptide, p5, which binds many if not all forms of amyloid. This protein, designated Fcp5, expressed in mammalian cells, forms the desired bivalent dimer structure and retains pan-amyloid reactivity similar to the p5 peptide as measured by immunosorbent assays, immunohistochemistry, surface plasmon resonance, and pulldown assays using radioiodinated Fcp5. Additionally, Fcp5 was capable of opsonizing amyloid fibrils in vitro using a pH-sensitive fluorescence assay of phagocytosis. In mice,125 I-labeled Fcp5 exhibited an extended serum circulation time, relative to the p5 peptide. It specifically bound AA amyloid deposits in diseased mice, as evidenced by biodistribution and microautoradiographic methods, which coincided with an increase in active, Iba-1-positive macrophages in the liver at 48 h postinjection of Fcp5. In healthy mice, no specific tissue accumulation was observed. The data indicate that polybasic, pan-amyloid-targeting peptides, in the context of an Fc fusion, can yield amyloid reactive, opsonizing reagents that may serve as next-generation immunotherapeutics.

  12. What do PANs Tell us about VOC-NOx Photochemistry in the Urban/Rural Interface?

    Science.gov (United States)

    Roberts, J. M.; Flocke, F. M.; Zheng, W.; Bertman, S.; Marchewka, M.; Williams, E.; Lerner, B.; Kuster, W.; Goldan, P.; Gilman, J.; Sommariva, R.; Trainer, M.; Fehsenfeld, F.

    2006-12-01

    Peroxycarboxylic Nitric Anhydrides (PANs) are co-products of the VOC-NOx photochemistry that is responsible for O3 and secondary organic aerosol (SOA) formation in the troposphere. The relative abundance of the various PAN type compounds can provide important diagnostic information as to the contribution of different VOC sources to these processes. Anthropogenic, biogenic and petrochemical VOC sources have shown distinct profiles of PAN, PPN, MPAN, PiBN, and APAN, which can be analyzed using simple numerical models and compared to the results of detailed chemical mechanisms. One result of these studies is that the PAN compounds can be used to better define the contribution of isoprene to O3 production in the urban/rural interface. Another result is that high relative concentrations of APAN are characteristic of high petrochemical source impact. In addition, changes in the relative abundance of PPN and PAN can indicate the aging of a continental photochemical plume. This paper will present selected results from five field experiments and modeling studies from the Nashville 1999 Southern Oxidant Study up through the TexAQS 2006 study, in and around Houston, TX.

  13. Investigating performance of microchannel evaporators with different manifold structures

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Junye; Qu, Xiaohua; Qi, Zhaogang; Chen, Jiangping [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240 (China)

    2011-01-15

    In this paper, the performances of microchannel evaporators with different manifold structures are experimentally investigated. Eight evaporator samples with 7 different designs of the I/O manifold and 5 different designs of the return manifold are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant 134A at a real automotive AC condition. The results on the variations of the cooling capacity and air temperature distribution of the evaporator due to the deflector designs in the I/O manifold and flow hole arrangements in the return manifold are presented and analyzed. By studying the KPI's for the performance of an evaporator, the design trade-off for an evaporator designer is summarized and discussed. (author)

  14. Mathematical modeling of wiped-film evaporators

    International Nuclear Information System (INIS)

    Sommerfeld, J.T.

    1976-05-01

    A mathematical model and associated computer program were developed to simulate the steady-state operation of wiped-film evaporators for the concentration of typical waste solutions produced at the Savannah River Plant. In this model, which treats either a horizontal or a vertical wiped-film evaporator as a plug-flow device with no backmixing, three fundamental phenomena are described: sensible heating of the waste solution, vaporization of water, and crystallization of solids from solution. Physical property data were coded into the computer program, which performs the calculations of this model. Physical properties of typical waste solutions and of the heating steam, generally as analytical functions of temperature, were obtained from published data or derived by regression analysis of tabulated or graphical data. Preliminary results from tests of the Savannah River Laboratory semiworks wiped-film evaporators were used to select a correlation for the inside film heat transfer coefficient. This model should be a useful aid in the specification, operation, and control of the full-scale wiped-film evaporators proposed for application under plant conditions. In particular, it should be of value in the development and analysis of feed-forward control schemes for the plant units. Also, this model can be readily adapted, with only minor changes, to simulate the operation of wiped-film evaporators for other conceivable applications, such as the concentration of acid wastes

  15. Clustered field evaporation of metallic glasses in atom probe tomography

    International Nuclear Information System (INIS)

    Zemp, J.; Gerstl, S.S.A.; Löffler, J.F.; Schönfeld, B.

    2016-01-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3 nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different – as yet unknown – physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. - Highlights: • Field evaporation of metallic glasses is heterogeneous on a scale of up to 3 nm. • Amount of clustered evaporation depends on ion species and temperature. • Length scales of clustered evaporation and correlative evaporation are similar.

  16. Quantum Evaporation from Liquid 4He by Rotons

    Science.gov (United States)

    Hope, F. R.; Baird, M. J.; Wyatt, A. F. G.

    1984-04-01

    We have shown that rotons as well as phonons can evaporate 4He atoms in a single-quantum process. Measurements of the time of flight and the angular distribution of the evaporated atoms clearly distinguish between evaporation by phonons and rotons. The results indicate that energy and the parallel component of momentum are conserved at the free liquid surface.

  17. Effects of Topography-driven Micro-climatology on Evaporation

    Science.gov (United States)

    Adams, D. D.; Boll, J.; Wagenbrenner, N. S.

    2017-12-01

    The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.

  18. Out-of-tank evaporator demonstration: Tanks focus area

    International Nuclear Information System (INIS)

    1998-11-01

    Approximately 100 million gal of liquid waste is stored in underground storage tanks (UST)s at the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Oak Ridge Reservation (ORR). This waste is radioactive with a high salt content. The US Department of Energy (DOE) wants to minimize the volume of radioactive liquid waste in USTs by removing the excess water. This procedure conserves tank space; lowers the cost of storage; and reduces the volume of wastes subsequently requiring separation, immobilization, and disposal. The Out-of-Tank Evaporator Demonstration (OTED) was initiated to test a modular, skid-mounted evaporator. A mobile evaporator system manufactured by Delta Thermal Inc. was selected. The evaporator design was routinely used in commercial applications such as concentrating metal-plating wastes for recycle and concentrating ethylene glycol solutions. In FY 1995, the skid-mounted evaporator system was procured and installed in an existing ORNL facility (Building 7877) with temporary shielding and remote controls. The evaporator system was operational in January 1996. The system operated 24 h/day and processed 22,000 gal of Melton Valley Storage Tank (MVST) supernatant. The distillate contained essentially no salts or radionuclides. Upon completion of the demonstration, the evaporator underwent decontamination testing to illustrate the feasibility of hands-on maintenance and potential transport to another DOE facility. This report describes the process and the evaporator, its performance at ORNL, future plans, applications of this technology, cost estimates, regulatory and policy considerations, and lessons learned

  19. File list: NoD.Pan.10.AllAg.Pancreatic_cancer_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Pan.10.AllAg.Pancreatic_cancer_cells mm9 No description Pancreas Pancreatic cancer... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Pan.10.AllAg.Pancreatic_cancer_cells.bed ...

  20. Publishing datasets with eSciDoc and panMetaDocs

    Science.gov (United States)

    Ulbricht, D.; Klump, J.; Bertelmann, R.

    2012-04-01

    Currently serveral research institutions worldwide undertake considerable efforts to have their scientific datasets published and to syndicate them to data portals as extensively described objects identified by a persistent identifier. This is done to foster the reuse of data, to make scientific work more transparent, and to create a citable entity that can be referenced unambigously in written publications. GFZ Potsdam established a publishing workflow for file based research datasets. Key software components are an eSciDoc infrastructure [1] and multiple instances of the data curation tool panMetaDocs [2]. The eSciDoc repository holds data objects and their associated metadata in container objects, called eSciDoc items. A key metadata element in this context is the publication status of the referenced data set. PanMetaDocs, which is based on PanMetaWorks [3], is a PHP based web application that allows to describe data with any XML-based metadata schema. The metadata fields can be filled with static or dynamic content to reduce the number of fields that require manual entries to a minimum and make use of contextual information in a project setting. Access rights can be applied to set visibility of datasets to other project members and allow collaboration on and notifying about datasets (RSS) and interaction with the internal messaging system, that was inherited from panMetaWorks. When a dataset is to be published, panMetaDocs allows to change the publication status of the eSciDoc item from status "private" to "submitted" and prepare the dataset for verification by an external reviewer. After quality checks, the item publication status can be changed to "published". This makes the data and metadata available through the internet worldwide. PanMetaDocs is developed as an eSciDoc application. It is an easy to use graphical user interface to eSciDoc items, their data and metadata. It is also an application supporting a DOI publication agent during the process of