WorldWideScience

Sample records for da neve hexagonal

  1. Distribuição de estanho em solos e em estevas da área envolvente das minas de Neves Corvo Tin distribution in soils and plants, Cistus ladanifer L., in Neves Corvo mining are

    Directory of Open Access Journals (Sweden)

    M. J. Batista

    2009-01-01

    Full Text Available A área mineira de Neves Corvo inclui a Mina de Neves Corvo (MNC cuja exploração teve início em 1988 para Cu e Sn e outras seis minas de Mn e Cu já abandonadas. Na região ocorrem formações geológicas do Complexo Vulcano-Sedimentar (CVS hospedeiras dos sulfuretos maciços portadores das mineralizações e formações do grupo do Flysch compostas de xistos e grauvaques. Neste trabalho, estudou-se a distribuição do estanho nos solos e a sua capacidade de absorção e translocação pelas plantas (Cistus ladanifer L. na área mineira de Neves Corvo. As amostras foram colhidas em duas campanhas, entre 1971-72, cerca de 27 anos antes da laboração na MNC, e numa 2ª campanha (1998, 10 anos após o inicio da laboração desta mina, onde nos mesmos locais foram colhidos solos e plantas. As amostras de solos (horizonte superficial, de ambas as campanhas, e de plantas da 2ª campanha foram sujeitas a digestão com quatro ácidos para análise total dos elementos por ICP-AES. Os solos das duas campanhas, desenvolvidos no Flysch, apresentam as mesmas concentrações médias de Sn (2,9 mg kg -1, contrariamente ao que acontece nos solos que cobrem as formações do CVS cujas concentrações na 2º campanha são cerca do dobro das da primeira (4,5 e 10,4 mg kg-1 , respectivamente na 1ª e 2ª campanhas, notando-se assim a influência da actividade mineira nestas formações que são hospedeiras da mineralização de estanho. No entanto, em ambos os casos, os solos apresentam concentrações médias de Sn consideradas de fundo geoquímico. Em geral, as plantas apresentam concentrações de Sn mais elevadas nas raízes do que na parte aérea. Os solos apresentam teores de Sn inferiores aos das plantas indicando que estas têm capacidade para acumular aquele elemento. Este facto, pode estar relacionado com a presença de estanho nos solos quase neutros, sob a forma de estanite, também observada nas mineralizações. Nas plantas próximas da explora

  2. (Almost anonymous: collaborators of Samuel das Neves technical office in the early 1910s

    Directory of Open Access Journals (Sweden)

    Ana Paula Nascimento

    2018-04-01

    Full Text Available The presence of collaborators in engineering and architecture offices is an insufficiently researched subject, most of which remain unknown even in specialized publications. This paper analyzes the participation of some professionals in Samuel das Neves Technical Office (Escritório Técnico Samuel das Neves during the first two decades of the 20th century, especially about works related to the State Penitentiary Competition (Concurso da Penitenciária do Estado and to São Paulo’s Master Plan (Plano Melhoramentos. Most of them were foreigners with extensive professional knowledge and who worked at the São Paulo headquarters of the company in its best known and commented period: Carlos Escobar, Giulio Micheli, Giuseppe Sacchetti, A. Maurice de Ladrière, José Talarico, and Giácomo Corberi.

  3. INVENTÁRIO E QUANTIFICAÇÃO DO PATRIMÔNIO GEOLÓGICO DA SERRA DOS TAPUIAS, RIACHÃO DAS NEVES (BA

    Directory of Open Access Journals (Sweden)

    Suedio Alves Meira

    2016-06-01

    Full Text Available O crescimento de estudos relacionados à Geodiversidade e Patrimônio Geológico vem sendo amplamente discutidos e divulgados no âmbito das Ciências da Terra, nas últimas três décadas. Desenvolveu-se neste estudo a inventariação e avaliação do patrimônio geológico na Serra dos Tapuias, Riachão das Neves, oeste do estado da Bahia, que teve por finalidade iniciar pesquisas com esta temática na região, ainda pouco explorada e divulgada no cenário nacional, servindo como ferramenta para uma preservação ambiental sistêmica. Realizou-se levantamento bibliográfico sobre temas abordados e das características fisiográficas da área, seguido de trabalhos de campo para a descrição da paisagem orientada por fichas de caracterização, a partir daí foram inventariados, avaliados e quantificados cinco geossítios (dois isolados, dois área e um panorâmico, atestando a geodiversidade local.  O cálculo dos valores de potencialidade e vulnerabilidade apresentou grande amplitude, as potencialidades educativas variaram de 1,94 a 3,13. A vulnerabilidade variou de 1,40 a 3,15. Isso indica que, os geossítios da Serra dos Tapuias devem ser explorados como um conjunto, pois unidos remetem a todos os temas da geologia e geomorfologia regional. Portanto, a Serra dos Tapuias pode ser considerada uma área síntese e passível de ações que divulguem conceitos relativos às Ciências da Terra.

  4. Experimental introduction of Liolaemus lutzae (Squamata: Iguanidae in Praia das Neves, State of Espírito Santo, Brazil: a descriptive study 18 years later Introdução experimental de Liolaemus lutzae (Squamata: Iguanidae em Praia das Neves, Espírito Santo, Brasil: um estudo descritivo 18 anos depois

    Directory of Open Access Journals (Sweden)

    Ana Hermínia B. Soares

    2008-12-01

    Full Text Available This article examines the results of the introduction into Praia das Neves, state of Espírito Santo, Brazil, of Liolaemus lutzae Mertens, 1938, a lizard species threatened with extinction. Since there are few studies that evaluate how species establish and adapt to new environments, it is useful to assess to what extent the introduction of a critically endangered species into an area similar to where it originally occurred can help reduce its decline in number of individuals and avoid its possible extinction. This study presents the first results of an ongoing monitoring survey set up after the experimental introduction. We analyze how the introduced population uses space and food and we compare these characteristics to that of the original population at Barra de Maricá, Rio de Janeiro state. We also compare morphological measurementss of specimens from both populations. Both make similar use of the microhabitat, but there are differences in their diets. We recommend that the introduced population, potential competitors, predators, parasites, and the habitat characteristics continue to be monitored, so as to insure that this species will not become a threat to Praia das Neves beach community.Esse artigo examina o resultado da introdução, em Praia das Neves, Estado do Espírito Santo, Brasil, de Liolaemus lutzae Mertens, 1938, uma espécie de lagarto ameaçada de extinção. Como existem poucos estudos que avaliam como espécies estabelecem-se e adaptam-se a novos ambientes, é útil conhecer em que extensão a introdução de uma espécie criticamente em perigo em uma área similar àquela onde ocorria naturalmente pode ajudar a reduzir seu declínio em número de indivíduos e evitar sua possível extinção. Esse estudo apresenta os primeiros resultados de um monitoramento em andamento, iniciado depois da introdução experimental. Analisamos o uso do espaço pela população introduzida e sua alimentação, e comparamos essas caracter

  5. Viabilidade econômica da criação de pacas (Cuniculus paca L. em Presidente Tancredo Neves, Bahia = Economic feasibility of paca (Cuniculus paca L. farming in Presidente Tancredo Neves, Bahia

    Directory of Open Access Journals (Sweden)

    Antônio Jorge Santos Silva Mattos

    2016-04-01

    Full Text Available Entre as espécies silvestres nativas de florestas tropicais, a paca (Cuniculus paca L. apresenta grande potencial para exploração comercial; no entanto, no Brasil, a sua produção continua sendo considerada como nicho de mercado. O presente trabalho objetivou analisar a viabilidade econômica de um criadouro comercial de paca sob três cenários distintos: Cenário 1 (animais nascidos em cativeiro, consumindo alimentos adquiridos em comércio e ração comercial, Cenário 2 (início com animais legalmente capturados alimentando-se com resíduos de frutas, ração e coprodutos da mandioca e Cenário 3 (mesmas premissas do Cenário 2, mas com autorização de manejo ocorrendo com dois anos de antecedência. Os cenários foram estudados para o município de Presidente Tancredo Neves, Bahia, Brasil. Foi elaborado o fluxo de caixa e analisado o Valor Presente Líquido [VPL], Taxa Interna de Retorno [TIR], Payback simples e Payback descontado para todos os cenários estudados. O fator alimentação fez com que os custos variáveis dos Cenários 2 e 3 fossem reduzidos em aproximadamente 76% em comparação ao Cenário 1. O cenário 1 apresentou fluxo de caixa inviável, enquanto que os Cenários 2 e 3 foram viáveis, porém com baixa rentabilidade e liquidez. O VPL do Cenário 2 foi quase 20% superior ao do Cenário 3, onde foi observado maior impacto do aumento do número de pacas no plantel, em comparação à tramitação burocrática, sobre os indicadores econômicos estudados.= Considering the native rainforests wildlife, paca (Cuniculus paca L. has a great potential for commercial exploitation, however its production is a market niche in Brazil. The objective of this study was to analyze the financial feasibility of paca farming in three distinct scenarios: Scenario 1 (captive animals, fed with purchased fruits and commercial ration; Scenario 2 (animals legally caught, fed with commercial ration, fruits and cassava co-products and; Scenario 3

  6. Eduardo Neves, nosso eterno mestre

    Directory of Open Access Journals (Sweden)

    Gutz Ivano G. R.

    2006-01-01

    Full Text Available Eduardo Fausto de Almeida Neves, Professor Emeritus of the Universidade Federal de São Carlos and formerly Full Professor at the Instituto de Química - Universidade de São Paulo (USP, São Paulo, Brazil, was born in November 7, 1933 in Pedra Azul, MG, and deceased in July 2, 2006 in São Carlos, SP. He graduated under supervision of Professor Paschoal Senise, pioneer of Analytical Chemistry at USP, and developed his post-doctoral work at Caltech, USA, with Professor Fred Anson. His brilliant career as teacher, scientist, supervisor and mentor resulted in a prolific science school in Analytical Chemistry, with some sixty PhDs and masters supervised by him, amplified to over four hundred in the 2nd to 4th generations (still growing, spread throughout the country and nucleating new research groups. The contents of a hundred papers reflect Prof. Eduardo's wide range of scientific interests. Passionate inclination for creative intellectual activity, rooted in profound knowledge of all branches of Chemistry, broadminded thinking, sound experimentation, generous scientific cooperation and true friendship - that's why friends, colleagues and students referred to him as "master" or "my guru".

  7. LAND USE EVOLUTION AND GEOMORPHOLOGICAL UNIT RELATIONSHIP IN RIACHÃO DAS NEVES COUNTY (BA: EFFECTS IN PROTECTED AREAS

    Directory of Open Access Journals (Sweden)

    Rosana Sumiya Gurgel

    2013-07-01

    Full Text Available The appropriation of the natural environment by man establishes strategies of spatial production and organization. This work aims to perform a multitemporal analysis of land use and land cover in the last two decades in Riachão das Neves County, considering the terrain attributes and the adequacy of environmental laws. The methodology adopts remote sensing and GIS techniques and field work. The data processing can be subdivided into the following steps: (a multitemporal analysis of agricultural expansion, (b protected areas mapping, and (c identification of inappropriate use of protected areas. Multitemporal analysis using ALOS-PRISM sensor with high spatial resolution for 2008 and the Landsat imagery from 1988, 1992, 1996, 2000, 2004 and 2008. The classification process was done by visual interpretation and checking of field work. Riachão das Neves has approximately 67% of the natural vegetation. There is an apparent geomorphological control on the production system. In the Depression and Valley areas, the land use is concentrated around the rivers by small farmers, mostly livestock farming, while in the Plateau areas the land use is dominated by large scale mechanized agriculture.

  8. Capacidade reprodutiva e preferência da traça-das-crucíferas para diferentes brassicáceas Reproductive capacity and preference of the diamondback moth feeding on different brassicacea

    Directory of Open Access Journals (Sweden)

    Sergio A De Bortoli

    2011-06-01

    Full Text Available O objetivo desta pesquisa foi comparar diferentes cultivares de brassicáceas em relação à capacidade reprodutiva e preferência para alimentação e oviposição da traça-das-crucíferas. Os experimentos foram realizados utilizando-se as cultivares de repolho Midori, Chato-de-Quintal, híbridos da Top Seed® - Agristar (TPC 308, TPC 681 e TPC 668, couve-flor Bola de Neve, couve brócolis Ramoso Piracicaba Precoce e couve Manteiga da Geórgia, sendo esta última utilizada como padrão de suscetibilidade. Por meio dos dados biológicos de P. xylostella foram estimados os parâmetros necessários para a construção de tabela de vida de fertilidade, para comparação das cultivares testadas em relação à capacidade reprodutiva da praga. Em gaiolas de criação da traça-das-crucíferas foram colocados quatro quartos de folha, dois a dois, que justapostos formavam um círculo de 8 cm de diâmetro, confrontando-se os materiais dois a dois. As partes foram dispostas equidistantemente, para realização do teste de dupla chance de escolha (preferência para alimentação e oviposição e de múltipla chance de escolha, confrontando todos os substratos (preferência para alimentação. As cultivares que proporcionaram melhor desenvolvimento e reprodução para a traça-das-crucíferas foram couve Manteiga da Geórgia e couve brócolis. Para preferência alimentar constatou-se alta suscetibilidade em couve Manteiga e TPC 681 e para preferência de oviposição alta preferência para couve-flor Bola de Neve. Com isso, sugere-se a divisão das cultivares estudadas em quatro classes distintas: repolho Midori como moderadamente resistente (MR; couve-flor Bola de Neve e repolho Chato-de-Quintal como suscetíveis (S; couve brócolis, TPC308, TPC681 e TPC668 como moderadamente suscetíveis (MS; e couve Manteiga como altamente suscetível (AS.We compared different cultivars of crucifer in relation to reproductive capacity and preference for feeding and

  9. O Programa Minha Casa Minha Vida e seus resultados formais em Uberaba (MG: residencial Tancredo Neves

    Directory of Open Access Journals (Sweden)

    Carmem Silvia Maluf

    2014-12-01

    Full Text Available This article proposes the discussion of the housing policy “Minha Casa Minha Vida” (“My House My Life”, its consequences and recurrent transformations for urban space, with focus in the analysis of the urban morphology resulting from Tancredo Neves residential subdivision, located in the municipality of Uberaba (MG, Brasil. This social housing has some single features, differing of other social housing, since the public intended to misuse of Permanent Preservation Areas (APP by the residents. The results of this analysis reinforce the importance of government in promoting housing, and identifies the recurrent reproducibility of housing models, and show how this proliferation of housing units impacts on urban morphology, bringing with questionable consequences for the landscape.

  10. Bats from the Restinga of Praia das Neves, state of Espírito Santo, Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Luz, J. L.

    2009-01-01

    Full Text Available Studies on bat richness and diversity in coastal sand dunes (‘restinga’ are still scarce. Therefore, the objectives of thepresent study were to estimate bat richness in the restinga of Praia das Neves (state of Espírito Santo, southeasternBrazil and to analyze species abundance. Ten sampling nights were carried out in May and July 2008, resulting in asampling effort of 21,847.5 h.m2. We captured 125 individuals from 17 bat species. In this study, Tonatia saurophilawas recorded for the first time not only in the state of Espírito Santo but also in the restinga ecosystem. The mostabundant species was Artibeus lituratus with 32% of all captures. Surveys in coastal restingas are urgently needed inorder to obtain more information about the bats living in this environment.

  11. O TRANSCONSTITUCIONALISMO COMO MÉTODO PROPULSOR DA CONCREÇÃO DOS DIREITOS COLETIVOS NA SOCIEDADE MULTICÊNTRICA

    Directory of Open Access Journals (Sweden)

    Elis Betete Serrano

    2017-06-01

    Full Text Available O presente trabalho objetiva explorar o método proposto pelo Professor Marcelo Neves, o transconstitucionalismo, focando na sua relação com os direitos coletivos na sociedade multicêntrica. O método tem crescente importância devido à falta de maneiras para resolução de atribulações entre ordens jurídicas conflitantes, buscando assim arquitetar o modo de relação entre essas ao invocar um diálogo e um consequente entrelaçamento de sapiências ao desenvolver meios de aprendizado recíproco. O autor evidencia a importância da consideração de direitos fundamentais, em especial os de natureza coletiva. Demonstra-se aqui alguns efeitos práticos da utilização da transconstitucionalismo para impulsionar direitos coletivos.

  12. Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles

    Science.gov (United States)

    Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo

    2017-07-01

    We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.

  13. Verificação da e-TailQ como instrumento para mensurar a qualidade no varejo eletrônico

    OpenAIRE

    Vieira, Valter Afonso

    2008-01-01

    Para entender a percepção do consumidor quanto ao varejo eletrônico em sua dimensionalidade, este artigo objetiva (a) verificar as propriedades psicométricas do instrumento e-TailQ no varejo eletrônico brasileiro e (b) identificar a associação dos fatores da escala com variáveis de marketing. A amostra é composta por 344 pessoas que já compraram bens no varejo eletrônico, e é configurada como uma survey do tipo bola de neve por conveniência. Os resultados demonstraram que o subconstruto quali...

  14. Hexagon solar power panel

    Science.gov (United States)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  15. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  16. O pretérito imperfeito do subjuntivo: da pesquisa para a sala de aula, uma aproximação O pretérito imperfeito do subjuntivo: da pesquisa para a sala de aula, uma aproximação

    Directory of Open Access Journals (Sweden)

    Graziela Jacques PRESTES

    2012-06-01

    Full Text Available The aim of this paper is to present a rereading of the discussion on temporality and modality of the Past Imperfect Subjunctive (PIS form. The temporality analysisis based on the Relative Time Theory, and on the modality theory, in a three-way distinction between factuality, counterfactuality, and eventuality (Neves and Souza, 1999. In an empirical written language corpus study, Prestes (2003 has found a pattern in the use of PIS, as follow: Factual PIS tend to occur along with events which express past tense (A novidade fez com que ganhasse corpo a ideia de…, counterfactual ones are used with present events (Não estivéssemos numa crise de liquidez..., and eventual or hypothetical ones appear with future events (Talvez os índios achassem até graça.... Drawn on these results, we present and discuss activities and tasks developed and used in Portuguese as a foreign language classes.O presente trabalho objetiva apresentar uma releitura da discussão sobre a temporalidade e a modalidade do Pretérito Imperfeito do Subjuntivo (PIS. A análise da temporalidade é baseada na Teoria do Tempo Relativo, e a da modalidade, na distinção tríade entre factualidade, contrafactualidade e eventualidade (NEVES; SOUZA, 1999. Em estudo empírico de um corpus de língua escrita, Prestes (2003 encontrou um padrão no emprego do PIS, qual seja: PIS factuais tendem a ocorrer com eventos que expressam tempo passado (A novidade fez com que ganhasse corpo a ideia de..., contrafactuais, com eventos presentes (Não estivéssemos numa crise de liquidez... e eventuais ou hipotéticos, com eventos futuros (Talvez os índios achassem atégraça.... Valendo-se desses resultados, apresentamos e discutimos atividades e tarefas elaboradas e aplicadas em sala de aula de português como língua estrangeira.

  17. Crystallization of -type hexagonal ferrites from mechanically

    Indian Academy of Sciences (India)

    Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite ... Abstract. -type hexagonal ferrite precursor was prepared by a soft mechanochemical ... Bulletin of Materials Science | News.

  18. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-01-01

    Graphical abstract: Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH) 2 nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH) 2 nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH) 2 ) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH) 2 nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes

  19. Pesquisando a partir da perspectiva da complexidade na área de linguística Aplicada

    Directory of Open Access Journals (Sweden)

    Maria Eugenia Witzler D'ESPOSITO

    2015-06-01

    Full Text Available O mundo em constante evolução solicita mudanças na forma como investigamos as salas de aula, nossa prática docente e desenvolvemos pesquisas. O objetivo deste artigo é ponderar nessa direção e apontar uma visão de pesquisa e de metodologia distanciada do cunho positivista do paradigma tradicional e que permite que tenhamos um olhar diferenciado para as vivências sendo investigadas. Para tal, compartilhamos a experiência de Costa Neves (2011 e D'Esposito (2012 que, ao desenvolverem suas pesquisas de doutoramento na área de Linguística Aplicada, buscaram uma metodologia de pesquisa coaduna à perspectiva da complexidade que foi a base de desenvolvimento de suas pesquisas. Assim sendo, neste trabalho os pesquisadores apresentam o diálogo por eles estabelecido entre a complexidade (Morin, 1990/2008, 1999/2006a,b, 2005/2006; Moraes, 1997/2006; Mariotti, 2007, et alli e a abordagem hermenêutico-fenomenológica (van Manen, 1990; Freire, 1998, 2007, 2008a,b, 2010.

  20. Hexagonalization of correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Thiago [Instituto de Física Teórica, UNESP - University Estadual Paulista,ICTP South American Institute for Fundamental Research,Rua Dr. Bento Teobaldo Ferraz 271, 01140-070, São Paulo, SP (Brazil); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline St N Waterloo, Ontario N2L 2Y5 (Canada)

    2017-01-30

    We propose a nonperturbative framework to study general correlation functions of single-trace operators in N=4 supersymmetric Yang-Mills theory at large N. The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases, the results are in perfect agreement with the perturbative data. We also suggest that our method can be a useful tool to study conformal integrals, and show it explicitly for the case of ladder integrals.

  1. Hexagonal response matrix using symmetries

    International Nuclear Information System (INIS)

    Gotoh, Y.

    1991-01-01

    A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)

  2. Structural Characterization of Hexagonal Braiding Architecture Aided by 3D Printing

    Directory of Open Access Journals (Sweden)

    Li Zhengning

    2018-01-01

    Full Text Available Hexagonal braiding method has the advantages of high shape compatibility, interlacing density and high volume fraction. Based on hexagonal braiding method, a hexagonal preform was braided. Then, by following the characteristics of repeatability and concentricity of hexagonal braided preform, the printed geometry structure was got in order to understand and optimize geometric structure to make it more compact like the braided geometric structure. Finally, the unit cells were defined with hexagonal prism to analyze the micro-geometric structure of hexagonal braided preform.

  3. Inter-comparison of the solar UVB, UVA and global radiation clearness and UV indices for Beer Sheva and Neve Zohar (Dead Sea), Israel

    International Nuclear Information System (INIS)

    Kudish, A.I.; Lyubansky, V.; Evseev, E.G.; Ianetz, A.

    2005-01-01

    An inter-comparison of the clearness indices for the solar UVB, UVA and global radiation for Beer Sheva and Neve Zohar (Dead Sea) are presented utilizing radiation data measured from January 1995 through December 2001 for which there is a one-to-one correspondence between the measurements, viz., any day for which a hourly value for one of the sites was missing is rejected and not included in the analysis for that particular radiation type. Beer Sheva is located ca. 65 km to the west and is approximately 700 m above Neve Zohar, which is located on the western shore of the Dead Sea. The Dead Sea is the lowest terrestrial point on the earth, approximately 400 m below mean sea level. The relative magnitudes of the global, UVB and UVA radiation intensities at the two sites can be attributed to the enhanced scattering at the Dead Sea due to the longer optical path length the solar radiation must traverse at the Dead Sea. The degree of attenuation due to scattering phenomena is inversely proportional to the wavelength raised to some power and, consequently, it is greatest for UVB and very small for global radiation. The UVB and UVA solar constants were determined from the extraterrestrial radiation values tabulated by Froehlich and Wehrli [Spectral distribution of solar irradiance from 25000 nm to 250nm, in: M. Iqbal, An introduction to solar radiation, Academic Press, New York, 1981, Appendix C, pp. 380-381]. The clearness indices for global and UVA radiation were of similar magnitude, whereas those for UVB radiation were of two orders of magnitude smaller. In addition, the monthly average hourly UV Index at both sites has also been determined and an inter-comparison of the values has been performed for all available hourly values from January 1995 through August 2002 for both sites. It is observed that the monthly average hourly UV Index values at the Dead Sea are never in the extreme range

  4. Novel high pressure hexagonal OsB2 by mechanochemistry

    International Nuclear Information System (INIS)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-01-01

    Hexagonal OsB 2 , a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB 2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB 2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB 2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from −225 °C to 1050 °C. The hexagonal OsB 2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB 2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods. - Graphical abstract: High resolution transmission electron micrograph of hexagonal OsB 2 nanocrystallite with corresponding fast Fourier transform and simulated diffraction pattern. - Highlights: • Hexagonal OsB 2 has been synthesized for the first time by mechanochemical method. • Hexagonal OsB 2 crystallizes in P63/mmc space group (No. 194), a=2.916 Å and c=7.376 Å. • The hexagonal structure was confirmed by a transmission electron microscope. • No phase transformation was observed after being annealed at 1050 °C for 6 days. • 20 wt% of h-OsB 2 was transformed to o-OsB 2 after being sintered at 1500 °C for 5 min

  5. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  6. Experience report: the perception on school social service from the performance at Nossa Senhora das Neves School - Natal/RN

    Directory of Open Access Journals (Sweden)

    Viviane Moura da Silva

    2017-11-01

    Full Text Available The following experience report presents my perception during the curricular internship period at Nossa Senhora das Neves School, as a social services undergraduate at UFRN. This work is fruit of the final report and intervention project, both made during my internship experience between 2013 and 2014. Some difficulties will be shown in the professional field, from little recognition about the work done by the social services sector in the institution, to the difficulty of delimiting the professional attributions and skills of the social assistants in the institutions because of the constant articulation of social services with the other professions. As part of the intervention project, questions were applied with parents and other familiars of students of the location to know their perception about the professional exercise in the institution and from the information gathered, marketing was done and orientations about the professional skills of the social assistant in the educational field, understood until then as a still recente field of work and not very discussed in the profession.

  7. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  8. Chain hexagonal cacti with the extremal eccentric distance sum.

    Science.gov (United States)

    Qu, Hui; Yu, Guihai

    2014-01-01

    Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.

  9. Coincidence orientations of grains in hexagonal materials

    International Nuclear Information System (INIS)

    Grimmer, H.; Warrington, D.H.

    1986-06-01

    The connection between the rotation matrix in hexagonal lattice coordinates and an angle-axis quadruple is given. The multiplication law of quadruples is derived. It corresponds to multiplying two matrices and gives the effect of two successive rotations. The relation is given between two quadruples that describe the same relative orientation of two lattices due to their hexagonal symmetry; a unique standard description of the relative orientation is proposed. The restrictions satisfied by rotations generating coincidence site lattices (CSLs) are derived for any value of the axial ratio rho = c/a. It is shown that the law for cubic lattices, where the multiplicity SIGMA of the CSL was equal to the least common denominator of the elements of the rotation matrix, does not always hold for hexagonal lattices. A generalisation of this law to lattices of arbitrary symmetry is given and another, quicker method to determine SIGMA for hexagonal lattices is derived. Finally, convenient algorithms are described for determining bases of the CSL and the DSC lattice. (author)

  10. Epitaxial hexagonal materials on IBAD-textured substrates

    Science.gov (United States)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  11. Novel high pressure hexagonal OsB2 by mechanochemistry

    Science.gov (United States)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-07-01

    Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from -225 °C to 1050 °C. The hexagonal OsB2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods.

  12. Bifurcation theory for hexagonal agglomeration in economic geography

    CERN Document Server

    Ikeda, Kiyohiro

    2014-01-01

    This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distri...

  13. Novel high pressure hexagonal OsB{sub 2} by mechanochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin; Graule, Moritz [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Andrew Payzant, E. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Cullen, David A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Blair, Richard G. [Department of Chemistry, University of Central Florida, Orlando, FL 32816 (United States)

    2014-07-01

    Hexagonal OsB{sub 2}, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB{sub 2} begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB{sub 2} crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB{sub 2} phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from −225 °C to 1050 °C. The hexagonal OsB{sub 2} powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB{sub 2} at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods. - Graphical abstract: High resolution transmission electron micrograph of hexagonal OsB{sub 2} nanocrystallite with corresponding fast Fourier transform and simulated diffraction pattern. - Highlights: • Hexagonal OsB{sub 2} has been synthesized for the first time by mechanochemical method. • Hexagonal OsB{sub 2} crystallizes in P63/mmc space group (No. 194), a=2.916 Å and c=7.376 Å. • The hexagonal structure was confirmed by a transmission electron microscope. • No phase transformation was observed after being annealed at 1050 °C for 6 days. • 20 wt% of h-OsB{sub 2} was transformed to o-OsB{sub 2} after being sintered at 1500 °C for 5 min.

  14. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe.

    Science.gov (United States)

    Parker, David S

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large T c value is unlikely.

  15. Inserting Stress Analysis of Combined Hexagonal Aluminum Honeycombs

    Directory of Open Access Journals (Sweden)

    Xiangcheng Li

    2016-01-01

    Full Text Available Two kinds of hexagonal aluminum honeycombs are tested to study their out-of-plane crushing behavior. In the tests, honeycomb samples, including single hexagonal aluminum honeycomb (SHAH samples and two stack-up combined hexagonal aluminum honeycombs (CHAH samples, are compressed at a fixed quasistatic loading rate. The results show that the inserting process of CHAH can erase the initial peak stress that occurred in SHAH. Meanwhile, energy-absorbing property of combined honeycomb samples is more beneficial than the one of single honeycomb sample with the same thickness if the two types of honeycomb samples are completely crushed. Then, the applicability of the existing theoretical model for single hexagonal honeycomb is discussed, and an area equivalent method is proposed to calculate the crushing stress for nearly regular hexagonal honeycombs. Furthermore, a semiempirical formula is proposed to calculate the inserting plateau stress of two stack-up CHAH, in which structural parameters and mechanics properties of base material are concerned. The results show that the predicted stresses of three kinds of two stack-up combined honeycombs are in good agreement with the experimental data. Based on this study, stress-displacement curve of aluminum honeycombs can be designed in detail, which is very beneficial to optimize the energy-absorbing structures in engineering fields.

  16. Epitaxial hexagonal materials on IBAD-textured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  17. Controllable synthesis of hexagonal ZnO–carbon core–shell microrods and the removal of ZnO to form hexagonal carbon microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yong, E-mail: xy91007@163.com [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China); He, Wenqi; Gao, Chuang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zheng, Mingtao; Lie, Bingfu; Liu, Xiaotang [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China); Liu, Yingliang, E-mail: tliuyl@163.com [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China)

    2013-06-15

    A simple and efficient approach was developed to produce regular and uniform shaped hexagonal ZnO–C core–shell micro-rods and carbon micro-tubes. A single-source raw material, zinc acetate dihydrate, has been used for the in situ generation of the hexagonal ZnO–C micro-rods in a sealed autoclave system at 500 °C for 12 h without a catalyst. The resulting products were characterized by X-ray powder diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray analysis and room-temperature photoluminescence spectroscopy (PL). The partial or complete carbon coating on the ZnO surfaces plays an important role in modifying the PL properties. Impacting factors including thermolysis temperature, time and dose of the reactant on the evolution of the hexagonal shape were investigated. A possible formation diagram for the materials has been proposed and discussed based on the features of the reaction system. - Highlights: • Hexagonal ZnO–C core–shell microrods were synthesized by the lower temperature decomposition of zinc acetate. • The novel hexagonal carbon microtubes can gain by simply handling with dilute acid. • The partial or complete carbon coating on the ZnO surfaces plays an important role in modifying the PL properties. • A possible formation diagram for the materials has been proposed.

  18. Characterization of the secondary flow in hexagonal ducts

    Science.gov (United States)

    Marin, O.; Vinuesa, R.; Obabko, A. V.; Schlatter, P.

    2016-12-01

    In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Reτ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress u w ¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120∘ aperture of its vertex, whereas in the square duct the 90∘ corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90∘ corner sets the location of a high-speed streak at a distance zv+≃50 from it, whereas in hexagons the 120∘ aperture leads to a shorter distance of zv+≃38 . At these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.

  19. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    Energy Technology Data Exchange (ETDEWEB)

    Parker, David S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large Tc value is unlikely.

  20. Glider-based computing in reaction-diffusion hexagonal cellular automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Wuensche, Andrew; De Lacy Costello, Benjamin

    2006-01-01

    A three-state hexagonal cellular automaton, discovered in [Wuensche A. Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. Int J Unconvention Comput, in press], presents a conceptual discrete model of a reaction-diffusion system with inhibitor and activator reagents. The automaton model of reaction-diffusion exhibits mobile localized patterns (gliders) in its space-time dynamics. We show how to implement the basic computational operations with these mobile localizations, and thus demonstrate collision-based logical universality of the hexagonal reaction-diffusion cellular automaton

  1. Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires

    KAUST Repository

    Wang, Ping

    2015-12-22

    Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires (NWs) is demonstrated on InN NWs. In-polarity InN NWs form typical hexagonal structure with pyramidal growth front, whereas N-polarity InN NWs slowly turn to the shape of hexagonal pyramid and then convert to an inverted pyramid growth, forming diagonal pyramids with flat surfaces and finally coalescence with each other. This contrary growth behavior driven by lattice-polarity is most likely due to the relatively lower growth rate of the (0001 ̅) plane, which results from the fact that the diffusion barriers of In and N adatoms on the (0001) plane (0.18 and 1.0 eV, respectively) are about two-fold larger in magnitude than those on the (0001 ̅) plane (0.07 and 0.52 eV), as calculated by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.

  2. LEVANTAMIENTO BATIMÉTRICO DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DE NEVES PAULISTA

    Directory of Open Access Journals (Sweden)

    Iván Andrés Sánchez Ortiz

    2014-01-01

    Full Text Available Las lagunas de estabilización son uno de los sistemas naturales para tratamiento de aguas residuales más adecuados para reducir los impactos ambientales por vertimiento de efluentes en países en vías de desarrollo. La presente investigación tuvo como objetivo diagnosticar la acumulación de lodos y evaluar el desempeño de la planta de tratamiento de aguas residuales de la ciudad Neves Paulista (São Paulo, Brasil. Mediante un estudio batimétrico de las lagunas de estabilización anaerobia y facultativa se determinaron los perfiles y volúmenes de acumulación de lodos; se midieron diversos parámetros de la calidad del agua afluente y efluente, así como el caudal entrante durante 24 horas consecutivas. La batimetría indicó que los lodos acumulados redujeron los volúmenes útiles de las lagunas anaerobia y facultativa en 26,4% y 23,7% respectivamente y que su heterogénea distribución en las unidades de tratamiento afectó su desempeño hidráulico. La eficiencia media de remoción de la DBO fue del 76,6%, inferior a la mínima establecida por la legislación ambiental brasilera. El número más probable de coliformes fecales en el efluente fue de 6,34x10 5 /100mL, que superó en gran medida los valores máximos permitidos para vertimientos en cuerpos receptores. La planta requiere de la implementación de un sistema de pre-tratamiento, de la remoción de los lodos acumulados en las zonas más críticas y la implementación de un sistema de postratamiento que garantice remoción adicional de DBO y coliformes para ajustarse a la normatividad ambiental.

  3. DUMA - a program to display distributions in hexagonal geometry

    International Nuclear Information System (INIS)

    Tran Quoc Dung; Makai, M.

    1987-09-01

    DUMA program displays hexagonal structures applied in WWER-440 reactors or one or two distributions in them. It helps users to display either integer, literal or real arrays in an arbitrary hexagonal structure. Possible applications: displaying reactor core layout, power distribution or activity measurements. (author)

  4. Loading pattern optimization in hexagonal geometry using PANTHER

    International Nuclear Information System (INIS)

    Parks, G.T.; Knight, M.P.

    1996-01-01

    The extension of the loading pattern optimization capability of Nuclear Electric's reactor physics code PANTHER to hexagonal geometry cores is described. The variety of search methods available and the code's performance are illustrated by an example in which three search different methods are used in turn in order to find an optimal reload design for a sample hexagonal geometry problem. (author)

  5. A co-ordinate system for reactor physics calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Burte, D.P.

    1990-01-01

    A method for generating all the geometric information concerning typical reactor physics calculations for a basically hexagonal reactor core or its sector involving any of the possible symmetries is presented. The geometrically allowed symmetries for regular hexagons are discussed. The approach is based on the choice of a suitable co-ordinate system, viz. one using three coplanar (including one redundant) axes, each at 120 0 with its cyclically preceding one. A code named KEKULE' is developed for a 2-D, finite difference, one-group diffusion analysis of a hexagonal core using the approach. It can cater to a full hexagonal core as well as to any symmetric sectorial part of it. The main feature of the code is that the input concerning geometry is a bare minimum. It is hoped that the approach presented will be useful even for the calculations for hexagonal fuel assemblies. (author)

  6. O "crioulo Dudu": participação política e identidade negra nas histórias de um músico cantor (1890-1920

    Directory of Open Access Journals (Sweden)

    Martha Abreu

    Full Text Available A partir da trajetória, das composições e do repertório musical de Eduardo Sebastião das Neves, conhecido como o "Crioulo Dudu", pretendo discutir as possibilidades de expressão política de um músico negro na Primeira República. Levando em consideração os debates em torno do Atlântico Negro, o crescimento do mercado editorial e da indústria fonográfica, foi possível situar Eduardo das Neves como um produtor atuante do campo musical popular que se construía entre o final do século XIX e início do XX. Dudu conferiu ao mundo musical dimensões políticas especiais, ao criar e divulgar canções que valorizavam o patriotismo e discutiam, de uma forma irônica e irreverente, as relações raciais e a identidade do homem negro no pós-abolição. O exame da trajetória e da obra musical de Dudu permite repensar antigas concepções sobre participação política e identidade negra na Primeira República.

  7. Synthesis of hexagonal boron nitride graphene-like few layers

    Science.gov (United States)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  8. Anomalous lattice compressibility of hexagonal Eu{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, K.A.; Chandra Shekar, N.V., E-mail: chandru@igcar.gov.in

    2017-07-01

    Monoclinic Eu{sub 2}O{sub 3} was investigated in a Mao-Bell type diamond anvil cell using angle dispersive x-ray diffraction up to a pressure of 26 GPa. Pressure induced structural phase transition from monoclinic to hexagonal phase was observed at 4.3 GPa with 2% volume collapse. Birch –Murnaghan equation of state fit to the pressure volume data yielded a bulk modulus of 159(9) GPa and 165(6) GPa for the monoclinic and hexagonal phases respectively. Equation of state fitting to the structural parameters yielded an axial compressibility of β{sub a} > β{sub c} > β{sub b} for the parent monoclinic phase, showing the least compressibility along b axis. Contrary to the available reports, an anomalous lattice compressibility behavior is observed for the high pressure hexagonal phase, characterized by pronounced hardening of a axis above 15 GPa. The observed incompressible nature of the hexagonal a axis in the pressure range 15–25 GPa is found to be compensated by doubling the compressibility along the c axis. - Highlights: • Structural phase transition in Eu{sub 2}O{sub 3} from monoclinic to hexagonal phase. • Anomalous lattice compressibility in the hexagonal phase has reported first time. • Quantitative analysis of lattice compressibility.

  9. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.

    2015-01-01

    Highlights: • ReB 2 -type hexagonal OsB 2 powder has been densified by spark plasma sintering. • The sintered OsB 2 contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB 2 sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB 2 -type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics

  10. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  11. A nodal expansion method using conformal mapping for hexagonal geometry

    International Nuclear Information System (INIS)

    Chao, Y.A.; Shatilla, Y.A.

    1993-01-01

    Hexagonal nodal methods adopting the same transverse integration process used for square nodal methods face the subtle theoretical problem that this process leads to highly singular nonphysical terms in the diffusion equation. Lawrence, in developing the DIF3D-N code, tried to approximate the singular terms with relatively simple polynomials. In the HEX-NOD code, Wagner ignored the singularities to simplify the diffusion equation and introduced compensating terms in the nodal equations to restore the nodal balance relation. More recently developed hexagonal nodal codes, such as HEXPE-DITE and the hexagonal version of PANTHER, used methods similar to Wagner's. It will be shown that for light water reactor applications, these two different approximations significantly degraded the accuracy of the respective method as compared to the established square nodal methods. Alternatively, the method of conformal mapping was suggested to map a hexagon to a rectangle, with the unique feature of leaving the diffusion operator invariant, thereby fundamentally resolving the problems associated with transverse integration. This method is now implemented in the Westinghouse hexagonal nodal code ANC-H. In this paper we report on the results of comparing the three methods for a variety of problems via benchmarking against the fine-mesh finite difference code

  12. Steady squares and hexagons on a subcritical ramp

    International Nuclear Information System (INIS)

    Hoyle, R.B.

    1995-01-01

    Steady squares and hexagons on a subcritical ramp are studied, both analytically and numerically, within the framework of the lowest-order amplitude equations. On the subcritical ramp, the external stress or control parameter varies continuously in space from subcritical to supercritical values. At the subcritical end of the ramp, pattern formation is suppressed, and patterns fade away into the conduction solution. It is shown that three-dimensional patterns may change shape on a subcritical ramp. A square pattern becomes a pattern of rolls as it fades, with the roll axes aligned in the direction orthogonal to that in which the control parameter varies. Hexagons in systems with horizontal midplane symmetry become a pattern of rectangles before reaching the conduction solution. There is a suggestion that hexagons in systems which lack this symmetry might fade away through a roll pattern. Numerical simulations are used to illustrate these phenomena

  13. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  14. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    DEFF Research Database (Denmark)

    Ke, Yonggang; Voigt, Niels Vinther; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry....... Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer...... DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology....

  15. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    Science.gov (United States)

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. © 2011 American Chemical Society

  16. Thermal stability of hexagonal OsB2

    Science.gov (United States)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.

    2014-11-01

    The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to -225 °C. During the heating, the sacrificial reaction 2OsB2+3O2→2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276-426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

  17. Comparison of PANTHER nodal solutions in hexagonal-z geometry

    International Nuclear Information System (INIS)

    Knight, M.; Hutt, P.; Lewis, I.

    1995-01-01

    The reactor physics code PANTHER has been extended to hexagonal geometries. Steady-state, depletion, and transient calculations with feedback can all be performed. Two hexagonal nodal flux solutions have been developed. In the first method, transverse integration is performed exactly as in the rectangular case. The resulting transverse integrated equation has singular terms, which are simply ignored. The second approach applies a conformal mapping that transforms the hexagon onto a rectangle. Pin power reconstruction has also been developed with both methods. For a benchmark VVER-1000 reactor depletion problem, both methods give accurate results for standard depletion calculations. In the more extreme situation with all rods inserted, the simpler method breaks down. However, the accuracy of the conformal solution was found to be excellent in all cases studied

  18. Judicialização da Política e Politização do Direito: Acoplamento Estrutural entre os Sistemas Jurídico e Político sem a Construção de uma Racionalidade Transversal

    Directory of Open Access Journals (Sweden)

    Isabella Karla Lima dos Santos

    2016-11-01

    Full Text Available Este artigo procura demonstrar a relação entre o Sistema Político e o Sistema Jurídico, através do acoplamento estrutural feito pela Constituição. Nosso objetivo é analisar os casos em que esse acoplamento estrutural não corresponde a uma racionalidade transversal, por não haver o aprendizado de um sistema com o outro e, sim, a interferência negativa entre eles, ocorrendo a Judicialização da Política ou a Politização do Direito. Para isso, o marco teórico escolhido foi a obra “Transconstitucionalismo” de Marcelo Neves.

  19. Scattering phase functions of horizontally oriented hexagonal ice crystals

    International Nuclear Information System (INIS)

    Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.

    2006-01-01

    Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns

  20. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    International Nuclear Information System (INIS)

    Han, Yu; Jiang, Xiaofeng; Wang, Dezhong

    2014-01-01

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times

  1. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu, E-mail: hanyu1203@gmail.com [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Jiang, Xiaofeng [Shanghai NuStar Nuclear Power Technology Co., Ltd., No. 81 South Qinzhou Road, XuJiaHui District, Shanghai 200000 (China); Wang, Dezhong [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2014-12-15

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times.

  2. Hexagonal OsB{sub 2}: Sintering, microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Institute for Problems of Materials Science, 3 Krzhizhanivskii Str., Kyiv 03142 (Ukraine); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Graule, Thomas; Kuebler, Jakob [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, CH-8600 Dubendorf (Switzerland); Mueller, Martin [Laboratory of Mechanical Metallurgy, EPFL, CH-1015 Lausanne (Switzerland); Gao, Huili [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Radovic, Miladin [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Cullen, David A. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-06-15

    Highlights: • ReB{sub 2}-type hexagonal OsB{sub 2} powder has been densified by spark plasma sintering. • The sintered OsB{sub 2} contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB{sub 2} sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB{sub 2}-type hexagonal OsB{sub 2} bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB{sub 2} were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB{sub 2} bulk ceramics.

  3. “Bola de Neve”: Um Fenômeno Pentecostal Contemporâneo ("SnowBall Church”: a Contemporary Pentecostal Phenomenon. DOI: 10.5752/P.2175-5841.2012v10n26p500

    Directory of Open Access Journals (Sweden)

    Lidice Meyer Pinto Ribeiro

    2012-07-01

    Full Text Available Quase que diariamente presenciamos no Brasil o aparecimento de novas alternativas religiosas, assim como uma intensa fragmentação institucional dentro das igrejas protestantes já estabelecidas. Nesse cenário, surgem igrejas autônomas, voltadas a certos públicos específicos, oferecendo produtos simbólicos mais próximos à realidade desses grupos. Enquadra-se entre as voltadas a “tribos urbanas” específicas a “Bola de Neve Church”, oficializada em 1999. Neste artigo, faz-se a análise antropológica da Igreja Evangélica Bola de Neve, situada no bairro Tatuapé, na Zona Leste da cidade de São Paulo, visando a compreender a estrutura de culto, o perfil dos membros e trabalhando o tipo de comunicação que é utilizada, tendo como método de pesquisa o trabalho de campo, leituras específicas sobre o neopentecostalismo no Brasil e entrevistas e análises pessoais dos membros que ali congregam. Também se levanta a possibilidade de essa igreja, bem como outras voltadas a públicos específicos, poder ser interpretada como uma quarta onda do pentecostalismo dentro da teoria das ondas de Paul Freston, onde imperaria a Teologia da Autonomia.Palavras-chave: Bola de neve. Pentecostalismo. Protestantismo. Tribos urbanas.  Abstract: In Brazil, we witness the emergence of new religious alternatives almost daily, as well as a strong institutional fragmentation within the established Protestant churches. In this scenario, emerge autonomous churches with target specific audiences, offering symbolic products that match the needs of those audiences.  For example, churches focused on "urban tribes" such as "Igreja Evangélica Bola de Neve" ("Snowball Church", incorporated in 1999, on the Tatuapé neighborhood of São Paulo, SP, Brazil. This article presents an anthropological analysis of "Snowball church", seeking to understand the structure of worship, the profile of members, and the kind of communication that is used in there. The research

  4. Hexagonal undersampling for faster MRI near metallic implants.

    Science.gov (United States)

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2015-02-01

    Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.

  5. New approach for direct chemical synthesis of hexagonal Co nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Frank M., E-mail: fabel@udel.edu [Physics and Astronomy, University of Delaware (United States); Tzitzios, Vasilis [Institute of Nanoscience and Nanotechnology, NCSR, Demokritos (Greece); Hadjipanayis, George C. [Physics and Astronomy, University of Delaware (United States)

    2016-02-15

    In this paper, we explore the possibility of producing hexagonal Cobalt nanoparticles, with high saturation magnetization by direct chemical synthesis. The nanoparticles were synthesized by reduction of anhydrous cobalt (II) chloride by NaBH{sub 4} in tetraglyme at temperatures in the range of 200–270 °C under a nitrogen–hydrogen atmosphere. The reactions were done at high temperatures to allow for the formation of as-made hexagonal cobalt. The size of the particles was controlled by the addition of different surfactants. The best magnetic properties so far were obtained on spherical hexagonal Co nanoparticles with an average size of 45 nm, a saturation magnetization of 143 emu/g and coercivity of 500 Oe. the saturation magnetization and coercivity were further improved by annealing the Co nanoparticles leading to saturation magnetization of 160 emu/g and coercivity of 540 Oe. - Highlights: • We synthesized hexagonal cobalt nanoparticles by a new wet chemical method. • We considered the effects of different surfactants on particles magnetic properties. • The as-made Co nanoparticles had magnetic properties of 143 emu/g and 500 Oe. • After annealing magnetic properties of 160 emu/g and 540 Oe were obtained.

  6. Produção de curtas-metragens em contextos de sala de aula: leitura e fruição da linguagem cinematográfica

    Directory of Open Access Journals (Sweden)

    Alcione da Silva Santos

    2018-04-01

    Full Text Available A educação brasileira tem muitos desafios. Um deles é a necessidade de trazer para o cotidiano da escola o uso de ferramentas digitais que possibilitem o surgimento ou ampliação de competências de leitura da cultura imagética na qual os alunos vivem imersos. Nessa conjuntura, o presente trabalho pretende descrever os elementos da linguagem cinematográfica de que os alunos envolvidos no projeto se apropriaram após participarem de um conjunto de atividades cujo fim era a produção de curtas-metragens, partindo do pressuposto de que essa apropriação lhes permitirá a leitura e fruição proficientes da cultura fílmica que circula em nossa sociedade. Para levar a efeito esse objetivo, pedimos aos alunos que respondessem um questionário de pesquisa que versava sobre três curtas-metragens produzidos por eles mesmos durante os anos em que cursaram o Ensino Médio. Os dados foram analisados a partir dos conceitos teóricos de Habitus e Capital simbólico, propostos por Bourdieu (2003 e 2005 e Neves (2007. Os resultados mostraram que os alunos compreenderam a linguagem do cinema que lhes foi ensinada, uma vez que passaram a construir referentes sobre ela no questionário de pesquisa que responderam.

  7. Hexagon OPE resummation and multi-Regge kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.M. [School of Physics & Astronomy, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom); Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); LAPTh, CNRS, Université de Savoie,9 Chemin de Bellevue, F-74941 Annecy-le-Vieux Cedex (France); Papathanasiou, G. [LAPTh, CNRS, Université de Savoie,9 Chemin de Bellevue, F-74941 Annecy-le-Vieux Cedex (France)

    2016-02-29

    We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar N=4 super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the 2→4 Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.

  8. African Journal of Biotechnology - Vol 15, No 18 (2016)

    African Journals Online (AJOL)

    Luma Castro de Souza, Mara Regina Moitinho, Risely Ferraz de Almeida, Ellen Gleyce da Silva Lima, Leane Castro de Souza, Myriam Galvão Neves, Cândido Ferreira de Oliveira Neto, Glauco André dos Santos Nogueira, Maria Eunice Lima Rocha, Mayra Taniely Ribeiro Abade, Marlison Tavares Ávila, 731-739 ...

  9. Aspectos da biologia do Aedes albopictus (Skuse, 1894) (Diptera: Culicidae), a nível de campo

    OpenAIRE

    Neves, David Pereira; Silva, Rivany Fernandes da

    1989-01-01

    After the Aedees albopictus has been discoved by Neves & Espinola (1987) at Minas Gerais state, we begun studying some biologic aspects, such as breeding places, host preference, times of feeding and the preferred places for blood feeding.

  10. New results for loop integrals. AMBRE, CSectors, hexagon

    International Nuclear Information System (INIS)

    Gluza, Janusz; Kajda, Krzysztof

    2009-03-01

    We report on the three Mathematica packages hexagon, CSectors, AMBRE. They are useful for the evaluation of one- and two-loop Feynman integrals with a dependence on several kinematical scales. These integrals are typically needed for LHC and ILC applications, but also for higher order corrections at meson factories. hexagon is a new package for the tensor reduction of one-loop 5-point and 6-point functions with rank R=3 and R=4, respectively; AMBRE is a tool for derivations of Mellin-Barnes representations; CSectors is an interface for the package sectordecomposition and allows a convenient, direct evaluation of tensor Feynman integrals. (orig.)

  11. Design considerations for quasi-phase-matching in doubly resonant lithium niobate hexagonal microresonators

    CSIR Research Space (South Africa)

    Sono, Tleyane J

    2017-08-01

    Full Text Available Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities...

  12. Diamagnetic response in zigzag hexagonal silicene rings

    International Nuclear Information System (INIS)

    Xu, Ning; Chen, Qiao; Tian, Hongyu; Ding, Jianwen; Liu, Junfeng

    2016-01-01

    Highlights: • Hexagonal silicene rings possess unusually large diamagnetic moments. • The magnetic-field-driven spin-up electrons flow anticlockwise and spin-down electrons flow clockwise along the rings. • The large diamagnetic moment is the result of competition of spin-up and spin-down electrons. - Abstract: Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin–orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin–orbit coupling strength and exchange field.

  13. Diamagnetic response in zigzag hexagonal silicene rings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning, E-mail: nxu@ycit.cn [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Chen, Qiao [Department of Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Tian, Hongyu [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Ding, Jianwen [Department of Physics, Xiangtan University, Xiangtan 411105 (China); Liu, Junfeng, E-mail: liu.jf@sustc.edu.cn [Department of Physics, South University of Science and Technology of China, Shenzhen 518055 (China)

    2016-09-16

    Highlights: • Hexagonal silicene rings possess unusually large diamagnetic moments. • The magnetic-field-driven spin-up electrons flow anticlockwise and spin-down electrons flow clockwise along the rings. • The large diamagnetic moment is the result of competition of spin-up and spin-down electrons. - Abstract: Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin–orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin–orbit coupling strength and exchange field.

  14. Structural characterization of hemoglobins from Monilifera and Frenulata tubeworms (Siboglinids): first discovery of giant hexagonal-bilayer hemoglobin in the former "Pogonophora" group.

    Science.gov (United States)

    Meunier, Cédric; Andersen, Ann C; Bruneaux, Matthieu; Le Guen, Dominique; Terrier, Peran; Leize-Wagner, Emmanuelle; Zal, Franck

    2010-01-01

    Siboglinids are symbiotic polychete annelids having hemoglobins as essential oxygen- and sulfide-carriers for their endosymbiotic bacteria. We analyzed the structure of the hemoglobins from two species of siboglinids: the monilifera Sclerolinum contortum and the frenulata Oligobrachia webbi (i.e. haakonmosbiensis) from Norwegian cold seeps. Measured by Multi-Angle Laser Light Scattering (MALLS), Sclerolinum shows a 3190+/-50 kDa hexagonal bilayer hemoglobin (HBL-Hb) and a 461+/-46 kDa ring-Hb, just as vestimentifera, whereas Oligobrachia has a 409+/-3.7 kDa ring-Hb only. Electrospray Ionization-Mass Spectrometry (ESI-MS) showed Sclerolinum HBL-Hb composed of seven monomeric globins (15-16 kDa), three disulfide-bonded globin heterodimers and three linkers. The heterodimers always contain globin-b (15814.4+/-1.5 Da). Sclerolinum ring-Hb is composed of globins and dimers with identical masses as its HBL-Hb, but lacks linkers. Oligobrachia ring-Hb has three globin monomers (14-15 kDa) only, with no disulfide-bonded dimers. Comparison of Sclerolinum hemoglobins between Storegga and Haakon Mosby Mud Volcano, using the normalized height of deconvoluted ESI-MS peaks, shows differences in globin monomers abundances that could reflect genetic differences or differential gene expression between distinct seep populations. The discovery of HBL-Hb in Sclerolinum is a new element supporting the hypothesis of monilifera being phylogenetically more closely related to vestimentifera, than to frenulata.

  15. Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles

    Science.gov (United States)

    Gu, Xiaokun; Zhao, C. Y.

    2018-05-01

    Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.

  16. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    Science.gov (United States)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  17. Hydrothermal synthesis and magneto-optical properties of Ni-doped ZnO hexagonal columns

    International Nuclear Information System (INIS)

    Xu, Xingyan; Cao, Chuanbao

    2015-01-01

    Single crystal Zn 1−x Ni x O (x=0, 0.02, 0.04, 0.06) hexagonal columns have been synthesized by a simple hydrothermal route. The hexagonal columns of the products are about 3 μm in diameter and about 2 μm in thickness. X-ray diffraction (XRD), Ni K-edge XANES spectra and TEM indicate that the as-prepared samples are single-crystalline wurtzite structure and no metallic Ni or other secondary phases are found in the hexagonal columns. Optical absorption and Raman results further confirm the incorporation of Ni 2+ ions in the ZnO lattice. Magnetic measurements indicate that the Zn 1−x Ni x O hexagonal columns exhibited obvious ferromagnetic characteristic at room temperature. The coercive fields (H c ) were obtained to be 135.3, 327.79 and 127.29 Oe for x=0.02, 0.04 and 0.06, respectively. The ferromagnetism was assumed to originate from the exchange interaction between free carriers (holes or electrons) from the valence band and the localized d spins on the Ni ions. - Highlights: • Single crystal Zn 1−x Ni x O (x=0, 0.02, 0.04, 0.06) hexagonal columns were synthesized by a simple hydrothermal method. • The layer-by-layer growth manner of the Zn 1−x Ni x O hexagonal columns was proposed. • Obvious room-temperature ferromagnetic characteristic of Zn 1−x Ni x O are observed and the coercivity (H c ) are 135.3,327.79 and 127.29 Oe for x=0.02, 0.04 and 0.06, respectively. • The exchange interaction between local-spin polarized electrons and conduction electrons is responsible for the room-temperature ferromagnetism in the Zn 1−x Ni x O hexagonal columns

  18. Efficient Offline Waveform Design Using Quincunx/Hexagonal Time-Frequency Lattices

    Directory of Open Access Journals (Sweden)

    Raouia Ayadi

    2017-01-01

    Full Text Available Conventional orthogonal frequency division multiplexing (OFDM may turn to be inappropriate for future wireless cellular systems services, because of extreme natural and artificial impairments they are expected to generate. Natural impairments result from higher Doppler and delay spreads, while artificial impairments result from multisource transmissions and synchronization relaxation for closed-loop signaling overhead reduction. These severe impairments induce a dramatic loss in orthogonality between subcarriers and OFDM symbols and lead to a strong increase in intercarrier interference (ICI and intersymbol interference (ISI. To fight against these impairments, we propose here an optimization of the transmit/receive waveforms for filter-bank multicarrier (FBMC systems, with hexagonal time-frequency (TF lattices, operating over severe doubly dispersive channels. For this, we exploit the Ping-pong Optimized Pulse Shaping (POPS paradigm, recently applied to rectangular TF lattices, to design waveforms maximizing the signal-to-interference-plus-noise ratio (SINR for hexagonal TF lattices. We show that FBMC, with hexagonal lattices, offers a strong improvement in SINR with respect to conventional OFDM and an improvement of around 1 dB with respect to POPS-FBMC, with rectangular lattices. Furthermore, we show that hexagonal POPS-FBMC brings more robustness to frequency synchronization errors and offers a 10 dB reduction in out-of-band (OOB emissions, with respect to rectangular POPS-FBMC.

  19. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    International Nuclear Information System (INIS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-01-01

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu_3WO_6.

  20. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate

    International Nuclear Information System (INIS)

    Jia Huiying; Zeng Jianbo; An Jing; Song Wei; Xu Weiqing; Zhao Bing

    2008-01-01

    In this paper, triangular and hexagonal silver nanoplates were prepared on the surface of quartz substrate using photoreduction of silver ions in the presence of silver seeds. The obtained silver nanoplates were characterized by atomic force microscopy and UV-vis spectroscopy. It was found that the silver seeds played an important role in the formation of triangular and hexagonal silver nanoplates. By varying the irradiation time, nanoplates with different sizes and shapes could be obtained. The growth mechanism for triangular and hexagonal nanoplates prepared on quartz substrate was discussed

  1. Epitaxial Garnets and Hexagonal Ferrites.

    Science.gov (United States)

    1982-04-20

    guide growth of the epitaxial YIG films. Aluminum or gallium substitu- tions for iron were used in combination with lanthanum substitutions for yttrium... gallate spinel sub- strates. There was no difficulty with nucleation in the melt and film quality appeared to be similar to that observed previously...hexagonal ferrites. We succeeded in growing the M-type lead hexaferrite (magnetoplumbite) on gallate spinel substrates. We found that the PbO-based

  2. Electronic properties of Mn-decorated silicene on hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Gangopadhyay, S.; Jones, Burton; Schwingenschlö gl, Udo; Singh, Nirpendra

    2013-01-01

    We study silicene on hexagonal boron nitride, using first-principles calculations. Since hexagonal boron nitride is semiconducting, the interaction with silicene is weaker than for metallic substrates. It therefore is possible to open a 50 meV band gap in the silicene. We further address the effect of Mn decoration by determining the onsite Hubbard interaction parameter, which turns out to differ significantly for decoration at the top and hollow sites. The induced magnetism in the system is analyzed in detail.

  3. Electronic properties of Mn-decorated silicene on hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-12-17

    We study silicene on hexagonal boron nitride, using first-principles calculations. Since hexagonal boron nitride is semiconducting, the interaction with silicene is weaker than for metallic substrates. It therefore is possible to open a 50 meV band gap in the silicene. We further address the effect of Mn decoration by determining the onsite Hubbard interaction parameter, which turns out to differ significantly for decoration at the top and hollow sites. The induced magnetism in the system is analyzed in detail.

  4. Thermal stability of hexagonal OsB2

    International Nuclear Information System (INIS)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.

    2014-01-01

    The synthesis of novel hexagonal ReB 2 -type OsB 2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10 B and 11 B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11 B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB 2 phase was the main product of synthesis with a small quantity of Os 2 B 3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11 B powder was used as a raw material, only Os 2 B 3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB 2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to −225 °C. During the heating, the sacrificial reaction 2OsB 2 +3O 2 →2Os+2B 2 O 3 took place due to presence of O 2 /water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B 2 O 3 and precipitation of Os metal out of the OsB 2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB 2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276–426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB 2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O 2 , the hexagonal OsB 2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling. - Graphical abstract: The in situ high temperature XRD

  5. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  6. Pressure-induced structural change from hexagonal to fcc metal lattice in scandium trihydride

    International Nuclear Information System (INIS)

    Ohmura, A.; Machida, A.; Watanuki, T.; Aoki, K.; Nakano, S.; Takemura, K.

    2007-01-01

    We synthesized scandium hydrides by hydrogenation of a scandium foil with hydrogen fluid under high pressure at ambient temperature. Scandium dihydride (ScH 2 ) and trihydride (ScH 3 ) were prepared near 4 and 5 GPa, respectively. The hydrogenation process and pressure-induced structural changes in ScH 3 were investigated by synchrotron radiation X-ray diffraction measurements up to 54.7 GPa. A structural transition from hexagonal to the fcc lattice began at 30 GPa and was completed at 46 GPa via an intermediate state similar to those reported for other hexagonal trihydrides. The intermediate state was not interpreted in terms of a coexisting state for the low-pressure hexagonal and the high-pressure fcc structures. The onset transition pressure of ScH 3 supported the previously proposed relation that the hexagonal-fcc transition pressure is inversely proportional to the ionic radius of the trihydride

  7. Substrate Integrated Waveguide Cross-Coupling Filter with Multilayer Hexagonal Cavity

    Directory of Open Access Journals (Sweden)

    B. Wu

    2013-01-01

    Full Text Available Hexagonal cavities and their applications to multilayer substrate integrated waveguide (SIW filters are presented. The hexagonal SIW cavity which can combine flexibility of rectangular one and performance of circular one is convenient for bandpass filter’s design. Three types of experimental configuration with the same central frequency of 10 GHz and bandwidth of 6%, including three-order and four-order cross-coupling topologies, are constructed and fabricated based on low temperature cofired ceramic (LTCC technology. Both theoretical and experimental results are presented.

  8. Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silica opals

    Energy Technology Data Exchange (ETDEWEB)

    Yang Sanming; Coombs, N.; Ozin, G.A. [Toronto Univ., Ont. (Canada). Materials Chemistry Research Group

    2000-12-15

    Regular arrays of hexagonal mesoporous silica spheres are crucial for a number of applications, but until now control of the diameter, dispersity, and packing of the spheres has not proved possible. These authors report a new method-micromolding in inverted polymer opals-that allows the synthesis of such hexagonal mesoporous silica opals for the first time. (orig.)

  9. Polémica em torno da liberdade da sexualidade: «liberdade de importunar» versus violências sexuais

    OpenAIRE

    Cova, Anne

    2018-01-01

    Na sequência do escândalo que explodiu nos EUA em Outubro de 2017 envolvendo o produtor americano de cinema Harvey Weinstein, nasceram os hashtags #Balancetonporc e #MeToo que levaram dezenas de milhares de mulheres a testemunhar sobre as violências sexuais. No Twitter, #Balancetonporc foi lançado no dia 13 de Outubro por uma jornalista francesa, Sandra Muller, e dois dias depois a atriz americana, Alyssa Milano, tomou uma iniciativa semelhante com #MeToo. O efeito bola de neve das redes soci...

  10. Vivacidade dos elementos visuais da flona de São Francisco de Paula (RS / Vivacity of the visual elements of the National Forest of São Francisco de Paula (RS

    Directory of Open Access Journals (Sweden)

    Italo Fillipi Teixeira

    2010-11-01

    Full Text Available ResumoO estudo dos elementos estéticos de uma paisagem ainda é insipiente dentro do âmbito da ecologia de Paisagens. Tendo como área de pesquisa a FLONA de São Francisco de Paula, localizada no município de São Francisco de Paula (RS foi desenvolvido um estudo da vivacidade dos elementos visuais de cada hexágono, com objetivos de determinar as classes de vivacidade e a influência de cada variável estética sobre as paisagens desta unidade de conservação. Através da carta de uso da terra da FLONA de São Francisco de Paula, foi desenvolvida uma rede de hexágonos, a partir do programa CAMPEIRO 1.0. Utilizaram-se 22 variáveis para avaliar cada hexágono, com valoração de 1 a 5 nas categorias: muito baixa, baixa, média, alta e muito alta, respectivamente, sendo feito em laboratório e em campo. Como resultado obtiveram-se 158 hexágonos que geraram uma matriz de dados a qual foi submetida ao agrupamento através da análise de Cluster e Discriminante. O agrupamento dos hexágonos foi distribuído em cinco paisagens denominadas de Nativa, Araucária, de Encosta, de Transição e Exótica. Os valores finais dos hexágonos foram distribuídos em cinco classes de vivacidade: muito alta, alta, média, baixa e muito baixa. A Paisagem Nativa foi a que se destacou por apresentar 56,52% dos seus hexágonos na classe muito alta, sendo a única, e a Exótica por apresentar hexágonos na classe baixa e muito baixa, quatorze e sete, respectivamente. Também destaca-se a Paisagem Nativa e de Encosta pelo ranqueamento em primeiro e segundo lugar, sucessivamente, quanto a ocorrência de variáveis clássicas da estética. AbstratcThe study of the aesthetic elements of a landscape is still incipient in the ambit of the ecology of Landscapes. Considering as a research area the São Francisco de Paula National Forest (FLONA, which is located in the municipal district of San Francisco of Paula, RS, a study about the vivacity of the visual elements of

  11. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  12. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    International Nuclear Information System (INIS)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-01-01

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  13. Survival and failure modes: platform-switching for internal and external hexagon cemented fixed dental prostheses.

    Science.gov (United States)

    Anchieta, Rodolfo B; Machado, Lucas S; Hirata, Ronaldo; Coelho, Paulo G; Bonfante, Estevam A

    2016-10-01

    This study evaluated the probability of survival (reliability) of platform-switched fixed dental prostheses (FDPs) cemented on different implant-abutment connection designs. Eighty-four-three-unit FDPs (molar pontic) were cemented on abutments connected to two implants of external or internal hexagon connection. Four groups (n = 21 each) were established: external hexagon connection and regular platform (ERC); external hexagon connection and switched platform (ESC); internal hexagon and regular platform (IRC); and internal hexagon and switched platform (ISC). Prostheses were subjected to step-stress accelerated life testing in water. Weibull curves and probability of survival for a mission of 100,000 cycles at 400 N (two-sided 90% CI) were calculated. The beta values of 0.22, 0.48, 0.50, and 1.25 for groups ERC, ESC, IRC, and ISC, respectively, indicated a limited role of fatigue in damage accumulation, except for group ISC. Survival decreased for both platform-switched groups (ESC: 74%, and ISC: 59%) compared with the regular matching platform counterparts (ERC: 95%, and IRC: 98%). Characteristic strength was higher only for ERC compared with ESC, but not different between internal connections. Failures chiefly involved the abutment screw. Platform switching decreased the probability of survival of FDPs on both external and internal connections. The absence in loss of characteristic strength observed in internal hexagon connections favor their use compared with platform-switched external hexagon connections. © 2016 Eur J Oral Sci.

  14. Design of a broadband hexagonal-shaped zeroth-order resonance antenna with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Dong Sik; Kim, Kang Wook; Choi, Hyun Chul [Kyungpook National University, Daegu (Korea, Republic of)

    2014-11-15

    A broadband hexagonal-shaped metamaterials (MTMs)-based zeroth-order resonant (ZOR) antenna was designed and fabricated. The hexagonal shape of a top patch on a mushroom structure makes not only direct-current paths between the two ends of the patch but also round-current paths along the outside of the patch, thereby widening the resonance frequency of the mushroom MTM antenna. According to the shape of the hexagon patch, the presented antenna achieved impedance bandwidth of 58.6% corresponding to ultra-wideband technology. The proposed ZOR antenna was modeled by utilizing a composite right- and left-handed (CRLH) transmission line and provided 4 to 9.3 dBi of the antenna gain with reduced size as compared to conventional microstrip antennas at Ku- to K-band frequencies.

  15. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.

    Science.gov (United States)

    Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun

    2014-07-22

    Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.

  16. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, Kenan, E-mail: kyakut@atauni.edu.tr [Department of Mechanical Engineering, Faculty of Engineering, Atatürk University, 25100, Erzurum (Turkey); Yeşildal, Faruk, E-mail: fayesildal@agri.edu.tr [Department of Mechanical Engineering, Faculty of Patnos Sultan Alparslan Natural Sciences and Engineering, Ağrı İbrahim Çeçen University, 04100, Ağrı (Turkey); Karabey, Altuğ, E-mail: akarabey@yyu.edu.tr [Department of Machinery and Metal Technology, Erciş Vocational High School, Yüzüncü Yıl University, 65400, Van (Turkey); Yakut, Rıdvan, E-mail: ryakut@kafkas.edu.tr [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars (Turkey)

    2016-04-18

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L{sub 18}(2{sup 1*}3{sup 6}) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η–Re graphics.

  17. Magnetic ground state of the multiferroic hexagonal LuFe O3

    Science.gov (United States)

    Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.

    2018-05-01

    The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .

  18. Facile synthesis and characterization of hexagonal NbSe2 nanoplates

    International Nuclear Information System (INIS)

    Zhang, Xianghua; Zhang, Du; Tang, Hua; Ji, Xiaorui; Zhang, Yi; Tang, Guogang; Li, Changsheng

    2014-01-01

    Graphical abstract: - Highlights: • Uniform hexagonal NbSe 2 nanoplates were prepared by a simple solid state reaction. • The possible formation mechanism of the NbSe 2 nanoplates was discussed. • The formation of NbSe 2 nanoplates undergoes a series of phase transition. - Abstract: The NbSe 2 nanoplates with hexagonal morphology have been successfully prepared by a facile, environmentally friendly reaction in closed reactor at moderate temperature. The thermal (750 °C) solid-state reaction between the ball-milled mixture of micro-sized Nb and Se yielded a high yield of NbSe 2 nanoplates. The as-prepared products were characterized by XRD, EDS, and SEM. The results showed that the as-prepared products were hexagonal phase NbSe 2 nanoplates with uniform sizes and the formation of NbSe 2 nanoplates underwent a series of phase transition. On the basis of experimental results obtained at different temperatures, a reasonable reaction process and a formation mechanism were proposed. Moreover, the ball milling time played a crucial role in acquiring the homogeneous distribution nanoplates

  19. On the perfect hexagonal packing of rods

    International Nuclear Information System (INIS)

    Starostin, E L

    2006-01-01

    In most cases the hexagonal packing of fibrous structures or rods extremizes the energy of interaction between strands. If the strands are not straight, then it is still possible to form a perfect hexatic bundle. Conditions under which the perfect hexagonal packing of curved tubular structures may exist are formulated. Particular attention is given to closed or cycled arrangements of the rods like in the DNA toroids and spools. The closure or return constraints of the bundle result in an allowable group of automorphisms of the cross-sectional hexagonal lattice. The structure of this group is explored. Examples of open helical-like and closed toroidal-like bundles are presented. An expression for the elastic energy of a perfectly packed bundle of thin elastic rods is derived. The energy accounts for both the bending and torsional stiffnesses of the rods. It is shown that equilibria of the bundle correspond to solutions of a variational problem formulated for the curve representing the axis of the bundle. The functional involves a function of the squared curvature under the constraints on the total torsion and the length. The Euler-Lagrange equations are obtained in terms of curvature and torsion and due to the existence of the first integrals the problem is reduced to the quadrature. The three-dimensional shape of the bundle may be readily reconstructed by integration of the Ilyukhin-type equations in special cylindrical coordinates. The results are of universal nature and are applicable to various fibrous structures, in particular, to intramolecular liquid crystals formed by DNA condensed in toroids or packed inside the viral capsids

  20. Electronic structure of nanoparticles of substoichometric hexagonal tungsten oxides

    International Nuclear Information System (INIS)

    Khyzhun, O Y; Solonin, Y M

    2007-01-01

    X-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) methods were used to study the electronic structure of hexagonal h-WO 3 and h-WO 2.8 nanoparticles. For comparison, nanopowder substoichiometric monoclinic tungsten oxides with close content of oxygen atoms, namely m-WO 3 and m-WO 2.77 compounds, were also investigated. For the mentioned oxides, XPS valence-band and corelevel spectra, XES O Kα bands and XAS W L III and O 1s edges were derived. The XPS valence-band spectra and O Kα emission bands in the mentioned hexagonal and monoclinic tungsten oxides were compared on a common energy scale. Both the O Kα bands and XPS valence-band spectra broaden somewhat in the sequences h-WO 3 → h-WO 2.8 and m-WO 3 → m-WO 2.77 , with the half-widths of the spectra being somewhat higher for the hexagonal oxides as compared with those for the monoclinic compounds. The effective positive charge state of tungsten atoms in h-WO 2.8 is very close to that in m-WO 2.77 , but the negative charge states of oxygen atoms are close to each other for all the tungsten oxides under consideration

  1. Simulate-HEX - The multi-group diffusion equation in hexagonal-z geometry

    International Nuclear Information System (INIS)

    Lindahl, S. O.

    2013-01-01

    The multigroup diffusion equation is solved for the hexagonal-z geometry by dividing each hexagon into 6 triangles. In each triangle, the Fourier solution of the wave equation is approximated by 8 plane waves to describe the intra-nodal flux accurately. In the end an efficient Finite Difference like equation is obtained. The coefficients of this equation depend on the flux solution itself and they are updated once per power/void iteration. A numerical example demonstrates the high accuracy of the method. (authors)

  2. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    Science.gov (United States)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  3. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  4. Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study

    International Nuclear Information System (INIS)

    Dawson, J.A.; Freeman, C.L.; Harding, J.H.; Sinclair, D.C.

    2013-01-01

    Interatomic potentials recently developed for the modelling of BaTiO 3 have been used to explore the stabilisation of the hexagonal polymorph of BaTiO 3 by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti 2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni 2+ and Fe 3+ ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti 2 /O 1 cluster and (b) Ti 2 /O 2 cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions

  5. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

    Science.gov (United States)

    Tanawade, A. G.; Modhera, C. D.

    2017-08-01

    Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

  6. MONITOREO DEL DESEMPEÑO Y ESTUDIO BATIMÉTRICO DE LA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DE NEVES PAULISTA (SÃO PAULO, BRASIL

    Directory of Open Access Journals (Sweden)

    Tsunao Matsumoto

    Full Text Available El presente trabajo tuvo como objetivos evaluar el desempeño de la planta de tratamiento de aguas residuales de Neves Paulista en las diferentes temporadas climáticas anuales y diagnosticar la acumulación de lodos de sus lagunas de estabilización anaerobia y facultativa. Se midieron diversos parámetros de la calidad del agua afluente y efluente a la planta en 3 etapas de colecta, cada una con una duración de 3 meses, se realizó un estudio batimétrico de las lagunas para cuantificar la acumulación de lodos y se aforó el afluente durante 24 horas consecutivas. La remoción media de demanda bioquímica de oxígeno fue del 73,9 % y la de coliformes fecales fue menor a 2 unidades logarítmicas. Los lodos acumulados representaron cerca del 25 % del volumen efectivo de las lagunas reduciendo así sus tiempos de retención hidráulica. La planta requiere la inclusión de un sistema de pretratamiento, la remoción controlada de lodos acumulados en las zonas más críticas e implementar un sistema de postratamiento que garantice remoción adicional de materia orgánica y coliformes para ajustarse a las regulaciones ambientales brasileras.

  7. Moving antiplane shear crack in hexagonal piezoelectric crystals

    International Nuclear Information System (INIS)

    Tupholme, G.

    1998-01-01

    Closed form solutions are obtained and discussed for the stress and electric displacement fields around a loaded Griffith-type antiplane shear strip crack moving in hexagonal piezoelectric crystals. Representative numerical results are presented for ZnO and PZT-5H. (author)

  8. Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires

    KAUST Repository

    Wang, Ping; Yuan, Ying; Zhao, Chao; Wang, Xinqiang; Zheng, Xiantong; Rong, Xin; Wang, Tao; Sheng, Bowen; Wang, Qingxiao; Zhang, Yongqiang; Bian, Lifeng; Yang, Xue-Lin; Xu, Fu-Jun; Qin, Zhixin; Li, Xin-Zheng; Zhang, Xixiang; Shen, Bo

    2015-01-01

    by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.

  9. Thermodynamics of the hexagonal close-packed iron-nitrogen system from first-principles

    DEFF Research Database (Denmark)

    Bakkedal, Morten Bjørn

    to hexagonal systems and a numerically tractable extended equation of state is developed to describe thermody-namic equilibrium properties at finite temperature.The model is applied to ε-Fe3N specifically. Through the versatility of the model, equi-librium lattice parameters, the bulk modulus, and the thermal......First-principles thermodynamic models are developed for the hexagonal close-packed ε-Fe-N system. The system can be considered as a hexagonal close-packed host lattice of iron atoms and with the nitrogen atoms residing on a sublattice formed by the octahedral interstices. The iron host lattice...... is assumed fixed.The models are developed entirely from first-principles calculations based on fundamen-tal quantum mechanical calculation through the density functional theory approach with the atomic numbers and crystal structures as the only input parameters. A complete thermody-namic description should...

  10. Homens, vítimas e autores de violência: a corrosão do espaço público e a perda da condição humana

    Directory of Open Access Journals (Sweden)

    Rejane Aparecida Alves

    2012-12-01

    Full Text Available Trata-se de estudo qualitativo, realizado no Município de Ribeirão das Neves-MG, com o objetivo de compreender o envolvimento dos homens com a violência. A metodologia consistiu de grupos focais organizados segundo sexo, faixa etária e região administrativa do Município, sendo, ao todo, trinta grupos, com 231 participantes, recrutados aleatoriamente. Para analisar, foi utilizado o método hermenêutico-dialético e, à luz da teoria política de Hannah Arendt, a violência foi interpretada como dominação que perpassa as relações humanas. Homens e mulheres foram identificados como possíveis autores e vítimas de violência, o envolvimento de cada um sendo definido a partir de relações desiguais que estabelecem. Os números da violência, assim como as explicações centradas em teorias biológicas, podem levar à conclusão prematura de que os homens sejam mais violentos do que as mulheres. A fundamentação teórica e a contextualização mais profundas permitem clarear outras faces desse importante problema.

  11. Group of Hexagonal Search Patterns for Motion Estimation and Object Tracking

    International Nuclear Information System (INIS)

    Elazm, A.A.; Mahmoud, I.I; Hashima, S.M.

    2010-01-01

    This paper presents a group of fast block matching algorithms based on the hexagon pattern search .A new predicted one point hexagon (POPHEX) algorithm is proposed and compared with other well known algorithms. The comparison of these algorithms and our proposed one is performed for both motion estimation and object tracking. Test video sequences are used to demonstrate the behavior of studied algorithms. All algorithms are implemented in MATLAB environment .Experimental results showed that the proposed algorithm posses less number of search points however its computational overhead is little increased due to prediction procedure.

  12. Eu3+-doped Y2O3 hexagonal prisms: Shape-controlled synthesis and tailored luminescence properties

    International Nuclear Information System (INIS)

    Yang, Errui; Li, Guangshe; Fu, Chaochao; Zheng, Jing; Huang, Xinsong; Xu, Wen; Li, Liping

    2015-01-01

    In this work, Eu 3+ doped Y 2 O 3 hexagonal prisms were synthesized by a novel two-phase approach, which involves water at the bottom as aqueous phase and oleylamine in the above as oil phase. With this unique reaction system, precursors of hexagonal prisms Y 4 O(OH) 9 (NO 3 ) were first obtained by simply varying the volume ratio of water to oleylamine. Time-dependent experiments were systematically performed to reveal the growth mechanism of the precursor. After subsequent heat treatment, these precursors transformed to Y 2 O 3 hexagonal prisms with controlled diameters and aspect ratios varying from 4 to 19. Such a transformation is preceded via a topotactic process, as indicated by TG-DTA and mass spectra. Eventually, all Eu 3+ doped Y 2 O 3 hexagonal prisms were found to exhibit an intensive red emission at 611 nm, which corresponds to 5 D 0 → 7 F 2 transition of Eu 3+ . With varying the aspect ratio of hexagonal prisms and increasing Eu 3+ concentration in Y 2 O 3 , an optimum external quantum efficiency was achieved. - Graphical abstract: In this work, Eu 3+ doped Y 2 O 3 hexagonal prisms with controlled aspect ratio from 4.4 to 19.3 were synthesized by transformation of the precursor Y 4 O(OH) 9 (NO 3 ) hexagonal prisms from a novel two-phase reaction system. The growth mechanism of the precursor has been systematically investigated, and a topotactic phase transformation from precursors to cubic Y 2 O 3 is for the first time put forward. By the size controlling and aspect ratio adjusting, the luminescence emission intensity as well as external quantum efficiency of Eu 3+ doped Y 2 O 3 hexagonal prisms is further tailored to show an optimum. - Highlights: • Eu 3+ doped Y 2 O 3 hexagonal prisms were synthesized by a novel two-phase approach. • Inheriting mechanism of prisms morphology from Y 4 O(OH) 9 (NO 3 ) to Y 2 O 3 was discussed. • Aspect ratio of prisms was tailored by the volume ratio of water to oleylamine. • Luminescence properties were

  13. A construção da campanha eleitoral majoritária no HGPE: uma análise comparada das estratégias usadas pelos presidenciáveis de 2014

    Directory of Open Access Journals (Sweden)

    Michele Goulart Massuchin

    2016-07-01

    Full Text Available Este artigo tem por objetivo discutir as diferenças na apropriação do Horário Gratuito de Propaganda Eleitoral (HGPE pelos partidos e candidatos na disputa majoritária à Presidência da República em 2014. A propaganda televisiva é o principal recurso de campanha utilizado em eleições de grande porte, sendo que tanto o conteúdo quanto o formato são relevantes para compreender o modo como a disputa se estrutura. Analisa-se o conteúdo apresentado pelos dois principais candidatos – Dilma Rousseff (PT e Aécio Neves (PSDB – considerando as estratégias, o apelo, os formatos, o tipo de orador e a mensagem geral de campanha. A metodologia utilizada é quantitativa de análise de conteúdo, sendo que este artigo parte de duas hipóteses: a o segundo turno torna-se mais negativo, com maior ênfase na imagem do candidato e com uma campanha mais voltada para as emoções; b a estruturação da campanha dos candidatos se dá de modo diferente, evidenciando características e formatos distintos.

  14. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    Science.gov (United States)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of

  15. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit; Schwingenschlö gl, Udo

    2016-01-01

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  16. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  17. The response-matrix based AFEN method for the hexagonal geometry

    International Nuclear Information System (INIS)

    Noh, Jae Man; Kim, Keung Koo; Zee, Sung Quun; Joo, Hyung Kook; Cho, Byng Oh; Jeong, Hyung Guk; Cho, Jin Young

    1998-03-01

    The analytic function expansion nodal (AFEN) method, developed to overcome the limitations caused by the transverse integration, has been successfully to predict the neutron behavior in the hexagonal core as well as rectangular core. In the hexagonal node, the transverse leakage resulted from the transverse integration has some singular terms such as delta-function and step-functions near the node center line. In most nodal methods using the transverse integration, the accuracy of nodal method is degraded because the transverse leakage is approximated as a smooth function across the node center line by ignoring singular terms. However, the AFEN method in which there is no transverse leakage term in deriving nodal coupling equations keeps good accuracy for hexagonal node. In this study, the AFEN method which shows excellent accuracy in the hexagonal core analyses is reformulated as a response matrix form. This form of the AFEN method can be implemented easily to nodal codes based on the response matrix method. Therefore, the Coarse Mesh Rebalance (CMR) acceleration technique which is one of main advantages of the response matrix method can be utilized for the AFEN method. The response matrix based AFEN method has been successfully implemented into the MASTER code and its accuracy and computational efficiency were examined by analyzing the two- and three- dimensional benchmark problem of VVER-440. Based on the results, it can be concluded that the newly formulated AFEN method predicts accurately the assembly powers (within 0.2% average error) as well as the effective multiplication factor (within 0.2% average error) as well as the effective multiplication factor (within 20 pcm error). In addition, the CMR acceleration technique is quite efficient in reducing the computation time of the AFEN method by 8 to 10 times. (author). 22 refs., 1 tab., 4 figs

  18. Solution of 2D and 3D hexagonal geometry benchmark problems by using the finite element diffusion code DIFGEN

    International Nuclear Information System (INIS)

    Gado, J.

    1986-02-01

    The four group, 2D and 3D hexagonal geometry HTGR benchmark problems and a 2D hexagonal geometry PWR (WWER) benchmark problem have been solved by using the finite element diffusion code DIFGEN. The hexagons (or hexagonal prisms) were subdivided into first order or second order triangles or quadrilaterals (or triangular or quadrilateral prisms). In the 2D HTGR case of the number of the inserted absorber rods was also varied (7, 6, 0 or 37 rods). The calculational results are in a good agreement with the results of other calculations. The larger systematic series of DIFGEN calculations have given a quantitative picture on the convergence properties of various finite element modellings of hexagonal grids in DIFGEN. (orig.)

  19. ANÁLISE DESCRITIVA DOS ASPECTOS LINGUÍSTICOS QUE PREJUDICAM A INTERCOMPREENSÃO DOS ALUNOS ESTRANGEIROS DA UNILAB NO GÊNERO COMENTÁRIO / Descriptive analysis of the linguistic aspects that undermine the intercompreension of foreign students of the unilab on text of genre comment

    Directory of Open Access Journals (Sweden)

    Cláudia Ramos Carioca

    2016-05-01

    Full Text Available RESUMO A maioria dos estudantes oriundos dos países africanos de língua oficial portuguesa (PALOPs e do Timor-Leste tem muita dificuldade no processo da intercompreensão, pois, apesar de ser a língua oficial de seus países, o português não é a sua língua materna. Assim, o problema a ser abordado é “Quais fatores linguísticos prejudicam a intercompreensão dos estudantes africanos e timorenses no âmbito da UNILAB?”, tendo em vista que eles possuem muita dificuldade em se comunicar por causa do modelo de ensino do português adotado em cada país, que geralmente só é falado dentro da sala de aula. Dessa forma, esta proposta objetiva analisar os aspectos linguísticos que prejudicam a intercompreensão dos alunos estrangeiros da UNILAB de modo a possibilitar a análise descritiva, sob o panorama dos aspectos morfossintáticos, semântico-pragmáticos e discursivos da língua portuguesa, numa visão sociolinguística e discursiva, visando a uma discussão da política linguística para o português. A abordagem teórica está fundamentada nas pesquisas de Calvet (2007, Orlandi (2007, Cahen (2010 e Neves (2012, dentre outros, que nos fazem refletir sobre o estatuto da língua portuguesa na comunidade lusófona. Os dados foram coletados a partir da análise linguístico-discursiva dos comentários escritos de vinte e três estudantes guineenses, constituídos a partir do corpus do grupo de pesquisa Interlusofonia. Palavras-chave: intercompreensão; língua portuguesa; política linguística. ABSTRACT Most students from the Portuguese-speaking African countries (PALOP and East Timor have great difficulty in the mutual understanding process because, despite being the official language of their country, the Portuguese is not their mother tongue. Thus, the problem to be addressed is “What linguistic factors undermine the mutual understanding of African and East Timorese students under UNILAB?”, Given that they have great difficulty

  20. Density functional simulations of hexagonal Ge2Sb2Te5 at high pressure

    Science.gov (United States)

    Caravati, Sebastiano; Sosso, Gabriele C.; Bernasconi, Marco; Parrinello, Michele

    2013-03-01

    We investigated the structural transformations of the hexagonal phase of Ge2Sb2Te5 under pressure by means of ab initio molecular dynamics with a variable simulation cell. To overcome the enthalpy barriers between the different phases we used metadynamics techniques. We reproduced the hexagonal-to-bcc transformation under pressure found experimentally. The bcc phase retains a partial chemical order, as opposed to a second bcc phase we generated by pressuring the amorphous phase. This structural difference is suggested to be responsible for the memory effect uncovered experimentally, the bcc phase reverting to the amorphous or to the hexagonal phase upon decompression, depending on the type of precursor phase it originates from.

  1. Switching behavior and novel stable states of magnetic hexagonal nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Yasir Rafique, M., E-mail: myasir.rafique@ciitlahore.edu.pk [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Pan, Liqing; Guo, Zhengang [College of Science and Research Institute for New Energy, China Three Gorges University, Yichang 443002 (China)

    2017-06-15

    Micromagnetic simulations for Cobalt hexagonal shape nanorings show onion (O) and vortex state (V) along with new state named “tri-domain state”. The tri-domain state is observed in sufficiently large width of ring. The magnetic reversible mechanism and transition of states are explained with help of vector field display. The transitions from one state to other occur by propagation of domain wall. The vertical parts of hexagonal rings play important role in developing the new “tri-domain” state. The behaviors of switching fields from onion to tri-domain (HO-Tr), tri-domain to vortex state (HTr-V) and vortex to onion state and “states size” are discussed in term of geometrical parameter of ring.

  2. Thermal stability of hexagonal OsB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Blair, Richard G. [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Department of Physics, University of Central Florida, Orlando, FL 32816 (United States); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Cullen, David A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Andrew Payzant, E. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-11-15

    The synthesis of novel hexagonal ReB{sub 2}-type OsB{sub 2} ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of {sup 10}B and {sup 11}B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched {sup 11}B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB{sub 2} phase was the main product of synthesis with a small quantity of Os{sub 2}B{sub 3} phase present after synthesis as an intermediate product. In the second case, where coarse crystalline {sup 11}B powder was used as a raw material, only Os{sub 2}B{sub 3} boride was synthesized mechanochemically. The thermal stability of hexagonal OsB{sub 2} powder was studied by heating under argon up to 876 °C and cooling in vacuo down to −225 °C. During the heating, the sacrificial reaction 2OsB{sub 2}+3O{sub 2}→2Os+2B{sub 2}O{sub 3} took place due to presence of O{sub 2}/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B{sub 2}O{sub 3} and precipitation of Os metal out of the OsB{sub 2} lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB{sub 2} changed significantly. The shrinkage of the a lattice parameter was recorded in 276–426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB{sub 2} lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O{sub 2}, the hexagonal OsB{sub 2} ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice

  3. Análise da correlação entre a satisfação no trabalho e o comprometimento organizacional: estudo com os enfermeiros da pediatria do Hospital Geral de Luanda

    Directory of Open Access Journals (Sweden)

    Mirian Nareti Neves

    2018-01-01

    Full Text Available Levando-se em conta que o processo de desenvolvimento da satisfação e o comprometimento no indivíduo é um assunto que tem gerado interesse de distintos pesquisadores, para o entendimento do mecanismo das relações entre as organizações e seus funcionários, qualquer factor que contribua para o desenvolvimento destes constructos age por meio de seu impacto sobre uma ou mais predisposições psicológicas, as quais levam um indivíduo a comportar-se de determinada maneira em relação a algo ou alguém. A satisfação e o comprometimento dos funcionários são constructos relevantes que podem conduzir às vantagens competitivas e ao sucesso da organização. Neste estudo tem-se como objectivo, analisar a correlação entre satisfação no trabalho e o comprometimento dos Enfermeiros da Pediatria do Hospital Geral de Luanda-Angola (HGL. Para levar a cabo se revisou as teorias da hierarquia das necessidades de Maslow e a teoria dos factores higiénicos e motivacionais de Herzberg. Utilizaram -se igualmente os aportes de Chiavenato (2010; (Ferreira, Neves e Caetano 2011; Myers (2006; (Rojot, Roussel e Vanderberghe 2009; Spector (2006 e Teixeira (2005. Para este estudo foi realizado uma pesquisa do tipo quantitativa, com ênfase no método exploratório-descritivo. Os dados foram recolhidos por meio de dois questionários, os quais foram submetidos a análises de percentagem e médias, bem como, a correlações. Constatou-se baixo grau de satisfação com o salário (2,40, grau de satisfação médio na importância do trabalho (3,95 e um alto grau de satisfação na relação com os colegas (4,23. Há predominância do comprometimento normativo nos enfermeiros da Pediatria do HGL, também foi identificada uma correlação fraca (0,27 entre a satisfação no trabalho e o comprometimento normativo.

  4. Growth and Brilliant Photo-Emission of Crystalline Hexagonal Column of Alq3 Microwires

    OpenAIRE

    Seokho Kim; Do Hyoung Kim; Jinho Choi; Hojin Lee; Sun-Young Kim; Jung Woon Park; Dong Hyuk Park

    2018-01-01

    We report the growth and nanoscale luminescence characteristics of 8-hydroxyquinolinato aluminum (Alq3) with a crystalline hexagonal column morphology. Pristine Alq3 nanoparticles (NPs) were prepared using a conventional reprecipitation method. Crystal hexagonal columns of Alq3 were grown by using a surfactant-assisted self-assembly technique as an adjunct to the aforementioned reprecipitation method. The formation and structural properties of the crystalline and non-crystalline Alq3 NPs were...

  5. Dirac cones in isogonal hexagonal metallic structures

    Science.gov (United States)

    Wang, Kang

    2018-03-01

    A honeycomb hexagonal metallic lattice is equivalent to a triangular atomic one and cannot create Dirac cones in its electromagnetic wave spectrum. We study in this work the low-frequency electromagnetic band structures in isogonal hexagonal metallic lattices that are directly related to the honeycomb one and show that such structures can create Dirac cones. The band formation can be described by a tight-binding model that allows investigating, in terms of correlations between local resonance modes, the condition for the Dirac cones and the consequence of the third structure tile sustaining an extra resonance mode in the unit cell that induces band shifts and thus nonlinear deformation of the Dirac cones following the wave vectors departing from the Dirac points. We show further that, under structure deformation, the deformations of the Dirac cones result from two different correlation mechanisms, both reinforced by the lattice's metallic nature, which directly affects the resonance mode correlations. The isogonal structures provide new degrees of freedom for tuning the Dirac cones, allowing adjustment of the cone shape by modulating the structure tiles at the local scale without modifying the lattice periodicity and symmetry.

  6. The Formation and Characterization of GaN Hexagonal Pyramids

    Science.gov (United States)

    Zhang, Shi-Ying; Xiu, Xiang-Qian; Lin, Zeng-Qin; Hua, Xue-Mei; Xie, Zi-Li; Zhang, Rong; Zheng, You-Dou

    2013-05-01

    GaN with hexagonal pyramids is fabricated using the photo-assisted electroless chemical etching method. Defective areas of the GaN substrate are selectively etched in a mixed solution of KOH and K2S2O8 under ultraviolet illumination, producing submicron-sized pyramids. Hexagonal pyramids on the etched GaN with well-defined {101¯1¯} facets and very sharp tips are formed. High-resolution x-ray diffraction shows that etched GaN with pyramids has a higher crystal quality, and micro-Raman spectra reveal a tensile stress relaxation in GaN with pyramids compared with normal GaN. The cathodoluminescence intensity of GaN after etching is significantly increased by three times, which is attributed to the reduction in the internal reflection, high-quality GaN with pyramids and the Bragg effect.

  7. Hexagonal tube behaviour in fuel assemblies under neutron flux in a French fast neutron reactor core

    International Nuclear Information System (INIS)

    Bernard, A.; Ammann, P.

    This paper presents what is obtained in the field of the interpretation by calculation of the post irradiation examination of hexagonal tubes, and in the field of prevision by calculation of the behaviour of hexagonal tubes under fast flux [fr

  8. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Huang, Kuo-Chih

    2011-11-28

    A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.

  9. Tracking algorithms for multi-hexagonal assemblies (2D and 3D)

    International Nuclear Information System (INIS)

    Prabha, Hem; Marleau, Guy; Hébert, Alain

    2014-01-01

    Highlights: • We present the method of computations of 2D and 3D fluxes in hexagonal assemblies. • Computation of fluxes requires computation of track lengths. • Equations are developed (in 2D and 3D) and are implemented in a program HX7. • The program HX7 is implemented in the NXT module of the code DRAGON. • The tracks are plotted and fluxes are compared with the EXCELT module of DRAGON. - Abstract: Background: There has been a continuous effort to design new reactors and study these reactors under different conditions. Some of these reactors have fuel pins arranged in hexagonal pitch. To study these reactors, development of computational methods and computer codes is required. For this purpose, we have developed algorithms to track two dimensional and three dimensional cluster geometries. These algorithms have been implemented in a subprogram HX7, that is implemented in the code DRAGON (Version 3.06F) to compute neutron flux distributions in these systems. Methods: Computation of the neutron flux distribution requires solution of neutron transport equation. While solving this equation, by using Carlvik’s method of collision probabilities, computation of tracks in the hexagonal geometries is required. In this paper we present equations that we have developed for the computation of tracks in two dimensional (2D) and three dimensional (3D) multi-hexagonal assemblies (with two rotational orientations). These equations have been implemented in a subprogram HX7, to compute tracks in seven hexagonal assemblies. The subprogram HX7 has been implemented in the NXT module of the DRAGON code, where tracks in the pins are computed. Results: The results of our algorithms NXT(+HX7) have been compared with the results obtained by the EXCELT module of DRAGON (Version 3.06F). Conclusions: We find that all the fluxes in 2D and fluxes in the outer pin (3D) are converging to their 3rd decimal places, in both the modules EXCELT and NXT(+HX7). For other regions 3D fluxes

  10. Crystallographic Orientation Determination of Hexagonal Structure Crystals by Laser Ultrasonic Technique

    International Nuclear Information System (INIS)

    Li, W; Coulson, J; Marrow, P; Smith, R J; Clark, M; Sharples, S D; Lainé, S J

    2016-01-01

    Spatially resolved acoustic spectroscopy (SRAS) is a laser ultrasonic technique that shows qualitative contrast between grains of different orientation, illustrating the sensitivity of acoustic waves to the material structure. The technique has been improved significantly on determining the full orientation of multigrain cubic metals, by comparing the measured surface acoustic wave (SAW) velocity to a pre-calculated model. In this paper we demonstrate the ability of this technique to determine the orientation of hexagonal structure crystals, such as magnesium and titanium based alloys. Because of the isotropy of the SAW velocity on the basal plane (0001) of hexagonal crystals, the slowness surface is shown as a circle. As the plane moves from (0001) towards (112-bar0) or towards (101-bar0), the slowness surface gradually turns into an oval. These acoustic properties increase the difficulty in orientation determination. The orientation results of a grade 1 commercially pure titanium by SRAS is presented, with comparison with electron backscattered diffraction (EBSD) results. Due to the nature of SAWs on hexagonal structure crystals, only the results of Euler angles 1 and 2 are discussed. The error between SRAS and EBSD is also investigated. (paper)

  11. Hexagonally ordered nanoparticles templated using a block copolymer film through Coulombic interactions

    International Nuclear Information System (INIS)

    Lee, Wonjoo; Lee, Seung Yong; Zhang Xin; Rabin, Oded; Briber, R M

    2013-01-01

    We present a novel and simple method for forming hexagonal gold nanoparticle arrays that uses Coulombic interactions between negatively charged gold nanoparticles on positively charged vertically oriented poly(4-vinylpyridine) cylinders formed in a spin cast polystyrene-b-poly(4-vinylpyridine) block copolymer film. Exposure of the block copolymer film to dibromobutane vapor quaternizes and crosslinks the poly(4-vinylpyridine) domains which allows for the templated deposition of gold nanoparticles into a self-assembled hexagonal array through electrostatic interactions. These systems can form the basis for sensors or next generation nanoparticle based electronics. (paper)

  12. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.

    2013-11-12

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized in this superlattice. In particular, the Dirac cone of silicene is preserved. Due to the wide band gap of hexagonal boron nitride, the superlattice realizes the characteristic physical phenomena of free-standing silicene. In particular, we address by model calculations the combined effect of the intrinsic spin-orbit coupling and an external electric field, which induces a transition from a semimetal to a topological insulator and further to a band insulator.

  13. Non-linear triangle-based polynomial expansion nodal method for hexagonal core analysis

    International Nuclear Information System (INIS)

    Cho, Jin Young; Cho, Byung Oh; Joo, Han Gyu; Zee, Sung Qunn; Park, Sang Yong

    2000-09-01

    This report is for the implementation of triangle-based polynomial expansion nodal (TPEN) method to MASTER code in conjunction with the coarse mesh finite difference(CMFD) framework for hexagonal core design and analysis. The TPEN method is a variation of the higher order polynomial expansion nodal (HOPEN) method that solves the multi-group neutron diffusion equation in the hexagonal-z geometry. In contrast with the HOPEN method, only two-dimensional intranodal expansion is considered in the TPEN method for a triangular domain. The axial dependence of the intranodal flux is incorporated separately here and it is determined by the nodal expansion method (NEM) for a hexagonal node. For the consistency of node geometry of the MASTER code which is based on hexagon, TPEN solver is coded to solve one hexagonal node which is composed of 6 triangular nodes directly with Gauss elimination scheme. To solve the CMFD linear system efficiently, stabilized bi-conjugate gradient(BiCG) algorithm and Wielandt eigenvalue shift method are adopted. And for the construction of the efficient preconditioner of BiCG algorithm, the incomplete LU(ILU) factorization scheme which has been widely used in two-dimensional problems is used. To apply the ILU factorization scheme to three-dimensional problem, a symmetric Gauss-Seidel Factorization scheme is used. In order to examine the accuracy of the TPEN solution, several eigenvalue benchmark problems and two transient problems, i.e., a realistic VVER1000 and VVER440 rod ejection benchmark problems, were solved and compared with respective references. The results of eigenvalue benchmark problems indicate that non-linear TPEN method is very accurate showing less than 15 pcm of eigenvalue errors and 1% of maximum power errors, and fast enough to solve the three-dimensional VVER-440 problem within 5 seconds on 733MHz PENTIUM-III. In the case of the transient problems, the non-linear TPEN method also shows good results within a few minute of

  14. Scanning tunneling microscopy of hexagonal BN grown on graphite

    International Nuclear Information System (INIS)

    Fukumoto, H.; Hamada, T.; Endo, T.; Osaka, Y.

    1991-01-01

    The microscopic surface topography of thin BN x films grown on graphite by electron cyclotron resonance plasma chemical vapor deposition have been imaged with scanning tunneling microscopy in air. The scanning tunneling microscope has generated images of hexagonal BN with atomic resolution

  15. Hexagon functions and the three-loop remainder function

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; Drummond, James M.; von Hippel, Matt; Pennington, Jeffrey

    2013-12-01

    We present the three-loop remainder function, which describes the scattering of six gluons in the maximally-helicity-violating configuration in planar NN = 4 super-Yang-Mills theory, as a function of the three dual conformal cross ratios. The result can be expressed in terms of multiple Goncharov polylogarithms. We also employ a more restricted class of hexagon functions which have the correct branch cuts and certain other restrictions on their symbols. We classify all the hexagon functions through transcendental weight five, using the coproduct for their Hopf algebra iteratively, which amounts to a set of first-order differential equations. The three-loop remainder function is a particular weight-six hexagon function, whose symbol was determined previously. The differential equations can be integrated numerically for generic values of the cross ratios, or analytically in certain kinematic limits, including the near-collinear and multi-Regge limits. These limits allow us to impose constraints from the operator product expansion and multi-Regge factorization directly at the function level, and thereby to fix uniquely a set of Riemann ζ valued constants that could not be fixed at the level of the symbol. The near-collinear limits agree precisely with recent predictions by Basso, Sever and Vieira based on integrability. The multi-Regge limits agree with the factorization formula of Fadin and Lipatov, and determine three constants entering the impact factor at this order. We plot the three-loop remainder function for various slices of the Euclidean region of positive cross ratios, and compare it to the two-loop one. For large ranges of the cross ratios, the ratio of the three-loop to the two-loop remainder function is relatively constant, and close to -7.

  16. FAINT LUMINESCENT RING OVER SATURN’S POLAR HEXAGON

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, Alberto; D’Aversa, Emiliano; Oliva, Fabrizio; Filacchione, Gianrico [Institute of Space Astrophysics and Planetology of INAF, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Moriconi, Maria Luisa, E-mail: alberto.adriani@iaps.inaf.it [Institute of Atmospheric Sciences and Climate of CNR, Via Fosso del Cavaliere 100, I-00133 Rome (Italy)

    2015-07-20

    Springtime insolation is presently advancing across Saturn's north polar region. Early solar radiation scattered through the gaseous giant's atmosphere gives a unique opportunity to sound the atmospheric structure at its upper troposphere/lower stratosphere at high latitudes. Here, we report the detection of a tenuous bright structure in Saturn's northern polar cap corresponding to the hexagon equatorward boundary, observed by Cassini Visual and Infrared Mapping Spectrometer on 2013 June. The structure is spectrally characterized by an anomalously enhanced intensity in the 3610–3730 nm wavelength range and near 2500 nm, pertaining to relatively low opacity windows between strong methane absorption bands. Our first results suggest that a strong forward scattering by tropospheric clouds, higher in respect to the surrounding cloud deck, can be responsible for the enhanced intensity of the feature. This can be consistent with the atmospheric dynamics associated with the jet stream embedded in the polar hexagon. Further investigations at higher spectral resolution are needed to better assess the vertical distribution and microphysics of the clouds in this interesting region.

  17. Manifestations of Kitaev physics in thermodynamic properties of hexagonal iridates and α-RuCl3

    Science.gov (United States)

    Tsirlin, Alexander

    Kitaev model is hard to achieve in real materials. Best candidates available so far are hexagonal iridates M2IrO3 (M = Li and Na) and the recently discovered α-RuCl3 featuring hexagonal layers coupled by weak van der Waals bonding. I will review recent progress in crystal growth of these materials and compare their thermodynamic properties. Both hexagonal iridates and α-RuCl3 feature highly anisotropic Curie-Weiss temperatures that not only differ in magnitude but also change sign depending on the direction of the applied magnetic field. Néel temperatures are largely suppressed compared to the energy scale of the Curie-Weiss temperatures. These experimental observations will be linked to features of the electronic structure and to structural peculiarities associated with deviations from the ideal hexagonal symmetry. I will also discuss how the different nature of ligand atoms affects electronic structure and magnetic superexchange. This work has been done in collaboration with M. Majumder, M. Schmidt, M. Baenitz, F. Freund, and P. Gegenwart.

  18. Face recognition via sparse representation of SIFT feature on hexagonal-sampling image

    Science.gov (United States)

    Zhang, Daming; Zhang, Xueyong; Li, Lu; Liu, Huayong

    2018-04-01

    This paper investigates a face recognition approach based on Scale Invariant Feature Transform (SIFT) feature and sparse representation. The approach takes advantage of SIFT which is local feature other than holistic feature in classical Sparse Representation based Classification (SRC) algorithm and possesses strong robustness to expression, pose and illumination variations. Since hexagonal image has more inherit merits than square image to make recognition process more efficient, we extract SIFT keypoint in hexagonal-sampling image. Instead of matching SIFT feature, firstly the sparse representation of each SIFT keypoint is given according the constructed dictionary; secondly these sparse vectors are quantized according dictionary; finally each face image is represented by a histogram and these so-called Bag-of-Words vectors are classified by SVM. Due to use of local feature, the proposed method achieves better result even when the number of training sample is small. In the experiments, the proposed method gave higher face recognition rather than other methods in ORL and Yale B face databases; also, the effectiveness of the hexagonal-sampling in the proposed method is verified.

  19. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    Science.gov (United States)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  20. A two-phase flow regime map for a MAPLE-type nuclear research reactor fuel channel: Effect of hexagonal finned bundle

    International Nuclear Information System (INIS)

    Harvel, G.D.; Chang, J.S.

    1997-01-01

    A two-phase flow regime map is developed experimentally and theoretically for a vertical hexagonal flow channel with and without a 36-finned rod hexagonal bundle. This type of flow channel is of interest to MAPLE-type nuclear research reactors. The flow regime maps are determined by visual observations and observation of waveforms shown by a capacitance-type void fraction meter. The experimental results show that the inclusion of the finned hexagonal bundle shifts the flow regime transition boundaries toward higher water flow rates. Existing flow regime maps based on pipe flow require slight modifications when applied to the hexagonal flow channel with and without a MAPLE-type finned hexagonal bundle. The proposed theoretical model agrees well with experimental results

  1. Coherent memory functions for finite systems: hexagonal photosynthetic unit

    International Nuclear Information System (INIS)

    Barvik, I.; Herman, P.

    1990-10-01

    Coherent memory functions entering the Generalized Master Equation are presented for an hexagonal model of a photosynthetic unit. Influence of an energy heterogeneity on an exciton transfer is an antenna system as well as to a reaction center is investigated. (author). 9 refs, 3 figs

  2. Large scale graphene/hexagonal boron nitride heterostructure for tunable plasmonics

    KAUST Repository

    Zhang, Kai; Yap, Fungling; Li, Kun; Ng, Changtai; Li, Linjun; Loh, Kianping

    2013-01-01

    Vertical integration of hexagonal boron nitride (h-BN) and graphene for the fabrication of vertical field-effect transistors or tunneling diodes has stimulated intense interest recently due to the enhanced performance offered by combining

  3. Probing topological relations between high-density and low-density regions of 2MASS with hexagon cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yongfeng [American Physical Society, San Diego, CA (United States); Xiao, Weike, E-mail: yongfeng.wu@maine.edu [Department of Astronautics Engineering, Harbin Institute of Technology, P.O. Box 345, Heilongjiang Province 150001 (China)

    2014-02-01

    We introduced a new two-dimensional (2D) hexagon technique for probing the topological structure of the universe in which we mapped regions of the sky with high and low galaxy densities onto a 2D lattice of hexagonal unit cells. We defined filled cells as corresponding to high-density regions and empty cells as corresponding to low-density regions. The numbers of filled cells and empty cells were kept the same by controlling the size of the cells. By analyzing the six sides of each hexagon, we could obtain and compare the statistical topological properties of high-density and low-density regions of the universe in order to have a better understanding of the evolution of the universe. We applied this hexagonal method to Two Micron All Sky Survey data and discovered significant topological differences between the high-density and low-density regions. Both regions had significant (>5σ) topological shifts from both the binomial distribution and the random distribution.

  4. Comparison of square and hexagonal fuel lattices for high conversion PWRs

    International Nuclear Information System (INIS)

    Kotlyar, D.; Shwageraus, E.

    2011-01-01

    This paper reports on an investigation into fuel design choices of a PWR operating in a self sustainable Th- 233 U fuel cycle. Achieving such self-sustainable with respect to fissile material fuel cycle would practically eliminate concerns over nuclear fuel supply hundreds of years into the future. Moreover, utilization of light water reactor technology and its associated vast experience would allow faster deployment of such fuel cycle without immediate need for development of fast reactor technology, which tends to be more complex and costly. In order to evaluate feasibility of this concept, two types of fuel assembly lattices were considered: square and hexagonal. The hexagonal lattice may offer some advantages over the square one. For example, the fertile blanket fuel can be packed more tightly reducing the blanket volume fraction in the core and potentially allowing to achieve higher core average power density. Furthermore, hexagonal lattice may allow more uniform leakage of neutrons from fissile to fertile regions and therefore more uniform neutron captures in thorium blanket. The calculations were carried out with Monte-Carlo based BGCore system, which includes neutronic, fuel depletion and thermo-hydraulic modules. The results were compared to those obtained from Serpent Monte-Carlo code and deterministic fuel assembly transport code BOXER. One of the major design challenges associated with the square seed-blanket concept is high power peaking due to the high concentration of fissile material in the seed region. In order to explore feasibility of the studied designs, the calculations were extended to include 3D fuel assembly analysis with thermal-hydraulic feedback. The coupled neutronic - thermal-hydraulic calculations were performed with BGCore code system. The analysis showed that both hexagonal and square seed-blanket fuel assembly designs have a potential of achieving net breeding. While no major neutronic advantages were observed for either fuel

  5. 7-Hexagon Multifocal Electroretinography for an Objective Functional Assessment of the Macula in 14 Seconds.

    Science.gov (United States)

    Schönbach, Etienne M; Chaikitmongkol, Voraporn; Annam, Rachel; McDonnell, Emma C; Wolfson, Yulia; Fletcher, Emily; Scholl, Hendrik P N

    2017-01-01

    We present the multifocal electroretinogram (mfERG) with a 7-hexagon array as an objective test of macular function that can be recorded in 14 s. We provide normal values and investigate its reproducibility and validity. Healthy participants underwent mfERG testing according to International Society for Clinical Electrophysiology of Vision (ISCEV) standards using the Espion Profile/D310 multifocal ERG system (Diagnosys, LLC, Lowell, MA, USA). One standard recording of a 61-hexagon array and 2 repeated recordings of a custom 7-hexagon array were obtained. A total of 13 subjects (mean age 46.9 years) were included. The median response densities were 12.5 nV/deg2 in the center and 5.2 nV/deg2 in the periphery. Intereye correlations were strong in both the center (ρCenter = 0.821; p < 0.0001) and the periphery (ρPeriphery = 0.862; p < 0.0001). Intraeye correlations were even stronger: ρCenter = 0.904 with p < 0.0001 and ρPeriphery = 0.955 with p < 0.0001. Bland-Altman plots demonstrated an acceptable retest mean difference in both the center and periphery, and narrow limits of agreement. We found strong correlations of the center (ρCenter = 0.826; p < 0.0001) and periphery (ρPeriphery = 0.848; p < 0.0001), with recordings obtained by the 61-hexagon method. The 7-hexagon mfERG provides reproducible results in agreement with results obtained according to the ISCEV standard. © 2017 S. Karger AG, Basel.

  6. [Measurement of plasma parameters in cluster hexagon pattern discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Shen, Zhong-Kai; Li, Xin-Chun; Liu, Liang; Lu, Ning; Shang, Jie

    2012-09-01

    The cluster hexagon pattern was obtained in a dielectric barrier discharge in air/argon for the first time. Three plasma parameters, i. e. the molecular vibrational temperature, the molecular rotational temperature and the average electron energy of individual cluster in cluster hexagon pattern discharge, were studied by changing the air content. The molecular vibrational temperature and the molecular rotational temperature were calculated using the second positive band system of nitrogen molecules (C 3IIu --> B 3IIg) and the first negative band system of nitrogen molecular ions (B 2Sigma(u)+ --> Chi2 Sigma(g)+). The relative intensities of the first negative system of nitrogen molecular ions (391. 4 nm) and nitrogen molecules emission spectrum line (337.1 nm) were analyzed for studying the variations of the electron energy. It was found that the three plasma parameters of individual cluster in cluster hexagon pattern increase with air content increasing from 16% to 24%.

  7. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  8. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    Science.gov (United States)

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  9. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals

    International Nuclear Information System (INIS)

    Borovoi, A.; Konoshonkin, A.; Kustova, N.

    2014-01-01

    The physical-optics approximation in the problem of light scattering by large particles is so defined that it includes the classical physical optics concerning the problem of light penetration through a large aperture in an opaque screen. In the second part of the paper, the problem of light backscattering by quasi-horizontally oriented atmospheric ice crystals is considered where conformity between the physical-optics and geometric-optics approximations is discussed. The differential scattering cross section as well as the polarization elements of the Mueller matrix for quasi-horizontally oriented hexagonal ice plates has been calculated in the physical-optics approximation for the case of vertically pointing lidars. - Highlights: • The physical-optics Mueller matrix is a smoothed geometric-optics counterpart. • Backscatter by partially oriented hexagonal ice plates has been calculated. • Depolarization ratio for partially oriented hexagonal ice plates is negligible

  10. Whole core transport calculation for the VHTR hexagonal core

    International Nuclear Information System (INIS)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.; Joo, H. G.

    2007-01-01

    Recently, the DeCART code which performs the whole core calculation by coupling the radial MOC transport kernel with the axial nodal kernel has equipped a kernel to deal with the hexagonal geometry and applied to the VHTR hexagonal core to examine the accuracy and the computational efficiency of the implemented kernel. The implementation includes a modular ray tracing module based on the hexagonal assembly and a multi-group CMFD module to perform an efficient transport calculation. The requirements for the modular ray are: (1) the assembly based path linking and (2) the complete reflection capabilities. The first requirement is met by adjusting the azimuthal angle and the ray spacing for the modular ray to construct a core ray by the path linking. The second requirement is met by expanding the constructed azimuthal angle in the range of [0,30 degree] to the remained range to reflect completely at the core boundaries. The considered reflecting surface angles for the complete reflection are 30n's (n=1,2,1,12). The CMFD module performs the equivalent diffusion calculation to the radial MOC transport calculation based on the homogenized structure units. The structure units include the hexagonal pin cells and gap cells appearing at the assembly boundary. Therefore, the CMFD module is programmed to deal with the unstructured cells such as the gap cells. The CMFD equation consists of the two parts of (1) the conventional FDM and (2) the current corrective parts. Since the second part of the CMFD equation guarantees the reproducibility of the radial MOC transport solutions for the cell averaged reaction rate and the net current at the cell surfaces, how to build the first part of the CMFD equation is not important. Therefore, the first part of the CMFD equation is roughly built by using the normal distance from the gravity center to the surface. The VHTR core uses helium as a coolant which is realized as a void hole in a neutronics calculation. This void hole which

  11. Anisotropic Hexagonal Boron Nitride Nanomaterials - Synthesis and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Han,W.Q.

    2008-08-01

    Boron nitride (BN) is a synthetic binary compound located between III and V group elements in the Periodic Table. However, its properties, in terms of polymorphism and mechanical characteristics, are rather close to those of carbon compared with other III-V compounds, such as gallium nitride. BN crystallizes into a layered or a tetrahedrally linked structure, like those of graphite and diamond, respectively, depending on the conditions of its preparation, especially the pressure applied. Such correspondence between BN and carbon readily can be understood from their isoelectronic structures [1, 2]. On the other hand, in contrast to graphite, layered BN is transparent and is an insulator. This material has attracted great interest because, similar to carbon, it exists in various polymorphic forms exhibiting very different properties; however, these forms do not correspond strictly to those of carbon. Crystallographically, BN is classified into four polymorphic forms: Hexagonal BN (h-BN) (Figure 1(b)); rhombohedral BN (r-BN); cubic BN (c-BN); and wurtzite BN (w-BN). BN does not occur in nature. In 1842, Balmain [3] obtained BN as a reaction product between molten boric oxide and potassium cyanide under atmospheric pressure. Thereafter, many methods for its synthesis were reported. h-BN and r-BN are formed under ambient pressure. c-BN is synthesized from h-BN under high pressure at high temperature while w-BN is prepared from h-BN under high pressure at room temperature [1]. Each BN layer consists of stacks of hexagonal plate-like units of boron and nitrogen atoms linked by SP{sup 2} hybridized orbits and held together mainly by Van der Waals force (Fig 1(b)). The hexagonal polymorph has two-layered repeating units: AA'AA'... that differ from those in graphite: ABAB... (Figure 1(a)). Within the layers of h-BN there is coincidence between the same phases of the hexagons, although the boron atoms and nitrogen atoms are alternatively located along the c

  12. Hexagon and stripe patterns in dielectric barrier streamer discharge

    International Nuclear Information System (INIS)

    Dong Lifang; He Yafeng; Yin Zengqian; Chai Zhifang

    2004-01-01

    We present a specially designed dielectric barrier discharge (DBD) system for the study of pattern formation. Hexagon and stripe patterns have been observed in a streamer discharge in a DBD for the first time. The phase diagram of pattern types as a function of applied voltage is given

  13. Extension of the comet method to 2-D hexagonal geometry

    International Nuclear Information System (INIS)

    Connolly, Kevin John; Rahnema, Farzad; Zhang, Dingkang

    2011-01-01

    The capability of the heterogeneous coarse mesh radiation transport (COMET) method developed at Georgia Tech has been expanded. COMET is now able to treat hexagonal geometry in two dimensions, allowing reactor problems to be solved for those next-generation reactors which utilize prismatic block structure and hexagonal lattice geometry in their designs. The COMET method is used to solve whole core reactor analysis problems without resorting to homogenization or low-order transport approximations. The eigenvalue and fission density distribution of the reactor are determined iteratively using response functions. The method has previously proven accurate in solving PWR, BWR, and CANDU eigenvalue problems. In this paper, three simple test cases inspired by high temperature test reactor material cross sections and fuel block geometry are presented. These cases are given not in an attempt to model realistic nuclear power systems, but in order to test the ability of the improved method. Solutions determined by the new hexagonal version of COMET, COMET-Hex, are compared with solutions determined by MCNP5, and the results show the accuracy and efficiency of the improved COMET-Hex method in calculating the eigenvalue and fuel pin fission density in sample full-core problems. COMETHex determines the eigenvalues of these simple problems to an order of within 50 pcm of the reference solutions and all pin fission densities to an average error of 0.2%, and it requires fewer than three minutes to produce these results. (author)

  14. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes; Solucion de la Ecuacion de transporte de neutrones en geometria hexagonal usando esquemas nodales fuertemente discontinuos

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, C.A.; Valle G, E. del [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: cmugica@ipn.mx

    2005-07-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD{sub 5,3} and WD{sub 12,8} (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD{sub 5,3} and WD{sub 12,8} were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD{sub 3} and SD{sub 8} (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  15. Domain wall kinetics of lithium niobate single crystals near the hexagonal corner

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Won [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Ko, Do-Kyeong [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Yu, Nan Ei, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Advanced Photonics Research Institute, GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kitamura, Kenji [National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Ro, Jung Hoon, E-mail: neyu@gist.ac.kr, E-mail: jhro@pnu.edu [Department of Biomedical Engineering, School of Medicine, Pusan National University, Busan 602-739 (Korea, Republic of)

    2015-03-09

    A mesospheric approach based on a simple microscopic 2D Ising model in a hexagonal lattice plane is proposed to explain macroscopic “asymmetric in-out domain wall motion” observation in the (0001) plane of MgO-doped stoichiometric lithium niobate. Under application of an electric field that was higher than the conventional coercive field (E{sub c}) to the ferroelectric crystal, a natural hexagonal domain was obtained with walls that were parallel to the Y-axis of the crystal. When a fraction of the coercive field of around 0.1E{sub c} is applied in the reverse direction, this hexagonal domain is shrunk (moved inward) from the corner site into a shape with a corner angle of around 150° and 15° wall slopes to the Y-axis. A flipped electric field of 0.15E{sub c} is then applied to recover the natural hexagonal shape, and the 150° corner shape changes into a flat wall with 30° slope (moved outward). The differences in corner domain shapes between inward and outward domain motion were analyzed theoretically in terms of corner and wall site energies, which are described using the domain corner angle and wall slope with respect to the crystal Y-axis, respectively. In the inward domain wall motion case, the energy levels of the evolving 150° domain corner and 15° slope walls are most competitive, and could co-exist. In the outward case, the energy levels of corners with angles >180° are highly stable when compared with the possible domain walls; only a flat wall with 30° slope to the Y-axis is possible during outward motion.

  16. Neutron noise calculations in a hexagonal geometry and comparison with analytical solutions

    International Nuclear Information System (INIS)

    Tran, H. N.; Demaziere, C.

    2012-01-01

    This paper presents the development of a neutronic and kinetic solver for hexagonal geometries. The tool is developed based on the diffusion theory with multi-energy groups and multi-groups of delayed neutron precursors allowing the solutions of forward and adjoint problems of static and dynamic states, and is applicable to both thermal and fast systems with hexagonal geometries. In the dynamic problems, the small stationary fluctuations of macroscopic cross sections are considered as noise sources, and then the induced first order noise is calculated fully in the frequency domain. Numerical algorithms for solving the static and noise equations are implemented with a spatial discretization based on finite differences and a power iterative solution. A coarse mesh finite difference method has been adopted for speeding up the convergence. Since no other numerical tool could calculate frequency-dependent noise in hexagonal geometry, validation calculations have been performed and benchmarked to analytical solutions based on a 2-D homogeneous system with two-energy groups and one-group of delayed neutron precursor, in which point-like perturbations of thermal absorption cross section at central and non-central positions are considered as noise sources. (authors)

  17. Model for lattice dynamics of hexagonal close packed metals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R K [Tata Inst. of Fundamental Research, Bombay (India); Kumar, S [Meerut Coll. (India). Dept. of Physics

    1977-11-19

    A lattice dynamical model, which satisfies the requirements of translational invariance as well as the static equilibrium of hexagonal close packed lattice, has been proposed and applied to study the phonon dispersion relations in magnesium. The results revealed by this model have been claimed to be better than earlier ones.

  18. Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films

    International Nuclear Information System (INIS)

    Alam, M. T.; Haque, M. A.; Bresnehan, M. S.; Robinson, J. A.

    2014-01-01

    Thermal conductivity of freestanding 10 nm and 20 nm thick chemical vapor deposited hexagonal boron nitride films was measured using both steady state and transient techniques. The measured value for both thicknesses, about 100 ± 10 W m −1 K −1 , is lower than the bulk basal plane value (390 W m −1 K −1 ) due to the imperfections in the specimen microstructure. Impressively, this value is still 100 times higher than conventional dielectrics. Considering scalability and ease of integration, hexagonal boron nitride grown over large area is an excellent candidate for thermal management in two dimensional materials-based nanoelectronics

  19. Comparison of turbulent flow through hexagram and hexagon orifices in circular pipes using large-eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Nicolleau, Franck C G A; Qin, Ning, E-mail: n.qin@sheffield.ac.uk [Department of Mechanical Engineering, The University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-04-15

    Characteristics of turbulent flow through a circular, a hexagon and a hexagram orifice with the same flow area in circular pipes are investigated using wall-modelled large-eddy simulation. Good agreements to available experimental data were obtained in both the mean velocity and turbulent kinetic energy. The hexagram orifice with alternating convex and concave corners introduces outwards radial velocity around the concave corners downstream of the orifice plate stronger than the hexagon orifice. The stronger outwards radial velocity transfers high momentum from the pipe centre towards the pipe wall to energize the orifice-forced vortex sheet rolling-up and leads to a delayed vortex break-down. Correspondingly, the hexagram has a more gradual flow recovery to a pipe flow and a reduced pressure drop than the hexagon orifice. Both the hexagon and hexagram orifices show an axis-switching phenomenon, which is observed from both the streamwise velocity and turbulent kinetic energy contours. To the best knowledge of the authors, this is the first comparison of orifice-forced turbulence development, mixing and flow dynamics between a regular and a fractal-based polygonal orifice. (paper)

  20. Tolerance measurements on internal- and external-hexagon implants.

    Science.gov (United States)

    Braian, Michael; De Bruyn, Hugo; Fransson, Håkan; Christersson, Cecilia; Wennerberg, Ann

    2014-01-01

    To measure the horizontal machining tolerances of the interface between internal- and external-hexagon implants and analogs with corresponding components after delivery from the manufacturer. These values may be a valuable tool for evaluating increasing misfit caused by fabrication, processing, and wear. Seven implants and seven analogs with external- and internal-hexagon connections (Biomet 3i) with corresponding prefabricated gold cylinders and gold screws, prefabricated cylindric plastic cylinders, and laboratory screws were studied. One set of components from the external and internal groups was measured manually and digitally. Measurements from the test subjects were compared with identical measurements from the virtual model to obtain threshold values. The virtual model was then used to obtain optimally oriented cuts. The horizontal machining tolerances for castable plastic abutments on external implants were 12 ± 89 μm, and for internal implants they were 86 ± 47 μm. Tolerance measurements on prefabricated gold abutments for external implants were 44 ± 9 μm, and for internal implants they were 58 ± 28 μm. The groups with metallic components showed the smallest tolerance at external group and internal group. The prefabricated plastic cylinder groups ranged from external and internal connection.

  1. High-resolution electron microscopy on incommensurate long-period superstructures of hexagonal-close-packed Cu-Sb alloy

    International Nuclear Information System (INIS)

    Onozuka, T.; Kakehashi, S.; Takahashi, T.; Hirabayashi, M.

    1989-01-01

    Hexagonal incommensurate long-period superstructures of the Cu-Sb alloys containing 18-20 at.% Sb have been investigated by means of superstructure imaging using a high-resolution electron microscope. Honeycomb-type distributions of hexagonal domains consisting of the commensurate superstructure of type 7a 0 -2H are observed. The incommensurabilities of superstructure can be interpreted well with a hexagonal model composed of the 7a 0 -2H domains surrounded by domain walls which contain higher Sb content than the domain interior. The observed image contrast is reproduced well with multislice computer simulations based on the structure models proposed for the 7a 0 -2H domain and the domain wall. (orig.)

  2. High-resolution electron microscopy on incommensurate long-period superstructures of hexagonal-close-packed Cu-Sb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, T.; Kakehashi, S.; Takahashi, T.; Hirabayashi, M. (Tohoku Univ., Sendai (Japan). Inst. for Materials Research)

    1989-06-01

    Hexagonal incommensurate long-period superstructures of the Cu-Sb alloys containing 18-20 at.% Sb have been investigated by means of superstructure imaging using a high-resolution electron microscope. Honeycomb-type distributions of hexagonal domains consisting of the commensurate superstructure of type 7a{sub 0}-2H are observed. The incommensurabilities of superstructure can be interpreted well with a hexagonal model composed of the 7a{sub 0}-2H domains surrounded by domain walls which contain higher Sb content than the domain interior. The observed image contrast is reproduced well with multislice computer simulations based on the structure models proposed for the 7a{sub 0}-2H domain and the domain wall. (orig.).

  3. Surface charge conductivity of a topological insulator in a magnetic field: The effect of hexagonal warping

    Science.gov (United States)

    Akzyanov, R. S.; Rakhmanov, A. L.

    2018-02-01

    We investigate the influence of hexagonal warping on the transport properties of topological insulators. We study the charge conductivity within Kubo formalism in the first Born approximation using low-energy expansion of the Hamiltonian near the Dirac point. The effects of disorder, magnetic field, and chemical-potential value are analyzed in detail. We find that the presence of hexagonal warping significantly affects the conductivity of the topological insulator. In particular, it gives rise to the growth of the longitudinal conductivity with the increase of the disorder and anisotropic anomalous in-plane magnetoresistance. Hexagonal warping also affects the quantum anomalous Hall effect and anomalous out-of-plane magnetoresistance. The obtained results are consistent with the experimental data.

  4. Fabrication Improvement of Cold Forging Hexagonal Nuts by Computational Analysis and Experiment Verification

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2015-01-01

    Full Text Available Cold forging has played a critical role in fasteners and has been applied to the automobile industry, construction industry, aerospace industry, and living products so that cold forging presents the opportunities for manufacturing more products. By using computer simulation, this study attempts to analyze the process of creating machine parts, such as hexagonal nuts. The DEFORM-3D forming software is applied to analyze the process at various stages in the computer simulation, and the compression test is also used for the flow stress equation in order to compare the differences between the experimental results and the equation that is built into the computer simulation software. At the same time, the metallography and hardness of experiments are utilized to understand the cold forging characteristics of hexagonal nuts. The research results would benefit machinery businesses to realize the forging load and forming conditions at various stages before the fastener formation. In addition to planning proper die design and production, the quality of the produced hexagonal nuts would be more stable to promote industrial competitiveness.

  5. CARACTERIZAÇÃO GEOMORFOLÓGICA DAS ÁREAS LIVRES DE GELO EM RESPOSTA DA TENDÊNCIA DE RETRAÇÃO DA GELEIRA POLAR CLUB, PENÍNSULA POTTER, ILHA REI GEORGE, ANTÁRTICA

    Directory of Open Access Journals (Sweden)

    Betânia Bonada

    2018-01-01

    Full Text Available Este trabalho objetiva investigar a dinâmica geomorfológica glacial das áreas livres de gelo na Península Potter, Ilha Rei George, Antártica, em resposta à recente retração da geleira Polar Club. O mapeamento geomorfológico e a interpretação da evolução dos sistemas lacustres entre 2006 e 2011 das áreas livres de gelo na Península Potter foi realizado através da interpretação visual em uma imagem Quickbird (RGB432, em imagens COSMO-SkyMed polarizações VV e HH em modo spotlight processadas com filtros espaciais e perfis topográficos. Também foram considerados os aspectos morfométricos da península, interpretados através da geração de mapas de hipsometria, declividade, curvas de nível e sombreamento. A variação frontal da geleira Polar Club entre os anos de 1981 a 2015 foi obtida pela análise temporal de imagens Landsat. O mapeamento geomorfológico da Península Potter evidenciou os processos geomorfológicos proglaciais e o padrão de disposição espacial das feições lineares marginais ao gelo, como cordões morâinicos e feições glaciofluviais (relacionadas ao aporte da fusão sazonal da neve e do gelo, bem como terraços marinhos, ravinas e afloramentos rochosos. O modelo de evolução da variação frontal da geleira Polar Club indica que condição de último avanço glacial registrado pela geomorfologia proglacial pode estar relacionado à Pequena Idade do Gelo e que houve um contínuo processo de retração desde então. Entre 1981-2015 evidenciou-se a redução de área de 2,95km² para a geleira Polar Club (perda de área total de 9,4%. Este processo pode estar relacionado com a tendência de aumento das temperaturas médias do ar, a tendência de aumento de dias com precipitação líquida no verão e o número de dias em que a temperatura média ultrapassou os 0°C na região nas últimas décadas. O recuo da geleira Polar Club é pouco expressivo quando comparado a outras geleiras da Ilha Rei George

  6. Hydrothermal synthesis and formation mechanism of hexagonal yttrium hydroxide fluoride nanobundles

    International Nuclear Information System (INIS)

    Tian, Li; Sun, QiLiang; Zhao, RuiNi; He, HuiLin; Xue, JianRong; Lin, Jun

    2013-01-01

    Graphical abstract: The formation of yttrium hydroxide fluorides nanobundles can be expressed as a precipitation transformation from cubic NaYF 4 to hexagonal NaYF 4 and to hexagonal Y(OH) 2.02 F 0.98 owing to ion exchange. - Highlights: • Novel Y(OH) 2.02 F 0.98 nanobundles have been successfully prepared by hydrothermal method. • The branched nanobundles composed of numerous oriented-attached nanoparticles has been studied. • The growth mechanism is proposed to be ion exchange and precipitation transformation. - Abstract: This article presents the fabrication of hexagonal yttrium hydroxide fluoride nanobundles via one-pot hydrothermal process, using yttrium nitrate, sodium hydroxide and ammonia fluoride as raw materials to react in propanetriol solvent. The X-ray diffraction pattern clearly reveals that the grown product is pure yttrium hydroxide fluoride, namely Y(OH) 2.02 F 0.98 . The morphology and microstructure of the synthesized product is testified to be nanobundles composed of numerous oriented-attached nanoparticles as observed from the field emission scanning electron microscopy (FESEM). The chemical composition was analyzed by the energy dispersive spectrum (EDS), confirming the phase transformation of the products which was clearly consistent with the result of XRD analysis. It is proposed that the growth of yttrium hydroxide fluoride nanobundles be attributed to ion exchange and precipitation transformation

  7. Saturnian north polar region: a triangle inside the hexagon?

    Science.gov (United States)

    Kochemasov, Gennady G.

    2010-05-01

    The famous and "mysterious" stable hexagon structure around the North Pole of Saturn was earlier interpreted as projections of faces of a structural tetrahedron [1]. This "hidden" simplest Plato's polyhedron is a result of an interference of four fundamental (wave 1) warping waves having in any rotating celestial body four directions: orthogonal and diagonal. Origin of the warping waves in any celestial body is due to their movements in elliptical keplerian orbits with periodically changing accelerations. The structural tetrahedron is an intrinsic geometric feature marking the celestial bodies ubiquitous tectonic dichotomy as in a tetrahedron always there is an opposition of a face (expansion) and a vertex (contraction). In the saturnian case the tetrahedron shows a face at the north and a vertex at the south. Morphologically this is manifested by the hexagon and opposing it in the south a vertex. Blue and pink hues of the northern and southern hemispheres also underline the tectonic dichotomy. These geometric expressions are enforced by a subtle dark equilateral triangle appearing in the image PIA11682 also around the north pole and inside the hexagon (the triangle side is about 15000 km long). One angle of the triangle is clearly visible, another one just shows itself and the third one is barely distinguished. The sides of the triangle are not strait lines but slightly broken amidst lines what makes the triangle appear a bit hexagonal (spherical) and the angle is a bit bigger than 60 degrees of a classical equilateral triangle (~70 degrees). The central part of the triangle is not imaged (a black hole in the PIA11682). This image also confirms that the wide northern polar region is also densely "peppered" with bright cloudy more or less isometric spots on average 400 to 800 km across as in other latitudinal belts of Saturn [2, 3, 4]. Earlier they were observed in IR wavelengths, now they show themselves in visible wavelengths. Their origin and size were

  8. Response of hexagonal fuel assembly coupled with internal hydrodynamics

    International Nuclear Information System (INIS)

    Marchertas, A.H.; Julke, R.T.

    1975-01-01

    For safety considerations of sodium cooled fast breeder reactors the mechanistic accident-initiating conditions must be studied. In previous investigations of such initiating accidents the models assumed axisymmetric configurations and in general neglected the coupling effects with the subassembly boundary. This paper presents a more precise treatment of the subassembly boundary and also provides feedback of the boundary response to the pressure source. This is accomplished by marking use of two computer codes: REXCO-HT and SADCAT. The internal hydrodynamics of the fuel subassembly is simulated by the REXCO-HT code which possesses certain models of fuel-coolant interactions (MFCI) to be used as a pressure source. The hexagonal boundary of the fuel subassembly is modeled by the SADCAT code. Since both codes involve explicit time integration, coupling between the two is effected at each time step. The pressure at the outside boundary of the REXCO-HT model provides the loading on the SADCAT model. Given the load, the SADCAT model yields the three-dimensional deformation of the hexagonal boundary. With the deformation known, the outside REXCO-HT model boundary is adjusted and the computation cycle of the coupling is completed. In effect, the coupling of the two codes substitutes a cylindrical vessel of the REXCO-HT code by a hexagonal duct. It is shown by the use of this procedure that the assumption of a cylindrical vessel of the same thickness as that of the hexcan is quite erroneous. The maximum deformation of the flat of the hexcan in the illustrative examples is larger by as much as one order of magnitude. The maximum strains at the inside CORNER of the hexcan are also underestimated by a similar amount

  9. Delamination of hexagonal boron nitride in a stirred media mill

    International Nuclear Information System (INIS)

    Damm, C.; Körner, J.; Peukert, W.

    2013-01-01

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO 2 beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO 2 grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm −1 showing that the in-plane order in the milled platelets is remained.

  10. Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model.

    Science.gov (United States)

    Lee, J; Scheraga, H A; Rackovsky, S

    1996-01-01

    The lateral packing of a collagen-like molecule, CH3CO-(Gly-L-Pro-L-Pro)4-NHCH3, has been examined by energy minimization with the ECEPP/3 force field. Two current packing models, the Smith collagen microfibril twisted equilateral pentagonal model and the quasi-hexagonal packing model, have been extensively investigated. In treating the Smith microfibril model, energy minimization was carried out on various conformations including those with the symmetry of equivalent packing, i.e., in which the triple helices were arranged equivalently with respect to each other. Both models are based on the experimental observation of the characteristic axial periodicity, D = 67 nm, of light and dark bands, indicating that, if any superstructure exists, it should consist of five triple helices. The quasi-hexagonal packing structure is found to be energetically more favorable than the Smith microfibril model by as much as 31.2 kcal/mol of five triple helices. This is because the quasi-hexagonal packing geometry provides more nonbonded interaction possibilities between triple helices than does the Smith microfibril geometry. Our results are consistent with recent x-ray studies with synthetic collagen-like molecules and rat tail tendon, in which the data were interpreted as being consistent with either a quasi-hexagonal or a square-triangular structure.

  11. Uso medicinal do óleo de copaíba (Copaifera sp. por pessoas da melhor idade no município de Presidente Médici, Rondônia, Brasil

    Directory of Open Access Journals (Sweden)

    Santina Rodrigues Santana

    2014-12-01

    Full Text Available O Brasil é o maior produtor do óleo extraído da Copaifera sp. (Caesalpiniaceae, uma das plantas medicinais mais estudadas do mundo, encontrada principalmente na região amazônica. Uma abordagem etnobotânica sobre plantas medicinais pode facilitar a seleção de espécies potencialmente ativas e utilizadas pela população de determinada região, abrindo portas para o desenvolvimento de novos medicamentos, aos quais poderão ter acesso um maior número de pessoas. Desta forma, neste trabalho foi caracterizado o uso medicinal do óleo de copaíba junto à população da melhor idade do município de Presidente Médici, Estado de Rondônia, na Amazônia brasileira, já que faltam dados quanto ao emprego dessa planta com tal finalidade nessa região. As informações etnobotânicas foram obtidas através de entrevistas semiestruturadas aplicadas a 27 pessoas, utilizando a técnica "bola de neve" para incluir participantes. As indicações etnofarmacológicas levantadas quanto ao óleo foram: tratamento de infeções (63%; cicatrizante (48%; antitetânico (18.5% e antitumoral (11%. O chá da casca do caule foi recomendado por 11% dos entrevistados para lavagem de ferimentos e como depurativo sanguíneo. Portanto, esta planta é muito usada entre pessoas da melhor idade daquele município por seu caráter medicinal, chamando a atenção para a necessidade de estudos que confirmem cientificamente sua eficácia terapêutica

  12. Experimental investigation of the coolability of blocked hexagonal bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hózer, Zoltán, E-mail: zoltan.hozer@energia.mta.hu; Nagy, Imre; Kunstár, Mihály; Szabó, Péter; Vér, Nóra; Farkas, Róbert; Trosztel, István; Vimi, András

    2017-06-15

    Highlights: • Experiments were performed with electrically heated hexagonal fuel bundles. • Coolability of ballooned VVER-440 type bundle was confirmed up to high blockage rate. • Pellet relocation effect causes delay in the cool-down of the bundle. • The bypass line does not prevent the reflood of ballooned fuel rods. - Abstract: The CODEX-COOL experimental series was carried out in order to evaluate the effect of ballooning and pellet relocation in hexagonal bundles on the coolability of fuel rods after a LOCA event. The effects of blockage geometry, coolant flowrate, initial temperature and axial profile were investigated. The experimental results confirmed that a VVER bundle up to 80% blockage rate remains coolable after a LOCA event under design basis conditions. The ballooned section creates some obstacles for the cooling water during reflood of the bundle, but this effect causes only a short delay in the cooling down of the hot fuel rods. The accumulation of fuel pellet debris in the ballooned volume results in a local power peak, which leads to further slowing down of quench front.

  13. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Dimoulas, A. [National Center for Scientific Research “Demokritos,” 15310 Athens (Greece); Grazianetti, C.; Fanciulli, M. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, I-20126, Milano (Italy); Chiappe, D.; Molle, A. [Laboratorio MDM, IMM-CNR, I-20864, Agrate Brianza (MB) (Italy)

    2013-12-16

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  14. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    Science.gov (United States)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  15. Aspectos da biologia do Aedes albopictus (Skuse, 1894 (Diptera: Culicidae, a nível de campo Biology aspects of the Aedes albopictus (Skuse, 1894 (Diptera: Culicidae, at fields level

    Directory of Open Access Journals (Sweden)

    David Pereira Neves

    1989-01-01

    Full Text Available After the Aedees albopictus has been discoved by Neves & Espinola (1987 at Minas Gerais state, we begun studying some biologic aspects, such as breeding places, host preference, times of feeding and the preferred places for blood feeding.

  16. Band gap effects of hexagonal boron nitride using oxygen plasma

    International Nuclear Information System (INIS)

    Sevak Singh, Ram; Leong Chow, Wai; Yingjie Tay, Roland; Hon Tsang, Siu; Mallick, Govind; Tong Teo, Edwin Hang

    2014-01-01

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing

  17. Band gap effects of hexagonal boron nitride using oxygen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sevak Singh, Ram; Leong Chow, Wai [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yingjie Tay, Roland [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Hon Tsang, Siu [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Mallick, Govind [Temasek Laboratories-NTU, 50 Nanyang Avenue, Singapore 639798 (Singapore); Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Tong Teo, Edwin Hang, E-mail: htteo@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-04-21

    Tuning of band gap of hexagonal boron nitride (h-BN) has been a challenging problem due to its inherent chemical stability and inertness. In this work, we report the changes in band gaps in a few layers of chemical vapor deposition processed as-grown h-BN using a simple oxygen plasma treatment. Optical absorption spectra show a trend of band gap narrowing monotonically from 6 eV of pristine h-BN to 4.31 eV when exposed to oxygen plasma for 12 s. The narrowing of band gap causes the reduction in electrical resistance by ∼100 fold. The x-ray photoelectron spectroscopy results of plasma treated hexagonal boron nitride surface show the predominant doping of oxygen for the nitrogen vacancy. Energy sub-band formations inside the band gap of h-BN, due to the incorporation of oxygen dopants, cause a red shift in absorption edge corresponding to the band gap narrowing.

  18. Quasi free-standing silicene in a superlattice with hexagonal boron nitride

    KAUST Repository

    Kaloni, T. P.; Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    We study a superlattice of silicene and hexagonal boron nitride by first principles calculations and demonstrate that the interaction between the layers of the superlattice is very small. As a consequence, quasi free-standing silicene is realized

  19. Structural, magnetic and electrical properties of the hexagonal ferrites MFeO3 (M=Y, Yb, In)

    International Nuclear Information System (INIS)

    Downie, Lewis J.; Goff, Richard J.; Kockelmann, Winfried; Forder, Sue D.; Parker, Julia E.; Morrison, Finlay D.; Lightfoot, Philip

    2012-01-01

    The hexagonal ferrites MFeO 3 (M=Y, Yb, In) have been studied using a combination of neutron and X-ray powder diffraction, magnetic susceptibility, dielectric measurements and 57 Fe Mössbauer spectroscopy. This study confirms the previously reported crystal structure of InFeO 3 (YAlO 3 structure type, space group P6 3 /mmc), but YFeO 3 and YbFeO 3 both show a lowering of symmetry to at most P6 3 cm (ferrielectric YMnO 3 structure type). However, Mössbauer spectroscopy shows at least two distinct Fe sites for both YFeO 3 and YbFeO 3 and we suggest that the best model to rationalise this involves phase separation into more than one similar hexagonal YMnO 3 -like phase. Rietveld analysis of the neutron diffraction data was carried out using two hexagonal phases as a simplest case scenario. In both YFeO 3 and YbFeO 3 , distinct dielectric anomalies are observed near 130 K and 150 K, respectively. These are tentatively correlated with weak anomalies in magnetic susceptibility and lattice parameters, for YFeO 3 and YbFeO 3 , respectively, which may suggest a weak magnetoelectric effect. Comparison of neutron and X-ray powder diffraction shows evidence of long-range magnetic order in both YFeO 3 and YbFeO 3 at low temperatures. Due to poor sample crystallinity, the compositional and structural effects underlying the phase separation and possible magnetoelectric phenomena cannot be ascertained. - Graphical abstract: Hexagonal MFeO 3 (M=Y, Yb) exhibit phase separation into two YMnO 3 -like phases. Variable temperature crystallographic, electrical and magnetic studies suggest weak correlations between electrical and magnetic responses and long-range magnetic order at low temperature. Highlights: ► Multi-technique study of multiferroic hexagonal MFeO 3 . ► Phase separation into two similar hexagonal phases. ► Weak coupling of electrical and magnetic responses. ► Long-range magnetic order at low T.

  20. Eu{sup 3+}-doped Y{sub 2}O{sub 3} hexagonal prisms: Shape-controlled synthesis and tailored luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Errui [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Li, Guangshe [Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Fu, Chaochao; Zheng, Jing [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Xinsong [Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Xu, Wen [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Li, Liping, E-mail: lipingli@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2015-10-25

    In this work, Eu{sup 3+} doped Y{sub 2}O{sub 3} hexagonal prisms were synthesized by a novel two-phase approach, which involves water at the bottom as aqueous phase and oleylamine in the above as oil phase. With this unique reaction system, precursors of hexagonal prisms Y{sub 4}O(OH){sub 9}(NO{sub 3}) were first obtained by simply varying the volume ratio of water to oleylamine. Time-dependent experiments were systematically performed to reveal the growth mechanism of the precursor. After subsequent heat treatment, these precursors transformed to Y{sub 2}O{sub 3} hexagonal prisms with controlled diameters and aspect ratios varying from 4 to 19. Such a transformation is preceded via a topotactic process, as indicated by TG-DTA and mass spectra. Eventually, all Eu{sup 3+} doped Y{sub 2}O{sub 3} hexagonal prisms were found to exhibit an intensive red emission at 611 nm, which corresponds to {sup 5}D{sub 0}→{sup 7}F{sub 2} transition of Eu{sup 3+}. With varying the aspect ratio of hexagonal prisms and increasing Eu{sup 3+} concentration in Y{sub 2}O{sub 3}, an optimum external quantum efficiency was achieved. - Graphical abstract: In this work, Eu{sup 3+} doped Y{sub 2}O{sub 3} hexagonal prisms with controlled aspect ratio from 4.4 to 19.3 were synthesized by transformation of the precursor Y{sub 4}O(OH){sub 9}(NO{sub 3}) hexagonal prisms from a novel two-phase reaction system. The growth mechanism of the precursor has been systematically investigated, and a topotactic phase transformation from precursors to cubic Y{sub 2}O{sub 3} is for the first time put forward. By the size controlling and aspect ratio adjusting, the luminescence emission intensity as well as external quantum efficiency of Eu{sup 3+} doped Y{sub 2}O{sub 3} hexagonal prisms is further tailored to show an optimum. - Highlights: • Eu{sup 3+} doped Y{sub 2}O{sub 3} hexagonal prisms were synthesized by a novel two-phase approach. • Inheriting mechanism of prisms morphology from Y{sub 4}O(OH){sub 9

  1. Synthesis and magnetic properties of hexagonal Y(Mn,Cu)O3 multiferroic materials

    International Nuclear Information System (INIS)

    Jeuvrey, L.; Peña, O.; Moure, A.; Moure, C.

    2012-01-01

    Single-phase hexagonal-type solid solutions based on the multiferroic YMnO 3 material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn 1−x Cu x O 3 ; x 1+y MnO 3 ; y 3+ two-dimensional lattice. The magnetic transition at T N decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn 3+ –Mn 4+ interactions created by the substitution of Mn 3+ by Cu 2+ , are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn 3+ –Mn 4+ pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure. - Highlights: ► Hexagonal-type solid solutions of Y(Mn,Cu)O 3 synthesized by Pechini process. ► Chemical substitution at B site inhibits geometrical magnetic frustration. ► Magnetic transition decreases with Cu-doping. ► Local ferromagnetic Mn–Mn interactions coexist with the frustrated state.

  2. Direct numerical simulation of turbulence and heat transfer in a hexagonal shaped duct

    Science.gov (United States)

    Marin, Oana; Obabko, Aleks; Schlatter, Philipp

    2014-11-01

    Flows in hexagonal shapes frequently occur in nuclear reactor applications, and are also present in honeycomb-shaped settling chambers for e.g. wind tunnels. Whereas wall-bounded turbulence has been studied comprehensively in two-dimensional channels, and to a lesser degree also in square and rectangular ducts and triangles, only very limited data for hexagonal ducts is available, including resistance correlations and mean profiles. Here, we use resolved spectral-element simulations to compute velocity and temperature in fully-developed (periodic) hexagonal duct flow. The Reynolds number, based on the fixed flow rate and the hydraulic diameter, ranges between 2000 and 20000. The temperature assumes constant wall flux or constant wall temperature. First DNS results are focused on the mean characteristics such a head loss, Nusselt number, and critical Reynolds number for sustained turbulence. Profiles, both for mean and fluctuating quantities, are extracted and discussed in the context of square ducts and pipes. Comparisons to existing experiments, RANS and empirical correlations are supplied as well. The results show a complicated and fine-scale pattern of the in-plane secondary flow, which clearly affects the momentum and temperature distribution throughout the cross section.

  3. Influence of strontium on the cubic to ordered hexagonal phase

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 23; Issue 6. Influence of strontium on the cubic to ordered hexagonal phase transformation in barium magnesium niobate. M Thirumal A K Ganguli. Phase Transitions Volume 23 Issue 6 December 2000 pp 495-498 ...

  4. Polymer- and salt-induced toroids of hexagonal DNA.

    OpenAIRE

    Ubbink, J; Odijk, T

    1995-01-01

    A model is proposed for polymer- and salt-induced toroidal condensates of DNA, based on a recent theory of the undulation enhancement of the electrostatic interaction in the bulk hexagonal phase of semiflexible polyions. In a continuum approximation, the thermodynamic potential of a monomolecular toroid may be split up in bulk, surface, and curvature contributions. With the help of an approximate analytical minimization procedure, the optimal torus dimensions are calculated as a function of t...

  5. Extension of the analytic nodal diffusion solver ANDES to triangular-Z geometry and coupling with COBRA-IIIc for hexagonal core analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Jimenez, Javier; Garcia-Herranz, Nuria; Aragones, Jose-Maria

    2010-01-01

    In this paper the extension of the multigroup nodal diffusion code ANDES, based on the Analytic Coarse Mesh Finite Difference (ACMFD) method, from Cartesian to hexagonal geometry is presented, as well as its coupling with the thermal-hydraulic (TH) code COBRA-IIIc for hexagonal core analysis. In extending the ACMFD method to hexagonal assemblies, triangular-Z nodes are used. In the radial plane, a direct transverse integration procedure is applied along the three directions that are orthogonal to the triangle interfaces. The triangular nodalization avoids the singularities, that appear when applying transverse integration to hexagonal nodes, and allows the advantage of the mesh subdivision capabilities implicit within that geometry. As for the thermal-hydraulics, the extension of the coupling scheme to hexagonal geometry has been performed with the capability to model the core using either assembly-wise channels (hexagonal mesh) or a higher refinement with six channels per fuel assembly (triangular mesh). Achieving this level of TH mesh refinement with COBRA-IIIc code provides a better estimation of the in-core 3D flow distribution, improving the TH core modelling. The neutronics and thermal-hydraulics coupled code, ANDES/COBRA-IIIc, previously verified in Cartesian geometry core analysis, can also be applied now to full three-dimensional VVER core problems, as well as to other thermal and fast hexagonal core designs. Verification results are provided, corresponding to the different cases of the OECD/NEA-NSC VVER-1000 Coolant Transient Benchmarks.

  6. Bronze-mean hexagonal quasicrystal

    Science.gov (United States)

    Dotera, Tomonari; Bekku, Shinichi; Ziherl, Primož

    2017-10-01

    The most striking feature of conventional quasicrystals is their non-traditional symmetry characterized by icosahedral, dodecagonal, decagonal or octagonal axes. The symmetry and the aperiodicity of these materials stem from an irrational ratio of two or more length scales controlling their structure, the best-known examples being the Penrose and the Ammann-Beenker tiling as two-dimensional models related to the golden and the silver mean, respectively. Surprisingly, no other metallic-mean tilings have been discovered so far. Here we propose a self-similar bronze-mean hexagonal pattern, which may be viewed as a projection of a higher-dimensional periodic lattice with a Koch-like snowflake projection window. We use numerical simulations to demonstrate that a disordered variant of this quasicrystal can be materialized in soft polymeric colloidal particles with a core-shell architecture. Moreover, by varying the geometry of the pattern we generate a continuous sequence of structures, which provide an alternative interpretation of quasicrystalline approximants observed in several metal-silicon alloys.

  7. The phenomenon of resilient rotary curvature of hexagon selenium nanothin crystals grate around [001] within the framework of asymmetrical theory of resiliency

    International Nuclear Information System (INIS)

    Malkov, V.B.; Agalakov, S.P.; Malkov, A.V.; Malkov, O.V.; Pushin, V.G.; Shul'gin, B.V.

    2008-01-01

    The research of resilient rotary curvature of hexagon selenium nanothin (80-100 nm) crystals grate the method of translucent electronic microscopy. In view of the fact that reasons of resilient rotary curvature of hexagon selenium nanothin crystals grate around [001] remained not found out, the analysis of models of resilient rotary curvature of hexagon selenium crystals grate is conducted.

  8. Sodium-Doped Mesoporous Ni2P2O7 Hexagonal Tablets for High-Performance Flexible All-Solid-State Hybrid Supercapacitors.

    Science.gov (United States)

    Wei, Chengzhen; Cheng, Cheng; Wang, Shanshan; Xu, Yazhou; Wang, Jindi; Pang, Huan

    2015-08-01

    A simple hydrothermal method has been developed to prepare hexagonal tablet precursors, which are then transformed into porous sodium-doped Ni2P2O7 hexagonal tablets by a simple calcination method. The obtained samples were evaluated as electrode materials for supercapacitors. Electrochemical measurements show that the electrode based on the porous sodium-doped Ni2P2O7 hexagonal tablets exhibits a specific capacitance of 557.7 F g(-1) at a current density of 1.2 A g(-1) . Furthermore, the porous sodium-doped Ni2P2O7 hexagonal tablets were successfully used to construct flexible solid-state hybrid supercapacitors. The device is highly flexible and achieves a maximum energy density of 23.4 Wh kg(-1) and a good cycling stability after 5000 cycles, which confirms that the porous sodium-doped Ni2P2 O7 hexagonal tablets are promising active materials for flexible supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 2D of hexagonal plasmonic necklaces for enhanced second harmonic generation

    DEFF Research Database (Denmark)

    Gómez-Tornero, Alejandro; Tserkezis, Christos; Mateos, Luis

    2017-01-01

    Hexagonal plasmonic necklaces of silver nanoparticles organized in 2D superlattices on functional ferroelectric templates are fabricated in large-scale spatial regions by using a surfactant-free photo-deposition process. The plasmonic necklaces support broad radiative plasmonic resonances allowing...

  10. Diagonal form factors and hexagon form factors

    International Nuclear Information System (INIS)

    Jiang, Yunfeng; Petrovskii, Andrei

    2016-01-01

    We study the heavy-heavy-light (HHL) three-point functions in the planar N=4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program http://arxiv.org/abs/1505.06745. We prove the conjecture of Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050 on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.

  11. Diagonal form factors and hexagon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunfeng [Institute for Theoretical Physics, ETH Zürich,Honggerberg, Zürich, 8093 (Switzerland); Petrovskii, Andrei [Institut de Physique Théorique, CEA, URA 2306 CNRS Saclay,Gif-sur-Yvette, F91191 (France)

    2016-07-25

    We study the heavy-heavy-light (HHL) three-point functions in the planar N=4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program http://arxiv.org/abs/1505.06745. We prove the conjecture of Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050 on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.

  12. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes

    International Nuclear Information System (INIS)

    Mugica R, C.A.; Valle G, E. del

    2005-01-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  13. Síntese, caracterização e aplicação de novos adsorventes obtidos a partir da modificação de sílicas mesoporosas

    OpenAIRE

    Natália Fattori

    2011-01-01

    Resumo: O presente trabalho descreve a preparação e caracterização de novos materiais adsorventes obtidos a partir da modificação química de dois diferentes substratos mesoporosos: uma sílica mesoporosa constituída de uma estrutura porosa altamente ordenada e uniforme, composta de poros ou canais cilíndricos dispostos paralelamente e empacotados em arranjo hexagonal (SBA-15), e uma sílica mesoporosa caracterizada por uma rede desordenada de poros, de tamanho e forma variados, distribuídos e i...

  14. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    Science.gov (United States)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  15. Computation of 3D neutron fluxes in one pin hexagonal cell

    International Nuclear Information System (INIS)

    Prabha, Hem; Marleau, Guy

    2013-01-01

    Highlights: ► Computations of 3D neutron fluxes in one pin hexagonal cell is performed by Carlvik’s method of collision probability. ► Carlvik’s method requires computation of track lengths in the geometry. ► Equations are developed to compute tracks, in 2D and 3D, in hexagons and are implemented in a program HX7. ► The program HX7 is implemented in NXT module of the code DRAGON, where tracks in pins are computed. ► The tracks are plotted and fluxes are compared with the EXCELT module of the code DRAGON. - Abstract: In this paper we are presenting the method of computation of three dimensional (3D) neutron fluxes in one pin hexagonal cell. Carlvik’s collision probability method of solving neutron transport equation for computing fluxes has been used here. This method can consider exact geometrical details of the given geometry. While using this method, track length computations are required to be done. We have described here the method of computing tracks in one 3D hexagon. A program HX7 has been developed for this purpose. This program has been implemented in the NXT module of the code DRAGON, where tracks in the pins are computed. For computing tracks in 3D, first we use the tracks computed in the two dimensions (2D) and then we project them in the third dimension. We have developed equations for this purpose. In both the regions, fuel pin as well as in the moderator surrounding the pin the fluxes are assumed to be uniform. A uniform source is assumed in the moderator region. Reflecting boundary conditions are applied on all the sides as well as on the top and bottom surfaces. One group 2D and 3D fluxes are compared with the respective results obtained by the EXCELT module of DRAGON. To check the computations, tracks are plotted and errors in the computations are obtained. It is observed by using both the modules EXCELT and NXT that the fluxes in the pins converge faster and in the moderator region fluxes converge very slowly

  16. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation

    OpenAIRE

    Rodrigues, Bruno VM; Leite, Nelly CS; Cavalcanti, Bruno das Neves; da Silva, Newton S; Marciano, Fernanda R; Corat, Evaldo J; Webster, Thomas J; Lobo, Anderson O

    2016-01-01

    Bruno VM Rodrigues,1,* Nelly CS Leite,1,* Bruno das Neves Cavalcanti,2 Newton S da Silva,3 Fernanda R Marciano,1 Evaldo J Corat,4 Thomas J Webster,5,6 Anderson O Lobo11Laboratory of Biomedical Nanotechnology, Institute of Research and Development (IP&D), University of Vale do Paraiba (UNIVAP), Sao Jose dos Campos, Brazil; 2Department of Cardiology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; 3Laboratory of Cell Biology and Tis...

  17. Solution of two-dimensional diffusion equation for hexagonal cells by the finite Fourier transformation

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    1975-01-01

    A method of solution is presented for a monoenergetic diffusion equation in two-dimensional hexagonal cells by a finite Fourier transformation. Up to the present, the solution by the finite Fourier transformation has been developed for x-y, r-z and x-y-z geometries, and the flux and current at the boundary are obtained in terms of Fourier series. It is shown here that the method can be applied to hexagonal cells and the expansion of boundary values in a Legendre polynomials gives numerically a higher accuracy than is obtained by a Fourier series. (orig.) [de

  18. Acoustic phonons in the hexagonal perovskite CsNiCl3 around the Gamma-point

    DEFF Research Database (Denmark)

    Visser, D.; Monteith, A.R.; Rønnow, H.M.

    2000-01-01

    The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared with the ......The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared...

  19. First-principles calculations on double-walled inorganic nanotubes with hexagonal chiralities

    International Nuclear Information System (INIS)

    Zhukovskii, Yuri F; Evarestov, Robert A; Bandura, Andrei V; Losev, Maxim V

    2011-01-01

    The two sets of commensurate double-walled boron nitride and titania hexagonally-structured nanotubes (DW BN and TiO 2 NTs) possessing either armchair- or zigzag-type chiralities have been considered, i.e., (n 1 ,n 1 )-(n 2 ,n 2 ) or (n 1 ,0)-(n 2 ,0), respectively. For symmetry analysis of these nanotubes, the line symmetry groups for one-periodic (1D) nanostructures with rotohelical symmetry have been applied. To analyze the structural and electronic properties of hexagonal DW NTs, a series of large-scale ab initio DFT-LCAO calculations have been performed using the hybrid Hartree-Fock/Kohn-Sham exchange-correlation functional PBE0 (as implemented in CRYSTAL-09 code). To establish the optimal inter-shell distances within DW NTs corresponding to the minima of calculated total energy, the chiral indices n 1 and n 2 of the constituent single-walled (SW) nanotubes have been successively varied.

  20. RTk/SN Solutions of the Two-Dimensional Multigroup Transport Equations in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Valle, Edmundo del; Mund, Ernest H.

    2004-01-01

    This paper describes an extension to the hexagonal geometry of some weakly discontinuous nodal finite element schemes developed by Hennart and del Valle for the two-dimensional discrete ordinates transport equation in quadrangular geometry. The extension is carried out in a way similar to the extension to the hexagonal geometry of nodal element schemes for the diffusion equation using a composite mapping technique suggested by Hennart, Mund, and del Valle. The combination of the weakly discontinuous nodal transport scheme and the composite mapping is new and is detailed in the main section of the paper. The algorithm efficiency is shown numerically through some benchmark calculations on classical problems widely referred to in the literature

  1. Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.

    Science.gov (United States)

    Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi

    2017-08-09

    The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.

  2. Evaluation of the hexagonal and spherical model of vocational interests in the young people in Serbia and Bulgaria

    Directory of Open Access Journals (Sweden)

    Hedrih Vladimir

    2016-01-01

    Full Text Available The aim of this study was to validate Holland’s hexagonal and Tracey’s spherical model of vocational interests in young adults in Serbia and Bulgaria. To this end, 1250 participants, 560 from Serbia and 690 from Bulgaria, filled in Serbian and Bulgarian versions of the Personal Globe Inventory (PGI, Tracey, 2002. Hubert and Arabie’s randomization test of hypothetical orders, multidimensional scaling with fixed coordinates, Myors test and exploratory factor analysis were used. The results showed that the hexagonal and spherical models well explained the structure of vocational interests in both samples. The level of fit of the hexagonal model to the data obtained by using the PGI was generally higher than those established in the studies that used other Holland-based instruments. Furthermore, the levels of fit of both hexagonal and spherical model were in the same range like those obtained in previous studies in other countries. The results also pointed out a remarkable similarity in the structure of vocational interests in the Bulgarian and Serbian samples. [Projekat Ministarstva nauke Republike Srbije, br. 179002

  3. Structural domain walls in polar hexagonal manganites

    Science.gov (United States)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  4. Vortex solitons at the interface separating square and hexagonal lattices

    Energy Technology Data Exchange (ETDEWEB)

    Jović Savić, Dragana, E-mail: jovic@ipb.ac.rs; Piper, Aleksandra; Žikić, Radomir; Timotijević, Dejan

    2015-06-19

    Vortex solitons at the interface separating two different photonic lattices – square and hexagonal – are demonstrated numerically. We consider the conditions for the existence of discrete vortex states at such interfaces and develop a concise picture of different scenarios of the vortex solutions behavior. Various vortices with different size and topological charges are considered, as well as various lattice interfaces. A novel type of discrete vortex surface solitons in a form of five-lobe solution is observed. Besides stable three-lobe and six-lobe discrete surface modes propagating for long distances, we observe various oscillatory vortex surface solitons, as well as dynamical instabilities of different kinds of solutions and study their angular momentum. Dynamical instabilities occur for higher values of the propagation constant, or at higher beam powers. - Highlights: • We demonstrate vortex solitons at the square–hexagonal photonic lattice interface. • A novel type of five-lobe surface vortex solitons is observed. • Different phase structures of surface solutions are studied. • Orbital angular momentum transfer of such solutions is investigated.

  5. Raman scattering investigation of Bi2Te3 hexagonal nanoplates prepared by a solvothermal process in the absence of NaOH

    International Nuclear Information System (INIS)

    Liang Yujie; Wang Wenzhong; Zeng Baoqing; Zhang Guling; Huang Jing; Li Jin; Li Te; Song Yangyang; Zhang Xiuyu

    2011-01-01

    Research highlights: → Hexagonal Bi 2 Te 3 thin nanoplates were synthesized by a simple solvothermal method. → Optical properties of the nanoplates were investigated by micro-Raman spectroscopy. → Infrared (IR) active mode (A 1u ) is greatly activated in Raman scattering spectrum. → Infrared (IR) active mode (A 1u ) shows up in Raman spectrum of hexagonal nanoplates. → Raman spectrum clearly shows crystal symmetry breaking of hexagonal nanoplates. - Abstract: Hexagonal Bi 2 Te 3 nanoplates were synthesized by a simple solvothermal process in the absence of NaOH. The composition, morphology and size of the as-prepared products were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Raman scattering optical properties of the as-prepared Bi 2 Te 3 nanoplates were investigated by micro-Raman spectroscopy. The Raman spectrum shows that infrared (IR) active mode (A 1u ), which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is greatly activated and shown up clearly in Raman scattering spectrum. We attribute the appearance of infrared active (A 1u ) in Raman spectrum to crystal symmetry breaking of Bi 2 Te 3 hexagonal nanoplates. The as-grown Bi 2 Te 3 hexagonal nanoplates, exhibiting novel Raman optical properties compared with bulk crystals, may find potential applications in thermoelectric devices.

  6. Synthesis and magnetic properties of hexagonal Y(Mn,Cu)O{sub 3} multiferroic materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeuvrey, L., E-mail: laurent.jeuvrey@univ-rennes1.fr [Sciences Chimiques de Rennes, UMR-CNRS 6226, Universite de Rennes 1, 35042 Rennes cedex (France); Pena, O. [Sciences Chimiques de Rennes, UMR-CNRS 6226, Universite de Rennes 1, 35042 Rennes cedex (France); Moure, A.; Moure, C. [Electroceramics Department, Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, 28049, Madrid (Spain)

    2012-03-15

    Single-phase hexagonal-type solid solutions based on the multiferroic YMnO{sub 3} material were synthesized by a modified Pechini process. Copper doping at the B-site (YMn{sub 1-x}Cu{sub x}O{sub 3}; x<0.15) and self-doping at the A-site (Y{sub 1+y}MnO{sub 3}; y<0.10) successfully maintained the hexagonal structure. Self-doping was limited to y(Y)=2 at% and confirmed that excess yttrium avoids formation of ferromagnetic manganese oxide impurities but creates vacancies at the Mn site. Chemical substitution at the B-site inhibits the geometrical frustration of the Mn{sup 3+} two-dimensional lattice. The magnetic transition at T{sub N} decreases from 70 K down to 49 K, when x(Cu) goes from 0 to 15 at%. Weak ferromagnetic Mn{sup 3+}-Mn{sup 4+} interactions created by the substitution of Mn{sup 3+} by Cu{sup 2+}, are visible through the coercive field and spontaneous magnetization but do not modify the overall magnetic frustration. Presence of Mn{sup 3+}-Mn{sup 4+} pairs leads to an increase of the electrical conductivity due to thermally-activated small-polaron hopping mechanisms. Results show that local ferromagnetic interactions can coexist within the frustrated state in the hexagonal polar structure. - Highlights: Black-Right-Pointing-Pointer Hexagonal-type solid solutions of Y(Mn,Cu)O{sub 3} synthesized by Pechini process. Black-Right-Pointing-Pointer Chemical substitution at B site inhibits geometrical magnetic frustration. Black-Right-Pointing-Pointer Magnetic transition decreases with Cu-doping. Black-Right-Pointing-Pointer Local ferromagnetic Mn-Mn interactions coexist with the frustrated state.

  7. Mixed dual finite element methods for the numerical treatment of the diffusion equation in hexagonal geometry

    International Nuclear Information System (INIS)

    Schneider, D.

    2001-01-01

    The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P N approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)

  8. DFT study of the hexagonal high-entropy alloy fission product system

    Energy Technology Data Exchange (ETDEWEB)

    King, D.J.M., E-mail: daniel.miks@live.com [School of Electrical Engineering, University of New South Wales, Kensington, 2052, NSW (Australia); Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Burr, P.A.; Obbard, E.G. [School of Electrical Engineering, University of New South Wales, Kensington, 2052, NSW (Australia); Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Middleburgh, S.C. [Westinghouse Electric Sweden AB, SE-721 63, Västerås (Sweden); Department of Materials, Imperial College London, South Kensington, London, SW7 2AZ (United Kingdom); KTH Royal Institute of Technology, Reactor Physics, 106 91 Stockholm (Sweden)

    2017-05-15

    The metallic phase fission product containing Mo-Pd-Rh-Ru-Tc can be described as a hexagonal high-entropy alloy (HEA) and is thus investigated using atomic scale simulation techniques relevant to HEAs. Contrary to previous assumptions, the removal of Tc from the system to form the Mo-Pd-Rh-Ru analog is predicted to reduce the stability of the solid solution to the point that σ-Mo{sub 5}Ru{sub 3} may precipitate out at typical fuel operating temperatures. The drive for segregation is attributed to the increased stability of the solid solution with the ejection of Mo and Ru. When Tc is included in the system, a single phase hexagonal solid solution is expected to form for a wider range of compositions. Furthermore, when cooled below 700 °C, this single phase solid solution is predicted to transition to a partially ordered structure. Future studies using the Tc-absent analogue will need to take these structural and chemical deliberations into consideration.

  9. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    Science.gov (United States)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  10. First-principles calculations on double-walled inorganic nanotubes with hexagonal chiralities

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovskii, Yuri F [Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063, Riga (Latvia); Evarestov, Robert A; Bandura, Andrei V; Losev, Maxim V, E-mail: quantzh@latnet.lv [Department of Quantum Chemistry, St. Petersburg State University, 26 Universitetsky Ave., 198504, Petrodvorets (Russian Federation)

    2011-06-23

    The two sets of commensurate double-walled boron nitride and titania hexagonally-structured nanotubes (DW BN and TiO{sub 2} NTs) possessing either armchair- or zigzag-type chiralities have been considered, i.e., (n{sub 1},n{sub 1})-(n{sub 2},n{sub 2}) or (n{sub 1},0)-(n{sub 2},0), respectively. For symmetry analysis of these nanotubes, the line symmetry groups for one-periodic (1D) nanostructures with rotohelical symmetry have been applied. To analyze the structural and electronic properties of hexagonal DW NTs, a series of large-scale ab initio DFT-LCAO calculations have been performed using the hybrid Hartree-Fock/Kohn-Sham exchange-correlation functional PBE0 (as implemented in CRYSTAL-09 code). To establish the optimal inter-shell distances within DW NTs corresponding to the minima of calculated total energy, the chiral indices n{sub 1} and n{sub 2} of the constituent single-walled (SW) nanotubes have been successively varied.

  11. The structure and electronic properties of hexagonal Fe{sub 2}Si

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chi Pui; Tam, Kuan Vai; Zhang, Xiaoping, E-mail: xpzhang@must.edu.mo [Lunar and Planetary Science Laboratory, Macau University of Science and Technology, Macau (Macao); Xiong, Shi Jie [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Cao, Jie [College of Science, Hohai University, Nanjing 211171 (China)

    2016-06-15

    On the basis of first principle calculations, we show that a hexagonal structure of Fe{sub 2}Si is a ferromagnetic crystal. The result of the phonon spectra indicates that it is a stable structure. Such material exhibits a spin-polarized and half-metal-like band structure. From the calculations of generalized gradient approximation, metallic and semiconducting behaviors are observed with a direct and nearly 0 eV band gap in various spin channels. The densities of states in the vicinity of the Fermi level is mainly contributed from the d-electrons of Fe. We calculate the reflection spectrum of Fe{sub 2}Si, which has minima at 275 nm and 3300 nm with reflectance of 0.27 and 0.49, respectively. Such results may provide a reference for the search of hexagonal Fe{sub 2}Si in experiments. With this band characteristic, the material may be applied in the field of novel spintronics devices.

  12. Thermochemistry of selected trivalent lanthanide and americium compounds: orthorhombic and hexagonal hydroxycarbonates

    International Nuclear Information System (INIS)

    Rorif, F.; Fuger, J.; Desreux, J.F.

    2005-01-01

    The molar enthalpies of dissolution of a number of well-characterized hexagonal hydroxycarbonates Ln(OH)CO 3 (hex) (Ln = La, Nd, Sm, Eu) in 6.00 mol dm -3 HCl were measured at 298.15K. A new sealed solution micro-calorimeter was developed for this purpose. It was made of an 18-carat gold alloy in order to improve the performances of a calorimeter previously built in our laboratory. The following standard molar enthalpies of formation, Δ f H m [Ln(OH)CO 3 , hex], in kJ mol -1 , were calculated: -(1627.8±1.6), -(1614.8±1.9), -(1613.4±1.6), and -(1523.0±3.0), for the La, Nd, Sm, and Eu compounds, respectively. These results allowed an extrapolation to Δ f H m [Eu(OH)CO 3 .0.5H 2 O, orth] = -(1653.4±3.6) kJ mol -1 and to Δ f H m [Am(OH)CO 3 , hex] = -(1552.5±3.3) kJ mol -1 . Using auxiliary data and estimated entropies, the solubility products of the hexagonal hydroxycarbonates were calculated. They are compared here with values deduced from solubility and calorimetric measurements for the corresponding orthorhombic hydroxycarbonates. Our approach generally leads to values similar to those deduced from solubility studies. The orthorhombic form is found to be metastable with respect to the hexagonal form. (orig.)

  13. HEXNOD23, 2-D, 3-D Coarse Mesh Solution of Steady State Diffusion Equation in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Grundmann, Ulrich

    1986-01-01

    1 - Description of program or function: Two- or three dimensional coarse mesh solution of steady state two group neutron diffusion equation in arrays of regular hexagons or hexagonal subassemblies. 2 - Method of solution: The neutron flux in a hexagonal node is expanded in a series of Bessel functions in the hexagonal plane. Polynomials up to the 4. order are used for the approximation of neutron flux in axial direction of three dimensional cases. Resulting relations between node averaged fluxes and mean partial currents of node faces in connection with the neutron balance of nodes are used to calculate the eigenvalue Keff, mean fluxes and mean powers of nodes. The iterations process is divided into inner and outer iterations. The iterations are accelerated by Ljusternik and Tschebyscheff extrapolation schemes. The power densities in the nodes and subassembly powers are computed for given reactor power in three dimensional cases. 30 degree reflectional, 60 and 120 degree rotational core symmetry and the whole core can be treated. 3 - Restrictions on the complexity of the problem: If the problem size designated by LIAR and LRAR exceeds 3000 and 50000 respectively, the lengths of the working array MIAR and MRAR in the main program can be increased. External sources are not permitted

  14. Geometric Hyperplanes of the Near Hexagon L-3 x GQ(2,2)

    Czech Academy of Sciences Publication Activity Database

    Saniga, M.; Levay, P.; Planat, M.; Pracna, Petr

    2010-01-01

    Roč. 91, č. 1 (2010), s. 93-104 ISSN 0377-9017 Institutional research plan: CEZ:AV0Z40400503 Keywords : near hexagons * geometric hyperplanes * Veldkamp spaces Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.842, year: 2010

  15. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    OpenAIRE

    Ke, Yonggang; Voigt, Niels V.; Gothelf, Kurt V.; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher r...

  16. Quasi-hexagonal vortex-pinning lattice using anodized aluminum oxide nanotemplates

    DEFF Research Database (Denmark)

    Hallet, X.; Mátéfi-Tempfli, M.; Michotte, S.

    2009-01-01

    The bottom barrier layer of well-ordered nanoporous alumina membranes reveals a previously unexploited nanostructured template surface consisting of a triangular lattice of hemispherical nanoscale bumps. Quasi-hexagonal vortex-pinning lattice arrays are created in superconducting Nb films deposited...... onto this template (see image). Matching effects are preserved at higher magnetic fields and lower temperatures when compared to holes on the top face....

  17. Growth of potassium niobate micro-hexagonal tablets with monoclinic phase and its excellent piezoelectric property

    Science.gov (United States)

    Chen, Zhong; Huang, Jingyun; Wang, Ye; Yang, Yefeng; Wu, Yongjun; Ye, Zhizhen

    2012-09-01

    Potassium niobate micro-hexagonal tablets were synthesized through hydrothermal reaction with KOH, H2O and Nb2O5 as source materials by using a polycrystalline Al2O3 as substrate. X-ray diffraction, Raman spectra and selected area electron diffraction analysis results indicated that the tablets exhibit monoclinic phase structure and are highly crystallized. Meanwhile, piezoelectric property of the micro-hexagonal tablets was investigated. The as-synthesized tablets exhibit excellent piezoactivities in the experiments, and an effective piezoelectric coefficient of around 80 pm/V was obtained. The tablets have huge potential applications in micro/nano-integrated piezoelectric and optical devices.

  18. Shear induced hexagonal ordering observed in an ionic viscoelastic fluid in flow past a surface

    International Nuclear Information System (INIS)

    Hamilton, W.A.; Butler, P.D.; Baker, S.M.; Smith, G.S.; Hayter, J.B.; Magid, L.J.; Pynn, R.

    1994-01-01

    We present the first clear evidence of a shear induced hexagonal phase in a polyionic fluid in flow past a plane quartz surface. The dilute surfactant solution studied is viscoelastic due to the formation and entanglement of highly extended charged threadlike micelles many thousands of A long, which are known to align along the flow direction under shear. Small-angle neutron diffraction data show that in the high shear region within a few tens of microns of the surface these micelles not only align, but form a remarkably well ordered hexagonal array separated by 370 A, 8 times their 46 A diameter

  19. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    International Nuclear Information System (INIS)

    Thorat, J. H.; Kanade, K. G.; Nikam, L. K.; Chaudhari, P. D.; Panmand, R. P.; Kale, B. B.

    2012-01-01

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 °C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 °C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 °C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50–60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25–50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  20. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, J. H. [Mahatma Phule College, Department of Chemistry (India); Kanade, K. G. [Annasaheb Awate College (India); Nikam, L. K. [B.G. College (India); Chaudhari, P. D.; Panmand, R. P.; Kale, B. B., E-mail: kbbb1@yahoo.com [Center for Materials for Electronics Technology (C-MET) (India)

    2012-02-15

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 Degree-Sign C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 Degree-Sign C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 Degree-Sign C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50-60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25-50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  1. An Examination of Muscle Activation and Power Characteristics While Performing the Deadlift Exercise With Straight and Hexagonal Barbells.

    Science.gov (United States)

    Camara, Kevin D; Coburn, Jared W; Dunnick, Dustin D; Brown, Lee E; Galpin, Andrew J; Costa, Pablo B

    2016-05-01

    The deadlift exercise is commonly performed to develop strength and power, and to train the lower-body and erector spinae muscle groups. However, little is known about the acute training effects of a hexagonal barbell vs. a straight barbell when performing deadlifts. Therefore, the purpose of this study was to examine the hexagonal barbell in comparison with the straight barbell by analyzing electromyography (EMG) from the vastus lateralis, biceps femoris, and erector spinae, as well as peak force, peak power, and peak velocity using a force plate. Twenty men with deadlifting experience volunteered to participate in the study. All participants completed a 1 repetition maximum (1RM) test with each barbell on 2 separate occasions. Three repetitions at 65 and 85% 1RM were performed with each barbell on a third visit. The results revealed that there was no significant difference for 1RM values between the straight and hexagonal barbells (mean ± SD in kg = 181.4 ± 27.3 vs. 181.1 ± 27.6, respectively) (p > 0.05). Significantly greater normalized EMG values were found from the vastus lateralis for both the concentric (1.199 ± 0.22) and eccentric (0.879 ± 0.31) phases of the hexagonal-barbell deadlift than those of the straight-barbell deadlift (0.968 ± 0.22 and 0.559 ± 1.26), whereas the straight-barbell deadlift led to significantly greater EMG values from the bicep femoris during the concentric phase (0.835 ± 0.19) and the erector spinae (0.753 ± 0.28) during the eccentric phase than the corresponding values for the hexagonal-barbell deadlift (0.723 ± 0.20 and 0.614 ± 0.21) (p ≤ 0.05). In addition, the hexagonal-barbell deadlift demonstrated significantly greater peak force (2,553.20 ± 371.52 N), peak power (1,871.15 ± 451.61 W), and peak velocity (0.805 ± 0.165) values than those of the straight-barbell deadlift (2,509.90 ± 364.95 N, 1,639.70 ± 361.94 W, and 0.725 ± 0.138 m·s, respectively) (p ≤ 0.05). These results suggest that the barbells led

  2. Inter-layer potential for hexagonal boron nitride

    Science.gov (United States)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  3. Inter-layer potential for hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Leven, Itai; Hod, Oded, E-mail: odedhod@tau.ac.il [Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Azuri, Ido; Kronik, Leeor [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  4. Inter-layer potential for hexagonal boron nitride

    International Nuclear Information System (INIS)

    Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor

    2014-01-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures

  5. Synthesis and adsorption performance of Mg(OH)2 hexagonal nanosheet–graphene oxide composites

    International Nuclear Information System (INIS)

    Liu, Mengdi; Xu, Jing; Cheng, Bei; Ho, Wingkei; Yu, Jiaguo

    2015-01-01

    Graphical abstract: - Highlights: • Mg(OH) 2 hexagonal nanosheets with various mass of GO were prepared. • Mg(OH) 2 –GO composite showed enhanced adsorption capacity to congo red. • Zeta potential was used to explain preparation and adsorption mechanism. - Abstract: A series of Mg(OH) 2 hexagonal nanosheet–graphene oxide (GO) composites were synthesized through a simple hydrothermal method using magnesium nitrate and GO as precursors, sodium nitrate and sodium oxalate as additives, and sodium hydroxide and ammonia as precipitants. The as-prepared samples were characterized by X-ray diffraction, nitrogen adsorption–desorption isotherms, Raman spectroscopy, zeta potential analysis, and scanning electron microscopy (SEM). The adsorption affinity of the as-prepared samples toward congo red (CR) in water was analyzed and investigated. Results indicated that GO addition influenced the thickness, morphology, and adsorption performance of Mg(OH) 2 hexagonal nanosheets. As GO concentration increased, the thickness decreased. Especially at high GO concentration (1 wt%), Mg(OH) 2 hexagonal nanosheets changed into aggregated flower-like spheres. Addition of small amounts of GO also increased the adsorption capacity of Mg(OH) 2 . The equilibrium adsorption data of CR on the composite were further investigated by Langmuir and Freundlich models, indicating that the Langmuir model was much more suitable for the experimental data. The sample prepared with 0.5 wt% GO showed the highest adsorption capacity with 118 mg g −1 . The experimental data were then fitted using pseudo-second order kinetics, suggesting that pseudo-second order kinetics could well describe the adsorption of CR on composites. Adsorption thermodynamics analysis showed that the adsorption activation energy was 29.2 kJ mol −1 , suggesting that the adsorption of CR onto the samples was physical adsorption. Adsorption between the samples and CR was mainly due to the strong electrostatic attraction

  6. Hexagon POPE: effective particles and tree level resummation

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Lucía [Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics and Astronomy & Guelph-Waterloo Physics Institute,University of Waterloo,Waterloo, Ontario N2L 3G1 (Canada)

    2017-01-12

    We present the resummation of the full Pentagon Operator Product Expansion series of the hexagon Wilson loop in planar N=4 SYM at tree level. We do so by considering the one effective particle states formed by a fundamental flux tube excitation and an arbitrary number of the so called small fermions which are then integrated out. We derive the one effective particle measures at finite coupling. By evaluating these measures at tree level and summing over all one effective particle states we reproduce the full 6 point tree level amplitude.

  7. Superstructure of self-aligned hexagonal GaN nanorods formed on nitrided Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Tuteja, Mohit; Kesaria, Manoj; Waghmare, U. V.; Shivaprasad, S. M. [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064 (India)

    2012-09-24

    We present here the spontaneous formation of catalyst-free, self-aligned crystalline (wurtzite) nanorods on Si(111) surfaces modified by surface nitridation. Nanorods grown by molecular beam epitaxy on bare Si(111) and non-stoichiometric silicon nitride interface are found to be single crystalline but disoriented. Those grown on single crystalline Si{sub 3}N{sub 4} intermediate layer are highly dense c-oriented hexagonal shaped nanorods. The morphology and the self-assembly of the nanorods shows an ordered epitaxial hexagonal superstructure, suggesting that they are nucleated at screw dislocations at the interface and grow spirally in the c-direction. The aligned nanorod assembly shows high-quality structural and optical emission properties.

  8. Rapid growth of ZnO hexagonal prism crystals by direct microwave heating

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhenqi; ZHOU Jian; LIU Guizhen; REN Zhiguo

    2008-01-01

    ZnO hexagonal prism crystals were synthesized from ZnO powders by microwave heating in a short time (within 20 min) without any metal catalyst or transport agent.Zinc oxide raw materials were made by evaporating from the high-temperature zone in an enclosure atmosphere and crystals were grown on the self-source substrate.The inherent asymmetry in microwave heating provides the temperature gradient for crystal growth.Substrate and temperature distribution in the oven show significant effects on the growth of the ZnO crystal.The morphologies demonstrate that these samples are pure hexagonal prism crystals with maximum 80 μm in diameter and 600 μm in length,which possess a well faceted end and side surface.X-ray diffraction (XRD) reveals that these samples are pure crystals.The photoluminescence (PL) exhibits strong ultraviolet emission at room temperature,indicating potential applications for short-wave light-emitting photonic devices.

  9. Recovery of hexagonal Si-IV nanowires from extreme GPa pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Bennett E. [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Zhou, Xuezhe; Roder, Paden B. [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Abramson, Evan H. [Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195 (United States); Pauzauskie, Peter J., E-mail: peterpz@uw.edu [Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195 (United States); Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-05-14

    We use Raman spectroscopy in tandem with transmission electron microscopy and density functional theory simulations to show that extreme (GPa) pressure converts the phase of silicon nanowires from cubic (Si-I) to hexagonal (Si-IV) while preserving the nanowire's cylindrical morphology. In situ Raman scattering of the longitudinal transverse optical (LTO) mode demonstrates the high-pressure Si-I to Si-II phase transition near 9 GPa. Raman signal of the LTO phonon shows a decrease in intensity in the range of 9–14 GPa. Then, at 17 GPa, it is no longer detectable, indicating a second phase change (Si-II to Si-V) in the 14–17 GPa range. Recovery of exotic phases in individual silicon nanowires from diamond anvil cell experiments reaching 17 GPa is also shown. Raman measurements indicate Si-IV as the dominant phase in pressurized nanowires after decompression. Transmission electron microscopy and electron diffraction confirm crystalline Si-IV domains in individual nanowires. Computational electromagnetic simulations suggest that heating from the Raman laser probe is negligible and that near-hydrostatic pressure is the primary driving force for the formation of hexagonal silicon nanowires.

  10. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films

    International Nuclear Information System (INIS)

    Kim, D J; Gruverman, A; Connell, J G; Seo, S S A

    2016-01-01

    Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO 3 and Pb(Zr,Ti)O 3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO 3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO 3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. (paper)

  11. Microstructure and Pinning Properties of Hexagonal Disc Shaped Single Crystalline MgB2

    Energy Technology Data Exchange (ETDEWEB)

    Patel, J. R.

    2003-04-30

    We synthesized hexagonal-disc-shaped MgB{sub 2} single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB{sub 2}. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB{sub 2} phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  12. Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    Science.gov (United States)

    Jung, C. U.; Kim, J. Y.; Chowdhury, P.; Kim, Kijoon H.; Lee, Sung-Ik; Koh, D. S.; Tamura, N.; Caldwell, W. A.; Patel, J. R.

    2002-11-01

    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from x-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c axis of hexagonal-disc shape exactly matched the [101¯0] and the [0001] directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis curve for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.

  13. Glycolthermal synthesis and characterization of hexagonal CdS round microparticles in flower-like clusters

    International Nuclear Information System (INIS)

    Phuruangrat, Anukorn; Ekthammathat, Nuengruethai; Thongtem, Titipun; Thongtem, Somchai

    2011-01-01

    Highlights: → CdS as one of II-VI semiconducting materials. → Lab-made Teflon-lined stainless steel autoclaves enable us to form hexagonal CdS. → By 100-200 deg. C processing, round microparticles in flower clusters were synthesized. → A promising material for multiple potential applications. - Abstract: Hexagonal CdS round microparticles in flower-like clusters were synthesized by glycolthermal reactions of CdCl 2 and thiourea as cadmium and sulphur sources in 1,2-propylene glycol (PG) at 100-200 deg. C for 10-30 h. Phase and morphology were detected using X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM, TEM). The products were pure phase of hexagonal wurtzite CdS. The quantitative elemental analysis of Cd:S ratio was detected using energy dispersive X-ray (EDX) analyzer. Raman spectrometer revealed the presence of fundamental and overtone modes at 296 and 595 cm -1 , corresponding to the strong 1LO and weak 2LO modes, respectively. Photonic properties were investigated using UV-visible and photoluminescence (PL) spectroscopy. They showed the same absorption at 493-498 nm, and emission at 431 nm due to the excitonic recombination process. A possible formation mechanism was also proposed, according to experimental results.

  14. Glycolthermal synthesis and characterization of hexagonal CdS round microparticles in flower-like clusters

    Energy Technology Data Exchange (ETDEWEB)

    Phuruangrat, Anukorn, E-mail: phuruangrat@hotmail.com [Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Ekthammathat, Nuengruethai [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2011-10-13

    Highlights: > CdS as one of II-VI semiconducting materials. > Lab-made Teflon-lined stainless steel autoclaves enable us to form hexagonal CdS. > By 100-200 deg. C processing, round microparticles in flower clusters were synthesized. > A promising material for multiple potential applications. - Abstract: Hexagonal CdS round microparticles in flower-like clusters were synthesized by glycolthermal reactions of CdCl{sub 2} and thiourea as cadmium and sulphur sources in 1,2-propylene glycol (PG) at 100-200 deg. C for 10-30 h. Phase and morphology were detected using X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM, TEM). The products were pure phase of hexagonal wurtzite CdS. The quantitative elemental analysis of Cd:S ratio was detected using energy dispersive X-ray (EDX) analyzer. Raman spectrometer revealed the presence of fundamental and overtone modes at 296 and 595 cm{sup -1}, corresponding to the strong 1LO and weak 2LO modes, respectively. Photonic properties were investigated using UV-visible and photoluminescence (PL) spectroscopy. They showed the same absorption at 493-498 nm, and emission at 431 nm due to the excitonic recombination process. A possible formation mechanism was also proposed, according to experimental results.

  15. CONSIDERAÇÕES MARGINAIS ACERCA DA (IRACIONALIDADE DA CRIMINALIZAÇÃO NA SOCIEDADE BRASILEIRA

    Directory of Open Access Journals (Sweden)

    Janaina de Souza Bujes

    2011-06-01

    Full Text Available This paper pretends to discuss some aspects of differential treatment that occurs in the incidence of secondary criminalization and punitive powers imposed by the State. Based on studies of Marcelo Neves and Eugenio Zaffaroni this work focus on some considerations about the consequences of these relations in the incidence of secondary criminalization. The central argument is that the formation of two portions of society – one of them called “underintegrated” that is the main “clients” of the criminal justice system and another portion considered “overintegrated” – and both collaborate to create spaces where we have the denial of fundamental rights, and criminal differentiated treatments.Taking as reference the Brazilian reality, perceives the need to overcome the “overintegration” and “underintegration” in the relationships, something that requires a confrontation of paradox formed by the simultaneous presence of legalism and impunity, and pursue the generalization of citizenship to all segments of society to build a public space of legality and constitutionality.

  16. Il mare della fertilità Una analisi antropologica della tetralogia di Mishima Yukio

    Directory of Open Access Journals (Sweden)

    Giovanni Azzaroni

    2013-05-01

    Full Text Available Abstract – IT Neve di primavera è il primo romanzo della tetralogia 'Il mare della fertilità', il capolavoro dello scrittore giapponese, che si snoda in un Giappone caratterizzato sia da una cultura ancestrale sia da una invadente modernità e prelude a quel drammatico 25 novembre 1970 quando Mishima, scritte le ultime parole della tetralogia, si suicidò con l’antico rituale del seppuku. Neve di primavera è una narrazione polisemica costruita su opposizioni binarie strutturali, le vicende dei personaggi sono calate in un preciso contesto storico e culturale e per decodificarle è proposta una metodologia antropologica, nel tentativo, al tempo stesso, di coglierne le variegate e molteplici sfumature e, nel contempo, anche le interconnessioni con il tessuto ontologico che ne ha favorito il nascere e lo svilupparsi. Abstract – EN Spring snow is the first novel of the tetralogy The sea of Fertility, the masterpiece of the Japanese writer, which takes place in ancient and modern Japan. The novel is a prelude to the dramatic 25th November 1970: Mishima finished the tetralogy and committed suicide by the ancient seppuku ritual. Spring snow is a polisemic story which is constructed by binary and structural oppositions, the plot of the characters is drawn on a exact, historical and cultural context to catch either the variegated and various shadings or the relations with the ontological substratum, which helped its birth and development.

  17. Il mare della fertilità Una analisi antropologica della tetralogia di Mishima Yukio

    Directory of Open Access Journals (Sweden)

    Giovanni Azzaroni

    2012-01-01

    Full Text Available Abstract – IT Neve di primavera è il primo romanzo della tetralogia Il mare della fertilità, il capolavoro dello scrittore giapponese, che si snoda in un Giappone caratterizzato sia da una cultura ancestrale sia da una invadente modernità e prelude a quel drammatico 25 novembre 1970 quando Mishima, scritte le ultime parole della tetralogia, si suicidò con l’antico rituale del seppuku. Neve di primavera è una narrazione polisemica costruita su opposizioni binarie strutturali, le vicende dei personaggi sono calate in un preciso contesto storico e culturale e per decodificarle è proposta una metodologia antropologica, nel tentativo, al tempo stesso, di coglierne le variegate e molteplici sfumature e, nel contempo, anche le interconnessioni con il tessuto ontologico che ne ha favorito il nascere e lo svilupparsi. Abstract – EN Spring snow is the first novel of the tetralogy The sea of Fertility, the masterpiece of the Japanese writer, which takes place in ancient and modern Japan. The novel is a prelude to the dramatic 25th November 1970: Mishima finished the tetralogy and committed suicide by the ancient seppuku ritual. Spring snow is a polisemic story which is constructed by binary and structural oppositions, the plot of the characters is drawn on a exact, historical and cultural context to catch either the variegated and various shadings or the relations with the ontological substratum, which helped its birth and development.

  18. Comparison of rod-ejection transient calculations in hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Knight, M.P.; Brohan, P.; Finnemann, H.; Huesken, J.

    1995-01-01

    This paper proposes a set of 3-dimensional benchmark rod ejection problems for a VVER reactor, based on the well-known NEACRP PWR rod-ejection problems defined by Siemens/KWU. Predictions for these benchmarks derived using three hexagonal-z nodal transient codes, the PANTHER code of Nuclear Electric, the HEXTIME code of Siemens/KWU, and the DYN3D code of FZ-Rossendorf are presented and compared

  19. On the tensor reduction of one-loop pentagons and hexagons

    International Nuclear Information System (INIS)

    Diakonidis, T.; Riemann, T.; Tausk, J.B.; Fleischer, J.; Bielefeld Univ.; Gluza, J.; Kajda, K.

    2008-07-01

    We perform analytical reductions of one-loop tensor integrals with 5 and 6 legs to scalar master integrals. They are based on the use of recurrence relations connecting integrals in different space-time dimensions. The reductions are expressed in a compact form in terms of signed minors, and have been implemented in a mathematica package called hexagon.m. We present several numerical examples. (orig.)

  20. On the energy benefit of compute-and-forward on the hexagonal lattice

    NARCIS (Netherlands)

    Ren, Zhijie; Goseling, Jasper; Weber, Jos; Gastpar, Michael; Skoric, B.; Ignatenko, T.

    2014-01-01

    We study the energy benefit of applying compute-and-forward on a wireless hexagonal lattice network with multiple unicast sessions with a specific session placement. Two compute-and-forward based transmission schemes are proposed, which allow the relays to exploit both the broadcast and

  1. Hexagonal wavelet processing of digital mammography

    Science.gov (United States)

    Laine, Andrew F.; Schuler, Sergio; Huda, Walter; Honeyman-Buck, Janice C.; Steinbach, Barbara G.

    1993-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms and used to enhance features of importance to mammography within a continuum of scale-space. We present a method of contrast enhancement based on an overcomplete, non-separable multiscale representation: the hexagonal wavelet transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by local and global non-linear operators. Multiscale edges identified within distinct levels of transform space provide local support for enhancement. We demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  2. Desain Antena Hexagonal Patch Array Berbasis Sistem Transfer Daya Wireless pada Frekuensi 2,4 GHz

    Directory of Open Access Journals (Sweden)

    Herma Nugroho R. A. K.

    2016-06-01

    Full Text Available Pada penelitian ini telah didesain antena hexagonal patch array yang dapat digunakan sebagai perangkat catu daya wireless. Antena hexagonal patch array ini didesain untuk menangkap gelombang radio (RF pada frekuensi 2,4 GHz yang dapat diaplikasikan sebagai antena pada Wireless Local Area Network (WLAN. Desain antena dilakukan menggunakan software CST Microwave studio, kemudian dilakukan pabrikasi dan pengukuran secara riil. Parameter pengujian antena hexagonal patch array meliputi return loss, Voltage Standing Wave Ratio (VSWR, gain, bandwidth, dan daya. Metode yang digunakan adalah pemodelan transmission line dan corporate feed line untuk pengaturan perubahan jarak antar patch antena. Perubahan variabel juga diteliti pengaruhnya terhadap parameter antena khususnya daya terima antena yang kemudian ditransmisikan ke rangkaian power harvester. Nilai parameter antena hasil simulasi menunjukkan nilai return loss adalah -33,38 dB, VSWR sebesar 1,041, gain sebesar 8,81 dBi, bandwidth adalah 0,084 GHz, daya sebesar 0,499 W (-3 dBm. Sedangkan parameter hasil pengukuran dari antena yang telah dipabrikasi adalah nilai return loss sebesar -33,21 dB, VSWR sebesar 1,048, gain sebesar 5 dBi, bandwidth adalah 0,145 GHz, daya sebesar -33 dBm.

  3. Impact vibration analysis of group of hexagonal bars immersed in liquid

    International Nuclear Information System (INIS)

    Horiuchi, Toshihiko

    1994-01-01

    A simulation method was studied to calculate the vibration response during seismic excitation of a group of hexagonal bars installed in a restraint immersed in liquid. In this study, the influence of fluid force on structural motion was modeled using an added mass matrix. The added mass matrix was then transferred into the space composed of the eigen modes of hexagonal bars without the added mass and introduced into eigenvalue analysis of the whole bar group structure. By means of this method, the computational time of the added mass matrix calculation and the eigenvalue analysis can be reduced. It was shown that the proposed method yielded almost the same eigenvalues as the conventional method in the physical space. Using the proposed method, added mass models to be used in the impact vibration analysis were investigated. Comparing the calculated results by the proposed method with those using a concentrated added mass, which is a simplified model, showed that the concentrated added mass can be used for a rough response calculation, although the precise calculation requires the added mass matrix. (author)

  4. Raman studies of hexagonal MoO{sub 3} at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.C.; Zhang, Z.M.; Dai, R.C.; Zhang, J.W.; Ding, Z.J. [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, L. [Department of Nanomaterials and Nanochemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Z.P. [The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-05-15

    The transition-metal oxide MoO{sub 3} is an important semiconductor and has various technological applications in catalysts, electrochromic and photochromic devices, gas sensors, and battery electrodes. In this study, the hexagonal MoO{sub 3} prepared by a hydrothermal method is in morphology of microrod with diameter of 0.8-1.2 {mu}m and length of 2.0-4.3 {mu}m. Its structural stability was investigated by an in situ Raman scattering method in a diamond anvil cell up to 28.7 GPa at room temperature. The new Raman peak around 1000 cm{sup -1} implies that a phase transition from hexagonal to amorphous starts at 5.6 GPa, and the evolution of the Raman spectra indicates that the structural transition is completed at about 13.2 GPa. After releasing pressure to ambient condition, the Raman spectrum pattern of the high pressure phase was retained, revealing that the phase transition is irreversible. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    Science.gov (United States)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  6. Thermodynamic and elastic properties of hexagonal ZnO under high temperature

    International Nuclear Information System (INIS)

    Wang, Feng; Wu, Jinghe; Xia, Chuanhui; Hu, Chenghua; Hu, Chunlian; Zhou, Ping; Shi, Lingna; Ji, Yanling; Zheng, Zhou; Liu, Xiankun

    2014-01-01

    Highlights: • A new method is applied to predict crystal constants of hexagonal crystal under high temperature. • Elastic properties of ZnO under high temperature are obtained exactly. • Thermodynamic properties of ZnO under high temperature are attained too. - Abstract: Studies on thermodynamic and elastic properties of hexagonal ZnO (wurtzite structure) under high temperature have not been reported usually from no matter experimental or theoretic methods. In this work, we study these properties by ab-initio together with quasi-harmonic Debye model. The value of C v tends to the Petit and Dulong limit at high temperature under any pressure, 49.73 J/mol K. And C v is greatly limited by pressure at intermediate temperatures. Nevertheless, the limit effect on C v caused by pressure is not obvious under low as well as very high temperature. The thermal expansions along a or c axis are almost same under temperature, which increase with temperature like a parabola. C 11 , C 33 , C 12 and C 13 decrease with temperature a little, which means that mechanics properties are weakened respectively

  7. WPG-Controlled Quantum BDD Circuits with BDD Architecture on GaAs-Based Hexagonal Nanowire Network Structure

    Directory of Open Access Journals (Sweden)

    Hong-Quan ZHao

    2012-01-01

    Full Text Available One-dimensional nanowire quantum devices and basic quantum logic AND and OR unit on hexagonal nanowire units controlled by wrap gate (WPG were designed and fabricated on GaAs-based one-dimensional electron gas (1-DEG regular nanowire network with hexagonal topology. These basic quantum logic units worked correctly at 35 K, and clear quantum conductance was achieved on the node device, logic AND circuit unit, and logic OR circuit unit. Binary-decision-diagram- (BDD- based arithmetic logic unit (ALU is realized on GaAs-based regular nanowire network with hexagonal topology by the same fabrication method as that of the quantum devices and basic circuits. This BDD-based ALU circuit worked correctly at room temperature. Since these quantum devices and circuits are basic units of the BDD ALU combinational circuit, the possibility of integrating these quantum devices and basic quantum circuits into the BDD-based quantum circuit with more complicated structures was discussed. We are prospecting the realization of quantum BDD combinational circuitries with very small of energy consumption and very high density of integration.

  8. Defect sensitive etching of hexagonal boron nitride single crystals

    Science.gov (United States)

    Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam

    2017-12-01

    Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.

  9. Application of hexagonal element scheme in finite element method to three-dimensional diffusion problem of fast reactors

    International Nuclear Information System (INIS)

    Ishiguro, Misako; Higuchi, Kenji

    1983-01-01

    The finite element method is applied in Galerkin-type approximation to three-dimensional neutron diffusion equations of fast reactors. A hexagonal element scheme is adopted for treating the hexagonal lattice which is typical for fast reactors. The validity of the scheme is verified by applying the scheme as well as alternative schemes to the neutron diffusion calculation of a gas-cooled fast reactor of actual scale. The computed results are compared with corresponding values obtained using the currently applied triangular-element and also with conventional finite difference schemes. The hexagonal finite element scheme is found to yield a reasonable solution to the problem taken up here, with some merit in terms of saving in computing time, but the resulting multiplication factor differs by 1% and the flux by 9% compared with the triangular mesh finite difference scheme. The finite element method, even in triangular element scheme, would appear to incur error in inadmissible amount and which could not be easily eliminated by refining the nodes. (author)

  10. Low-temperature synthesis of hexagonal transition metal ion doped ZnS nanoparticles by a simple colloidal method

    International Nuclear Information System (INIS)

    Wang, Liping; Huang, Shungang; Sun, Yujie

    2013-01-01

    A general route to synthesize transition metal ions doped ZnS nanoparticles with hexagonal phase by means of a conventional reverse micelle at a low temperature is developed. The synthesis involves N,N-dimethylformamide, Zn(AC) 2 solution, thiourea, ammonia, mercaptoacetic acid, as oil phase, water phase, sulfide source, pH regulator, and surfactant, respectively. Thiourea, ammonia and mercaptoacetic acid are demonstrated crucial factors, whose effects have been studied in detail. In addition, the FT-IR spectra suggest that mercaptoacetic acid may form complex chelates with Zn 2+ in the preparation. In the case of Cu 2+ as a doped ion, hexagonal ZnS:Cu 2+ nanoparticles were synthesized at 95 °C for the first time. The X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements show that the ZnS:Cu 2+ nanoparticles are polycrystalline and possess uniform particle size. The possible formation mechanism of the hexagonal doped ZnS is discussed.

  11. Co_3V_2O_8 Hexagonal Pyramid with Tunable Inner Structure as High Performance Anode Materials for Lithium Ion Battery

    International Nuclear Information System (INIS)

    Zhang, Qiang; Pei, Jian; Chen, Gang; Bie, Changfeng; Chen, Dahong; Jiao, Yang; Rao, Jiancun

    2017-01-01

    Co_3V_2O_8 hexagonal pyramid was successfully fabricated via a simple hydrothermal process and subsequent heat treatment. The inner structure of the hexagonal pyramid was further adjusted by controlling the size of Co_7V_4O_1_6(OH)_2(H_2O) precursors. Hierarchical Co_3V_2O_8 hexagonal pyramid with height of 1 μm were orderly constructed from 60–80 nm inter-connected particles, showing numerous interval voids. Benefiting from its unique structure, the as-prepared sample showed higher electrochemical performance as an anode material for lithium-ion batteries than that of another bulk sample with height of 5 μm and adhesive inner structure. When tested at a current density of 500 mA g"−"1, the hierarchical Co_3V_2O_8 hexagonal pyramid exhibited good rate capacity, high cycling stability, and excellent discharge capacity up to 712 mA h g"−"1, making it promising electrode materials for lithium-ion batteries.

  12. Estimating Regional Mass Balance of Himalayan Glaciers Using Hexagon Imagery: An Automated Approach

    Science.gov (United States)

    Maurer, J. M.; Rupper, S.

    2013-12-01

    Currently there is much uncertainty regarding the present and future state of Himalayan glaciers, which supply meltwater for river systems vital to more than 1.4 billion people living throughout Asia. Previous assessments of regional glacier mass balance in the Himalayas using various remote sensing and field-based methods give inconsistent results, and most assessments are over relatively short (e.g., single decade) timescales. This study aims to quantify multi-decadal changes in volume and extent of Himalayan glaciers through efficient use of the large database of declassified 1970-80s era Hexagon stereo imagery. Automation of the DEM extraction process provides an effective workflow for many images to be processed and glacier elevation changes quantified with minimal user input. The tedious procedure of manual ground control point selection necessary for block-bundle adjustment (as ephemeral data is not available for the declassified images) is automated using the Maximally Stable Extremal Regions algorithm, which matches image elements between raw Hexagon images and georeferenced Landsat 15 meter panchromatic images. Additional automated Hexagon DEM processing, co-registration, and bias correction allow for direct comparison with modern ASTER and SRTM elevation data, thus quantifying glacier elevation and area changes over several decades across largely inaccessible mountainous regions. As consistent methodology is used for all glaciers, results will likely reveal significant spatial and temporal patterns in regional ice mass balance. Ultimately, these findings could have important implications for future water resource management in light of environmental change.

  13. Parameter studies on the effect of pulse shape on the dynamic plastic deformation of a hexagon

    International Nuclear Information System (INIS)

    Youngdahl, C.K.

    1973-10-01

    Results of a parameter study on the dynamic plastic response of a hexagonal subassembly duct subjected to an internal pressure pulse of arbitrary shape are presented. Plastic distortion of the cross section and large-deformation geometric effects that result in redistribution of the internal forces between bending and membrane stresses in the hexagon wall are included in the analytical model. Correlation procedures are established for relating permanent plastic deformation to simple properties of the pressure pulse, for both the small- and large-deformation ranges. Characteristic response times are determined, and the dynamic load factor for large-deformation plastic response is computed

  14. Effects of Sr-substitution on the structural and magnetic behavior of Ba-based Y-type hexagonal ferrites

    International Nuclear Information System (INIS)

    Ahmad, Mukhtar; Ali, Qasim; Ali, Ihsan; Ahmad, Ishtiaq; Azhar Khan, M.; Akhtar, Majid Niaz; Murtaza, G.; Rana, M.U.

    2013-01-01

    Highlights: •Sr-substituted Y-type hexaferrites synthesized by sol–gel method have been investigated. •Platelet grains with well defined hexagonal shape are suitable for microwave absorbers. •Saturation magnetization values were calculated by the law of approach to saturation. •Coercivity of a few hundred oersteds found for all samples is suitable for EM materials. -- Abstract: Sr-substituted samples of Y-type hexagonal ferrites with chemical formula Ba 2−x Sr x Ni 2 Fe 12 O 22 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized using the sol–gel autocombustion method and were sintered at 1150 °C for 3 h. The samples were investigated by differential thermal and thermogravimetry analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. X-ray diffraction analysis reveals that single phase samples can be achieved by substituting Sr 2+ ions at Ba 2+ sites in Y-type hexagonal ferrites. X-ray density and bulk density were observed to decrease whereas porosity increased with increasing Sr-concentration. All the samples show well defined hexagonal shape which is favorable for microwave absorbing purposes. The saturation magnetization values were calculated from M–H loops by the law of approach to saturation. The loops show low values of coercivity of a few hundred oersteds which is one of the necessary conditions for electromagnetic (EM) materials and is suitable for security, switching, sensing and high frequency applications

  15. The hexagon hypothesis: Six disruptive scenarios.

    Science.gov (United States)

    Burtles, Jim

    2015-01-01

    This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity.

  16. Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal

    International Nuclear Information System (INIS)

    Liu Guan-Ting; Yang Li-Ying

    2017-01-01

    By means of analytic function theory, the problems of interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are studied. The analytic solutions of stress fields of the interaction between infinitely many parallel dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal are obtained. They indicate that the stress concentration occurs at the dislocation source and the tip of the crack, and the value of the stress increases with the number of the dislocations increasing. These results are the development of interaction among the finitely many defects of quasicrystals, which possesses an important reference value for studying the interaction problems of infinitely many defects in fracture mechanics of quasicrystal. (paper)

  17. Direct observation of the lowest indirect exciton state in the bulk of hexagonal boron nitride

    Science.gov (United States)

    Schuster, R.; Habenicht, C.; Ahmad, M.; Knupfer, M.; Büchner, B.

    2018-01-01

    We combine electron energy-loss spectroscopy and first-principles calculations based on density-functional theory (DFT) to identify the lowest indirect exciton state in the in-plane charge response of hexagonal boron nitride (h-BN) single crystals. This remarkably sharp mode forms a narrow pocket with a dispersion bandwidth of ˜100 meV and, as we argue based on a comparison to our DFT calculations, is predominantly polarized along the Γ K direction of the hexagonal Brillouin zone. Our data support the recent report by Cassabois et al. [Nat. Photonics 10, 262 (2016), 10.1038/nphoton.2015.277] who indirectly inferred the existence of this mode from the photoluminescence signal, thereby establishing h-BN as an indirect semiconductor.

  18. Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal α-In2Se3

    KAUST Repository

    Xue, Fei; Zhang, Junwei; Hu, Weijin; Hsu, Wei-Ting; Han, Ali; Leung, Siu; Huang, Jing-Kai; Wan, Yi; Liu, Shuhai; Zhang, Junli; He, Jr-Hau; Chang, Wen-Hao; Wang, Zhong Lin; Zhang, Xixiang; Li, Lain-Jong

    2018-01-01

    to their noncentrosymmetry originating from the hexagonal stacking. Specifically, the corresponding d33 piezoelectric coefficient of α-In2Se3 increases from 0.34 pm/V (monolayer) to 5.6 pm/V (bulk) without any odd-even effect. In addition, we also demonstrate a type of α-In2

  19. Synthesis and adsorption performance of Mg(OH){sub 2} hexagonal nanosheet–graphene oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Mengdi; Xu, Jing; Cheng, Bei [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies and Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, N.T. Hong Kong (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2015-03-30

    Graphical abstract: - Highlights: • Mg(OH){sub 2} hexagonal nanosheets with various mass of GO were prepared. • Mg(OH){sub 2}–GO composite showed enhanced adsorption capacity to congo red. • Zeta potential was used to explain preparation and adsorption mechanism. - Abstract: A series of Mg(OH){sub 2} hexagonal nanosheet–graphene oxide (GO) composites were synthesized through a simple hydrothermal method using magnesium nitrate and GO as precursors, sodium nitrate and sodium oxalate as additives, and sodium hydroxide and ammonia as precipitants. The as-prepared samples were characterized by X-ray diffraction, nitrogen adsorption–desorption isotherms, Raman spectroscopy, zeta potential analysis, and scanning electron microscopy (SEM). The adsorption affinity of the as-prepared samples toward congo red (CR) in water was analyzed and investigated. Results indicated that GO addition influenced the thickness, morphology, and adsorption performance of Mg(OH){sub 2} hexagonal nanosheets. As GO concentration increased, the thickness decreased. Especially at high GO concentration (1 wt%), Mg(OH){sub 2} hexagonal nanosheets changed into aggregated flower-like spheres. Addition of small amounts of GO also increased the adsorption capacity of Mg(OH){sub 2}. The equilibrium adsorption data of CR on the composite were further investigated by Langmuir and Freundlich models, indicating that the Langmuir model was much more suitable for the experimental data. The sample prepared with 0.5 wt% GO showed the highest adsorption capacity with 118 mg g{sup −1}. The experimental data were then fitted using pseudo-second order kinetics, suggesting that pseudo-second order kinetics could well describe the adsorption of CR on composites. Adsorption thermodynamics analysis showed that the adsorption activation energy was 29.2 kJ mol{sup −1}, suggesting that the adsorption of CR onto the samples was physical adsorption. Adsorption between the samples and CR was mainly due to the

  20. A rational repeating template method for synthesis of 2D hexagonally ordered mesoporous precious metals.

    Science.gov (United States)

    Takai, Azusa; Doi, Yoji; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2011-03-01

    A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor-infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen-adsorption-desorption isotherm, and small-angle X-ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft-templating methods, can be prepared. This study has overcome the composition variation limitations of the soft-templating method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of Phase Pure Hexagonal YFeO3 Perovskite as Efficient Visible Light Active Photocatalyst

    Directory of Open Access Journals (Sweden)

    Mohammed Ismael

    2017-11-01

    Full Text Available Hexagonal perovskite YFeO3 was synthesized by a complex-assisted sol-gel technique allowing crystallization at calcination temperatures below 700 °C. As determined by diffuse reflectance spectroscopy (DRS and Tauc plots, the hexagonal YFeO3 exhibits a lower optical band gap (1.81 eV than the orthorhombic structure (about 2.1 eV or even higher being typically obtained at elevated temperatures (>700 °C, and thus enables higher visible light photocatalysis activity. Structure and morphology of the synthesized YFeO3 perovskites were analyzed by powder X-ray diffraction (XRD and nitrogen adsorption, proving that significantly smaller crystallite sizes and higher surface areas are obtained for YFeO3 with a hexagonal phase. The photocatalytic activity of the different YFeO3 phases was deduced via the degradation of the model pollutants methyl orange and 4-chlorophenol. Experiments under illumination with light of different wavelengths, in the presence of different trapping elements, as well as photoelectrochemical tests allow conclusions regarding band positions of YFeO3 and the photocatalytic degradation mechanism. X-ray photoelectron spectroscopy indicates that a very thin layer of Y2O3 might support the photocatalysis by improving the separation of photogenerated charge carriers.

  2. Importance of the hexagonal lipid phase in biological membrane organization

    OpenAIRE

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particu...

  3. Magnetocaloric properties of the hexagonal HoMnO{sub 3} single crystal revisited

    Energy Technology Data Exchange (ETDEWEB)

    Balli, M., E-mail: Mohamed.balli@Usherbrooke.ca [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Roberge, B.; Vermette, J.; Jandl, S. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Fournier, P. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (Canada); Gospodinov, M.M. [Institute of Solid State Physics, Bulgarian Academy of Science, Sofia 1184 (Bulgaria)

    2015-12-01

    Magnetic and magnetocaloric properties of the hexagonal HoMnO{sub 3} single crystal have been revisited. It was found that the magnetocaloric effect shown by HoMnO{sub 3} strongly depends on the crystal orientation in respect to the applied magnetic field. Consequently, a large thermal effect can be induced by spinning the single crystal HoMnO{sub 3} around the a (or b) axis in a constant magnetic field instead of the conventional magnetization–demagnetization process. Under 7 T, the maximum rotating entropy change was evaluated to be about 8 J/kg K. The associated adiabatic temperature change reaches a value of about 5 K. These values are comparable to those of the other oxides exhibiting a large rotating magnetocaloric effect. The presence of both conventional and rotating thermal effects makes the hexagonal HoMnO{sub 3} more interesting from a practical point of view.

  4. High-order discrete ordinate transport in hexagonal geometry: A new capability in ERANOS

    International Nuclear Information System (INIS)

    Le Tellier, R.; Suteau, C.; Fournier, D.; Ruggieri, J.M.

    2010-01-01

    This paper presents the implementation of an arbitrary order discontinuous Galerkin scheme within the framework of a discrete ordinate solver of the neutron transport equation for nuclear reactor calculations. More precisely, it deals with non-conforming spatial meshes for the 2 D and 3 D modeling of core geometries based on hexagonal assemblies. This work aims at improving the capabilities of the ERANOS code system dedicated to fast reactor analysis and design. Both the angular quadrature and spatial scheme peculiarities for hexagonal geometries are presented. A particular focus is set on the spatial non-conforming mesh and variable order capabilities of this scheme in anticipation to the development of spatial adaptiveness algorithms. These features are illustrated on a 3 D numerical benchmark with comparison to a Monte Carlo reference and a 2 D benchmark that shows the potential of this scheme for both h-and p-adaptation.

  5. Use of rice husk ash as only source of silica in the formation of mesoporous materials Emprego da cinza da casca de arroz como única fonte de sílica na formação de materiais mesoporosos

    Directory of Open Access Journals (Sweden)

    A. J. Schwanke

    2013-03-01

    Full Text Available This paper reports the synthesis of molecular sieves similar to MCM-41 using rice husk ash as only source of silica. For comparison purposes, a standard synthesis was performed using aerosil 200 commercial silica. The rice husk silica was obtained by heating treatment at 600 ºC and leaching for 2 h in reflux with HCl 1mol.L-1 and used in the synthesis. The samples prepared were characterized by N2 adsorption, X-ray diffraction (XRD, scanning electronic microscopy (SEM and thermogravimetric analysis (TG. By type-IV adsorption isotherms, the formation of mesoporous materials was observed. XRD showed the formation of hexagonal unidirectional pore materials similar to MCM-41. By SEM, it could be observed that the rice husk has fibrous aspect and that synthesis using calcined and leached rice husk did not react entirely because silica was only partially dissolved.Este trabalho relata o estudo da síntese de peneiras moleculares semelhantes à MCM-41, empregando cinza da casca de arroz como única fonte de sílica. Para critérios de comparação uma síntese foi realizada com sílica comercial aerosil 200. A sílica da casca de arroz foi obtida mediante tratamento térmico a 600 ºC e lixiviação em refluxo por 2 h com HCl 1 mol/L e empregada na síntese. As amostras preparadas foram caracterizadas por adsorção de N2, difração de raios X, microscopia eletrônica de varredura (MEV e termogravimetria. Por meio das isotermas de adsorção, do tipo IV, observa-se a formação de material mesoporoso. Nos difratogramas de raios X é identificada a formação hexagonal unidirecional de poros, indicando que material apresenta semelhanças com a MCM-41. Por MEV observa-se que a casca de arroz possui aspecto fibroso e que a síntese empregando a casca de arroz calcinada e lixiviada não reagiu na sua totalidade devido a dissolução parcial da sílica.

  6. Robust half-metallicity of hexagonal SrNiO_3

    International Nuclear Information System (INIS)

    Chen, Gao-Yuan; Ma, Chun-Lan; Chen, Da; Zhu, Yan

    2016-01-01

    In the rich panorama of the electronic and magnetic properties of 3d transition metal oxides SrMO_3 (M=Ti, V, Cr, Mn, Fe, Co, Ni, Cu), one member (SrNiO_3) is missing. In this paper we use GGA+U method based on density functional theory to examine its properties. It is found that SrNiO_3 is a ferromagnetic half-metal. The charge density map shows a high degree of ionic bonding between Sr and other atoms. Meanwhile, a covalent-bonding Ni–O–Ni–O–Ni chain is observed. The spin density contour of SrNiO_3 further indicates that the magnetic interaction between Ni atoms mediated by O is semicovalent exchange. The density of states are examined to explore the unusual indirect magnetic-exchange mechanism. Corresponding to the total energies results, a robust half-metallic character is observed, suggesting a promising giant magneto-optical Kerr property of the material. The partial density of states are further examined to explore the origin of ferromagnetic half-metallicity. The O atoms are observed to have larger contribution at fermi level than Ni atoms to the spin-polarized states, demonstrating that O atoms play a critical role in ferromagnetic half-metallicity of SrNiO_3. Hydrostatic pressure effect is examined to evaluate how robust the half-metallic ferromagnetism is. - Graphical abstract: (a) The total energy as a function of the lattice constant a for hexagonal SrNiO3 with various magnetic phases. (b) The total electronic density of states for hexagonal SrNiO_3 with FM configuration from GGA+U calculations. (c) Total electron-density distribution in the (110) plane. The colors gradually change from cyan (through pink) to yellow corresponding to charge density value from 0 to 4.0. (d) The magnetization density map in the (110) plane. The colors range from blue (through green) to red corresponding to magnetization density value from −0.15 to 0.45. Black and white contours stand for positive and negative values, respectively. - Highlights: • Hexagonal Sr

  7. Existence of non-abelian representations of the near hexagon Q(5,2 ...

    Indian Academy of Sciences (India)

    A near hexagon is a partial linear space of diameter 3 in which for every point x and every line l ... (iii) rx /∈ Z(R) for each x ∈ P and ψ is faithful. ..... As a consequence of the ..... [4] De Bruyn B, Near polygons (2006) (Basel: Birkhäuser Verlag).

  8. Studies on the magnetic after-effect of hydrogen isotopes in hexagonal crystals

    International Nuclear Information System (INIS)

    Herbst, G.

    1979-01-01

    The behaviour of hydrogen isotopes in hexagonal gadolinium, in intermetallic compounds of the RECo 5 type (RE = rare earth metal), and in cobalt alloys with small concentrations of alloyed impurity atoms was studied using the magnetic after-effect method in the temperature range between 4.2 K and 300 K. (orig./WBU) [de

  9. Hexagonal boron nitride and water interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080 (United States)

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  10. Discrete breathers in a two-dimensional hexagonal Fermi Pasta Ulam lattice

    Science.gov (United States)

    Butt, Imran A.; Wattis, Jonathan A. D.

    2007-02-01

    We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a reduction to a cubic nonlinear Schrödinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher order analysis yielding a generalized NLS, which includes known stabilizing terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximized for stationary breathers and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt and Wattis 2006 J. Phys. A: Math. Gen. 39 4955), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalized NLS equation.

  11. The physic properties of Bi-Zn codoped Y-type hexagonal ferrite

    International Nuclear Information System (INIS)

    Bai Yang; Zhou Ji; Gui Zhilun; L, Longtu; Qiao Lijie

    2008-01-01

    The magnetic and dielectric properties of Bi-Zn codoped Y-type hexagonal ferrite was investigated. The samples with composition of Ba 2-x Bi x Zn 0.8+x Co 0.8 Cu 0.4 Fe 12-x O 22 (x = 0-0.4) were prepared by the solid-state reaction method. Phase formation was characterized by X-ray diffraction. The microstructure was observed via scanning electron microscopy. The magnetic and dielectric properties were measured using an impedance analyzer. Direct current (dc) electrical resistivity was measured using a pA meter/dc voltage source. Minor Bi doping (x = 0.05-0.25) will not destroy the phase formation of Y-type hexagonal ferrite, but lower the phase formation temperature distinctly. Bi substitution can also promote the sintering process. The Bi-containing samples (x > 0.05) can be sintered well under 900 deg. C without any other addition. The sintering temperature is about 200 deg. C lower than that of the Bi-free sample. The Bi-Zn codoped samples exhibit excellent magnetic and dielectric properties in hyper frequency. These materials are suitable for multi-layer chip-inductive components

  12. The effect of hydrostatic pressure on the physical properties of magnesium arsenide in cubic and hexagonal phases

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Ali, E-mail: mokhtari@sci.sku.ac.i [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, P. B. 115, Shahrekord (Iran, Islamic Republic of); Sedighi, Matin [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, P. B. 115, Shahrekord (Iran, Islamic Republic of)

    2010-04-01

    Full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT) was applied to study the structural and electronic properties of the magnesium arsenide in both cubic and hexagonal phases. The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). The lattice parameters, bulk modulus and its pressure derivative, cohesive energy, band structures and effective mass of electrons and holes (EME and EMH) were obtained and compared to the available experimental and theoretical results. A phase transition was predicted at pressure of about 1.63 GPa from the cubic to the hexagonal phase. The effect of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths, anti-symmetry gap (the energy gap between two parts of the valence bands), EME and EMH were investigated using both GGA96 and EV-GGA methods. High applied pressure can decrease (increase) the holes mobility of cubic (hexagonal) phase of this compound.

  13. The effect of hydrostatic pressure on the physical properties of magnesium arsenide in cubic and hexagonal phases

    International Nuclear Information System (INIS)

    Mokhtari, Ali; Sedighi, Matin

    2010-01-01

    Full potential-linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT) was applied to study the structural and electronic properties of the magnesium arsenide in both cubic and hexagonal phases. The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). The lattice parameters, bulk modulus and its pressure derivative, cohesive energy, band structures and effective mass of electrons and holes (EME and EMH) were obtained and compared to the available experimental and theoretical results. A phase transition was predicted at pressure of about 1.63 GPa from the cubic to the hexagonal phase. The effect of hydrostatic pressure on the behavior of the electronic properties such as band gap, valence bandwidths, anti-symmetry gap (the energy gap between two parts of the valence bands), EME and EMH were investigated using both GGA96 and EV-GGA methods. High applied pressure can decrease (increase) the holes mobility of cubic (hexagonal) phase of this compound.

  14. High-Entropy Alloys in Hexagonal Close-Packed Structure

    Science.gov (United States)

    Gao, M. C.; Zhang, B.; Guo, S. M.; Qiao, J. W.; Hawk, J. A.

    2016-07-01

    The microstructures and properties of high-entropy alloys (HEAs) based on the face-centered cubic and body-centered cubic structures have been studied extensively in the literature, but reports on HEAs in the hexagonal close-packed (HCP) structure are very limited. Using an efficient strategy in combining phase diagram inspection, CALPHAD modeling, and ab initio molecular dynamics simulations, a variety of new compositions are suggested that may hold great potentials in forming single-phase HCP HEAs that comprise rare earth elements and transition metals, respectively. Experimental verification was carried out on CoFeReRu and CoReRuV using X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy.

  15. Effects of Sr-substitution on the structural and magnetic behavior of Ba-based Y-type hexagonal ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mukhtar, E-mail: mukhtarahmad25@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Ali, Qasim; Ali, Ihsan; Ahmad, Ishtiaq [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Azhar Khan, M. [Department of Physics, The Islamia University of Bahawalpur 63100 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, G.C. University, Lahore (Pakistan); Rana, M.U., E-mail: mazharrana@bzu.edu.pk [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2013-12-15

    Highlights: •Sr-substituted Y-type hexaferrites synthesized by sol–gel method have been investigated. •Platelet grains with well defined hexagonal shape are suitable for microwave absorbers. •Saturation magnetization values were calculated by the law of approach to saturation. •Coercivity of a few hundred oersteds found for all samples is suitable for EM materials. -- Abstract: Sr-substituted samples of Y-type hexagonal ferrites with chemical formula Ba{sub 2−x}Sr{sub x}Ni{sub 2}Fe{sub 12}O{sub 22} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized using the sol–gel autocombustion method and were sintered at 1150 °C for 3 h. The samples were investigated by differential thermal and thermogravimetry analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. X-ray diffraction analysis reveals that single phase samples can be achieved by substituting Sr{sup 2+} ions at Ba{sup 2+} sites in Y-type hexagonal ferrites. X-ray density and bulk density were observed to decrease whereas porosity increased with increasing Sr-concentration. All the samples show well defined hexagonal shape which is favorable for microwave absorbing purposes. The saturation magnetization values were calculated from M–H loops by the law of approach to saturation. The loops show low values of coercivity of a few hundred oersteds which is one of the necessary conditions for electromagnetic (EM) materials and is suitable for security, switching, sensing and high frequency applications.

  16. HEXAN - a hexagonal nodal code for solving the diffusion equation

    International Nuclear Information System (INIS)

    Makai, M.

    1982-07-01

    This report describes the theory of and provides a user's manual for the HEXAN program, which is a nodal program for the solution of the few-group diffusion equation in hexagonal geometry. Based upon symmetry considerations, the theory provides an analytical solution in a homogeneous node. WWER and HTGR test problem solutions are presented. The equivalence of the finite-difference scheme and the response matrix method is proven. The properties of a symmetric node's response matrix are investigated. (author)

  17. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber

    Science.gov (United States)

    Meshram, M. R.; Agrawal, Nawal K.; Sinha, Bharoti; Misra, P. S.

    2004-05-01

    This paper present the design, development and characterization of the hexagonal ferrite powder [BaCo 0.5δTi 0.5δMn 0.1Fe (11.87-δ)O 19] and [Ba(MnTi) δFe (12-2δ)O 19] at δ=1.6 as a microwave absorber. The hexagonal ferrite powder has been developed by dry attrition and sintering procedure. The developed ferrite powder 60% by weight has been mixed in epoxy resin to form a microwave-absorbing paint. This paint was coated on a conducting aluminum sheet to study the absorption characteristics of a linearly polarized TE wave at X band. The results for single- and two-layer microwave absorbers for different coating thicknesses have been reported. It has been found that it shows the broadband characteristics with minimum absorption of 8 dB from 8 to 12 GHz for a coating thickness of 2 mm.These paints are very useful in military applications such as RCS reduction, camouflaging of the target and prevention of EMI, etc.

  18. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber

    International Nuclear Information System (INIS)

    Meshram, M.R.; Agrawal, Nawal K.; Sinha, Bharoti; Misra, P.S.

    2004-01-01

    This paper present the design, development and characterization of the hexagonal ferrite powder [BaCo 0.5δ Ti 0.5δ Mn 0.1 Fe (11.87-δ) O 19 ] and [Ba(MnTi) δ Fe (12-2δ) O 19 ] at δ=1.6 as a microwave absorber. The hexagonal ferrite powder has been developed by dry attrition and sintering procedure. The developed ferrite powder 60% by weight has been mixed in epoxy resin to form a microwave-absorbing paint. This paint was coated on a conducting aluminum sheet to study the absorption characteristics of a linearly polarized TE wave at X band. The results for single- and two-layer microwave absorbers for different coating thicknesses have been reported. It has been found that it shows the broadband characteristics with minimum absorption of 8 dB from 8 to 12 GHz for a coating thickness of 2 mm.These paints are very useful in military applications such as RCS reduction, camouflaging of the target and prevention of EMI, etc

  19. Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.

    Science.gov (United States)

    Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar

    2016-01-20

    The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evanescent Properties of Optical Diffraction from 2-Dimensional Hexagonal Photonic Crystals and Their Sensor Applications.

    Science.gov (United States)

    Liao, Yu-Yang; Chen, Yung-Tsan; Chen, Chien-Chun; Huang, Jian-Jang

    2018-04-03

    The sensitivity of traditional diffraction grating sensors is limited by the spatial resolution of the measurement setup. Thus, a large space is required to improve sensor performance. Here, we demonstrate a compact hexagonal photonic crystal (PhC) optical sensor with high sensitivity. PhCs are able to diffract optical beams to various angles in azimuthal space. The critical wavelength that satisfies the phase matching or becomes evanescent was used to benchmark the refractive index of a target analyte applied on a PhC sensor. Using a glucose solution as an example, our sensor demonstrated very high sensitivity and a low limit of detection. This shows that the diffraction mechanism of hexagonal photonic crystals can be used for sensors when compact size is a concern.

  1. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications.

    Science.gov (United States)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Shi, Linxi; Gounis, Matthew J; Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo

    2016-05-01

    High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54 μm. After resampling to 54

  2. Structural hierarchy in flow-aligned hexagonally self-organized microphases with parallel polyelectrolytic structures

    NARCIS (Netherlands)

    Ruotsalainen, T; Torkkeli, M; Serimaa, R; Makela, T; Maki-Ontto, R; Ruokolainen, J; ten Brinke, G; Ikkala, O; Mäkelä, Tapio; Mäki-Ontto, Riikka

    2003-01-01

    We report a novel structural hierarchy where a flow-aligned hexagonal self-organized structure is combined with a polyelectrolytic self-organization on a smaller length scale and where the two structures are mutually parallel. Polystyrene-block-poly(4-vinylpyridine) (PS-block-P4VP) is selected with

  3. SrAl12O19 thin films by chemical solution deposition and their use as buffer layers for oriented growth of hexagonal ferrites

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Uhrecký, Róbert; Kaščáková, Dorota; Kužel, R.; Holý, V.; Dopita, M.

    2016-01-01

    Roč. 616, OCT (2016), s. 228-237 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:61388980 Keywords : Chemical solution deposition * Hexagonal aluminates * Hexagonal ferrites Subject RIV: CA - Inorganic Chemistry Impact factor: 1.879, year: 2016

  4. Growth and Brilliant Photo-Emission of Crystalline Hexagonal Column of Alq3 Microwires

    Directory of Open Access Journals (Sweden)

    Seokho Kim

    2018-03-01

    Full Text Available We report the growth and nanoscale luminescence characteristics of 8-hydroxyquinolinato aluminum (Alq3 with a crystalline hexagonal column morphology. Pristine Alq3 nanoparticles (NPs were prepared using a conventional reprecipitation method. Crystal hexagonal columns of Alq3 were grown by using a surfactant-assisted self-assembly technique as an adjunct to the aforementioned reprecipitation method. The formation and structural properties of the crystalline and non-crystalline Alq3 NPs were analyzed with scanning electron microscopy and X-ray diffraction. The nanoscale photoluminescence (PL characteristics and the luminescence color of the Alq3 single NPs and their crystal microwires (MWs were evaluated from color charge-coupled device images acquired using a high-resolution laser confocal microscope. In comparison with the Alq3 NPs, the crystalline MWs exhibited a very bright and sharp emission. This enhanced and sharp emission from the crystalline Alq3 single MWs originated from effective π-π stacking of the Alq3 molecules due to strong interactions in the crystalline structure.

  5. Stress-strain relationship and XRD line broadening in [0001] textured hexagonal polycrystalline materials

    International Nuclear Information System (INIS)

    Yokoyama, Ryouichi

    2011-01-01

    Stress analysis with X-ray diffraction (XRD) for hexagonal polycrystalline materials in the Laue classes 6/mmm and 6/m has been studied on the basis of the crystal symmetry of the constituent crystallites which was proposed by R. Yokoyama and J. Harada ['Re-evaluation of formulae for X-ray stress analysis in polycrystalline specimens with fibre texture', Journal of Applied Crystallography, Vol.42, pp.185-191 (2009)]. The relationship between the stress and strain observable by XRD in a hexagonal polycrystalline material with [0001] fibre texture was formulated in terms of the elastic compliance defined for its single crystal. As a result, it was shown that the average strains obtained in the crystallites for both symmetries of 6/mmm and 6/m are different from each other under the triaxial or biaxial stress field. Then, it turned out that the line width of XRD changes depending on the measurement direction. (author)

  6. Local structure theory: calculation on hexagonal arrays, and interaction of rule and lattice

    International Nuclear Information System (INIS)

    Gutowitz, H.A.; Victor, J.D.

    1989-01-01

    Local structure theory calculations are applied to the study of cellular automata on the two-dimensional hexagonal lattice. A particular hexagonal lattice rule denoted (3422) is considered in detail. This rule has many features in common with Conway's Life. The local structure theory captures many of the statistical properties of this rule; this supports hypotheses raised by a study of Life itself. As in Life, the state of a cell under (3422) depends only on the state of the cell itself and the sum of states in its neighborhood at the previous time step. This property implies that evolution rules which operate in the same way can be studied on different lattices. The differences between the behavior of these rules on different lattices are dramatic. The mean field theory cannot reflect these differences. However, a generalization of the mean field theory, the local structure theory, does account for the rule-lattice interaction

  7. Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer

    Science.gov (United States)

    Banik, Meneka; Mukherjee, Rabibrata

    Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.

  8. Comparative study of the interfaces of graphene and hexagonal boron nitride with silver

    DEFF Research Database (Denmark)

    Garnica, Manuela; Schwarz, Martin; Ducke, Jacob

    2016-01-01

    Silver opens up interesting perspectives in the fabrication of complex systems based on heteroepitaxial layers after the growth of a silicene layer on its (111) face has been proposed. In this work we explore different synthesis methods of hexagonal boron nitride (h-BN) and graphene sheets on sil...

  9. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  10. Spin Seebeck effect in Y-type hexagonal ferrite thin films

    Czech Academy of Sciences Publication Activity Database

    Hirschner, Jan; Maryško, Miroslav; Hejtmánek, Jiří; Uhrecký, Róbert; Soroka, Miroslav; Buršík, Josef; Anadón, P.; Aguirre, M.H.; Knížek, Karel

    2017-01-01

    Roč. 96, č. 6 (2017), s. 1-8, č. článku 064428. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:68378271 ; RVO:61388980 Keywords : hexagonal ferrites * spin Seebeck effect * thin films * magnetization * ferrimagnetic ferrites Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Inorganic and nuclear chemistry (UACH-T) Impact factor: 3.836, year: 2016

  11. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  12. Photoluminescence of Hexagonal ZnO Nanorods Hydrothermally Grown on Zn Foils in KOH Solutions with Different Values of Basicity

    Directory of Open Access Journals (Sweden)

    Nuengruethai Ekthammathat

    2013-01-01

    Full Text Available Aligned hexagonal ZnO nanorods on pure Zn foils were hydrothermally synthesized in 30 mL solutions containing 0.05–0.50 g KOH. The products were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and photoluminescence (PL spectroscopy. In this research, wurtzite hexagonal ZnO nanorods grown along the [002] direction with green light emission at 541 nm caused by singly ionized oxygen vacancies inside were detected.

  13. Topotactic reduction and reoxidation of hexagonal RCu0.5Ti0.5O3 (R = Y, Eu-Lu) Phases

    International Nuclear Information System (INIS)

    Jiang, Peng; Berthelot, Romain; Li, Jun; Sleight, A.W.; Subramanian, M.A.

    2013-01-01

    Highlights: ► Topotactic reduction of hexagonal RCu 0.5 Ti 0.5 O 3 phases is performed. ► TGA and magnetism indicate a formula of RCu 0.5 Ti 0.5 O 2.78 for the reduced phase. ► Topotactic reoxidation occurs on heating these phases to 400 °C in air. - Abstract: Hexagonal AMO 2 and AMO 3 phases have the same basic structure, and intermediate compositions for this structure have been prepared by topotactic oxidation of AMO 2 phases such as RCuO 2 , where R is a trivalent rare earth cation. We now find that such intermediate phases can also be prepared by topotactic reduction of hexagonal RCu 0.5 Ti 0.5 O 3 (R = Y, Tb-Lu) phases. Our TGA and magnetic susceptibility studies indicate a formula of RCu 0.5 Ti 0.5 O 2.78 for these reduced phases. Topotactic reoxidation occurs on heating these phases to 400 °C in air

  14. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Guang Wang

    2017-07-01

    Full Text Available Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  15. Spin-density wave state in simple hexagonal graphite

    Science.gov (United States)

    Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.

    2018-02-01

    Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.

  16. The hexagon gauge anomaly in type 1 superstring theory

    International Nuclear Information System (INIS)

    Green, M.B.; Schwarz, J.H.

    1985-01-01

    Hexagon diagrams with external on-mass-shell Yang-Mills gauge particles are investigated in type I superstring theory. Both the annulus and the Moebuis-strip diagrams are shown to give anomalies, implying that spurious longitudinal modes cannot be consistently decoupled. However, the anomalies cancel when the two diagrams are added together if the gauge group is chosen to be SO(32). In carrying out the analysis, two different regulators are considered, but the same conclusions emerge in both cases. We point out where various terms in the low-energy effective action originate in superstring diagrams. (orig.)

  17. Topological dynamics of vortex-line networks in hexagonal manganites

    Science.gov (United States)

    Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing

    2018-01-01

    The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.

  18. A viola con anima: uma construção simbólica

    OpenAIRE

    Gisela Gomes Pupo Nogueira

    2008-01-01

    As pesquisas históricas sobre as violas brasileiras foram delimitadas pelas referências textuais e iconográficas ao instrumento musical e à sua utilização na produção musical, particularmente da segunda metade do século XVIII ao início do XIX, com pequena citação de César das Neves em s eu Cancioneiro de Músicas Populares, cujo primeiro volume é datado de 1893. Usualmente confundida com alaúdes, cistros e violões, a literatura histórica deixa lacunas sobre a descrição do instrumento. Fato é q...

  19. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu; Shi, Linxi; Gounis, Matthew J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo [Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy and Pixirad Imaging Counters s.r.l., L. Pontecorvo 3, Pisa 56127 (Italy)

    2016-05-15

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  20. Eigenstates of a particle in an array of hexagons with periodic boundary condition

    Directory of Open Access Journals (Sweden)

    A Nemati

    2013-10-01

    Full Text Available In this paper the problem of a particle in an array of hexagons with periodic boundary condition is solved. Using the projection operators, we categorize eigenfunctions corresponding to each of the irreducible representations of the symmetry group . Based on these results, the Dirichlet and Neumann boundary conditions are discussed.

  1. A transmission probability method for calculation of neutron flux distributions in hexagonal geometry

    International Nuclear Information System (INIS)

    Wasastjerna, F.; Lux, I.

    1980-03-01

    A transmission probability method implemented in the program TPHEX is described. This program was developed for the calculation of neutron flux distributions in hexagonal light water reactor fuel assemblies. The accuracy appears to be superior to diffusion theory, and the computation time is shorter than that of the collision probability method. (author)

  2. Uniform hexagonal graphene flakes and films grown on liquid copper surface

    OpenAIRE

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-01-01

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm2), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films ...

  3. ''Cube-on-hexagon'' orientation relationship for Fe on GaN(0001): The missing link in bcc/hcp epitaxy

    International Nuclear Information System (INIS)

    Gao Cunxu; Brandt, Oliver; Laehnemann, Jonas; Jahn, Uwe; Jenichen, Bernd; Schoenherr, Hans-Peter; Erwin, Steven C.

    2010-01-01

    We investigate, experimentally and theoretically, the epitaxy of body-centered-cubic Fe on hexagonal GaN. For growth on the Ga-polar GaN(0001) surface we find the well-known Pitsch-Schrader orientation relationship between Fe and GaN. On the N-polar GaN(0001) surface we observe coexistence between the familiar Burgers orientation and a new orientation in which the Fe(001) plane is parallel to GaN(0001). This 'cube-on-hexagon' orientation constitutes the high-symmetry link required for constructing a symmetry diagram for bcc/hcp systems in which all orientation relationships are connected by simple rotations.

  4. Promoção da saúde e redes de lideranças Health promotion and leadership networks

    Directory of Open Access Journals (Sweden)

    Rosilda Mendes

    2013-01-01

    Full Text Available O estudo das redes sociais vem ganhando importância no campo da promoção da saúde, dadas a horizontalidade e a sinergia que suscitam ao agregarem grupos em torno de iniciativas que melhoram as condições de vida. Este trabalho apresenta parte dos resultados da investigação "Capela em Ação e a gestão integrada e participativa de políticas públicas", que teve como objetivo avaliar um modelo de gestão da subprefeitura de Capela do Socorro, localizada ao sul da cidade de São Paulo. A análise dos dados foi dedicada ao estudo das relações existentes entre as lideranças locais e sua articulação em redes e ao quanto elas facilitam ações voltadas para a melhoria das condições de vida. O universo de líderes e entidades não foi definido a priori, mas a partir da técnica da bola de neve (snowball. As informações foram obtidas por meio de entrevista semiestruturada, o que permitiu a identificação de grupos, movimentos e entidades e das relações que estabelecem entre si e com o poder público. Os dados mostraram 247 lideranças e 342 associações, bem como a complexidade do modelo de gestão do ponto de vista da construção de redes sociopolíticas como instrumentos de fortalecimento da participação. Nesta pesquisa, pôde-se verificar que mudanças vêm acontecendo na sociedade civil, tanto em termos da sua organização, quanto no desempenho de um papel transformador da realidade. Alguns elementos apontados neste artigo podem subsidiar a gestão local no sentido da criação de espaços de participação que facilitem o engajamento nas políticas públicas.The study of social networks has been gaining importance in health promotion because of the horizontality and synergy created by aggregating groups seeking improved living conditions. Some results of the investigation "Capela in Action and the integrated and participative management of public policies", which assessed an administrative model of the Capela do Socorro sub

  5. Cultura organizacional, satisfação profissional e atmosfera de grupo = Organizational culture, job satisfaction and group atmosphere

    Directory of Open Access Journals (Sweden)

    Santos, Joana Vieira

    2011-01-01

    Full Text Available No presente estudo, transversal, procurou-se destacar a influência da cultura organizacional sobre a satisfação no trabalho dos colaboradores e sobre a atmosfera de grupo. Estas variáveis têm repercussões na realização pessoal dos colaboradores e na produtividade da empresa. Foi nosso objectivo, analisar a influência da percepção da cultura organizacional na satisfação profissional e na atmosfera de grupo numa amostra, de conveniência, de 210 participantes (enfermeiros; professores. Os dados, de natureza quantitativa, foram recolhidos através dum instrumento constituído por três escalas: FOCUS (First Organizational Culture Unified Search (Neves, 2000; Satisfação Profissional (Lima, Vala e Monteiro, 1994 e a Escala de Atmosfera de Grupo (Jesuíno, 1987. Foram também registadas variáveis demográficas dos inquiridos. Os resultados sugerem que a cultura é percepcionada como uma cultura de regras. A cultura organizacional apresenta um elevado valor preditivo da satisfação profissional e da atmosfera de grupo. Estas duas últimas variáveis se correlacionam significativamente

  6. Disclosure no serviço público: análise da aplicabilidade da lei de transparência em municípios mineiros = Disclosure in Public Service: an analysis of the applicability of the transparency law in Minas Gerais municipalities

    Directory of Open Access Journals (Sweden)

    Derley Júnior Miranda Silva

    2016-04-01

    Full Text Available Buscou-se, neste estudo descritivo, desenvolvido por meio de análise documental, verificar, mediante o acesso e consulta aos portais eletrônicos, se os atos da Administração Pública de 30 (trinta municípios do estado de Minas Gerais, com população acima de 100 (cem mil habitantes, relativamente à execução financeira e orçamentária, atendem ao disposto na Lei Complementar nº 131/2009, Lei de Transparência, verificando também o disclosure desses municípios. Em todos os 30 (trinta municípios mineiros investigados constatou-se a implantação da Lei de Transparência. A totalidade de municípios possui portais eletrônicos. Todavia essa implantação não evidencia o disclosure e não atende totalmente aos requisitos legais obrigatórios e recomendados para a evidenciação da execução orçamentária. Em alguns websites as informações são de difícil visualização. É necessária a abertura de vários links até o acesso à informação desejada. Confirmou-se, ainda, no período de consulta aos portais, que municípios com expressiva densidade populacional, como Uberlândia, Contagem, Juiz de Fora e Montes Claros, lideram a lista dos que atenderam a um número menor de critérios definidos legalmente. O município de Ribeirão das Neves é o que mais atende aos requisitos legais de transparência, seguido pelos municípios de Ipatinga e Teófilo Otoni. Observou-se, ainda, que alguns sítios eletrônicos apresentam períodos constantes de manutenção permanecendo indisponíveis ou desativados por longos espaços de tempo prejudicando o acesso dos cidadãos e dificultando o acompanhamento de informações disponibilizadas em tempo real pelos agentes públicos. In this descriptive study, developed through analysis of documents, it was possible to verify by means of access and consultation of electronic portals, whether the acts of the Public Administration in thirty (30 municipalities in the state of Minas Gerais with

  7. Permeation of Light Gases through Hexagonal Ice

    Directory of Open Access Journals (Sweden)

    Luis Gales

    2012-09-01

    Full Text Available Gas separation using porous solids have attracted great attention due to their energetic applications. There is an enormous economic and environmental interest in the development of improved technologies for relevant processes, such as H2 production, CO2 separation or O2 and N2 purification from air. New materials are needed for achieving major improvements. Crystalline materials, displaying unidirectional and single-sized pores, preferentially with low pore tortuosity and high pore density, are promising candidates for membrane synthesis. Herein, we study hexagonal ice crystals as an example of this class of materials. By slowly growing ice crystals inside capillary tubes we were able to measure the permeation of several gas species through ice crystals and investigate its relation with both the size of the guest molecules and temperature of the crystal.

  8. Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers

    Science.gov (United States)

    Zhai, Xuechao; Jin, Guojun

    2013-09-01

    Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.

  9. Finite element method for neutron diffusion problems in hexagonal geometry

    International Nuclear Information System (INIS)

    Wei, T.Y.C.; Hansen, K.F.

    1975-06-01

    The use of the finite element method for solving two-dimensional static neutron diffusion problems in hexagonal reactor configurations is considered. It is investigated as a possible alternative to the low-order finite difference method. Various piecewise polynomial spaces are examined for their use in hexagonal problems. The central questions which arise in the design of these spaces are the degree of incompleteness permissible and the advantages of using a low-order space fine-mesh approach over that of a high-order space coarse-mesh one. There is also the question of the degree of smoothness required. Two schemes for the construction of spaces are described and a number of specific spaces, constructed with the questions outlined above in mind, are presented. They range from a complete non-Lagrangian, non-Hermite quadratic space to an incomplete ninth order space. Results are presented for two-dimensional problems typical of a small high temperature gas-cooled reactor. From the results it is concluded that the space used should at least include the complete linear one. Complete spaces are to be preferred to totally incomplete ones. Once function continuity is imposed any additional degree of smoothness is of secondary importance. For flux shapes typical of the small high temperature gas-cooled reactor the linear space fine-mesh alternative is to be preferred to the perturbation quadratic space coarse-mesh one and the low-order finite difference method is to be preferred over both finite element schemes

  10. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin; Zhu, Hongdan; Linguerri, Roberto; Han, Yu; Chambaud, Gilberte; Meng, Changgong

    2017-01-01

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated

  11. Synthesis and structure of large single crystalline silver hexagonal microplates suitable for micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Lyutov, Dimitar L.; Genkov, Kaloyan V.; Zyapkov, Anton D.; Tsutsumanova, Gichka G.; Tzonev, Atanas N. [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria); Lyutov, Lyudmil G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Sofia, 1, J. Bouchier Blvd, Sofia (Bulgaria); Russev, Stoyan C., E-mail: scr@phys.uni-sofia.bg [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria)

    2014-01-15

    We report a simple one-step synthesis method of large single crystalline Ag (111) hexagonal microplates with sharp edges and a size of up to tens of microns. Single silver crystals were produced by reduction silver nitrate aqueous solution with 4-(methylamino)phenol sulfate. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction and optical microscopy techniques were combined to characterize the crystals. It is shown that the microplates can be easily dispersed and transferred as single objects onto different substrates and subsequently used as a high quality plasmonic starting material for micromachining of future nanocomponents, using modern top-down techniques like focused-ion beam milling and gas injection deposition. - Highlights: • Synthesis of large Ag hexagonal microplates with high crystallinity. • It is shown and discussed the role of twinning for the anisotropic 2D growth. • The Ag plates are stable in water and can be dispersed onto different substrates. • Their positioning and subsequent micromachining with FIB/GIS is demonstrated. • Suitable starting material for future plasmonic nanocomponents.

  12. Experimental study of natural convective heat transfer in a vertical hexagonal sub channel

    International Nuclear Information System (INIS)

    Tandian, Nathanael P.; Umar, Efrizon; Hardianto, Toto; Febriyanto, Catur

    2012-01-01

    The development of new practices in nuclear reactor safety aspects and optimization of recent nuclear reactors, including the APWR and the PHWR reactors, needs a knowledge on natural convective heat transfer within sub-channels formed among several nuclear fuel rods or heat exchanger tubes. Unfortunately, the currently available empirical correlation equations for such heat transfer modes are limited and researches on convective heat transfer within a bundle of vertical cylinders (especially within the natural convection modes) are scarcely done. Although boundary layers around the heat exchanger cylinders or fuel rods may be dominated by their entry regions, most of available convection correlation equations are for fully developed boundary layers. Recently, an experimental study on natural convective heat transfer in a subchannel formed by several heated parallel cylinders that arranged in a hexagonal configuration has been being done. The study seeks for a new convection correlation for the natural convective heat transfer in the sub-channel formed among the hexagonal vertical cylinders. A new convective heat transfer correlation equation has been obtained from the study and compared to several similar equations in literatures.

  13. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu

    2009-04-06

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  14. A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface

    KAUST Repository

    Han, Yu; Zhang, Daliang; Chng, Leng Leng; Sun, Junliang; Zhao, L. J.; Zou, Xiaodong; Ying, Jackie

    2009-01-01

    Ordered porous materials with unique pore structures and pore sizes in the mesoporous range (2-50nm) have many applications in catalysis, separation and drug delivery. Extensive research has resulted in mesoporous materials with one-dimensional, cage-like and bi-continuous pore structures. Three families of bi-continuous mesoporous materials have been made, with two interwoven but unconnected channels, corresponding to the liquid crystal phases used as templates. Here we report a three-dimensional hexagonal mesoporous silica, IBN-9, with a tri-continuous pore structure that is synthesized using a specially designed cationic surfactant template. IBN-9 consists of three identical continuous interpenetrating channels, which are separated by a silica wall that follows a hexagonal minimal surface. Such a tri-continuous mesostructure was predicted mathematically, but until now has not been observed in real materials. © 2009 Macmillan Publishers Limited. All rights reserved.

  15. Hexagonal-like Nb2O5 Nanoplates-Based Photodetectors and Photocatalyst with High Performances

    Science.gov (United States)

    Liu, Hui; Gao, Nan; Liao, Meiyong; Fang, Xiaosheng

    2015-01-01

    Ultraviolet (UV) photodetectors are important tools in the fields of optical imaging, environmental monitoring, and air and water sterilization, as well as flame sensing and early rocket plume detection. Herein, hexagonal-like Nb2O5 nanoplates are synthesized using a facile solvothermal method. UV photodetectors based on single Nb2O5 nanoplates are constructed and the optoelectronic properties have been probed. The photodetectors show remarkable sensitivity with a high external quantum efficiency (EQE) of 9617%, and adequate wavelength selectivity with respect to UV-A light. In addition, the photodetectors exhibit robust stability and strong dependence of photocurrent on light intensity. Also, a low-cost drop-casting method is used to fabricate photodetectors based on Nb2O5 nanoplate film, which exhibit singular thermal stability. Moreover, the hexagonal-like Nb2O5 nanoplates show significantly better photocatalytic performances in decomposing Methylene-blue and Rhdamine B dyes than commercial Nb2O5.

  16. Hexagonal pencil-like CdS nanorods: Facile synthesis and enhanced visible light photocatalytic performance

    Science.gov (United States)

    An, Liang; Wang, Guanghui; Zhao, Lei; Zhou, Yong; Gao, Fang; Cheng, Yang

    2015-07-01

    In the present study, hexagonal pencil-like CdS nanorods have been successfully synthesized through a typical facile and economical one-step hydrothermal method without using any surfactant or template. The product was characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive analysis of X-ray (EDX). The results revealed that the prepared CdS photocatalyst consisted of a large quantity of straight and smooth solid hexagonal nanorods and a few nanoparticles. The photocatalytic activities of CdS nanorods and commercial CdS powders were investigated by the photodegradation of Orange II (OII) in aqueous solution under visible light, and the CdS nanorods presented the highest photocatalytic activity. Its photocatalytic efficiency enhancement was attributed to the improved transmission of photogenerated electron-hole pairs in the CdS nanostructures. The present findings may provide a facile approach to synthesize high efficient CdS photocatalysts.

  17. Language teaching and fairytales: contextualized teaching, a new approach = Ensino de língua e contos de fada: ensino contextualizado, uma nova abordagem

    Directory of Open Access Journals (Sweden)

    Baratz, Ana Hemmons

    2012-01-01

    Full Text Available Como podemos instigar a imaginação da criança em favor do ensino de língua? Egan (1992 aponta uma abordagem de ensino infantil que difere do comum. Essa abordagem trás para o centro do currículo a imaginação da criança. ‘Ensinando com contexto’ (usando contos de fadas pode ser relacionando aos gêneros de Bakhtin. Eles estão presentes no nosso cotidiano e são impossíveis de separar do aprendizado de língua. Duas versões de um mesmo conto-de-fadas foram linguisticamente comparados através de uma análise de corpus com o fim de investigar qual versão seria a ideal para uso em contexto escolar. As estórias analisadas são de Branca de Neve e Cinderela, uma versão traduzida do Alemão e outra recentemente adaptada da mesma

  18. Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties.

    Science.gov (United States)

    Hu, Jin-Song; Ji, Heng-Xing; Cao, An-Min; Huang, Zheng-Xi; Zhang, Yang; Wan, Li-Jun; Xia, An-Dong; Yu, Da-Peng; Meng, Xiang-Min; Lee, Shuit-Tong

    2007-08-07

    A facile self-assembly growth route assisted by surfactant has been developed to synthesize tris(8-hydroxyquinoline)aluminium (Alq(3)) nanorods with regular hexagonal shape and good crystallinity, which exhibit field-emission characteristics with a very low turn-on field of ca. 3.1 V microm(-1) and a high field-enhancement factor of ca. 1300.

  19. Elastic properties and 2D icosahedral bonding in borides of hexagonal WC type

    International Nuclear Information System (INIS)

    Music, Denis; Schneider, Jochen M.

    2005-01-01

    Using ab initio calculations we have identified materials with bulk moduli comparable to cubic BN. These are WB, IrB, ReB and OsB crystallizing in the hexagonal WC structure. In the (0 0 0 2) planes of these compounds, we find 2D icosahedral bonding between adjacent B atoms, which has previously not been reported

  20. Elastic properties and 2D icosahedral bonding in borides of hexagonal WC type

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)]. E-mail: music@mch.rwth-aachen.de; Schneider, Jochen M. [Materials Chemistry, RWTH-Aachen, Kopernikusstr. 16, D-52074 Aachen (Germany)

    2005-01-15

    Using ab initio calculations we have identified materials with bulk moduli comparable to cubic BN. These are WB, IrB, ReB and OsB crystallizing in the hexagonal WC structure. In the (0 0 0 2) planes of these compounds, we find 2D icosahedral bonding between adjacent B atoms, which has previously not been reported.

  1. Generalization of first-principles thermodynamic model: Application to hexagonal close-packed ε-Fe3N

    DEFF Research Database (Denmark)

    Bakkedal, Morten B.; Shang, Shu- Li; Liu, Zi-Kui

    2016-01-01

    A complete first-principles thermodynamic model was developed and applied to hexagonal close-packed structure ε-Fe3N. The electronic structure was calculated using density functional theory and the quasiharmonic phonon approximation to determine macroscopic thermodynamic properties at finite...

  2. 'Magic' Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon

    Czech Academy of Sciences Publication Activity Database

    Saniga, M.; Planat, M.; Pracna, Petr; Levay, P.

    2012-01-01

    Roč. 8, č. 2012 (2012), 083 ISSN 1815-0659 Institutional support: RVO:61388955 Keywords : 'magic' configurations of observables * three-qubit Pauli group * split Cayley hexagon of order two Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.243, year: 2012

  3. A APROPRIAÇÃO DA TECNOLOGIA DE INFORMAÇÃO NA FOMENTAÇÃO DE UM DIFERENCIAL COMPETITIVO

    Directory of Open Access Journals (Sweden)

    Daniel Nunes de Almeida

    2014-12-01

    Full Text Available O objetivo desse estudo é analisar como a empresa, com fins comerciais, tratam a interação com seus clientes e como usam as redes sociais para tal comunicação. Para tanto, foi realizada uma revisão de literatura e, posteriormente, um breve estudo de caso[1]. O instrumento de coleta de informações para o estudo de casos foi o questionário aplicado ao sócio diretor da empresa Pereira Assessoria, o senhor Emílio, localizada em Vitória, ES e responsável pelo controle de mídias sociais do Mendes Shopping.  Buscou-se ainda identificar a percepção do entrevistado em relação ao tipo de vantagens do uso das redes sociais. Concluímos que é impossível ignorar a relevância do fator internet, sendo hoje fator determinante de sucesso e insucesso de diversas empresas no âmbito nacional e internacional, caracterizando-se por uma excelente ferramenta de contato com seus clientes. Notamos que a empresa Mendes Shopping por investir em profissionais qualificados vem conseguindo se apropriar desse meio de interação com o cliente de forma satisfatória.   [1] Agradeço ao professor Cristiano das Neves Bodart pelas orientações que foram fundamentais para a conclusão desse trabalho de pesquisa.

  4. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    Science.gov (United States)

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-01-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm−1K−1(+141 Wm−1K−1/ −24 Wm−1K−1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN. PMID:27142571

  5. Effects of Carrier Frequency Offset, Timing Offset, and Channel Spread Factor on the Performance of Hexagonal Multicarrier Modulation Systems

    Directory of Open Access Journals (Sweden)

    Kui Xu

    2009-01-01

    Full Text Available Hexagonal multicarrier modulation (HMM system is the technique of choice to overcome the impact of time-frequency dispersive transmission channel. This paper examines the effects of insufficient synchronization (carrier frequency offset, timing offset on the amplitude and phase of the demodulated symbol by using a projection receiver in hexagonal multicarrier modulation systems. Furthermore, effects of CFO, TO, and channel spread factor on the performance of signal-to-interference-plus-noise ratio (SINR in hexagonal multicarrier modulation systems are further discussed. The exact SINR expression versus insufficient synchronization and channel spread factor is derived. Theoretical analysis shows that similar degradation on symbol amplitude and phase caused by insufficient synchronization is incurred as in traditional cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM transmission. Our theoretical analysis is confirmed by numerical simulations in a doubly dispersive (DD channel with exponential delay power profile and U-shape Doppler power spectrum, showing that HMM systems outperform traditional CP-OFDM systems with respect to SINR against ISI/ICI caused by insufficient synchronization and doubly dispersive channel.

  6. Estratégias de instituições da sociedade civil no acesso a medicamentos para câncer de mama no SUS

    Directory of Open Access Journals (Sweden)

    Aline Scaramussa Deprá

    2015-07-01

    Full Text Available Esta pesquisa objetiva identificar e analisar as estratégias de instituições da sociedade civil dedicadas ao câncer de mama (ISC-CM no acesso a medicamentos no SUS e seus principais atores sociais. Utilizou-se a abordagem qualitativa, empregando-se os métodos de análise de redes sociais e bola-de-neve e as técnicas de observação participante e entrevistas semiestruturadas. A análise temática baseou-se nas categorias: acesso a medicamentos para tratamento de câncer de mama; relacionamento das ISC-CM com o Estado; relacionamento das ISC-CM com a indústria farmacêutica; e outras estratégias utilizadas por ISC-CM no acesso a medicamentos. Os resultados mostraram que as ISC-CM têm influenciado o acesso a medicamentos para câncer de mama no SUS e sua principal estratégia é a pressão sobre o Estado. A indústria farmacêutica patrocina algumas dessas instituições para fortalecê-las com o intuito de ampliar seu mercado. As principais dificuldades no acesso a medicamentos se referem à deficiência de serviços, à iniquidade dos tratamentos oferecidos, e à inclusão de tecnologias no SUS.

  7. Dancoff Correction in Square and Hexagonal Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1966-11-15

    This report presents the results of a series of calculations of Dancoff corrections for square and hexagonal rod lattices. The tables cover a wide range of volume ratios and moderator cross sections. The results were utilized for checking the approximative formula of Sauer and also the modification of Bonalumi to Sauer's formula. The modified formula calculates the Dancoff correction with an accuracy of 0.01 - 0.02 in cases of practical interest. Calculations have also been performed on square lattices with an empty gap surrounding the rods. The results demonstrate the error involved in treating this kind of geometry by means of homogenizing the gap and the moderator. The calculations were made on the Ferranti Mercury computer of AB Atomenergi before it was closed down. Since then FORTRAN routines for Dancoff corrections have been written, and a subroutine DASQHE is included in the report.

  8. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, R.; Villa S, G.; Rosales D, J. [Tecnologico de Estudios Superiores de Jocotitlan, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico); Vigueras S, E.; Hernandez L, S. [Universidad Autonoma del Estado de Mexico, Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Acuna, P. [Universidad Autonoma del Estado de Mexico, Programa de Doctorado en Ciencia de Materiales, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Argueta V, A.; Colin B, N., E-mail: lorr810813@gmail.com [Tecnologico de Estudios Superiores de Jocotitlan, Programa de Ingenieria Mecatronica, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico)

    2017-11-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  9. Thermo-elastic Green's functions for an infinite bi-material of one-dimensional hexagonal quasi-crystals

    International Nuclear Information System (INIS)

    Li, P.D.; Li, X.Y.; Zheng, R.F.

    2013-01-01

    This Letter is concerned with thermo-elastic fundamental solutions of an infinite space, which is composed of two half-infinite bodies of different one-dimensional hexagonal quasi-crystals. A point thermal source is embedded in a half-space. The interface can be either perfectly bonded or smoothly contacted. On the basis of the newly developed general solution, the temperature-induced elastic field in full space is explicitly presented in terms of elementary functions. The interactions among the temperature, phonon and phason fields are revealed. The present work can play an important role in constructing farther analytical solutions for crack, inclusion and dislocation problems. -- Highlights: ► Green's functions are constructed in terms of 10 quasi-harmonic functions. ► Thermo-elastic field of a 1D hexagonal QC bi-material body is expressed explicitly. ► Both perfectly bonded and smoothly contacted interfaces are considered

  10. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    International Nuclear Information System (INIS)

    Lopez, R.; Villa S, G.; Rosales D, J.; Vigueras S, E.; Hernandez L, S.; Acuna, P.; Argueta V, A.; Colin B, N.

    2017-01-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  11. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Directory of Open Access Journals (Sweden)

    F. L. Freitas

    2016-08-01

    Full Text Available We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal AlxGayIn1–x–yN semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  12. First-principles determination of band-to-band electronic transition energies in cubic and hexagonal AlGaInN alloys

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, F. L., E-mail: felipelopesfreitas@gmail.com; Marques, M.; Teles, L. K. [Grupo de Materiais Semicondutores e Nanotecnologia, Instituto Tecnológico de Aeronáutica, 12228-900 São José dos Campos, SP (Brazil)

    2016-08-15

    We provide approximate quasiparticle-corrected band gap energies for quaternary cubic and hexagonal Al{sub x}Ga{sub y}In{sub 1–x–y}N semiconductor alloys, employing a cluster expansion method to account for the inherent statistical disorder of the system. Calculated values are compared with photoluminescence measurements and discussed within the currently accepted model of emission in these materials by carrier localization. It is shown that bowing parameters are larger in the cubic phase, while the range of band gap variation is bigger in the hexagonal one. Experimentally determined transition energies are mostly consistent with band-to-band excitations.

  13. Bootstrapping the Three-Loop Hexagon

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /CERN /SLAC; Drummond, James M.; /CERN /Annecy, LAPTH; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP

    2011-11-08

    We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.

  14. Luminescent properties of stabled hexagonal phase Sr1-xBaxAl2O4:Eu2+ (x=0.37-0.70)

    International Nuclear Information System (INIS)

    Wu Qiaoli; Liu Zhen; Jiao Huan

    2009-01-01

    Stabled hexagonal phase Sr 1-x Ba x Al 2 O 4 :Eu 2+ (x=0.37-0.70) was prepared by solid-state method. Result revealed that the structure behavior of the SrAl 2 O 4 :Eu 2+ calcined at 1350 deg. C in a reducing atmosphere for 5 h strongly depended on the Ba 2+ concentration. With increasing Ba 2+ concentration, a characteristic hexagonal phase can be observed. When 37-70% of the strontium is replaced by barium, the structure of the prepared sample is pure hexagonal. Photoluminescence and excitation spectra of the samples with different x and doped with 2% Eu 2+ were investigated. Changes in the emission spectra were observed in the two different phases. The green emission at 505 nm from Eu 2+ was found to be quite strong in the hexagonal phase. The intensity and peak position of the green luminescence from Eu 2+ changed with increasing content of Ba 2+ . The strongest green emission was obtained from Sr 0.61 Ba 0.37 Al 2 O 4 :Eu 2+ . The decay characteristics of Sr 1-x Ba x Al 2 O 4 :Eu 2+ (x=0.37-0.70) showed that the life times also varied with the value of x. Furthermore, the emission colors and decay times varying with x could be ascribed to the variation of crystal lattice.

  15. MOCA, Criticality of VVER Reactor Hexagonal Fuel Assemblies

    International Nuclear Information System (INIS)

    KYNCL, Jan

    1994-01-01

    1 - Description of program or function: Criticality problem in neutron transport for hexagonal fuel assembly in VVER nuclear reactor. The assembly is assumed to be either arranged in an infinite hexagonal array or placed in vacuum. The problem is solved in three- dimensional geometry, using standard energy group formalism and assuming that effective scattering cross sections are presented as Legendre polynomial expansions. The code evaluates ten different physical quantities, e.g. multiplication factor, neutron flux per energy group and spatial zone, integrated over angle and power in any zone of the assembly. 2 - Method of solution: Monte Carlo method of successive generations is applied. Computation proceeds according to an analog random process. The code is organized into three blocks: In the first block, the input data are converted to quantities for use in the Monte Carlo calculation. An initial neutron distribution is calculated, which corresponds to a fission spectrum uniform in spatial and angular variables. The main calculations are carried out in the second block (subroutine PROC2). This block is subdivided into geometrical and physical parts. Neutron tracks in individual zones and groups as well as probabilities for the formation of secondary neutrons are calculated. In the third block (subroutine PROC3), the results are evaluated statistically. Effective multiplication coefficients, the neutron flux per group and zone, and respective errors are computed. These quantities serve as a basis for the evaluation of other quantities. The results are either printed or stored for future evaluations. 3 - Restrictions on the complexity of the problem: In the PC version of the program, the maximum number of neutrons is 1000, the maximum number of energy groups is 4, and the maximum number of material compositions is 15. Angular expansion of scattering cross sections is allowed up to P10. These restrictions can easily be removed by increasing input parameters and

  16. Chromatic Dispersion Compensation Using Photonic Crystal Fibers with Hexagonal Distribution

    Directory of Open Access Journals (Sweden)

    Erick E. Reyes-Vera

    2013-11-01

    Full Text Available In this paper we show various configurations of photonic crystal fiber with hexagonal holes distribution for compensation of chromatic dispersion in optical communications links. The vectorial finite element method with scattering boundary condition was used for the analysis of the fibers. From these results it was estimated variation of the dispersion and the dispersion slope with respect to change in the diameter of the holes in the microstructure. With the above was possible to obtain values of dispersion in the C and L bands of telecommunications close to -850 ps / nm * km, with confinement losses 10-3 dB / km

  17. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics.

    Science.gov (United States)

    Yu, Ying; Dou, Xiu-Ming; Wei, Bin; Zha, Guo-Wei; Shang, Xiang-Jun; Wang, Li; Su, Dan; Xu, Jian-Xing; Wang, Hai-Yan; Ni, Hai-Qiao; Sun, Bao-Quan; Ji, Yuan; Han, Xiao-Dong; Niu, Zhi-Chuan

    2014-05-01

    Two types of quantum nanostructures based on self-assembled GaAs quantumdots embedded into GaAs/AlGaAs hexagonal nanowire systems are reported, opening a new avenue to the fabrication of highly efficient single-photon sources, as well as the design of novel quantum optics experiments and robust quantum optoelectronic devices operating at higher temperature, which are required for practical quantum photonics applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Threefold rotational symmetry in hexagonally shaped core-shell (In,Ga)As/GaAs nanowires revealed by coherent X-ray diffraction imaging.

    Science.gov (United States)

    Davtyan, Arman; Krause, Thilo; Kriegner, Dominik; Al-Hassan, Ali; Bahrami, Danial; Mostafavi Kashani, Seyed Mohammad; Lewis, Ryan B; Küpers, Hanno; Tahraoui, Abbes; Geelhaar, Lutz; Hanke, Michael; Leake, Steven John; Loffeld, Otmar; Pietsch, Ullrich

    2017-06-01

    Coherent X-ray diffraction imaging at symmetric hhh Bragg reflections was used to resolve the structure of GaAs/In 0.15 Ga 0.85 As/GaAs core-shell-shell nanowires grown on a silicon (111) substrate. Diffraction amplitudes in the vicinity of GaAs 111 and GaAs 333 reflections were used to reconstruct the lost phase information. It is demonstrated that the structure of the core-shell-shell nanowire can be identified by means of phase contrast. Interestingly, it is found that both scattered intensity in the (111) plane and the reconstructed scattering phase show an additional threefold symmetry superimposed with the shape function of the investigated hexagonal nanowires. In order to find the origin of this threefold symmetry, elasticity calculations were performed using the finite element method and subsequent kinematic diffraction simulations. These suggest that a non-hexagonal (In,Ga)As shell covering the hexagonal GaAs core might be responsible for the observation.

  19. Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals

    Science.gov (United States)

    Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.

    2018-03-01

    We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.

  20. Growth of Ferromagnetic Epitaxial Film of Hexagonal FeGe on (111) Ge Surface

    Science.gov (United States)

    Kumar, Dushyant; Joshi, P. C.; Hossain, Z.; Budhani, R. C.

    2014-03-01

    The realization of semiconductors showing ferromagnetic order at easily accessible temperatures has been of interest due to their potential use in spintronic devices where long spin life times are of key interest. We have realized the growth of FeGe thin films on Ge (111) wafers using pulsed laser deposition (PLD). The stoichiometric and single phase FeGe target used in PLD chamber has been made by arc melting. A typical θ-2 θ diffraction spectra performed on 40 nm thick FeGe film suggests the stabilization of β-Ni2In (B82-type) hexagonal phase with an epitaxial orientation of (0001)FeGe ||(111)Ge and [11-20]FeGe ||[-110]Ge. SEM images shows a granular structure with the formation of very large grains of about 100 to 500 nm in lateral dimension. The magnetization vs. temperature data taken from SQUID reveal the TC of ~ 270K. Since, PLD technique makes it easier to stabilize the B82 (Ni2In) hexagonal phase in thin FeGe films, this work opens opportunities to reinvestigate many conflicting results on various properties of the FeGe system.

  1. Inefficacy of self-regulation of alcohol advertisements: a systematic review of the literature Ineficácia da autorregulamentação das propagandas de bebidas alcoólicas: uma revisão sistemática da literatura internacional

    Directory of Open Access Journals (Sweden)

    Alan Vendrame

    2011-06-01

    sobre este tipo de controle. MÉTODO: Realizou-se uma revisão bibliográfica sistemática de trabalhos que investigaram a eficácia da autorregulamentação da publicidade de bebidas alcoólicas. A busca foi feita nas bases de dados Medline, SciELO, Camy e Google Scholar, entre 1991 e 2010, bem como pela técnica de "bola de neve" para a indicação dos principais autores no tema. Foram considerados para o presente propósito 11 artigos. DISCUSSÃO: O conjunto dos trabalhos obtidos aponta que a autorregulamentação da publicidade de bebidas alcoólicas é pouco eficaz, não cumprindo com os objetivos de evitar, por exemplo, publicidade direcionada às crianças e adolescentes. CONCLUSÃO: Outras medidas devem ser consideradas para o controle e a veiculação das propagandas de bebidas alcoólicas, tais como monitoramento independente e controle legal.

  2. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Directory of Open Access Journals (Sweden)

    Jairo A Díaz

    Full Text Available The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further

  3. Novel mesoporous composites based on natural rubber and hexagonal mesoporous silica: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nuntang, Sakdinun; Poompradub, Sirilux [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Butnark, Suchada [PTT Research and Technology Institute, PTT Public Company Limited, Wangnoi, Ayutthaya 13170 (Thailand); Yokoi, Toshiyuki; Tatsumi, Takashi [Division of Catalytic Chemistry, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2014-02-14

    The present study is the first report on the synthesis and characterization of mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). A series of NR/HMS composites were prepared in tetrahydrofuran via an in situ sol–gel process using tetraethylorthosilicate as the silica precursor. The physicochemical properties of the composites were characterized by various techniques. The effects of the gel composition on the structural and textural properties of the NR/HMS composites were investigated. The Fourier-transform infrared spectroscopy (FTIR) and {sup 29}Si magic angle spinning nuclear magnetic resonance ({sup 29}Si MAS NMR) results revealed that the surface silanol groups of NR/HMS composites were covered with NR molecules. The powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated an expansion of the hexagonal unit cell and channel wall thickness due to the incorporation of NR molecules into the mesoporous structure. NR/HMS composites also possessed nanosized particles (∼79.4 nm) as confirmed by scanning electron microscopy (SEM) and particle size distribution analysis. From N{sub 2} adsorption–desorption measurement, the NR/HMS composites possessed a high BET surface area, large pore volume and narrow pore size distribution. Further, they were enhanced hydrophobicity confirmed by H{sub 2}O adsorption–desorption measurement. In addition, the mechanistic pathway of the NR/HMS composite formation was proposed. - Highlights: • NR molecules were incorporated into hexagonal meso-structure of HMS. • NR/HMS composites exhibited an expanded unit cell and channel wall thickness. • Nanosized NR/HMS composites with a lower particle size range were obtained. • NR/HMS had high surface area, large pore volume and narrow pore size distribution. • NR/HMS composites displayed an enhanced hydrophobicity.

  4. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order.

    Science.gov (United States)

    Díaz, Jairo A; Jaramillo, Natalia A; Murillo, Mauricio F

    2007-12-12

    The present study describes and documents self-assembly of geometric triangular chiral hexagon crystal like complex organizations (GTCHC) in human pathological tissues. The authors have found this architectural geometric expression at macroscopic and microscopic levels mainly in cancer processes. This study is based essentially on macroscopic and histopathologic analyses of 3000 surgical specimens: 2600 inflammatory lesions and 400 malignant tumours. Geometric complexes identified photographically at macroscopic level were located in the gross surgical specimen, and these areas were carefully dissected. Samples were taken to carry out histologic analysis. Based on the hypothesis of a collision genesis mechanism and because it is difficult to carry out an appropriate methodological observation in biological systems, the authors designed a model base on other dynamic systems to obtain indirect information in which a strong white flash wave light discharge, generated by an electronic device, hits over the lines of electrical conductance structured in helicoidal pattern. In their experimental model, the authors were able to reproduce and to predict polarity, chirality, helicoid geometry, triangular and hexagonal clusters through electromagnetic sequential collisions. They determined that similar events among constituents of extracelular matrix which drive and produce piezoelectric activity are responsible for the genesis of GTCHC complexes in pathological tissues. This research suggests that molecular crystals represented by triangular chiral hexagons derived from a collision-attraction event against collagen type I fibrils emerge at microscopic and macroscopic scales presenting a lateral assembly of each side of hypertrophy helicoid fibers, that represent energy flow in cooperative hierarchically chiral electromagnetic interaction in pathological tissues and arises as a geometry of the equilibrium in perturbed biological systems. Further interdisciplinary studies must

  5. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride

    NARCIS (Netherlands)

    Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J.

    2011-01-01

    We present electronic transport measurements of single and bilayer graphene on commercially available hexagonal boron nitride. We extract mobilities as high as 125 000 cm(2) V-1 s(-1) at room temperature and 275 000 cm(2) V-1 s(-1) at 4.2 K. The excellent quality is supported by the early

  6. Plano de Fortalecimento da Gestão do Turismo (PFGT: uma avaliação ex ante no município de Nísia Floresta (RN

    Directory of Open Access Journals (Sweden)

    Richard Medeiros de Araújo

    2012-02-01

    Full Text Available Atualmente, o Plano de Desenvolvimento do Turismo (Prodetur vem procurando fortalecer institucionalmente os destinos turísticos, a fim de garantir a ampliação e a continuidade das melhorias estruturais já realizadas quando da primeira fase do programa governamental, e ao mesmo tempo dotar os municípios de uma gestão pública mais eficiente, em que deverá também considerar o turismo como o eixo central na formulação e gerenciamento das políticas públicas municipais com foco no desenvolvimento local. Para tanto, o Prodetur lançou, no Rio Grande do Norte, o Plano de Fortalecimento da Gestão do Turismo, do Patrimônio Natural e Cultural em 2009. A pesquisa objetiva avaliar, de forma ex ante, a viabilidade da implementação do referido plano governamental no município de Nísia Floresta (RN. Adotaram-se as seis dimensões do modelo teórico de Draibe (2001 conjugadas com o modelo de Neves (1996 para conduzir a pesquisa. Metodologicamente, optou-se por uma abordagem qualitativa, na qual foram buscadas análises de documentos como o diagnóstico estratégico, o plano de ação proposto e realização de entrevistas semiestruturadas com alguns secretários municipais. Usou-se a análise de conteúdo como técnica de tratamento dos conteúdos das entrevistas e foram feitas observações não participantes. Assim foi possível desenhar a pesquisa avaliativa, caracterizando o momento administrativo e político atual e como esse desenho poderia interferir na implementação do plano avaliado. Conclui-se que o município não apresenta condições institucionais suficientes para a implementação do Plano Governamental financiado com recursos federais.

  7. A thermo mechanical benchmark calculation of a hexagonal can in the BTI accident with INCA code

    International Nuclear Information System (INIS)

    Zucchini, A.

    1988-01-01

    The thermomechanical behaviour of an hexagonal can in a benchmark problem (simulating the conditions of a BTI accident in a fuel assembly) is examined by means of the INCA code and the results systematically compared with those of ADINA

  8. Effect of Powder Grain Size on Microstructure and Magnetic Properties of Hexagonal Barium Ferrite Ceramic

    Science.gov (United States)

    Shao, Li-Huan; Shen, Si-Yun; Zheng, Hui; Zheng, Peng; Wu, Qiong; Zheng, Liang

    2018-05-01

    Compact hexagonal barium ferrite (BaFe12O19, BaM) ceramics with excellent magnetic properties have been prepared from powder with the optimal grain size. The dependence of the microstructure and magnetic properties of the ceramics on powder grain size was studied in detail. Single-phase hexagonal barium ferrite powder with grain size of 177 nm, 256 nm, 327 nm, and 454 nm was obtained by calcination under different conditions. Scanning electron microscopy revealed that 327-nm powder was beneficial for obtaining homogeneous grain size and compact ceramic. In addition, magnetic hysteresis loops and complex permeability spectra demonstrated that the highest saturation magnetization (67.2 emu/g) and real part of the permeability (1.11) at 1 GHz were also obtained using powder with grain size of 327 nm. This relationship between the powder grain size and the properties of the resulting BaM ceramic could be significant for development of microwave devices.

  9. Hexagonal (wurtzite) GaN inclusions as a defect in cubic (zinc-blende) GaN

    International Nuclear Information System (INIS)

    Zainal, N.; Novikov, S.V.; Akimov, A.V.; Staddon, C.R.; Foxon, C.T.; Kent, A.J.

    2012-01-01

    The dependence of the hexagonal fraction with thickness in MBE-grown bulk cubic (c-) GaN epilayer is presented in this paper. A number of c-GaN epilayers with different thicknesses were characterized via PL and XRD measurements. From the PL spectra, the signal due to h-GaN inclusions increases as the thickness of the c-GaN increases. On the contrary, in the XRD diffractogram, c-GaN shows a dominant signal at all thicknesses, and only a weak peak at ∼35° is observed in the diffractogram, implying the existence of a small amount of h-GaN in the c-GaN layer. The best quality of c-GaN is observed in the first 10 μm of GaN on the top of GaAs substrate. Even though the hexagonal content increases with the thickness, the average content remains below 20% in c-GaN layers up to 50 μm thick. The surface morphology of thick c-GaN is also presented.

  10. Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics

    International Nuclear Information System (INIS)

    Vazquez, M.; Pirota, K.; Torrejon, J.; Navas, D.; Hernandez-Velez, M.

    2005-01-01

    Densely packed arrays of magnetic nanowires with hexagonal symmetry have been prepared by electrodeposition filling of the nanopores in alumina membranes previously formed by self-assembling induced by anodization. The influence of geometrical characteristics of arrays of Ni nanowires on their hysteresis loops have been studied. These characteristics are controlled by suitable choosing of preparation parameters: nanowires diameter ranges between 18 and 80 nm for lattice parameter of hexagonal symmetry of 65 and 105 nm, while length of nanowires is taken between 500 and 2000 nm. Additionally, the temperature dependence of coercivity when applying the field parallel to the nanowires or in-plane of the membrane has been measured. All these results allows us to conclude that magnetic behaviour is determined by the balance between different energy contributions, namely, the shape anisotropy of individual nanowires, the magnetostatic interaction among nanowires (confirmed to play a decisive role), and seemingly the magnetoelastic anisotropy induced in the nanowires by the alumina matrix through temperature changes as a consequence of their different thermal expansion coefficients

  11. Energetics of a hexagonal-lamellar-hexagonal-phase transition sequence in dioleoylphosphatidylethanolamine membranes

    International Nuclear Information System (INIS)

    Gawrisch, K.; Parsegian, V.A.; Hajduk, D.A.; Tate, M.W.; Gruner, S.M.; Fuller, N.L.; Rand, R.P.

    1992-01-01

    The phase diagram of DOPE/water dispersions was investigated by NMR and X-ray diffraction in the water concentration range from 2 to 20 water molecules per lipid and in the temperature range from -5 to +50C. At temperature above 22C, the dispersions form an inverse (H II ) phase at all water concentrations. Below 25C, an H II phase occurs at high water concentrations, an L α phase is formed at intermediate water concentrations, and finally the system switches back to an H II phase at low water concentrations. The enthalpy of the L α -H II -phase transition is +0.3 kcal/mol as measured by differential scanning calorimetry. Using 31 P and 2 H NMR and X-ray diffraction. The authors measured the trapped water volumes in H II and L α phases as a function of osmotic pressure. The change of the H II -phase free energy as a function of hydration was calculated by integrating the osmotic pressure vs trapped water volume curve. The phase diagram calculated on the basis of the known enthalpy of transition and the osmotic pressure vs water volume curves is in good agreement with the measured one. The H II -L α -H II double-phase transition at temperatures below 22C can be shown to be a consequence of (1) the greater degree of hydration of the H II phase in excess water and (2) the relative sensitivities with which the lamellar and hexagonal phases dehydrate with increasing osmotic pressure. These results demonstrate the usefulness of osmotic stress measurements to understand lipid-phase diagrams

  12. Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.

    1987-01-01

    A study of the dynamics and mechanism of the various thermotropic phase transitions undergone by the hydrated monoacylglycerides monoolein and monoelaidin, in the temperature range of 20-120 0 C and from 0 to 5 M NaCl, has been undertaken. Measurements were made by using time-resolved X-ray diffraction at the Cornell High-Energy Synchrotron Source. The lamellar chain order/disorder, lamellar/cubic (body centered, space group No.8), cubic (body centered, No.8)/cubic (primitive No.4), cubic (body centered, No.12)/cubic (primitive, No.4), cubic (primitive, No.4)/fluid isotropic, cubic (body centered, No.12)/inverted hexagonal, cubic (primitive, No.4)/inverted hexagonal, and hexagonal/fluid isotropic transitions were examined under active heating and passive cooling by using a jump in temperature to effect phase transformation. All of the transitions with the exception of the cubic (body centered, No.8)/cubic (primitive, No.4) and the cubic (body centered, No.12)/cubic (primitive, No.4) cooling transitions were found (1) to be repeatable, (2) to be reversible, and (3) to have an upper bound on the transit time (time required to complete the transition) of ≤ 3s. In addition to the time-resolved measurements, data were obtained on the stability of the various phases in the temperature range of 20-120 0 C and from 0 to 5 M NaCl. In the case of fully hydrated monoolein, high salt strongly favors the hexagonal over the cubic (body centered, No.8) phase and slightly elevates the hexagonal/fluid isotropic transition temperature. With fully hydrated monoelaidin, the hexagonal phase which is not observed in the absence of salt becomes the dominant phase at high salt concentration

  13. Shock-Assisted Superficial Hexagonal-to-Cubic Phase Transition in GaN/Sapphire Interface Induced by Using Ultra-violet Laser Lift-Of Techniques

    International Nuclear Information System (INIS)

    Wei-Hua, Chen; Xiao-Dong, Hu; Xiang-Ning, Kang; Xu-Rong, Zhou; Xiao-Min, Zhang; Tong-Jun, Yu; Zhi-Jian, Yang; Ke, Xu; Guo-Yi, Zhang; Xu-Dong, Shan; Li-Ping, You

    2009-01-01

    Ultra-violet (KrF excimer laser, λ = 248 nm) laser lift-of (LLO) techniques have been operated to the GaN/sapphire structure to separate GaN from the sapphire substrate. Hexagonal to cubic phase transformation induced by the ultra-violet laser lift-of (UV-LLO) has been characterized by micro-Raman spectroscopy, micro-photoluminescence, along with high-resolution transmission electron microscopy (HRTEM). HRTEM indicates that UV-LLO induced phase transition takes place above the LLO interface, without phase transition under the LLO interface. The formed cubic GaN often exists as nanocrystal grains attaching on the bulk hexagonal GaN. The half-loop-cluster-like UV-LLO interface indicates that the LLO-induced shock waves has generated and played an assistant role in the decomposition of the hexagonal GaN and in the formation of cubic GaN grains at the LLO surface

  14. Hydrophobic nanoparticles promote lamellar to inverted hexagonal transition in phospholipid mesophases.

    Science.gov (United States)

    Bulpett, Jennifer M; Snow, Tim; Quignon, Benoit; Beddoes, Charlotte M; Tang, T-Y D; Mann, Stephen; Shebanova, Olga; Pizzey, Claire L; Terrill, Nicholas J; Davis, Sean A; Briscoe, Wuge H

    2015-12-07

    This study focuses on how the mesophase transition behaviour of the phospholipid dioleoyl phosphatidylethanolamine (DOPE) is altered by the presence of 10 nm hydrophobic and 14 nm hydrophilic silica nanoparticles (NPs) at different concentrations. The lamellar to inverted hexagonal phase transition (Lα-HII) of phospholipids is energetically analogous to the membrane fusion process, therefore understanding the Lα-HII transition with nanoparticulate additives is relevant to how membrane fusion may be affected by these additives, in this case the silica NPs. The overriding observation is that the HII/Lα boundaries in the DOPE p-T phase diagram were shifted by the presence of NPs: the hydrophobic NPs enlarged the HII phase region and thus encouraged the inverted hexagonal (HII) phase to occur at lower temperatures, whilst hydrophilic NPs appeared to stabilise the Lα phase region. This effect was also NP-concentration dependent, with a more pronounced effect for higher concentration of the hydrophobic NPs, but the trend was less clear cut for the hydrophilic NPs. There was no evidence that the NPs were intercalated into the mesophases, and as such it was likely that they might have undergone microphase separation and resided at the mesophase domain boundaries. Whilst the loci and exact roles of the NPs invite further investigation, we tentatively discuss these results in terms of both the surface chemistry of the NPs and the effect of their curvature on the elastic bending energy considerations during the mesophase transition.

  15. Decisão de Compras Pela Internet: Uma Análise a Partir do Tempo de Utilização de Mídias Sociais e da Interatividade com a Marca

    Directory of Open Access Journals (Sweden)

    Maicon Souza Menegatti

    2017-03-01

    Full Text Available Diversas variáveis que podem motivar ou inibir a realização de uma compra no comércio eletrônico ainda merecem investigações. Neste artigo analisamos especificamente a influência da percepção de tempo de utilização de mídias sociais e o grau de interatividade com a marca sobre as compras declaradas pela internet. A investigação foi realizada a partir de 99 questionários aplicados a usuários de mídias sociais por meio do método bola de neve. A partir de modelos de regressão linear múltipla foram testadas duas hipóteses de pesquisa. Os resultados fornecem fortes indícios de que o grau de interatividade com a marca influencia de forma positiva e significante a compra declarada pela internet, verificamos também que a percepção do tempo de utilização das mídias sociais não interfere na compra. Estes resultados ampliam a compreensão sobre os potenciais fatores que explicam o comportamento de compras online, sendo esta a principal contribuição deste artigo.

  16. The preparation of high-adsorption, spherical, hexagonal boron nitride by template method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2014-11-15

    Highlights: • The high-adsorption, spherical, hexagonal boron nitride powders were prepared. • The influence mechanism of template content on the micro-morphology and adsorption was explored. • At appropriate synthesis temperature, higher adsorption mesoporous spheres h-BN began to form. - Abstract: This research used low-cost boric acid and borax as a source of boron, urea as a nitrogen source, dodecyl-trimethyl ammonium chloride (DTAC) as a template, and thus prepared different micro-morphology hexagonal boron nitride powders under a flowing ammonia atmosphere at different nitriding temperatures. The effects of the template content and nitriding temperature on the micro-morphology of hexagonal boron nitride were studied and the formation mechanism analysed. The influences of the template content and nitriding temperature on adsorption performance were also explored. The results showed that at a nitriding temperature of 675 °C, the micro-morphologies of h-BN powder were orderly, inhomogeneous spherical, uniform spherical, beam, and pie-like with increasing template content. The micro-morphology was inhomogeneous spherical at a DTAC dose of 7.5%. The micro-morphology was uniform spherical at a DTAC dose of 10%. At a DTAC dose of 12%, the micro-morphology was a mixture of beam and pie-like shapes. At a certain template content (DTAC at 10%) and at lower nitriding temperatures (625 °C and 650 °C), spherical shell structures with surface subsidence began to form. The porous spheres would appear at a nitriding temperature of 675 °C, and the ball diameter thus formed was approximately 500–600 nm. The ball diameter was about 600–700 nm when the nitriding temperature was 700 °C. At a nitriding temperature of 725 °C, the ball diameter was between 800 and 1000 nm and sintering necking started to form. When the relative pressure was higher, previously closed pores opened and connected with the outside world: the adsorption then increased significantly. The

  17. Ineficácia da autorregulamentaç��o das propagandas de bebidas alcoólicas: uma revisão sistemática da literatura internacional Inefficacy of self-regulation of alcohol advertisements: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Alan Vendrame

    2011-01-01

    Full Text Available OBJETIVO: A literatura científica mais recente aponta que a publicidade de bebidas alcoólicas influencia o comportamento, particularmente o consumo precoce e em grandes quantidades por crianças e adolescentes. Da perspectiva da saúde pública, a publicidade de bebidas alcoólicas deve ser restringida. Em muitos países, assim como no Brasil, os limites são estabelecidos pela autorregulamentação (ou seja, controlados pela própria comunidade publicitária. Analisou-se na presente revisão o conjunto dos trabalhos publicados na literatura internacional sobre este tipo de controle. MÉTODO: Realizou-se uma revisão bibliográfica sistemática de trabalhos que investigaram a eficácia da autorregulamentação da publicidade de bebidas alcoólicas. A busca foi feita nas bases de dados Medline, SciELO, Camy e Google Scholar, entre 1991 e 2010, bem como pela técnica de "bola de neve" para a indicação dos principais autores no tema. Foram considerados para o presente propósito 11 artigos. DISCUSSÃO: O conjunto dos trabalhos obtidos aponta que a autorregulamentação da publicidade de bebidas alcoólicas é pouco eficaz, não cumprindo com os objetivos de evitar, por exemplo, publicidade direcionada às crianças e adolescentes. CONCLUSÃO: Outras medidas devem ser consideradas para o controle e a veiculação das propagandas de bebidas alcoólicas, tais como monitoramento independente e controle legal.OBJECTIVE: The most recent scientific literature indicates that alcohol advertising influences behavior, particularly early and higher alcohol consumption by children and adolescents. From a public health perspective, alcohol advertising should be restricted. In many countries, as well as in Brazil, limits to alcohol advertising are established by industry self-regulation (e.g. controlled by the advertising community itself. We examined in this review all papers on the subject of industry self-regulation of alcohol advertising published in the

  18. Growth of InAs Wurtzite Nanocrosses from Hexagonal and Cubic Basis

    DEFF Research Database (Denmark)

    Krizek, Filip; Kanne, Thomas; Razmadze, Davydas

    2017-01-01

    . Two methods use conventional wurtzite nanowire arrays as a 6-fold hexagonal basis for growing single crystal wurtzite nanocrosses. A third method uses the 2-fold cubic symmetry of (100) substrates to form well-defined coherent inclusions of zinc blende in the center of the nanocrosses. We show......Epitaxially connected nanowires allow for the design of electron transport experiments and applications beyond the standard two terminal device geometries. In this Letter, we present growth methods of three distinct types of wurtzite structured InAs nanocrosses via the vapor-liquid-solid mechanism...

  19. Field-induced magnetic phase transitions and correlated electronic states in the hexagonal RAgGE and RPtIn series

    Energy Technology Data Exchange (ETDEWEB)

    Morosan, Emilia [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The present work was initially motivated by the desire to continue the study of complex metamagnetism in relation to the crystal structure of various compounds; this study already included tetragonal compounds like HoNi2B2C (Canfield 1997b; Kalatsky 1998) and DyAgSb2 (Myers 1999), in which the rare earths occupy unique tetragonal positions. We intended to find hexagonal systems suited for such a study, with complex metamagnetic properties, and the search for extremely anisotropic hexagonal compounds turned into a rewarding exploration. We identified and grew most of the heavy rare earth members of two isostructural series, RAgGe and RPtIn, both belonging to the hexagonal Fe2P family of materials. In each of these series we found one compound, TmAgGe, and TbPtIn respectively, that was suitable for a simple study of angular dependent metamagnetism: they had three rare earth ions in the unit cell, positioned at a unique crystallographic site with orthorhombic point symmetry. The magnetization of both TmAgGe and TbPtIn was extremely anisotropic, with larger values for the in-plane orientation of the applied field than in the axial direction. Complex metamagnetic transitions existed for field within the ab-plane, and, similar to the case of the tetragonal compounds RNi2B2C and DyAgSb2, they depended on the field orientation within the basal plane. We were thus able to develop a two-dimensional model, the three co-planar Ising-like systems model, which described well the angular dependence of the metamagnetic transitions in the TmAgGe and TbPtIn hexagonal compounds. Having three magnetic moments in the hexagonal unit cell, in orthorhombic point symmetry positions, added to the complexity of the analysis compared to the case of tetragonal compounds having one rare earth atom per unit cell, in tetragonal point symmetry. However, the three co-planar Ising-like systems model yielded complex, but

  20. Transition behavior of asymmetric polystyrene-b-poly(2-vinylpyridine) films: A stable hexagonally modulated layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Koo, Kyosung; Kim, Kyunginn; Ahn, Hyungju; Lee, Byeongdu; Park, Cheolmin; Ryu, Du Yeol

    2015-03-09

    The phase transitions in the films of an asymmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) were investigated by grazing incidence small-angle X-ray scattering (GISAXS) and transmission electron microscopy (TEM). Compared with the sequential transitions in the bulk, hexagonally perforated layer (HPL) – gyroid (GYR) – disorder (DIS) upon heating, the transitions in film geometry were dramatically changed with decreasing thickness due to the growing preferential interactions from substrate, resulting in a thickness-dependent transition diagram including four different morphologies of hexagonally modulated layer (HML), coexisting (HML and GYR), GYR, and DIS. Particularly in the films ≤10Lo, where Lo is d-spacing at 150 °C, a stable HML structure was identified even above the order-to-disorder transition (ODT) temperature of the bulk, which was attributed to the suppressed compositional fluctuations by the enhanced substrate interactions.

  1. Fermionic pentagons and NMHV hexagon

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2015-05-01

    Full Text Available We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar N=4 super-Yang–Mills theory. We focus on its Grassmann components which are dual to next-to-maximal helicity-violating (NMHV scattering amplitudes. The kinematics in question is studied within a framework of the operator product expansion that encodes propagation of excitations on the background of the color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known to all orders in 't Hooft coupling from previous studies, we find their form factor couplings to the Wilson loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fundamental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial charge under the SU(4 R-symmetry group. Restricting the current consideration to twist-two accuracy, we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the super Wilson loop demonstrating agreement with recent results to four-loop order in 't Hooft coupling.

  2. A study of transition from n- to p-type based on hexagonal WO3 nanorods sensor

    Science.gov (United States)

    Wu, Ya-Qiao; Hu, Ming; Wei, Xiao-Ying

    2014-04-01

    Hexagonal WO3 nanorods are fabricated by a facile hydrothermal process at 180 °C using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO3 nanorods with diameters ranging from 100 nm-150 nm and lengths up to several micrometers are obtained at PH = 2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO3 nanorod sensor are obtained by measuring the dynamic response to NO2 with concentrations in the range 0.5 ppm-5 ppm and at working temperatures in the range 25 °C-250 °C. The obtained WO3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO2 gas, the WO3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 °C, whereas, it behaves as a p-type semiconductor below 50 °C. The origin of the n- to p-type transition is correlated with the formation of an inversion layer at the surface of the WO3 nanorod at room temperature. This finding is useful for making new room temperature NO2 sensors based on hexagonal WO3 nanorods.

  3. A study of transition from n- to p-type based on hexagonal WO3 nanorods sensor

    International Nuclear Information System (INIS)

    Wu Ya-Qiao; Hu Ming; Wei Xiao-Ying

    2014-01-01

    Hexagonal WO 3 nanorods are fabricated by a facile hydrothermal process at 180 °C using sodium tungstate and sodium chloride as starting materials. The morphology, structure, and composition of the prepared nanorods are studied by scanning electron microscopy, X-ray diffraction spectroscopy, and energy dispersive spectroscopy. It is found that the agglomeration of the nanorods is strongly dependent on the PH value of the reaction solution. Uniform and isolated WO 3 nanorods with diameters ranging from 100 nm–150 nm and lengths up to several micrometers are obtained at PH = 2.5 and the nanorods are identified as being hexagonal in phase structure. The sensing characteristics of the WO 3 nanorod sensor are obtained by measuring the dynamic response to NO 2 with concentrations in the range 0.5 ppm–5 ppm and at working temperatures in the range 25 °C–250 °C. The obtained WO 3 nanorods sensors are found to exhibit opposite sensing behaviors, depending on the working temperature. When being exposed to oxidizing NO 2 gas, the WO 3 nanorod sensor behaves as an n-type semiconductor as expected when the working temperature is higher than 50 °C, whereas, it behaves as a p-type semiconductor below 50 °C. The origin of the n- to p-type transition is correlated with the formation of an inversion layer at the surface of the WO 3 nanorod at room temperature. This finding is useful for making new room temperature NO 2 sensors based on hexagonal WO 3 nanorods. (general)

  4. Chemical synthesis of hexagonal indium nitride nanocrystallines at low temperature

    Science.gov (United States)

    Wang, Liangbiao; Shen, Qianli; Zhao, Dejian; Lu, Juanjuan; Liu, Weiqiao; Zhang, Junhao; Bao, Keyan; Zhou, Quanfa

    2017-08-01

    In this study, hexagonal indium nitride nanocystallines with high crystallinity have been prepared by the reaction of InCl3·4H2O, sulfur and NaNH2 in an autoclave at 160 °C. The crystal structures and morphologies of the obtained InN sample are characterized by X-ray diffraction and scanning electron microscope. As InCl3·4H2O is substituted by In(NO3)3·4.5H2O, InN nanocrystallines could also be obtained by using the similar method. The photoluminescence spectrum shows that the InN emits a broad peak positioned at 2.3 eV.

  5. Magnetic ordering and frustration in hexagonal UNi{sub 4}B

    Energy Technology Data Exchange (ETDEWEB)

    Mentink, S A.M. [Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.; Drost, A [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Nieuwenhuys, G J [Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.; Frikkee, E [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Menovsky, A A [Rijksuniversiteit Leiden (Netherlands). Kamerlingh Onnes Lab.

    1994-05-01

    We have determined unusual magnetic ordering of the hexagonal intermetallic uranium compound UNi{sub 4}B via neutron diffraction. In the easy basal plane the U-moments have triangular symmetry with antiferromagnetic interactions. Along the hard c axis ferromagnetic coupling occurs. Below T{sub N} = 20 K only two out of every three U-moments of 1.2 {mu}{sub B} order in vortex-like arrangements around the third paramagnetic spin. This novel magnetic structure is related to the occurrence of a crystallographic superstructure. Previously observed anomalies in bulk properties below T{sub N} are attributed to unconventional spin-wave excitations associated with this type of ordering. (orig.).

  6. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    Energy Technology Data Exchange (ETDEWEB)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.; Anane, A.; Petroff, F.; Fert, A.; Dlubak, B.; Seneor, P. [Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, Palaiseau 91767 (France); Caneva, S.; Martin, M.-B.; Weatherup, R. S.; Kidambi, P. R.; Robertson, J.; Hofmann, S. [Department of Engineering, University of Cambridge, Cambridge CB21PZ (United Kingdom); Xavier, S. [Thales Research and Technology, 1 avenue Augustin Fresnel, Palaiseau 91767 (France)

    2016-03-07

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  7. Regioselectivity of Sc2C2@C3v(8)-C82: Role of the Sumanene-Type Hexagon in Diels-Alder Reaction.

    Science.gov (United States)

    Zhao, Pei; Zhao, Xiang; Ehara, Masahiro

    2016-09-16

    Recently, several experiments have demonstrated high chemical reactivity of the sumanene-type hexagon in Sc2C2@C82. To further uncover its reactivity, the Diels-Alder reaction to all the nonequivalent C-C bonds of C82 and Sc2C2@C82 has been investigated by density functional theory calculations. For the free fullerene, the [5,6] bond 7 is the thermodynamically most favored, whereas the addition on the [6,6] bond 3 has the lowest activation energy. Diels-Alder reaction has no preference for addition sites in the sumanene-type hexagon. However, in the case of the endohedral fullerene, the [6,6] bond 19 in the special hexagon becomes the most reactive site according to both kinetic and thermodynamic considerations. Further analyses reveal that bond 19 in Sc2C2@C82 exhibits the shortest bond length and third largest π-orbital axis vector. In addition, the LUMOs of bond 19 are also symmetry-allowed to interact with butadiene.

  8. Effective cleaning of hexagonal boron nitride for graphene devices.

    Science.gov (United States)

    Garcia, Andrei G F; Neumann, Michael; Amet, François; Williams, James R; Watanabe, Kenji; Taniguchi, Takashi; Goldhaber-Gordon, David

    2012-09-12

    Hexagonal boron nitride (h-BN) films have attracted considerable interest as substrates for graphene. ( Dean, C. R. et al. Nat. Nanotechnol. 2010 , 5 , 722 - 6 ; Wang, H. et al. Electron Device Lett. 2011 , 32 , 1209 - 1211 ; Sanchez-Yamagishi, J. et al. Phys. Rev. Lett. 2012 , 108 , 1 - 5 .) We study the presence of organic contaminants introduced by standard lithography and substrate transfer processing on h-BN films exfoliated on silicon oxide substrates. Exposure to photoresist processing adds a large broad luminescence peak to the Raman spectrum of the h-BN flake. This signal persists through typical furnace annealing recipes (Ar/H(2)). A recipe that successfully removes organic contaminants and results in clean h-BN flakes involves treatment in Ar/O(2) at 500 °C.

  9. The high temperature orthorhombic ⇄ hexagonal phase transformation of FeMnP

    Science.gov (United States)

    Chenevier, B.; Soubeyroux, J. L.; Bacmann, M.; Fruchart, D.; Fruchart, R.

    1987-10-01

    The compound FeMnP has the hexagonal Fe 2P structure above 1473K. The metal atoms are disordered. The disorder rate decreases with temperature and at 1413K a transition Hex → Orth. takes place. The low temperature phase is of Co 2P type. A simple transition model is proposed based on the displacement of phosphorus chains along the shortest axis of the structure. The thermal evolution of the orthorhombic cell parameters evidences the strong anisotropy of the bondings.

  10. First-principles calculations of the elastic constants of the cubic, orthorhombic and hexagonal phases of BaF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nyawere, P.W.O., E-mail: otienop98@yahoo.ca [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya); Department of Computing, Kabarak University, P.O. - Private Bag - 20157 Kabarak (Kenya); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Makau, N.W., E-mail: wanimak@yahoo.com [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya); Amolo, G.O., E-mail: georgeamolo862@gmail.com [Computational Materials Science Group, Department of Physics, University of Eldoret, P.O. Box 1125-30100 Eldoret (Kenya)

    2014-02-01

    All the elastic constants of cubic, orthorhombic and hexagonal phases of BaF{sub 2} have been calculated using first principles methods. We have employed density-functional theory within generalized gradient approximation (GGA) using a plane-wave pseudopotentials method and a plane-wave basis set. The calculated elastic constant values for a cubic phase compare well with recent theoretical and experimental calculations. The bulk modulus derived from the elastic constant calculations of orthorhombic phase of BaF{sub 2} is 94.5 GPa and those of hexagonal phase is 161 GPa. These values are in good agreement with experimental data available. Stability of these phases of BaF{sub 2} is also estimated in different crystallographic directions.

  11. Multiple nonlinear Bragg diffraction of femtosecond laser pulses in a {\\chi^{(2)}} photonic lattice with hexagonal domains

    Science.gov (United States)

    Vyunishev, A. M.; Arkhipkin, V. G.; Baturin, I. S.; Akhmatkhanov, A. R.; Shur, V. Ya; Chirkin, A. S.

    2018-04-01

    The frequency doubling of femtosecond laser pulses in a two-dimensional (2D) rectangular nonlinear photonic lattice with hexagonal domains is studied experimentally and theoretically. The broad fundamental spectrum enables frequency conversion under nonlinear Bragg diffraction for a series of transverse orders at a fixed longitudinal quasi-phase-matching order. The consistent nonstationary theory of the frequency doubling of femtosecond laser pulses is developed using the representation based on the reciprocal lattice of the structure. The calculated spatial distribution of the second-harmonic spectral intensity agrees well with the experimental data. The condition for multiple nonlinear Bragg diffraction in a 2D nonlinear photonic lattice is offered. The hexagonal shape of the domains contributes to multibeam second harmonic excitation. The maximum conversion efficiency for a series of transverse orders in the range 0.01%-0.03% is obtained.

  12. Super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on an Au substrate for plasmon lasers.

    Science.gov (United States)

    Dong, H M; Yang, Y H; Yang, G W

    2015-03-05

    We demonstrate an individual ZnO hexagonal microrod on the surface of an Au substrate which can become new sources for manufacturing miniature ZnO plasmon lasers by surface plasmon polariton coupling to whispering-gallery modes (WGMs). We also demonstrate that the rough surface of Au substrates can acquire a more satisfied enhancement of ZnO emission if the surface geometry of Au substrates is appropriate. Furthermore, we achieve high Q factor and super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on the surface of the Au substrate, in which Q factor can reach 5790 and threshold is 0.45 KW/cm(2) which is the lowest value reported to date for ZnO nanostructures lasing, at least 10 times smaller than that of ZnO at the nanometer. Electron transfer mechanisms are proposed to understand the physical origin of quenching and enhancement of ZnO emission on the surface of Au substrates. These investigations show that this novel coupling mode holds a great potential of ZnO hexagonal micro- and nanorods for data storage, bio-sensing, optical communications as well as all-optic integrated circuits.

  13. Effect of Gamma Radiation and Substitution on some Physical Properties for M-type Hexagonal Ferrites

    International Nuclear Information System (INIS)

    El-Shershaby, H.A.A.

    2014-01-01

    Aluminum-substituted barium hexagonal ferrite particles BaAlxFe_1_2_-_xO_1_9 with 0 ≤ x ≤ 3.5 have been prepared by solid state reaction method. The qualitative phase analysis of studied powder samples and the morphology of powders after milling were determined using the x-ray diffraction method and scanning electron microscopy, respectively. The barium hexagonal ferrite phase appeared to be the main component of the samples. The crystal size of BaFe_1_2O_1_9 phase is above 25 nm. The scanning electron microscopy images showed irregular shape and size of powder particles. According to the analytical method findings, the type of crystal lattice was confirmed to be hexagonal and the parameters of unit cell volume and x-ray density were determined. It is shown that such parameters decrease with increasing Al substitution from 699.019 to 696.702 A"3 and 5.258 to 4.828 gm/cm"3, respectively. The values of lattice parameters, grain size, micro strain, and dislocation density of all samples were calculated. The c/a value obtained from the x-ray indicates that notable changes of the atomic lattice anisotropy were induced by the Al-substitution and preheat treatments. Characteristics such as the inter chain distance and interplanar distance parameter, which were obtained in the analytical method calculations, decrease with increasing Al substitution, in addition to the fact that they are related to the binding energy. Various parameters in the structural features of the aluminum substituted barium hexagonal ferrite particles BaAlxFe_1_2_-_xO_1_9 with 0 ≤ x ≤ 3.5 have been studied. The infrared transmission spectrum was measured in the wave- number region 5000 – 200 cm−1 at room temperature. The results were interpreted in terms of the vibrations of the isolated molecular units in such a way to preserve the tetrahedral and octahedral clusters of metal oxides in the barium aluminum hexagonal ferrites. The infrared features are assigned to Fe-O and Ba-O bonds in M

  14. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Mingjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Chen, Jia; Liu, Shuan [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhang, Guangan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhao, Haichao, E-mail: zhaohaichao@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xue, Qunji, E-mail: qjxue@lzb.ac.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-03-01

    Highlights: • Hexagonal boron nitride nanosheets were well dispersed by using water-soluble carboxylated aniline trimer as dispersant. • The best corrosion performance of waterborne epoxy coatings was achieved with the addition of 1 wt% h-BN. • The decrease of the pores and defects of coating matrix inhibits the diffusion and water absorption of corrosive medium in the coating. - Abstract: Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT{sup −}) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT{sup −}, as proved by Raman and UV–vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 10{sup 6} Ω cm{sup 2}) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  15. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Duan, Ting; Sui, Yanhui; Meng, Changgong; Han, Yu

    2014-01-01

    We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects

  16. GESTÃO PÚBLICA: transparência, controle e participação social

    Directory of Open Access Journals (Sweden)

    Cassiane Ramos Marchiori

    2016-01-01

    Full Text Available BODART, Cristiano das Neves Bodart (org..Gestão pública: transparência, controle e participação social. Vila Velha: Faculdade Novo Milênio, 2015. Esse livro demonstra, de forma contundente, ainda que baseado em estudos de caos, que ainda estamos longe de uma democracia consolidada. No entanto, ao destacar os problemas de nosso regime político nos leva a pensar novos caminhos e uma reordenação da rota necessária para que tenhamos um país mais democrático, transparente e dotado de uma sociedade participativa em sua gestão pública. O conhecimento da realidade brasileira é, sem dúvida, o primeiro passo para a transformação e a obra “Gestão Pública: transparência, controle e participação social”  corrobora nessa direção tão desejada.

  17. Synthesis of hexagonal boron nitride with the presence of representative metals

    Energy Technology Data Exchange (ETDEWEB)

    Budak, Erhan, E-mail: erhan@ibu.edu.t [Department of Chemistry, Faculty of Art and Science, Abant Izzet Baysal University, Bolu 14280 (Turkey); Bozkurt, Cetin [Department of Chemistry, Faculty of Art and Science, Abant Izzet Baysal University, Bolu 14280 (Turkey)

    2010-11-15

    Hexagonal boron nitride (h-BN) samples were prepared using the modified O'Connor method with KNO{sub 3} and Ca(NO{sub 3}){sub 2} at different temperatures (1050, 1250, and 1450 deg. C). The samples were characterized by FTIR, XRD, and SEM techniques. Usage of representative metals exhibited a positive effect on the crystallization of h-BN and they caused the formation of nano-scale products at relatively low temperature. XRD results indicated that there was an increase in interlayer spacing due to the d-{pi} interaction. The calculated lattice constants were very close to the reported value for h-BN.

  18. Theoretical Investigations of the Hexagonal Germanium Carbonitride

    Directory of Open Access Journals (Sweden)

    Xinhai Yu

    2018-04-01

    Full Text Available The structural, mechanical, elastic anisotropic, and electronic properties of hexagonal germanium carbonitride (h-GeCN are systematically investigated using the first-principle calculations method with the ultrasoft pseudopotential scheme in the frame of generalized gradient approximation in the present work. The h-GeCN are mechanically and dynamically stable, as proved by the elastic constants and phonon spectra, respectively. The h-GeCN is brittle because the ratio B/G and Poisson’s ratio v of the h-GeCN are less than 1.75 and 0.26, respectively. For h-GeCN, from brittleness to ductility, the transformation pressures are 5.56 GPa and 5.63 GPa for B/G and Poisson’s ratio v, respectively. The h-GeCN exhibits the greater elastic anisotropy in Young’s modulus and the sound velocities. In addition, the calculated band structure of h-GeCN reveals that there is no band gap for h-GeCN with the HSE06 hybrid functional, so the h-GeCN is metallic.

  19. Catalytically-etched hexagonal boron nitride flakes and their surface activity

    International Nuclear Information System (INIS)

    Kim, Do-Hyun; Lee, Minwoo; Ye, Bora; Jang, Ho-Kyun; Kim, Gyu Tae; Lee, Dong-Jin; Kim, Eok-Soo; Kim, Hong Dae

    2017-01-01

    Highlights: • Hexagonal boron nitride flakes are etched at low temperature in air by catalysts. • The presence of transition metal oxides produces an etched structure in the flakes. • Etched surfaces become highly active due to vacancy defects formed in the flakes. - Abstract: Hexagonal boron nitride (h-BN) is a ceramic compound which is thermally stable up to 1000 °C in air. Due to this, it is a very challenging task to etch h-BN under air atmosphere at low temperature. In this study, we report that h-BN flakes can be easily etched by oxidation at 350 °C under air atmosphere in the presence of transition metal (TM) oxide. After selecting Co, Cu, and Zn elements as TM precursors, we simply oxidized h-BN sheets impregnated with the TM precursors at 350 °C in air. As a result, microscopic analysis revealed that an etched structure was created on the surface of h-BN flakes regardless of catalyst type. And, X-ray diffraction patterns indicated that the air oxidation led to the formation of Co_3O_4, CuO, and ZnO from each precursor. Thermogravimetric analysis showed a gradual weight loss in the temperature range where the weight of h-BN flakes increased by air oxidation. As a result of etching, pore volume and pore area of h-BN flakes were increased after catalytic oxidation in all cases. In addition, the surface of h-BN flakes became highly active when the h-BN samples were etched by Co_3O_4 and CuO catalysts. Based on these results, we report that h-BN flakes can be easily oxidized in the presence of a catalyst, resulting in an etched structure in the layered structure.

  20. Catalytically-etched hexagonal boron nitride flakes and their surface activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyun, E-mail: nanotube@korea.ac.kr [School of Electrical Engineering, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Lee, Minwoo; Ye, Bora [Green Manufacturing 3Rs R& D Group, Korea Institute of Industrial Technology, Ulsan 681-310 (Korea, Republic of); Jang, Ho-Kyun; Kim, Gyu Tae [School of Electrical Engineering, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Lee, Dong-Jin [New Functional Components Research Team, Korea Institute of Footware & Leather Technology, 152 Danggamseo-ro, Busanjin-gu, Busan 614-100 (Korea, Republic of); Kim, Eok-Soo [Green Manufacturing 3Rs R& D Group, Korea Institute of Industrial Technology, Ulsan 681-310 (Korea, Republic of); Kim, Hong Dae, E-mail: hdkim@kitech.re.kr [Green Manufacturing 3Rs R& D Group, Korea Institute of Industrial Technology, Ulsan 681-310 (Korea, Republic of)

    2017-04-30

    Highlights: • Hexagonal boron nitride flakes are etched at low temperature in air by catalysts. • The presence of transition metal oxides produces an etched structure in the flakes. • Etched surfaces become highly active due to vacancy defects formed in the flakes. - Abstract: Hexagonal boron nitride (h-BN) is a ceramic compound which is thermally stable up to 1000 °C in air. Due to this, it is a very challenging task to etch h-BN under air atmosphere at low temperature. In this study, we report that h-BN flakes can be easily etched by oxidation at 350 °C under air atmosphere in the presence of transition metal (TM) oxide. After selecting Co, Cu, and Zn elements as TM precursors, we simply oxidized h-BN sheets impregnated with the TM precursors at 350 °C in air. As a result, microscopic analysis revealed that an etched structure was created on the surface of h-BN flakes regardless of catalyst type. And, X-ray diffraction patterns indicated that the air oxidation led to the formation of Co{sub 3}O{sub 4}, CuO, and ZnO from each precursor. Thermogravimetric analysis showed a gradual weight loss in the temperature range where the weight of h-BN flakes increased by air oxidation. As a result of etching, pore volume and pore area of h-BN flakes were increased after catalytic oxidation in all cases. In addition, the surface of h-BN flakes became highly active when the h-BN samples were etched by Co{sub 3}O{sub 4} and CuO catalysts. Based on these results, we report that h-BN flakes can be easily oxidized in the presence of a catalyst, resulting in an etched structure in the layered structure.

  1. Fractional Dynamics of Genetic Algorithms Using Hexagonal Space Tessellation

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2013-01-01

    Full Text Available The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.

  2. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang; Wang, Xuhui; Manchon, Aurelien

    2016-01-01

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  3. Valley-dependent spin-orbit torques in two-dimensional hexagonal crystals

    KAUST Repository

    Li, Hang

    2016-01-11

    We study spin-orbit torques in two-dimensional hexagonal crystals such as graphene, silicene, germanene, and stanene. The torque possesses two components, a fieldlike term due to inverse spin galvanic effect and an antidamping torque originating from Berry curvature in mixed spin-k space. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. The valley imbalance can be as high as 100% by tuning the bias voltage or magnetization angle. These findings open new venues for the development of current-driven spin-orbit torques by structural design.

  4. Organosulfonic acid-functionalized mesoporous composites based on natural rubber and hexagonal mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Nuntang, Sakdinun; Poompradub, Sirilux [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Butnark, Suchada [PTT Research and Technology Institute, PTT Public Company Limited, Wangnoi, Ayutthaya 13170 (Thailand); Yokoi, Toshiyuki; Tatsumi, Takashi [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Ngamcharussrivichai, Chawalit, E-mail: Chawalit.Ng@Chula.ac.th [Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand); Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Patumwan, Bangkok 10330 (Thailand)

    2014-10-15

    This study is the first report on synthesis, characterization and catalytic application of propylsulfonic acid-functionalized mesoporous composites based on natural rubber (NR) and hexagonal mesoporous silica (HMS). In comparison with propylsulfonic acid-functionalized HMS (HMS-SO{sub 3}H), a series of NR/HMS-SO{sub 3}H composites were prepared via an in situ sol–gel process using tetrahydrofuran as the synthesis media. Tetraethylorthosilicate as the silica source, was simultaneously condensed with 3-mercaptopropyltrimethoxysilane in a solution of NR followed by oxidation with hydrogen peroxide to achieve the mesoporous composites containing propylsulfonic acid groups. Fourier-transform infrared spectroscopy and {sup 29}Si MAS nuclear magnetic resonance spectroscopy results verified that the silica surfaces of the NR/HMS-SO{sub 3}H composites were functionalized with propylsulfonic acid groups and covered with NR molecules. After the incorporation of NR and organo-functional group into HMS, the hexagonal mesostructure remained intact concomitantly with an increased framework wall thickness and unit cell size, as evidenced by the X-ray powder diffraction analysis. Scanning electron microscopy analysis indicated a high interparticle porosity of NR/HMS-SO{sub 3}H composites. The textural properties of NR/HMS-SO{sub 3}H were affected by the amount of MPTMS loading to a smaller extent than that of HMS-SO{sub 3}H. NR/HMS-SO{sub 3}H exhibited higher hydrophobicity than HMS-SO{sub 3}H, as revealed by H{sub 2}O adsorption–desorption measurements. Moreover, the NR/HMS-SO{sub 3}H catalysts possessed a superior specific activity to HMS-SO{sub 3}H in the esterification of lauric acid with ethanol, resulting in a higher conversion level. - Highlights: • Acidic NR/HMS-SO{sub 3}H composites were prepared by in situ sol–gel process. • Propylsulfonic acid was functionalized onto HMS surface by direct co-condensation. • NR/HMS-SO{sub 3}H exhibited a hexagonal

  5. Two-level MOC calculation scheme in APOLLO2 for cross-section library generation for LWR hexagonal assemblies

    International Nuclear Information System (INIS)

    Petrov, Nikolay; Todorova, Galina; Kolev, Nikola; Damian, Frederic

    2011-01-01

    The accurate and efficient MOC calculation scheme in APOLLO2, developed by CEA for generating multi-parameterized cross-section libraries for PWR assemblies, has been adapted to hexagonal assemblies. The neutronic part of this scheme is based on a two-level calculation methodology. At the first level, a multi-cell method is used in 281 energy groups for cross-section definition and self-shielding. At the second level, precise MOC calculations are performed in a collapsed energy mesh (30-40 groups). In this paper, the application and validation of the two-level scheme for hexagonal assemblies is described. Solutions for a VVER assembly are compared with TRIPOLI4® calculations and direct 281g MOC solutions. The results show that the accuracy is close to that of the 281g MOC calculation while the CPU time is substantially reduced. Compared to the multi-cell method, the accuracy is markedly improved. (author)

  6. Main types of optical beams giving predominant contributions to the light backscatter for the irregular hexagonal columns

    Science.gov (United States)

    Shishko, Victor A.; Konoshonkin, Alexander V.; Kustova, Natalia V.; Borovoi, Anatoli G.

    2017-11-01

    This work presents the estimation of contribution of the main types of optical beams to the light backscatter for randomly oriented hexagonal ice column, the right dihedral angle of which was distorted within the range of 0° (regular particle) to 10°. Calculations were obtained within the physical optics approximation. The wavelength was 532 nm and the refractive index was 1.3116. The results showed that the total contribution of the main types of optical beams to the total backscattering cross section reach the value of 85% at small distortion angle of the hexagonal column and at substantial distortion angle the total contribution of the main types of optical beams decrease up to 55% of the total backscattering cross section. The obtained conclusions can significantly reduce the calculation time in the case when there is no need for high accuracy of the calculation.

  7. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  8. Thermal transport characterization of hexagonal boron nitride nanoribbons using molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2017-10-01

    Full Text Available Due to similar atomic bonding and electronic structure to graphene, hexagonal boron nitride (h-BN has broad application prospects such as the design of next generation energy efficient nano-electronic devices. Practical design and efficient performance of these devices based on h-BN nanostructures would require proper thermal characterization of h-BN nanostructures. Hence, in this study we have performed equilibrium molecular dynamics (EMD simulation using an optimized Tersoff-type interatomic potential to model the thermal transport of nanometer sized zigzag hexagonal boron nitride nanoribbons (h-BNNRs. We have investigated the thermal conductivity of h-BNNRs as a function of temperature, length and width. Thermal conductivity of h-BNNRs shows strong temperature dependence. With increasing width, thermal conductivity increases while an opposite pattern is observed with the increase in length. Our study on h-BNNRs shows considerably lower thermal conductivity compared to GNRs. To elucidate these aspects, we have calculated phonon density of states for both h-BNNRs and GNRs. Moreover, using EMD we have explored the impact of different vacancies, namely, point vacancy, edge vacancy and bi-vacancy on the thermal conductivity of h-BNNRs. With varying percentages of vacancies, significant reduction in thermal conductivity is observed and it is found that, edge and point vacancies are comparatively more destructive than bi-vacancies. Such study would contribute further into the growing interest for accurate thermal transport characterization of low dimensional nanostructures.

  9. Experimental and theoretical study of CO adsorption on the surface of single phase hexagonally plate ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Amin; Firooz, Azam Anaraki [Chemistry Department, Faculty of Sciences, Shahid Rajaee Teacher Training University, PO Box 16785-163, Tehran (Iran, Islamic Republic of); Beheshtian, Javad, E-mail: j.beheshtian@srttu.edu [Chemistry Department, Faculty of Sciences, Shahid Rajaee Teacher Training University, PO Box 16785-163, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali [Oil and Gas Processing Center of Excellence, School of Chemical Engineering, University of Tehran, 11155-4563 Tehran (Iran, Islamic Republic of)

    2014-10-01

    Highlights: • Hexagonally plate ZnO microstructure was synthesized by a simple hydrothermal method. • HRTEM images indicated a single crystal with a [0 0 1] direction growth. • DFT calculations were performed to reveal structure and electronic properties of ZnO. • The CO sensor response was close to obtained theoretical results. - Abstract: A simple low temperature hydrothermal method has been investigated for synthesis of single phase hexagonally plate ZnO microstructure. The synthesized ZnO was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) photoluminescence spectrum (PL) and ultraviolet and visible absorption spectroscopy (UV–vis) to investigate the surface morphology, crystallographic phase, optical properties and used as a sensor for detection of CO gas molecules. It was observed that the ZnO microstructures were uniform size, single phase and symmetrical, with a hexagonal shape and height of ∼250 nm. The optical band gap value of this sample was calculated to be about 3.22 eV, which show a red shift with theoretical method. High-resolution TEM images indicate that all the microstructures are single crystals with a [0 0 1] direction growth. We studied the gas response of this sample to 500 ppm CO over a temperature range of 200–400 °C and compared with theoretical results. Density functional theory (DFT) calculations were employed to investigate the structure and electronic properties of ZnO with simulating the adsorption process of CO gas on the ZnO (1 0 1) surface. The theoretical results were in good agreement with experimental results.

  10. Topotactic reduction and reoxidation of hexagonal RCu{sub 0.5}Ti{sub 0.5}O{sub 3} (R = Y, Eu-Lu) Phases

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Peng, E-mail: jiangp@onid.orst.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Berthelot, Romain, E-mail: berthelot.rom@gmail.com [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Li, Jun, E-mail: jli100@yahoo.com [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Sleight, A.W., E-mail: arthur.sleight@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Subramanian, M.A., E-mail: mas.subramanian@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States)

    2013-06-01

    Highlights: ► Topotactic reduction of hexagonal RCu{sub 0.5}Ti{sub 0.5}O{sub 3} phases is performed. ► TGA and magnetism indicate a formula of RCu{sub 0.5}Ti{sub 0.5}O{sub 2.78} for the reduced phase. ► Topotactic reoxidation occurs on heating these phases to 400 °C in air. - Abstract: Hexagonal AMO{sub 2} and AMO{sub 3} phases have the same basic structure, and intermediate compositions for this structure have been prepared by topotactic oxidation of AMO{sub 2} phases such as RCuO{sub 2}, where R is a trivalent rare earth cation. We now find that such intermediate phases can also be prepared by topotactic reduction of hexagonal RCu{sub 0.5}Ti{sub 0.5}O{sub 3} (R = Y, Tb-Lu) phases. Our TGA and magnetic susceptibility studies indicate a formula of RCu{sub 0.5}Ti{sub 0.5}O{sub 2.78} for these reduced phases. Topotactic reoxidation occurs on heating these phases to 400 °C in air.

  11. Hexagonal mesoporous titanosilicates as support for vanadium oxide-Promising catalysts for the oxidative dehydrogenation of n-butane

    Czech Academy of Sciences Publication Activity Database

    Setnička, M.; Čičmanec, P.; Bulánek, R.; Zukal, Arnošt; Pastva, Jakub

    2013-01-01

    Roč. 204, APR 2013 (2013), s. 132-139 ISSN 0920-5861 R&D Projects: GA ČR GAP106/10/0196 Institutional support: RVO:61388955 Keywords : mesoporous titanosilicate * hexagonal mesoporous structure * vanadium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.309, year: 2013

  12. High optical transmittance of aluminum ultrathin film with hexagonal nanohole arrays as transparent electrode

    KAUST Repository

    Du, Qing Guo; Yue, Weisheng; Wang, Zhihong; Lau, Wah Tung; Ren, Hengjiang; Li, Er-Ping

    2016-01-01

    We fabricate samples of aluminum ultrathin films with hexagonal nanohole arrays and characterize the transmission performance. High optical transmittance larger than 60% over a broad wavelength range from 430 nm to 750 nm is attained experimentally. The Fano-type resonance of the excited surface plasmon plaritons and the directly transmitted light attribute to both of the broadband transmission enhancement and the transmission suppression dips. © 2016 Optical Society of America.

  13. High optical transmittance of aluminum ultrathin film with hexagonal nanohole arrays as transparent electrode

    KAUST Repository

    Du, Qing Guo

    2016-02-24

    We fabricate samples of aluminum ultrathin films with hexagonal nanohole arrays and characterize the transmission performance. High optical transmittance larger than 60% over a broad wavelength range from 430 nm to 750 nm is attained experimentally. The Fano-type resonance of the excited surface plasmon plaritons and the directly transmitted light attribute to both of the broadband transmission enhancement and the transmission suppression dips. © 2016 Optical Society of America.

  14. Tailoring the light absorption of Ag-PZT thin films by controlling the growth of hexagonal- and cubic-phase Ag nanoparticles

    Science.gov (United States)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi

    2017-12-01

    PbZr0.52Ti0.48O3 thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l-1. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 × 1013 Hz (390-425 nm) to 8.4 × 1013 Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films.

  15. Tailoring the light absorption of Ag-PZT thin films by controlling the growth of hexagonal- and cubic-phase Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tao; Wang, Zongrong; Ma, Ning; Du, Piyi [Zhejiang University, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Hangzhou (China)

    2017-12-15

    PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} thin films containing hexagonal and cubic Ag nanoparticles (Ag NPs) of various sizes were prepared using the sol-gel technique. During the aging process, Ag ions were photo-reduced to form hexagonal Ag NPs. These NPs were uniform in size, and their uniformity was maintained in the thin films during the heat treatment process. Both the total volume and average size of the hexagonal Ag NPs increased with an increasing Ag ion concentration from 0.02 to 0.08 mol l{sup -1}. Meanwhile, the remaining Ag ions were reduced to form unstable Ag-Pb alloy particles with Pb ions during the early heating stage. During subsequent heat treatment, these alloys decomposed to form cubic Ag NPs in the thin films. The absorption range of the thin films, quantified as the full width at half maximum in the ultraviolet-visible absorption spectrum, expanded from 6.3 x 10{sup 13} Hz (390-425 nm) to 8.4 x 10{sup 13} Hz (383-429 nm) as the Ag NPs/PZT ratio increased from 0.2 to 0.8. This work provides an effective way to broaden the absorption range and enhance the optical properties of such films. (orig.)

  16. Influence of rare earth Ce3+ on structural, electrical and magnetic properties of Sr2+ based W-type hexagonal ferrites

    International Nuclear Information System (INIS)

    Sadiq, Imran; Khan, Imran; Aen, Faiza; Islam, M.U.; Rana, M.U.

    2012-01-01

    A series of single phase W-type Sr 3-x Ce x Fe 16 O 27 (x=0, 0.02, 0.04, 0.06, 0.08, 0.10) hexagonal ferrites prepared by the Sol-Gel method was sintered at 1050 °C for 5 h. The X-ray diffraction analysis reveals that all the samples belong to the family of W-type hexagonal ferrites. The c/a ratio falls in the range of W-type hexagonal ferrites. The grain size was measured by SEM varies from 0.7684 to 0.4366 μm which shows that the Ce 3+ substituted samples have smaller grain size than pure ferrite Sr 3 Fe 16 O 27 which results from the difference in ionic radii of Ce 3+ (1.034 Å) and Sr 2+ (1.12 Å). The room temperature resistivity of the present samples varies from 6.5×10 8 to 272×10 8 Ω-cm. The coercivity increases from 1370 to 1993 Oe which is consistent with the decrease in grain size. The coercivity values indicate that the present samples fall in the range of hard ferrites. The large value of H c may be due to domain wall pinning at the grain boundaries.

  17. Formation, properties, and ion irradiation effects of hexagonal structure MoN thin films

    International Nuclear Information System (INIS)

    Christen, D.K.; Sekula, S.T.; Ellis, J.T.; Lewis, J.D.; Williams, J.M.

    1986-09-01

    Thin films (100-120 nm) of hexagonal structures MoN have been fabricated by reaction of Mo films in an NH 3 atmosphere. The as-formed films possessed superconducting transition temperatures T/sub c/ ≅ 13 0 K, with resistance ratios r = R(296K)/R(T/sub c/) in the range 5 to 10, low-temperature normal state resistivities rho 0 = 4 to 10 μΩ-cm, and extrapolated upper critical fields H/sub c2/(0) = 4.0 to 5.0 T. Thin film x-ray diffraction patterns revealed no visible second phase, with measured lattice parameters close to literature values. The effects of lattice disorder on the superconducting and electronic properties were investigated by irradiation with nitrogen ions of energy 45 and 340 keV, resulting in a nearly uniform damage profile without the introduction of any new chemical species. The results indicate that ordered hexagonal MoN shows some of the unusual properties characteristic of moderate-to-high T/sub c/ transition metal compounds, but is relatively insensitive to degradation of the superconducting properties by lattice disorder. For ion fluences PHI up to 2 x 10 16 N-ions/cm 2 , T/sub c/ is found to decrease monotonically and saturate at 9.5 0 K, almost 3/4 the initial value, while H/sub c2/(0) undergoes a gradual increase to 11T

  18. Soft Soil Improvement for Sub-grade Layer Using Hexagonal Micropiles Layout

    Science.gov (United States)

    Ambak, K.; Abdullah, N. A. H.; Yusoff, M. F.; Abidin, M. H. Z.

    2018-04-01

    Soft soil problems are often associated with sediment and stability where it represents a major challenge in Geotechnical Engineering. Research on a soft soil was carried out to determine the level of sediment resulting from the applied load and thus compare the most ideal form of arrangement by the results obtained from bearing capacity. The study was conducted at Research Centre for Soft Soil (RECESS), UTHM by using kaolin. There are several tests conducted on kaolin before the arrangement of pile which is liquid limit test. Through these tests, the level of water content can be maintained which is 1.2 liquid limit where it is in the homogeneous condition. Density test also carried to know weight of kaolin and water that needed in the model. Meanwhile, large strain consolidation test carried on the soil by placing a load of 8 kPa. Then, the pile was arranged in the soil in the shape of a hexagon and square. Load was increased to 12 kPa and imposed on the surface of the pile with a different forms. After 24 hours, the reading of sediment was measured everyday and the process collecting data conducted for 3 week. Based on data obtained, time against sediment can be plotted. To determine the bearing capacity, direct shear test was conducted to get the value coefficient of cohesion, c as a parameter in the calculation of the soil bearing capacity. The results showed that the rate of settlement occurs is different where hexagonal form less the rate of settlement compared to square form which is 64.2% while the results of bearing capacity have the same value.

  19. Ultrastructure of a hexagonal array in exosporium of a highly sporogenic mutant of Clostridium botulinum type A revealed by electron microscopy using optical diffraction and filtration.

    Science.gov (United States)

    Masuda, K; Kawata, T; Takumi, K; Kinouchi, T

    1980-01-01

    The ultrastructure of a hexagonal array in the exosporium from spores of a highly sporogenic mutant of Clostridium botulinum type A strain 190L was studied by electron microscopy of negatively stained exosporium fragments using optical diffraction and filtration. The exosporium was composed of three or more lamellae showing and equilateral, hexagonal periodicity. Images of the single exosporium layer from which the noise had been filtered optically revealed that the hexagonally arranged, morphological unit of the exosporium was composed of three globular subunits about 2.1 nm in diameter which were arranged at the vertices of an equilateral triangle with sides of about 2.4 nm. The morphological units were arranged with a spacing of about 4.5 nm. the adjacent globular subunits appeared to be interconnected by delicate linkers.

  20. Estudos anatômicos e histológicos sôbre a subfamília Triatominae (Heteroptera, Reduviidae: Parte XXII. A estrutura da córnea de Triatoma Infestans

    Directory of Open Access Journals (Sweden)

    Rudolf Barth

    1965-01-01

    Full Text Available Descreve-se a composição da córnea do ôlho de Triatoma infestans, chegando-se aos seguintes resultados: 1 - A faceta de um omatídeo consta de uma lente quitinosa central, incluída dentro de um prima hexagonal cuticular que, em virtude da sua construção, contribui decisivamente para o isolamento ótico da lente. 2 - A lente é formada (1 pela epicutícula superficial, muito fina, (2 pela exocutícula quase homogênea e (3 pela endocutícula lamelada. A exocutícula apresenta-se em forma de uma lente coletora, sem qualquer pigmento. A endocutícula, também sem pigmentos, compõe-se de numerosas (50 a 80 lamelas cuticulares, em forma de cones encaixados, um no outro, de modo que as extremidades dos cones se encontram no eixo ótico da lente. A lente corresponde à um cristal monaxial. 3 - A córnea é a continuação da cutícula da cabeça; as camadas desta, compostas de tiras quitinosas, coladas por proteínas entre si, desintegram0se em numerosas lamelas. 4 - As propriedades óticas das lentes correspondem às de um cilindro de lentes no sentido de EXNER (1891. 5 - Os omatídeos centrais do ôlho são homocêntrico, os periféricos heterocêntricos com eixo ótico curvado.

  1. A modified hexagonal photonic crystal fiber for terahertz applications

    Science.gov (United States)

    Islam, Md. Saiful; Sultana, Jakeya; Faisal, Mohammad; Islam, Mohammad Rakibul; Dinovitser, Alex; Ng, Brian W.-H.; Abbott, Derek

    2018-05-01

    We present a Zeonex based highly birefringent and dispersion flattened porous core photonic crystal fiber (PC-PCF) for polarization preserving applications in the terahertz region. In order to facilitate birefringence, an array of elliptical shaped air holes surrounded by porous cladding is introduced. The porous cladding comprises circular air-holes in a modified hexagonal arrangement. The transmission characteristics of the proposed PCF are investigated using a full-vector finite element method with perfectly matched layer (PML) absorbing boundary conditions. Simulation results show a high birefringence of 0.086 and an ultra-flattened dispersion variation of ± 0.03 ps/THz/cm at optimal design parameters. Besides, a number of other important wave-guiding properties including frequency dependence of the effective material loss (EML), confinement loss, and effective area are also investigated to assess the fiber's effectiveness as a terahertz waveguide.

  2. Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals

    International Nuclear Information System (INIS)

    Cokelaer, T.

    2007-01-01

    Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier paper, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is overefficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on an hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank implementation, its size, and computational cost. We have also performed exhaustive simulations to characterize its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars, and stellar-mass black holes) and in data from both current detectors (initial LIGO, Virgo and GEO600) as well as future detectors (advanced LIGO and EGO). Remarkably, although our template bank placement uses a metric arising from a particular template family, namely, stationary phase approximation, we show that it can be used successfully with other template families (e.g., Pade resummation and effective one-body approximation). This quality of being effective for different template families makes the proposed bank suitable for a search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal template bank described in this paper is currently used to search for nonspinning inspiralling compact binaries in data from the Laser Interferometer Gravitational-Wave Observatory (LIGO)

  3. Uniaxial ferromagnetism of local uranium moments in hexagonal UBeGe

    Science.gov (United States)

    Gumeniuk, Roman; Yaresko, Alexander N.; Schnelle, Walter; Nicklas, Michael; Kvashnina, Kristina O.; Hennig, Christoph; Grin, Yuri; Leithe-Jasper, Andreas

    2018-05-01

    The new intermetallic uranium beryllium germanide UBeGe and its thorium analogon ThBeGe crystallize with the hexagonal ZrBeSi type of structure. Studies of magnetic, thermal, and transport properties were performed on polycrystalline samples between 1.8 and 750K. UBeGe is a uniaxial ferromagnet and there are indications for two magnetic transitions at TC(1 )≈160 K and TC(2 )≈150 K . The high paramagnetic effective moment μeff≈3.1 μB , x-ray absorption near-edge spectroscopy (XANES, 17-300 K), as well as theoretical DFT calculations indicate localized U 5 f2 states in UBeGe. ThBeGe is a diamagnetic metallic material with low density of states at the Fermi level.

  4. CLUPH: a Fortran program of collision probabilities for hexagonal lattice and its application to VHTR

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Gotoh, Yorio

    1981-02-01

    A new collision probability routine CLUPH was added to the computer program set LAMP-B to analyse the hexagonal VHTR fuel and control blocks where in addition to the annular array of fuel pin rods the asymmetric insertions of burnable poison rods and control rods are characteristic. The perfect reflective boundary condition is no more realistic to consider the arrangement of asymmetric hexagonal blocks. The periodic and the rotational arrangement of blocks are surveyed to consider the interference effect between the burnable poison rods. In addition the effects of coated particle fuel in fuel rod, and of B 4 C grain in burnable poison rod, are investigated. The average cross sections of control rod block were derived from the calculation of a super cell which consists of the control rod block and of the surrounding six fuel blocks. The care was taken to the control rod block located at the core-reflector boundary by replacing a sector of surrounding material in supper cell by reflector material. The two dimensional diffusion calculations of simplified cores of Mk-III were performed to obtain the reactivity worths of control rods, for illustration. (author)

  5. Mathematical Foundation for Plane Covering Using Hexagons

    Science.gov (United States)

    Johnson, Gordon G.

    1999-01-01

    This work is to indicate the development and mathematical underpinnings of the algorithms previously developed for covering the plane and the addressing of the elements of the covering. The algorithms are of interest in that they provides a simple systematic way of increasing or decreasing resolution, in the sense that if we have the covering in place and there is an image superimposed upon the covering, then we may view the image in a rough form or in a very detailed form with minimal effort. Such ability allows for quick searches of crude forms to determine a class in which to make a detailed search. In addition, the addressing algorithms provide an efficient way to process large data sets that have related subsets. The algorithms produced were based in part upon the work of D. Lucas "A Multiplication in N Space" which suggested a set of three vectors, any two of which would serve as a bases for the plane and also that the hexagon is the natural geometric object to be used in a covering with a suggested bases. The second portion is a refinement of the eyeball vision system, the globular viewer.

  6. Alignment of paired molecules of C60 within a hexagonal platform networked through hydrogen-bonds.

    Science.gov (United States)

    Hisaki, Ichiro; Nakagawa, Shoichi; Sato, Hiroyasu; Tohnai, Norimitsu

    2016-07-28

    We demonstrate, for the first time, that a hydrogen-bonded low-density organic framework can be applied as a platform to achieve periodic alignment of paired molecules of C60, which is the smallest example of a finite-numbered cluster of C60. The framework is a layered assembly of a hydrogen-bonded 2D hexagonal network (LA-H-HexNet) composed of dodecadehydrotribenzo[18]annulene derivatives.

  7. A thermo-mechanical benchmark calculation of an hexagonal can in the BTI accident with ABAQUS code

    International Nuclear Information System (INIS)

    Zucchini, A.

    1988-07-01

    The thermo-mechanical behaviour of an hexagonal can in a benchmark problem (simulating the conditions of a BTI accident in a fuel assembly) is examined by means of the ABAQUS code: the effects of the geometric nonlinearity are shown and the results are compared with those of a previous analysis performed with the INCA code. (author)

  8. Validation of the colour difference plot scoring system analysis of the 103 hexagon multifocal electroretinogram in the evaluation of hydroxychloroquine retinal toxicity.

    Science.gov (United States)

    Graves, Gabrielle S; Adam, Murtaza K; Stepien, Kimberly E; Han, Dennis P

    2014-08-01

    To evaluate sensitivity, specificity and reproducibility of colour difference plot analysis (CDPA) of 103 hexagon multifocal electroretinogram (mfERG) in detecting established hydroxychloroquine (HCQ) retinal toxicity. Twenty-three patients taking HCQ were divided into those with and without retinal toxicity and were compared with a control group without retinal disease and not taking HCQ. CDPA with two masked examiners was performed using age-corrected mfERG responses in the central ring (Rc ; 0-5.5 degrees from fixation) and paracentral ring (Rp ; 5.5-11 degrees from fixation). An abnormal ring was defined as containing any hexagons with a difference in two or more standard deviations from normal (colour blue or black). Categorical analysis (ring involvement or not) showed Rc had 83% sensitivity and 93% specificity. Rp had 89% sensitivity and 82% specificity. Requiring abnormal hexagons in both Rc and Rp yielded sensitivity and specificity of 83% and 95%, respectively. If required in only one ring, they were 89% and 80%, respectively. In this population, there was complete agreement in identifying toxicity when comparing CDPA using Rp with ring ratio analysis using R5/R4 P1 ring responses (89% sensitivity and 95% specificity). Continuous analysis of CDPA with receiver operating characteristic analysis showed optimized detection (83% sensitivity and 96% specificity) when ≥4 abnormal hexagons were present anywhere within the Rp ring outline. Intergrader agreement and reproducibility were good. Colour difference plot analysis had sensitivity and specificity that approached that of ring ratio analysis of R5/R4 P₁ responses. Ease of implementation and reproducibility are notable advantages of CDPA. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. High Order Finite Element Method for the Lambda modes problem on hexagonal geometry

    International Nuclear Information System (INIS)

    Gonzalez-Pintor, S.; Ginestar, D.; Verdu, G.

    2009-01-01

    A High Order Finite Element Method to approximate the Lambda modes problem for reactors with hexagonal geometry has been developed. This method is based on the expansion of the neutron flux in terms of the modified Dubiner's polynomials on a triangular mesh. This mesh is fixed and the accuracy of the method is improved increasing the degree of the polynomial expansions without the necessity of remeshing. The performance of method has been tested obtaining the dominant Lambda modes of different 2D reactor benchmark problems.

  10. Calculation of the mechanical equilibrium in a lattice of deformed hexagonal subassemblies

    International Nuclear Information System (INIS)

    Bernard, A.

    1979-01-01

    Stainless steel swelling and irradiation creep in the hexagonal wrappers of fast breeder cores induce deformations (mostly bowing), hence mutual interaction (displacements, forces and stresses, which must be calculated). The HARMONIE code was developed to meet these requirements. In this three dimensional code, one minimizes the elastic potential bending energy (quadratic form), with given linear conditions (no overlapping between adjacent subassemblies). The convergence of this function is obtained through a numerical method (parallel gradient). The free bowing of the subassemblies are given as input datas; the output gives the equilibrium displacements and forces while stresses are calculated in a classical manner

  11. Face Centered Cubic and Hexagonal Close Packed Skyrmion Crystals in Centrosymmetric Magnets

    Science.gov (United States)

    Lin, Shi-Zeng; Batista, Cristian D.

    2018-02-01

    Skyrmions are disklike objects that typically form triangular crystals in two-dimensional systems. This situation is analogous to the so-called pancake vortices of quasi-two-dimensional superconductors. The way in which Skyrmion disks or "pancake Skyrmions" pile up in layered centrosymmetric materials is dictated by the interlayer exchange. Unbiased Monte Carlo simulations and simple stabilization arguments reveal face centered cubic and hexagonal close packed Skyrmion crystals for different choices of the interlayer exchange, in addition to the conventional triangular crystal of Skyrmion lines. Moreover, an inhomogeneous current induces a sliding motion of pancake Skyrmions, indicating that they behave as effective mesoscale particles.

  12. Theoretical treatment of the processes involving the dipole transitions to the lowest exciton states in hexagonal semiconductors

    Science.gov (United States)

    Semenova, L. E.

    2018-04-01

    The treatment of the two-photon transitions to the An=1 exciton level and the resonant Raman scattering of light by LO-phonons is given for the hexagonal semiconductors A2B6, taking into account the influence of the complex top valence band and anisotropy of the exciton effective mass.

  13. DE REINOS MUITO, MUITO DISTANTES, PARA AS TELAS DOS CINEMAS: AS TRANSFORMAÇÕES NOS CONTOS DE FADAS NO SÉCULO XX

    Directory of Open Access Journals (Sweden)

    Paulo Ailton Ferreira da Rosa Junior (IFSul

    2016-12-01

    Full Text Available

    Este trabalho trata-se, fundamentalmente, de uma comparação entre obras da Literatura com suas respectivas adaptações para o Cinema. Para alem disto, é um estudo crítico e analítico das transformações em três contos de fadas literários quando transpostos para narrativas fílmicas de Walt Disney. O corpus de análise, para tanto, é composto pelos textos registrados de Perrault, Grimm e Andersen em suas respectivas bibliografias e os filmes de animação “Cinderella” (1950, “Branca de Neve e os Sete Anões” (1937 e “A Pequena Sereia” (1989 que eles respectivamente inspiraram. O intuito desta análise é identificar que transformações aconteceram nestas histórias ao serem adaptadas da literatura para o cinema e problematizá-las, no entendimento de que atendem a demandas temporais, culturais e mercadológicas.

  14. Lithostratigraphy of Espinhaco supergroup and Bambini group in the north-west of Bahia state

    International Nuclear Information System (INIS)

    Silva, M.E. da; Karmann, J.; Trompette, R.

    1989-01-01

    The lithostragraphic aspects of the Middle to Upper Proterozoic metasedimentary sequences of the Espinhaco Supergroup and the Bambui Group in northwest Bahia, east-central Brazil, have been studied. The studied area was divided five tectonic domains on the basis of differences in metamorphism and style of folding. This paper proposes the subdivision of Bambui Group into four formations, from bottom to top: Canabravinha, Sao Desiderio, Serra da Mamona, and Riachao das Neves, here correlated, respectively, with Jequitai, Lagoa do Jacare, Serra da Saudade, and Tres Marias formations, all well characterized further south in the State of Minas Gerais. The Espinhaco Supergroup is separable into two metasedimentary units. The younger one, here defined as the Rio Preto Group, was involved in the evolution of the Rio Preto Fold System and contains mainly siliciclastic sediments correlable with the Chapada Diamantina Group. The older unit belongs to the Espinhaco Fold Belt and also is composed mostly of detritic sediments. This sequences in the Santo Onofre Group. (author0 [pt

  15. Saberes e práticas de adolescentes sobre saúde: implicações para o estilo de vida e cuidado de si

    Directory of Open Access Journals (Sweden)

    Zaira Andressa Alves de Sousa

    Full Text Available Objetivo: Descrever os saberes de adolescentes sobre a saúde e o que fazem para se manterem sadios e promoverem a própria saúde. Métodos: Pesquisa qualitativa, cujo referencial é a Teoria das Representações Sociais. Os sujeitos foram 21 adolescentes, captados pela técnica Bola de Neve. Realizaram-se entrevistas semiestruturadas e aplicou-se a análise de conteúdo temático. Resultados: Os resultados mostram que a saúde é entendida à luz de elementos do paradigma biomédico e da produção social da saúde e as práticas se alinham aos requisitos de cada um desses paradigmas. Conclusão: Conclui-se que os adolescentes têm conhecimentos sobre sua saúde e sobre os problemas que os maus hábitos podem acarretar, estando a questão ligada mais à cultura de tais práticas do que propriamente à informação.

  16. Saberes e práticas de adolescentes sobre saúde: implicações para o estilo de vida e cuidado de si

    Directory of Open Access Journals (Sweden)

    Zaira Andressa Alves de Sousa

    2014-09-01

    Full Text Available Objetivo: Descrever os saberes de adolescentes sobre a saúde e o que fazem para se manterem sadios e promoverem a própria saúde. Métodos: Pesquisa qualitativa, cujo referencial é a Teoria das Representações Sociais. Os sujeitos foram 21 adolescentes, captados pela técnica Bola de Neve. Realizaram-se entrevistas semiestruturadas e aplicou-se a análise de conteúdo temático. Resultados: Os resultados mostram que a saúde é entendida à luz de elementos do paradigma biomédico e da produção social da saúde e as práticas se alinham aos requisitos de cada um desses paradigmas. Conclusão: Conclui-se que os adolescentes têm conhecimentos sobre sua saúde e sobre os problemas que os maus hábitos podem acarretar, estando a questão ligada mais à cultura de tais práticas do que propriamente à informação.

  17. DETERMINISMOS CULTURAIS FRENTE À LUDICIDADE NA INFÂNCIA: CONCEITOS E CONCEPÇÕES PARADIGMÁTICAS

    Directory of Open Access Journals (Sweden)

    Jamily Charão Vargas

    2010-09-01

    Full Text Available Esta escrita contempla a temática da cultura instituída na sociedade e o espaço da infância ao longo dos tempos, discutindo a vivência das atividades lúdicas na primeira infância. Dessa forma, proporciona uma reflexão frente à percepção e à vivência da infância, estabelecida pela sociedade em cada tempo histórico. Utilizam-se autores como: Áries (1986 e Kramer; Leite (1998 para discutir a infância; Château (1987, Brougère (1995, Nogueira (1998, Santos (2000 e Negrini (2000 para a abordagem dos aspectos da ludicidade e sua importância ao desenvolvimento infantil; bem como Morin (1991, Pérez Gómez (2001, Neves (2002 e Santos (2002 a fim de entender os determinismos culturais na sociedade contemporânea, abordando aspectos da cultura escolar de hoje. Busca-se uma compreensão histórica de como a ludicidade está sendo vivenciada nos espaços-tempos infantis e, mais especificamente, na escola. Assim, acredita-se nas práticas lúdicas como atividades relevantes e, mesmo necessárias, para um bom desenvolvimento infantil, salientando que estas devem estar presentes nas práticas educativas em tempos de avanços econômicos, tecnológicos e industriais.

  18. Porto Alegre (Brazil in the 1970s: Authoritarian State and Abstraction in Public Space

    Directory of Open Access Journals (Sweden)

    Francisco José Alves

    2009-07-01

    Only in 1985, with the election by the Congress of the civilian opposition leader Tancredo Neves for the presidency the country would officially leave dictatorship behind. Unfortunately, Tancredo Neves would die before taking the presidency and his vice-president, a representative of the old and most backwards oligarchies of the country politically tied to the supporters of Military Dictatorship. Only in November of 1989, the country would have its first presidential elections after 29 years of dictatorship.

  19. Hydroxyapatite: Vibrational spectra and monoclinic to hexagonal phase transition

    Science.gov (United States)

    Slepko, Alexander; Demkov, Alexander A.

    2015-02-01

    Fundamental studies of biomaterials are necessary to deepen our understanding of their degradation and to develop cure for related illnesses. Biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone, and its synthetic analogues are used in biomedical applications. The mineral can be found in either hexagonal or monoclinic form. The transformation between these two phases is poorly understood, but knowing its mechanism may be critical to reversing processes in bone related to aging. Using density functional theory, we investigate the mechanisms of the phase transformation and estimate the transition temperature to be 680 K in fair agreement with the experimental temperature of 470 K. We also report the heat capacity of hydroxyapatite and a peculiarity in its phonon dispersion that might allow for non-destructive measurements of the crystal composition with applications in preventive medical screening for bone mineral loss.

  20. Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Duan, Ting; Meng, Changgong; Han, Yu

    2015-01-01

    Taking CO oxidation as a probe, we investigated the electronic structure and reactivity of Pt atoms stabilized by vacancy defects on hexagonal boron nitride (h-BN) by first-principles-based calculations. As a joint effect of the high reactivity

  1. Fronts between hexagons and squares in a generalized Swift-Hohenberg equation

    DEFF Research Database (Denmark)

    Kubstrup, Christian; Herrero, H.; Pérez-García, C.

    1996-01-01

    Pinning effects in domain walls separating different orientations in patterns in nonequilibrium systems, are studied. Usually; theoretical studies consider perfect structures, but in experiments, point defects, grain boundaries, etc., always appear. The aim of this paper is to perform an analysis...... of the stability of fronts between hexagons and squares in a generalized Swift-Hohenberg model equation. We focus the analysis on pinned fronts between domains with different symmetries by using amplitude equations and by considering the small-scale structure in the pattern. The conditions for pinning effects...... and stable fronts are determined. This study is completed with direct simulations of the generalized Swift-Hohenberg equation. The results agree qualitatively with recent observations in convection and in ferrofluid instabilities....

  2. Non-locality and the flux line lattice square to hexagonal symmetry transition in the borocarbide superconductors

    DEFF Research Database (Denmark)

    Eskildsen, M.R.; Fisher, I.R.; Gammel, P.L.

    2000-01-01

    Using small angle neutron scattering we have studied the square to hexagonal flux line lattice symmetry transition in different members of the borocarbide superconductors. The studies were performed using samples of ErNi2B2C, Lu(Ni1-xCox)(2)B2C with cobalt doping levels x = 1.5-9% and Y0.64Lu0.36Ni...

  3. Filosofia da análise da estabilidade da liquidez

    Directory of Open Access Journals (Sweden)

    Rodrigo Antônio Chaves da Silva

    2005-07-01

    Full Text Available A informação foi considerada finalidade de nosso conhecimento, até o período em os pensadores e pesquisadores da contabilidade passaram a raciocinar sobre o conteúdo e o significado dos informes. Nesta busca da razão sobre os estados patrimoniais, surgiu a análise contábil que procura por meio de relações e identidades, o significado da dinâmica expressa da estaticamente na informação. O primeiro aspecto que surgiu no objeto de análise foi o estudo da liquidez, que é um dos principais exercícios do patrimônio. A estabilidade também é outro exercício básico e imprescindível, pois este é que promove o equilíbrio do organismo administrativo. A ciência contábil após a sua dignidade científica passou a trilhar caminhos esplendorosos, amparados em doutrina que permite alcançar os píncaros filosóficos. Os estudos concernentes aos aspectos de interação da estabilidade na liquidez são, complexos e somente com os recursos filosóficos da contabilidade se pode estudá-los com o panorama holístico e sublime. A filosofia da contabilidade não é alheia às suas práticas tecnológicas, podendo buscar pontos sublimes de panoramas abrangentes, para o estudo analítico da liquidez e estabilidade, observando todas as dimensionalidades e essencialidades de acontecimentos, na comprovação e orientação dos estados de ineficácia e eficácia patrimonial.

  4. Fracture analysis of one-dimensional hexagonal quasicrystals: Researches of a finite dimension rectangular plate by boundary collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Jiaxing, Cheng; Dongfa, Sheng [Southwest Forestry University, Yunnan (China)

    2017-05-15

    As an important supplement and development to crystallography, the applications about quasicrystal materials have played a core role in many fields, such as manufacturing and the space industry. Due to the sensitivity of quasicrystals to defects, the research on the fracture problem of quasicrystals has attracted a great deal of attention. We present a boundary collocation method to research fracture problems for a finite dimension rectangular one-dimensional hexagonal quasicrystal plate. Because mode I and mode II problems for one- dimensional hexagonal quasicrystals are like that for the classical elastic materials, only the anti-plane problem is discussed in this paper. The correctness of the present numerical method is verified through a comparison of the present results and the existing results. And then, the size effects on stress field, stress intensity factor and energy release rate are discussed in detail. The obtained results can provide valuable references for the fracture behavior of quasicrystals.

  5. Characterizing crustal and uppermost mantle anisotropy with a depth-dependent tilted hexagonally symmetric elastic tensor: theory and examples

    Science.gov (United States)

    Feng, L.; Xie, J.; Ritzwoller, M. H.

    2017-12-01

    Two major types of surface wave anisotropy are commonly observed by seismologists but are only rarely interpreted jointly: apparent radial anisotropy, which is the difference in propagation speed between horizontally and vertically polarized waves inferred from Love and Rayleigh waves, and apparent azimuthal anisotropy, which is the directional dependence of surface wave speeds (usually Rayleigh waves). We describe a method of inversion that interprets simultaneous observations of radial and azimuthal anisotropy under the assumption of a hexagonally symmetric elastic tensor with a tilted symmetry axis defined by dip and strike angles. With a full-waveform numerical solver based on the spectral element method (SEM), we verify the validity of the forward theory used for the inversion. We also present two examples, in the US and Tibet, in which we have successfully applied the tomographic method to demonstrate that the two types of apparent anisotropy can be interpreted jointly as a tilted hexagonally symmetric medium.

  6. Quantitative description of microstructure defects in hexagonal boron nitrides using X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Schimpf, C.; Motylenko, M.; Rafaja, D.

    2013-01-01

    A routine for simultaneous quantification of turbostratic disorder, amount of puckering and the dislocation and stacking fault density in hexagonal materials was proposed and tested on boron nitride powder samples that were synthesised using different methods. The routine allows the individual microstructure defects to be recognised according to their effect on the anisotropy of the X-ray diffraction line broadening. For quantification of the microstructure defects, the total line broadening is regarded as a linear combination of the contributions from the particular defects. The total line broadening is obtained from the line profile fitting. As testing material, graphitic boron nitride (h-BN) was employed in the form of hot-isostatically pressed h-BN, pyrolytic h-BN or a h-BN, which was chemically vapour deposited at a low temperature. The kind of the dominant microstructure defects determined from the broadening of the X-ray diffraction lines was verified by high resolution transmission electron microscopy. Their amount was attempted to be verified by alternative methods. - Highlights: • Reliable method for quantification of microstructure defects in BN was suggested. • The method is based on the analysis of anisotropic XRD line broadening. • This XRD line broadening is unique and characteristic of the respective defect. • Thus, the quantification of coexistent microstructure defects is possible. • The method was tested on hexagonal BN, which was produced by different techniques

  7. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code

  8. On the conductive properties of MgO films grown on ultrathin hexagonal close-packed Co(0001) layer

    International Nuclear Information System (INIS)

    Gladczuk, L.; Aleszkiewicz, M.

    2013-01-01

    Here we present a scanning tunneling microscopy study of electrical conductivity of (110)-oriented MgO ultrathin films grown on hexagonal close-packed Co(0001) surface by molecular beam epitaxy, being a good candidate for tunneling barrier for future-generation spintronic devices. Three-dimensional growth of the tunneling barrier, expected for compressive strains emerging at the Co/MgO interface, is demonstrated by reflection high-energy electron diffraction and atomic force microscopy. The 5 eV height of the full barrier of MgO is reached at a layer thickness of 4 nm. Thinner MgO layers exhibit randomly distributed spots of the high conductance on the tunneling current map. The current–voltage curves indicate the existence of vacancies in MgO crystal lattice, lowering the resistivity of the tunneling barrier. - Highlights: • Conductivity of MgO barrier in MgO/hexagonal close-packed-Co bilayer • Conductivity strongly varies with MgO thickness • MgO barrier exhibits randomly distributed spots of particularly high conductance • Tunneling current–voltage curves indicate the existence of vacancies in MgO lattice

  9. Interfacial-Bonding-Regulated CO Oxidation over Pt Atoms Immobilized on Gas-Exfoliated Hexagonal Boron Nitride

    KAUST Repository

    Liu, Xin

    2017-10-12

    We compared the electronic structure and CO oxidation mechanisms over Pt atoms immobilized by both B-vacancies and N-vacancies on gas-exfoliated hexagonal boron nitride. We showed that chemical bonds are formed between the B atoms associated with dangling bonds around the vacancies and Pt atoms. These bonds not only alter the thermodynamics and kinetics for the aggregation and effectively immobilize Pt atoms, but also significantly change the composition and energetic distribution of the electronic states of the composites to circumvent CO poisoning and to favour coadsorption of CO and O2, which further regulates the reactions to proceed through a Langmuir-Hinshelwood mechanism. The CO oxidation over Pt atoms immobilized at N-vacancies involves formation of an intermediate with –C(O)-O−O- bonded to Pt, the generation of CO2 by peroxo O−O bond scission and the reduction of the remnant oxygen, and the calculated energy barriers are 0.49, 0.23 and 0.18 eV, respectively. Such small energy barriers are comparable to those over Pt atoms trapped at B-vacancies, showing the effectiveness of Pt/hexagonal boron nitride atomic composites as catalysts for CO oxidation. These findings also suggest the feasibility of regulating the reaction pathways over single atom catalysts via interfacial engineering.

  10. The influence of metal Mg on micro-morphology and crystallinity of spherical hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ning, E-mail: zhangning5832@163.com; Liu, Huan; Kan, Hongmin; Wang, Xiaoyang; Long, Haibo; Zhou, Yonghui

    2015-08-15

    Highlights: • The action mechanism of Mg to the synthesis of spherical BN was explored. • The influence of Mg content on the crystallinity of h-BN powders was studied. • Even if not added any template, the spherical h-BN could be prepared. - Abstract: This search used the boric acid and borax as a source of boron, urea as a nitrogen source, Mg as metal catalyst, and thus prepared different micro-morphology and crystallinity hexagonal boron nitride powders under a flowing ammonia atmosphere at a nitriding temperature of 750 °C. The effect of Mg content on the crystallinity and micro-morphology of hexagonal boron nitride powders was studied, and the Mg action mechanism was explored. Without the added surfactant, the graphitization index (GI) was 6.87, and the diameter of the spherical h-BN was bigger. When the added Mg were 0.1 g, 0.3 g, 0.5 g and 0.7 g, the (GI) decreased to 6.04, 5.67, 4.62 and 4.84, respectively. When the Mg content was higher (0.9 g), GI value increased rapidly, and the crystallinity became bad. When the Mg content was 0.5 g, the dispersion of h-BN powders was at its optimum and refinement apparently, and the crystallinity at its highest.

  11. 61Ni synchrotron radiation-based Mössbauer spectroscopy of nickel-based nanoparticles with hexagonal structure

    Science.gov (United States)

    Masuda, Ryo; Kobayashi, Yasuhiro; Kitao, Shinji; Kurokuzu, Masayuki; Saito, Makina; Yoda, Yoshitaka; Mitsui, Takaya; Hosoi, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Seto, Makoto

    2016-01-01

    We measured the synchrotron-radiation (SR)-based Mössbauer spectra of Ni-based nanoparticles with a hexagonal structure that were synthesised by chemical reduction. To obtain Mössbauer spectra of the nanoparticles without 61Ni enrichment, we developed a measurement system for 61Ni SR-based Mössbauer absorption spectroscopy without X-ray windows between the 61Ni84V16 standard energy alloy and detector. The counting rate of the 61Ni nuclear resonant scattering in the system was enhanced by the detection of internal conversion electrons and the close proximity between the energy standard and the detector. The spectrum measured at 4 K revealed the internal magnetic field of the nanoparticles was 3.4 ± 0.9 T, corresponding to a Ni atomic magnetic moment of 0.3 Bohr magneton. This differs from the value of Ni3C and the theoretically predicted value of hexagonal-close-packed (hcp)-Ni and suggested the nanoparticle possessed intermediate carbon content between hcp-Ni and Ni3C of approximately 10 atomic % of Ni. The improved 61Ni Mössbauer absorption measurement system is also applicable to various Ni materials without 61Ni enrichment, such as Ni hydride nanoparticles. PMID:26883185

  12. Conjecturas da Epistemológia Jurídica e Aspectos da Teoria da Linguagem

    OpenAIRE

    Oliveira, Rita de Cássia Cartelli de; Cesumar; Motta, Ivan Dias; Cesumar

    2008-01-01

    Apresentar-se-ão reflexões em torno da epistemologia jurídica e alguns aspectos da teoria da linguagem; a necessidade de acompanhamento e aprimoramento da linguagem jurídica, para que o direito não se distancie da realidade, mantendo-se apenas como um sistema do status quo; uma breve análise de algumas teorias da ciência do direito e da linguagem; as especificidades dos termos lingüísticos para a análise da ciência do direito, pautada na contemporaneidade sob a perspectiva humanista, buscando...

  13. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    Directory of Open Access Journals (Sweden)

    Wanshun Zhao

    2013-04-01

    Full Text Available We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD. The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM. Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films.

  14. Diagonal form factors and hexagon form factorsII. Non-BPS light operator

    International Nuclear Information System (INIS)

    Jiang, Yunfeng

    2017-01-01

    We study the asymptotic volume dependence of the heavy-heavy-light three-point functions in the N=4 Super-Yang-Mills theory using the hexagon bootstrap approach, where the volume is the length of the heavy operator. We extend the analysis of our previous short letter http://dx.doi.org/10.1007/JHEP07(2016)120 to the general case where the heavy operators can be in any rank one sector and the light operator being a generic non-BPS operator. We prove the conjecture of Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050 up to leading finite size corrections.

  15. Phonon deformation potentials of hexagonal GaN studied by biaxial stress modulation

    Directory of Open Access Journals (Sweden)

    Jun-Yong Lu

    2011-09-01

    Full Text Available In this work, a biaxial stress modulation method, combining the microfabrication technique, finite element analysis and a weighted averaging process, was developed to study piezospectroscopic behavior of hexagonal GaN films, epitaxially grown by metalorganic chemical vapor deposition on c-sapphire and Si (111 substrates. Adjusting the size of patterned islands, various biaxial stress states could be obtained at the island centers, leading to abundant stress-Raman shift data. With the proposed stress modulation method, the Raman biaxial stress coefficients of E2H and A1 (LO phonons of GaN were determined to be 3.43 cm-1/GPa and 2.34 cm-1/GPa, respectively.

  16. Diagonal form factors and hexagon form factorsII. Non-BPS light operator

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunfeng [Institut für Theoretische Physik, ETH Zürich,Wolfgang Pauli Strasse 27, CH-8093 Zürich (Switzerland)

    2017-01-05

    We study the asymptotic volume dependence of the heavy-heavy-light three-point functions in the N=4 Super-Yang-Mills theory using the hexagon bootstrap approach, where the volume is the length of the heavy operator. We extend the analysis of our previous short letter http://dx.doi.org/10.1007/JHEP07(2016)120 to the general case where the heavy operators can be in any rank one sector and the light operator being a generic non-BPS operator. We prove the conjecture of Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050 up to leading finite size corrections.

  17. Chemical vapor deposition of hexagonal boron nitride films in the reduced pressure

    International Nuclear Information System (INIS)

    Choi, B.J.

    1999-01-01

    Hexagonal boron nitride (h-BN) films were deposited onto a graphite substrate in reduced pressure by reacting ammonia and boron tribromide at 800--1,200 C. The growth rate of h-BN films was dependent on the substrate temperature and the total pressures. The growth rate increased with increasing the substrate temperature at the pressure of 2 kPa, while it showed a maximum value at the pressures of 4 and 8 kPa. The temperature at which the maximum growth rate occurs decreased with increasing total pressure. With increasing the substrate temperature and total pressure, the apparent grain size increased and the surface morphology showed a rough, cauliflower-like structure

  18. Energetics and formation mechanism of borders between hexagonal boron nitride and graphene

    Science.gov (United States)

    Sawahata, Hisaki; Yamanaka, Ayaka; Maruyama, Mina; Okada, Susumu

    2018-06-01

    We studied the energetics of two-dimensional heterostructures consisting of hexagonal boron nitride (h-BN) and graphene with respect to the border structure and heterobond species using density functional theory. A BC heterobond is energetically preferable at the border between h-BN and graphene. We also found that the polarization at the zigzag border increases the total energy of the heterostructures. Competition between the bond formation energy and the polarization energy leads to chiral borders at which BC heterobonds are dominant. By taking the formation process of the heterostructures into account, the zigzag border with BC heterobonds is found to be preferentially synthesized from graphene edges under hydrogen-rich conditions.

  19. Magnetism of hexagonal close-packed nickel calculated by full-potential linearized augmented plane wave method

    International Nuclear Information System (INIS)

    Tian, F.; Tian, H.; Whitmore, L.; Ye, L.Y.

    2015-01-01

    The energy dependent on volume of hexagonal close-packed (hcp) nickel with different magnetism is calculated by full-potential linearized augmented plane wave method. Based on the calculation ferromagnetic state is found to be the most stable state. The magnetic moment of hcp Ni is calculated and compared to those calculated by different pseudo-potential methods. Furthermore, it is also compared to that of face-centered cubic (fcc) one with the reason discussed

  20. A Computational Study of the Growth of Hexagonal Ice

    Science.gov (United States)

    Fulford, Maxwell; Salvalaglio, Matteo; Parrinello, Michele; Molteni, Carla

    Hexagonal ice (Ih) has two distinct crystallographic surfaces; a basal and prism surface. At low vapour pressures, Ih forms thin plates and elongated prisms, depending on the temperature. The macroscopic shape depends on the relative rate of growth of the basal and prism surfaces. The aim of our research is to estimate the relative rate of growth of the two surfaces for a range of temperatures and ultimately predict the shape of Ih, using computer simulations. Our simulations show the well-know phenomenon that the surface of ice lowers its interfacial free energy by forming a stable quasi-liquid layer (QLL). The QLL mediates crystal growth and has a thickness which varies with temperature and crystallographic surface. We use a combination of Molecular Dynamics and Metadynamics to study how the interfacial structure at the ice/quasi-liquid and quasi-liquid/vapour interfaces influence the adsorption potential, surface transport properties and growth shape..

  1. Simulation software of 3-D two-neutron energy groups for ship reactor with hexagonal fuel subassembly

    International Nuclear Information System (INIS)

    Zhang Fan; Cai Zhangsheng; Yu Lei; Gui Xuewen

    2005-01-01

    Core simulation software for 3-D two-neutron energy groups is developed. This software is used to simulate the ship reactor with hexagonal fuel subassembly after 10, 150 and 200 burnup days, considering the hydraulic and thermal feedback. It accurately simulates the characteristics of the fast and thermal neutrons and the detailed power distribution in a reactor under normal and abnormal operation condition. (authors)

  2. Reconstruction of pin burnup characteristics from nodal calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Yang, W.S.; Finck, P.J.; Khalil, H.S.

    1990-01-01

    A reconstruction method has been developed for recovering pin burnup characteristics from fuel cycle calculations performed in hexagonal-z geometry using the nodal diffusion option of the DIF3D/REBUS-3 code system. Intra-modal distributions of group fluxes, nuclide densities, power density, burnup, and fluence are efficiently computed using polynomial shapes constrained to satisfy nodal information. The accuracy of the method has been tested by performing several numerical benchmark calculations and by comparing predicted local burnups to values measured for experimental assemblies in EBR-11. The results indicate that the reconstruction methods are quite accurate, yielding maximum errors in power and nuclide densities that are less than 2% for driver assemblies and typically less than 5% for blanket assemblies. 14 refs., 2 figs., 5 tabs

  3. Finite dipolar hexagonal columns on piled layers of triangular lattice

    International Nuclear Information System (INIS)

    Matsushita, Katsuyoshi; Sugano, Ryoko; Kuroda, Akiyoshi; Tomita, Yusuke; Takayama, Hajime

    2007-01-01

    We have investigated, by the Monte Carlo simulation, spin systems which represent moments of arrayed magnetic nanoparticles interacting with each other only by the dipole-dipole interaction. In the present paper we aim the understanding of finite size effects on the magnetic nanoparticles arrayed in hexagonal columns cut out from the close-packing structures or from those with uniaxial compression. In columns with the genuine close-packing structures, we observe a single vortex state which is also observed previously in finite two-dimensional systems. On the other hand in the system with the inter-layer distance set 1/2 times of the close-packing one, we found ground states which depend on the number of layers. The dependence is induced by a finite size effect and is related to a orientation transition in the corresponding bulk system

  4. Comparison of Olympic and Hexagonal Barbells With Midthigh Pull, Deadlift, and Countermovement Jump.

    Science.gov (United States)

    Malyszek, Kylie K; Harmon, RoQue A; Dunnick, Dustin D; Costa, Pablo B; Coburn, Jared W; Brown, Lee E

    2017-01-01

    Malyszek, KK, Harmon, RA, Dunnick, DD, Costa, PB, Coburn, JW, and Brown, LE. Comparison of olympic and hexagonal barbells with midthigh pull, deadlift, and countermovement jump. J Strength Cond Res 31(1): 140-145, 2017-Those training for strength and power commonly use different bars and different lifts. The hexagonal barbell (HBar) and Olympic barbell (OBar) are frequently used training implements, and the midthigh pull (MTP) and deadlift (DL) are 2 popular exercises. Therefore, the purpose of this study was to compare force between an HBar and OBar for a MTP, DL, and countermovement jump (CMJ). Twenty resistance-trained men (age = 24.05 ± 2.09 years, ht = 178.07 ± 7.05 cm, mass = 91.42 ± 14.44 kg) volunteered to participate and performed MTP and DL using both bars and a CMJ. Joint angles were recorded for all pulls and the bottom position of the CMJ. Peak ground reaction force (PGRF) was greater in the MTP (3,186.88 ± 543.53 N) than DL (2,501.15 ± 404.04 N) but not different between bars. Midthigh pull joint angles were more extended than DL, and the strongest correlations between isometric and dynamic performance were seen between DL PGRF and CMJ impulse (OBar r = 0.85; HBar r = 0.84). These findings are likely because of the different anatomical characteristics between the MTP and DL and the similarity in joint angles between the DL and CMJ. Therefore, the DL may be an optimal choice for athletes in jump-dependent sports, regardless of bar.

  5. Homens autores de violência contra a mulher: a versão da mídia impressa paraense e as contribuições para a enfermagem

    OpenAIRE

    SANTOS, Alessandra Carla Baia dos

    2013-01-01

    Neste estudo realizou-se a análise do perfil dos homens autores de violência cometida contra a mulher a partir de notícias sobre violência identificadas no jornal O Liberal, do Estado do Pará, sugerindo possíveis estratégias de enfermagem para o enfretamento do problema. Trata-se de um estudo do tipo exploratório de natureza quantitativa e qualitativa utilizando-se o método estatístico e análise de conteúdo de Bardin (2011). Foi desenvolvido na Fundação Cultural do Pará Tancredo Neves (CENTUR...

  6. Uma análise dos atributos importantes no processo de decisão de compra de notebooks utilizando análise fatorial e escalonamento multidimensional.

    Directory of Open Access Journals (Sweden)

    Valter Afonso Vieira

    2006-12-01

    Full Text Available Identificar atributos importantes no processo decisório do consumidor é uma tarefa árdua para profissionais de marketing. Diversos são os segmentos que necessitam de tais tipos de pesquisas. Com base nesse contexto, este artigo tem como objetivo identificar os atributos importantes considerados pelos consumidores na compra de notebook. Para tal fim, realizou-se uma pesquisa exploratória-qualitativa por meio da entrevista de profundidade com profissionais da área de informática e com potenciais compradores de notebook. Os resultados, após análise de conteúdo, demonstraram 42 atributos considerados para a compra. Em um segundo momento foi realizada uma etapa quantitativa tipo survey com uma amostra bola-de-neve de 131 entrevistados. Assim, após aplicação da análise fatorial exploratória, cinco dimensões foram identificadas, correspondendo aos atributos mais importantes para o processo de decisão de compra. As dimensões foram classificadas como prazer e benefício, características do aparelho, desempenho, cautela e operacional. Por fim, conclusões finais e pesquisas futuras são apresentadas e discutidas.

  7. Equilibrium core layout for the 1000 MW direct cycle HTR (HHT) with hexagonal monolith moulded fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Dworak, A

    1973-03-15

    The aim of this survey is to calculate an equilibrium Thorium fuel cycle for a 1000 MW HHT-core in off-load refuelling with hexagonal monolith moulded fuel blocks. It was tried to achieve an axial power distribution similar to the advanced pebble-bed reactors (OTTO) by introducing three axial core zones with different heavy metal content and initial enrichment.

  8. Self-assembled metastable γ-Ga2O3 nanoflowers with hexagonal nanopetals for solar-blind photodetection.

    Science.gov (United States)

    Teng, Yue; Song, Le Xin; Ponchel, Anne; Yang, Zheng Kun; Xia, Juan

    2014-09-01

    Metastable γ-Ga2O3 nanoflowers assembled from hexagonal nanopetals are successfully constructed by the oxidation of metallic Ga in acetone solution. The nanoflowers with a hollow interior structure exhibit a short response time and a large light-current-dark-current ratio under a relatively low bias voltage, suggesting an especially important potential application in solar-blind photodetection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Refson, K.; Sposito, G.

    2009-06-01

    Photoreductive dissolution of layer type Mn(IV) oxides (birnessite) under sunlight illumination to form soluble Mn(II) has been observed in both field and laboratory settings, leading to a consensus that this process is a key driver of the biogeochemical cycling of Mn in the euphotic zones of marine and freshwater ecosystems. However, the underlying mechanisms for the process remain unknown, although they have been linked to the semiconducting characteristics of hexagonal birnessite, the ubiquitous Mn(IV) oxide produced mainly by bacterial oxidation of soluble Mn(II). One of the universal properties of this biogenic mineral is the presence of Mn(IV) vacancies, long-identified as strong adsorption sites for metal cations. In this paper, the possible role of Mn vacancies in photoreductive dissolution is investigated theoretically using quantum mechanical calculations based on spin-polarized density functional theory (DFT). Our DFT study demonstrates unequivocally that Mn vacancies significantly reduce the band-gap energy for hexagonal birnessite relative to a hypothetical vacancy-free MnO{sub 2} and thus would increase the concentration of photo-induced electrons available for Mn(IV) reduction upon illumination of the mineral by sunlight. Calculations of the charge distribution in the presence of vacancies, although not fully conclusive, show a clear separation of photo-induced electrons and holes, implying a slow recombination of these charge-carriers that facilitates the two-electron reduction of Mn(IV) to Mn(II).

  10. Motivação de alunos dos cursos superiores de tecnologia

    Directory of Open Access Journals (Sweden)

    Margareth Benedito de Jesus Bressani de Mello

    Full Text Available Resumo A presente pesquisa se propôs a caracterizar a orientação motivacional para a aprendizagem de alunos que cursam o Ensino Superior Tecnológico. Participaram da pesquisa 288 alunos de Instituições de nível superior, públicas e privadas. O instrumento utilizado para avaliação foi a Escala de Avaliação da Motivação para Aprender para Universitários EMA-U (Boruchovitch & Neves, 2005, que avalia a orientação motivacional do aluno do ensino superior, considerando os níveis de motivação intrínseca e extrínseca para a aprendizagem. Foi aplicada também a adaptação brasileira da escala de desejabilidade social de Marlowe-Crowne (Ribas Jr., Hutz, & Moura, 2004. As principais bases teóricas do estudo são as teorias sociocognitivas, da autorrealização e das metas de realização. Os resultados evidenciaram que os alunos que fizeram parte da amostra apresentam média de motivação intrínseca de (MI=45,23, indicando autonomia e interesse na aprendizagem e média de motivação extrínseca de (ME= 28,5 associada à necessidade de reconhecimento externo.

  11. Comparación entre formas de amostragen en estudios etnobotânicos en la comunidad rural Carrasco, Ciudad de Arapiraca, Alagoas, Brasil

    Directory of Open Access Journals (Sweden)

    Janimara Marques-Da Silva

    2015-07-01

    ânicos auxiliam na elaboração de estratégias conservacionistas e existem muitas formas de amostragem usadas na coleta de dados em tais estudos. Para levantar informações precisas na hora de tomar decisões conservacionistas rápidas surge a necessidade de comparar as formas de amostragem existentes. Assim, o presente trabalho objetivou comparar a eficácia de distintas formas de amostragem etnobotânicas partindo de uma ferramenta básica, a entrevista. A pesquisa foi conduzida na Comunidade Rural do Carrasco localizada no município de Arapiraca, região agreste de Alagoas. Foi entregue um termo de livre consentimento aos informantes que participaram da pesquisa, todos maiores de 18 anos de idade. Foram aplicadas entrevistas semi-estruturadas em três formas de amostragem distintas: bolade- neve, censo e sorteio. Na técnica bolade- neve participaram 42 informantes, e no sorteio consideraram-se 130 entrevistas e no censo 173. No sorteio e no censo a planta mais citada foi o feijoeiro (Phaseolus vulgaris L. enquadrado na categoria agrícola, na bola-de-neve a mais citada foi o cajueiro (Anacardium occidentale L., enquadrado na categoria alimentícia. Observou-se que a bola-de-neve possibilitou a identifi cação de especialistas locais, bem como a otimização do tempo de realização de pesquisa. O censo possibilitou coletar um maior número de informações e o sorteio mostra-se efi caz na delimitação da amostragem quando esta é muito alta. Ressalta-se que independente da forma de amostragem, a categoria mais citada foi a mesma, agrícola, permitindo traçar o perfi l da comunidade, uma vez que as plantas de cultivo agrícola foram as mais citadas.

  12. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code.

  13. Predicted energetics and properties of rare-earth ferrites films grown on cubic (1 1 1)- and hexagonal (0 0 0 1)-oriented substrates

    International Nuclear Information System (INIS)

    Zhao, Hong Jian; Chen, Xiang Ming; Xu, Changsong; Duan, Wenhui; Yang, Yurong; Bellaiche, L

    2015-01-01

    First-principles calculations are performed to compare the energetics of several phases, including hexagonal polar P6 3 cm and perovskite non-polar Pbnm-like states, of epitaxial RFeO 3 films (with R  =  Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Lu) grown on different cubic (1 1 1)- and hexagonal (0 0 0 1)-oriented substrates. The P6 3 cm phase is found to be the ground state for large enough in-plane lattice parameters in all investigated RFeO 3 films, and its polarization is tunable by the amount of epitaxial strain. Series of available substrates allowing the growth of hexagonal polar RFeO 3 films, as well as other phenomena of fundamental and technological importance (e.g. different ground states and coexistence between several phases) are also predicted. (paper)

  14. Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets

    Science.gov (United States)

    Cui, Mingjun; Ren, Siming; Chen, Jia; Liu, Shuan; Zhang, Guangan; Zhao, Haichao; Wang, Liping; Xue, Qunji

    2017-03-01

    Homogenous dispersion of hexagonal boron nitride (h-BN) nanosheets in solvents or in the polymer matrix is crucial to initiate their many applications. Here, homogeneous dispersion of hexagonal boron nitride (h-BN) in epoxy matrix was achieved with a water-soluble carboxylated aniline trimer derivative (CAT-) as a dispersant, which was attributed to the strong π-π interaction between h-BN and CAT-, as proved by Raman and UV-vis spectra. Transmission electron microscopy (TEM) analysis confirmed a random dispersion of h-BN nanosheets in the waterborne epoxy coatings. The deterioration process of water-borne epoxy coating with and without h-BN nanosheets during the long-term immersion in 3.5 wt% NaCl solution was investigated by electrochemical measurements and water absorption test. Results implied that the introduction of well dispersed h-BN nanosheets into waterborne epoxy system remarkably improved the corrosion protection performance to substrate. Moreover, 1 wt% BN/EP composite coated substrate exhibited higher impedance modulus (1.3 × 106 Ω cm2) and lower water absorption (4%) than those of pure waterborne epoxy coating coated electrode after long-term immersion in 3.5 wt% NaCl solution, demonstrating its superior anticorrosive performance. This enhanced anticorrosive performance was mainly ascribed to the improved water barrier property of epoxy coating via incorporating homogeneously dispersed h-BN nanosheets.

  15. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001.

    Directory of Open Access Journals (Sweden)

    Puran Pandey

    Full Text Available Au nano-clusters and nanoparticles (NPs have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001 by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  16. Critical heat flux in tubes and tight hexagonal rod lattices

    International Nuclear Information System (INIS)

    Erbacher, F.J.; Cheng Xu; Zeggel, W.

    1994-01-01

    The critical heat flux (CHF) in small-diameter tubes and in tight hexagonal 7-rod and 37-rod bundles was investigated in the KRISTA test facility, using Freon 12 as the working fluid. The measurements in tubes showed that the influence of the tube diameter on CHF cannot be described as suggested by earlier publications with sufficient accuracy. CHF in bundles is lower than in tubes under comparable conditions. The influence of spacers (grid spacers, wire wraps) on CHF was found to be governed by local steam qualities. A comparison of the test results with some CHF prediction methods showed that the look-up table method reproduces the test results in circular tubes most accurately. Combined with CHF look-up tables, subchannel analysis and Ahmad's fluid-to-fluid scaling law, Freon experiments have proven to be a suitable tool for CHF prediction in water-cooled rod bundles. (orig.) [de

  17. Theoretical prediction of low-density hexagonal ZnO hollow structures

    Energy Technology Data Exchange (ETDEWEB)

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn [Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Huan, Tran Doan [Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136 (United States); Thao, Nguyen Thi [Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Hong Duc University, 307 Le Lai, Thanh Hoa City (Viet Nam); Tuan, Le Manh [Hong Duc University, 307 Le Lai, Thanh Hoa City (Viet Nam)

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.

  18. The interaction between hexagonal boron nitride and water from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080 (United States)

    2015-06-21

    The use of hexagonal boron nitride (h-BN) in microfluidic and nanofluidic applications requires a fundamental understanding of the interaction between water and the h-BN surface. A crucial component of the interaction is the binding energy, which is sensitive to the treatment of electron correlation. In this work, we use state of the art quantum Monte Carlo and quantum chemistry techniques to compute the binding energy. Compared to high-level many-body theory, we found that the second-order Møller-Plesset perturbation theory captures the interaction accurately and can thus be used to develop force field parameters between h-BN and water for use in atomic scale simulations. On the contrary, density functional theory with standard dispersion corrections tends to overestimate the binding energy by approximately 75%.

  19. Development of square and hexagonal lattice analysis capability in WIMS-AECL

    International Nuclear Information System (INIS)

    Donnelly, J.V.

    1990-11-01

    WIMS, originally developed by the UKAEA (Winfrith), is a widely used computer code for reactor physics analysis of lattice cells. WIMS-AECL (Atomic Energy of Canada Limited) has been developed from a version of the code received from Winfrith in the early 1970s and is generally used within AECL. The facilities existing in the original version of WIMS were very capable for the analysis of reactor designs normally encountered within AECL at that time, such as CANDU fuel lattices, but had limitations in the analysis of more general reactor geometries, such as square light-reactor assemblies. This paper discusses the development and testing of modifications to the two-dimensional collision-probability calculation module in WIMS-AECL to enable more rigorous analysis of lattice geometries based on square or hexagonal cells

  20. Structure of grain boundaries in hexagonal materials

    International Nuclear Information System (INIS)

    Sarrazit, F.

    1998-05-01

    The work presented in this thesis describes experimental and theoretical aspects associated with the structure of grain boundaries in hexagonal materials. It has been found useful to classify grain boundaries as low-angle, special or general on the basis of their structure. High-angle grain boundaries were investigated in tungsten carbide (WC) using conventional electron microscopy techniques, and three examples characteristic of the interfaces observed in this material were studied extensively. Three-dimensionally periodic patterns are proposed as plausible reference configurations, and the Burgers vectors of observed interfacial dislocations were predicted using a theory developed recently. The comparison of experimental observations with theoretical predictions proved to be difficult as contrast simulation techniques require further development for analysis to be completed confidently. Another part of this work involves the characterisation of high-angle grain boundaries in zinc oxide (ZnO) using circuit mapping. Two boundaries displayed structural features characteristic of the 'special' category, however, one boundary presented features which did not conform to this model. It is proposed that the latter observation shows a structural transition from the special to a more general type. Material fluxes involved in defect interactions were considered using the topological framework described in this work. A genera) expression was derived for the total flux arising which allows the behaviour of line-defects to be studied in complex interfacial processes. (author)

  1. O legado grego na terminologia gramatical brasileira

    Directory of Open Access Journals (Sweden)

    Maria Helena de Moura Neves

    2011-12-01

    Full Text Available Este estudo tem como objetivo pesquisar a existência de um legado grego terminológico na organização gramatical brasileira, considerando que a gramática incipiente grega é a fonte da nossa gramática, por via da gramática latina, e que o recorte de campo que ela preparou é um ponto de referência para o estudo da evolução do pensamento ocidental sobre a linguagem. A orientação teórico-metodológica se assenta na Linguística Histórica, na linha que orientou a ampla pesquisa sobre a emergência da gramática no Ocidente que constitui a fonte das informações que aqui se organizam (NEVES, 2005. As reflexões dirigem-se especialmente para o exame da nomenclatura, entendendo que ela mapeia conceptualmente o conjunto das posições assumidas, e em geral mantidas, que merecem apreciação. Entre outras coisas o exame opôs: termos gregos legados na corrente contínua do pensamento gramatical a termos gregos introduzidos posteriormente; termos transliterados do grego a termos decalcados da tradução latina. Além disso, verificaram-se casos de alteração de nome com manutenção de conceito, e casos de alteração de conceito para um nome conservado. De todo modo, o exame da nomenclatura revela a indiscutível existência de um legado grego à organização da gramática portuguesa.

  2. Cultura organizacional e satisfação profissional: estudo desenvolvido num hospital privado

    Directory of Open Access Journals (Sweden)

    Santos, Joana Vieira

    2009-01-01

    Full Text Available No presente estudo, procurou-se destacar a influência da cultura e do clima organizacionais sobre a satisfação no trabalho dos colaboradores. Esta tem bastante relevância para o desempenho organizacional, visto ter repercussões na realização pessoal dos activos humanos e na produtividade da empresa. O estudo foi realizado com 100 activos humanos de um Hospital Privado. Os dados foram recolhidos através de um instrumento constituído por duas escalas: o questionário FOCUS (First Organizational Culture Unified Search (Neves, 2000 e a Escala de Satisfação Profissional descrita por Lima, Vala e Monteiro (1994. Foram também registadas variáveis demográficas e profissionais categorizadoras dos inquiridos. Os resultados sugerem que a cultura da organização estudada é percepcionada sobretudo como uma cultura de regras. Encontrou-se uma associação sistemática e positiva entre a intensidade das percepções das diferentes orientações da cultura e as várias vertentes da satisfação analisadas. Na verdade, a percepção da cultura organizacional explica perto de 32% da variabilidade da satisfação geral, significativamente mais que o contributo trazido pelas variáveis socioprofissionais (18% e pelas variáveis de caracterização sociodemográfica dos inquiridos (2%. De um modo geral, estes resultados demonstraram a existência de influência do tipo de cultura organizacional sobre a satisfação no trabalho

  3. Strain, stabilities and electronic properties of hexagonal BN bilayers

    Science.gov (United States)

    Fujimoto, Yoshitaka; Saito, Susumu

    Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.

  4. TRANSHEX, 2-D Thermal Neutron Flux Distribution from Epithermal Flux in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Patrakka, E.

    1994-01-01

    1 - Description of program or function: TRANSHEX is a multigroup integral transport program that determines the thermal scalar flux distribution arising from a known epithermal flux in two- dimensional hexagonal geometry. 2 - Method of solution: The program solves the isotropic collision probability equations for a region-averaged scalar flux by an iterative method. Either a successive over-relaxation or an inner-outer iteration technique is applied. Flat flux collision probabilities between trigonal space regions with white boundary condition are utilized. The effect of epithermal flux is taken into consideration as a slowing-down source that is calculated for a given spatial distribution and 1/E energy dependence of the epithermal flux

  5. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure

    Energy Technology Data Exchange (ETDEWEB)

    Hwan Lee, Seung; Lee, Jia; Ho Ra, Chang; Liu, Xiaochi; Hwang, Euyheon [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Sup Choi, Min [Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Hee Choi, Jun [Frontier Research Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Yongin, Gyeonggi-do 446-711 (Korea, Republic of); Zhong, Jianqiang; Chen, Wei [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543 (Singapore); Jong Yoo, Won, E-mail: yoowj@skku.edu [Samsung-SKKU Graphene Center (SSGC), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Department of Nano Science and Technology, SKKU Advanced Institute of Nano-Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-02-03

    A tunneling rectifier prepared from vertically stacked two-dimensional (2D) materials composed of chemically doped graphene electrodes and hexagonal boron nitride (h-BN) tunneling barrier was demonstrated. The asymmetric chemical doping to graphene with linear dispersion property induces rectifying behavior effectively, by facilitating Fowler-Nordheim tunneling at high forward biases. It results in excellent diode performances of a hetero-structured graphene/h-BN/graphene tunneling diode, with an asymmetric factor exceeding 1000, a nonlinearity of ∼40, and a peak sensitivity of ∼12 V{sup −1}, which are superior to contending metal-insulator-metal diodes, showing great potential for future flexible and transparent electronic devices.

  6. Experiments and correlations of pressure loss coefficients for hexagonal arranged rod bundles (P/D > 1.02) with helical wire spacers in laminar and turbulent flows

    International Nuclear Information System (INIS)

    Marten, K.; Yonekawa, S.; Hoffmann, H.

    1987-05-01

    Advanced pressurized water reactors as well as sodium cooled fast reactors, in their breeding and absorber elements, use tightly packed rod bundles with hexagonally arranged rods. Helical wires or helical fins serve as spacers. The pressure loss coefficients of twelve bundles with helical wires were determined systematically in water experiments. High measuring accuracy was achieved by very precise fabrication of the bundles and the shroud as well as by investigations of the proper measuring techniques. The results show a dependency of the loss coefficients on the Reynolds number and on the P/D and H/D ratios of the bundles. These results together with available systematic experimental results of investigations at P/D > 1.1 were used to develop a correlation to determine the pressure loss coefficients of tightly and widely packed hexagonally arranged rod bundles with helical wire spacers. These correlations were used to recalculate and compare results of pressure loss investigations found in the literature; good agreement was demonstrated. Hence, calculation methods exist for a broad range of applications to determine the pressure loss coefficients of hexagonally arranged rod bundles with helical wires for spacers. (orig./HP) [de

  7. Microstructure and magnetic properties of M-type strontium hexagonal ferrites with Y-Co substitution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chaocheng [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Liu, Xiansong, E-mail: xiansongliu@ahu.edu.cn [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Engineering Technology Research Center of Magnetic Materials, School of Physics & Materials Science, Anhui University, Hefei 230601 (China); Feng, Shuangjiu; Rehman, Khalid Mehmood Ur; Li, Mingling; Zhang, Cong; Li, Haohao; Meng, Xiangyu [School of Physics and Materials Science, Anhui University, Hefei 230601 (China)

    2017-08-15

    Highlights: • Y-Co substitution in strontium hexaferrites have been prepared and investigated systematically for the first time. • Lattice constants a and c for all the samples are very different with that of unsubstituted ferrites. • The M{sub s} and H{sub c} are very high, from which may provide an important significance of research and development of high performance products. - Abstract: According to the formula Sr{sub 0.95}Y{sub 0.05}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.00, 0.08, 0.16, 0.24, 0.32, 0.40), the replacement of Y-Co in M-type strontium hexagonal ferrites have been successfully prepared by ceramic process for the first time. The phase compositions of magnetic powders were examined by X-ray diffraction. The results of XRD showed that the single phase was obtained in magnetic powders with the increase of Co content (x), and α-Fe{sub 2}O{sub 3} occurred when x > 0.24. The morphology of the magnets was investigated by scanning electron microscopy (SEM). The micro-morphology of the particles exhibited the uniform plane hexagonal structures of M-type ferrites with different Co content. Magnetic properties of the ferrite magnets were measured by a physical property measurement system-vibrating sample magnetometer (PPMS-VSM). The M{sub s} increases constantly with the increase of Co content. The H{sub c} first increases and then decreases with the increase of Co content, and the value of coercivity (H{sub c}) is up to 3774 Oe when x = 0.24.

  8. Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures

    International Nuclear Information System (INIS)

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    Hexagonal boron nitride (h-BN) is a large bandgap insulating isomorph of graphene, ideal for atomically thin tunnel barrier applications. In this letter, we demonstrate large area chemical vapor deposited (CVD) h-BN as a promising spin tunnel barrier in graphene spin transport devices. In such structures, the ferromagnetic tunnel contacts with h-BN barrier are found to show robust tunneling characteristics over a large scale with resistances in the favorable range for efficient spin injection into graphene. The non-local spin transport and precession experiments reveal spin lifetime ≈500 ps and spin diffusion length ≈1.6 μm in graphene with tunnel spin polarization ≈11% at 100 K. The electrical and spin transport measurements at different injection bias current and gate voltages confirm tunnel spin injection through h-BN barrier. These results open up possibilities for implementation of large area CVD h-BN in spintronic technologies

  9. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system

    International Nuclear Information System (INIS)

    Weng, Chen-Hsun; Lee, Gwo-Bin; Huang, Chih-Chia; Yeh, Chen-Sheng; Lei, Huan-Yao

    2008-01-01

    A new microfluidic reaction system capable of mixing, transporting and reacting is developed for the synthesis of gold nanoparticles. It allows for a rapid and a cost-effective approach to accelerate the synthesis of gold nanoparticles. The microfluidic reaction chip is made from micro-electro-mechanical-system technologies which integrate a micro-mixer, micro-pumps, a micro-valve, micro-heaters and a micro temperature sensor on a single chip. Successful synthesis of dispersed gold nanoparticles has been demonstrated within a shorter period of time, as compared to traditional methods. It is experimentally found that precise control of the mixing/heating time for gold salts and reducing agents plays an essential role in the synthesis of gold nanoparticles. The growth process of hexagonal gold nanoparticles by a thermal aqueous approach is also systematically studied by using the same microfluidic reaction system. The development of the microfluidic reaction system could be promising for the synthesis of functional nanoparticles for future biomedical applications

  10. Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures

    Science.gov (United States)

    Chen, Xue-Kun; Hu, Ji-Wen; Wu, Xi-Jun; Jia, Peng; Peng, Zhi-Hua; Chen, Ke-Qiu

    2018-02-01

    Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in graphene/hexagonal boron nitride (h-BN) hybrid structures. Two different structural models, partially substituting graphene into h-BN (CBN) and partially substituting h-BN into graphene (BNC), are considered. It is found that CBN has a significant TR effect while that of BNC is very weak. The observed TR phenomenon can be attributed to the resonance effect between out-of-plane phonons of graphene and h-BN domains in the low-frequency region under negative temperature bias. In addition, the influences of ambient temperature, system size, defect number and substrate interaction are also studied to obtain the optimum conditions for TR. More importantly, the TR ratio could be effectively tuned through chemical and structural diversity. A moderate C/BN ratio and parallel arrangement are found to enhance the TR ratio. Detailed phonon spectra analyses are conducted to understand the thermal transport behavior. This work extends hybrid engineering to 2D materials for achieving TR.

  11. Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites

    International Nuclear Information System (INIS)

    Madakbaş, Seyfullah; Çakmakçı, Emrah; Kahraman, Memet Vezir

    2013-01-01

    Highlights: ► PAN/h-BN composites with improved thermal stability were prepared. ► Thermal properties of composites were analysed by TGA and DSC. ► Flame retardancy of the composites increased up to 27%. - Abstract: Polyacrylonitrile is a thermoplastic polymer with unique properties and it has several uses. However its flammability is a major drawback for certain applications. In this study it was aimed to prepare polyacrylonitrile (PAN)/hexagonal boron nitride (h-BN) composites with improved flame retardancy and thermal stability. Chemical structures of the composites were characterized by FTIR analysis. Thermal properties of these novel composites were analysed by TGA and DSC measurements. Glass transition temperatures and char yields increased with increasing h-BN percentage. Flame retardancy of the PAN composite materials improved with the addition of h-BN and the LOI value reached to 27% from 18%. Furthermore, the surface morphology of the composites was investigated by SEM analysis.

  12. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Doganov, Rostislav A.; Özyilmaz, Barbaros [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 28 Medical Drive, 117456 Singapore (Singapore); Koenig, Steven P.; Yeo, Yuting [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  13. Importance of the hexagonal lipid phase in biological membrane organisation

    Directory of Open Access Journals (Sweden)

    Juliette eJouhet

    2013-12-01

    Full Text Available Abstract:Domains are present in every natural membrane. They are characterised by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organisation are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  14. Importance of the hexagonal lipid phase in biological membrane organization.

    Science.gov (United States)

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  15. Optical study on neutron irradiation effect on hexagonal SiC single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Moritami; Kimura, Itsurou; Kanazawa, Satoshi; Kanno, Ikuo; Kamiya, Koji [Kyoto Univ. (Japan); Nakata, Toshitake; Watanabe, Masanori; Nakagawa, Masuo; Atobe, Kozo

    1996-04-01

    It is well known that SiC is a higher radiation resistant semiconductor on comparison with Si and Ge. Recently, on accompanying with advancement of developing program on nuclear fission reactor on space, development of electronic element workable effectively under severe radiation environment is desired. SiC is expected as one of such elements. Therefore, because of considering importance of understanding the effect on fundamental properties of SiC electronic element under radiation environment before its development, some studies on it was executed. In this paper, according to find out induction of interesting defect center in hexagonal 4H- and 6H-SiC single crystals irradiated with reactor neutron on light absorption and SER test, outlines of these experimental results were reported. (G.K.)

  16. Crystallography and structure of lath martensite of hexagonal α-phase in zirconium

    International Nuclear Information System (INIS)

    Dobromyslov, A.V.; Talits, N.I.

    1989-01-01

    Crystallography, morphology and substructural features of lath martensite produced in zirconium after quenching are studied using transmission electron microscopy and electron diffraction methods. It is shown that all lathes in the package as a rule have close oreintation, but sometimes lathes are met which are present in a twin position in relation to neighbouring ones. In this case twining plane between the lathes coincides with α-phase [1011] plane. Residual β-phase between lathes is not preserved. It is detected that threi types of habitus planes of lath martensite of hexagonal α-phase are observed: [1010], [1120], [1011]. Atom-crystallographic mechanism of lattice reconstruction at β → α-phase lath habitus planes produced on its base coincide with the ones experimentally determined

  17. Clinical and Radiologic Outcomes of Submerged and Nonsubmerged Bone-Level Implants with Internal Hexagonal Connections in Immediate Implantation: A 5-Year Retrospective Study.

    Science.gov (United States)

    Wu, Shiyu; Wu, Xiayi; Shrestha, Rachana; Lin, Jinying; Feng, Zhicai; Liu, Yudong; Shi, Yunlin; Huang, Baoxin; Li, Zhipeng; Liu, Quan; Zhang, Xiaocong; Hu, Mingxuan; Chen, Zhuofan

    2018-02-01

    To evaluate the 5-year clinical and radiologic outcome of immediate implantation using submerged and nonsubmerged techniques with bone-level implants and internal hexagonal connections and the effects of potential influencing factors. A total of 114 bone-level implants (XiVE S plus) with internal hexagonal connections inserted into 72 patients were included. Patients were followed up for 5 years. A t-test was used to statistically evaluate the marginal bone loss between the submerged and nonsubmerged groups. The cumulative survival rate (CSR) was calculated according to the life table method and illustrated with Kaplan-Meier survival curves. Comparisons of the CSR between healing protocols, guided bone regeneration, implants with different sites, lengths, and diameters were performed using log-rank tests. The 5-year cumulative implant survival rates with submerged and nonsubmerged healing were 94% and 96%, respectively. No statistically significant differences in terms of marginal bone loss, healing protocol, application of guided bone regeneration, implant site, or length were observed. High CSRs and good marginal bone levels were achieved 5 years after immediate implantation of bone-level implants with internal hexagonal connections using both the submerged and nonsubmerged techniques. Factors such as implant length, site, and application of guided bone regeneration did not have an impact on the long-term success of the implants. © 2017 by the American College of Prosthodontists.

  18. A utilização da teoria da aprendizagem significativa no ensino da Enfermagem

    OpenAIRE

    Alana Tamar Oliveira de Sousa; Nilton Soares Formiga; Simone Helena dos Santos Oliveira; Marta Miriam Lopes Costa; Maria Júlia Guimarães Oliveira Soares

    2015-01-01

    RESUMO Objetivo: sintetizar a produção científica acerca da Teoria da Aprendizagem Significativa no processo de ensino-aprendizagem em Enfermagem. Método: revisão integrativa realizada nas bases de dados MEDLINE, LILACS, SciELO, BDENF e CINAHL, com artigos que abordaram a temática ou aspectos da teoria da aprendizagem significativa de David Ausubel. Fizeram parte da amostra dez artigos, sendo seis escritos no idioma português e quatro no inglês, publicados de 1998 a 2013. Resultados: cinco...

  19. Stabilisation of late transition metal and noble metal films in hexagonal and body centred tetragonal phases by epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Hueger, E.

    2005-08-26

    In this work ultrathin metallic films with a crystal phase different to their natural bulk structure were produced by hetero-epitaxial growth on metallic substrates. A further aim of this work was to understand the initiation, growth and stability of crystal phase modifications of these films. there exist cases where the films turn beyond the pseudomorphic-growth to a crystal phase different from their natural bulk structure. The present work presents and discusses such a case in addition to the general phenomenon of pseudomorphic-growth. In particular it is shown that metals whose natural phase is face centred cubic (fcc) can be grown in body centred tetragonal (bct) or hexagonal close packed (hcp) phases in the form of thin films on (001) surfaces of appropriate substrates. The growth behavior, electron diffraction analysis, appearance conditions, geometric fit considerations, examples and a discussion of the phase stability of non-covered films and superlattices is given reviewing all epitaxial-systems whose diffraction pattern can be explained by the hexagonal or pseudomorphic bct phase. (orig.)

  20. A transmitting antenna with hexagon illumination shape for four-color VLC

    Science.gov (United States)

    Liu, Kexin; Zhang, Lijun; Hu, Shanshan; Xing, Jichuan; Li, Ping'an

    2018-01-01

    This paper demonstrated a compact white light transmitting antenna based on four-color VLC system, which included an integrating rod and a Fresnel lens system. This paper mainly analyzed the homogenizer: the hexagon integrating rod. After simulation and optimizing, the size of this rod is designed as 60mm (length) x 4.35mm (D). As a result of experiments, this antenna which mixes RGBY-LEDs' beam into white light with high uniformity (67.18%), and illuminate the area of 0.75m x 0.75m at 1.77m transmission distance. The color temperature of the detection surface is 5583K, the chromatic aberration is 0.0021, compared with light source E of standard illumination, less than eye solution (0.005). Also, we verified that this antenna could ensure a stable SNR in mobile communication.

  1. Island shape, size and interface dependency on electronic and magnetic properties of graphene hexagonal-boron nitride (h-BN) in-plane hybrids

    Science.gov (United States)

    Akman, Nurten; Özdoğan, Cem

    2018-04-01

    We systematically investigate the energetics of ion implantation, stability, electronic, and magnetic properties of graphene/hexagonal boron nitrate (h-BN) in-plane hybrids through first principle calculations. We consider hexagonal and triangular islands in supercells of graphene and h-BN layouts. In the case of triangular islands, both phases mix with each other by either solely Csbnd N or Csbnd B bonds. We also patterned triangles with predominating Csbnd N or Csbnd B bonds at their interfaces. The energetics of island implantation is discussed in detail. Formation energies point out that the island implantation could be even exothermic for all hybrids studied in this work. Effects of size and shape of the island, and dominating bonding sort at the island-layout interfaces on the stability, band gap, and magnetic properties of hybrids are studied particularly. The hybrids become more stable with increasing island size. Regardless of the layout, hybrids with hexagonal islands are all non-magnetic and semiconducting. One can thus open a band gap in the semimetallic graphene by mixing it with the h-BN phase. In general, hybrids containing graphene triangles show metallic property and exhibit considerable amount of magnetic moments for possible localized spin utilizations. Total magnetic moment of hybrids with both graphene and h-BN layouts increases with growing triangle island as well. The spin densities of magnetic hybrids are derived from interfaces of the islands and diminish towards their center. We suggest that the increase in stability and magnetic moment depend on the number of atoms at the interfaces rather than the island size.

  2. Publicidade e ética: um estudo da construção da imagem da mulher

    Directory of Open Access Journals (Sweden)

    Elizabeth Moraes Gonçalves

    2010-02-01

    Full Text Available O texto propõe uma reflexão sobre a ética da responsabilidade na publicidade veiculada nas revistas Claudia e Nova. Trata-se de uma pesquisa descritiva, resultante da leitura dos anúncios selecionados, subsidiada por teóricos da Análise do Discurso da linha francesa, que busca averiguar como a mulher é representada. Constatou-se que no contexto da sociedade contemporânea o retrato da mulher como sedutora ainda está presente, mesmo que em vários momentos ela apareça como protagonista de sua própria vida.

  3. The COMET method in 3-D hexagonal geometry

    International Nuclear Information System (INIS)

    Connolly, K. J.; Rahnema, F.

    2012-01-01

    The hybrid stochastic-deterministic coarse mesh radiation transport (COMET) method developed at Georgia Tech now solves reactor core problems in 3-D hexagonal geometry. In this paper, the method is used to solve three preliminary test problems designed to challenge the method with steep flux gradients, high leakage, and strong asymmetry and heterogeneity in the core. The test problems are composed of blocks taken from a high temperature test reactor benchmark problem. As the method is still in development, these problems and their results are strictly preliminary. Results are compared to whole core Monte Carlo reference solutions in order to verify the method. Relative errors are on the order of 50 pcm in core eigenvalue, and mean relative error in pin fission density calculations is less than 1% in these difficult test cores. The method requires the one-time pre-computation of a response expansion coefficient library, which may be compiled in a comparable amount of time to a single whole core Monte Carlo calculation. After the library has been computed, COMET may solve any number of core configurations on the order of an hour, representing a significant gain in efficiency over other methods for whole core transport calculations. (authors)

  4. Hexagonal perovskites with cationic vacancies. 29. Structure of Ba/sub 4/ScReWvacantO/sub 12/ - on the function of octahedral cationic vacancies in perovskite stacking polytypes

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Herrmann, M [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1981-09-01

    The hexagonal perovskite stacking polytype Ba/sub 4/ScReWvacantO/sub 12/ crystallizes in a rhombohedral 12 L structure (space group R-3m; sequence (hhcc)/sub 3/). The refined, intensity related R' value is 6.6%. The octahedral net consists of blocks of three face connected octahedra with a central vacancy, in the two outer positions the rhenium and tungsten atoms are located; these units are linked via common corners by single octahedra, occupied with scandium. The construction principles of hexagonal oxygen perovskites with octahedral, cationic vacancies are reported.

  5. Bio-synthesis of triangular and hexagonal gold nanoparticles using palm oil fronds’ extracts at room temperature

    Science.gov (United States)

    Usman, Adamu Ibrahim; Aziz, Azlan Abdul; Abu Noqta, Osama

    2018-01-01

    Development of bio-reduction techniques for nanoparticles (NPs) synthesis in medical application remains a challenge to numerous researchers. This work reports a novel technique for the synthesis of triangular and hexagonal gold nanoparticles (AuNP) using palm oil fronds’ (POFs) extracts. The functional groups in the POFs’ extracts operate as a persuasive capping and reducing agent to growth AuNPs. The prepared AuNPs were characterized using UV-vis spectrophotometry, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering, energy filtered transmission electron microscopy (EFTEM), and x-ray diffraction (XRD). The analysis of FTIR validates the coating of alkynes and phenolic composites on the AuNPs. This shows a feasible function of biomolecules for efficient stabilization of the AuNPs. EFTEM clearly show the triangular and hexagonal shapes of the prepared AuNPs. The XRD patterns display the peaks of fcc crystal structures at (111), (200), (220), (311) and (222), with average particle sizes of 66.7 and 79.02 nm for 1% and 5% POFs extracts concentrations respectively at room temperature. While at 120 °C the average particles size recorded for 1% and 5% of POFs extract concentrations were 32.17 nm and 45.66 nm respectively, and the reaction completed in less than 2 min. The prepared NPs could be potentially applied in biomedical application, due to their excellent stability and refine morphology without agglomeration.

  6. Tailoring of Perpendicular Magnetic Anisotropy in Dy13Fe87 Thin Films with Hexagonal Antidot Lattice Nanostructure

    Directory of Open Access Journals (Sweden)

    Mohamed Salaheldeen

    2018-04-01

    Full Text Available In this article, the magnetic properties of hexagonally ordered antidot arrays made of Dy13Fe87 alloy are studied and compared with corresponding ones of continuous thin films with the same compositions and thicknesses, varying between 20 nm and 50 nm. Both samples, the continuous thin films and antidot arrays, were prepared by high vacuum e-beam evaporation of the alloy on the top-surface of glass and hexagonally self-ordered nanoporous alumina templates, which serve as substrates, respectively. By using a highly sensitive magneto-optical Kerr effect (MOKE and vibrating sample magnetometer (VSM measurements an interesting phenomenon has been observed, consisting in the easy magnetization axis transfer from a purely in-plane (INP magnetic anisotropy to out-of-plane (OOP magnetization. For the 30 nm film thickness we have measured the volume hysteresis loops by VSM with the easy magnetization axis lying along the OOP direction. Using magnetic force microscopy measurements (MFM, there is strong evidence to suggest that the formation of magnetic domains with OOP magnetization occurs in this sample. This phenomenon can be of high interest for the development of novel magnetic and magneto-optic perpendicular recording patterned media based on template-assisted deposition techniques.

  7. Resonant A1 phonon and four-magnon Raman scattering in hexagonal HoMnO3 thin film

    International Nuclear Information System (INIS)

    Chen Xiangbai; Thi Minh Hien, Nguyen; Yang, In-Sang; Lee, D; Jang, S-Y; Noh, T W

    2010-01-01

    We present the results of resonant Raman scattering of the A 1 phonon at 680 cm -1 and of the four-magnon at 760 cm -1 in hexagonal HoMnO 3 thin film. We find that the A 1 phonon at 680 cm -1 shows a strong resonance effect near the on-site Mn d-d transition at ∼1.7 eV. Our Raman results show that the four-magnon scattering can be selectively excited with red lasers of 647 nm (1.92 eV) and 671 nm (1.85 eV), but are not detectable with green lasers of 532 nm (2.33 eV), indicating that the four-magnon scattering in hexagonal HoMnO 3 has an extremely strong resonance effect also near the on-site Mn d-d transition at ∼1.7 eV. Furthermore, through the analyses of our study of the resonant four-magnon Raman scattering and earlier studies of the resonant two-magnon Raman scattering, we propose a simple general model for all resonant magnon scattering. Our simple general model predicts a simple method for the investigation of the spin-flipping/spin-wave in magnetic materials, which would have significant impacts on the applications of spintronic devices.

  8. Dynamic response of cracked hexagonal subassembly ducts

    International Nuclear Information System (INIS)

    Glazik, J.L.; Petroski, H.J.

    1979-01-01

    The hexagonal subassembly ducts (hexcans) of current Liquid Metal Fast Breeder Reactor (LMFBR) designs are typically made of 20% coldworked Type 316 stainless steel. Prolonged exposure of this initially tough and ductile material to a fast neutron flux at high temperatures can result in severe embrittlement. Under these conditions, the unstable crack propagation of flaws, which may have been introduced during fabrication or transportation of the hexcans, is a problem of interest in LMFBR safety analysis. The abnormal overpressurization resulting from certain interactions within a subassembly, or the rupture of one or more fuel pins, may be sufficient to overload an otherwise subcritical crack in an embrittled hexcan. This paper examines the dynamic elastic response of flawed and unflawed fast reactor subassembly ducts. A plane-strain finite element analysis was performed for ducts containing internal corner cracks, as well as external midflat cracks. Two worst case loading situations were considered: rapid uniform internal pressurization and suddenly applied point loads at opposite midflats. The finite-element code CHILES, which can accomodate the stress singularities that occur at crack tips, was given dynamic capabilities through the inclusion of a consistent mass matrix and step-by-step time integration scheme. The SAP IV code was also employed for eigenvalue analysis and modal response. Although this code does not contain singular elements in its element library, dynamic stress intensity factors were calculated by a technique requiring only ordinary isoparametric quadrilaterals

  9. Water quality prediction using the QUAL2Kw model in a small karstic watershed in Brazil Predição da qualidade da água através do modelo QUAL2Kw numa pequena bacia hidrográfica cárstica brasileira

    Directory of Open Access Journals (Sweden)

    Rodrigo de Arruda Camargo

    2010-12-01

    nutrient influx from agricultural and livestock activities.OBJETIVO: O Aeroporto Internacional Tancredo Neves (AITN está localizado na microbacia do córrego do Fidalgo, Brasil. Desde sua construção, o AITN tem atraído a instalação de indústrias e loteamentos residenciais sem que a região oferecesse condições básicas de infraestrutura. Este trabalho teve por objetivo calibrar e validar modelo de predição da qualidade da água e avaliar a capacidade de assimilação de cargas difusas em microbacia cárstica; MÉTODOS: Utilizou-se o QUAL2Kw para a modelagem da qualidade da água. A calibração do modelo foi realizada no período chuvoso e a validação para o período seco; RESULTADOS: O modelo demonstrou ser capaz de representar com habilidade e flexibilidade os aspectos físicos, químicos e hidráulicos observados na microbacia. Os parâmetros pH, CE, STD, PT, alcalinidade e E. coli apresentaram os melhores ajustes entre as previsões do modelo e os dados observados para o período chuvoso. Para o período seco, os melhores ajustes foram obtidos para pH, EC, TDS, TP e alcalinidade. Os valores de REMQ foram similares entre os períodos para vazão, SDT e OD. As maiores diferenças foram observadas para os parâmetros pH, CE, NO3, PT e E. coli. O menor valor de OD obtido na calibração foi de 5,40 mg.L-1 e na validação de 4,70 mg.L-1, valores superiores ao mínimo estabelecido de 4,0 mg.L-1 para conservação das comunidades aquáticas pela USEPA, porém inferior ao limite de 5,0 mg.L-1 estabelecido pela CONAMA 357.Os limites de DBO, NT e PT são atingidos com um acréscimo de carga na microbacia de 0,361 kg.d-1 O2, 0,022 kg.d-1 N,e 0,010 kg.d-1 P de acordo com a USEPA e 0,361 kg.d-1 O2 e 0,012 kg.d-1 P pela CONAMA 357; CONCLUSÕES: A conservação dos recursos hídricos dessa região deve ser efetivada com a adoção de medidas preventivas, como a cobertura de solos expostos e a diminuição do influxo de nutrientes de origem agrícola ou pecuária.

  10. Arquitetura da paisagem da cidade e a importância da sistematização da análise do problema projetual

    Directory of Open Access Journals (Sweden)

    Rodrigo Gonçalves dos Santos

    2007-12-01

    Full Text Available Com este artigo pretende-se levantar os conceitos próprios da atividade da Arquitetura Paisagística encarando-a como disciplina projetual e associando-a ao Design Ambiental, necessitando, assim, de linhas metodológicas específicas para apresentação de soluções coerentes aos problemas paisagísticos. Sob esta ótica, reflexões sobre o uso da vegetação no projeto dos espaços exteriores são apresentadas apontando-se uma etapa de sistematização da análise do problema de projeto, dentro da abordagem da concepção de uma metodologia projetual em arquitetura paisagística. Também foram analisadas oito vias de circulação da área central de Florianópolis, Santa Catarina, Brasil, exemplificando uma etapa de sistematização da análise do problema de projeto.

  11. Nature of Bonding in Bowl-Like B36 Cluster Revisited: Concentric (6π+18π) Double Aromaticity and Reason for the Preference of a Hexagonal Hole in a Central Location.

    Science.gov (United States)

    Li, Rui; You, Xue-Rui; Wang, Kang; Zhai, Hua-Jin

    2018-05-04

    The bowl-shaped C 6v B 36 cluster with a central hexagon hole is considered an ideal molecular model for low-dimensional boron-based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B 36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B 36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B 36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B 36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl-shaped C 6v B 36 cluster the global minimum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Saturn's north polar cyclone and hexagon at depth revealed by Cassini/VIMS

    Science.gov (United States)

    Baines, K.H.; Momary, T.W.; Fletcher, L.N.; Showman, A.P.; Roos-Serote, M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    A high-speed cyclonic vortex centered on the north pole of Saturn has been revealed by the visual-infrared mapping spectrometer (VIMS) onboard the Cassini-Huygens Orbiter, thus showing that the tropospheres of both poles of Saturn are occupied by cyclonic vortices with winds exceeding 135 m/s. High-spatial-resolution (~200 km per pixel) images acquired predominantly under night-time conditions during Saturn's polar winter-using a thermal wavelength of 5.1 ??m to obtain time-lapsed imagery of discrete, deep-seated (>2.1-bar) cloud features viewed in silhouette against Saturn's internally generated thermal glow-show a classic cyclonic structure, with prograde winds exceeding 135 m/s at its maximum near 88.3?? (planetocentric) latitude, and decreasing to conditions as the polar winter wanes shows the hexagon is still visible in reflected sunlight nearly 28 years since its discovery, that a similar 3-lane structure is observed in reflected and thermal light, and that the cloudtops may be typically lower in the hexagon than in nearby discrete cloud features outside of it. Clouds are well-correlated in visible and 5.1 ??m images, indicating little windshear above the ~2-bar level. The polar cyclone is similar in size and shape to its counterpart at the south pole; a primary difference is the presence of a small (<600 km in diameter) nearly pole-centered cloud, perhaps indicative of localized upwelling. Many dozens of discrete, circular cloud features dot the polar region, with typical diameters of 300-700 km. Equatorward of 87.8??N, their compact nature in the high-wind polar environment suggests that vertical shear in horizontal winds may be modest on 1000 km scales. These circular clouds may be anticyclonic vortices produced by baroclinic instabilities, barotropic instabilities, moist convection or other processes. The existence of cyclones at both poles of Saturn indicates that cyclonic circulation may be an important dynamical style in planets with significant

  13. Approccio coordinato al monitoraggio del lupo su larga scala: strategie, limiti e prospettive

    Directory of Open Access Journals (Sweden)

    Paolo Ciucci

    2003-10-01

    Full Text Available Un'efficace politica di gestione e conservazione del lupo deve contare su informazioni affidabili di presenza e consistenza a livello dei branchi locali; su larga scala, tali informazioni devono essere raccolte in forma sistematica, organica e coordinata e con tecniche meno costose e impegnative di quelle utilizzate a fini di ricerca. In quest'ottica, l'attivazione di un sistema integrato di monitoraggio del lupo su un territorio di oltre 654 km² ha rappresentato una priorità nell'ambito di un progetto Life della Regione Emilia-Romagna. Le tecniche, e i relativi protocolli di monitoraggio, sono stati quindi adottati in base a considerazioni logistiche, alla disponibilità di risorse, mezzi e personale (18 operatori fissi, tra tecnici e studenti, alla possibilità di effettuare repliche di campionamento annuali e stagionali. La standardizzazione dei protocolli su larga scala è stata promossa da workshop di formazione sia teorici sia dimostrativi sul campo, da prove di concordanza e scambio periodico delle aree di competenza tra gli operatori coinvolti. Dati invernali relativi a presenza, spostamenti, frequenza di marcatura, dimensione, composizione e coesione dei branchi e loro area frequentata, vengono raccolti tramite snow-tracking. L'area interessata è stata suddivisa in 15 settori all'interno dei quali sono stati individuati circuiti di rilevamento, percorsi a rotazione con racchette da neve a partire da 36-48 ore dopo l'ultima nevicata e con continuità per l'intera stagione invernale, lungo i quali intercettare le piste dei lupi nella neve. Nella stagione estiva, l'eventuale presenza di cucciolate, e la localizzazione dei rispettivi rendez-vous, è stata indagata con la tecnica del wolf-howling tramite campionamento sistematico sull'intera area. Stime del numero e della composizione dei branchi, e della loro localizzazione, vengono inoltre supportate dalla tipizzazione genotipica (Laboratorio di Genetica dell

  14. Hexagonally Ordered Arrays of α-Helical Bundles Formed from Peptide-Dendron Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Deborah A. [Department; Rokhlenko, Yekaterina [Department; Marine, Jeannette E. [Department; David, Rachelle [Department; Sahoo, Dipankar [Department; Watson, Matthew D. [Department; Koga, Tadanori [Department; Department; Osuji, Chinedum O. [Department; Rudick, Jonathan G. [Department

    2017-10-24

    Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometry in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.

  15. Gigantic spin splitting of exciton states in CdSe:Mn hexagonal crystal

    International Nuclear Information System (INIS)

    Komarov, A.V.; Ryabchenko, S.M.; Semenov, Yu.G.; Shanina, B.D.; Vitrikhovskij, N.I.; AN Ukrainskoj SSR, Kiev. Inst. Poluprovodnikov)

    1980-01-01

    Gigantic spin splitting of exciton states in magneto-doped semiconductors is observed for the first time in the CdSe: Mn hexagonal crystal. A theoretical interpretation of some features of the effect due to the anisotropy of the crystal is presented. The parameters of the band structure are determined by comparing with the experiments: Δ 1 =46+-3, Δ 2 =137+-1, Δ 3 =140.6+-0.3 meV. It is shown that in CdSe:Mn just as in cubic semiconductors, exchange interaction with magnetic impurities is ferromagnetic for electrons of the conductivity band and antiferromagnetic for electrons of the valence band. The exchange constants are of the same order of magnetude as those for the CdTe:Mn, ZnTe:Mn and ZnSe:Mn crystals

  16. Enhanced sensitivity in a butterfly gyroscope with a hexagonal oblique beam

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Dingbang; Cao, Shijie; Hou, Zhanqiang, E-mail: houzhanqiang@nudt.edu.cn; Chen, Zhihua; Wang, Xinghua; Wu, Xuezhong [College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, Hunan, 410073 (China)

    2015-04-15

    A new approach to improve the performance of a butterfly gyroscope is developed. The methodology provides a simple way to improve the gyroscope’s sensitivity and stability, by reducing the resonant frequency mismatch between the drive and sense modes. This method was verified by simulations and theoretical analysis. The size of the hexagonal section oblique beam is the major factor that influences the resonant frequency mismatch. A prototype, which has the appropriately sized oblique beam, was fabricated using precise, time-controlled multilayer pre-buried masks. The performance of this prototype was compared with a non-tuned gyroscope. The scale factor of the prototype reaches 30.13 mV/ °/s, which is 15 times larger than that obtained from the non-tuned gyroscope. The bias stability of the prototype is 0.8 °/h, which is better than the 5.2 °/h of the non-tuned devices.

  17. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    Science.gov (United States)

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The formation of hexagonal-shaped InGaN-nanodisk on GaN-nanowire observed in plasma source molecular beam epitaxy

    KAUST Repository

    Ng, Tien Khee

    2014-03-08

    We report on the properties and growth kinetics of defect-free, photoluminescence (PL) efficient mushroom-like nanowires (MNWs) in the form of ~30nm thick hexagonal-shaped InGaN-nanodisk on GaN nanowires, coexisting with the conventional rod-like InGaN-on-GaN nanowires (RNWs) on (111)-silicon-substrate. When characterized using confocal microscopy (CFM) with 458nm laser excitation, while measuring spontaneous-emission at fixed detection wavelengths, the spatial intensity map evolved from having uniform pixelated emission, to having only an emission ring, and then a round emission spot. This corresponds to the PL emission with increasing indium composition; starting from emission mainly from the RNW, and then the 540 nm emission from one MNWs ensemble, followed by the 590 nm emission from a different MNW ensemble, respectively. These hexagonal-shaped InGaN-nano-disks ensembles were obtained during molecular-beam-epitaxy (MBE) growth. On the other hand, the regular rod-like InGaN-on-GaN nanowires (RNWs) were emitting at a shorter peak wavelength of 490 nm. While the formation of InGaN rod-like nanowire is well-understood, the formation of the hexagonal-shaped InGaN-nanodisk-on-GaN-nanowire requires further investigation. It was postulated to arise from the highly sensitive growth kinetics during plasma-assisted MBE of InGaN at low temperature, i.e. when the substrate temperature was reduced from 800 °C (GaN growth) to <600 °C (InGaN growth), during which sparsely populated metal-droplet formation prevails and further accumulated more indium adatoms due to a higher cohesive bond between metallic molecules. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  19. Liquid Phase Deposition of Silica on the Hexagonally Close-Packed Monolayer of Silica Spheres

    Directory of Open Access Journals (Sweden)

    Seo Young Yoon

    2013-01-01

    Full Text Available Liquid phase deposition is a method used for the nonelectrochemical production of polycrystalline ceramic films at low temperatures, most commonly silicon dioxide films. Herein, we report that silica spheres are organized in a hexagonal close-packed array using a patterned substrate. On this monolayer of silica spheres, we could fabricate new nanostructures in which deposition and etching compete through a modified LPD reaction. In the early stage, silica spheres began to undergo etching, and then, silica bridges between the silica spheres appeared by the local deposition reaction. Finally, the silica spheres and bridges disappeared completely. We propose the mechanism for the formation of nanostructure.

  20. Oxygen excess in the '114' cobaltite hexagonal structure: The ferrimagnet CaBaCo4O7.50

    International Nuclear Information System (INIS)

    Pralong, V.; Caignaert, V.; Sarkar, T.; Lebedev, O.I.; Duffort, V.; Raveau, B.

    2011-01-01

    The study of the oxidation of the '114' orthorhombic cobaltite CaBaCo 4 O 7 , using first electrochemistry and then soft chemistry based on oxidation by NaClO, has allowed a new phase, CaBaCo 4 O 7.50 , to be prepared topotactically. The structural study of this phase shows that its hexagonal structure, closely related to that of orthorhombic CaBaCo 4 O 7 , is curiously similar to that of the members of the LnBaCo 4 O 7 series, in spite of its excess oxygen. Its magnetic study shows that this phase, like CaBaCo 4 O 7 , is ferrimagnetic with the same T C (60 K), but differently exhibits an unusual magnetic hysteresis. This exceptional behavior of CaBaCo 4 O 7 with respect to oxidation as well as the magnetic properties of CaBaCo 4 O 7.50 is interpreted in terms of the presence of defects due to oxidation. - Graphical Abstract: The study of the oxidation of the '114' orthorhombic cobaltite CaBaCo 4 O 7 , using first electrochemistry and then soft chemistry based on oxidation by NaClO, has allowed a new phase, CaBaCo 4 O 7.50 , to be prepared topotactically. The structural study of this phase shows that its hexagonal structure, closely related to that of orthorhombic CaBaCo 4 O 7 , is curiously similar to that of the members of the LnBaCo 4 O 7 series, in spite of its oxygen excess. Its magnetic study shows that this phase, like CaBaCo 4 O 7 , is ferrimagnetic. Highlights: → Topotactic oxidation by means of electrochemistry and soft chemistry of the '114' orthorhombic cobaltite CaBaCo 4 O 7 . → This new phase, CaBaCo 4 O 7.5 shows an hexagonal structure, is closely related to that of orthorhombic mother phase CaBaCo 4 O 7 . → CaBaCo 4 O 7.5 is ferrimagnetic and exhibits an unusual magnetic hysteresis, due to defect pinning centers.