WorldWideScience

Sample records for d-zero run ii

  1. Prospects of heavy quark physics in run II with the D-Zero detector

    Energy Technology Data Exchange (ETDEWEB)

    Gounder, K.

    1998-09-01

    After a successful Run I, D0 is poised for an encore performance in Run II. This article summarizes the essential features of the D0 upgrade that involve a central magnetic field, a new tracking system, upgraded muon detection, and enhancements to muon, calorimeter and the data acquisition electronics. The goals for top quark physics for Run II are outlined along with issues affecting the precision measurement of top quark mass and single top quark production. The prospects and issues determining the B physics capabilities of D0 in Run II are addressed briefly and a study of the CP sensitivity in the mode B{sub d}{sup 0} {yields} J/{psi}K{sub s}{sup 0} is also presented.

  2. Resonant production of sleptons in the run I of the DO experiment and identification of electrons in the run II; Recherche de production resonante de sleptons au Run I de D zero et identification et mesure des electrons au Run 2

    Energy Technology Data Exchange (ETDEWEB)

    Abdesselam, A

    2001-10-01

    This work deals with the resonant production of supersymmetric particles smuons and muon sneutrinos. The theoretical framework of this study rests on the model mSUGRA in which 5 parameters are considered: m{sub 0}, m{sub 1/2}, tan({beta}), A{sub 0}, sign({mu}) and one parameter for the violation of the R-parity. 2 analysis methods have been used: the traditional sequential analysis and the neuron network analysis that begins to be largely used in particle physics. This work is based on the experimental data collected during the run I of the experiment DO at the Tevatron (Fermilab, Usa). The value of luminosity is 94 pb{sup -1}. The general result is that no more events were detected than predicted by the standard model, so these results can be interpreted as a mean to draw limits for the values of the parameters. For instance values up to 230 GeV and 260 GeV are excluded for m{sub 0} and m{sub 1/2} respectively if the coupling constant {lambda}{sub 211} is worth 0.09, tan({beta}) = 2, sign({mu}) =-1 and A{sub 0} = 0. The interpretation can be made in terms of mass and the study shows that relative masses for {nu}-tilde{sub {mu}} and {chi}{sup 0}{sub 1} of 280 GeV and 112 GeV respectively are excluded with a 95% probability. Another part of this work deals with the identification of electron in the run II, different tools can be used, here the author chose the covariance matrix ( H matrix). (A.C.)

  3. Input data to run Landis-II

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The data are input data files to run the forest simulation model Landis-II for Isle Royale National Park. Files include: a) Initial_Comm, which includes the location...

  4. ATLAS Run II Exotics Results

    CERN Document Server

    ATLAS Collaboration; The ATLAS collaboration

    2016-01-01

    While Standard Model is in a good shape especially after Higgs boson discovery, there are a lot of questions beyond SM. The ATLAS detector is performing about 50 Exotics searches addressed these questions. This talk is discussing some of them with datasets collected during the 2015-2016 LHC run from 3 fb^-1 to 18 fb^-1 of proton-proton collisions at 13 TeV centre of mass energy . Results on searches for resonances decaying into vector boson or fermions, for vector like quarks, for dark matter, and for other new phenomena using these data will be presented.

  5. D0 Upgrade for RUN II

    CERN Document Server

    Petroff, P

    1999-01-01

    The D0 detector at The Fermilab Tevatron is undergoing a major upgrade to prepare for data taking with luminosities reaching 2 x 10^{32} cm^{-2} s^{-1}. The upgrade includes a new central tracking array, new muon detector components and electronic upgrades to many subsystems. The D0 upgraded detector will be operational for RUN II in spring 2000.

  6. The CDF Run II Disk Inventory Manager

    Institute of Scientific and Technical Information of China (English)

    PaulHubbard; StephanLammel

    2001-01-01

    The Collider Detector at Fermilab(CDF) experiment records and analyses proton-antiprotion interactions at a center-of -mass energy of 2 TeV,Run II of the Fermilab Tevatron started in April of this year,The duration of the run is expected to be over two years.One of the main data handling strategies of CDF for RUn II is to hide all tape access from the user and to facilitate sharing of data and thus disk space,A disk inventory manager was designed and developed over the past years to keep track of the data on disk.to coordinate user access to the data,and to stage data back from tape to disk as needed.The CDF Run II disk inventory manager consists of a server process,a user and administrator command line interfaces.and a library with the routines of the client API.Data are managed in filesets which are groups of one or more files.The system keeps track of user acess to the filesets and attempts to keep frequently accessed data on disk.Data that are not on disk are automatically staged back from tape as needed.For CDF the main staging method is based on the mt-tools package as tapes are written according to the ANSI standard.

  7. Input data to run Landis-II

    Science.gov (United States)

    DeJager, Nathan R.

    2017-01-01

    The data are input data files to run the forest simulation model Landis-II for Isle Royale National Park. Files include: a) Initial_Comm, which includes the location of each mapcode, b) Cohort_ages, which includes the ages for each tree species-cohort within each mapcode, c) Ecoregions, which consist of different regions of soils and climate, d) Ecoregion_codes, which define the ecoregions, and e) Species_Params, which link the potential establishment and growth rates for each species with each ecoregion.

  8. Energetics of bipedal running. II. Limb design and running mechanics.

    Science.gov (United States)

    Roberts, T J; Chen, M S; Taylor, C R

    1998-10-01

    Compared with quadrupeds, bipedal runners of the same weight have longer legs, take longer steps and can presumably use slower, more economical muscle fibers. One might predict that bipedal running is less expensive, but it is not. We hypothesized that bipeds recruit a larger volume of muscle to support their weight, eliminating the potential economy of longer legs and slower steps. To test our hypothesis, we calculated the relative volume of muscle needed to support body weight over a stride in small dogs (Canis familiaris) and wild turkeys (Meleagris gallopavo) of the same weight. First, we confirmed that turkeys and dogs use approximately the same amount of energy to run at the same speed, and found that turkeys take 1. 8-fold longer steps. Higher muscle forces and/or longer muscle fibers would require a greater volume of active muscle, since muscle volume is proportional to the product of force and fascicle length. We measured both mean fascicle length and mean mechanical advantage for limb extensor muscles. Turkeys generated approximately the same total muscle force to support their weight during running and used muscle fascicles that are on average 2.1 times as long as in dogs, thus requiring a 2.5-fold greater active muscle volume. The greater volume appears to offset the economy of slower rates of force generation, supporting our hypothesis and providing a simple explanation for why it costs the same to run on two and four legs.

  9. ATLAS VH(bb) Run II Search

    CERN Document Server

    Buzatu, Adrian; The ATLAS collaboration

    2016-01-01

    The Higgs boson discovered at the LHC in 2012 has been observed coupling directly to W and Z bosons and to tau leptons, and indirectly to top quarks. In order to probe if it is indeed the particle predicted by the Standard Model, direct couplings of the Higgs boson to quarks must also be measured. The Higgs boson decays most often to a pair of bottom quarks (with a branching ratio of 58%). When the Higgs boson is produced alone in gluon-gluon fusion, the signal in this decay mode is overwhelmed by the regular multi-jet background. By requiring the Higgs boson to be produced in association with a vector boson V (W or Z), which is further required to decay leptonically, data events can be selected using charged-lepton or missing transverse energy triggers. The Tevatron experiments presented combined results showing evidence for the VH(H to bb) process at a significance level of about 3 standard deviations, while the combined LHC results from Run II data show a 2.6 standard deviation evidence for the H to bb dec...

  10. Parton distributions for the LHC Run II

    CERN Document Server

    Ball, Richard D.; Carrazza, Stefano; Deans, Christopher S.; Del Debbio, Luigi; Forte, Stefano; Guffanti, Alberto; Hartland, Nathan P.; Latorre, José I.; Rojo, Juan; Ubiali, Maria

    2015-01-01

    We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W+c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different pertu...

  11. Instrument Front-Ends at Fermilab During Run II

    CERN Document Server

    Meyer, Thomas; Voy, Duane; 10.1088/1748-0221/6/11/T11004

    2012-01-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  12. Instrument Front-Ends at Fermilab During Run II

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Thomas; Slimmer, David; Voy, Duane; /Fermilab

    2011-07-13

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor.

  13. The Muon system of the run II D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Acharya, B.S.; Alexeev, G.D.; Alkhazov, G.; Anosov, V.A.; Baldin, B.; Banerjee, S.; Bardon, O.; Bartlett, J.F.; Baturitsky, M.A.; Beutel, D.; Bezzubov,; Bodyagin, V.; Butler, J.M.; Cease, H.; Chi, E.; Denisov, D.; Denisov, S.P.; Diehl, H.T.; Doulas, S.; Dugad, S.R.; /Beijing, Inst. High Energy Phys. /Charles U. /Prague, Tech.

    2005-03-01

    The authors describe the design, construction and performance of the upgraded D0 muon system for Run II of the Fermilab Tevatron collider. Significant improvements have been made to the major subsystems of the D0 muon detector: trigger scintillation counters, tracking detectors, and electronics. The Run II central muon detector has a new scintillation counter system inside the iron toroid and an improved scintillation counter system outside the iron toroid. In the forward region, new scintillation counter and tracking systems have been installed. Extensive shielding has been added in the forward region. A large fraction of the muon system electronics is also new.

  14. The CMS inner tracker -- transition from LHC Run~I to Run~II and first experience of Run~II

    CERN Document Server

    AUTHOR|(CDS)2091649

    2015-01-01

    The CMS silicon pixel and strip trackers provide high efficiency charged particle reconstruction and superb momentum resolution over three decades in energy, and thus play a key role in the CMS physics program. The readiness of the silicon tracking detectors for LHC Run~II data taking is presented in this paper. In light of improvements to the tracker operating environment and repairs of defective pixel channels during the first LHC long shutdown, the Run~II tracker is expected to have a larger yield of active channels than during Run~I and to continue to perform well at the foreseen luminosities.

  15. First paper from Tevatron Run II submitted by CDF collaboration

    CERN Multimedia

    2003-01-01

    "Scientists of the Collider Detector at Fermilab submitted today (March 19) the first scientific publication of Collider Run II to the science journal Physical Review D. The paper titled "Measurement of the Mass Difference m(Ds+)-m(D+) at CDF II" summarizes the results of an analysis carried out by CDF scientists Christoph Paus and Ivan Furic, MIT, describing the mass measurement of particles containing charm quarks" (1 page).

  16. The Higgs and Supersymmetry at Run II of the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shih, David [Rutgers Univ., Piscataway, NJ (United States)

    2016-04-14

    Prof. David Shih was supported by DOE grant DE-SC0013678 from April 2015 to April 2016. His research during this year focused on the phenomenology of super- symmetry (SUSY) and maximizing its future discovery potential at Run II of the LHC. SUSY is one of the most well-motivated frameworks for physics beyond the Standard Model. It solves the \

  17. The D0 Run II Impact Parameter Trigger

    CERN Document Server

    Adams, T; Ansermet-Tentindo, S; Black, K M; Bose, T; Buchanan, N J; Caron, S; Cho, D K; Choi, S; Das, A; Das, M; Dong, H; Earle, W; Evans, H; Fatakia, S N; Feligioni, L; Fitzpatrick, T; Hazen, E; Heintz, U; Herner, K; Hobbs, J D; Khatidze, D; Lee, W M; Linn, S L; Narain, M; Pancake, C; Parashar, N; Popkov, E; Prosper, H B; Redner, G; Sanders, M P; Sen-Gupta, S; Smart, B; Sonnenschein, L; Steinbruck, G; Taylor, W; Wahl, H D; Wijnen, T A M; Wittlin, J; Wu, J; Wu, S X; Zabi, A; Zhu, J

    2007-01-01

    Many physics topics to be studied by the D0 experiment during Run II of the Fermilab Tevatron ppbar collider give rise to final states containing b--flavored particles. Examples include Higgs searches, top quark production and decay studies, and full reconstruction of B decays. The sensitivity to such modes has been significantly enhanced by the installation of a silicon based vertex detector as part of the DO detector upgrade for Run II. Interesting events must be identified initially in 100-200 microseconds to be available for later study. This paper describes custom electronics used in the DO trigger system to provide the real--time identification of events having tracks consistent with the decay of b--flavored particles.

  18. PDF4LHC recommendations for LHC Run II

    CERN Document Server

    Butterworth, Jon; Cooper-Sarkar, Amanda; De Roeck, Albert; Feltesse, Joel; Forte, Stefano; Gao, Jun; Glazov, Sasha; Huston, Joey; Kassabov, Zahari; McNulty, Ronan; Morsch, Andreas; Nadolsky, Pavel; Radescu, Voica; Rojo, Juan; Thorne, Robert

    2016-01-01

    We provide an updated recommendation for the usage of sets of parton distribution functions (PDFs) and the assessment of PDF and PDF+$\\alpha_s$ uncertainties suitable for applications at the LHC Run II. We review developments since the previous PDF4LHC recommendation, and discuss and compare the new generation of PDFs, which include substantial information from experimental data from the Run I of the LHC. We then propose a new prescription for the combination of a suitable subset of the available PDF sets, which is presented in terms of a single combined PDF set. We finally discuss tools which allow for the delivery of this combined set in terms of optimized sets of Hessian eigenvectors or Monte Carlo replicas, and their usage, and provide some examples of their application to LHC phenomenology.

  19. Top mass measurements at the Tevatron run II

    Energy Technology Data Exchange (ETDEWEB)

    Velev, Gueorgui V.; /Fermilab

    2005-10-01

    The latest top quark mass measurements by the CDF and D0 experiments are presented here. The mass has been determined in the dilepton (t{bar t} {yields} e{mu}, ee, {mu}{mu} + jets + E{sub T}) and lepton plus jets (t{bar t} {yields} e or {mu} + jets + E{sub T}) final states. The most accurate single result from lepton plus jets channel is 173.5{sub -3.6}{sup +3.7}(stat. + Jet Energy Scale Systematic) {+-} 1.3(syst.) GeV/c{sup 2}, which is better than the combined CDF and D0 Run I average. A preliminary and unofficial average of the best experimental Run II results gives M{sub top} = 172.7 {+-} 3.5 GeV/c{sup 2}.

  20. VeloTT tracking for LHCb Run II

    CERN Document Server

    Bowen, Espen Eie; Tresch, Marco

    2016-01-01

    This note describes track reconstruction in the LHCb tracking system upstream of the magnet, combining VELO tracks with hits in the TT sub-detector. The implementation of the VeloTT algorithm and its performance in terms of track reconstruction efficiency, ghost rate and execution time are presented. The algorithm has been rewritten for use in the first software trigger level for LHCb Run II. The momentum and charge information obtained for the VeloTT tracks (due to a fringe magnetic field between the VELO and TT sub-detectors) can reduce the total execution time for the full tracking sequence.

  1. Improvements to ATLAS Track Reconstruction for Run-II

    CERN Document Server

    Cairo, Valentina Maria; The ATLAS collaboration

    2015-01-01

    Run-II of the LHC will provide new challenges to track and vertex reconstruction with higher energies, denser jets and higher rates. In addition, the Insertable B-layer (IBL) is a fourth pixel layer, which has been inserted at the centre of ATLAS during the shutdown of the LHC. We will discuss improvements to track reconstruction developed during the two year shutdown of the LHC. These include novel techniques developed to improve the performance in the dense cores of jets, optimisation for the expected conditions, and a big software campaign which lead to more than a factor of three decrease in the CPU time needed to process each recorded event.

  2. The CMS Level-1 Trigger for LHC Run II

    CERN Document Server

    Tapper, Alexander

    2016-01-01

    During LHC Run II the centre-of-mass energy of pp collisions has increased up to 13 TeV and the instantaneous luminosity has progressed towards 2E34 cmâ??2 sâ??1. In order to guarantee a successful and ambitious physics programme under these conditions, the CMS trigger system system has been upgraded. The upgraded CMS Level-1 trigger is designed to improve performance at high luminosity and large number of simultaneous inelastic collisions per crossing. The trigger design, implementation and commissioning are summarised and early performance results are described.

  3. Run-up to participation in ATACH II in Japan

    Science.gov (United States)

    Toyoda, K; Sato, S; Koga, M; Yamamoto, H; Nakagawara, J; Furui, E; Shiokawa, Y; Hasegawa, Y; Okuda, S; Sakai, N; Kimura, K; Okada, Y; Yoshimura, S; Hoshino, H; Uesaka, Y; Nakashima, T; Itoh, Y; Ueda, T; Nishi, T; Gotoh, J; Nagatsuka, K; Arihiro, S; Yamaguchi, T; Minematsu, K

    2012-01-01

    Intracerebral hemorrhage (ICH) is a major cause of morbidity and mortality in Japan. Seventeen Japanese institutions are participating in the Antihypertensive Treatment for Acute Cerebral Hemorrhage (ATACH) II Trial (ClinicalTrials.gov no. NCT01176565; UMIN 000006526). This phase III trial is designed to determine the therapeutic benefit of early intensive systolic blood pressure (BP) lowering for acute hypertension in ICH patients. This report explains the long run-up to reach the start of patient registration in ATACH II in Japan, including our preliminary study, a nationwide survey on antihypertensive treatment for acute ICH patients, a multicenter study for hyperacute BP lowering (the SAMURAI-ICH study), revision of the official Japanese label for intravenous nicardipine, and construction of the infrastructure for the trial. PMID:23230457

  4. Gluino Coannihilation and Observability of Gluinos at LHC RUN II

    CERN Document Server

    Nath, Pran

    2016-01-01

    The observability of a gluino at LHC RUN II is analyzed for the case where the gluino lies in the gluino-neutralino coannihilation region and the mass gap between the gluino and the neutralino is small. The analysis is carried out under the Higgs boson mass constraint and the constraint of dark matter relic density consistent with the WMAP and Planck experiment. It is shown that in this case a gluino with mass much smaller than the current lower limit of $\\sim 1500$ GeV as given by LHC RUN II at 3.2 fb$^{-1}$ of integrated luminosity would have escaped detection. The analysis is done using the signal regions used by the ATLAS Collaboration where an optimization of signal regions was carried out to determine the best regions for gluino discovery in the gluino-neutralino coannihilation region. It is shown that under the Higgs boson mass constraint and the relic density constraint, a gluino mass of $\\sim 700$ GeV would require 14 fb$^{-1}$ of integrated luminosity for discovery and a gluino of mass $\\sim 1250$ G...

  5. Two-Higgs-doublet model of type II confronted with the LHC run I and run II data

    Science.gov (United States)

    Wang, Lei; Zhang, Feng; Han, Xiao-Fang

    2017-06-01

    We examine the parameter space of the two-Higgs-doublet model of type II after imposing the relevant theoretical and experimental constraints from the precision electroweak data, B -meson decays, and the LHC run I and run II data. We find that the searches for Higgs bosons via the τ+τ- , W W , Z Z , γ γ , h h , h Z , H Z , and A Z channels can give strong constraints on the C P -odd Higgs A and heavy C P -even Higgs H , and the parameter space excluded by each channel is respectively carved out in detail assuming that either mA or mH are fixed to 600 or 700 GeV in the scans. The surviving samples are discussed in two different regions. (i) In the standard model-like coupling region of the 125 GeV Higgs, mA is allowed to be as low as 350 GeV, and a strong upper limit is imposed on tan β . mH is allowed to be as low as 200 GeV for the appropriate values of tan β , sin (β -α ), and mA, but is required to be larger than 300 GeV for mA=700 GeV . (ii) In the wrong-sign Yukawa coupling region of the 125 GeV Higgs, the b b ¯→A /H →τ+τ- channel can impose the upper limits on tan β and sin (β -α ), and the A →h Z channel can give the lower limits on tan β and sin (β -α ). mA and mH are allowed to be as low as 60 and 200 GeV, respectively, but 320 GeV

  6. Boosted H­->bb Tagger In Run II

    CERN Document Server

    Sahinsoy, Merve; The ATLAS collaboration

    2016-01-01

    Several searches for Higgs bosons decaying to b­quark pairs benefit from the increased Run II centre­of­mass energy by exploiting the large transvers­momentum (boosted) Higgs boson regime, where the two b­jets are merged into one large­radius jet. ATLAS uses a boosted H­>bb tagger algorithm to separate the Higgs signal from the background processes (QCD, W and Z bosons, top quarks). The tagger takes as input a large­R=1.0 jet calibrating the pseudorapidity, energy and mass scale. The tagger employs b­tagging, Higgs candidate mass, and substructure information. The performance of several operating points in Higgs boson signal and QCD and ttbar all­hadronic backgrounds are presented. Systematic uncertainties are evaluated so that this tagger can be used in analyses.

  7. LHCb-The LHCb trigger in Run II

    CERN Multimedia

    Michielin, Emanuele

    2016-01-01

    The LHCb trigger system has been upgraded to exploit the real-time alignment, calibration and analysis capabilities of LHCb in Run-II. An increase in the CPU and disk capacity of the event filter farm, combined with improvements to the reconstruction software, mean that efficient, exclusive selections can be made in the first stage of the High Level Trigger (HLT1). The output of HLT1 is buffered to the 5 PB of disk on the event filter farm, while the detector is aligned and calibrated in real time. The second stage, HLT2, performs complete, offline quality, event reconstruction. Physics analyses can be performed directly on this information, and for the majority of charm physics selections, a reduced event format can be written out, which permits higher event rates.

  8. LUCID Upgrade for ATLAS Luminosity Measurement in Run II

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor, LUCID, and its read-out electronics have been completely rebuilt for the LHC Run II in order to cope with a higher center of mass energy ($\\sqrt{s}$=13 TeV) and the 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive $^{207}$Bi sources that produce internal-conversion electrons with energy above the Cherenkov threshold in quartz. The new electronics can count signals with amplitude above a predefined threshold (hits) as well as the integrated pulseheight of the signals, which makes it possible to measure luminosity with complementary methods. The new detector, calibration system and electronics will be described, together with the results of the 2015 luminosity measurement.

  9. Testing LHT at the LHC Run-II

    CERN Document Server

    Cao, Qing-Hong; Liu, Yandong

    2016-01-01

    We study the Littlest Higgs model with T-parity (LHT) in the process of $pp \\to W_H^+W_H^- \\to W^+W^- A_H A_H$ at the 14 TeV LHC. With the $W$-jet tagging technique, we demonstrate that the bulk of the model parameter space can be probed at the level of more than $5\\sigma$ in the signature of two fat $W$-jets plus large missing energy. Furthermore, we propose a novel strategy of measuring the principle parameter $f$ that is crucial to testify the LHT model and to fix mass spectrum, including dark matter particle. Our proposal can be easily incorporated into current experimental program of diboson searches at the LHC Run-II.

  10. SVX II a silicon vertex detector for run II of the tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bortoletto, D.

    1994-11-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of the vertex detector of the CDF experiment to be installed for run II of the Tevatron in 1998. Three barrels of four layers of double sided detectors will cover the interaction region. The requirement of the silicon tracker and the specification of the sensors are discussed together with the proposed R&D to verify the performance of the prototypes detectors produced by Sintef, Micron and Hamamatsu.

  11. LHCb Run II tracking performance and prospects for the Upgrade

    CERN Multimedia

    2016-01-01

    The LHCb tracking system consists of a Vertex Locator around the interaction point, a tracking station with four layers of silicon strip detectors in front of the magnet, and three tracking stations, using either straw-tubes or silicon strip detectors, behind the magnet. This system allows to reconstruct charged particles with a high efficiency (typically > 95% for particles with momentum > 5 GeV) and an excellent momentum resolution (0.5% for particles with momentum < 20 GeV). The high momentum resolution results in very narrow mass peaks, leading to a very good signal-to-background ratio in such key channels as $B_s\\to\\mu^+\\mu^-$. Furthermore an optimal decay time resolution is an essential element in the studies of time dependent CP violation. For Run II a novel reconstruction strategy was adopted, allowing to run the same track reconstruction in the software trigger as offline. This convergence was possible due to a staged approach in the track reconstruction and a large reduction in the processing tim...

  12. The CMS Level-1 Calorimeter Trigger for LHC Run II

    CERN Document Server

    Zabi, Alexandre; Cadamuro, Luca; Davignon, Olivier; Romanteau, Thierry; Strebler, Thomas; Cepeda, Maria Luisa; Sauvan, Jean-baptiste; Wardle, Nicholas; Aggleton, Robin Cameron; Ball, Fionn Amhairghen; Brooke, James John; Newbold, David; Paramesvaran, Sudarshan; Smith, D; Taylor, Joseph Ross; Fountas, Konstantinos; Baber, Mark David John; Bundock, Aaron; Breeze, Shane Davy; Citron, Matthew; Elwood, Adam Christopher; Hall, Geoffrey; Iles, Gregory Michiel; Laner Ogilvy, Christian; Penning, Bjorn; Rose, A; Shtipliyski, Antoni; Tapper, Alexander; Durkin, Timothy John; Harder, Kristian; Harper, Sam; Shepherd-Themistocleous, Claire; Thea, Alessandro; Williams, Thomas Stephen; Dasu, Sridhara Rao; Dodd, Laura Margaret; Klabbers, Pamela Renee; Levine, Aaron; Ojalvo, Isabel Rose; Ruggles, Tyler Henry; Smith, Nicholas Charles; Smith, Wesley; Svetek, Ales; Forbes, R; Tikalsky, Jesra Lilah; Vicente, Marcelo

    2016-01-01

    Results from the completed Phase 1 Upgrade of the Compact Muon Solenoid (CMS) Level-1 Calorimeter Trigger are presented. The upgrade was completed in two stages, with the first running in 2015 for proton and Heavy Ion collisions and the final stage for 2016 data taking. The Level-1 trigger has been fully commissioned and has been used by CMS to collect over 43 fb-1 of data since the start of the Large Hadron Collider (LHC) Run II. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Trigger (TMT), which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The trigger processors are instrumented with Xilinx Virtex-7 690 FPGAs and 10 Gbps optical links. The TMT architecture is flexible and the number of trigger p...

  13. LHCb’s Real-Time Alignment in Run II

    CERN Document Server

    Batozskaya, Varvara

    2015-01-01

    The LHCb collaboration has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. The data collected at the start of the fill will be processed in a few minutes and used to update the alignment, while the calibration constants will be evaluated for each run. This procedure will improve the quality of the online alignment. Critically, this new real-time alignment and calibration procedure allows identical constants to be used in the online and oine reconstruction, thus improving the correlation between triggered and oine selected events. This oers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configu...

  14. Commissioning Run of the CRESST-II Dark Matter Search

    CERN Document Server

    Angloher, G; Bavykina, I; Bento, A; Brown, A; Bucci, C; Ciemniak, C; Coppi, C; Deuter, G; Von Feilitzsch, F; Hauff, D; Henry, S; Huff, P; Imber, J; Ingleby, S; Isaila, C; Jochum, J; Kiefer, M; Kimmerle, M; Kraus, H; Lanfranchi, J -C; Lang, R F; Majorovits, B; Malek, M; McGowan, R; Mikhailik, V B; Pantic, E; Petricca, F; Pfister, S; Potzel, W; Pröbst, F; Rau, W; Roth, S; Rottler, K; Sailer, C; Schaeffner, K; Schmaler, J; Scholl, S; Seidel, W; Stodolsky, L; Tolhurst, A J B; Usherov, I; Westphal, W

    2008-01-01

    The CRESST cryogenic direct dark matter search at Gran Sasso, searching for WIMPs via nuclear recoil, has been upgraded to CRESST-II by several changes and improvements.We present the results of a commissioning run carried out in 2007. The basic element of CRESST-II is a detector module consisting of a large (~ 300 g) CaWO_4 crystal and a very sensitive smaller (~ 2 g) light detector to detect the scintillation light from the CaWO_4.Information from light-quenching factor studies allows the definition of a region of the energy-light yield plane which corresponds to tungsten recoils. A neutron test is reported which supports the principle of using the light yield to identify the recoiling nucleus. Data obtained with two detector modules for a total exposure of 48 kg-days are presented. Judging by the rate of events in the "all nuclear recoils" acceptance region the apparatus shows a factor ~ten improvement with respect to previous results, which we attribute principally to the presence of the neutron shield. I...

  15. D0 Silicon Upgrade: Summary of Warm-Up After Draining for the D-Zero LAr Calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, Russ; /Fermilab

    1996-03-14

    After a very successful physics run, the D-Zero detector Liquid Argon Calorimeters were drained in preparation of the detector rollout. During the roll out process, the calorimeters were without cooling. Information regarding the temperatures, estimated heat transfer, and pressure maintenance are documented in this engineering note.

  16. The CMS calorimeter trigger upgrade for the LHC Run II

    CERN Document Server

    Zabi, Alexandre

    2014-01-01

    The CMS experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 10e5. The first level (L1) is based on coarse information coming from the calorimeters and the muon detectors while the High-Level Trigger combines fine-grain information from all sub-detectors. During Run II, the LHC will increase its centre of mass energy up to 13 TeV and progressively reach an instantaneous luminosity of 2e34 cm-2s-1. In order to guarantee a successful and ambitious physics program under this intense environment, the CMS Trigger and Data acquisition system must be consolidated. In particular the L1 calorimeter Trigger hardware and architecture will be modified. The goal is to maintain the current thresholds (e.g., for electrons and photons) and improve the performance for the selection of tau leptons. This can only be achieved by designing an updated trigger architecture based on the recent microTCA technology. Racks can be equipped with fast optical links and latest...

  17. CDF Run II Silicon Vertex Detector Annealing Study

    CERN Document Server

    Stancari, M; Behari, S; Christian, D; Di Ruzza, B; Jindariani, S; Junk, T R; Mattson, M; Mitra, A; Mondragon, M N; Sukhanov, A

    2013-01-01

    Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron collider delivered 12~fb$^{-1}$ of $p\\bar{p}$ collisions at $\\sqrt{s}=1.96$ TeV to the Collider Detector at Fermilab (CDF). During that time, the CDF silicon vertex detector was subject to radiation doses of up to 12 Mrad. After the end of operations, the silicon detector was annealed for 24 days at $18^{\\circ}$C. In this paper, we present a measurement of the change in the bias currents for a subset of sensors during the annealing period. We also introduce a novel method for monitoring the depletion voltage throughout the annealing period. The observed bias current evolution can be characterized by a falling exponential term with time constant $\\tau_I=17.88\\pm0.36$(stat.)$\\pm0.25$(syst.) days. We observe an average decrease of $(27\\pm3)\\%$ in the depletion voltage, whose evolution can similarly be described by an exponential time constant of $\\tau_V=6.21\\pm0.21$ days. These results are consistent with the Ham...

  18. Direct Searches For Scalar Leptoquarks At The Run Ii Tevatron

    CERN Document Server

    Ryan, D E

    2004-01-01

    This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analysed has a total time-integrated measured luminosity of 198 pb−1 of pp¯ collisions with s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. We consider two possible leptoquark decays: (1) β = BR(LQ → μq ) = 1.0, and (2) β = BR(LQ → μq ) = 0.5. For the β = 1 channel, we focus on the signature represented by two isolated high- pT muons and two isolated high-pT jets. For the β = 1/2 channel, we focus on the signature represented by one isolated high-pT muon, large missing transverse energy, and two isolated high- p T jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for s...

  19. Direct Searches for Scalar Leptoquarks at the Run II Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Daniel Edward [Tufts Univ., Medford, MA (United States)

    2004-08-01

    This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb-1 of p$\\bar{p}$ collisions with √s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) β = BR(LQ → μq) = 1.0, and (2) β = BR(LQ → μq) = 0.5. For the β = 1 channel, they focus on the signature represented by two isolated high-pT muons and two isolated high-pT jets. For the β = 1/2 channel, they focus on the signature represented by one isolated high-pT muon, large missing transverse energy, and two isolated high-pT jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p$\\bar{p}$ collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c2 for the β = 1(1/2) channels.

  20. Direct Searches for Scalar Leptoquarks at the Run II Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Daniel E

    2004-11-01

    This dissertation sets new limits on the mass of the scalar leptoquark from direct searches carried out at the Run II CDF detector using data from March 2001 to October 2003. The data analyzed has a total time-integrated measured luminosity of 198 pb{sup -1} of p{bar p} collisions with {radical}s = 1.96 TeV. Leptoquarks are assumed to be pair-produced and to decay into a lepton and a quark of the same generation. They consider two possible leptoquark decays: (1) {beta} = BR(LQ {yields} {mu}q) = 1.0, and (2) {beta} = BR(LQ {yields} {mu}q) = 0.5. For the {beta} = 1 channel, they focus on the signature represented by two isolated high-p{sub T} muons and two isolated high-p{sub T} jets. For the {beta} = 1/2 channel, they focus on the signature represented by one isolated high-p{sub T} muon, large missing transverse energy, and two isolated high-p{sub T} jets. No leptoquark signal is experimentally detected for either signature. Using the next to leading order theoretical cross section for scalar leptoquark production in p{bar p} collisions [1], they set new mass limits on second generation scalar leptoquarks. They exclude the existence of second generation scalar leptoquarks with masses below 221(175) GeV/c{sup 2} for the {beta} = 1(1/2) channels.

  1. Global Parton Distributions for the LHC Run II

    CERN Document Server

    Ball, Richard D

    2016-01-01

    We review the next generation global PDF sets: NNPDF3.0, MMHT14 and CT14. We describe the global datasets, particularly the new data from LHC Run 1, recent developments in QCD theory and PDF methodology, improvements in combination and delivery, and future prospects for parton determination at Run 2.

  2. Commissioning of the nonlinear chromaticity at injection for LHC Run II

    CERN Document Server

    AUTHOR|(CDS)2080608; Tomas Garcia, Rogelio; Carlier, Felix Simon; Langner, Andy Sven; Malina, Lukas; Persson, Tobias Hakan Bjorn; Coello De Portugal - Martinez Vazquez, Jaime Maria; Skowronski, Piotr Krzysztof; Garcia-Tabares Valdivieso, Ana; CERN. Geneva. ATS Department

    2016-01-01

    For the first time, correction of nonlinear chromaticity and amplitude detuning was included in the LHC commissioning for Run II. The corrections found during the nonlinear optics commissioning have been deployed operationally at injection in the LHC. This note summarizes the relevant measurements and corrections performed during the first commissioning of the LHC in Run II

  3. LHCb computing in Run II and its evolution towards Run III

    CERN Document Server

    Falabella, Antonio

    2016-01-01

    his contribution reports on the experience of the LHCb computing team during LHC Run 2 and its preparation for Run 3. Furthermore a brief introduction on LHCbDIRAC, i.e. the tool to interface to the experiment distributed computing resources for its data processing and data management operations, is given. Run 2, which started in 2015, has already seen several changes in the data processing workflows of the experiment. Most notably the ability to align and calibrate the detector between two different stages of the data processing in the high level trigger farm, eliminating the need for a second pass processing of the data offline. In addition a fraction of the data is immediately reconstructed to its final physics format in the high level trigger and only this format is exported from the experiment site to the physics analysis. This concept have successfully been tested and will continue to be used for the rest of Run 2. Furthermore the distributed data processing has been improved with new concepts and techn...

  4. The ATLAS Muon Trigger Performance in Run I and Initial Run II Performance

    CERN Document Server

    Bielski, Rafal; The ATLAS collaboration

    2015-01-01

    Events with muons in the final state are an important signature for many physics topics at the Large Hadron Collider (LHC). An efficient trigger on muons and a detailed understanding of its performance are required. In 2012, the last year of Run I, the instantaneous luminosity of the LHC reached 7.7x1033 cm-2s-1 and the average number of events that occur in a same bunch crossing was 25. The ATLAS Muon trigger has successfully adapted to this changing environment by making use of isolation requirements, combined trigger signatures with electron and jet trigger objects, and by using so-called full-scan triggers, which make use of the full event information to search for di-lepton signatures, seeded by single lepton objects. A stable and highly efficient muon trigger was vital in the discovery of Higgs boson in 2012 and for many searches for new physics. The performance of muon triggers during the LHC Run 1 data-taking campaigns is presented, together with an overview and preliminary results of the new muon str...

  5. The ATLAS Muon Trigger Performance in Run I and Initial Run II Performance

    CERN Document Server

    Bielski, Rafal; The ATLAS collaboration

    2015-01-01

    Events with muons in the final state are an important signature for many physics topics at the Large Hadron Collider. An efficient trigger on muons and a detailed understanding of its performance are required. In 2012, the last year of Run I, the instantaneous luminosity reached $7.7\\times10^{33}$ cm$^{-2}$s$^{-1}$ and the average number of interactions that occur in the same bunch crossing was 25. The ATLAS muon trigger has successfully adapted to this challenging environment by making use of isolation requirements, combined trigger signatures with electron and jet trigger objects, and by using so-called full-scan triggers, which make use of the full event information to search for di-lepton signatures, seeded by single lepton objects. A stable and highly efficient muon trigger was vital in the discovery of the Higgs boson in 2012 and for many searches for new physics. The performance of muon triggers during the Large Hadron Collider Run I data-taking campaigns is presented, together with an overview and pre...

  6. LHCb's Time-Real Alignment in RunII

    CERN Multimedia

    Batozskaya, Varvara

    2015-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run 2. Data collected at the start of the fill will be processed in a few minutes and used to update the alignment, while the calibration constants will be evaluated for each run. This procedure will improve the quality of the online alignment. Critically, this new real-time alignment and calibration procedure allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. This offers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configur...

  7. Searches for new physics in jet final states in ATLAS at LHC Run II

    CERN Document Server

    Amadio, Brian Thomas; The ATLAS collaboration

    2016-01-01

    The significant increase of the center-of-mass energy from 8 to 13 TeV at LHC Run II offers a great discovery potential for new physics at high mass, especially for strongly produced high-mass resonances, contact interactions, and TeV-gravity phenomena with high-pT jets. This talk presents the most recent Run II results from ATLAS on new physics searches in jet final states.

  8. Optimization of the Muon Identification software for LHCb Run II

    CERN Document Server

    Albrecht, Johannes; Dungs, Kevin; Lopes, Helder; Martinez Santos, Diego; Prisciandaro, Jessica; Sciascia, Barbara; Syropoulos, Vasileios; Vazquez Gomez, Ricardo

    2017-01-01

    The muon identification code in the LHCb HLT software trigger and offline reconstruction has been revisited in view of the LHC Run 2. This software has undergone a significant refactorisation, resulting in a modularized common code base between the HLT and offline event processing. Because of the later, the muon identification is now identical in HLT and offline. The HLT1 algorithm sequence has been updated given the new rate and timing constraints. Also information from the TT subdetector is used in order to reduce ghost tracks and optimize for low pT muons. The current software is presented here together with performances studies showing improved efficiencies and timing.

  9. The ATLAS Trigger System: Ready for Run II

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2015-01-01

    The ATLAS trigger system has been used successfully for data collection in the 2009-2013 Run 1 operation cycle of the CERN Large Hadron Collider (LHC) at center-of-mass energies of up to 8 TeV. With the restart of the LHC for the new Run 2 data-taking period at 13 TeV, the trigger rates are expected to rise by approximately a factor of 5. The trigger system consists of a hardware-based first level (L1) and a software-based high-level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of ~ 1kHz. This presentation will give an overview of the upgrades to the ATLAS trigger system that have been implemented during the LHC shutdown period in order to deal with the increased trigger rates while efficiently selecting the physics processes of interest. These upgrades include changes to the L1 calorimeter trigger, the introduction of a new L1 topological trigger module, improvements in the L1 muon system, and the merging of the previously two-level HLT ...

  10. LHCb : LHCbVELO: Performance and Radiation Damage in LHC Run I and Preparationfor Run II

    CERN Multimedia

    Szumlak, Tomasz

    2015-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. Heavy hadrons are identified through their flight distance in the Vertex Locator (VELO). The VELO comprises 42 modules made of two n+-on-n 300 um thick half-disc silicon sensors with R-measuring and Phi-measuring micro-strips. In order to allow retracting the detector, the VELO is installed as two movable halves containing 21 modules each. The detectors are operated in a secondary vacuum and are cooled by a bi-phase CO2 cooling system. During data taking in LHC Run 1 the LHCb VELO has operated with an extremely high efficiency and excellent performance. The track finding efficiency is typically greater than 98%. An impact parameter resolution of less than 35 um is achieved for particles with transverse momentum greater than 1 GeV/c. An overview of all important performance parameters will be given. The VELO sensors have received a large and non-uniform radiation dose of up to 1.2 x 10...

  11. Vector resonances at LHC Run II in composite 2HDM

    CERN Document Server

    Di Chiara, Stefano; Tuominen, Kimmo

    2016-01-01

    We consider a model where the electroweak symmetry breaking is driven by strong dynamics, resulting in an electroweak doublet scalar condensate, and transmitted to the standard model matter fields via another electroweak doublet scalar. At low energies the effective theory therefore shares features with a type-I two Higgs doublet model. However, important differences arise due to the rich composite spectrum expected to contain new vector resonances accessible at the LHC. We carry out a systematic analysis of the vector resonance signals at LHC and find that the model remains viable, but will be tightly constrained by direct searches as the projected integrated luminosity, around 200 fb$^{-1}$, of the current run becomes available.

  12. The updated ATLAS Jet Trigger for the LHC Run II

    CERN Document Server

    INSPIRE-00359694

    2015-01-01

    After the current shutdown, the LHC is about to resume operation for a new data-taking period, when it will operate with increased luminosity, event rate and center of mass energy. The new conditions will impose more demanding constraints on the ATLAS online trigger reconstruction and selection system. To cope with such increased constraints, the ATLAS High-Level Trigger, placed after a first hardware-based Level~1 trigger, has been redesigned by merging two previously separated software-based processing levels. In the new joint processing level, the algorithms run in the same computing nodes, thus sharing resources, minimizing the data transfer from the detector buffers and increasing the algorithm flexibility. The jet trigger software selects events containing high transverse momentum hadronic jets. It needs optimal jet energy resolution to help rejecting an overwhelming background while retaining good efficiency for interesting jets. In particular, this requires the CPU-intensive reconstruction of tridimen...

  13. ATLAS Jet Trigger Update for the LHC Run II

    CERN Document Server

    Prince, Sebastien; The ATLAS collaboration

    2015-01-01

    After the current shutdown, the LHC is about to resume operation for a new data-taking period, when it will operate with increased luminosity, event rate and centre of mass energy. The new conditions will impose more demanding constraints on the ATLAS online trigger reconstruction and selection system. To cope with such increased constraints, the ATLAS High Level Trigger, placed after a first hardware-based Level-1 trigger, has been redesigned by merging two previously separated software-based processing levels. In the new joint processing level, the algorithms run in the same computing nodes, thus sharing resources, minimizing the data transfer from the detector buffers and increasing the algorithm flexibility. The Jet trigger software selects events containing high transverse momentum hadronic jets. It needs optimal jet energy resolution to help rejecting an overwhelming background while retaining good efficiency for interesting jets. In particular, this requires the CPU-intensive reconstruction of tridimen...

  14. The updated ATLAS Jet Trigger for the LHC Run II

    CERN Document Server

    Prince, Sebastien; The ATLAS collaboration

    2015-01-01

    After the current shutdown, the LHC is about to resume operation for a new data-taking period, when it will operate with increased luminosity, event rate and center of mass energy. The new conditions will impose more demanding constraints on the ATLAS online trigger reconstruction and selection system. To cope with such increased constraints, the ATLAS High Level Trigger, placed after a first hardware-based Level-1 trigger, has been redesigned by merging two previously separated software-based processing levels. In the new joint processing level, the algorithms run in the same computing nodes, thus sharing resources, minimizing the data transfer from the detector buffers and increasing the algorithm flexibility. The jet trigger software selects events containing high transverse momentum hadronic jets. It needs optimal jet energy resolution to help rejecting an overwhelming background while retaining good efficiency for interesting jets. In particular, this requires the CPU-intensive reconstruction of tridimen...

  15. LUCID Upgrade for ATLAS Luminosity Measurement in Run II.

    CERN Document Server

    Ucchielli, Giulia; The ATLAS collaboration

    2016-01-01

    The main ATLAS luminosity monitor LUCID and its read-out electronics has been completely rebuilt for the 2015 LHC run in order to cope with a higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The LUCID detector is measuring Cherenkov light produced in photomultiplier quartz windows and in quartz optical fibers. It has a novel calibration system that uses radioactive Bi$^{207}$ sources that produces internal conversion electrons above the Cherenkov threshold in quartz. The new electronics can count particle hits above a threshold but also the integrated pulseheight of the signals from the particles which makes it possible to measure luminosity with new methods. The new detector, calibration system and electronics will be covered by the contribution as well as the results of the luminosity measurements with the detector in 2015.

  16. ATLAS Jet Trigger Update for the LHC Run II

    CERN Document Server

    Tavares Delgado, Ademar; The ATLAS collaboration

    2015-01-01

    The CERN Large Hadron Collider is the biggest and most powerful particle collider ever built. It produces up to 40 million proton-proton collisions per second at unprecedented energies to explore the fundamental laws and properties of Nature. The ATLAS experiment is one of the detectors that analyses and records these collisions. It generates dozens of GB/s of data that has to be reduced before it can be permanently stored, the event selection is made by the ATLAS trigger system, which reduces the data volume by a factor of 10^5 . The trigger system has to be highly configurable in order to adapt to changing running conditions and maximize the physics output whilst keeping the output rate under control. A particularly interesting pattern generated during collisions consists of a collimated spray of particles, known as a hadronic jet. To retain the interesting jets and efficiently reject the overwhelming background, optimal jet energy resolution is needed. Therefore the Jet trigger software requires CPU-intens...

  17. The CMS Level-1 Calorimeter Trigger for LHC Run II

    Science.gov (United States)

    Sinthuprasith, Tutanon

    2017-01-01

    The phase-1 upgrades of the CMS Level-1 calorimeter trigger have been completed. The Level-1 trigger has been fully commissioned and it will be used by CMS to collect data starting from the 2016 data run. The new trigger has been designed to improve the performance at high luminosity and large number of simultaneous inelastic collisions per crossing (pile-up). For this purpose it uses a novel design, the Time Multiplexed Design, which enables the data from an event to be processed by a single trigger processor at full granularity over several bunch crossings. The TMT design is a modular design based on the uTCA standard. The architecture is flexible and the number of trigger processors can be expanded according to the physics needs of CMS. Intelligent, more complex, and innovative algorithms are now the core of the first decision layer of CMS: the upgraded trigger system implements pattern recognition and MVA (Boosted Decision Tree) regression techniques in the trigger processors for pT assignment, pile up subtraction, and isolation requirements for electrons, and taus. The performance of the TMT design and the latency measurements and the algorithm performance which has been measured using data is also presented here.

  18. First Run II Measurement of the W Boson Mass

    CERN Document Server

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez-Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, Mauro; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; García, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtälä, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobuev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2007-01-01

    We describe a measurement of the W boson mass mW using 200/pb of root-s = 1.96 TeV p-pbar collision data taken with the CDF II detector. With a sample of 63,964 W -> e nu candidates and 51,128 W -> mu nu candidates, we measure mW = [80.413 +- 0.034 (stat) +- 0.034 (sys) = 80.413 +- 0.048] GeV/c^2. This is the single most precise mW measurement to date. When combined with other measured electroweak parameters, this result further constrains the properties of unobserved particles coupling to W and Z bosons.

  19. First Run II Measurement of the W Boson Mass

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Abulencia, A.; /Illinois U., Urbana; Adelman, J.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Albrow, Michael G.; /Fermilab; Alvarez Gonzalez, B.; /CSIC, Catalunya; Amerio, S.; /Padua U.; Amidei, Dante E.; /Michigan U.; Anastassov, A.; /Rutgers U., Piscataway; Annovi, A.; /Frascati; Antos, J.; /Comenius U. /Fermilab

    2007-08-01

    We describe a measurement of the W boson mass m{sub W} using 200 pb{sup -1} of {radical}s = 1.96 TeV p{bar p} collision data taken with the CDF II detector. With a sample of 63,964 W {yields} e{nu} candidates and 51,128 W {yields} {mu}{nu} candidates, we measure m{sub W} = [80.413 {+-} 0.034(stat.) {+-} 0.034 (sys.) = 80.413 {+-} 0.048] GeV/c{sup 2}. This is the single most precise m{sub W} measurement to date. When combined with other measured electroweak parameters, this result further constrains the properties of new unobserved particles coupling to W and Z bosons.

  20. ATLAS jet trigger update for the LHC run II

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, A. T. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Lisbon, (Portugal)

    2015-07-01

    The CERN Large Hadron Collider is the biggest and most powerful particle collider ever built. It produces up to 40 million proton-proton collisions per second at unprecedented energies to explore the fundamental laws and properties of Nature. The ATLAS experiment is one of the detectors that analyses and records these collisions. It generates dozens of GB/s of data that has to be reduced before it can be permanently stored, the event selection is made by the ATLAS trigger system, which reduces the data volume by a factor of 105. The trigger system has to be highly configurable in order to adapt to changing running conditions and maximize the physics output whilst keeping the output rate under control. A particularly interesting pattern generated during collisions consists of a collimated spray of particles, known as a hadronic jet. To retain the interesting jets and efficiently reject the overwhelming background, optimal jet energy resolution is needed. Therefore the Jet trigger software requires CPU-intensive reconstruction algorithms. In order to reduce the resources needed for the reconstruction step, a partial detector readout scheme was developed, which effectively suppresses the low activity regions of the calorimeter. In this paper we describe the overall ATLAS trigger software, and the jet trigger in particular, along with the improvements made on the system. We then focus on detailed studies of the algorithm timing and the performance impact of the full and partial calorimeter readout schemes. We conclude with an outlook of the jet trigger plans for the next LHC data-taking period. (authors)

  1. D-Zero Instrument Air System Humidity Transmitter Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Serges, T.J.; /Fermilab

    1988-07-15

    This report shows the findings that resulted in the purchase of the optimum dew point hygrometer for use in the D-Zero instrument air system (see diagram 2 on page 9). The hygrometer will monitor the air syste m to insure that the dew point level does not go above the normal operating output of the driers (this precise value will be determined during initial system start-up). The following criteria was used in the evaluation: (1) Long term durability; (2) Minimum calibration; (3) Indicate a dew point level down to -40 C accurately; (4) Designed to work in a low humidity region; (5) Minimum maintenance; (6) Fast response time; and (7) Lowest cost provided all other criteria is met.

  2. Test runs of a Belle II PXD prototype readout system

    Energy Technology Data Exchange (ETDEWEB)

    Getzkow, Dennis; Kuehn, Wolfgang; Lange, Soeren; Lautenbach, Klemens [Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut (Germany); Gessler, Thomas [KEK, Tsukuba (Japan); Collaboration: Belle II-Collaboration

    2016-07-01

    The Belle II PXD readout system (called ONSEN for Online Selection Nodes) uses ATCA (Advanced Telecommunications Architecture) boards with Xilinx Virtex-5 FX70T FPGAs and high speed optical links (6.5 Gbit/s each). The full system consists of 9 carrier boards and 33 daughter cards. The ONSEN system has several interfaces: (a) it receives PXD data from the DHH (Data Handling Hybrid) system, (b) it receives ROI (Regions-of-Interest) data for online data reduction from the HLT (High Level Trigger) system by GbE, and (c) it features data ports to two event builders: EVB1 combines data from all detectors except PXD (in order to generate the ROIs) and EVB2 combines the reduced PXD data with all other data. One of the critical issues is the matching of trigger numbers in the data (received by DHH from the timing distribution system) and trigger numbers in the ROIs (received by the HLT). In order to test the interfaces, in particular for a high HLT rate up to 30 kHz, a prototype system with 3 daughter cards was installed at KEK and tested with DHH, HLT and EVB2. Test results are presented.

  3. Theory Motivation For Exotic Signatures: Prospects and Wishlist for Run II

    OpenAIRE

    Stolarski, Daniel

    2015-01-01

    Here I give some motivations for exotic signatures to search for at Run II of the LHC, focusing on displaced phenomena. I will discuss signatures arising from various different kinds of models including theories of dark matter and those with exotic decays of the Higgs.

  4. Operation of the DC current transformer intensity monitors at FNAL during run II

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  5. CTEQ-TEA PDFs and HERA run I+II Combined Data

    CERN Document Server

    Hou, Tie-Jiun; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C -P

    2016-01-01

    We analyze the impact of the recent HERA run I+II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of PDFs. New PDFs at NLO and NNLO, called CT14$_{\\textrm{HERA2}}$, are obtained by a refit of the CT14 data ensembles, in which the HERA run I combined measurements are replaced by the new HERA run I+II combination. The CT14 functional parametrization of PDFs is flexible enough to allow good descriptions of different flavor combinations, so we use the same parametrization for CT14$_{\\textrm{HERA2}}$ but with an additional shape parameter for describing the strange quark PDF. We find that the HERA I+II data can be fit reasonably well, and both CT14 and CT14$_{\\textrm{HERA2}}$ PDFs can describe equally well the non-HERA data included in our global analysis. Because the CT14 and CT14$_{\\textrm{HERA2}}$ PDFs agree well within the PDF errors, we continue to recommend CT14 PDFs for the analysis of LHC Run 2 experiments.

  6. 78 FR 61946 - Pheasant Run Wind II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2013-10-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Pheasant Run Wind II, LLC; Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Pheasant Run Wind II, LLC's application for market-based rate...

  7. Flammable Gas Detection for the D-Zero Gas System

    Energy Technology Data Exchange (ETDEWEB)

    Spires, L.D.; Foglesong, J.; /Fermilab

    1991-02-11

    gas shed. Similarly, if a fire were to break out anywhere in the D-ZERO Hall, fire sensors would stop the output of all flammable gas manifolds within the gas shed, by unpowering electrically controlled solenoid valves that are normally closed in the event of a power failure. Fire sensor contacts have not yet been installed.

  8. Improvement of the Jet Calibration Techniques for the ATLAS Experiment in LHC Run II

    CERN Document Server

    AUTHOR|(CDS)2097636; Di Simone, Andrea; Consorti, Valerio; Rúriková, Zuzana

    Many analyses in particle physics need jets, clustered with different parameters or even with different algorithms. But it is not feasible to provide in-situ correction factors for each case. In this thesis a new calibration method is tested which is called "R-scan calibration". This calibration uses only one fully calibrated jet collection. By building ratios between the fully calibrated jets and partially calibrated jets, it is possible to derive in-situ correction factors for the probe jet. Especially for the new run of the LHC a quick inter-calibration like the R-scan is very useful. Therefore, during this thesis the R-scan method is designed and improved with the data acquired during Run I. After a validation of this method it is applied to the new data format of Run II.

  9. Performance of the LHCb RICH detectors during the LHC Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00261218; D'Ambrosio, Carmelo

    2017-01-01

    The LHCb RICH system provides hadron identification over a wide momentum range $(2–100 ~\\text{GeV}/c)$. This detector system is key to LHCb’s precision flavour physics programme, which has unique sensitivity to physics beyond the standard model. This paper reports on the performance of the LHCb RICH in Run II, following significant changes in the detector and operating conditions. The changes include the refurbishment of significant number of photon detectors, assembled using new vacuum technologies, and the removal of the aerogel radiator. The start of Run II of the LHC saw the beam energy increase to $6.5 ~\\text{TeV}$ per beam and a new trigger strategy for LHCb with full online detector calibration. The RICH information has also been made available for all trigger streams in the High Level Trigger for the first time.

  10. Alignment of the ATLAS Inner Detector in the LHC Run II

    CERN Document Server

    Barranco Navarro, Laura; The ATLAS collaboration

    2015-01-01

    ATLAS physics goals require excellent resolution, unbiased measurement of all charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and on the quality of its offline alignment. ATLAS is equipped with a tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the Run II of the LHC, the system was upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). An outline of the track based alignment approach and its implementation within the ATLAS software will be presented. Special attention will be paid to integration of the IBL into the alignment framework, techniques allowing to identify and eliminate tracking systematics as well as strategies to deal with time-dependent alignment. Performance from the commissioning of Cosmic data and potentially early LHC Run II proton-proton collisions will be discussed.

  11. First measurement of the W boson mass in run II of the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Abulencia, A.; /Helsinki Inst. of Phys.; Adelman, J.; /Illinois U., Urbana; Affolder, Anthony Allen; /Chicago U., EFI; Akimoto, T.; /UC, Santa Barbara; Albrow, Michael G.; /Tsukuba U.; Amerio, S.; /Fermilab; Amidei, Dante E.; /Padua U.; Anastassov, A.; /Michigan U.; Anikeev, K.; /Rutgers U., Piscataway; Annovi, A.; /Fermilab /Frascati /Comenius U.

    2007-07-01

    We present a measurement of the W boson mass using 200 pb{sup -1} of data collected in p{bar p} collisions at {radical}s = 1.96 TeV by the CDF II detector at Run II of the Fermilab Tevatron. With a sample of 63964 W {yields} ev candidates and 51128 W W {yields} {mu}v candidates, we measure M{sub W} = (80413 {+-} 34{sub stat} {+-}34{sub syst} = 80413 {+-} 48) MeV/c{sup 2}. This is the most precise single measurement of the W boson mass to date.

  12. First measurement of the W-boson mass in run II of the Tevatron.

    Science.gov (United States)

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-10-12

    We present a measurement of the W-boson mass using 200 pb{-1} of data collected in pp[over ] collisions at sqrt[s]=1.96 TeV by the CDF II detector at run II of the Fermilab Tevatron. With a sample of 63 964 W-->enu candidates and 51 128 W-->munu candidates, we measure M_{W}=80 413+/-34{stat}+/-34{syst}=80,413+/-48 MeV/c;{2}. This is the most precise single measurement of the W-boson mass to date.

  13. Achieving the optimal performance of the CMS ECAL in Run II

    CERN Document Server

    Sun, Menglei

    2016-01-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high resolution electron and photon energy measurements. Particularly important are decays of the Higgs boson resulting in electromagnetic particles in the final state. Di-photon events in CMS are also a very important channel in the search for Higgs boson production in association with other particles or in the search for possible new resonances of higher mass. The requirement for high performance electromagnetic calorimetry therefore remains high during LHC Run II. Following the excellent performance achieved in Run~I at a center of mass energy of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) started operating at the LHC in Spring 2015 with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run~II is expected to exceed the levels achieved in Run I, using 25 ns bunch spacing. The average number of concurrent proton-proton collisions per bu...

  14. Achieving the optimal performance of the CMS ECAL in Run II

    CERN Document Server

    Sun, Menglei

    2016-01-01

    Many physics analyses using the Compact Muon Solenoid (CMS) detector at the LHC require accurate, high resolution electron and photon energy measurements. Particularly important are decays of the Higgs boson resulting in electromagnetic particles in the final state. Di-photon events in CMS are also a very important channel in the search for Higgs boson production in association with other particles or in the search for possible new resonances of higher mass. The requirement for high performance electromagnetic calorimetry therefore remains high during LHC Run II. Following the excellent performance achieved in Run~I at a center of mass energy of 7 and 8 TeV, the CMS electromagnetic calorimeter (ECAL) started operating at the LHC in Spring 2015 with proton-proton collisions at 13 TeV center-of-mass energy. The instantaneous luminosity delivered by the LHC during Run~II is expected to exceed the levels achieved in Run I, using 25 ns bunch spacing. The average number of concurrent proton-proton collisions per bu...

  15. Supersymmetry at DØ and other new phenomena searches in Run II

    Indian Academy of Sciences (India)

    Auguste Besson

    2004-03-01

    The Run II of the DØ experiment was started in March 2001. The first preliminary results on searches for new physics are presented, with a luminosity of ∼ 10 pb-1 from the data collected in 2001–2002. We report results in mSUGRA (jets + missing $E_{\\rm T}$ channel), GMSB (diphotons), RPV (trileptons and like sign dileptons) and large extra dimensions (dielectrons and diphotons).

  16. The CDF and D-zero B physics upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, A.K.A.

    1997-06-01

    The CDF and D0 detector upgrades are reviewed with an emphasis on their B physics capabilities. Projections for the observability of CP- violation and for the resolution of rapid B{sub s} oscillations are made, based on upgrade simulations and on CDF performance from the last run. It is shown that measurements of sin(2{beta}) and sin(2{alpha}) can be achieved with uncertainties less than 0.15. For fully reconstructed (non-leptonic) B{sub s} decays, both detectors have vertexing and momentum determination able to resolve x{sub s}{approximately}20.

  17. Electrons and photons at High Level Trigger in CMS for Run II

    CERN Document Server

    Bin Anuar, Afiq Aizuddin

    2015-01-01

    The CMS experiment has been designed with a 2-level trigger system. The first level is implemented using custom-designed electronics. The second level is the so-called High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. For Run II of the Large Hadron Collider, the increase in center-of-mass energy and luminosity will raise the event rate to a level challenging for the HLT algorithms. New approaches have been studied to keep the HLT output rate manageable while maintaining thresholds low enough to cover physics analyses. The strategy mainly relies on porting online the ingredients that have been successfully applied in the offline reconstruction, thus allowing to move HLT selection closer to offline cuts. Improvements in HLT electron and photon definitions will be presented, focusing in particular on updated clustering algorithm and the energy calibration procedure, new Particle-Flow-based isolation approach and pileup mitigation techniques, a...

  18. The CMS Level-1 tau lepton and Vector Boson Fusion triggers for the LHC Run II

    CERN Document Server

    Amendola, Chiara

    2017-01-01

    The CMS experiment implements a sophisticated two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High-Level-Trigger. A new Level-1 trigger architecture with improved performance is now being used to maintain the thresholds that were used in LHC Run I for the more challenging luminosity conditions experienced during Run II. The upgrades to the calorimetry trigger will be described along with performance data. The algorithms for the selection of final states with tau leptons, both for precision measurements and for searches of new physics beyond the Standard Model, will be described in detail. The implementation of the first dedicated Vector Boson Fusion trigger algorithm will be presented as well, along with its performance on benchmark physics signals.

  19. The Performance and Long Term Stability of the D0 Run II Forward Muon Scintillation Counters

    Energy Technology Data Exchange (ETDEWEB)

    Bezzubov, V. [Serpukhov, IHEP; Denisov, D. [Fermilab; Evdokimov, V. [Serpukhov, IHEP; Lipaev, V. [Serpukhov, IHEP; Shchukin, A. [Serpukhov, IHEP; Vasilyev, I. [Serpukhov, IHEP

    2014-07-21

    The performance of the D0 experiment forward muon scintillation counters system during Run II of the Tevatron from 2001 to 2011 is described. The system consists of 4214 scintillation counters in six layers. The long term stability of the counters amplitude response determined using LED calibration system and muons produced in proton-antiproton collisions is presented. The average signal amplitude for counters of all layers has gradually decreased over ten years by 11%. The reference timing, determined using LED calibration, was stable within 0.26 ns. Average value of muon timing peak position was used for periodic D0 clock signal adjustments to compensate seasonal drift caused by temperature variations. Counters occupancy for different triggers in physics data collection runs and for minimum bias triggers are presented. The single muon yields versus time and the luminosity dependence of yields were stable for the forward muon system within 1% over 10 years.

  20. Novel Real-time Calibration and Alignment Procedure for LHCb Run II

    CERN Multimedia

    Prouve, Claire

    2016-01-01

    In order to achieve optimal detector performance the LHCb experiment has introduced a novel real-time detector alignment and calibration strategy for Run II of the LHC. For the alignment tasks, data is collected and processed at the beginning of each fill while the calibrations are performed for each run. This real time alignment and calibration allows the same constants being used in both the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. Additionally the newly computed alignment and calibration constants can be instantly used in the trigger, making it more efficient. The online alignment and calibration of the RICH detectors also enable the use of hadronic particle identification in the trigger. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the LHCb trigger. An overview of all alignment and calibration tasks is presented and their performance is shown.

  1. Constraining top quark effective theory in the LHC Run II era

    CERN Document Server

    Buckley, Andy; Ferrando, James; Miller, David J; Moore, Liam; Russell, Michael; White, Chris D

    2015-01-01

    We perform an up-to-date global fit of top quark effective theory to experimental data from the Tevatron, and from LHC Runs I and II. Experimental data includes total cross-sections up to 13 TeV, as well as differential distributions, for both single top and pair production. We also include the top quark width, charge asymmetries, and polarisation information from top decay products. We present bounds on the coefficients of dimension six operators, and examine the interplay between inclusive and differential measurements, and Tevatron / LHC data. All results are currently in good agreement with the Standard Model.

  2. Novel real-time alignment and calibration of the LHCb detector in Run II

    CERN Document Server

    Xu, Zhirui

    2015-01-01

    An automatic real-time alignment and calibration strategy of the LHCb detector was developed for the Run II. Thanks to the online calibration, tighter event selection criteria can be used in the trigger. Furthermore, the online calibration facilitates the use of hadronic particle identification using the Ring Imaging Cherenkov (RICH) detectors at the trigger level. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configuration are discussed, as well as the working procedures of the framework and its performance.

  3. Measurement of the inclusive jet cross section using the midpoint algorithm in Run II at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Group, Robert Craig [Univ. of Florida, Gainesville, FL (United States)

    2006-01-01

    A measurement is presented of the inclusive jet cross section using the Midpoint jet clustering algorithm in five different rapidity regions. This is the first analysis which measures the inclusive jet cross section using the Midpoint algorithm in the forward region of the detector. The measurement is based on more than 1 fb-1 of integrated luminosity of Run II data taken by the CDF experiment at the Fermi National Accelerator Laboratory. The results are consistent with the predictions of perturbative quantum chromodynamics.

  4. Measurement of the inclusive jet cross section at D0 Run II

    Energy Technology Data Exchange (ETDEWEB)

    Agram, Jean-Laurent [Univ. of Upper Alsace, Mulhouse (France)

    2004-12-17

    This work describes the measurement of inclusive jets cross section in the DØ experiment. This cross section is computed as a function of jet transverse momentum, in several rapidity intervals. This quantity is sensitive to the proton structure and is crucial for the determination of parton distribution functions (PDF), essentially for the gluon at high proton momentum fraction. The measurement presented here gives the first values obtained for Tevatron Run II for the cross section in several rapidity intervals, for an integrated luminosity of 143 pb-1. The results are in agreement, within the uncertainties, with theoretical Standard Model predictions, showing no evidence for new physics.

  5. Dark Matter Search Results from the Commissioning Run of PandaX-II

    CERN Document Server

    Tan, Andi; Cui, Xiangyi; Chen, Xun; Chen, Yunhua; Fang, Deqing; Fu, Changbo; Giboni, Karl; Giuliani, Franco; Gong, Haowei; Hu, Shouyang; Huang, Xingtao; Ji, Xiangdong; Ju, Yonglin; Lei, Siao; Li, Shaoli; Li, Xiaomei; Li, Xinglong; Liang, Hao; Lin, Qing; Liu, Huaxuan; Liu, Jianglai; Lorenzon, Wolfgang; Ma, Yugang; Mao, Yajun; Ni, Kaixuan; Pushkin, Kirill; Ren, Xiangxiang; Schubnell, Michael; Shen, Manbin; Shi, Fang; Stephenson, Scott; Wang, Hongwei; Wang, Jiming; Wang, Meng; Wang, Qiuhong; Wang, Siguang; Wang, Xuming; Wang, Zhou; Wu, Shiyong; Xiao, Mengjiao; Xie, Pengwei; Yan, Binbin; Yang, Yong; Yue, Jianfeng; Zeng, Xionghui; Zhang, Hongguang; Zhang, Hua; Zhang, Huanqiao; Zhang, Tao; Zhao, Li; Zhou, Jing; Zhou, Xiaopeng

    2016-01-01

    We present the results of a search for WIMPs from the commissioning run of the PandaX-II experiment located at the China Jinping underground Laboratory. A WIMP search data set with an exposure of 306$\\times$19.1 kg-day was taken, while its dominant $^{85}$Kr background was used as the electron recoil calibration. No WIMP candidates are identified, and a 90\\% upper limit is set on the spin-independent elastic WIMP-nucleon cross section with a lowest excluded cross section of 2.97$\\times$10$^{-45}$~cm$^2$ at a WIMP mass of 44.7~GeV/c$^2$.

  6. Performance of the CMS electromagnetic calorimeter in Run II and its role in the measurement of the Higgs boson properties

    CERN Document Server

    Organtini, Giovanni

    2017-01-01

    The characterisation of the Higgs boson discovered in 2012 around 125 GeV, and confirmed with the data collected in Run II, requires the precise determination of its mass, width and couplings. The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid Experiment (CMS) is crucial for measurements in the highest resolution channels, $H\\to \\gamma \\gamma$ and $H\\to 4$ leptons. In particular the energy resolution, the scale uncertainty and the position resolution for electrons and photons are required to be as good as possible.During Run II the LHC is continuously operating with 25 ns bunch spacing and increasing instantaneous luminosity. The calorimeter reconstruction algorithm has been adapted to cope with increasing levels of pile-up and the calibration and monitoring strategy have been optimised to maintain the excellent performance of the CMS ECAL throughout Run II. We show first performance results from the Run II data taking periods, achieved through energy calibrations using physics events, with...

  7. Operational Experience, Improvements, and Performance of the CDF Run II Silicon Vertex Detector

    CERN Document Server

    Aaltonen, T; Boveia, A.; Brau, B.; Bolla, G; Bortoletto, D; Calancha, C; Carron, S.; Cihangir, S.; Corbo, M.; Clark, D.; Di Ruzza, B.; Eusebi, R.; Fernandez, J.P.; Freeman, J.C.; Garcia, J.E.; Garcia-Sciveres, M.; Gonzalez, O.; Grinstein, S.; Hartz, M.; Herndon, M.; Hill, C.; Hocker, A.; Husemann, U.; Incandela, J.; Issever, C.; Jindariani, S.; Junk, T.R.; Knoepfel, K.; Lewis, J.D.; Martinez-Ballarin, R.; Mathis, M.; Mattson, M.; Merkel, P; Mondragon, M.N.; Moore, R.; Mumford, J.R.; Nahn, S.; Nielsen, J.; Nelson, T.K.; Pavlicek, V.; Pursley, J.; Redondo, I.; Roser, R.; Schultz, K.; Spalding, J.; Stancari, M.; Stanitzki, M.; Stuart, D.; Sukhanov, A.; Tesarek, R.; Treptow, K.; Wallny, R.; Worm, S.

    2013-01-01

    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, an...

  8. Run II performance of luminosity and beam condition monitors at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Hamburg (Germany)

    2016-07-01

    The BRIL (Beam Radiation Instrumentation and Luminosity) system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. Many of the BRIL subsystems have been upgraded and others have been added for LHC Run II to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) delivers an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. An overview of the performance during 2015 LHC running for the new/updated BRIL subsystems will be given, including the uncertainties of the luminosity measurements.

  9. Precision crystal calorimetry in LHC Run II with the CMS ECAL

    Science.gov (United States)

    Brianza, L.

    2017-01-01

    The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid (CMS) Experiment, based on lead tungstate scintillating crystals, is crucial for achieving high-resolution measurements of electrons and photons. Maintaining and possibly improving the excellent performance achieved in Run I is vital for measurements of the Standard Model Higgs boson and searches for new higher mass resonances in final states with electrons and photons. In Spring 2015 the LHC started "Run II", colliding protons at 13 TeV centre-of-mass energy and with 25 ns bunch spacing. This is very close to the original design specifications of the LHC (14 TeV at 25 ns). At this higher energy, and with the rapidly growing dataset, the performance for higher electron and photon energies becomes crucial. At the same time, the instantaneous luminosity has increased and, over the coming years, is expected to surpass the design value, possibly by a factor of two to about 2×1034 cm-2 s-1. The average number of concurrent proton-proton collisions per bunch crossing (pileup) is expected to reach about 40. This pileup is a major challenge, both for calibration and for ultimate energy reconstruction. The CMS ECAL design ensures that its superb performance extends over a very wide range of energies up to electron and photon energies of 1 TeV and beyond. We present new energy reconstruction algorithms and clustering techniques, developed to maintain the excellent performance of the CMS ECAL throughout Run II. We will show first performance results from 2015 and 2016 data, including triggering efficiency, event reconstruction and calibration precision. The latter has been achieved through the measurements of electrons from W and Z boson decays, photons from π0/η decays, and the azimuthally-symmetric energy distribution of minimum bias events. We also present an outlook on the expected Run II performance in the coming years, including the impact of the ECAL on resonance searches in the mass range up to 1

  10. Boosted $H\\rightarrow b \\bar{b}$ Tagger in Run II

    CERN Document Server

    Sahinsoy, Merve; The ATLAS collaboration

    2016-01-01

    Many searches for Higgs bosons decaying to b quark pairs benefit from the increased Run II centre of mass energy by exploiting the large transverse momentum (boosted) Higgs boson regime, where the two b-jets are merged into one large radius jet. ATLAS uses a boosted $H \\rightarrow b\\bar{b}$ tagger algorithm to separate Higgs signal from background processes (QCD, W and Z bosons, top quarks). The tagger takes as input a large R=1.0 jet with calibrated pseudorapidity, energy and mass scale. It employs b-tagging, Higgs candidate mass, and substructure information. The performance of several operating points in Higgs boson signal, QCD and $t\\bar{t}$ all-hadronic backgrounds are presented. Systematic uncertainties are evaluated so that this tagger can be used in analyses.

  11. CERN scientists take part in the Tevatron Run II performance review committee

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Tevatron Run II is under way at Fermilab, exploring the high-energy frontier with upgraded detectors that will address some of the biggest questions in particle physics.Until CERN's LHC switches on, the Tevatron proton-antiproton collider is the world's only source of top quarks. It is the only place where we can search for supersymmetry, for the Higgs boson, and for signatures of additional dimensions of space-time. The US Department of Energy (DOE) recently convened a high-level international review committee to examine Fermilab experts' first-phase plans for the accelerator complex. Pictured here with a dipole magnet in CERN's LHC magnet test facility are the four CERN scientists who took part in the DOE's Tevatron review. Left to right: Francesco Ruggiero, Massimo Placidi, Flemming Pedersen, and Karlheinz Schindl. Further information: CERN Courier 43 (1)

  12. A Final Review of the Performance of the CDF Run II Data Acquisition System

    CERN Document Server

    CERN. Geneva

    2012-01-01

    The CDF Collider Detector at Fermilab ceased data collection on September 30, 2011 after over twenty five years of operation. We review the performance of the CDF Run II data acquisition systems over the last ten of these years while recording nearly 10 fb-1 of proton-antiproton collisions with a high degree of efficiency. Technology choices in the online control and configuration systems and front-end embedded processing have impacted the efficiency and quality of the data accumulated by CDF, and have had to perform over a large range of instantaneous luminosity values and trigger rates. We identify significant sources of problems and successes. In particular, we present our experience computing and acquiring data in a radiation environment, and attempt to correlate system technical faults with radiation dose rate and technology choices.

  13. Search for the neutral MSSM Higgs bosons in the ditau decay channels at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Almenar, Cristobal Cuenca [Univ. of Valencia (Spain)

    2008-04-01

    This thesis presents the results on a search for the neutral MSSM Higgs bosons decaying to tau pairs, with least one of these taus decays leptonically. The search was performed with a sample of 1.8 fb-1 of proton-antiproton collisions at √s = 1.96 TeV provided by the Tevatron and collected by CDF Run II. No significant excess over the Standard Model prediction was found and a 95% confidence level exclusion limit have been set on the cross section times branching ratio as a function of the Higgs boson mass. This limit has been translated into the MSSM Higgs sector parameter plane, tanβ vs. MA, for the four different benchmark scenarios.

  14. CMS operations for Run II preparation and commissioning of the offline infrastructure

    CERN Document Server

    Cerminara, Gianluca

    2016-01-01

    The restart of the LHC coincided with an intense activity for the CMS experiment. Both at the beginning of Run II in 2015 and the restart of operations in 2016, the collaboration was engaged in an extensive re-commissioning of the CMS data-taking operations. After the long stop, the detector was fully aligned and calibrated. Data streams were redesigned, to fit the priorities dictated by the physics program for 2015 and 2016. A new reconstruction software (both online and offline) was commissioned with early collisions and further developed during the year. A massive campaign of Monte Carlo production was launched, to assist physics analyses. This presentation reviews the main event of this commissioning journey and describes the status of CMS physics performances for 2016.

  15. B-Physics at CMS with LHC Run-II and Beyond

    CERN Document Server

    Chen, Kai-Feng

    2015-01-01

    The LHC is entering into operation with an increased centre-of-mass energy of 13~TeV, and within the next 3 years of operations (Run-II) the foreseen integrated luminosity delivered to CMS will be about 100 fb$^{-1}$. The B hadron production cross section is expected to nearly double at this energy, thus potentially increasing by almost one order of magnitude the collected statistics relative to the previous operation period. This will enable CMS to perform enhanced measurements in the B-physics sector. A further increase in integrated luminosity is expected to occur in two more steps after the second LHC long shutdown (LS) in 2018 and the third LS in 2021, thus enabling to significantly improve the precision of several B-physics measurements, including $B_s(B_d)\\to\\mu^+\\mu^-$, and search for rarer decays. This proceeding reports on the prospects for B-physics measurements with high statistics data at CMS.

  16. Operation and performance of the CMS Resistive Plate Chambers during LHC run II

    CERN Document Server

    Eysermans, Jan

    2017-01-01

    The Resitive Plate Chambers (RPC) at the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) provide redundancy to the Drift Tubes in the barrel and Cathode Strip Chambers in the endcap regions. Consisting of 1056 double gap RPC chambers, the main detector parameters and environmental conditions are carefully monitored during the data taking period. At a center of mass energy of 13 TeV, the luminosity reached record levels which was challenging from the operational and performance point of view. In this work, the main operational parameters are discussed and the overall performance of the RPC system is reported for the LHC run II data taking period. With a low amount of inactive chambers, a good and stable detector performance was achieved with high efficiency.

  17. Alignment of the ATLAS Inner Detector Upgraded for the LHC Run II

    CERN Document Server

    Jimenez Pena, Javier

    2015-01-01

    ATLAS is equipped with a tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded with the installation of a new pixel layer, the Insertable Barrel Layer (IBL). An outline of the track based alignment approach and its implementation within the ATLAS software will be presented. Special attention will be paid to integration to the alignment framework of the IBL, which plays the key role in precise reconstruction of the collider luminous region, interaction vertices and identification of long-lived heavy flavour states. In order to detect as soon as possible deformations and misalignments of the tracking system that may affect the data taking, a fast alignment chain was implemented at CERN’s Tier-0. Last upgrades and tests of this fast chain will be covered. Performance from Cosmic Ray commissioning run will be discussed.

  18. One-Family Walking Technicolor in Light of LHC Run-II

    CERN Document Server

    Matsuzaki, Shinya

    2015-01-01

    The LHC Higgs can be identified as the technidilaton, a composite scalar, arising as a pseudo Nambu-Goldstone boson for the spontaneous breaking of scale symmetry in walking technicolor. One interesting candidate for the walking technicolor is the QCD with the large number of fermion flavors, involving the one-family model having the eight-fermion flavors. The smallness of the technidilaton mass can be ensured by the generic walking feature, Miransky scaling, and the presence of the "anti-Veneziano limit" characteristic to the large-flavor walking scenario. To tell the standard-model Higgs from the technidilaton, one needs to wait for the precise estimate of the Higgs couplings to the standard model particles, which is expected at the ongoing LHC-Run II. In this talk the technidilaton phenomenology in comparison with the LHC Run-I data is summarized with the special emphasis placed on the presence of the anti-Veneziano limit supporting the lightness of technidilaton. Besides the technidilaton, the walking tec...

  19. Search for non-standard model signatures in the WZ/ZZ final state at CDF run II

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Matthew [Univ. of California, San Diego, CA (United States)

    2009-01-01

    This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb -1 of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high š. Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.

  20. ALICE Diffractive Detector Control System for RUN-II in the ALICE Experiment

    Science.gov (United States)

    Cabanillas, J. C.; Martínez, M. I.; León, I.

    2016-10-01

    The ALICE Diffractive (AD0) detector has been installed and commissioned for the second phase of operation (RUN-II). With this new detector it is possible to achieve better measurements by expanding the range of pseudo-rapidity in which the production of particles can be detected. Specifically the selection of diffractive events in the ALICE experiment which was limited by the range over which rapidity gaps occur. Any new detector should be able to take data synchronously with all other detectors and to be operated through the ALICE central systems. One of the key elements developed for the AD0 detector is the Detector Control System (DCS). The DCS is designed to operate safely and correctly this detector. Furthermore, the DCS must also provide optimum operating conditions for the acquisition and storage of physics data and ensure these are of the highest quality. The operation of AD0 implies the configuration of about 200 parameters, as electronics settings and power supply levels and the generation of safety alerts. It also includes the automation of procedures to get the AD0 detector ready for taking data in the appropriate conditions for the different run types in ALICE. The performance of AD0 detector depends on a certain number of parameters such as the nominal voltages for each photomultiplier tube (PMT), the threshold levels to accept or reject the incoming pulses, the definition of triggers, etc. All these parameters affect the efficiency of AD0 and they have to be monitored and controlled by the AD0 DCS.

  1. Level-1 trigger selection of electrons and photons with CMS for LHC Run-II.

    CERN Document Server

    AUTHOR|(CDS)2088114

    2016-01-01

    The CMS experiment has a sophisticated two-level online selection system that achieves a rejection factor of nearly $10^5$. The first, hardware-level trigger (L1) is based on coarse information coming from the calorimeters and the muon detectors while the High-Level Trigger combines fine-grain information from all subdetectors. During Run II, the LHC will increase its center of mass energy to 13 or 14 TeV, and progressively reach an instantaneous luminosity of $2\\times10^{34} \\mathrm{cm}^{-2}\\mathrm{s}^{-1}$. In order to guarantee a successful and ambitious physics programme in this intense environment, the CMS trigger and data acquisition system must be upgraded. The L1 calorimeter trigger hardware and architecture in particular has been redesigned to maintain the current thresholds even in presence of more demanding conditions (e.g., for electrons and photons) and improve the performance for the selection of $\\tau$ leptons. This design benefits from recent $\\mu$TCA technology, allowing sophisticated algorit...

  2. Alignment of the CMS Tracker: Latest Results from LHC Run-II

    CERN Document Server

    Mittag, Gregor

    2017-01-01

    The all-silicon design of the tracking system of the CMS experiment provides excellent measurements of charged-particle tracks and an efficient tagging of jets. Conditions of the CMS tracker changed repeatedly during the 2015/2016 shutdown and the 2016 data-taking period. Still the true position and orientation of each of the 15\\,148 silicon strip and 1440 silicon pixel modules need to be known with high precision for all intervals. The alignment constants also need to be promptly re-adjusted each time the state of the CMS magnet is changed between 0\\,T and 3.8\\,T. Latest Run-II results of the CMS tracker alignment and resolution performance are presented, which are obtained using several millions of reconstructed tracks from collision and cosmic-ray data of 2016. The geometries and the resulting performance of physics observables are carefully validated. In addition to the offline alignment, an online procedure has been put in place which continuously monitors movements of the pixel high-level structures and...

  3. The CMS Level-1 Tau algorithm for the LHC Run II

    CERN Document Server

    Mastrolorenzo, Luca

    2014-01-01

    The CMS experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 10e5. The first level (L1) is based on coarse information coming from the calorimeters and the muon detectors while the High Level Trigger combines fine-grain information from all sub-detectors. During Run II, the centre of mass energy of the LHC collisions will be increased up to 13/14 TeV and the instantaneous luminosity will eventually reach 2e34 cm-2s-1. To guarantee a successful and ambitious physics program under this intense environment, the CMS Trigger and Data acquisition system must be consolidated. In particular, the L1 calorimeter Trigger hardware and architecture will be upgraded, benefiting from the recent microTCA technology allowing sophisticated algorithms to be deployed, better exploiting the calorimeter granularity and opening the possibility of making correlations between different parts of the detector. Given the enhanced granularity provided by the new system, an opt...

  4. Alignment of the ATLAS Inner Detector upgraded for the LHC Run II

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration

    2015-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require high resolution, unbiased measurement of all charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system, notably quality of its offline alignment. ATLAS is equipped with a tracking system built using different technologies, silicon planar sensors (pixel and micro-strip) and gaseous drift- tubes, all embedded in a 2T solenoidal magnetic field. For the LHC Run II, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). Offline track alignment of the ATLAS tracking system has to deal with about 700,000 degrees of freedom (DoF) defining its geometrical parameters. The task requires using very large data sets and represents a considerable numerical challenge in terms of both CPU time and precision. The adopted strategy uses a hierarchical approach to alignment, combining local and global least squares techniques. An o...

  5. Searching for R-Parity Violation at Run II of the Tevatron

    CERN Document Server

    Allanach, Benjamin C; Berger, E L; Chertok, M; De Campos, F; Dedes, A; Díaz, M A; Dreiner, H; Éboli, Oscar J P; Harris, B W; Hewett, J L; Magro, M B; Mondal, N K; Narasimham, V S; Navarro, L; Parua, N; Porod, Werner; Restrepo, D A; Richardson, Peter; Rizzo, T; Seymour, Michael H; Sullivan, Z; Valle, José W F

    1999-01-01

    We present an outlook for possible discovery of supersymmetry with broken R-parity at Run II of the Tevatron. We first present a review of the literature and an update of the experimental bounds. In turn we then discuss the following processes: 1. Resonant slepton production followed by R-parity violating decay, (a) via $LQD^c$ and (b) via $LLE^c$. 2. How to distinguish resonant slepton production from $Z'$ or $W'$ production. 3. Resonant slepton production followed by the decay to neutralino LSP, which decays via $LQD^c$. 4. Resonant stop production followed by the decay to a chargino, which cascades to the neutralino LSP. 5. Gluino pair production followed by the cascade decay to charm squarks which decay directly via $L_1Q_2D^c_1$. 6. Squark pair production followed by the cascade decay to the neutralino LSP which decays via $L_1Q_2D^c_1$. 7. MSSM pair production followed by the cascade decay to the LSP which decays (a) via $LLE^c$, (b) via $LQD^c$, and (c) via $U^cD^cD^c$, respectively. 8. Top quark and t...

  6. Searching for R-parity violation at run-II of the tevatron.

    Energy Technology Data Exchange (ETDEWEB)

    Allanach, B.; Banerjee, S.; Berger, E. L.; Chertok, M.; Diaz, M. A.; Dreiner, H.; Eboli, O. J. P.; Harris, B. W.; Hewett, J.; Magro, M. B.; Mondal, N. K.; Narasimham, V. S.; Navarro, L.; Parua, N.; Porod, W.; Restrepo, D. A.; Richardson, P.; Rizzo, T.; Seymour, M. H.; Sullivan, Z.; Valle, J. W. F.; de Campos, F.

    1999-06-22

    The authors present an outlook for possible discovery of supersymmetry with broken R-parity at Run II of the Tevatron. They first present a review of the literature and an update of the experimental bounds. In turn they then discuss the following processes: (1) resonant slepton production followed by R{sub P} decay, (a) via LQD{sup c} and (b) via LLE{sup c}; (2) how to distinguish resonant slepton production from Z{prime} or W{prime} production; (3) resonant slepton production followed by the decay to neutralino LSP, which decays via LQD{sup c}; (4) resonant stop production followed by the decay to a chargino, which cascades to the neutralino LSP; (5) gluino pair production followed by the cascade decay to charm squarks which decay directly via L{sub 1}Q{sub 2}D{sub 1}{sup c}; (6) squark pair production followed by the cascade decay to the neutralino LSP which decays via L{sub 1}Q{sub 2}D{sub 1}{sup c}; (7) MSSM pair production followed by the cascade decay to the LSP which decays (a) via LLE{sup c}, (b) via LQD{sup c}, and (c) via U{sup c}D{sup c}D{sup c}, respectively; and (8) top quark and top squark decays in spontaneous R{sub P}.

  7. Performances of the ATLAS Level-1 Muon barrel trigger during the Run-II data taking

    CERN Document Server

    Sessa, Marco; The ATLAS collaboration

    2017-01-01

    The Level-1 Muon Barrel Trigger is one of the main elements of the event selection of the ATLAS experiment at the Large Hadron Collider. It exploits the Resistive Plate Chambers (RPC) detectors to generate the trigger signal. The RPCs are placed in the barrel region of the ATLAS experiment: they are arranged in three concentric double layers and operate in a strong magnetic toroidal field. RPC detectors cover the pseudo-rapidity range $|\\eta|<1.05$ for a total surface of more than $4000\\ m^2$ and about 3600 gas volumes. The Level-1 Muon Trigger in the barrel region allows to select muon candidates with respect to their transverse momentum and associates them with the correct bunch-crossing number. The trigger system is able to take a decision within a latency of about 2 $\\mu s$. The detailed measurement of the RPC detector efficiencies and of the trigger performance during the ATLAS Run-II data taking is here presented.

  8. Optimisation of the level-1 calorimeter trigger at ATLAS for Run II

    Energy Technology Data Exchange (ETDEWEB)

    Suchek, Stanislav [Kirchhoff-Institute for Physics, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    The Level-1 Calorimeter Trigger (L1Calo) is a central part of the ATLAS Level-1 Trigger system, designed to identify jet, electron, photon, and hadronic tau candidates, and to measure their transverse energies, as well total transverse energy and missing transverse energy. The optimisation of the jet energy resolution is an important part of the L1Calo upgrade for Run II. A Look-Up Table (LUT) is used to translate the electronic signal from each trigger tower to its transverse energy. By optimising the LUT calibration we can achieve better jet energy resolution and better performance of the jet transverse energy triggers, which are vital for many physics analyses. In addition, the improved energy calibration leads to significant improvements of the missing transverse energy resolution. A new Multi-Chip Module (MCM), as a part of the L1Calo upgrade, provides two separate LUTs for jets and electrons/photons/taus, allowing to optimise jet transverse energy and missing transverse energy separately from the electromagnetic objects. The optimisation is validated using jet transverse energy and missing transverse energy triggers turn-on curves and rates.

  9. Bounds on universal extra dimension from LHC run I and II data

    Science.gov (United States)

    Choudhury, Debajyoti; Ghosh, Kirtiman

    2016-12-01

    We discuss the collider bounds on minimal Universal Extra Dimension (mUED) model from LHC Run-I and II data. The phenomenology of mUED is determined by only two parameters namely, the compactification scale (R-1) of the extra dimension and cutoff scale (Λ) of the theory. The characteristic feature of mUED is the occurrence of nearly degenerate mass spectrum for the Kaluza-Klein (KK) particles and hence, soft leptons, soft jets at the collider experiments. The degree of degeneracy of KK-mass spectrum crucially depends on Λ. The strongest direct bound on R-1 (∼ 950GeV for large Λ) arises from a search for a pair of soft dimuons at the Large Hadron Collider (LHC) experiment with 8 TeV center-of-mass energy and 20 fb-1 integrated luminosity. However, for small Λ and hence, small splitting within the first KK-level, the bounds from the dimuon channel are rather weak. On the other hand, the discovery of 126 GeV Higgs boson demands small Λ to prevent the scalar potential form being unbounded from below. We discuss LHC monojet searches as a probe of low Λ region of mUED parameter space. We also compute bounds on the mUED parameter space from 13 TeV multijets results.

  10. Bounds on Universal Extra Dimension from LHC Run I and II data

    CERN Document Server

    Choudhury, Debajyoti

    2016-01-01

    We discuss the collider bounds on minimal Universal Extra Dimension (mUED) model from LHC Run-I and II data. The phenomenology of mUED is determined by only two parameters namely, the compactification scale ($R^{-1}$) of the extra dimension and cutoff scale ($\\Lambda$) of the theory. The characteristic feature of mUED is the occurrence of nearly degenerate mass spectrum for the Kaluza-Klein (KK) particles and hence, soft leptons, soft jets at the collider experiments. The degree of degeneracy of KK-mass spectrum crucially depends on $\\Lambda$. The strongest direct bound on $R^{-1}$ ($\\sim $950 GeV for large $\\Lambda$) arises from a search for a pair of soft dimuons at the Large Hadron Collider (LHC) experiment with 8 TeV center-of-mass energy and $20~{\\rm fb}^{-1}$ integrated luminosity. However, for small $\\Lambda$ and hence, small splitting within the first KK-level, the bounds from the dimuon channel is rather weak. On the other hand, the discovery of 126 GeV Higgs boson demands small $\\Lambda$ to prevent ...

  11. The design and performance of the ATLAS Inner Detector trigger for Run-II

    CERN Document Server

    Qin, Yang; The ATLAS collaboration

    2015-01-01

    The design and performance of the ATLAS Inner Detector (ID) trigger algorithms running online on the high level trigger (HLT) processor farm with the early LHC Run 2 data are discussed. During the 2013-15 LHC shutdown, the HLT farm was redesigned to run in a single HLT stage, rather than the two-stage (Level 2 and Event Filter) used in Run 1. This allowed a redesign of the HLT ID tracking algorithms, essential for nearly all physics signatures in ATLAS. The redesign of the ID trigger, required in order to satisfy the challenging demands of the higher energy LHC Run 2 operation, is described. The detailed performance of the tracking algorithms with the initial Run 2 data is discussed, for the different physics signatures. This includes both the physics object reconstruction and timing performance for the algorithms running on the redesigned single stage ATLAS HLT Farm. Comparison with the Run 1 strategy are made and demonstrate the superior performance of the strategy adopted for Run 2.

  12. Electroweak production of the top quark in the Run II of the D0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Benoit [Louis Pasteur Univ., Strasbourg (France)

    2006-04-28

    The work exposed in this thesis deals with the search for electroweak production of top quark (single top) in proton-antiproton collisions at √s = 1.96 TeV. This production mode has not been observed yet. Analyzed data have been collected during the Run II of the D0 experiment at the Fermilab Tevatron collider. These data correspond to an integrated luminosity of 370 pb-1. In the Standard Model, the decay of a top quark always produce a high momentum bottom quark. Therefore bottom quark jets identification plays a major role in this analysis. The large lifetime of b hadrons and the subsequent large impact parameters relative to the interaction vertex of charged particle tracks are used to tag bottom quark jets. Impact parameters of tracks attached to a jet are converted into the probability for the jet to originate from the primary vertex. This algorithm has a 45% tagging efficiency for a 0.5% mistag rate. Two processes (s and t channels) dominate single top production with slightly different final states. The searched signature consists in 2 to 4 jets with at least one bottom quark jet, one charged lepton (electron or muon) and missing energy accounting for a neutrino. This final state is background dominated and multivariate techniques are needed to separate the signal from the two main backgrounds: associated production of a W boson and jets and top quarks pair production. The achieved sensitivity is not enough to reach observation and we computed upper limits at the 95% confidence level at 5 pb (s-channel) and 4.3 pb (t-channel) on single top production cross-sections.

  13. Run II Analysis Framework and Intial Validation Studies for $H \\rightarrow ZZ^{*} \\rightarrow 4\\ell$ Analysis

    CERN Document Server

    Abidi, Syed Haider

    This undergraduate thesis focuses on the development of a user analysis framework for the ATLAS Run 2 $H \\rightarrow ZZ^{*} \\rightarrow 4\\ell$ analysis. The Run 1 analysis model is investigated and requirements and constraints for a new model are derived. Based on these and the new ATLAS software upgrades, the design of a new code base is outlined and implemented. Initial validation studies using this framework are also presented.

  14. Novel real-time alignment and calibration of LHCb detector for Run II and tracking for the upgrade.

    CERN Document Server

    AUTHOR|(CDS)2091576

    2016-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. Data collected at the start of the fill is processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. The procedure aims to improve the quality of the online selection and performance stability. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. A similar scheme is planned to be used for Run III foreseen to start in 2020. At that time LHCb will run at an instantaneous luminosity of $2 \\times 10^{33}$ cm$^2$ s$^1$ and a fully software based trigger strategy will be used. The new running conditions and the tighter timing constraints in the software trigger (only 13 ms per event are available) represent a big challenge for track reconstruction. The new software based trigger strategy implies a full detector read-out at the collision rate of 40 MHz. High performance ...

  15. Novel real-time alignment and calibration of LHCb detector for Run II and tracking for the upgrade.

    Science.gov (United States)

    Quagliani, Renato; LHCb Collaboration

    2016-10-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. Data collected at the start of the fill is processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. The procedure aims to improve the quality of the online selection and performance stability. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. A similar scheme is planned to be used for Run III foreseen to start in 2020. At that time LHCb will run at an instantaneous luminosity of 2 x 1033 cm-2 s-1 and a fully software based trigger strategy will be used. The new running conditions and the tighter timing constraints in the software trigger (only 13 ms per event are available) represent a big challenge for track reconstruction. The new software based trigger strategy implies a full detector read-out at the collision rate of 40 MHz. High performance and timing constraints are ensured by a new tracking system and a fast and efficient track reconstruction strategy.

  16. Precise determination of the muon reconstruction efficiency in ATLAS at Run-II

    CERN Document Server

    Sampsonidou, Despoina; The ATLAS collaboration

    2016-01-01

    In Run-2 of the LHC, the ATLAS experiment reconstruction algorithm has been improved and extended compared to the one used in Run-1. In this presentation, we will discuss the precise measurement of the muon reconstruction efficiency measured in pp collisions at $\\sqrt(s)= 13$ TeV in 2015 and 2016 using samples of $J/\\psi \\rightarrow \\mu \\mu$ and $Z \\rightarrow \\mu \\mu$ decays. The reconstruction efficiency is measured using different methods in the various regions of the detector and for muon momenta between 6 and hundreds of GeV.

  17. Level II scour analysis for Bridge 17 (SHEFTH00380017) on Town Highway 38, crossing Miller Run, Sheffield, Vermont

    Science.gov (United States)

    Striker, Lora K.; Degnan, James R.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHEFTH00380017 on Town Highway 38 crossing Miller Run, Sheffield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

  18. Level II scour analysis for Bridge 23 (WEELTH00210023) on Town Highway 21, crossing Miller Run, Wheelock, Vermont

    Science.gov (United States)

    Flynn, Robert H.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WEELTH00210023 on Town Highway 21 crossing Miller Run, Wheelock, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D.

  19. MEASUREMENT OF 2-DIMENSIONAL DISPLACEMENT USING 2-D ZERO-REFERENCE MARKS

    Institute of Scientific and Technical Information of China (English)

    Wang Yingnan; Zhou Chenggang; Huang Wenhao

    2005-01-01

    Several 2-D displacement sensing methods are reviewed. As to the cross diffraction grating,there is no absolute zero-reference. In regards to the optical fiber method, the output signal is affected greatly by the quality of the reflecting surface and it is hard to get high resolution. Considering the concentric-circle gratings, the displacement can only be gained with complicated calculating of the experiment data. Compared with the advantages and limitations of the methods above, a novel 2-D zero-reference mark is especially proposed and demonstrated. This kind of mark has an absolute zero-reference when used in pair, and the experimental result is simple to dispose. By superimposing a pair of specially coded 2-D marks, the correct alignment position of the two marks can be detected by the maximum output of the sharp intensity peak. And each slope of the peak is of good linearity which can be used to achieve high resolution in positioning and alignment in two dimensions. Design and fabrication of such 2-D zero-reference marks are introduced in detail. The experiment results are agreed with the theoretical ones.

  20. The reconstruction of jets, missing ET and boosted heavy particles with ATLAS in Run II

    CERN Document Server

    Santoni, Claudio; The ATLAS collaboration

    2015-01-01

    The reconstruction of jets, missing ET and boosted heavy particles decaying hadronically has proved to be of extreme importance in Run 1 of the LHC, and has great potential to uncover new physics with Run 2 data. ATLAS has implemented and commissioned several new techniques for the analysis and interpretation of hadronic final states at the LHC. These include event-by-event pile-up subtraction algorithms for jets and missing ET, jet substructure, quark-gluon discrimination, and jet tagging tools for the identification of boosted heavy particles. The excellent ATLAS detector capabilities, in particular its high resolution longitudinally segmented calorimeter and inner detector, have enabled the development of complex clustering and calibration algorithms for the reconstruction of jets, missing ET, and jet substructure, and its validation and calibration in data using large datasets collected during 2012. A summary of the most modern jet, missing ET, and jet substructure and tagging tools developed in ATLAS, an...

  1. Operational experience with the CMS pixel detector in LHC Run II

    CERN Document Server

    Karancsi, Janos

    2016-01-01

    The CMS pixel detector was repaired successfully, calibrated and commissioned for the second run of Large Hadron Collider during the first long shutdown between 2013 and 2015. The replaced pixel modules were calibrated separately and show the expected behavior of an un-irradiated detector. In 2015, the system performed very well with an even improved spatial resolution compared to 2012. During this time, the operational team faced various challenges including the loss of a sector in one half shell which was only partially recovered. In 2016, the detector is expected to withstand instantaneous luminosities beyond the design limits and will need a combined effort of both online and offline teams in order to provide the high quality data that is required to reach the physics goals of CMS. We present the operational experience gained during the second run of the LHC and show the latest performance results of the CMS pixel detector.

  2. Search for squarks and gluinos in the D0 experiment of the Run-II-a at the Tevatron; Recherche des squarks et des gluinos dans l'experience D0 au Run-II-a du Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Verdier, P

    2007-11-15

    The D0 experiment is recording pp-bar collisions at a center-of-mass energy of 1.96 TeV since the beginning of the Run II-a of the Tevatron in 2001. The design of processor boards for the D0 level 2 trigger system is first presented. Those boards were installed in 2003, and they have been working perfectly since that date. Performances of missing transverse energy (/ ET ) reconstruction are then described. This quantity is important at hadron colliders especially for new particles searches. Finally, squarks and gluinos, supersymmetric partners of quarks and gluons, could be the most copiously produced supersymmetric particles at the Tevatron, if they are sufficiently light. Those particles were searched for in 0.96 fb{sup -1} of data recorded by D0 during the Run II-a. The final state consists of jets and missing transverse energy. The numbers of observed events are in good agreement with the Standard Model predictions. Lower mass limits at 95 % confidence level are obtained on the squark and gluino masses in the framework of the mSUGRA model. Contributions to other D0 data analyses are also shortly described. Those analyses are the search for first generation leptoquarks and the search for squarks in jets+{tau}(s)+E{sub T} events. The possibility to constrain a 'Little Higgs' model using the results of the jets+E{sub T} searches is then discussed. (author)

  3. Measurement of W-Boson Polarization in Top-quark Decay using the Full CDF Run II Data Set

    CERN Document Server

    Aaltonen, T.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K.R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H.S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M.A.; Clark, A.; Clarke, C.; Convery, M.E.; Conway, J.; Corbo, M..; Cordelli, M.; Cox, C.A.; Cox, D.J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernandez Ramos, J.P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J.C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez Lopez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Hahn, S.R.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R.F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R.E.; Husemann, U.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jindariani, S.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kambeitz, M.; Kamon, T.; Karchin, P.E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.K.; Kim, Y.J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A.T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H.S.; Lee, J.S.; Leo, S.; Leone, S.; Lewis, J.D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martinez, M.; Matera, K.; Mattson, M.E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C.S.; Moore, R.; Morello, M.J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S.Y.; Norniella, O.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernandez, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J.L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W.K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E.E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Sorin, V.; Song, H.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vazquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizan, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Walsh, K.; Wang, S.M.; Warburton, A.; Waters, D.; Wester, W.C., III; Whiteson, D.; Wicklund, A.B.; Wilbur, S.; Williams, H.H.; Wilson, J.S.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Zanetti, A.M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-01-01

    We measure the polarization of W bosons from top-quark (t) decays into final states with a charged lepton and jets, tt --> WbWb --> lvbqqb, using the full Run II data set collected by the CDF II detector. A model-independent method simultaneously determines the fraction of longitudinal (f_0) and right-handed (f_+) W bosons to yield f_0 = 0.726 +/- 0.066 (stat) +/- 0.067 (syst) and f_+ = -0.045 +/- 0.044 (stat) +/- 0.058 (syst) with a correlation coefficient of -0.69. Additional results are presented under various standard model assumptions. No significant discrepencies with the standard model are observed.

  4. Measurement of W-boson polarization in top-quark decay using the full CDF Run II data set

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M. A.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Sorin, V.; Song, H.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Walsh, K.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-02-01

    We measure the polarization of W bosons from top-quark (t) decays into final states with a charged lepton and jets, tt¯→W+bW-b¯→ℓνbqq¯'b¯, using the full Run II data set collected by the CDF II detector, corresponding to an integrated luminosity of 8.7fb-1. A model-independent method simultaneously determines the fraction of longitudinal (f0) and right-handed (f+) W bosons to yield f0=0.726±0.066(stat)±0.067(syst) and f+=-0.045±0.044(stat)±0.058(syst) with a correlation coefficient of -0.69. Additional results are presented under various standard model assumptions. No significant discrepancies with the standard model are observed.

  5. Modelling Energy Loss Mechanisms and a Determination of the Electron Energy Scale for the CDF Run II W Mass Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Riddick, Thomas [Univ. College London, Bloomsbury (United Kingdom)

    2012-06-15

    The calibration of the calorimeter energy scale is vital to measuring the mass of the W boson at CDF Run II. For the second measurement of the W boson mass at CDF Run II, two independent simulations were developed. This thesis presents a detailed description of the modification and validation of Bremsstrahlung and pair production modelling in one of these simulations, UCL Fast Simulation, comparing to both geant4 and real data where appropriate. The total systematic uncertainty on the measurement of the W boson mass in the W → eve channel from residual inaccuracies in Bremsstrahlung modelling is estimated as 6.2 ±3.2 MeV/c2 and the total systematic uncertainty from residual inaccuracies in pair production modelling is estimated as 2.8± 2.7 MeV=c2. Two independent methods are used to calibrate the calorimeter energy scale in UCL Fast Simulation; the results of these two methods are compared to produce a measurement of the Z boson mass as a cross-check on the accuracy of the simulation.

  6. Silicon Detector Results from the First Five-Tower Run of CDMS II

    CERN Document Server

    Agnese, R; Anderson, A J; Arrenberg, S; Balakishiyeva, D; Thakur, R Basu; Bauer, D A; Borgland, A; Brandt, D; Brink, P L; Bruch, T; Bunker, R; Cabrera, B; Caldwell, D O; Cerdeno, D G; Chagani, H; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Dejongh, F; Di Stefano, P C F; Silva, E Do Couto E; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Filippini, J; Fox, J; Fritts, M; Godfrey, G L; Golwala, S R; Hall, J; Harris, R H; Hertel, S A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Kim, P; Kiveni, M; Koch, K; Kos, M; Leman, S W; Lopez-Asamar, E; Mahapatra, R; Mandic, V; Martinez, C; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Moore, D C; Nadeau, P; Nelson, R H; Page, K; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Saab, T; Sadoulet, B; Sander, J; Schneck, K; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Sundqvist, K M; Villano, A N; Welliver, B; Wright, D H; Yellin, S; Yen, J J; Yoo, J; Young, B A; Zhan, J

    2013-01-01

    We report results of a search for Weakly Interacting Massive Particles (WIMPs) with the Si detectors of the CDMS II experiment. This report describes a blind analysis of the first data taken with CDMS II's full complement of detectors in 2006-2007. Results from this exposure using the Ge detectors have already been presented. We observed no candidate WIMP-scattering events in an exposure of 55.9 kg-days before analysis cuts. These data set an upper limit of 1.7x10-41 cm2 on the WIMP-nucleon spin-independent cross section of a 10 GeV/c2 WIMP; this limit improves to 8.3x10-42 cm2 in combination with previous Si data from this installation. These data exclude parameter space for spin-independent WIMP-nucleon elastic scattering that is relevant to recent searches for low-mass WIMPs.

  7. Real-time alignment and calibration of the LHCb Detector in Run II

    CERN Multimedia

    Dujany, Giulio

    2015-01-01

    Stable, precise spatial alignment and PID calibration are necessary to achieve optimal detector performance. During Run2, LHCb will have a new real-time detector alignment and calibration to allow equivalent performance in the online and offline reconstruction to be reached. This offers the opportunity to optimise the event selection by applying stronger constraints, and to use hadronic particle identification at the trigger level. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from the operative and physics performance point of view. Specific challenges of this configuration are discussed, as well as the designed framework and its performance.

  8. Real-time alignment and calibration of the LHCb Detector in Run II

    CERN Multimedia

    Dujany, Giulio

    2016-01-01

    Stable, precise spatial alignment and PID calibration are necessary to achieve optimal detector performance. During Run2, LHCb has a new real-time detector alignment and calibration to allow equivalent performance in the online and offline reconstruction to be reached. This offers the opportunity to optimise the event selection by applying stronger constraints, and to use hadronic particle identification at the trigger level. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from the operative and physics performance point of view. Specific challenges of this configuration are discussed, as well as the designed framework and its performance.

  9. Performance of the CASTOR calorimeter at CMS during Run II of LHC

    CERN Document Server

    Van De Klundert, Merijn H F

    2016-01-01

    The detector has pseudorapidity borders at -5.2 and -6.6. An overview is presented on the various aspects of CASTOR's performance and their relations during LHC Run 2. The equalisation of CASTOR's channels is performed using beam-halo muons. Thereafter, CASTOR's pedestal spectrum is studied. It is shown that noise estimates which are extracted using a fit, give on average a 10\\% lower threshold than statistical estimates. Gain correction factors, which are needed for the intercalibration, are obtained using a statistical, in-situ applicable method. The results of this method are shown to be reasonably consistent with laboratory measurements. Penultimately the absolute calibration is discussed, with emphasis on the relation between the scale uncertainty and CASTOR's alignment. It is shown that the alignment's contribution to the systematic uncerta...

  10. Search for Supersymmetry in the Dilepton Final State with Taus at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Robert David [Univ. of California, Davis, CA (United States)

    2011-01-01

    This thesis presents the results a search for chargino and neutralino supersymmetric particles yielding same signed dilepton final states including one hadronically decaying tau lepton using 6.0 fb-1 of data collected by the the CDF II detector. This signature is important in SUSY models where, at high tan β, the branching ratio of charginos and neutralinos to tau leptons becomes dominant. We study event acceptance, lepton identification cuts, and efficiencies. We set limits on the production cross section as a function of SUSY particle mass for certain generic models.

  11. Little Higgs dark matter after PandaX-II/LUX-2016 and LHC Run-1

    Science.gov (United States)

    Wu, Lei; Yang, Bingfang; Zhang, Mengchao

    2016-12-01

    In the Littlest Higgs model with T-parity (LHT), the T-odd heavy photon ( A H ) is weakly interacting and can play the role of dark matter. We investigate the lower limit on the mass of A H dark matter under the constraints from Higgs data, EWPOs, R b , Planck 2015 dark matter relic abundance, PandaX-II/LUX 2016 direct detections and LHC-8 TeV monojet results. We find that (1) Higgs data, EWPOs and R b can exclude the mass of A H up to 99 GeV. To produce the correct dark matter relic abundance, A H has to co-annihilate with T-odd quarks ( q H ) or leptons ( ℓ H ); (2) the LUX (PandaX-II) 2016 data can further exclude {m}_{A_H} 540 GeV, for q H - A H co-annihilation; (4) future XENON1T(2017) experiment can fully cover the parameter space of ℓ H - A H co-annihilation and will push the lower limit of {m}_{A_H} up to about 640 GeV for q H - A H co-annihilation.

  12. The ATLAS Pixel Detector for Run II at the Large Hadron Collider

    CERN Document Server

    Marx, Marilyn; The ATLAS collaboration

    2014-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of LHC. Taking advantage of the long showdown, the detector was extracted from the experiment and brought to surface, to equip it with new service quarter panels, to repair modules and to ease installation of the Insertable B-Layer (IBL). IBL is a fourth layer of pixel detectors, and has been installed in May 2014 between the existing Pixel Detector and a new smaller radius beam-pipe at a radius of 3.3 cm. To cope with the high radiation and pixel occupancy due to the proximity to the interaction point, a new read-out chip and two different silicon sensor technologies (planar and 3D) have been developed. Furthermore, the physics performance will be improved through the reduction of pixel size while, targeting for a low material budget, a new mechanical support using lightweight staves and a CO2 based cooling system have been adopted. An overview of the refurbishing of the Pixel Detector and of the IBL project as ...

  13. First run II measurement of the W boson mass at the Fermilab Tevatron

    Science.gov (United States)

    Aaltonen, T.; Abulencia, A.; Adelman, J.; Akimoto, T.; Albrow, M. G.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzi-Bacchetta, P.; Azzurri, P.; Bacchetta, N.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Baroiant, S.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Bednar, P.; Behari, S.; Bellettini, G.; Bellinger, J.; Belloni, A.; Benjamin, D.; Beretvas, A.; Beringer, J.; Berry, T.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bolshov, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cooper, B.; Copic, K.; Cordelli, M.; Cortiana, G.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lentdecker, G.; de Lorenzo, G.; Dell'Orso, M.; Demortier, L.; Deng, J.; Deninno, M.; de Pedis, D.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Forrester, S.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Gerberich, H.; Gerdes, D.; Giagu, S.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Goldstein, J.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Hamilton, A.; Han, B.-Y.; Han, J. Y.; Handler, R.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hauser, J.; Hays, C.; Heck, M.; Heijboer, A.; Heinemann, B.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; Iyutin, B.; James, E.; Jayatilaka, B.; Jeans, D.; Jeon, E. J.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Kerzel, U.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Klute, M.; Knuteson, B.; Ko, B. R.; Koay, S. A.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhlmann, S. E.; Kuhr, T.; Kulkarni, N. P.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lai, S.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, J.; Lee, J.; Lee, Y. J.; Lee, S. W.; Lefèvre, R.; Leonardo, N.; Leone, S.; Levy, S.; Lewis, J. D.; Lin, C.; Lin, C. S.; Lindgren, M.; Lipeles, E.; Liss, T. M.; Lister, A.; Litvintsev, D. O.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lu, R.-S.; Lucchesi, D.; Lueck, J.; Luci, C.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; Lytken, E.; Mack, P.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, M.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzemer, S.; Menzione, A.; Merkel, P.; Mesropian, C.; Messina, A.; Miao, T.; Miladinovic, N.; Miles, J.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Oldeman, R.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Piedra, J.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Portell, X.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Reisert, B.; Rekovic, V.; Renton, P.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Salamanna, G.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savard, P.; Savoy-Navarro, A.; Scheidle, T.; Schlabach, P.; Schmidt, E. E.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scott, A. L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sfyrla, A.; Shalhout, S. Z.; Shapiro, M. D.; Shears, T.; Shepard, P. F.; Sherman, D.; Shimojima, M.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soderberg, M.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spinella, F.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Sun, H.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Tiwari, V.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Tourneur, S.; Trischuk, W.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Würthwein, F.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, J.; Wagner, W.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Wynne, S. M.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yamashita, T.; Yang, C.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zaw, I.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2008-06-01

    We describe a measurement of the W boson mass mW using 200pb-1 of s=1.96TeV p pmacr collision data taken with the CDF II detector. With a sample of 63 964 W→eν candidates and 51 128 W→μν candidates, we measure mW=[80.413±0.034(stat)±0.034(sys)=80.413±0.048]GeV/c2. This is the single most precise mW measurement to date. When combined with other measured electroweak parameters, this result further constrains the properties of new unobserved particles coupling to W and Z bosons.

  14. Measurement of the W Boson Mass with the D0 Run II Detector using the Electron P(T) Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Andeen, Jr., Timothy R. [Northwestern Univ., Evanston, IL (United States)

    2008-06-01

    This thesis is a description of the measurement of the W boson mass using the D0 Run II detector with 770 pb-1 of p$\\bar{p}$ collision data. These collisions were produced by the Tevatron at √s = 1.96 TeV between 2002 and 2006. We use a sample of W → ev and Z → ee decays to determine the W boson mass with the transverse momentum distribution of the electron and the transverse mass distribution of the boson. We measure MW = 80340 ± 37 (stat.) ± 26 (sys. theo.) ± 51 (sys. exp.) MeV = 80340 ± 68 MeV with the transverse momentum distribution of the electron and MW = 80361 ± 28 (stat.) ± 17 (sys. theo.) ± 51 (sys. exp.) MeV = 80361 ± 61 MeV with the transverse mass distribution.

  15. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-δ/AMPK pathway

    Science.gov (United States)

    Feng, Xiaoli; Luo, Zhidan; Ma, Liqun; Ma, Shuangtao; Yang, Dachun; Zhao, Zhigang; Yan, Zhencheng; He, Hongbo; Cao, Tingbing; Liu, Daoyan; Zhu, Zhiming

    2011-01-01

    Abstract Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR-δ) and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endurance of wild-type and PPAR-δ-deficient mice. Administration of telmisartan up-regulated levels of PPAR-δ and phospho-AMPKα in cultured myotubes. However, PPAR-δ gene deficiency completely abolished the telmisartan effect on phospho-AMPKαin vitro. Chronic administration of telmisartan remarkably prevented weight gain, enhanced running endurance and post-exercise oxygen consumption, and increased slow-twitch skeletal muscle fibres in wild-type mice, but these effects were absent in PPAR-δ-deficient mice. The mechanism is involved in PPAR-δ-mediated stimulation of the AMPK pathway. Compared to the control mice, phospho-AMPKα level in skeletal muscle was up-regulated in mice treated with telmisartan. In contrast, phospho-AMPKα expression in skeletal muscle was unchanged in PPAR-δ-deficient mice treated with telmisartan. These findings highlight the ability of telmisartan to improve skeletal muscle function, and they implicate PPAR-δ as a potential therapeutic target for the prevention of type 2 diabetes. PMID:20477906

  16. A Measurement of the Lifetime of the Lambda_b Baryon with the CDF Detector at the Tevatron Run II

    Energy Technology Data Exchange (ETDEWEB)

    Unverhau, Tatjana Alberta Hanna; /Glasgow U.

    2004-12-01

    In March 2001 the Tevatron accelerator entered its Run II phase, providing colliding proton and anti-proton beams with an unprecedented center-of-mass energy of 1.96 TeV. The Tevatron is currently the only accelerator to produce {Lambda}{sub b} baryons, which provides a unique opportunity to measure the properties of these particles. This thesis presents a measurement of the mean lifetime of the {Lambda}{sub b} baryon in the semileptonic channel {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +} {mu}{sup -} {bar {nu}}{sub {mu}}. In total 186 pb{sup -1} of data were used for this analysis, collected with the CDF detector between February 2002 and September 2003. To select the long-lived events from b-decays, the secondary vertex trigger was utilized. This significant addition to the trigger for Run II allows, for the first time, the selection of events with tracks displaced from the primary interaction vertex at the second trigger level. After the application of selection cuts this trigger sample contains approximately 991 {Lambda}{sub b} candidates. To extract the mean lifetime of {Lambda}{sub b} baryons from this sample, they transverse decay length of the candidates is fitted with an unbinned maximum likelihood fit under the consideration of the missing neutrino momentum and the bias introduced by the secondary vertex trigger. The mean lifetime of the {Lambda}{sub b} is measured to be {tau} = 1.29 {+-} 0.11(stat.) {+-} 0.07(syst.) ps equivalent to a mean decay length of c{tau} = 387 {+-} 33(stat.) {+-} 21 (syst.) {micro}m.

  17. Triggering on electrons, jets and tau leptons with the CMS upgraded calorimeter trigger for the LHC RUN II

    CERN Document Server

    Zabi, Alexandre

    2015-01-01

    The Compact Muon Solenoid (CMS) experiment has implemented a sophisticated two-level online selection system that achieves a rejection factor of nearly 10e5. During Run II, the LHC will increase its centre-of-mass energy up to 13 TeV and progressively reach an instantaneous luminosity of 2e34cm-2s-1. In order to guarantee a successful and ambitious physics programme under this intense environment, the CMS Trigger and Data acquisition (DAQ) system has been upgraded. A novel concept for the L1 calorimeter trigger is introduced the Time Multiplexed Trigger (TMT). In this design, nine main receive each all of the calorimeter data from an entire event provided by 18 preprocessors. This design is not different from that of the CMS DAQ and HLT systems. The advantage of the TMT architecture is that a global view and full granularity of the calorimeters can be exploited by sophisticated algortihms. The goal is to maintain the current thresholds for calorimeter objects and improve the performance for their selection. ...

  18. Measurement of the t$\\bar{t}$ cross section at the Run II Tevatron using Support Vector Machines

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Benjamin Eric [Tufts Univ., Medford, MA (United States)

    2010-08-01

    This dissertation measures the t$\\bar{t}$ production cross section at the Run II CDF detector using data from early 2001 through March 2007. The Tevatron at Fermilab is a p$\\bar{p}$ collider with center of mass energy √s = 1.96 TeV. This data composes a sample with a time-integrated luminosity measured at 2.2 ± 0.1 fb-1. A system of learning machines is developed to recognize t$\\bar{t}$ events in the 'lepton plus jets' decay channel. Support Vector Machines are described, and their ability to cope with a multi-class discrimination problem is provided. The t$\\bar{t}$ production cross section is then measured in this framework, and found to be σt$\\bar{t}$ = 7.14 ± 0.25 (stat)-0.86+0.61(sys) pb.

  19. Summary of the half-day internal review of LHC performance limitations (linked to transverse collective effects) during run II (CERN, 29/11/2016)

    CERN Document Server

    Metral, Elias; Biancacci, Nicolo; Buffat, Xavier; Carver, Lee Robert; Iadarola, Giovanni; Li, Kevin Shing Bruce; Persson, Tobias Hakan Bjorn; Romano, Annalisa; Schenk, Michael; Tambasco, Claudia; CERN. Geneva. ATS Department

    2017-01-01

    In this note the half-day internal review of LHC performance limitations (linked to transverse collective effects) during run II (2015-2016), which took place at CERN on 29/11/2016 (https://indico.cern.ch/event/589625/), is summarised and the next steps are discussed.

  20. Running the running

    CERN Document Server

    Cabass, Giovanni; Melchiorri, Alessandro; Pajer, Enrico; Silk, Joseph

    2016-01-01

    We use the recent observations of Cosmic Microwave Background temperature and polarization anisotropies provided by the Planck satellite experiment to place constraints on the running $\\alpha_\\mathrm{s} = \\mathrm{d}n_{\\mathrm{s}} / \\mathrm{d}\\log k$ and the running of the running $\\beta_{\\mathrm{s}} = \\mathrm{d}\\alpha_{\\mathrm{s}} / \\mathrm{d}\\log k$ of the spectral index $n_{\\mathrm{s}}$ of primordial scalar fluctuations. We find $\\alpha_\\mathrm{s}=0.011\\pm0.010$ and $\\beta_\\mathrm{s}=0.027\\pm0.013$ at $68\\%\\,\\mathrm{CL}$, suggesting the presence of a running of the running at the level of two standard deviations. We find no significant correlation between $\\beta_{\\mathrm{s}}$ and foregrounds parameters, with the exception of the point sources amplitude at $143\\,\\mathrm{GHz}$, $A^{PS}_{143}$, which shifts by half sigma when the running of the running is considered. We further study the cosmological implications of this anomaly by including in the analysis the lensing amplitude $A_L$, the curvature parameter ...

  1. Level II scour analysis for Bridge 18 (SHEFTH00410018) on Town Highway 41, crossing Millers Run, Sheffield, Vermont

    Science.gov (United States)

    Wild, Emily C.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHEFTH00410018 on Town Highway 41 crossing Millers Run, Sheffield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 16.2-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, Millers Run has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 50 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 50.9 mm (0.167 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 1, 1995, indicated that the reach was laterally unstable, which is evident in the moderate to severe fluvial erosion in the upstream reach. The Town Highway 41 crossing of the Millers Run is a 30-ft-long, one-lane bridge consisting of a 28-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 22.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening. The computed

  2. Measurements of $\\sigma(V+D^{*})/\\sigma(V)$ in $9.7$ fb$^{-1}$ at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Matera, Keith [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-01-01

    The Standard Model of particle physics has been remarkably successful, but the non-perturbative features of quantum chromodynamics must be tested and modeled with data. There have been many such tests, focused primarily on the use of jet-based probes of heavy flavor (bottom and charm quark) production at hadron colliders. In this thesis, we propose and test a strategy for identifying heavy flavor in events containing a W or Z vector boson (a V boson); this technique probes a much lower energy regime than can be explored by jet-based methods. In a sample of W and Z events skimmed from 9.7 fb-1 of high- pT electron and muon data from CDF Run II p p collisions at center of mass energy √s = 1:96 GeV , we identify charm by fully reconstructing D* (2010) → D0(→ Kπ )π s decays at the track level. Using a binned fit of Δm=m(Kππ s) m(Kπ ) to count reconstructed D* candidates, we then unfold these raw counts with acceptance values derived from Monte Carlo, and present measurements of σ(W + D* )/ σ(W) and σ(Z + D* )/ σ(Z) in the W/Z leptonic decay channels. All measurements are found to be in agreement with the predictions of Pythia 6.2 (PDF set CTEQ5L). These results include the first measurement of W/Z + c production in events with zero jet objects at the Tevatron, and the first measurement of W/Z +c production with pT (c) < 15 GeV at the Tevatron.

  3. Running Away

    Science.gov (United States)

    ... Emergency Room? What Happens in the Operating Room? Running Away KidsHealth > For Kids > Running Away Print A ... life on the streets. continue The Reality of Running Away When you think about running away, you ...

  4. Performance of the CMS precision electromagnetic calorimeter at the LHC Run II and prospects for high-luminosity LHC

    CERN Document Server

    Negro, Giulia

    2017-01-01

    The Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) is a high-performance calorimeter wich will operate also at the High Luminosity Large Hadron Collider (HL-LHC). This talk will describe the strategies that have been employed to maintain the excellent performance of the CMS ECAL throughout Run 2. Performance results from the 2015-2016 data taking periods will be shown and an outlook on the expected Run 2 performance in the years to come will be provided. The status and plans for the upgraded ECAL barrel electronics for the HL-LHC will be presented, based on recent results from simulations, laboratory tests, and test beam measurements of prototype devices.

  5. Differential satellite cell density of type I and II fibres with lifelong endurance running in old men

    DEFF Research Database (Denmark)

    Mackey, Abigail; Karlsen, A; Couppé, C

    2014-01-01

    between these variables were determined. RESULTS: In O-Un and O-Tr, type II fibres were smaller and contained fewer satellite cells than type I fibres. However, when expressed relative to fibre area, the difference in satellite cell content between fibre types was eliminated in O-Tr, but not O...... the satellite cell pool and (ii) is associated with a similar density of satellite cells in type I and II fibres despite a failure to preserve the equal fibre type distribution of satellite cells observed in young individuals. Taken together, these data reveal a differential regulation of satellite cell content...

  6. A Search For The Z → b anti-b Process at The D-Zero Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Amber Helen [Imperial College, London (United Kingdom)

    2006-11-01

    In 2001, the D0 experiment entered a new era. Run II of the Tevatron at the Fermi National Accelerator Laboratory began, and the collider became the highest energy particle accelerator in the world. Accordingly, the D0 detector had already undergone a series of upgrades in order to fully exploit the physics now within reach. These included improvements to the tracking, calorimetry, muon detection and triggering capabilities. In the Standard Model, the Higgs boson is the last piece of the puzzle that remains to be discovered. The Higgs mechanism and consequently the Higgs boson is thought to be the fundamental ingredient by which particles acquire mass, and its existence (or lack of existence) is one of the most pressing issues in particle physics today. As such, one of the main goals of the Run II physics programme at D0 is to search for it. Armed with new accelerator capabilities, D0 will be able to impose tighter constraints on the mass of the Higgs, and perhaps even detect this elusive particle. If the Higgs does exist, it will be extremely difficult to find. One of the main challenges at a hadron-hadron collider is to reduce the large QCD background that masks the relatively tiny Higgs signal. Experimental evidence indicates that the Higgs mass is relatively low, in which case it will decay predominantly to a b$\\bar{b}$ quark-antiquark pair. The daughter products that must be used to reconstruct the parent Higgs are therefore likely to be heavy flavour b-quark jets whose energies must be known as accurately as possible. In the first part of this thesis consideration is given to these jets, in particular to the jet energy resolution and dijet mass resolution that they could offer. One way of investigating the necessary tools for such a Higgs search is to study a very similar decay to that of a low-mass Higgs particle: a Z boson decaying to a b quark and an anti-b-quark. This signal, not previously observed at the Tevatron, offers an ideal testbed in which to

  7. Search for supersymmetric particles in the dimuon channels with the D-Zero experiment at the Tevatron; Recherche de particules supersymetriques dans les canaux dimuons avec le detecteur D-Zero au TeVatron

    Energy Technology Data Exchange (ETDEWEB)

    Vu Anh, T

    2004-07-01

    Supersymmetry is a possible way for physics beyond the standard model. This work is dedicated to the search of supersymmetric particles such as squarks and gluinos at the Tevatron collider. The analysis has been made on experimental data from the run-II. The first chapter is dedicated to a brief presentation of the standard model. In the second chapter the author reviews the recent work on this issue in CERN (Lep) and in Fermilab (Tevatron). The experimental properties of the search for squarks and gluinos such as the signature with leptons in the final state are detailed in this chapter. The third chapter is devoted to the D0 detector and to the reconstruction of particles with it. The fourth chapter describes the specificity of this work : the detection of squarks and gluinos through the simplest signature possible: 2 muons, 2 jets and with the adequate missing energy in the final state. It appears that for an integrated luminosity of 170 pb{sup -1} no events in excess with respect to the standard model has been detected. As a consequence it is shown that squarks and gluinos must have a mass greater than 200-250 GeV. (A.C.)

  8. Long-Run Labor Market Effects of Japanese American Internment during World War II on Working-Age Male Internees

    OpenAIRE

    Aimee Chin

    2005-01-01

    In 1942, all Japanese were evacuated from the West Coast and incarcerated in internment camps. To investigate the long-run economic consequences of this historic episode, I exploit the fact that Hawaiian Japanese were not subject to mass internment. I find that the labor market withdrawal induced by the internment reduced the annual earnings of males by as much as 9%13% 25 years afterward. This is consistent with the predictions of an economic model that equates the labor market withdrawal in...

  9. Determination of the effective inelastic p anti-p cross-section for the D0 Run II luminosity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, T.; /Manchester U.; Yacoob, S.; Andeen, T.; /Northwestern U.; Begel, M.; /Rochester U.; Casey, B.C.K.; Partridge, R.; /Brown U.; Schellman, H.; /Northwestern U.; Sznajder, A.; /Rio de Janeiro State U.

    2004-11-01

    The authors determine the effective inelastic p{bar p} cross-section into the D0 Luminosity Monitor for all run periods prior to September 2004. This number is used to relate the measured inelastic collision rate to the delivered luminosity. The key ingredients are the inelastic p{bar p} cross-section, the Luminosity Monitor efficiency, and the modeling of kinematic distributions for various inelastic processes used to determine the detector acceptance. The resulting value is {sigma}{sub p{bar p},eff} = 46 {+-} 3 mb.

  10. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency.

    Science.gov (United States)

    Haberland, M; Kim, S

    2015-02-02

    Comparing the leg of an ostrich to that of a human suggests an important question to legged robot designers: should a robot's leg joint bend in the direction of running ('forwards') or opposite ('backwards')? Biological studies cannot answer this question for engineers due to significant differences between the biological and engineering domains. Instead, we investigated the inherent effect of joint bending direction on bipedal robot running efficiency by comparing energetically optimal gaits of a wide variety of robot designs sampled at random from a design space. We found that the great majority of robot designs have several locally optimal gaits with the knee bending backwards that are more efficient than the most efficient gait with the knee bending forwards. The most efficient backwards gaits do not exhibit lower touchdown losses than the most efficient forward gaits; rather, the improved efficiency of backwards gaits stems from lower torque and reduced motion at the hip. The reduced hip use of backwards gaits is enabled by the ability of the backwards knee, acting alone, to (1) propel the robot upwards and forwards simultaneously and (2) lift and protract the foot simultaneously. In the absence of other information, designers interested in building efficient bipedal robots with two-segment legs driven by electric motors should design the knee to bend backwards rather than forwards. Compared to common practices for choosing robot knee direction, application of this principle would have a strong tendency to improve robot efficiency and save design resources.

  11. The upgraded Pixel Detector of the ATLAS Experiment for Run-II at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407702

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the LHC. Taking advantage of the detector development period 2013 – 2014, the detector was extracted from the experiment and brought to surface to equip it with new service panels and to repair modules furthermore this helped with the installation of the Insertable B-Layer (IBL), fourth layer of pixel, installed in between the existing Pixel Detector and a new beam-pipe at a radius of 3.3 cm. To cope with the high radiation and increased pixel occupancy due to the proximity to the interaction point, two different silicon sensor technologies (planar and 3D) have been used. A new readout chip has been designed with CMOS 130nm technology with larger area, smaller pixel size and faster readout capability. Dedicated design features in combination with a new composite material were considered and used in order to reduce the material budget of the support structure while keeping the optimal thermo-mechanical perfor...

  12. Measurement of the Top Quark Mass at D0 Run II with the Matrix Element Method in the Lepton+Jets Final State

    Energy Technology Data Exchange (ETDEWEB)

    Schieferdecker, Philipp [Ludwig Maximilian Univ. of Munich (Germany)

    2005-08-05

    The mass of the top quark is a fundamental parameter of the Standard Model. Its precise knowledge yields valuable insights into unresolved phenomena in and beyond the Standard Model. A measurement of the top quark mass with the matrix element method in the lepton+jets final state in D0 Run II is presented. Events are selected requiring an isolated energetic charged lepton (electron or muon), significant missing transverse energy, and exactly four calorimeter jets. For each event, the probabilities to originate from the signal and background processes are calculated based on the measured kinematics, the object resolutions and the respective matrix elements. The jet energy scale is known to be the dominant source of systematic uncertainty. The reference scale for the mass measurement is derived from Monte Carlo events. The matrix element likelihood is defined as a function of both, m{sub top} and jet energy scale JES, where the latter represents a scale factor with respect to the reference scale. The top mass is obtained from a two-dimensional correlated fit, and the likelihood yields both the statistical and jet energy scale uncertainty. Using a dataset of 320 pb-1 of D0 Run II data, the mass of the top quark is measured to be: m$ℓ+jets\\atop{top}$ = 169.5 ± 4.4(stat. + JES)$+1.7\\atop{-1.6}$(syst.) GeV; m$e+jets\\atop{top}$ = 168.8 ± 6.0(stat. + JES)$+1.9\\atop{-1.9}$(syst.) GeV; m$μ+jets\\atop{top}$ = 172.3 ± 9.6(stat.+JES)$+3.4\\atop{-3.3}$(syst.) GeV. The jet energy scale measurement in the ℓ+jets sample yields JES = 1.034 ± 0.034, suggesting good consistency of the data with the simulation. The measurement forecasts significant improvements to the total top mass uncertainty during Run II before the startup of the LHC, as the data sample will grow by a factor of ten and D0's tracking capabilities will be employed in jet energy reconstruction and flavor identification.

  13. Measurement of the cross section for prompt isolated diphoton production using the full CDF run II data sample.

    Science.gov (United States)

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Ciocci, M A; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; De Barbaro, P; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Eusebi, R; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-03-08

    This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy sqrt[s] = 1.96 TeV using data corresponding to 9.5 fb(-1) integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with a parton shower model, a next-to-leading order calculation, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.

  14. Measurement of the cross section for prompt isolated diphoton production using the full CDF Run II data sample

    CERN Document Server

    Aaltonen, T.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K.R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H.S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M.A.; Clark, A.; Clarke, C.; Convery, M.E.; Conway, J.; Corbo, M..; Cordelli, M.; Cox, C.A.; Cox, D.J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernandez Ramos, J.P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J.C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez Lopez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Hahn, S.R.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R.F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R.E.; Husemann, U.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jindariani, S.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kambeitz, M.; Kamon, T.; Karchin, P.E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.K.; Kim, Y.J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A.T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H.S.; Lee, J.S.; Leo, S.; Leone, S.; Lewis, J.D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martinez, M.; Matera, K.; Mattson, M.E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C.S.; Moore, R.; Morello, M.J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S.Y.; Norniella, O.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernandez, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J.L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W.K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E.E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Sorin, V.; Song, H.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vazquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizan, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S.M.; Warburton, A.; Waters, D.; Wester, W.C., III; Whiteson, D.; Wicklund, A.B.; Wilbur, S.; Williams, H.H.; Wilson, J.S.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Zanetti, A.M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-01-01

    This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy of 1.96 TeV using data corresponding to 9.5/fb integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with parton shower, a next-to-leading order, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.

  15. Measurement of the Cross Section for Prompt Isolated Diphoton Production Using the Full CDF Run II Data Sample

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M. A.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Sorin, V.; Song, H.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-03-01

    This Letter reports a measurement of the cross section for producing pairs of central prompt isolated photons in proton-antiproton collisions at a total energy s=1.96TeV using data corresponding to 9.5fb-1 integrated luminosity collected with the CDF II detector at the Fermilab Tevatron. The measured differential cross section is compared to three calculations derived from the theory of strong interactions. These include a prediction based on a leading order matrix element calculation merged with a parton shower model, a next-to-leading order calculation, and a next-to-next-to-leading order calculation. The first and last calculations reproduce most aspects of the data, thus showing the importance of higher-order contributions for understanding the theory of strong interaction and improving measurements of the Higgs boson and searches for new phenomena in diphoton final states.

  16. Measurement of B(t→Wb)/B(t→Wq) in top-quark-pair decays using dilepton events and the full CDF Run II data set.

    Science.gov (United States)

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2014-06-06

    We present a measurement of the ratio of the top-quark branching fractions R=B(t→Wb)/B(t→Wq), where q represents any quark flavor, in events with two charged leptons, imbalance in total transverse energy, and at least two jets. The measurement uses proton-antiproton collision data at center-of-mass energy 1.96 TeV, corresponding to an integrated luminosity of 8.7  fb^{-1} collected with the Collider Detector at Fermilab during Run II of the Tevatron. We measure R to be 0.87±0.07, and extract the magnitude of the top-bottom quark coupling to be |V_{tb}|=0.93±0.04, assuming three generations of quarks. Under these assumptions, a lower limit of |V_{tb}|>0.85(0.87) at 95% (90%) credibility level is set.

  17. Measurement of B(t→Wb)/B(t→Wq) in Top-Quark-Pair Decays Using Dilepton Events and the Full CDF Run II Data Set

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2014-06-01

    We present a measurement of the ratio of the top-quark branching fractions R=B(t→Wb)/B(t→Wq), where q represents any quark flavor, in events with two charged leptons, imbalance in total transverse energy, and at least two jets. The measurement uses proton-antiproton collision data at center-of-mass energy 1.96 TeV, corresponding to an integrated luminosity of 8.7 fb-1 collected with the Collider Detector at Fermilab during Run II of the Tevatron. We measure R to be 0.87±0.07, and extract the magnitude of the top-bottom quark coupling to be |Vtb|=0.93±0.04, assuming three generations of quarks. Under these assumptions, a lower limit of |Vtb|>0.85(0.87) at 95% (90%) credibility level is set.

  18. Measurement of R=B(t→Wb)/B(t→Wq) in top-quark-pair decays using lepton+jets events and the full CDF run II dataset

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M. A.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; d'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; Stancari, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-06-01

    We present a measurement of the ratio of the top-quark branching fractions R=B(t→Wb)/B(t→Wq), where q represents quarks of type b, s, or d, in the final state with a lepton and hadronic jets. The measurement uses s=1.96TeV proton-antiproton collision data from 8.7fb-1 of integrated luminosity collected with the Collider Detector at Fermilab during Run II of the Tevatron. We simultaneously measure R=0.94±0.09 (stat+syst) and the tt¯ production cross section σtt¯=7.5±1.0(stat+syst)pb. The magnitude of the Cabibbo-Kobayashi-Maskawa matrix element, |Vtb|=0.97±0.05 (stat+syst) is extracted assuming three generations of quarks, and a lower limit of |Vtb|>0.89 at 95% credibility level is set.

  19. Measurement of the top-quark mass in the t t xAF dilepton channel using the full CDF Run II data set

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2015-08-01

    We present a measurement of the top-quark mass in events containing two leptons (electrons or muons) with a large transverse momentum, two or more energetic jets, and a transverse-momentum imbalance. We use the full proton-antiproton collision data set collected by the CDF experiment during the Fermilab Tevatron Run II at center-of-mass energy √{s }=1.96 TeV , corresponding to an integrated luminosity of 9.1 fb-1 . A special observable is exploited for an optimal reduction of the dominant systematic uncertainty, associated with the knowledge of the absolute energy of the hadronic jets. The distribution of this observable in the selected events is compared to simulated distributions of t t ¯ dilepton signal and background. We measure a value for the top-quark mass of 171.5 ±1.9 (stat)±2.5 (syst) GeV /c2 .

  20. Search for neutral MSSM Higgs boson H/A decaying to pair of tau leptons with ATLAS detector in Run II

    CERN Document Server

    {A}lvarez Piqueras, Dami{a}n; The ATLAS collaboration

    2016-01-01

    This poster presents the search of a heavy neutral Higgs boson of the Minimal Supersymmetric extension of the Standard Model (MSSM) decaying to a pair of tau leptons using proton-proton collisions at vs = 13 TeV corresponding to an integrated luminosity of 3.2ifb recorded by the ATLAS detector for the Run II of the LHC. The analysis focuses on Higgs bosons produced in the mass range between 200 GeV and 1200 GeV by gluon-gluon fusion and associated production with a b-quark for which it defines two separated and optimized categories, respectively. The analysis is also split according to the tau decay, searching for the semi-leptonic and the fully hadronic final states. The estimation of the backgrounds is done using data-driven techniques for leading backgrounds (QCD, W+jets) and MC models for other contributions.

  1. Measuring the CP asymmetry in the decay $D^0 \\rightarrow K^0_SK^0_S$ using Run II data at LHCb.

    CERN Document Server

    Fischer, Kamil Leszek

    2017-01-01

    A sensitivity study for the measurement of $CP$ asymmetry in the decay $D^0 \\rightarrow K^0_{S}K^0_{S}$ has been performed using $pp$ collision data collected by the LHCb experiment during Run II at center-of-mass energy $\\sqrt{s} =13 \\ TeV$. The results indicate that an improvement of a factor of at least three in efficiency is necessary to achieve a world's best precision on $\\mathcal{A}_{CP}$. A proposed set of changes to the trigger selection for this channel is presented. If implemented these changes would increase the signal yield per unit of integrated luminosity by a factor of six, and therefore place LHCb in the position to perform the world's most precise measurement of $\\mathcal{A}_{CP}$($D^0 \\rightarrow K^0_{S}K^0_{S}$).

  2. Physics performance and fast turn around: the challenge of calibration and alignment at the CMS experiment during the LHC Run-II

    CERN Document Server

    Di Guida, Salvatore; Franzoni, Giovanni; Govi, Giacomo; Musich, Marco; Pfeiffer, Andreas

    2017-01-01

    The CMS detector at the Large Hadron Collider (LHC) is a very complex apparatus with more than 70 million acquisition channels. To exploit its full physics potential, a very careful calibra- tion of the various components, together with an optimal knowledge of their position in space, is essential. The CMS Collaboration has set up a powerful infrastructure to allow for the best knowledge of these conditions at any given moment. The quick turnaround of these workflows was proven crucial both for the algorithms performing the online event selection and for the ul- timate resolution of the offline reconstruction of the physics objects. The contribution will report about the design and performance of these workflows during the operations of the 13TeV LHC RunII.

  3. Search for singly-produced vector-like quarks in lepton and jets final state with the ATLAS detector in Run-II

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Dustin; Dietrich, Janet; Grancagnolo, Sergio; Lacker, Heiko; Sperlich, Dennis [Humboldt-Universitaet zu Berlin (Germany)

    2016-07-01

    Vector-like quarks are predicted by many extensions of the Standard Model of particle physics. They provide the possibility to solve some long-standing problems such as the hierarchy problem and also might help to explain the b-quark forward-backward asymmetry in e{sup +}e{sup -} collisions measured at LEP. Candidates for these vector-like quarks are the top-like T and the Y quark. The Y quarks decay exclusively into a W-boson and a b-quark, which appears also to be the dominant decay channel of the T quarks. We present the search strategy for singly-produced T/Y quarks and the expected sensitivity using the first LHC run-II data recorded by the ATLAS detector in 2015.

  4. A Measurement of the Lifetime of the Λb Baryon with the CDF Detector at the Tevatron Run II

    Energy Technology Data Exchange (ETDEWEB)

    Unverhau, Tatjana Alberta Hanna [Univ. of Glasgow, Scotland (United Kingdom)

    2004-12-01

    In March 2001 the Tevatron accelerator entered its Run II phase, providing colliding proton and anti-proton beams with an unprecedented center-of-mass energy of 1.96 TeV. The Tevatron is currently the only accelerator to produce Λb baryons, which provides a unique opportunity to measure the properties of these particles. This thesis presents a measurement of the mean lifetime of the Λb baryon in the semileptonic channel Λ$0\\atop{b}$ → Λ$+\\atop{c}$ μ- $\\bar{v}$μ. In total 186 pb-1 of data were used for this analysis, collected with the CDF detector between February 2002 and September 2003. To select the long-lived events from b-decays, the secondary vertex trigger was utilized. This significant addition to the trigger for Run II allows, for the first time, the selection of events with tracks displaced from the primary interaction vertex at the second trigger level. After the application of selection cuts this trigger sample contains approximately 991 Λb candidates. To extract the mean lifetime of Λb baryons from this sample, they transverse decay length of the candidates is fitted with an unbinned maximum likelihood fit under the consideration of the missing neutrino momentum and the bias introduced by the secondary vertex trigger. The mean lifetime of the Λb is measured to be τ = 1.29 ± 0.11(stat.) ± 0.07(syst.) ps equivalent to a mean decay length of cτ = 387 ± 33(stat.) ± 21 (syst.) μm.

  5. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  6. An Electromagnetic Sensor for the Autonomous Running of Visually Impaired and Blind Athletes (Part II: The Wearable Device

    Directory of Open Access Journals (Sweden)

    Marco Pieralisi

    2017-02-01

    Full Text Available Currently, the availability of technology developed to increase the autonomy of visually impaired athletes during sports is limited. The research proposed in this paper (Part I and Part II focuses on the realization of an electromagnetic system that can guide a blind runner along a race track without the need for a sighted guide. In general, the system is composed of a transmitting unit (widely described in Part I and a receiving unit, whose components and main features are described in this paper. Special attention is paid to the definition of an electromagnetic model able to faithfully represent the physical mechanisms of interaction between the two units, as well as between the receiving magnetic sensor and the body of the user wearing the device. This theoretical approach allows for an estimation of the signals to be detected, and guides the design of a suitable signal processing board. This technology has been realized, patented, and tested with a blind volunteer with successful results and this paper presents interesting suggestions for further improvements.

  7. An Electromagnetic Sensor for the Autonomous Running of Visually Impaired and Blind Athletes (Part II: The Wearable Device).

    Science.gov (United States)

    Pieralisi, Marco; Di Mattia, Valentina; Petrini, Valerio; De Leo, Alfredo; Manfredi, Giovanni; Russo, Paola; Scalise, Lorenzo; Cerri, Graziano

    2017-02-16

    Currently, the availability of technology developed to increase the autonomy of visually impaired athletes during sports is limited. The research proposed in this paper (Part I and Part II) focuses on the realization of an electromagnetic system that can guide a blind runner along a race track without the need for a sighted guide. In general, the system is composed of a transmitting unit (widely described in Part I) and a receiving unit, whose components and main features are described in this paper. Special attention is paid to the definition of an electromagnetic model able to faithfully represent the physical mechanisms of interaction between the two units, as well as between the receiving magnetic sensor and the body of the user wearing the device. This theoretical approach allows for an estimation of the signals to be detected, and guides the design of a suitable signal processing board. This technology has been realized, patented, and tested with a blind volunteer with successful results and this paper presents interesting suggestions for further improvements.

  8. Using modern software tools to design, simulate and test a Level 1 trigger sub-system for the D Zero Detector

    Energy Technology Data Exchange (ETDEWEB)

    Angstadt, R.; Borcherding, F.; Johnson, M.E. [Fermi National Accelerator Lab., Batavia, IL (United States); Moreira, L. [CBPF-LAFEX/CEFET-EN, Rio de Janeiro, (Brazil)

    1995-06-01

    This paper describes a system which uses a commercial spreadsheet program and commercial hardware on an IBM PC to develop and test a track finding system for the D Zero Level 1 scintillating Fiber Trigger. The trigger system resides in a VME crate. This system allows the user to generate test input, write the pattern to the hardware simulate the results in software, read the hardware result: compare the results and inform the user of any differences.

  9. Using modern software tools to design, simulate and test a Level 1 trigger sub-system for the D Zero Detector

    Energy Technology Data Exchange (ETDEWEB)

    Angstadt, R.; Borcherding, F.; Johnson, M.E. [Fermi National Accelerator Lab., Batavia, IL (United States); Moreira, L. [CBPF-LAFEX/CEFET-EN, Rio de Janeiro, (Brazil)

    1995-06-01

    This paper describes a system which uses a commercial spreadsheet program and commercial hardware on an IBM PC to develop and test a track finding system for the D Zero Level 1 scintillating Fiber Trigger. The trigger system resides in a VME crate. This system allows the user to generate test input, write the pattern to the hardware simulate the results in software, read the hardware result: compare the results and inform the user of any differences.

  10. CASY: a dynamic simulation of the gas-cooled fast breeder reactor core auxiliary cooling system. Volume II. Example computer run

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    A listing of a CASY computer run is presented. It was initiated from a demand terminal and, therefore, contains the identification ST0952. This run also contains an INDEX listing of the subroutine UPDATE. The run includes a simulated scram transient at 30 seconds.

  11. Search for electroweak production of supersymmetric particles with photonic final states using the first LHC Run II data recorded with the CMS detector

    CERN Document Server

    Lange, Johannes

    2016-01-01

    A search for supersymmetry in final states with photons is presented in this thesis. Datacollected in Run II of the Large Hadron Collider at a center-of-mass energy of 13 TeV isused. The proton-proton collision dataset recorded with the CMS experiment in 2015corresponds to an integrated luminosity of 2.3 fb−1 .The analysis is designed to be sensitive to electroweak production of supersymmetric particles and compressed mass spectra. All considered models are motivated bygauge-mediated supersymmetry breaking. A cut-and-count experiment is performedusing three exclusive search bins. No sign for physics beyond the standard model isobserved.Exclusion limits are set for a general gauge mediation scenario and a simplifiedmodel assuming electroweak gaugino production. A similar sensitivity is reached as inthe search performed at s = 8 TeV.Additionally, two simplified models of gluino pair production are considered. Thecurrently best limits set by CMS can be improved for these scenarios at large neutralinoand cha...

  12. Measurement of the top-quark mass in the tt¯ dilepton channel using the full CDF Run II data set

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T. [Univ. of Helsinki, Helsinki (Finland). et al.

    2015-08-06

    We present a measurement of the top-quark mass in events containing two leptons (electrons or muons) with a large transverse momentum, two or more energetic jets, and a transverse-momentum imbalance. We use the full proton-antiproton collision data set collected by the CDF experiment during the Fermilab Tevatron Run II at center-of-mass energy √s = 1.96 TeV, corresponding to an integrated luminosity of 9.1 fb–1. A special observable is exploited for an optimal reduction of the dominant systematic uncertainty, associated with the knowledge of the absolute energy of the hadronic jets. The distribution of this observable in the selected events is compared to simulated distributions of tt¯ dilepton signal and background. We measure a value for the top-quark mass of 171.5±1.9 (stat)±2.5 (syst) GeV/c2.

  13. Measurement of the forward-backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

    CERN Document Server

    Aaltonen, T; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Marchese, L; Deninno, M; Devoto, F; D'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Erbacher, R; Errede, S; Esham, B; Farrington, S; Ramos, J P Fernández; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; López, O González; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grosso-Pilcher, C; da Costa, J Guimaraes; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucà, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Fernández, I Redondo; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; Denis, R St; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W -M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2016-01-01

    We measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy $\\sqrt{s} = 1.96~\\mathrm{TeV}$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $9.1~\\rm{fb}^{-1}$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($\\Delta y$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $A_{\\text{FB}}^{t\\bar{t}} = 0.12 \\pm 0.13$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $A_{\\text{FB}}^{t\\bar{t}}$ in both final states yields $A_{\\text{FB}}^{t\\bar{t}}=0.160\\pm0.045$, which is consistent with the SM predictions. We also measure the ...

  14. Measurement of the top-quark mass in the ${t\\bar{t}}$ dilepton channel using the full CDF Run II data set

    CERN Document Server

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Marchese, L; Deninno, M; Devoto, F; D'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Ramos, J P Fernández; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; López, O González; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grosso-Pilcher, C; Group, R C; da Costa, J Guimaraes; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucà, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Fernández, I Redondo; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; Denis, R St; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2015-01-01

    We present a measurement of the top-quark mass in events containing two leptons (electrons or muons) with a large transverse momentum, two or more energetic jets, and a transverse-momentum imbalance. We use the full proton-antiproton collision data set collected by the CDF experiment during the Fermilab Tevatron Run~II at center-of-mass energy $\\sqrt{s} = 1.96$ TeV, corresponding to an integrated luminosity of 9.1 fb$^{-1}$. A special observable is exploited for an optimal reduction of the dominant systematic uncertainty, associated with the knowledge of the absolute energy of the hadronic jets. The distribution of this observable in the selected events is compared to simulated distributions of ${t\\bar{t}}$ dilepton signal and background.We measure a value for the top-quark mass of $171.5\\pm 1.9~{\\rm (stat)}\\pm 2.5~{\\rm (syst)}$ GeV/$c^2$.

  15. Running Linux

    CERN Document Server

    Dalheimer, Matthias Kalle

    2006-01-01

    The fifth edition of Running Linux is greatly expanded, reflecting the maturity of the operating system and the teeming wealth of software available for it. Hot consumer topics such as audio and video playback applications, groupware functionality, and spam filtering are covered, along with the basics in configuration and management that always made the book popular.

  16. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2013-01-01

    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...

  17. Repo Runs

    NARCIS (Netherlands)

    Martin, A.; Skeie, D.; von Thadden, E.L.

    2010-01-01

    This paper develops a model of financial institutions that borrow short- term and invest into long-term marketable assets. Because these financial intermediaries perform maturity transformation, they are subject to runs. We endogenize the profits of the intermediary and derive distinct liquidity and

  18. Measurement of σ(p$\\bar{p}$ -> t$\\bar{t}$) in the τ + jets channel by the D0 experiment at Run II of the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Arov, Mikhail [Northern Illinois Univ., DeKalb, IL (United States)

    2008-07-01

    The top quark is the heaviest and most mysterious of the known elementary particles. Therefore, careful study of its production rate and other properties is of utmost importance for modern particle physics. The Tevatron is the only facility currently capable of studying top quark properties by on-shell production. Measurement of the top quark pair production cross section is one of the major goals of the Tevatron Run II physics program. It provides an excellent test of QCD at energies exceeding 100 GeV. We report on a new measurement of p$\\bar{p}$ → t$\\bar{t}$ production at √s = 1.96 TeV using 350 pb-1 of data collected with the D0 detector between 2002 and 2005. We focus on the final state where a W boson from one of the top quarks decays into a τ lepton and its associated neutrino, while the other decays into a quark-antiquark pair. We aim to select those events in which the τ lepton subsequently decays to one or three charged hadrons, zero or more neutral hadrons and a tau neutrino (the charge conjugate processes are implied in all of the above). The observable signature thus consists of a narrow calorimeter shower with associated track(s) characteristic of a hadronic tau decay, four or more jets, of which two are initiated by b quarks accompanying the W's in the top quark decays, and a large net missing momentum in the transverse plane due to the energetic neutrino-antineutrino pair that leave no trace in the detector media. The preliminary result for the measured cross section is: σ(t$\\bar{t}$) = 5.1$+4.3\\atop{-3.5}$(stat) $+0.7\\atop{-0.7}$(syst) ± 0.3 (lumi.) pb.

  19. A precise measurement of the top quark mass in dilepton final states using 9.7 fb$^{-1}$ of D{Ø} Run II data

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huanzhao [Southern Methodist Univ., Dallas, TX (United States)

    2015-05-16

    The top quark is a very special fundamental particle in the Standard Model (SM) mainly due to its heavy mass. The top quark has extremely short lifetime and decays before hadronization. This reduces the complexity for the measurement of its mass. The top quark couples very strongly to the Higgs boson since the fermion-Higgs Yukawa coupling linearly depends on the fermion’s mass. Therefore, the top quark is also heavily involved in Higgs production and related study. A precise measurement of the top quark mass is very important, as it allows for self-consistency check of the SM, and also gives a insight about the stability of our universe in the SM context. This dissertation presents my work on the measurement of the top quark mass in dilepton final states of t$\\bar{t}$ events in p$\\bar{p}$ collisions at √s = 1.96 TeV, using the full DØ Run II data corresponding to an integrated luminosity of 9.7 fb-1 at the Fermilab Tevatron. I extracted the top quark mass by reconstructing event kinematics, and integrating over expected neutrino rapidity distributions to obtain solutions over a scanned range of top quark mass hypotheses. The analysis features a comprehensive optimization that I made to minimize the expected statistical uncertainty. I also improve the calibration of jets in dilepton events by using the calibration determined in t$\\bar{t}$ → lepton+jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured mass is 173.11 ± 1.34(stat)+0.83 -0.72(sys) GeV .

  20. Measurement of the forward-backward asymmetry of top-quark and antiquark pairs using the full CDF Run II data set

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2016-06-01

    We measure the forward-backward asymmetry of the production of top-quark and antiquark pairs in proton-antiproton collisions at center-of-mass energy √{s }=1.96 TeV using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of 9.1 fb-1 . The asymmetry is characterized by the rapidity difference between top quarks and antiquarks (Δ y ) and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be AFBt t ¯=0.12 ±0.13 , consistent with the expectations from the standard model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive AFBt t ¯ in both final states yields AFBt t ¯=0.160 ±0.045 , which is consistent with the SM predictions. We also measure the differential asymmetry as a function of Δ y . A linear fit to AFBt t ¯(|Δ y |), assuming zero asymmetry at Δ y =0 , yields a slope of α =0.14 ±0.15 , consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of AFBt t ¯(|Δ y |) in the two final states is α =0.227 ±0.057 , which is 2.0 σ larger than the SM prediction.

  1. Running Club

    CERN Multimedia

    Running Club

    2011-01-01

    The cross country running season has started well this autumn with two events: the traditional CERN Road Race organized by the Running Club, which took place on Tuesday 5th October, followed by the ‘Cross Interentreprises’, a team event at the Evaux Sports Center, which took place on Saturday 8th October. The participation at the CERN Road Race was slightly down on last year, with 65 runners, however the participants maintained the tradition of a competitive yet friendly atmosphere. An ample supply of refreshments before the prize giving was appreciated by all after the race. Many thanks to all the runners and volunteers who ensured another successful race. The results can be found here: https://espace.cern.ch/Running-Club/default.aspx CERN participated successfully at the cross interentreprises with very good results. The teams succeeded in obtaining 2nd and 6th place in the Mens category, and 2nd place in the Mixed category. Congratulations to all. See results here: http://www.c...

  2. RUN COORDINATION

    CERN Multimedia

    M. Chamizo

    2012-01-01

      On 17th January, as soon as the services were restored after the technical stop, sub-systems started powering on. Since then, we have been running 24/7 with reduced shift crew — Shift Leader and DCS shifter — to allow sub-detectors to perform calibration, noise studies, test software upgrades, etc. On 15th and 16th February, we had the first Mid-Week Global Run (MWGR) with the participation of most sub-systems. The aim was to bring CMS back to operation and to ensure that we could run after the winter shutdown. All sub-systems participated in the readout and the trigger was provided by a fraction of the muon systems (CSC and the central RPC wheel). The calorimeter triggers were not available due to work on the optical link system. Initial checks of different distributions from Pixels, Strips, and CSC confirmed things look all right (signal/noise, number of tracks, phi distribution…). High-rate tests were done to test the new CSC firmware to cure the low efficiency ...

  3. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2013-01-01

    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  4. RUN COORDINATION

    CERN Multimedia

    G. Rakness.

    2013-01-01

    After three years of running, in February 2013 the era of sub-10-TeV LHC collisions drew to an end. Recall, the 2012 run had been extended by about three months to achieve the full complement of high-energy and heavy-ion physics goals prior to the start of Long Shutdown 1 (LS1), which is now underway. The LHC performance during these exciting years was excellent, delivering a total of 23.3 fb–1 of proton-proton collisions at a centre-of-mass energy of 8 TeV, 6.2 fb–1 at 7 TeV, and 5.5 pb–1 at 2.76 TeV. They also delivered 170 μb–1 lead-lead collisions at 2.76 TeV/nucleon and 32 nb–1 proton-lead collisions at 5 TeV/nucleon. During these years the CMS operations teams and shift crews made tremendous strides to commission the detector, repeatedly stepping up to meet the challenges at every increase of instantaneous luminosity and energy. Although it does not fully cover the achievements of the teams, a way to quantify their success is the fact that that...

  5. Running Club

    CERN Multimedia

    Running Club

    2010-01-01

    The 2010 edition of the annual CERN Road Race will be held on Wednesday 29th September at 18h. The 5.5km race takes place over 3 laps of a 1.8 km circuit in the West Area of the Meyrin site, and is open to everyone working at CERN and their families. There are runners of all speeds, with times ranging from under 17 to over 34 minutes, and the race is run on a handicap basis, by staggering the starting times so that (in theory) all runners finish together. Children (< 15 years) have their own race over 1 lap of 1.8km. As usual, there will be a “best family” challenge (judged on best parent + best child). Trophies are awarded in the usual men’s, women’s and veterans’ categories, and there is a challenge for the best age/performance. Every adult will receive a souvenir prize, financed by a registration fee of 10 CHF. Children enter free (each child will receive a medal). More information, and the online entry form, can be found at http://cern.ch/club...

  6. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2012-01-01

      On Wednesday 14 March, the machine group successfully injected beams into LHC for the first time this year. Within 48 hours they managed to ramp the beams to 4 TeV and proceeded to squeeze to β*=0.6m, settings that are used routinely since then. This brought to an end the CMS Cosmic Run at ~Four Tesla (CRAFT), during which we collected 800k cosmic ray events with a track crossing the central Tracker. That sample has been since then topped up to two million, allowing further refinements of the Tracker Alignment. The LHC started delivering the first collisions on 5 April with two bunches colliding in CMS, giving a pile-up of ~27 interactions per crossing at the beginning of the fill. Since then the machine has increased the number of colliding bunches to reach 1380 bunches and peak instantaneous luminosities around 6.5E33 at the beginning of fills. The average bunch charges reached ~1.5E11 protons per bunch which results in an initial pile-up of ~30 interactions per crossing. During the ...

  7. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2012-01-01

      With the analysis of the first 5 fb–1 culminating in the announcement of the observation of a new particle with mass of around 126 GeV/c2, the CERN directorate decided to extend the LHC run until February 2013. This adds three months to the original schedule. Since then the LHC has continued to perform extremely well, and the total luminosity delivered so far this year is 22 fb–1. CMS also continues to perform excellently, recording data with efficiency higher than 95% for fills with the magnetic field at nominal value. The highest instantaneous luminosity achieved by LHC to date is 7.6x1033 cm–2s–1, which translates into 35 interactions per crossing. On the CMS side there has been a lot of work to handle these extreme conditions, such as a new DAQ computer farm and trigger menus to handle the pile-up, automation of recovery procedures to minimise the lost luminosity, better training for the shift crews, etc. We did suffer from a couple of infrastructure ...

  8. Stabilization of gaze during circular locomotion in darkness. II. Contribution of velocity storage to compensatory eye and head nystagmus in the running monkey

    Science.gov (United States)

    Solomon, D.; Cohen, B.

    1992-01-01

    1. Yaw eye in head (Eh) and head on body velocities (Hb) were measured in two monkeys that ran around the perimeter of a circular platform in darkness. The platform was stationary or could be counterrotated to reduce body velocity in space (Bs) while increasing gait velocity on the platform (Bp). The animals were also rotated while seated in a primate chair at eccentric locations to provide linear and angular accelerations similar to those experienced while running. 2. Both animals had head and eye nystagmus while running in darkness during which slow phase gaze velocity on the body (Gb) partially compensated for body velocity in space (Bs). The eyes, driven by the vestibuloocular reflex (VOR), supplied high-frequency characteristics, bringing Gb up to compensatory levels at the beginning and end of the slow phases. The head provided substantial gaze compensation during the slow phases, probably through the vestibulocollic reflex (VCR). Synchronous eye and head quick phases moved gaze in the direction of running. Head movements occurred consistently only when animals were running. This indicates that active body and limb motion may be essential for inducing the head-eye gaze synergy. 3. Gaze compensation was good when running in both directions in one animal and in one direction in the other animal. The animals had long VOR time constants in these directions. The VOR time constant was short to one side in one animal, and it had poor gaze compensation in this direction. Postlocomotory nystagmus was weaker after running in directions with a long VOR time constant than when the animals were passively rotated in darkness. We infer that velocity storage in the vestibular system had been activated to produce continuous Eh and Hb during running and to counteract postrotatory afterresponses. 4. Continuous compensatory gaze nystagmus was not produced by passive eccentric rotation with the head stabilized or free. This indicates that an aspect of active locomotion, most

  9. Search for supersymmetric particles decaying into tri-leptons through R-parity violation, with D0 Run-II experiment at Fermilab; Recherche de particules supersymetriques se desintegrant en R-parite violee (couplage {lambda}(121)) dans un etat final a trois leptons, avec les donnees du Run-II de l'experience D0 au TeVatron

    Energy Technology Data Exchange (ETDEWEB)

    Magnan, A.M

    2005-07-15

    This thesis is dedicated to the study of the first data taken by the D0 detector during the Run II of the Tevatron. Supersymmetric particles have been search for in proton-antiproton collisions, with a center of mass energy of 1.96 TeV. In the framework of supersymmetry with R-parity violation, I have studied the pair production of Gauginos, leading to a pair of LSP (0,{chi}{sub 1}), each one decaying into ee{nu}{sub {mu}} or e{mu}{nu}{sub e} with a {lambda}(121) coupling. The final state contains at least two electrons: I have thus paid special attention in this work to the methods concerning identification and mis-identification of electromagnetic particles, as well as reconstruction, triggering, and correction (of the reconstructed energy). In a selection of tri-leptons, with at least two electrons, and some transverse missing energy, we observed 0 event in the 350 pb{sup -1} of analyzed data, for 0.4 + 0.35 - 0.05 (sta) {+-} 0.16 (sys) expected from the Standard Model contributions. In the signal considered in this analysis, the selection efficiency is around 12 per cent. Results have been studied in two models: mSUGRA and MSSM. In mSUGRA model, limits on m(1/2) and lightest gauginos's masses have been obtained, with tan({beta}) = 5, A{sub 0} = 0, m{sub 0} = 100 and 1000 GeV.c{sup -2} and both signs of {mu}. In MSSM, with the hypothesis of massive sfermions (1000 GeV.c{sup -2}), we can exclude, at 95% Confidence Level, the region m({chi}{sub 1}{sup {+-}}) < 200 GeV.c{sup -2} for all masses of {chi}{sub 1}{sup 0} LSP. (author)

  10. Quality assurance for a multicenter Phase II study of stereotactic ablative radiotherapy for hepatocellular carcinoma ≤5 cm: a planning dummy run.

    Science.gov (United States)

    Bae, Sun Hyun; Kim, Mi-Sook; Jang, Won Il; Kim, Kum Bae; Cho, Kwang Hwan; Kim, Woo Chul; Lee, Chang Yeol; Kim, Eun Seog; Choi, Chul Won; Chang, A Ram; Jo, Sunmi; Kim, Jin-Young

    2017-06-01

    The Korean Radiation Oncology Group (12-02) investigated the outcome of stereotactic ablative radiotherapy for hepatocellular carcinoma ≤5 cm using 60 Gy in three fractions. To evaluate dosimetric differences and compliance in a multicenter trial, a planning dummy run procedure was performed. All six participating institutions were provided the contours of two dummy run cases. Plans were performed following the study protocol to cover the planning target volume with a minimum of 90% of the prescription dose and to satisfy the constraints for organs at risk. We assessed the institutional variations in plans using dose-volume histograms. Different planning techniques were applied: static intensity-modulated radiotherapy in two institutions, CyberKnife in two institutions and RapidArc in two institutions. The conformity index of all 12 plans was ≤1.2. In terms of the planning target volume coverage, all participants followed our study protocol. For the second dummy run case, located in Segment 8 near the heart, the minimum dose of the planning target volume (D99%: dose covering 99% of the planning target volume) was variable because there was no mention of constraints of D99% of the planning target volume in the study protocol. As an important organ at risk, the normal liver volumes receiving plans were >700 ml. Dosimetric parameters showed acceptable compliance with the study protocol. However, we found the possibility of underdose to the planning target volume if the hepatocellular carcinoma lesion was located near organs at risk such as the heart. Based on this dummy run, we will conduct individual case reviews to minimize the effects of study protocol deviation.

  11. A search for particle dark matter using cryogenic germanium and silicon detectors in the one- and two- tower runs of CDMS-II at Soudan

    Energy Technology Data Exchange (ETDEWEB)

    Ogburn, IV, Reuben Walter [Stanford Univ., CA (United States)

    2008-06-01

    Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector,s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have

  12. Changes in running economy following downhill running.

    Science.gov (United States)

    Chen, Trevor C; Nosaka, Kazunori; Tu, Jui-Hung

    2007-01-01

    In this study, we examined the time course of changes in running economy following a 30-min downhill (-15%) run at 70% peak aerobic power (VO2peak). Ten young men performed level running at 65, 75, and 85% VO2peak (5 min for each intensity) before, immediately after, and 1 - 5 days after the downhill run, at which times oxygen consumption (VO2), minute ventilation, the respiratory exchange ratio (RER), heart rate, ratings of perceived exertion (RPE), and blood lactate concentration were measured. Stride length, stride frequency, and range of motion of the ankle, knee, and hip joints during the level runs were analysed using high-speed (120-Hz) video images. Downhill running induced reductions (7 - 21%, P run. Oxygen consumption increased (4 - 7%, P stride frequency, as well as reductions in stride length and range of motion of the ankle and knee. The results suggest that changes in running form and compromised muscle function due to muscle damage contribute to the reduction in running economy for 3 days after downhill running.

  13. A complex containing three different kinds of Ru-N bonds: ethoxydinitronitrosyl(N,N,N',N'-tetramethylethylenediamine-kappa2N,N')ruthenium(II).

    Science.gov (United States)

    Albores, Pablo; Chaia, Zulema D; Baraldo, Luis; Castellano, Eduardo E; Piro, Oscar E

    2002-04-01

    The octahedral title compound, [Ru(C(2)H(5)O)(NO)(NO(2))(2)(C(6)H(16)N(2))], crystallizes in the rhombohedral space group P3(1) with an ethoxy ligand axially coordinated trans to the nitrosyl ligand. The RuII ion is equatorially coordinated by a tetramethylethylenediamine group acting as a bidentate ligand, and to two nitro moieties whose planes are tilted with respect to the mean equatorial plane. Each nitrogen ligand bonded to the metallic centre has a different hybridization state.

  14. Characterising the Decays of High-pt Top Quarks and Addressing Naturalness with Jet Substructure in ATLAS Runs I and II

    CERN Document Server

    Leblanc, Matt

    The coupling of the Standard Model top quark to the Higgs boson is O(1), which leads to large quantum corrections in the perturbative expansion of the Higgs boson mass. Possible solutions to this so-called naturalness problem include supersymmetric models with gluinos and stop squarks whose masses are at the electroweak scale, O(1 TeV). If supersymmetry is realised in nature at this scale, these particles are expected to be accessible with the Large Hadron Collider at CERN. A search for gluino pair production with decays mediated by stop- and sbottom-squark loops in the initial 14.8 ifb of the ATLAS run 2 dataset is presented in terms of a pair of simplified models, which targets extreme regions of phase space using jet substructure techniques. No excess is observed and limits are set which greatly extend the previous exclusion region of this search, up to 1.9 TeV (1.95 TeV) for gluinos decaying through light stop (sbottom) squarks to the lightest neutralinos. A performance study of top tagging algorithms in ...

  15. Measurement of \\boldmath $R = {\\mathcal{B}\\left(t \\rightarrow Wb \\right)/\\mathcal{B}\\left(t \\rightarrow Wq \\right)} $ in Top--Quark--Pair Decays using Dilepton Events and the Full CDF Run II Data Set

    CERN Document Server

    Aaltonen, Timo Antero; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cavalli-Sforza, Matteo; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Deninno, Maria Maddalena; D'Errico, Maria; Devoto, Francesco; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; Donati, Simone; D'Onofrio, Monica; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Elagin, Andrey L; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Farrington, Sinead Marie; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Giurgiu, Gavril A; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grinstein, Sebastian; Grosso-Pilcher, Carla; Group, Robert Craig; Guimaraes da Costa, Joao; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Shin-Hong; Kim, Soo Bong; Kim, Young-Jin; Kim, Young-Kee; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Hao; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucchesi, Donatella; Lucà, Alessandra; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Marchese, Luigi Marchese; Margaroli, Fabrizio; Marino, Christopher Phillip; Martínez-Perez, Mario; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Neu, Christopher Carl; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Oksuzian, Iuri Artur; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Pranko, Aliaksandr Pavlovich; Prokoshin, Fedor; Ptohos, Fotios K; Punzi, Giovanni; Ranjan, Niharika; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Shreyber-Tecker, Irina; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Song, Hao; Sorin, Maria Veronica; St Denis, Richard Dante; Stancari, Michelle Dawn; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Vázquez-Valencia, Elsa Fabiola; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano

    2014-01-01

    We present a measurement of the ratio of the top-quark branching fractions $R=\\mathcal{B}(t\\rightarrow Wb)/\\mathcal{B}(t\\rightarrow $ $q$ represents quarks of flavors $b$, $s$, or $d$, in the final state, in events with two charged leptons, missing transverse energy and at least two jets. The measurement uses $\\sqrt{s}$ = 1.96 TeV proton--antiproton collision data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ and collected with the Collider Detector at Fermilab during Run II of the Tevatron. We measure $R=0.87 \\pm 0.07$ (stat+syst), and extract the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element, $\\left|V_{tb}\\right| = 0.93 \\pm 0.04$ (stat+syst) assuming three generations of quarks. Under these assumptions, a lower limit of $|V_{tb}|>0.85$ at 95% credibility level is set.

  16. Measurement of \\boldmath $R = {\\mathcal{B}\\left(t \\rightarrow Wb \\right)/\\mathcal{B}\\left(t \\rightarrow Wq \\right)} $ in Top--Quark--Pair Decays using Dilepton Events and the Full CDF Run II Data Set

    CERN Document Server

    Aaltonen, Timo Antero; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cavalli-Sforza, Matteo; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Deninno, Maria Maddalena; D'Errico, Maria; Devoto, Francesco; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; Donati, Simone; D'Onofrio, Monica; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Elagin, Andrey L; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Farrington, Sinead Marie; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Giurgiu, Gavril A; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grinstein, Sebastian; Grosso-Pilcher, Carla; Group, Robert Craig; Guimaraes da Costa, Joao; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Shin-Hong; Kim, Soo Bong; Kim, Young-Jin; Kim, Young-Kee; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Hao; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucchesi, Donatella; Lucà, Alessandra; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Marchese, Luigi; Margaroli, Fabrizio; Marino, Christopher Phillip; Martínez-Perez, Mario; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Neu, Christopher Carl; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Oksuzian, Iuri Artur; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Pranko, Aliaksandr Pavlovich; Prokoshin, Fedor; Ptohos, Fotios K; Punzi, Giovanni; Ranjan, Niharika; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Shreyber-Tecker, Irina; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Song, Hao; Sorin, Maria Veronica; St Denis, Richard Dante; Stancari, Michelle Dawn; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Vázquez-Valencia, Elsa Fabiola; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano

    2014-06-02

    We present a measurement of the ratio of the top-quark branching fractions $R=\\mathcal{B}(t\\rightarrow Wb)/\\mathcal{B}(t\\rightarrow $ $q$ represents quarks of flavors $b$, $s$, or $d$, in the final state, in events with two charged leptons, missing transverse energy and at least two jets. The measurement uses $\\sqrt{s}$ = 1.96 TeV proton--antiproton collision data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ and collected with the Collider Detector at Fermilab during Run II of the Tevatron. We measure $R=0.87 \\pm 0.07$ (stat+syst), and extract the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element, $\\left|V_{tb}\\right| = 0.93 \\pm 0.04$ (stat+syst) assuming three generations of quarks. Under these assumptions, a lower limit of $|V_{tb}|>0.85$ at 95% credibility level is set.

  17. Effect of Gu Tong Xian capsule on expression level of type I, II collagen and BMP-2 mRNA in rabbits with fracture during long-distance running

    Directory of Open Access Journals (Sweden)

    Liang Li

    2017-05-01

    Full Text Available The study aims to analyze and investigate the effects of Gu Tong Xian Capsule on the expression level of type I, II collagen and BMP-2 mRNA in rabbits with fracture during long-distance running. 60 adult healthy rabbits were selected as research objects, and then randomly divided into three groups including model group, positive control group and treatment group, each containing 20 rabbits. The three groups were treated with saline gastric lavage, powder for fracture and trauma, and Gu Tong Xian capsule, respectively. The rabbits of the three groups were respectively sacrificed at 1st week, 2nd weeks and 4th week after operation for sample collection. After that, the expression levels of bone collagen type I, II and BMP-2 of three groups were measured and compared with each other. At all stages, the transcriptional level of type I collagen mRNA in the treatment group were significantly higher than that in the positive control group and model group (p < 0.05; Transcriptional level of type II collagen mRNA in the treatment group increased significantly in the first week, then gradually declined in the 2nd and 4th week, with significantly difference to the model group and the positive control group (p < 0.05. In addition, the transcriptional level of bone morphogenetic protein BMP-2 mRNA at fracture site of the treatment group was higher than that of model group and positive control group (p < 0.05. Gu Tong Xian Capsule can significantly promote fracture healing of experiment rabbits and reduce fracture healing time. Moreover, it can well regulate the expression levels of type I, II collagen and transcriptional level ofBMP-2 mRNA in experiment rabbits with fracture.

  18. Can Unshod Running Reduce Running Injuries?

    Science.gov (United States)

    2012-06-08

    quadrupeds run, their internal organs expand and contract like an accordion as they stride when running. As a cheetah strides forward, its lungs expand...and take in air. When the cheetah compresses its stride, the lungs are collapsed and the cheetah breathes out. This take-a-step and take-a- breath

  19. Dummy run for a phase II study of stereotactic body radiotherapy of T1-T2 N0M0 medical inoperable non-small cell lung cancer

    DEFF Research Database (Denmark)

    Djärv, Emma; Nyman, Jan; Baumann, Pia;

    2006-01-01

    In forthcoming multicentre studies on stereotactic body radiotherapy       (SBRT) compliance with volume and dose prescriptions will be mandatory to       avoid unnecessary heterogeneity bias. To evaluate compliance in a       multicentre setting we used two cases from an ongoing phase II study......,       prescribing doses and creating dose plans. Volumes and doses of the 12       dose plans were evaluated according to the study protocol. For the two       patients the GTV volume range was 24 to 39 cm3 and 26 to 41 cm3,       respectively. The PTV volume range was 90 to 116 cm3, and 112 to 155 cm3......,       respectively. For all plans the margin between CTV and PTV in all       directions followed in detail the protocol. The prescribed dose was for       all centres 45 Gy/3 fractions (isocentre dose about 66 Gy). The mean GTV       doses ranged from 63 to 67 Gy and from 63 to 68 Gy, respectively...

  20. Search for the decays B_{(s)};{0} --> e;{+} micro;{-} and B_{(s)};{0} --> e;{+} e;{-} in CDF run II.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wenzel, H; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-05-22

    We report results from a search for the lepton flavor violating decays B_{s};{0} --> e;{+} micro;{-} and B;{0} --> e;{+} micro;{-}, and the flavor-changing neutral-current decays B_{s};{0} --> e;{+} e;{-} and B;{0} --> e;{+} e;{-}. The analysis uses data corresponding to 2 fb;{-1} of integrated luminosity of pp[over ] collisions at sqrt[s] = 1.96 TeV collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron. The observed number of B0 and B_{s};{0} candidates is consistent with background expectations. The resulting Bayesian upper limits on the branching ratios at 90% credibility level are B(B_{s};{0} --> e;{+} micro;{-}) e;{+} micro;{-}) e;{+} e;{-}) e;{+} e;{-}) e;{+} micro;{-}), the following lower bounds on the Pati-Salam leptoquark masses are also derived: M_{LQ}(B_{s};{0} --> e;{+} micro;{-}) > 47.8 TeV/c;{2}, and M_{LQ}(B;{0} --> e;{+} micro;{-}) > 59.3 TeV / c;{2}, at 90% credibility level.

  1. Search for Bs0→μ+μ- and B0→μ+μ- decays with the full CDF Run II data set

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M. A.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Sorin, V.; Song, H.; Sperka, D.; Stancari, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C., III; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-04-01

    We report on a search for Bs0→μ+μ- and B0→μ+μ- decays using proton-antiproton collision data at s=1.96TeV corresponding to 10fb-1 of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B0 candidates is consistent with background-only expectations and yields an upper limit on the branching fraction of B(B0→μ+μ-)<4.6×10-9 at 95% confidence level. We observe an excess of Bs0 candidates. The probability that the background processes alone could produce such an excess or larger is 0.94%. The probability that the combination of background and the expected standard model rate of Bs0→μ+μ- could produce such an excess or larger is 6.8%. These data are used to determine a branching fraction B(Bs0→μ+μ-)=(1.3-0.7+0.9)×10-8 and provide an upper limit of B(Bs0→μ+μ-)<3.1×10-8 at 95% confidence level.

  2. Search for Supersymmetry using rare B$0\\atop{s(d)}$ → μ+μ- decays at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Krutelyov, Vyacheslav E. [Texas A & M Univ., College Station, TX (United States)

    2005-12-01

    A search for rare B$0\\atop{s}$ → μ+μ- and B$0\\atop{d}$ → μ+μ- decays has been performed in pp collisions at √s = 1.96 TeV using 364 pb-1 of data collected by the CDF II experiment at the Fermilab Tevatron Collider. The rate of each decay is sensitive to contributions from physics beyond the Standard Model (SM). No events pass the optimized selection requirements, consistent with the SM expectation. The resulting upper limits on the branching ratios are B(B$0\\atop{s}$ → μ+μ-) < 1.5 × 10-7 and B(B$0\\atop{d}$ → μ+μ-) < 3.8 × 10-8 at the 90% confidence level. The limits are used to exclude some parameter space for several supersymmetric models.

  3. A Study of The Standard Model Higgs, WW and ZZ Production in Dilepton Plus Missing Transverse Energy Final State at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Chieh [Univ. of California, San Diego, CA (United States)

    2008-01-01

    We report on a search for Standard Model (SM) production of Higgs to WW* in the two charged lepton (e, μ) and two neutrino final state in p$\\bar{p}$ collisions at a center of mass energy √s = 1.96 TeV. The data were collected with the CDF II detector at the Fermilab Tevatron and correspond to an integrated luminosity of 1.9fb-1. The Matrix Element method is developed to calculate the event probability and to construct a likelihood ratio discriminator. There are 522 candidates observed with an expectation of 513 ± 41 background events and 7.8 ± 0.6 signal events for Higgs mass 160GeV/c2 at next-to-next-to-leading logarithmic level calculation. The observed 95% C.L. upper limit is 0.8 pb which is 2.0 times the SM prediction while the median expected limit is 3.1$+1.3\\atop{-0.9}$ with systematics included. Results for 9 other Higgs mass hypotheses ranging from 110GeV/c2 to 200GeV/c2 are also presented. The same dilepton plus large transverse energy imbalance (ET) final state is used in the SM ZZ production search and the WW production study. The observed significance of ZZ → llvv channel is 1.2σ. It adds extra significance to the ZZ → 4l channel and leads to a strong evidence of ZZ production with 4.4 σ significance. The potential improvement of the anomalous triple gauge coupling measurement by using the Matrix Element method in WW production is also studied.

  4. Measurement of the W W and W Z production cross section using final states with a charged lepton and heavy-flavor jets in the full CDF Run II data set

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; De Barbaro, P.; Demortier, L.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kim, Y. J.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martínez, M.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Prokoshin, F.; Pranko, A.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Sorin, V.; Song, H.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2016-08-01

    We present a measurement of the total W W and W Z production cross sections in p p ¯ collision at √{s }=1.96 TeV , in a final state consistent with leptonic W boson decay and jets originating from heavy-flavor quarks from either a W or a Z boson decay. This analysis uses the full data set collected with the CDF II detector during Run II of the Tevatron collider, corresponding to an integrated luminosity of 9.4 fb-1 . An analysis of the dijet mass spectrum provides 3.7 σ evidence of the summed production processes of either W W or W Z bosons with a measured total cross section of σW W +W Z=13.7 ±3.9 pb . Independent measurements of the W W and W Z production cross sections are allowed by the different heavy-flavor decay patterns of the W and Z bosons and by the analysis of secondary-decay vertices reconstructed within heavy-flavor jets. The productions of W W and of W Z dibosons are independently seen with significances of 2.9 σ and 2.1 σ , respectively, with total cross sections of σW W=9.4 ±4.2 pb and σW Z=3. 7-2.2+2.5 pb . The measurements are consistent with standard-model predictions.

  5. Measurement of the $WW$ and $WZ$ production cross section using final states with a charged lepton and heavy-flavor jets in the full CDF Run II data set

    CERN Document Server

    Aaltonen, T; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Marchese, L; Deninno, M; Devoto, F; D'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Erbacher, R; Errede, S; Esham, B; Farrington, S; Ramos, J P Fernández; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; López, O González; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grosso-Pilcher, C; da Costa, J Guimaraes; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucà, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Fernández, I Redondo; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; Denis, R St; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W -M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2016-01-01

    We present a measurement of the $WW$ and $WZ$ diboson production cross-sections in a final state consistent with leptonic $W$ boson decay and jets originating from heavy-flavor quarks from either a $W$ or a $Z$ boson decay. This analysis uses the full data set collected with the CDF II detector during Run II of the Tevatron proton-antiproton collider, corresponding to an integrated luminosity of 9.4 fb$^{-1}$ at $\\sqrt{s}=1.96$ TeV. An analysis of the dijet mass spectrum provides $3.7\\sigma$ evidence of the summed production processes of either $WW$ or $WZ$ bosons with a measured cross section of $\\sigma_{WW+WZ} = 13.7\\pm 3.9$ pb. Independent measurements of the $WW$ and $WZ$ production cross-sections are allowed by the different heavy-flavor decay-patterns of the $W$ and $Z$ bosons and by the analysis of secondary-decay vertices reconstructed within heavy-flavor jets. The productions of $WW$ and of $WZ$ dibosons are independently seen with significances of $2.9\\sigma$ and $2.1\\sigma$, respectively, with cros...

  6. Measurement of the $WW$ and $WZ$ production cross section using final states with a charged lepton and heavy-flavor jets in the full CDF Run II data set

    CERN Document Server

    Aaltonen, Timo Antero

    2016-08-23

    We present a measurement of the $WW$ and $WZ$ diboson production cross-sections in a final state consistent with leptonic $W$ boson decay and jets originating from heavy-flavor quarks from either a $W$ or a $Z$ boson decay. This analysis uses the full data set collected with the CDF II detector during Run II of the Tevatron proton-antiproton collider, corresponding to an integrated luminosity of 9.4 fb$^{-1}$ at $\\sqrt{s}=1.96$ TeV. An analysis of the dijet mass spectrum provides $3.7\\sigma$ evidence of the summed production processes of either $WW$ or $WZ$ bosons with a measured cross section of $\\sigma_{WW+WZ} = 13.7\\pm 3.9$ pb. Independent measurements of the $WW$ and $WZ$ production cross-sections are allowed by the different heavy-flavor decay-patterns of the $W$ and $Z$ bosons and by the analysis of secondary-decay vertices reconstructed within heavy-flavor jets. The productions of $WW$ and of $WZ$ dibosons are independently seen with significances of $2.9\\sigma$ and $2.1\\sigma$, respectively, with cros...

  7. Biomechanics of Distance Running.

    Science.gov (United States)

    Cavanagh, Peter R., Ed.

    Contributions from researchers in the field of running mechanics are included in the 13 chapters of this book. The following topics are covered: (1) "The Mechanics of Distance Running: A Historical Perspective" (Peter Cavanagh); (2) "Stride Length in Distance Running: Velocity, Body Dimensions, and Added Mass Effects" (Peter Cavanagh, Rodger…

  8. Search for the scalar partner of the top quark and contribution to the improvement of the calorimetry of the experiment D zero for the phase 2 of Tevatron; Recherche du partenaire supersymetrique du quark top et contribution a l'amelioration de la calorimetrie de l'experience D zero pour la phase 2 du tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, B

    2001-04-01

    Supersymmetry could be the most natural extension of the Standard Model. In this thesis we present a new search for the sTop, the hypothetical scalar partner of the Top quark, that we performed in the framework of the Minimal Supersymmetric Standard Model (MSSM), using the Run I data of the DO experiment, which corresponds to an integrated luminosity of 108 pb{sup -1}. We selected events with one electron, one muon and missing transverse energy in the final state, which can be the decay product of pair of sTop quarks in 3 (t-tilde {yields} bl{nu}-tilde), or 4-body (t-tilde {yields} b{chi}-tilde{sub 1}{sup 0}l{nu}{sub l}). No signal is seen and the results are interpreted in terms of limits on the sTop production cross-section and exclusion regions in the parameter space (m{sub t}-tilde,m{sub {chi}}-tilde{sub 1{sup 0}}) or (m{sub t}-tilde,m{sub {nu}}-tilde). This new type of selection at the Tevatron for the search of the sTop allowed us to put stronger constraints than those previously published at LEP or at the Tevatron in the t-tilde {yields} bl{nu}-tilde channel, and the first limits ever set in the 4-body decay channel. For the 3-body channel, assuming that the sneutrino is the lightest supersymmetric particle (LSP), the excluded region at 95% confidence level extends up to a sTop mass of 142 (130) GeV if the sneutrino mass (m{sub {nu}}-tilde) is 43 (86) GeV. If the 4-body decay channel dominates, assuming that the neutralino is the LSP, the limit depends on the sneutrino mass. If it is light enough (m{sub {nu}}-tilde {approx}< 100 GeV) this limit reaches a sTop mass of 132 GeV for a neutralino mass of 60 GeV. In all searches for new particles, the calorimetry plays a crucial role from the experimental point of view. The expected increase in integrated luminosity in the Run II which started on the 1. of March 2001, and the detector upgrade which has been achieved over the last three years will allow to extend these exclusion domains or to discover the sTop. We

  9. Dark Matter in ATLAS - Run-II

    CERN Document Server

    Levin, Daniel; The ATLAS collaboration

    2016-01-01

    A review of recent ATLAS searches for Dark matter in in mono-X (x=jets, photon, W/Z, Higgs) is reported. All results are consistent with S backgrounds. Limits are reported in the context of simplified models, Effective Theory, Large Extra Dimensions, SUSY and TwoHiggs Doublet models.

  10. Vertex Reconstruction in ATLAS Run II

    CERN Document Server

    Zhang, Matt; The ATLAS collaboration

    2016-01-01

    Vertex reconstruction is the process of taking reconstructed tracks and using them to determine the locations of proton collisions. In this poster we present the performance of our current vertex reconstruction algorithm, and look at investigations into potential improvements from a new seed finding method.

  11. Tau Identification at CMS in Run II

    CERN Document Server

    Ojalvo, Isabel

    2016-01-01

    During LHC Long Shutdown 1 necessary upgrades to the CMS detector were made. CMS also took the opportunity to improve further particle reconstruction. A number of improvements were made to the Hadronic Tau reconstruction and Identification algorithms. In particular, electromag- netic strip reconstruction of the Hadron plus Strips (HPS) algorithm was improved to better model signal of pi0 from tau decays. This modification improves energy response and removes the tau footprint from isolation area. In addition to this, improvement to discriminators combining iso- lation and tau life time variables, and anti-electron in MultiVariate Analysis technique was also developed. The results of these improvements are presented and validation of Tau Identification using a variety of techniques is shown.

  12. The LHCb trigger in Run II

    CERN Document Server

    Michielin, Emanuele

    2016-01-01

    The LHCb trigger system has been upgraded to allow alignment, calibration and physics analysis to be performed in real time. An increased CPU capacity and improvements in the software have allowed lifetime unbiased selections of beauty and charm decays in the high level trigger. Thanks to offline quality event reconstruction already available online, physics analyses can be performed directly on this information and for the majority of charm physics selections a reduced event format can be written out. Beauty hadron decays are more efficiently triggered by re-optimised inclusive selections, and the HLT2 output event rate is increased by a factor of three.

  13. Measurement of R = \\boldmath${\\mathcal{B}(t \\rightarrow Wb)/\\mathcal{B}(t \\rightarrow Wq)} $ in Top--quark--pair Decays using Lepton+jets Events and the Full CDF Run II Data set

    CERN Document Server

    Aaltonen, T.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K.R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H.S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Ciocci, M.A.; Clark, A.; Clarke, C.; Convery, M.E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.A.; Cox, D.J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; d'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Eusebi, R.; Farrington, S.; Fernandez Ramos, J.P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J.C.; Frisch, H.; Funakoshi, Y.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez Lopez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Gramellini, E.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Hahn, S.R.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R.F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R.E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jindariani, S.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kambeitz, M.; Kamon, T.; Karchin, P.E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.J.; Kim, Y.K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A.T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H.S.; Lee, J.S.; Leo, S.; Leone, S.; Lewis, J.D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, P.; Martinez, M.; Matera, K.; Mattson, M.E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C.S.; Moore, R.; Morello, M.J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S.Y.; Norniella, O.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Ranjan, N.; Redondo Fernandez, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J.L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W.K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E.E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Song, H.; Sorin, V.; Stancari, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vazquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizan, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S.M.; Warburton, A.; Waters, D.; Wester, W.C., III; Whiteson, D.; Wicklund, A.B.; Wilbur, S.; Williams, H.H.; Wilson, J.S.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Zanetti, A.M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2013-06-03

    We present a measurement of the ratio of the top-quark branching fractions $R=\\mathcal{B}(t\\rightarrow Wb)/\\mathcal{B}(t\\rightarrow Wq)$, where $q$ represents quarks of type $b$, $s$, or $d$, in the final state with a lepton and hadronic jets. The measurement uses $\\sqrt{s}$ = 1.96 TeV proton--antiproton collision data from 8.7 fb$^{-1}$ of integrated luminosity collected with the Collider Detector at Fermilab during Run II of the Tevatron. We simultaneously measure $R=0.94 \\pm 0.09$ (stat+syst), the $t\\bar{t}$ production cross section $\\sigma_{t \\bar t} = 7.5 \\pm 1.0$ (stat+syst) pb. The magnitude of the Cabibbo-Kobayashi-Maskawa matrix element, $|V_{tb}| = 0.97 \\pm 0.05$ (stat+syst) is extracted assuming three generations of quarks, and a lower limit of $|V_{tb}|>0.89$ at 95% credibility level is set.

  14. Diffractively produced Z bosons in the muon decay channel in p-pbar collisions at s**(1/2) = 1.96 TeV, and the measurement of the efficiency of the D0 Run II luminosity monitor

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Tamsin L

    2006-04-01

    The first analysis of diffractively produced Z bosons in the muon decay channel is presented, using data taken by the D0 detector at the Tevatron at {radical}s = 1.96 TeV. The data sample corresponds to an integrated luminosity of 109 pb{sup -1}. The diffractive sample is defined using the fractional momentum loss {zeta} of the intact proton or antiproton measured using the calorimeter and muon detector systems. In a sample of 10791 (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} events, 24 diffractive candidate events are found with {zeta} < 0.02. The first work towards measuring the cross section times branching ratio for diffractive production of (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} is presented for the kinematic region {zeta} < 0.02. The first work towards measuring the cross section times branching ratio for diffractive production of (Z/{gamma})* {yields} {mu}{sup +}{mu}{sup -} is presented for the kinematic region {zeta} < 0.02. The systematic uncertainties are not yet sufficiently understood to present the cross section result. In addition, the first measurement of the efficiency of the Run II D0 Luminosity Monitor is presented, which is used in all cross section measurements. The efficiency is: {var_epsilon}{sub LM} = (90.9 {+-} 1.8)%.

  15. Running surface couplings

    OpenAIRE

    1995-01-01

    We discuss the renormalization group improved effective action and running surface couplings in curved spacetime with boundary. Using scalar self-interacting theory as an example, we study the influence of the boundary effects to effective equations of motion in spherical cap and the relevance of surface running couplings to quantum cosmology and symmetry breaking phenomenon. Running surface couplings in the asymptotically free SU(2) gauge theory are found.

  16. Overuse injuries in running

    DEFF Research Database (Denmark)

    Larsen, Lars Henrik; Rasmussen, Sten; Jørgensen, Jens Erik

    2016-01-01

    What is an overuse injury in running? This question is a corner stone of clinical documentation and research based evidence.......What is an overuse injury in running? This question is a corner stone of clinical documentation and research based evidence....

  17. Running to Extremes

    Institute of Scientific and Technical Information of China (English)

    PHILIP JONES

    2010-01-01

    @@ For some, simply running 21 km, or a full marathon at 42 kin, isn't enough of an achievement. I mean, you can run a marathon in almost every major city in the world and many of them are centerpiece events watched by a global audience.

  18. On the Run

    Institute of Scientific and Technical Information of China (English)

    MICHAEL; GOLD

    2009-01-01

    Istarted running at age 14, inspired in equal parts by an incipient teenage desire for athletic greatness, the movie Personal Best, and the fact that all my classmates on sports teams got a free period during gym class.

  19. Learning to Run

    Institute of Scientific and Technical Information of China (English)

    Wei Jiafu

    2006-01-01

    @@ In Africa, there live antelopes and lions.In the morning, the antelope wakes up from sleep. His first sense is that he has to run faster than the fastest lion, otherwise, he will be eaten out. In the meanwhile, when the lion opens his eyes, his first thought is he must run faster than the slowest antelope,otherwise, he will starve to death.

  20. Factor II deficiency

    Science.gov (United States)

    ... if one or more of these factors are missing or are not functioning like they should. Factor II is one such coagulation factor. Factor II deficiency runs in families (inherited) and is very rare. Both parents must ...

  1. Measurement of the $B_{s} \\to K^{+}K^{-}$ lifetime and extraction of the $\\Delta\\Gamma_{CP}/\\Gamma_{CP}$ at CDF Run II and Development of the ATLAS-SCT endcap modules

    Energy Technology Data Exchange (ETDEWEB)

    Donega, Mauro [Univ. of Geneva (Switzerland)

    2006-01-01

    In the first part of the present work we present the first measurement of the Bd and Bs meson lifetimes in charmless decays (Bd → K+π-, Bd → π+π-, Bs → K+K-) based on 360pb-1 of p$\\bar{p}$ collision taken at the CDF Run II detector and the extraction $\\frac{ΔΓCP}{ΓCP}$ for the Bs-meson. We find the Bd-meson lifetime (in the Bd → K+π- and Bd → π+π- decay modes) to be: cτ (Bd) = 452 ± 24 (stat) ± 6 (syst) µm τ (Bd) = 1.51 ± 0.08 (stat) ± 0.02 (syst) ps and the Bs-meson lifetime (in the Bs → K+K- decay mode) to be: cτ (Bs → K+K-) = 458 ± 53 (stat) ± 6 (syst) µm τ (Bs → K+K-) = 1.53 ± 0.18 (stat) ± 0.02 (syst) ps Both measurements are consistent with the world averages. We calculate the ΔΓCP CP for the Bs meson combining the measured lifetime in the Bs → K+K- decay with the world average value of the Bs-meson lifetime in the flavour specific decays: We find: cτfs = 441 ± 13 µm τfs = 1.472 ± 0.045 ps ΔΓCP /ΓCP = -0.08 ± 0.23 (stat.) ± 0.03 (syst.) that is compatible with the theoretical expectation of (7.2 ± 2.4) × 10-2. In the second part of the present work, a few steps of the final R&D of the ATLAS-SCT endcaps modules will be reported. Two module layouts have been developed on two different electrical hybrids de- signs. Both layouts have been produced in small prototype series and tested before and after exposing them to a particle fluence equivalent to that expected at the end of the ATLAS data taking.

  2. Running Boot Camp

    CERN Document Server

    Toporek, Chuck

    2008-01-01

    When Steve Jobs jumped on stage at Macworld San Francisco 2006 and announced the new Intel-based Macs, the question wasn't if, but when someone would figure out a hack to get Windows XP running on these new "Mactels." Enter Boot Camp, a new system utility that helps you partition and install Windows XP on your Intel Mac. Boot Camp does all the heavy lifting for you. You won't need to open the Terminal and hack on system files or wave a chicken bone over your iMac to get XP running. This free program makes it easy for anyone to turn their Mac into a dual-boot Windows/OS X machine. Running Bo

  3. Prevention of running injuries.

    Science.gov (United States)

    Fields, Karl B; Sykes, Jeannie C; Walker, Katherine M; Jackson, Jonathan C

    2010-01-01

    Evidence for preventive strategies to lessen running injuries is needed as these occur in 40%-50% of runners on an annual basis. Many factors influence running injuries, but strong evidence for prevention only exists for training modification primarily by reducing weekly mileage. Two anatomical factors - cavus feet and leg length inequality - demonstrate a link to injury. Weak evidence suggests that orthotics may lessen risk of stress fracture, but no clear evidence proves they will reduce the risk of those athletes with leg length inequality or cavus feet. This article reviews other potential injury variables, including strength, biomechanics, stretching, warm-up, nutrition, psychological factors, and shoes. Additional research is needed to determine whether interventions to address any of these will help prevent running injury.

  4. From Walking to Running

    Science.gov (United States)

    Rummel, Juergen; Blum, Yvonne; Seyfarth, Andre

    The implementation of bipedal gaits in legged robots is still a challenge in state-of-the-art engineering. Human gaits could be realized by imitating human leg dynamics where a spring-like leg behavior is found as represented in the bipedal spring-mass model. In this study we explore the gap between walking and running by investigating periodic gait patterns. We found an almost continuous morphing of gait patterns between walking and running. The technical feasibility of this transition is, however, restricted by the duration of swing phase. In practice, this requires an abrupt gait transition between both gaits, while a change of speed is not necessary.

  5. The Art of Running

    Science.gov (United States)

    Brown, Jill Harris

    2007-01-01

    Every year, the Parent-Teacher Association of Ferndale Elementary School in Atlanta, Georgia sponsors a fun road race for the students, teachers, families, and community. This annual event has inspired the author to develop the Running and Art project to show off her students' art and squeeze in a little art history, too. In this article, the…

  6. Optimizing Running Performance.

    Science.gov (United States)

    Widule, Carol J.

    1989-01-01

    The optimization of step length and step rate (frequency) is essential for sprinters. This article analyzes data that compare step rate and step length to height, as a function of running speed, for ten elite runners. How results of such analyses can be used in training runners is also discussed. (IAH)

  7. Wave Run-up on the Zeebrugge Rubble Mound Breakwater

    DEFF Research Database (Denmark)

    De Rouck, Julien; Van de Walle, Björn; Troch, Peter

    2007-01-01

    A clear difference between full-scale wave run-up measurements and small-scale model test results had been noticed during a MAST II project. This finding initiated a thorough study of wave run-up through the European MAST III OPTICREST project. Full-scale measurement have been carried out on the ......-up and may explain the dependency of wave run-up on the water level observed in Zeebrugge. An influence of the spectral shape has also been noticed....

  8. Does Addiction Run in Families?

    Science.gov (United States)

    ... Addiction? » Does Addiction Run in Families? Does Addiction Run in Families? Listen PDF: EasyToRead_WhatIsAddiction_Final_ ... English Español "Heart disease runs in some families. Addiction runs in ours." ©istock.com/ Antonio_Diaz Matt's ...

  9. The Running Gravitational Couplings

    OpenAIRE

    Dou, Djamel; Percacci, Roberto

    1997-01-01

    We compute the running of the cosmological constant and Newton's constant taking into account the effect of quantum fields with any spin between 0 and 2. We find that Newton's constant does not vary appreciably but the cosmological constant can change by many orders of magnitude when one goes from cosmological scales to typical elementary particle scales. In the extreme infrared, zero modes drive the cosmological constant to zero.

  10. CDF Run I B physics results

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, S.

    2001-03-08

    The CDF Run I B physics program has been very successful, making numerous measurements over a wide variety of B physics topics. Measurements have included masses and lifetimes; discovery of the B{sub c}; B{sub s} {r_arrow} J/{psi}{phi} polarization; B{sup 0} {leftrightarrow} {bar B}{sup 0} mixing; sin (2{beta}); and rare decay limits. Recent results include a search for {Lambda}{sub b} {r_arrow} {Lambda}{gamma} and a study of B{sup 0} {r_arrow} J/{psi}K(*){sup 0} {pi}{sup +}{pi}{sup {minus}} decays. The tools and experience developed during Run I are quite valuable as CDF enters Run II.

  11. Searches for new physics with bosons at the ATLAS detector in LHC Run 2

    CERN Document Server

    Marsden, Stephen Philip; The ATLAS collaboration

    2016-01-01

    Searches for new physics beyond the Standard Model at LHC Run II with the ATLAS detector are presented in this talk. The 13 TeV center of mass energy at LHC Run II will significantly increase sensitivity to new physics at high-energy/high-mass regime compared to Run I. This talk will highlight results on Exotics physics searches in LHC Run II as well as selected results from Run I.

  12. Ubuntu Up and Running

    CERN Document Server

    Nixon, Robin

    2010-01-01

    Ubuntu for everyone! This popular Linux-based operating system is perfect for people with little technical background. It's simple to install, and easy to use -- with a strong focus on security. Ubuntu: Up and Running shows you the ins and outs of this system with a complete hands-on tour. You'll learn how Ubuntu works, how to quickly configure and maintain Ubuntu 10.04, and how to use this unique operating system for networking, business, and home entertainment. This book includes a DVD with the complete Ubuntu system and several specialized editions -- including the Mythbuntu multimedia re

  13. ATLAS people can run!

    CERN Multimedia

    Claudia Marcelloni de Oliveira; Pauline Gagnon

    It must be all the training we are getting every day, running around trying to get everything ready for the start of the LHC next year. This year, the ATLAS runners were in fine form and came in force. Nine ATLAS teams signed up for the 37th Annual CERN Relay Race with six runners per team. Under a blasting sun on Wednesday 23rd May 2007, each team covered the distances of 1000m, 800m, 800m, 500m, 500m and 300m taking the runners around the whole Meyrin site, hills included. A small reception took place in the ATLAS secretariat a week later to award the ATLAS Cup to the best ATLAS team. For the details on this complex calculation which takes into account the age of each runner, their gender and the color of their shoes, see the July 2006 issue of ATLAS e-news. The ATLAS Running Athena Team, the only all-women team enrolled this year, won the much coveted ATLAS Cup for the second year in a row. In fact, they are so good that Peter Schmid and Patrick Fassnacht are wondering about reducing the women's bonus in...

  14. PDU Run 10

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    PDU Run 10, a 46-day H-Coal syncrude mode operation using Wyodak coal, successfully met all targeted objectives, and was the longest PDU operation to date in this program. Targeted coal conversion of 90 W % was exceeded with a C/sub 4/-975/sup 0/F distillate yield of 43 to 48 W %. Amocat 1A catalyst was qualified for Pilot Plant operation based on improved operation and superior performance. PDU 10 achieved improved yields and lower hydrogen consumption compared to PDU 6, a similar operation. High hydroclone efficiency and high solids content in the vacuum still were maintained throughout the run. Steady operations at lower oil/solids ratios were demonstrated. Microautoclave testing was introduced as an operational aid. Four additional studies were successfully completed during PDU 10. These included a catalyst tracer study in conjunction with Sandia Laboratories; tests on letdown valve trims for Battelle; a fluid dynamics study with Amoco; and special high-pressure liquid sampling.

  15. One-step competitive lateral flow biosensor running on an independent quantification system for smart phones based in-situ detection of trace Hg(II) in tap water.

    Science.gov (United States)

    Cheng, Nan; Xu, Yuancong; Huang, Kunlun; Chen, Yuting; Yang, Zhansen; Luo, Yunbo; Xu, Wentao

    2017-01-01

    In this study, a one-step lateral flow biosensor (LFB) has been developed, optimized and validated for quantitative detection of Hg(II) in water. In the measurement principle, just one T-rich ssDNA probe (TSP) for the specific binding process was successfully employed in the competitive LFB based methods. The concept of an independent quantification system was realized using a cresol red dot as an external standard, which effectively eliminates false negative results. Under optimized conditions, the limit of detection for Hg(II) was 4nM; high selectivity towards Hg(II) and extraordinary device-to-device repeatability of the LFB were achieved. Furthermore, Hg(II) from tap water samples was analyzed, and the results were confirmed by ICP-MS. The interference from other components in the real samples could be neglected during the analysis. The approach provides a simple, sensitive, and practical tool for the detection of trace Hg(II) in tap water, showing great promise for in-situ applications.

  16. Barefoot running: biomechanics and implications for running injuries.

    Science.gov (United States)

    Altman, Allison R; Davis, Irene S

    2012-01-01

    Despite the technological developments in modern running footwear, up to 79% of runners today get injured in a given year. As we evolved barefoot, examining this mode of running is insightful. Barefoot running encourages a forefoot strike pattern that is associated with a reduction in impact loading and stride length. Studies have shown a reduction in injuries to shod forefoot strikers as compared with rearfoot strikers. In addition to a forefoot strike pattern, barefoot running also affords the runner increased sensory feedback from the foot-ground contact, as well as increased energy storage in the arch. Minimal footwear is being used to mimic barefoot running, but it is not clear whether it truly does. The purpose of this article is to review current and past research on shod and barefoot/minimal footwear running and their implications for running injuries. Clearly more research is needed, and areas for future study are suggested.

  17. Run-off-road crashes.

    NARCIS (Netherlands)

    2014-01-01

    In the Netherlands, one-third of all fatalities and one-sixth of all seriously injured are the consequence of run-off-road crashes. The outcome of run-off-road crashes is relatively severe, one fatality in five seriously injured, which is twice the average in the Netherlands. Serious run-off-road cr

  18. Pediatric running injuries.

    Science.gov (United States)

    Seto, Craig K; Statuta, Siobhan M; Solari, Ian L

    2010-07-01

    As more children have become involved in athletic activities and running, there has been a significant increase in overuse injuries. The young athlete with open growth plates is vulnerable to unique overuse injuries involving the apophyses, articular cartilage, and growth plate. The physician caring for these young athletes needs to be aware of these conditions to diagnose and treat them appropriately. Physicians should also be aware of the risk of overtraining and overuse injury in athletes participating in year-round sports and competition. Current guidelines for overuse injury prevention in young athletes are primarily based on consensus and expert opinion. Further research is needed to provide evidence-based guidelines for overuse injury prevention in young athletes and runners. Copyright 2010 Elsevier Inc. All rights reserved.

  19. ctypes. ctypes run!

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available

    One of the new features of Python 2.5 is the introduction of ctypes as a standard library module. At the simplest level, ctypes adds the standard C types to Python: signed and unsigned bytes, shorts, ints and longs; as well as structs, unions, pointers and functions. At run-time it can load a shared library (DLL and import its symbols, allowing a Python application to make function calls into the library without any special preparation.  ctypes can be used to wrap native libraries in place of interface generators such as SWIG, to manipulate memory and Python objects at the lowest level, and to prototype application development in other languages.

    This paper begins with a quick introduction to ctypes, shows some advanced techniques, and describes some examples of how it has been used by the author in his recent work.

  20. Stability Criterion for Humanoid Running

    Institute of Scientific and Technical Information of China (English)

    LIZhao-Hui; HUANGQiang; LIKe-Jie

    2005-01-01

    A humanoid robot has high mobility but possibly risks of tipping over. Until now, one main topic on humanoid robots is to study the walking stability; the issue of the running stability has rarely been investigated. The running is different from the walking, and is more difficult to maintain its dynamic stability. The objective of this paper is to study the stability criterion for humanoid running based on the whole dynamics. First, the cycle and the dynamics of running are analyzed. Then, the stability criterion of humanoid running is presented. Finally, the effectiveness of the proposed stability criterion is illustrated by a dynamic simulation example using a dynamic analysis and design system (DADS).

  1. Polarization Issues in Run 2008

    Energy Technology Data Exchange (ETDEWEB)

    Zhang,S.Y.; Ahrens, L.; Huang, H.; Zeno, K.

    2008-07-01

    The RHIC proton beam polarization has a strong dependence on intensity in Run 2008, whereas the dependence is almost absent in Run 2006. Meanwhile, the RHIC beam transverse emittance also has a dependence on intensity in Run 2008, but little in Run 2006. Using the emittance measurement at the AGS IPM and the BtA multiwires, the source of this difference between 2006 and 2008 runs is traced to the Booster. It is found that at least the degree of the vertical scraping in the Booster is different in 2006 and 2008. The effect of this scraping for the RHIC beam emittance and polarization is studied.

  2. Dummy run for a phase II study of stereotactic body radiotherapy of T1-T2      N0M0 medical inoperable non-small cell lung cancer

    DEFF Research Database (Denmark)

    Djärv, Emma; Nyman, Jan; Baumann, Pia

    2006-01-01

    In forthcoming multicentre studies on stereotactic body radiotherapy       (SBRT) compliance with volume and dose prescriptions will be mandatory to       avoid unnecessary heterogeneity bias. To evaluate compliance in a       multicentre setting we used two cases from an ongoing phase II study o...

  3. Peak treadmill running velocity during the VO2 max test predicts running performance.

    Science.gov (United States)

    Noakes, T D; Myburgh, K H; Schall, R

    1990-01-01

    Twenty specialist marathon runners and 23 specialist ultra-marathon runners underwent maximal exercise testing to determine the relative value of maximum oxygen consumption (VO2max), peak treadmill running velocity, running velocity at the lactate turnpoint, VO2 at 16 km h-1, % VO2max at 16 km h-1, and running time in other races, for predicting performance in races of 10-90 km. Race time at 10 or 21.1 km was the best predictor of performance at 42.2 km in specialist marathon runners and at 42.2 and 90 km in specialist ultra-marathon runners (r = 0.91-0.97). Peak treadmill running velocity was the best laboratory-measured predictor of performance (r = -0.88(-)-0.94) at all distances in ultra-marathon specialists and at all distances except 42.2 km in marathon specialists. Other predictive variables were running velocity at the lactate turnpoint (r = -0.80(-)-0.92); % VO2max at 16 km h-1 (r = 0.76-0.90) and VO2max (r = 0.55(-)-0.86). Peak blood lactate concentrations (r = 0.68-0.71) and VO2 at 16 km h-1 (r = 0.10-0.61) were less good predictors. These data indicate: (i) that in groups of trained long distance runners, the physiological factors that determine success in races of 10-90 km are the same; thus there may not be variables that predict success uniquely in either 10 km, marathon or ultra-marathon runners, and (ii) that peak treadmill running velocity is at least as good a predictor of running performance as is the lactate turnpoint. Factors that determine the peak treadmill running velocity are not known but are not likely to be related to maximum rates of muscle oxygen utilization.

  4. The QCD Running Coupling

    CERN Document Server

    Deur, A; de Teramond, G F

    2016-01-01

    We review the present knowledge for $\\alpha_s$, the fundamental coupling underlying the interactions of quarks and gluons in QCD. The dependence of $\\alpha_s(Q^2)$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics -from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on $\\alpha_s(Q^2)$ at high $Q^2$, as predicted by perturbative QCD, and its analytic behavior at small $Q^2$, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of $\\alpha_s$, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of $\\alpha_s(Q^2)$ in the high $Q^2$ domain of QCD. We review how $\\alpha_s$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as ...

  5. GALLEX results from the first 30 solar neutrino runs

    Science.gov (United States)

    Anselmann, P.; Hampel, W.; Heusser, G.; Kiko, J.; Kirsten, T.; Laubenstein, M.; Pernicka, E.; Pezzoni, S.; Rönn, U.; Sann, M.; Schlosser, C.; Wink, R.; Wojcik, M.; Ammon, R. V.; Ebert, K. H.; Fritsch, T.; Hellriegel, K.; Henrich, E.; Stieglitz, L.; Weirich, F.; Balata, M.; Ferrari, N.; Lalla, H.; Bellotti, E.; Cattadori, C.; Cremonesi, O.; Fiorini, E.; Zanotti, L.; Altmann, M.; Feilitzsch, F. V.; Mößbauer, R.; Schanda, U.; Berthomieu, G.; Schatzman, E.; Carmi, I.; Dostrovsky, I.; Bacci, C.; Belli, P.; Bernabei, R.; D'Angelo, S.; Paoluzi, L.; Bevilacqua, A.; Charbit, S.; Cribier, M.; Gosset, L.; Rich, J.; Spiro, M.; Stolarczyk, T.; Tao, C.; Vignaud, D.; Hahn, R. L.; Hartmann, F. X.; Rowley, J. K.; Stoenner, R. W.; Weneser, J.

    1994-05-01

    We report new GALLEX solar neutrino results from 15 runs covering 406 days (live time) within the exposure period 19 August 1992-13 October 1993 (``GALLEX II''). With counting data considered until 4 January 1994, the new result is [78+/-13 (stat.) +/-5 (stat.)] SNU (1σ). It confirms our previous result for the 15 initial runs (``GALLEX I'') of [81+/-17(stat.)+/-9(syst.)] SNU. After two years of recording the solar neutrino flux with the GALLEX detector the combined result from 30 solar runs (GALLEX I + GALLEX II) is [79+/-10(stat.)+/-6(syst.)] SNU (1σ). In addition, 19 ``blank'' runs gave the expected null result. GALLEX neutrino experiments are continuing.

  6. The QCD running coupling

    Science.gov (United States)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and

  7. Oxygen cost of running barefoot vs. running shod.

    Science.gov (United States)

    Hanson, N J; Berg, K; Deka, P; Meendering, J R; Ryan, C

    2011-06-01

    The purpose of this study was to investigate the oxygen cost of running barefoot vs. running shod on the treadmill as well as overground. 10 healthy recreational runners, 5 male and 5 female, whose mean age was 23.8±3.39 volunteered to participate in the study. Subjects participated in 4 experimental conditions: 1) barefoot on treadmill, 2) shod on treadmill, 3) barefoot overground, and 4) shod overground. For each condition, subjects ran for 6 min at 70% vVO (2)max pace while VO (2), heart rate (HR), and rating of perceived exertion (RPE) were assessed. A 2 × 2 (shoe condition x surface) repeated measures ANOVA revealed that running with shoes showed significantly higher VO (2) values on both the treadmill and the overground track (pbarefoot. It was concluded that at 70% of vVO (2)max pace, barefoot running is more economical than running shod, both overground and on a treadmill.

  8. CDF RunRun Control and Online Monitor

    Institute of Scientific and Technical Information of China (English)

    T.Arisawa; W.Badgett; 等

    2001-01-01

    In this paper,we discuss the CDF RunRun Control and online event monitoring system.Run Control is the top level application that controls the data acquisition activities across 150 front end VME crates and related service processes,Run Control is a real-time multi-threaded application implemented in Java with flexible state machines,using JDBC database connections to configure clients,and including a user friendly and powerful graphical user interface.The CDF online event monitoring system consists of several parts;the eent monitoring programs,the display to browse their results,the server program which communicates with the display via socket connections ,the error receiver which displays error messages and communicates with run Control,and the state manager which monitors the state of the monitor programs.

  9. A Search for Long-Lived Doubly-Charged Higgs Boson Production in anti-p p Collisions at sqrt(s)=1.96 TeV using RunII CDF

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, Joshua P.; /Duke U.

    2005-01-01

    We present a search for a quasi-stable doubly-charged Higgs particle at CDF using the Fermilab Tevatron for {radical}s = 1.96 TeV. The data presented are from approximately 290 pb{sup -1} of integrated luminosity collected using the upgraded Run 2 Collider Detector at Fermilab. These data were taken between February, 2002 and February, 2004. The long-lived decay products of Z's are selected in the central detector region (|{eta}| < 1.0). They select events triggered on a muon candidate having p{sub T} > 18 GeV in the event. After offline reconstruction, they require two isolated tracks (p{sub T} > 20 GeV) in the event, one of which points to a stub in a muon detector. Since the search is based on the increased ionization a doubly-charged particle would produce as it passes through the detector, they require that both tracks be highly ionizing for an event to be selected as a H{sup {+-}{+-}} candidate. No such candidates are observed in the data. They set a lower mass limit of 146 GeV on a quasi-stable H{sup {+-}{+-}} boson.

  10. Toward standardization of carbohydrate-deficient transferrin (CDT) measurements: II. Performance of a laboratory network running the HPLC candidate reference measurement procedure and evaluation of a candidate reference material.

    Science.gov (United States)

    Helander, Anders; Wielders, Jos P M; Jeppsson, Jan-Olof; Weykamp, Cas; Siebelder, Carla; Anton, Raymond F; Schellenberg, François; Whitfield, John B

    2010-11-01

    Carbohydrate-deficient transferrin (CDT) is a descriptive term used for a temporary change in the transferrin glycosylation profile caused by alcohol, and used as a biomarker of chronic high alcohol consumption. The use of an array of methods for measurement of CDT in various absolute or relative amounts, and sometimes covering different transferrin glycoforms, has complicated the comparability of results and caused confusion among medical staff. This situation prompted initiation of an IFCC Working Group on CDT standardization. This second publication of the WG-CDT covers the establishment of a network of reference laboratories running a high-performance liquid chromatography (HPLC) candidate reference measurement procedure, and evaluation of candidate secondary reference materials. The network laboratories demonstrated good and reproducible performance and thus can be used to assign target values for calibrators and controls. A candidate secondary reference material based on native human serum lyophilized with a cryo-/lyoprotectant to prevent protein denaturation was found to be commutable and stable during storage. A proposed strategy for calibration of different CDT methods is also presented. In an external quality assurance study involving 66 laboratories and covering the current routine CDT assays (HPLC, capillary electrophoresis and immunoassay), recalculation of observed results based on the nominal values for the candidate calibrator reduced the overall coefficient of variation from 18.9% to 5.5%. The logistics for distribution of reference materials and review of results were found to be functional, indicating that a full reference system for CDT may soon be available.

  11. Effects of marathon running on running economy and kinematics.

    Science.gov (United States)

    Kyröläinen, H; Pullinen, T; Candau, R; Avela, J; Huttunen, P; Komi, P V

    2000-07-01

    The present study was designed to investigate interactions between running economy and mechanics before, during, and after an individually run marathon. Seven experienced triathletes performed a 5-min submaximal running test on a treadmill at an individual constant marathon speed. Heart rate was monitored and the expired respiratory gas was analyzed. Blood samples were drawn to analyze serum creatine kinase activity (S-CK), skeletal troponin I (sTnI), and blood lactate (B-La). A video analysis was performed (200 frames x s(-1)) to investigate running mechanics. A kinematic arm was used to determine the external work of each subject. The results of the present study demonstrate that after the marathon, a standardized 5-min submaximal running test resulted in an increase in oxygen consumption, ventilation, and heart rate (P stride frequency and a similar decrease in stride length were observed (P < 0.01). These results demonstrate clearly that weakened running economy cannot be explained by changes in running mechanics. Therefore, it is suggested that the increased physiological loading is due to several mechanisms: increased utilization of fat as an energy substrate, increased demands of body temperature regulation, and possible muscle damage.

  12. RUN TO RUN CONTROL OF TIME-PRESSURE DISPENSING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Zhao Yixiang; Li Hanxiong; Ding Han; Xiong Youlun

    2004-01-01

    In electronics packaging the time-pressure dispensing system is widely used to squeeze the adhesive fluid in a syringe onto boards or sub-strates with the pressurized air.However,complexity of the process,which includes the air-fluid coupling and the nonlinear uncertainties,makes it diffi-cult to have a consistent process per-formance.An integrated dispensing process model is first introduced and then its input-output regression rela-tionship is used to design a run to run control methodology for this process.The controller takes EWMA scheme and its stability region is given.Ex-perimental results verify the effective-ness of the proposed run to run control method for dispensing process.

  13. Run-to-Run Control Strategy for Diabetes Management

    Science.gov (United States)

    2007-11-02

    quite serious ( diabetic coma), and the long- term implications of varying glucose levels ( nephropathy , retinopathy, and other tissue damage ) have...Trial Re- search Group, \\The e ect of intensive treatment of diabetes on the development and progression of long{term complications in insulin{dependent...1 RUN-TO-RUN CONTROL STRATEGY FOR DIABETES MANAGEMENT F.J. Doyle III1, B. Srinivasan2, and D. Bonvin2 1Department of Chemical Engineering, University

  14. Piketty in the long run.

    Science.gov (United States)

    Cowell, Frank A

    2014-12-01

    I examine the idea of 'the long run' in Piketty (2014) and related works. In contrast to simplistic interpretations of long-run models of income- and wealth-distribution Piketty (2014) draws on a rich economic analysis that models the intra- and inter-generational processes that underly the development of the wealth distribution. These processes inevitably involve both market and non-market mechanisms. To understand this approach, and to isolate the impact of different social and economic factors on inequality in the long run, we use the concept of an equilibrium distribution. However the long-run analysis of policy should not presume that there is an inherent tendency for the wealth distribution to approach equilibrium.

  15. Turkey Run Landfill Emissions Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — landfill emissions measurements for the Turkey run landfill in Georgia. This dataset is associated with the following publication: De la Cruz, F., R. Green, G....

  16. Phthalate SHEDS-HT runs

    Data.gov (United States)

    U.S. Environmental Protection Agency — Inputs and outputs for SHEDS-HT runs of DiNP, DEHP, DBP. This dataset is associated with the following publication: Moreau, M., J. Leonard, K. Phillips, J. Campbell,...

  17. How to run 100 meters?

    CERN Document Server

    Aftalion, Amandine

    2016-01-01

    The aim of this paper is to bring a mathematical justification to the optimal way of organizing one's effort when running. It is well known from physiologists that all running exercises of duration less than 3mn are run with a strong initial acceleration and a decelerating end; on the contrary, long races are run with a final sprint. This can be explained using a mathematical model describing the evolution of the velocity, the anaerobic energy, and the propulsive force: a system of ordinary differential equations, based on Newton's second law and energy conservation, is coupled to the condition of optimizing the time to run a fixed distance. We show that the monotony of the velocity curve vs time is the opposite of that of the oxygen uptake (V O2) vs time. Since the oxygen uptake is monotone increasing for a short run, we prove that the velocity is exponentially increasing to its maximum and then decreasing. For longer races, the oxygen uptake has an increasing start and a decreasing end and this accounts for...

  18. Age-related decrements in cycling and running perfor- mance

    African Journals Online (AJOL)

    Enrique

    while exercise can reduce the rate of decline in age-related exercise capacity ... a gradual increase in degenerative changes in both type I and type II fibres ..... ery of vertical jump height and heart rate vs. running speed after a 90 km foot race.

  19. Effect Of Running Shoes on Foot Impact During Running

    CERN Document Server

    Nassif, Henry

    2016-01-01

    Running is part of almost every sport, and requires a great amount of stamina, endurance, mental toughness and overall strength. At every step, the foot experiences ground reaction forces necessary to support the motion of the body. With the advancements in shoe technology, running shoes have grown in popularity among runners, as well as non-runners, because they reduce the risk of injuries from the impact felt by the foot. The purpose of this report is to analyze the effect of running shoes on impact forces on the foot. This is achieved through the use of three force pads fixed at different locations on the foot The force measured by each sensor is then used to estimate the vertical ground reaction force, using the sensors' calibrations equations . Based on the ground reaction force, the effective mass corresponding to the momentum change occurring during the transient phase of the impact is estimated. The results show that running at 9 miles per hour without running shoes generates an effective mass of (14....

  20. Running of the Running and Entropy Perturbations During Inflation

    CERN Document Server

    van de Bruck, Carsten

    2016-01-01

    In single field slow-roll inflation, one expects that the spectral index $n_s -1$ is first order in slow-roll parameters. Similarly, its running $\\alpha_s = dn_s/d \\log k$ and the running of the running $\\beta_s = d\\alpha_s/d \\log k$ are second and third order and therefore expected to be progressively smaller, and usually negative. Hence, such models of inflation are in considerable tension with a recent analysis hinting that $\\beta_s$ may actually be positive, and larger than $\\alpha_s$. Motivated by this, in this work we ask the question of what kinds of inflationary models may be useful in achieving such a hierarchy of runnings, particularly focusing on two--field models of inflation in which the late-time transfer of power from isocurvature to curvature modes allows for a much more diverse range of phenomenology. We calculate the runnings due to this effect and briefly apply our results to assessing the feasibility of finding $|\\beta_s| \\gtrsim |\\alpha_s|$ in some specific models.

  1. Search for WW and WZ production in lepton, neutrino plus jets final states at CDF Run II and Silicon module production and detector control system for the ATLAS SemiConductor Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Sfyrla, Anna [Univ. of Geneva (Switzerland)

    2008-03-10

    In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in p$\\bar{p}$ collisions with √s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb-1 of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is σWW/WZtheory x Br(W → ℓv; W/Z → jj) = 2.09 ± 0.14 pb. They measured NSignal = 410 ± 212(stat) ± 102(sys) signal events that correspond to a cross section σWW/WZ x Br(W → ℓv; W/Z → jj) = 1.47 ± 0.77(stat) ± 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be σ x Br(W → ℓv; W/Z → jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on the end-cap disks. The SCT end-caps and barrels

  2. How Fast Can a Human Run? - Bipedal vs. Quadrupedal Running.

    Science.gov (United States)

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as "Can the world's fastest men become faster still?" The correct answer is likely "Yes." We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion.

  3. Track reconstruction principle in ALICE for LHC run I and run II

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    Principles of tracking for an ALICE event, showing the three successive paths allowing to build a track and refine its parameters. Numbers ranging from 1 to 10 mention the bits that are activated in case of success during the propgation of the Kalman filter at the considered stage.

  4. Perturbative QCD description of jet data from LHC Run-I and Tevatron Run-II

    CERN Document Server

    Carrazza, Stefano

    2014-01-01

    We present a systematic comparison of jet predictions at the LHC and the Tevatron, with accuracy up to next-to-next-to-leading order (NNLO). The exact computation at NNLO is completed for the gluons-only channel, so we compare the exact predictions for this channel with an approximate prediction based on threshold resummation, in order to determine the regions where this approximation is reliable at NNLO. The kinematic regions used in this study are identical to the experimental setup used by recently published jet data from the ATLAS and CMS experiments at the LHC, and CDF and D0 experiments at the Tevatron. We study the effect of choosing different renormalisation and factorisation scales for the NNLO exact prediction and as an exercise assess their impact on a PDF fit including these corrections. Finally we provide numerical values of the NNLO k-factors relevant for the LHC and Tevatron experiments.

  5. [Stress fracture after changing to barefoot running].

    Science.gov (United States)

    Christensen, Mikkel

    2014-12-15

    Barefoot running is increasing in popularity but little is known about the implications in respect to injuries. It has been proposed that barefoot running is associated with a decrease in running injuries as it represents a more natural way of running. A 50-year-old runner with a weekly running distance of 50 km presented suffering from a stress fracture of the second metatarsal after six weeks of intensive barefoot running.

  6. CDF Run Ⅱ Data File Catalog

    Institute of Scientific and Technical Information of China (English)

    J.Kowalkowski; F.Ratnikov; 等

    2001-01-01

    The CDF experiment started data taking in April 2001,The data are organized into datasets which contain events of similar physics properties and reconstruction version.the information about datasets is stored in the Data File Catalog,a relational database.This information is presented to the data processing framework as objects which are retrieved using compound keys.The objects and the keys are designed to be the algorithms' view of information stored in the database.Objects may use several DB tables.A database interface management layer exists for the purpose of managing the mapping of persistent data to transient objects that can be used by the framework.This layer exists between the algorithm code and the code which reads directly from datanbase tables.At the user end,it places get/put interface on a top of a transient class for retrieval or storage of objects of this class using a key.Data File Catalog code makes use of this facility and contains all the code needed to manipulate CDF Data File Catalog from a C++ program or from the command prompt,It supports an Oracle interface using OTL,and a mSQL interface,This code and the Oravcle implementation of Data File Catalog were subjected to test during CDF Commissioning Run last fall and during first weeks of Run II in April.It performed exceptionally well.

  7. Bremen Workshop : Run-Up

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Schlütter, F.

    The objective of the workshop was a comparison between the prototype and the laboratory measurements. the emphasis is put on comparison between recorded run-up levels. Three enclosed reports present measurements and results from University of Ghent (UG)/ FCCD, Flanders Hydraulics (FH) and Aalborg...

  8. Running and Breathing in Mammals

    Science.gov (United States)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  9. ATLAS Searches in Run I

    CERN Document Server

    Kagan, Michael; The ATLAS collaboration

    2015-01-01

    Title: Searches for di-Higgs production in 4b final states and new phenomena with boosted Higgs using the ATLAS detector at LHC Run I Abstract : Measurement of Higgs boson pair production has a fundamental importance in understanding the nature of the Higgs boson and electroweak symmetry breaking. TeVscale resonances decaying to a pair of Higgs boson are also predicted in various extensions of the Standard Models, e.g, Kaluza-Klein excitation of the gravitons in the bulk Randall- Sundrum extra dimensions, heavy scalar particles in two-Higgs-doublet models. This talk highlights ATLAS Run I searches for di-Higgs production in 4b final states with resolved topology using small-radius jets and boosted topology using large-radius jets with associated b-tagged track-jets. Other Run I searches employing techniques to identify boosted Higgs bosons are also presented in this talk. Title: Searches for vector-like quarks and resonances decaying into top-quarks with the ATLAS detector at LHC Run I Abstract : In theories ...

  10. Running gratings in photoconductive materials

    DEFF Research Database (Denmark)

    Kukhtarev, N. V.; Kukhtareva, T.; Lyuksyutov, S. F.

    2005-01-01

    Starting from the three-dimensional version of a standard photorefractive model (STPM), we obtain a reduced compact Set of equations for an electric field based on the assumption of a quasi-steady-state fast recombination. The equations are suitable for evaluation of a current induced by running...

  11. Run-to-run product quality control of batch processes

    Institute of Scientific and Technical Information of China (English)

    JIA Li; SHI Ji-ping; CHENG Da-shuai; CHIU Min-sen

    2009-01-01

    Batch processes have been increasingly used in the production of low volume and high value added products.Consequently,optimization control in batch processes is crucial in order to derive the maximum benefit.In this paper,a run-to-run product quality control based on iterative learning optimization control is developed.Moreover,a rigorous theorem is proposed and proven in this paper,which states that the tracking error under the optimal iterative learning control (ILC) law can converge to zero.In this paper,a typical nonlinear batch continuous stirred tank reactor (CSTR) is considered,and the results show that the performance of trajectory tracking is gradually improved by the ILC.

  12. Running free: embracing a healthy lifestyle through distance running.

    Science.gov (United States)

    Shipway, Richard; Holloway, Immy

    2010-11-01

    Sport and leisure activity contribute to both health and quality of life. There is a dearth of qualitative studies on the lived experiences of active people, so the aim of this paper is to develop a deeper understanding of the experiences of one particular group of active leisure participants, distance runners, and to highlight the associated health and well-being benefits that result from participating in this increasingly popular form of active leisure. In doing so, this paper will briefly explore the potential opportunities and implications for sport and leisure policy and provision, and highlight examples of how distance running could positively contribute towards government objectives linked to tackling obesity levels, healthy living and physical well-being. It is suggested that similar benefits also exist across other forms of physical activity, exercise and sport. Qualitative methods of enquiry were adopted to understand the nature of the social world of long distance runners through interviews and observations, which were thematically analyzed. One of the key themes emerging from the data was the desire to embrace a healthy lifestyle, which then led to the emergence of four main sub-themes. The first was linked to the importance of seeking self-esteem and confirmation through running; second, an investigation of a selection of negative aspects associated with exercise addiction; third, the need to exercise among sport and leisure participants; and finally, an understanding of the concept of the 'running body'. Cautionary notes also identified negative aspects associated with exercise and physical activity. The findings highlight the potential role that distance running can play as an easily accessible and enjoyable leisure activity, one that can help facilitate increased participation in exercise and physical activity as an integral part of an active and healthy lifestyle.

  13. Search for techniparticles at D0 Run II

    Energy Technology Data Exchange (ETDEWEB)

    Feligioni, Lorenzo [Univ. of Perugia (Italy)

    2006-01-01

    Technicolor theory (TC) accomplishes the necessary electroweak symmetry breaking responsible for the mass of the elementary particles. TC postulates the existence of a new SU(NTC) gauge theory. Like QCD the exchange of gauge bosons causes the existence of a non-vanishing chiral condensate which dynamically breaks the SU(NTC)L x SU(NTC)R symmetry. This gives rise to NTC2-1 Nambu-Goldstone Bosons. Three of these Goldstone Bosons become the longitudinal components of the W± and Z which therefore acquire mass; the remaining ones are new particles (technihadrons) that can be produced at the high energy colliders and detected. The Technicolor Straw Man Model (TCSM) is a version of the dynamical symmetry breaking with a large number of technifermions and a relative low value of their masses. One of the processes predicted by the TCSM is q$\\bar{q}$ → VT {yields} W{pi}T, where VT is the Technicolor equivalent of the QCD vector meson and {pi}T is the equivalent of the pion. W is the electroweak gauge boson of the Standard Model. This dissertation describes the search for WπT with the D0 detector, a multi-purpose particle detector located at one of the collision points of the Tevatron accelerator situated in Batavia, IL. The final state considered for this thesis is a W boson that decays to electron and neutrino plus a πT that decays into b$\\bar{c}$ or b$\\bar{b}$, depending on the charge of the initial technivector meson produced. In the D0 detector this process will appear as a narrow cluster of energy deposits in the electromagnetic calorimeter with an associated track reconstructed in the tracking detector. The undetected neutrino from the decay of the W boson will be seen as missing momentum. The fragmentation of the quarks from the decay of the πT will produce two jets of collimated particles. Events where a b-quark is produced are selected by requesting at least one jet to be associated with a secondary vertex of interaction produced by the decay of B-meson (b-tagging). In the absence of an excess over the Standard Model prediction for the final state considered in this analysis, we compute a 95% Confidence Level upper limit on the techniparticle production cross section for the VT mass range: 190 GeV/c2 ≤ m(VT ) ≤ 220 GeV/c2.

  14. ATLAS Calorimeters: Run-2 performance and Phase-II upgrade

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon (LAr)-lead sampling calorimeter is employed as electromagnetic calorimeter and hadronic calorimter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimter. This presentation will give first an overview of the detector operation and data quality, as well as the achieved performance of the ATLAS calorimetry system. Additionally, the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) will be presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 10^{34} cm^{−2} s^{−1} and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope wit...

  15. A New Event Builder for CMS Run II

    CERN Document Server

    Albertsson, Kim; Andronidis, Anastasios; Behrens, Ulf; Branson, James; Chaze, Olivier; Cittolin, Sergio; Darlea, Georgiana Lavinia; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez Ceballos, Guillelmo; Hegeman, Jeroen Guido; Holzner, Andre Georg; Jimenez Estupinan, Raul; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Morovic, Srecko; Nunez Barranco Fernandez, Carlos; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph Maria Ernst; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Roberts, Penelope Amelia; Sakulin, Hannes; Schwick, Christoph; Stieger, Benjamin Bastian; Sumorok, Konstanty; Veverka, Jan; Zaza, Salvatore; Zejdl, Petr

    2015-01-01

    The data acquisition system (DAQ) of the CMS experiment at the CERN Large Hadron Collider (LHC) assembles events at a rate of 100kHz, transporting event data at an aggregate throughput of 100GB/s to the high-level trigger (HLT) farm. The DAQ system has been redesigned during the LHC shutdown in 2013/14. The new DAQ architecture is based on state-of-the-art network technologies for the event building. For the data concentration, 10/40Gbps Ethernet technologies are used together with a reduced TCP/IP protocol implemented in FPGA for a reliable transport between custom electronics and commercial computing hardware. A 56Gbps Infiniband FDR CLOS network has been chosen for the event builder. This paper discusses the software design, protocols, and optimizations for exploiting the hardware capabilities. We present performance measurements from small-scale prototypes and from the full-scale production system.

  16. Cornering Natural SUSY at LHC Run II and Beyond

    CERN Document Server

    Buckley, Matthew R; Macaluso, Sebastian; Monteux, Angelo; Shih, David

    2016-01-01

    We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with $\\sim 15$ fb$^{-1}$ of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most "vanilla" version of SUSY (the MSSM with $R$-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low ($<100$ TeV). We conclude by considering the prospects for the high-luminosity LHC era, where we expect the current limits on particle masses to improve by up to $\\sim 1$ TeV, and discuss further model-building directions for natural SUSY that are motivated by this work.

  17. Cornering natural SUSY at LHC Run II and beyond

    Science.gov (United States)

    Buckley, Matthew R.; Feld, David; Macaluso, Sebastian; Monteux, Angelo; Shih, David

    2017-08-01

    We derive the latest constraints on various simplified models of natural SUSY with light higgsinos, stops and gluinos, using a detailed and comprehensive reinterpretation of the most recent 13 TeV ATLAS and CMS searches with ˜ 15 fb-1 of data. We discuss the implications of these constraints for fine-tuning of the electroweak scale. While the most "vanilla" version of SUSY (the MSSM with R-parity and flavor-degenerate sfermions) with 10% fine-tuning is ruled out by the current constraints, models with decoupled valence squarks or reduced missing energy can still be fully natural. However, in all of these models, the mediation scale must be extremely low ( motivated by this work.

  18. Status and performance of the CDF Run II silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Tuula; /Helsinki Inst. of Phys.

    2006-10-01

    The CDF silicon detector is one of the largest silicon detectors in operation. It has a total of 722,432 electronic channels, and it covers a sensor surface area of 6 m{sup 2}. The detector has been operating reliably for five years, and it has recorded 1.5 fb{sup -1} of data. This article discusses experiences of operating such a large, complex system as well as the longevity of the detector.

  19. $B$ physics at the Tevatron: Run II and beyond

    CERN Document Server

    Anikeev, K; Azfar, F.; Bailey, S.; Bauer, C.W.; Bell, W.; Bodwin, G.; Braaten, E.; Burdman, G.; Butler, J.N.; Byrum, K.; Cason, N.; Cerri, A.; Cheung, H.W.K.; Dighe, A.; Donati, S.; Ellis, R.K.; Falk, A.; Feild, G.; Fleming, S.; Furic, I.; Gardner, S.; Grossman, Y.; Gutierrez, G.; Hao, W; Harris, B.W.; Hewett, J.; Hiller, G.; Jesik, R.; Jones, M.; Kasper, P.A.; El-Khadra, A.; Kirk, M.; Kiselev, V.V.; Kroll, J.; Kronfeld, A.S.; Kutschke, R.; Kuznetsov, V.E.; Laenen, E.; Lee, J.; Leibovich, A.K.; Lewis, J.D.; Ligeti, Z.; Likhoded, A.K.; Logan, H.E.; Luke, M.; Maciel, A.; Majumder, G.; Maksimovic, P.; Martin, M.; Menary, S.; Nason, P.; Nierste, U.; Nir, Y.; Nogach, L.; Norrbin, E.; Oleari, C.; Papadimitriou, V.; Paulini, M.; Paus, C.; Petteni, M.; Poling, R.; Procario, M.; Punzi, G.; Quinn, H.; Rakitine, A.; Ridolfi, G.; Shestermanov, K.; Signorelli, G.; Silva, J.P.; Skwarnicki, T.; Smith, A.; Speakman, B.; Stenson, K.; Stichelbaut, F.; Stone, S.; Sumorok, K.; Tanaka, M.; Taylor, W.; Trischuk, W.; Tseng, J.; Van Kooten, R.; Vasiliev, A.; Voloshin, M.; Wang, J.C.; Wicklund, A.B.; Wurthwein, F.; Xuan, N.; Yarba, J.; Yip, K.; Zieminski, A.

    2002-01-01

    This report provides a comprehensive overview of the prospects for B physics at the Tevatron. The work was carried out during a series of workshops starting in September 1999. There were four working groups: 1) CP Violation, 2) Rare and Semileptonic Decays, 3) Mixing and Lifetimes, 4) Production, Fragmentation and Spectroscopy. The report also includes introductory chapters on theoretical and experimental tools emphasizing aspects of B physics specific to hadron colliders, as well as overviews of the CDF, D0, and BTeV detectors, and a Summary.

  20. ATLAS calorimeters: Run-2 performances and Phase-II upgrades

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} cm^{-2} s^{-1}$. A Liquid Argon-lead sampling (LAr) calorimeter is employed as electromagnetic and hadronic calorimeters, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. This presentation gives first an overview of the detector operation and data quality, as well as of the achieved performances of the ATLAS calorimetry system. Additionally the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) are presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to $L \\simeq 7.5 × 10^{34} cm^{-2} s^{-1}$ and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope with longer latenc...

  1. The ATLAS Data Flow System for LHC Run II

    CERN Document Server

    Kazarov, Andrei; The ATLAS collaboration

    2015-01-01

    After its first shutdown, the LHC will provide pp collisions with increased luminosity and energy. In the ATLAS experiment, the Trigger and Data Acquisition (TDAQ) system has been upgraded to deal with the increased event rates. The Data Flow (DF) element of the TDAQ is a distributed hardware and software system responsible for buffering and transporting event data from the readout system to the High Level Trigger (HLT) and to the event storage. The DF has been reshaped in order to profit from the technological progress and to maximize the flexibility and efficiency of the data selection process. The updated DF is radically different from the previous implementation both in terms of architecture and expected performance. The pre-existing two level software filtering, known as L2 and the Event Filter, and the Event Building are now merged into a single process, performing incremental data collection and analysis. This design has many advantages, among which are: the radical simplification of the architecture, ...

  2. Overview talk on detector performances in run II (CMS)

    CERN Document Server

    Borrello, Laura

    2016-01-01

    The CMS experiment at the LHC successfully collected data in 2015 during proton-proton collision at 13 TeV center of mass energy and lead-lead collision at 5.02 TeV/nucleon. An intense activity has been performed to further improve the detector and the trigger before the LHC restart in 2016. Report on the performance of the trigger, on the commissioning of the main detector components and on the physics objects will be presented based on the latest collected data.

  3. A Measurement of the Bs Lifetime at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, Sinead [Boston Univ., MA (United States)

    2004-01-01

    This thesis describes a measurement of the proper lifetime of the B$0\\atop{s}$ mesons produced in proton-antiproton collisions at a center of mass energy of 1.96 TeV, collected by the CDF experiment at Fermilab. The B$0\\atop{s}$ meson lifetime is measured in its semileptonic decay mode, B$0\\atop{s}$ → ℓ+vD$-\\atop{s}$. The D$-\\atop{s}$ meson candidates are reconstructed in the decay mode D$-\\atop{s}$ → Φπ, with Φ → K+K-, in a trigger sample which requires a muon or an electron and another track which has a large impact parameters. The large impact parameter track is required by the silicon vertex trigger which is an innovative triggering device which has not previously been used in lifetime measurements. A total of 905 ± B$0\\atop{s}$ candidates are reconstructed in a sample which has an integrated luminosity of 140 pb-1 using data gathered between February 2002 and August 2003. The pseudo-proper lifetime distribution of these candidates is fitted with an unbinned maximum likelihood fit. This fit takes into account the missing momentum carried by the neutrino and the bias caused by requiring a track with large impact parameter by modeling these effects in simulations. The fit yields the result for the B$0\\atop{s}$ proper lifetime: cτ(B$0\\atop{s}$) = 419 ± 28$+16\\atop{-13}$ μm and τ(B$0\\atop{s}$) = 1.397 ± 0.093$+0.053\\atop{-0.043}$ ps where the first error is statistical and the second is systematic.

  4. Effects of running velocity on running kinetics and kinematics.

    Science.gov (United States)

    Brughelli, Matt; Cronin, John; Chaouachi, Anis

    2011-04-01

    Sixteen semiprofessional Australian football players performed running bouts at incremental velocities of 40, 60, 80, and 100% of their maximum velocity on a Woodway nonmotorized force treadmill. As running velocity increased from 40 to 60%, peak vertical and peak horizontal forces increased by 14.3% (effect size [ES] = 1.0) and 34.4% (ES = 4.2), respectively. The changes in peak vertical and peak horizontal forces from 60 to 80% were 1.0% (ES = 0.05) and 21.0% (ES = 2.9), respectively. Finally, the changes in peak vertical and peak horizontal forces from 80% to maximum were 2.0% (ES = 0.1) and 24.3% (ES = 3.4). In addition, both stride frequency and stride length significantly increased with each incremental velocity (p velocity (p velocity (r = 0.47). For the kinematic variables, only stride length was found to have a significant positive correlation with maximum running velocity (r = 0.66). It would seem that increasing maximal sprint velocity may be more dependent on horizontal force production as opposed to vertical force production.

  5. The ATLAS RunTimeTester

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    The ATLAS RunTimeTester is a job based software test system. The RunTimeTester runs jobs, and optional tests on the job outputs. Job and test results are reported via a web site. The system currently runs $\\approx$ 8000 jobs daily, and the web site receives $\\approx$ 25K hits a week. This note provides an overview of the system.

  6. Preventing Running Injuries through Barefoot Activity

    Science.gov (United States)

    Hart, Priscilla M.; Smith, Darla R.

    2008-01-01

    Running has become a very popular lifetime physical activity even though there are numerous reports of running injuries. Although common theories have pointed to impact forces and overpronation as the main contributors to chronic running injuries, the increased use of cushioning and orthotics has done little to decrease running injuries. A new…

  7. Effect of Minimalist Footwear on Running Efficiency

    OpenAIRE

    Gillinov, Stephen M.; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M

    2015-01-01

    Background: Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Hypothesis: Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Study Design: Randomized crossover trial. Level of Evidence: Level 3. Methods: Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a differ...

  8. Predicting intermittent running performance: critical velocity versus endurance index.

    Science.gov (United States)

    Buchheit, M; Laursen, P B; Millet, G P; Pactat, F; Ahmaidi, S

    2008-04-01

    The aim of the present study was to examine the ability of the critical velocity (CV) and the endurance index (EI) to assess endurance performance during intermittent exercise. Thirteen subjects performed two intermittent runs: 15-s runs intersected with 15 s of passive recovery (15/15) and 30-s runs with 30-s rest (30/30). Runs were performed until exhaustion at three intensities (100, 95 and 90 % of the speed reached at the end of the 30 - 15 intermittent fitness test, V (IFT)) to calculate i) CV from the slope of the linear relationship between the total covered distance and exhaustion time (ET) (iCV); ii) anaerobic distance capacity from the Y-intercept of the distance/duration relationship (iADC); and iii) EI from the relationship between the fraction of V (IFT) at which the runs were performed and the log-transformed ET (iEI). Anaerobic capacity was indirectly assessed by the final velocity achieved during the Maximal Anaerobic Running Test (VMART). ET was longer for 15/15 than for 30/30 runs at similar intensities. iCV (15/15) and iCV (30/30) were not influenced by changes in ET and were highly dependent on V (IFT). Neither iADC (15/15) nor iADC (30/30) were related to VMART. In contrast, iEI (15/15) was higher than iEI (30/30), and corresponded with the higher ET. In conclusion, only iEI estimated endurance capacity during repeated intermittent running.

  9. Inequality in the long run.

    Science.gov (United States)

    Piketty, Thomas; Saez, Emmanuel

    2014-05-23

    This Review presents basic facts regarding the long-run evolution of income and wealth inequality in Europe and the United States. Income and wealth inequality was very high a century ago, particularly in Europe, but dropped dramatically in the first half of the 20th century. Income inequality has surged back in the United States since the 1970s so that the United States is much more unequal than Europe today. We discuss possible interpretations and lessons for the future.

  10. Running Servers around Zero Degrees

    OpenAIRE

    PervilÀ, Mikko; Kangasharju, Jussi

    2010-01-01

    Data centers are a major consumer of electricity and a significant fraction of their energy use is devoted to cooling the data center. Recent prototype deployments have investigated the possibility of using outside air for cooling and have shown large potential savings in energy consumption. In this paper, we push this idea to the extreme, by running servers outside in Finnish winter. Our results show that commercial, off-the-shelf computer equipment can tolerate extreme conditions such as ou...

  11. GASIFICATION TEST RUN TC06

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services, Inc.

    2003-08-01

    This report discusses test campaign TC06 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC06. Test run TC06 was started on July 4, 2001, and completed on September 24, 2001, with an interruption in service between July 25, 2001, and August 19, 2001, due to a filter element failure in the PCD caused by abnormal operating conditions while tuning the main air compressor. The reactor temperature was varied between 1,725 and 1,825 F at pressures from 190 to 230 psig. In TC06, 1,214 hours of solid circulation and 1,025 hours of coal feed were attained with 797 hours of coal feed after the filter element failure. Both reactor and PCD operations were stable during the test run with a stable baseline pressure drop. Due to its length and stability, the TC06 test run provided valuable data necessary to analyze long-term reactor operations and to identify necessary modifications to improve equipment and process performance as well as progressing the goal of many thousands of hours of filter element exposure.

  12. Better in the long run

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Last week, the Chamonix workshop once again proved its worth as a place where all the stakeholders in the LHC can come together, take difficult decisions and reach a consensus on important issues for the future of particle physics. The most important decision we reached last week is to run the LHC for 18 to 24 months at a collision energy of 7 TeV (3.5 TeV per beam). After that, we’ll go into a long shutdown in which we’ll do all the necessary work to allow us to reach the LHC’s design collision energy of 14 TeV for the next run. This means that when beams go back into the LHC later this month, we’ll be entering the longest phase of accelerator operation in CERN’s history, scheduled to take us into summer or autumn 2011. What led us to this conclusion? Firstly, the LHC is unlike any previous CERN machine. Because it is a cryogenic facility, each run is accompanied by lengthy cool-down and warm-up phases. For that reason, CERN’s traditional &...

  13. LHC Report: Positive ion run!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    The current LHC ion run has been progressing very well. The first fill with 358 bunches per beam - the maximum number for the year - was on Tuesday, 15 November and was followed by an extended period of steady running. The quality of the beam delivered by the heavy-ion injector chain has been excellent, and this is reflected in both the peak and the integrated luminosity.   The peak luminosity in ATLAS reached 5x1026 cm-2s-1, which is a factor of ~16 more than last year's peak of 3x1025 cm-2s-1. The integrated luminosity in each of ALICE, ATLAS and CMS is now around 100 inverse microbarn, already comfortably over the nominal target for the run. The polarity of the ALICE spectrometer and solenoid magnets was reversed on Monday, 28 November with the aim of delivering another sizeable amount of luminosity in this configuration. On the whole, the LHC has been behaving very well recently, ensuring good machine availability. On Monday evening, however, a faulty level sensor in the cooling towe...

  14. ATLAS LUCID detector upgrade for LHC Run 2

    CERN Document Server

    Viazlo, Oleksandr; The ATLAS collaboration

    2015-01-01

    During the 2009-2013 data taking period (Run I) LUCID was successfully providing information about the luminosity delivered to ATLAS by the LHC. Starting from 2015 (Run II) the LHC machine is expected to provide about twice larger peak instantaneous luminosity and the bunch spacing in the machine is decreased by factor of two (from 50 ns to 25 ns). The original LUCID design could not cope with the new running conditions which would lead to saturation of photomultipliers and the luminosity algorithms as well as problems with the lifetime of the photomultipliers. To address these problems a new LUCID detector was built and the readout electronic was redesigned. This article describe the design, the performance, new calibration system and the first results of 13 TeV proton-proton collisions recorded by the new LUCID detector.

  15. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The manganese (II), cobalt (II), nickel (II) and copper (II) complexes of N, N' – ... temperature and coordinated water were determined ... indicating fairly stable complex compounds (Table 1). The complex compounds are insoluble [Table 2] in water and common organic solvents, but are readily soluble in ...

  16. LHCb siliicon detectors: the Run 1 to Run 2 transition and first experience of Run 2

    CERN Document Server

    Rinnert, Kurt

    2015-01-01

    LHCb is a dedicated experiment to study New Physics in the decays of heavy hadrons at the Large Hadron Collider (LHC) at CERN. The detector includes a high precision tracking system consisting of a silicon-strip vertex detector (VELO) surrounding the pp interaction region, a large- area silicon-strip detector located upstream of a dipole magnet (TT), and three stations of silicon- strip detectors (IT) and straw drift tubes placed downstream (OT). The operational transition of the silicon detectors VELO, TT and IT from LHC Run 1 to Run 2 and first Run 2 experiences will be presented. During the long shutdown of the LHC the silicon detectors have been maintained in a safe state and operated regularly to validate changes in the control infrastructure, new operational procedures, updates to the alarm systems and monitoring software. In addition, there have been some infrastructure related challenges due to maintenance performed in the vicinity of the silicon detectors that will be discussed. The LHCb silicon dete...

  17. Status of Higgs couplings after run 1 of the LHC

    Science.gov (United States)

    Bernon, Jérémy; Dumont, Béranger; Kraml, Sabine

    2014-10-01

    We provide an update of the global fits of the couplings of the 125.5 GeV Higgs boson using all publicly available experimental results from run 1 of the LHC as per summer 2014. The fits are done by means of the new public code Lilith 1.0. We present a selection of results given in terms of signal strengths, reduced couplings, and for the two-Higgs-doublet models of type I and II.

  18. Barefoot running: does it prevent injuries?

    Science.gov (United States)

    Murphy, Kelly; Curry, Emily J; Matzkin, Elizabeth G

    2013-11-01

    Endurance running has evolved over the course of millions of years and it is now one of the most popular sports today. However, the risk of stress injury in distance runners is high because of the repetitive ground impact forces exerted. These injuries are not only detrimental to the runner, but also place a burden on the medical community. Preventative measures are essential to decrease the risk of injury within the sport. Common running injuries include patellofemoral pain syndrome, tibial stress fractures, plantar fasciitis, and Achilles tendonitis. Barefoot running, as opposed to shod running (with shoes), has recently received significant attention in both the media and the market place for the potential to promote the healing process, increase performance, and decrease injury rates. However, there is controversy over the use of barefoot running to decrease the overall risk of injury secondary to individual differences in lower extremity alignment, gait patterns, and running biomechanics. While barefoot running may benefit certain types of individuals, differences in running stance and individual biomechanics may actually increase injury risk when transitioning to barefoot running. The purpose of this article is to review the currently available clinical evidence on barefoot running and its effectiveness for preventing injury in the runner. Based on a review of current literature, barefoot running is not a substantiated preventative running measure to reduce injury rates in runners. However, barefoot running utility should be assessed on an athlete-specific basis to determine whether barefoot running will be beneficial.

  19. 40 CFR 258.26 - Run-on/run-off control systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Run-on/run-off control systems. 258.26... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems. (a) Owners or operators of all MSWLF units must design, construct, and maintain: (1) A run-on control system...

  20. Fatigue associated with prolonged graded running.

    Science.gov (United States)

    Giandolini, Marlene; Vernillo, Gianluca; Samozino, Pierre; Horvais, Nicolas; Edwards, W Brent; Morin, Jean-Benoît; Millet, Guillaume Y

    2016-10-01

    Scientific experiments on running mainly consider level running. However, the magnitude and etiology of fatigue depend on the exercise under consideration, particularly the predominant type of contraction, which differs between level, uphill, and downhill running. The purpose of this review is to comprehensively summarize the neurophysiological and biomechanical changes due to fatigue in graded running. When comparing prolonged hilly running (i.e., a combination of uphill and downhill running) to level running, it is found that (1) the general shape of the neuromuscular fatigue-exercise duration curve as well as the etiology of fatigue in knee extensor and plantar flexor muscles are similar and (2) the biomechanical consequences are also relatively comparable, suggesting that duration rather than elevation changes affects neuromuscular function and running patterns. However, 'pure' uphill or downhill running has several fatigue-related intrinsic features compared with the level running. Downhill running induces severe lower limb tissue damage, indirectly evidenced by massive increases in plasma creatine kinase/myoglobin concentration or inflammatory markers. In addition, low-frequency fatigue (i.e., excitation-contraction coupling failure) is systematically observed after downhill running, although it has also been found in high-intensity uphill running for different reasons. Indeed, low-frequency fatigue in downhill running is attributed to mechanical stress at the interface sarcoplasmic reticulum/T-tubule, while the inorganic phosphate accumulation probably plays a central role in intense uphill running. Other fatigue-related specificities of graded running such as strategies to minimize the deleterious effects of downhill running on muscle function, the difference of energy cost versus heat storage or muscle activity changes in downhill, level, and uphill running are also discussed.

  1. Google Wave Up and Running

    CERN Document Server

    Ferrate, Andres

    2010-01-01

    Catch Google Wave, the revolutionary Internet protocol and web service that lets you communicate and collaborate in realtime. With this book, you'll understand how Google Wave integrates email, instant messaging (IM), wiki, and social networking functionality into a powerful and extensible platform. You'll also learn how to use its features, customize its functions, and build sophisticated extensions with Google Wave's open APIs and network protocol. Written for everyone -- from non-techies to ninja coders -- Google Wave: Up and Running provides a complete tour of this complex platform. You'

  2. HTML 5 up and running

    CERN Document Server

    Pilgrim, Mark

    2010-01-01

    If you don't know about the new features available in HTML5, now's the time to find out. This book provides practical information about how and why the latest version of this markup language will significantly change the way you develop for the Web. HTML5 is still evolving, yet browsers such as Safari, Mozilla, Opera, and Chrome already support many of its features -- and mobile browsers are even farther ahead. HTML5: Up & Running carefully guides you though the important changes in this version with lots of hands-on examples, including markup, graphics, and screenshots. You'll learn how to

  3. Variable Joint Elasticities in Running

    Science.gov (United States)

    Peter, Stephan; Grimmer, Sten; Lipfert, Susanne W.; Seyfarth, Andre

    In this paper we investigate how spring-like leg behavior in human running is represented at joint level. We assume linear torsion springs in the joints and between the knee and the ankle joint. Using experimental data of the leg dynamics we compute how the spring parameters (stiffness and rest angles) change during gait cycle. We found that during contact the joints reveal elasticity with strongly changing parameters and compare the changes of different parameters for different spring arrangements. The results may help to design and improve biologically inspired spring mechanisms with adjustable parameters.

  4. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.

    Science.gov (United States)

    Thompson, M A

    2017-08-01

    Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in

  5. FOCAL GENERATION OF PAROXYSMAL FAST RUNS DURING ELECTROGRAPHIC SEIZURES

    Science.gov (United States)

    Boucetta, Sofiane; Chauvette, Sylvain; Bazhenov, Maxim; Timofeev, Igor

    2008-01-01

    Purpose A cortically generated Lennox-Gastaut type seizure is associated with spike-wave/polyspike-wave discharges at 1.0–2.5 Hz and fast runs at 7–16 Hz. Here we studied the patterns of synchronization during runs of paroxysmal fast spikes. Methods Electrographic activities were recorded using multisite intracellular and field potential recordings in vivo from cats anesthetized with ketamine-xylazine. In different experiments, the recording electrodes were located either at short distances (<1 mm) or at longer distances (up to 12 mm). The main experimental findings were tested in computational models. Results In the majority of cases, the onset and the offset of fast runs occurred almost simultaneously in different recording sites. The amplitude and duration of fast runs could vary by orders of magnitude. Within the fast runs, the patterns of synchronization recorded in different electrodes were as following: (i) synchronous, in phase, (ii) synchronous, with phase shift, (iii) patchy, repeated in phase/phase shift transitions and (iv) non-synchronous, slightly different frequencies in different recording sites or absence of oscillatory activity in one of the recording sites; the synchronous patterns (in phase or with phase shifts) were most common. All these patterns could be recorded in the same pair of electrodes during different seizures and they were reproduced in a computational network model. Intrinsically-bursting (IB) neurons fired more spikes per cycle than any other neurons suggesting their leading role in the fast run generation. Conclusions Once started, the fast runs are generated locally with variable correlations between neighboring cortical foci. PMID:18616553

  6. The PS locomotive runs again

    CERN Multimedia

    2001-01-01

    Over forty years ago, the PS train entered service to steer the magnets of the accelerator into place... ... a service that was resumed last Tuesday. Left to right: Raymond Brown (CERN), Claude Tholomier (D.B.S.), Marcel Genolin (CERN), Gérard Saumade (D.B.S.), Ingo Ruehl (CERN), Olivier Carlier (D.B.S.), Patrick Poisot (D.B.S.), Christian Recour (D.B.S.). It is more than ten years since people at CERN heard the rumbling of the old PS train's steel wheels. Last Tuesday, the locomotive came back into service to be tested. It is nothing like the monstrous steel engines still running on conventional railways -just a small electric battery-driven vehicle employed on installing the magnets for the PS accelerator more than 40 years ago. To do so, it used the tracks that run round the accelerator. In fact, it is the grandfather of the LEP monorail. After PS was commissioned in 1959, the little train was used more and more rarely. This is because magnets never break down, or hardly ever! In fact, the loc...

  7. Mechanical power output during running accelerations in wild turkeys.

    Science.gov (United States)

    Roberts, Thomas J; Scales, Jeffrey A

    2002-05-01

    We tested the hypothesis that the hindlimb muscles of wild turkeys (Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg(-1) hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg(-1) muscle during the highest accelerations. The high power outputs observed during accelerations

  8. Measurement of the W and Z boson production cross sections in p {anti p} collisions at {radical}s = 1.8 TeV with the D-Zero detector

    Energy Technology Data Exchange (ETDEWEB)

    Grudberg, P.M. [California Univ., Berkeley, CA (United States)

    1997-12-31

    This thesis reports on the measurement of the W and Z boson inclusive production cross sections ({sigma}{sub W} and {sigma}{sub Z}) times electronic branching ratios (Br(W {yields} e{nu}) and Br(Z {yields} ee)) in p{anti p} collisions at {radical}s = 1.8 TeV. The analysis is based on 12.8 pb{sup -1} of data taken in the 1992-1993 run by the D0 detector at the Fermilab Tevatron collider; the cross sections were measured to be: {sigma}{sub W} {center_dot} Br(W {yields} e{nu}) = 2. 36 {+-} 0.02 {+-} 0.07 {+-} 0.13 nb and {sigma}{sub Z} {center_dot} Br(Z {yields} ee) = 0.218 {+-} 0.008 {+-} 0.008 {+-} 0.012 nb. The first error is statistical, the second error represents the non- luminosity systematic error, and the third error shows the uncertainty in the luminosity determination. Future prospects for similar measurements based on larger samples of data are discussed.

  9. Measurement of the W and Z boson production cross sections in p$\\bar{p}$ collisions at √s = 1.8 TeV with the D-Zero detector

    Energy Technology Data Exchange (ETDEWEB)

    Grudberg, Peter Matthew [California Univ., Berkeley, CA (United States)

    1997-12-31

    This thesis reports on the measurement of the W and Z boson inclusive production cross sections (σW and σZ) times electronic branching ratios (Br(W → ev) and Br(Z → ee)) in p$\\bar{p}$ collisions at √s = 1.8 TeV. The analysis is based on 12.8 pb-1 of data taken in the 1992-1993 run by the D0 detector at the Fermilab Tevatron collider; the cross sections were measured to be: σW ∙ Br(W → ev) = 2. 36 ± 0.02 ± 0.07 ± 0.13 nb and σZ ∙ Br(Z → ee) = 0.218 ± 0.008 ± 0.008 ± 0.012 nb. The first error is statistical, the second error represents the non- luminosity systematic error, and the third error shows the uncertainty in the luminosity determination. Future prospects for similar measurements based on larger samples of data are discussed.

  10. Run-up on Offshore Windturbine Foundations

    DEFF Research Database (Denmark)

    De Vos, Leen; Larsen, Brian Juul; Frigaard, Peter

    For the present report a testprogramme has been performed to determine the run-up on offshore windturbine foundations.......For the present report a testprogramme has been performed to determine the run-up on offshore windturbine foundations....

  11. Running Parallel Discrete Event Simulators on Sierra

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  12. Is Running Bad for Your Knees?

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_162903.html Is Running Bad for Your Knees? Study suggests it may ... THURSDAY, Jan. 5, 2017 (HealthDay News) -- Everybody believes running can leave you sore and swollen, right? Well, ...

  13. Quantification of evaporative running loss emissions from gasoline-powered passenger cars in California. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McClement, D.

    1992-01-01

    The purpose of the study was to collect evaporative running emissions data from a cross section of in-use, light-duty passenger cars. Forty vehicles were procured and tested using the 'LA-4' cycle (the EPA Urban Dynamometer Driving Cycle (UDDS)) and the New York City Cycle (NYCC). The LA-4 cycle was run three times with a two minute idle period between the first two runs. The NYCC was run six times with a two minute idle between the first five runs of the cycle. Tests were performed at 95 and 105 degrees Farenheit, and using 7.5 and 9.0 Reid Vapor Pressure (RVP) fuel. The report describes two types of running losses - Type 1 where emissions are emitted at a constant, low level (typical of late model, properly operating vehicles), and Type II emissions, where there is a high rate of emissions (typical in uncontrolled vehicles).

  14. Robotic Bipedal Running: Increasing disturbance rejection

    NARCIS (Netherlands)

    Karssen, J.G.D.

    2013-01-01

    The goal of the research presented in this thesis is to increase the understanding of the human running gait. The understanding of the human running gait is essential for the development of devices, such as prostheses and orthoses, that enable disabled people to run or that enable able people to inc

  15. Wave Run-Up on Rubble Breakwaters

    DEFF Research Database (Denmark)

    Van de Walle, Bjorn; De Rouck, Julien; Troch, Peter

    2005-01-01

    Seven sets of data for wave run-up on a rubble mound breakwater were combined and re-analysed, with full-scale, large-scale and small-scale model test results being taken into account. The dimensionless wave run-up value Ru-2%/Hm0 was considered, where R u-2% is the wave run-up height exceeded by...

  16. Head injury from a bungee run.

    Science.gov (United States)

    Singh, Pankaj; Convery, Fiona; Watt, Michael; Fulton, Ailsa; McKinstry, Steven; Flannery, Thomas

    2012-04-01

    An adaptation of bungee jumping, 'bungee running', involves participants attempting to run as far as they can whilst connected to an elastic rope which is anchored to a fixed point. Usually considered a safe recreational activity, we report a potentially life-threatening head injury following a bungee running accident.

  17. Running Patterns of Highly Skilled Distance Runners.

    Science.gov (United States)

    Dunetts, Michael J.; Dillman, Charles J.

    The biomechanical elements inherent in the running styles of Olympic-level athletes were examined in order to obtain a range of parameter values for specific running velocities. Forty-eight athletes participated in middle and long distance running events that were filmed and later analyzed to determine the relationship between the physical…

  18. Barefoot running survey: Evidence from the field

    Directory of Open Access Journals (Sweden)

    David Hryvniak

    2014-06-01

    Conclusion: Prior studies have found that barefoot running often changes biomechanics compared to shod running with a hypothesized relationship of decreased injuries. This paper reports the result of a survey of 509 runners. The results suggest that a large percentage of this sample of runners experienced benefits or no serious harm from transitioning to barefoot or minimal shoe running.

  19. Running with technology: Where are we heading?

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Mueller, Florian 'Floyd'

    2014-01-01

    Running has become popular in recent years, and numerous runners utilize wearable technologies in order to improve their run training. This paper investigates the development and trends in technologies used for run training, and describes how these are changing from solely focusing...

  20. FPGA Trigger System to Run Klystrons

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Darius; /Texas A-M /SLAC

    2010-08-25

    The Klystron Department is in need of a new trigger system to update the laboratory capabilities. The objective of the research is to develop the trigger system using Field Programmable Gate Array (FPGA) technology with a user interface that will allow one to communicate with the FPGA via a Universal Serial Bus (USB). This trigger system will be used for the testing of klystrons. The key materials used consists of the Xilinx Integrated Software Environment (ISE) Foundation, a Programmable Read Only Memory (Prom) XCF04S, a Xilinx Spartan 3E 35S500E FPGA, Xilinx Platform Cable USB II, a Printed Circuit Board (PCB), a 100 MHz oscillator, and an oscilloscope. Key considerations include eight triggers, two of which have variable phase shifting capabilities. Once the project was completed the output signals were able to be manipulated via a Graphical User Interface by varying the delay and width of the signal. This was as planned; however, the ability to vary the phase was not completed. Future work could consist of being able to vary the phase. This project will give the operators in the Klystron Department more flexibility to run various tests.

  1. Biomechanics and analysis of running gait.

    Science.gov (United States)

    Dugan, Sheila A; Bhat, Krishna P

    2005-08-01

    Physical activity, including running, is important to general health by way of prevention of chronic illnesses and their precursors. To keep runners healthy, it is paramount that one has sound knowledge of the biomechanics of running and assessment of running gait. More so, improving performance in competitive runners is based in sound training and rehabilitation practices that are rooted firmly in biomechanical principles. This article summarized the biomechanics of running and the means with which one can evaluate running gait. The gait assessment techniques for collecting and analyzing kinetic and kinematic data can provide insights into injury prevention and treatment and performance enhancement.

  2. Are multiple runs better than one?

    Energy Technology Data Exchange (ETDEWEB)

    Cantu-Paz, E

    2001-01-04

    This paper investigates whether it is better to use a certain constant amount of computational resources in a single run with a large population, or in multiple runs with smaller populations. The paper presents the primary tradeoffs involved in this problem and identifies the conditions under which there is an advantage to use multiple small runs. The paper uses an existing model that relates the quality of the solutions reached by a GA with its population size. The results suggest that in most cases a single run with the largest population possible reaches a better solution than multiple isolated runs. The findings are validated with experiments on functions of varying difficulty.

  3. Self-Stabilising Quadrupedal Running by Mechanical Design

    Directory of Open Access Journals (Sweden)

    Panagiotis Chatzakos

    2009-01-01

    Full Text Available Dynamic stability allows running animals to maintain preferred speed during locomotion over rough terrain. It appears that rapid disturbance rejection is an emergent property of the mechanical system. In running robots, simple motor control seems to be effective in the negotiation of rough terrain when used in concert with a mechanical system that stabilises passively. Spring-like legs are a means for providing self-stabilising characteristics against external perturbations. In this paper, we show that a quadruped robot could be able to perform self-stable running behaviour in significantly broader ranges of forward speed and pitch rate with a suitable mechanical design, which is not limited to choosing legs spring stiffness only. The results presented here are derived by studying the stability of the passive dynamics of a quadruped robot running in the sagittal plane in a dimensionless context and might explain the success of simple, open loop running controllers on existing experimental quadruped robots. These can be summarised in (a the self-stabilised behaviour of a quadruped robot for a particular gait is greatly related to the magnitude of its dimensionless body inertia, (b the values of hip separation, normalised to rest leg length, and leg relative stiffness of a quadruped robot affect the stability of its motion and should be in inverse proportion to its dimensionless body inertia, and (c the self-stable regime of quadruped running robots is enlarged at relatively high forward speeds. We anticipate the proposed guidelines to assist in the design of new, and modifications of existing, quadruped robots. As an example, specific design changes for the Scout II quadruped robot that might improve its performance are proposed.

  4. What we can learn about running from barefoot running: an evolutionary medical perspective.

    Science.gov (United States)

    Lieberman, Daniel E

    2012-04-01

    Barefoot running, which was how people ran for millions of years, provides an opportunity to study how natural selection adapted the human body to run. Because humans evolved to run barefoot, a barefoot running style that minimizes impact peaks and provides increased proprioception and foot strength, is hypothesized to help avoid injury, regardless of whether one is wearing shoes.

  5. The physiological consequences of acceleration during shuttle running.

    Science.gov (United States)

    Akenhead, R; French, D; Thompson, K G; Hayes, P R

    2015-04-01

    This study examined the acceleration demands associated with changing direction and the subsequent physiological consequences of acceleration during running at 3 submaximal speeds. 10 male professional footballers completed four 600 m running bouts at 3 speeds (2.50, 3.25 & 4.00 m·s(-1)). Each bout was in the format of either: i) 3 laps of a 200 m track (CON), ii) ten 60 m shuttles (S60), iii) twenty 30 m shuttles (S30), or iv) thirty 20 m shuttles (S20). Peak heart rate (HRPEAK), blood lactate concentration (BLa) and RPE (Borg CR-10) were recorded for each bout. A single change of direction required 1.2, 1.5 and 2.0 s of acceleration at running speeds of 2.50, 3.25 and 4.00 m s(-1) respectively. An increase in time spent accelerating produced a linear increase in BLa (r=0.43-0.74) and RPE (r=0.81-0.93) at all speeds. Acceleration increases linearly with change of direction frequency during submaximal shuttle running. Increased time spent accelerating elicits proportional increases in perceived exertion, BLa and HRPEAK. The current study further underlines the need to consider acceleration when quantifying training load during activities involving numerous changes of direction. © Georg Thieme Verlag KG Stuttgart · New York.

  6. A Globally Convergent Algorithm for the Run-to-Run Control of Systems with Sector Nonlinearities

    OpenAIRE

    François, Grégory; Srinivasan, Balasubrahmanya; Bonvin, Dominique

    2011-01-01

    Run-to-run control is a technique that exploits the repetitive nature of processes to iteratively adjust the inputs and drive the run-end outputs to their reference values. It can be used to control both static and finite-time dynamic systems. Although the run-end outputs of dynamic systems result from the integration of process dynamics during the run, the relationship between the input parameters p (fixed at the beginning of the run) and the run-end outputs z (available at the end of t...

  7. Daytime Running Lights. Public Consultation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    The Road Safety Authority is considering the policy options available to promote the use of Daytime Running Lights (DRL), including the possibility of mandating the use of DRL on all vehicles. An EC Directive would make DRL mandatory for new vehicles from 2011 onwards and by 2024 it is predicted that due to the natural replacement of the national fleet, almost all vehicles would be equipped with DRL. The RSA is inviting views on introducing DRL measures earlier, whereby all road vehicles would be required to use either dipped head lights during hours of daylight or dedicated DRL from next year onwards. The use of DRL has been found to enhance the visibility of vehicles, thereby increasing road safety by reducing the number and severity of collisions. This paper explores the benefits of DRL and the implications for all road users including pedestrians, cyclists and motorcyclists. In order to ensure a comprehensive consideration of all the issues, the Road Safety Authority is seeking the views and advice of interested parties.

  8. Running Club - Nocturne des Evaux

    CERN Multimedia

    Running club

    2017-01-01

    Les coureurs du CERN sont encore montés sur les plus hautes marches du podium lors de la course interentreprises. Cette course d’équipe qui se déroule de nuit et par équipe de 3 à 4 coureurs est unique dans la région de par son originalité : départ groupé toutes les 30 secondes, les 3 premiers coureurs doivent passer la ligne d’arrivée ensemble. Double victoire pour le running club a la nocturne !!!! 1ère place pour les filles et 22e au classement général; 1ère place pour l'équipe mixte et 4e au général, battant par la même occasion le record de l'épreuve en mixte d'environ 1 minute; 10e place pour l'équipe homme. Retrouvez tous les résultats sur http://www.chp-geneve.ch/web-cms/index.php/nocturne-des-evaux

  9. A Paradigm of Uphill Running

    Science.gov (United States)

    Padulo, Johnny; Powell, Douglas; Milia, Raffaele; Ardigò, Luca Paolo

    2013-01-01

    The biomechanical management of bioenergetics of runners when running uphill was investigated. Several metabolic and mechanical variables have been studied simultaneously to spread light on the locomotory strategy operated by humans for effective locomotion. The studied variables were: heart rate, heart rate variability, oxygen intake and blood lactate, metabolic cost, kinematics, ground reaction force and muscular activity. 18 high-level competitive male runners ran at 70% VO2max on different uphill slope conditions: 0%, 2% and 7%. Modifications were significant in almost all variables studied, and were more pronounced with increasing incline. Step frequency/length and ground reaction force are adjusted to cope with both the task of uphill progression and the available (limited) metabolic power. From 0% to 7% slope, step frequency and ground reaction force and metabolic cost increased concurrently by 4%, 12% and 53%, respectively (with a 4% step length decrease as well). It is hypothesised that this biomechanical management is allowed by an environment-body communication performed by means of specific muscular activity. PMID:23874850

  10. LHCf completes its first run

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    LHCf, one of the three smaller experiments at the LHC, has completed its first run. The detectors were removed last week and the analysis of data is continuing. The first results will be ready by the end of the year.   One of the two LHCf detectors during the removal operations inside the LHC tunnel. LHCf is made up of two independent detectors located in the tunnel 140 m either side of the ATLAS collision point. The experiment studies the secondary particles created during the head-on collisions in the LHC because they are similar to those created in a cosmic ray shower produced when a cosmic particle hits the Earth’s atmosphere. The focus of the experiment is to compare the various shower models used to estimate the primary energy of ultra-high-energy cosmic rays. The energy of proton-proton collisions at the LHC will be equivalent to a cosmic ray of 1017eV hitting the atmosphere, very close to the highest energies observed in the sky. “We have now completed the fir...

  11. Diphoton Excess and Running Couplings

    CERN Document Server

    Bae, Kyu Jung; Hamaguchi, Koichi; Moroi, Takeo

    2016-01-01

    The recently observed diphoton excess at the LHC may suggest the existence of a singlet (pseudo-) scalar particle with a mass of 750 GeV which couples to gluons and photons. Assuming that the couplings to gluons and photons originate from loops of fermions and/or scalars charged under the Standard Model gauge groups, we show that here is a model-independent upper bound on the cross section $\\sigma(pp\\to S\\to \\gamma\\gamma)$ as a function of the cutoff scale $\\Lambda$ and masses of the fermions and scalars in the loop. Such a bound comes from the fact that the contribution of each particle to the diphoton event amplitude is proportional to its contribution to the one-loop $\\beta$ functions of the gauge couplings. We also investigate the perturbativity of running Yukawa couplings in models with fermion loops, and show the upper bounds on $\\sigma(pp\\to S\\to \\gamma\\gamma)$ for explicit models.

  12. Impact Accelerations of Barefoot and Shod Running.

    Science.gov (United States)

    Thompson, M; Seegmiller, J; McGowan, C P

    2016-05-01

    During the ground contact phase of running, the body's mass is rapidly decelerated resulting in forces that propagate through the musculoskeletal system. The repetitive attenuation of these impact forces is thought to contribute to overuse injuries. Modern running shoes are designed to reduce impact forces, with the goal to minimize running related overuse injuries. Additionally, the fore/mid foot strike pattern that is adopted by most individuals when running barefoot may reduce impact force transmission. The aim of the present study was to compare the effects of the barefoot running form (fore/mid foot strike & decreased stride length) and running shoes on running kinetics and impact accelerations. 10 healthy, physically active, heel strike runners ran in 3 conditions: shod, barefoot and barefoot while heel striking, during which 3-dimensional motion analysis, ground reaction force and accelerometer data were collected. Shod running was associated with increased ground reaction force and impact peak magnitudes, but decreased impact accelerations, suggesting that the midsole of running shoes helps to attenuate impact forces. Barefoot running exhibited a similar decrease in impact accelerations, as well as decreased impact peak magnitude, which appears to be due to a decrease in stride length and/or a more plantarflexed position at ground contact.

  13. Determinants Of Savings Behavior In Pakistan: Long Run - Short Run Association And Causality

    OpenAIRE

    Ahmad Fawad

    2015-01-01

    The existing studies on private savings have mostly investigated the long run and short association of different variables with private savings, whereas no known study has investigated both long run and short run causality of variables against private savings by using data of Pakistan. The current study used time series data of Pakistan over the period of 1972 to 2012 and employed long run cointegration test, first normalized equation for long run association, vector error correction model fo...

  14. Designing Run-Time Environments to Have Predefined Global Dynamics

    Directory of Open Access Journals (Sweden)

    Massimo Monti

    2013-06-01

    Full Text Available The stability and the predictability of a computer network algorithm's performance are as important as themain functional purpose of networking software. However, asserting or deriving such properties from thefinite state machine implementations of protocols is hard and, except for singular cases like TCP, is notdone today. In this paper, we propose to design and study run-time environments for networking protocolswhich inherently enforce desirable, predictable global dynamics. To this end we merge two complementarydesign approaches: (i A design-time and bottom up approach that enables us to engineer algorithms basedon an analyzable (reaction flow model. (ii A run-time and top-down approach based on an autonomousstack composition framework, which switches among implementation alternatives to find optimal operationconfigurations. We demonstrate the feasibility of our self-optimizing system in both simulations and real-world Internet setups.

  15. DARHT II Scaled Accelerator Tests on the ETA II Accelerator*

    Energy Technology Data Exchange (ETDEWEB)

    Weir, J T; Anaya Jr, E M; Caporaso, G J; Chambers, F W; Chen, Y; Falabella, S; Lee, B S; Paul, A C; Raymond, B A; Richardson, R A; Watson, J A; Chan, D; Davis, H A; Day, L A; Scarpetti, R D; Schultze, M E; Hughes, T P

    2005-05-26

    The DARHT II accelerator at LANL is preparing a series of preliminary tests at the reduced voltage of 7.8 MeV. The transport hardware between the end of the accelerator and the final target magnet was shipped to LLNL and installed on ETA II. Using the ETA II beam at 5.2 MeV we completed a set of experiments designed reduce start up time on the DARHT II experiments and run the equipment in a configuration adapted to the reduced energy. Results of the beam transport using a reduced energy beam, including the kicker and kicker pulser system will be presented.

  16. Tevatron End-of-Run Beam Physics Experiments

    CERN Document Server

    Valishev, A; Miyamoto, R; White, S; Schmidt, F; Qiang, J

    2012-01-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beambeam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  17. The Effect of Training in Minimalist Running Shoes on Running Economy.

    Science.gov (United States)

    Ridge, Sarah T; Standifird, Tyler; Rivera, Jessica; Johnson, A Wayne; Mitchell, Ulrike; Hunter, Iain

    2015-09-01

    The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key pointsRunning in minimalist footwear did not result in a change in running economy compared to running in traditional footwear

  18. EnergyPlus Run Time Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-09-20

    EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences, identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.

  19. Training errors and running related injuries

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Østergaard; Buist, Ida; Sørensen, Henrik

    2012-01-01

    The purpose of this systematic review was to examine the link between training characteristics (volume, duration, frequency, and intensity) and running related injuries.......The purpose of this systematic review was to examine the link between training characteristics (volume, duration, frequency, and intensity) and running related injuries....

  20. Minimum Wage Effects in the Longer Run

    Science.gov (United States)

    Neumark, David; Nizalova, Olena

    2007-01-01

    Exposure to minimum wages at young ages could lead to adverse longer-run effects via decreased labor market experience and tenure, and diminished education and training, while beneficial longer-run effects could arise if minimum wages increase skill acquisition. Evidence suggests that as individuals reach their late 20s, they earn less the longer…

  1. Training errors and running related injuries

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Østergaard; Buist, Ida; Sørensen, Henrik;

    2012-01-01

    The purpose of this systematic review was to examine the link between training characteristics (volume, duration, frequency, and intensity) and running related injuries.......The purpose of this systematic review was to examine the link between training characteristics (volume, duration, frequency, and intensity) and running related injuries....

  2. Impact of Running Away on Girls' Pregnancy

    Science.gov (United States)

    Thrane, Lisa E.; Chen, Xiaojin

    2012-01-01

    This study assessed the impact of running away on pregnancy in the subsequent year among U.S. adolescents. We also investigated interactions between running away and sexual assault, romance, and school disengagement. Pregnancy among females between 11 and 17 years (n = 6100) was examined utilizing the Longitudinal Study of Adolescent Health (Add…

  3. Running biomechanics: shorter heels, better economy.

    Science.gov (United States)

    Scholz, M N; Bobbert, M F; van Soest, A J; Clark, J R; van Heerden, J

    2008-10-01

    Better running economy (i.e. a lower rate of energy consumption at a given speed) is correlated with superior distance running performance. There is substantial variation in running economy, even among elite runners. This variation might be due to variation in the storage and reutilization of elastic energy in tendons. Using a simple musculoskeletal model, it was predicted that the amount of energy stored in a tendon during a given movement depends more critically on moment arm than on mechanical properties of the tendon, with the amount of stored energy increasing as the moment arm gets smaller. Assuming a link between elastic energy reutilization and overall metabolic cost of running, a smaller moment arm should therefore be associated with superior running economy. This prediction was confirmed experimentally in a group of 15 highly trained runners. The moment arm of the Achilles tendon was determined from standardized photographs of the ankle, using the position of anatomical landmarks. Running economy was measured as the rate of metabolic energy consumption during level treadmill running at a speed of 16 km h(-1). A strong correlation was found between the moment arm of the Achilles tendon and running economy. Smaller muscle moment arms correlated with lower rates of metabolic energy consumption (r(2)=0.75, P<0.001).

  4. Biomechanics of Distance Running: A Longitudinal Study

    Science.gov (United States)

    Nelson, Richard C.; Gregor, Robert J.

    1976-01-01

    Training for distance running over a long period produces meaningful changes in the running mechanics of experienced runners, as revealed in this longitudinal study of the biomechanical components of stride length, stride rate, stride time, and support and nonsupport time. (MB)

  5. 40 CFR 92.126 - Test run.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following steps... water from the pretest value, the test is void. (7)(i) For bag samples, as soon as possible transfer...

  6. Teaching Bank Runs with Classroom Experiments

    Science.gov (United States)

    Balkenborg, Dieter; Kaplan, Todd; Miller, Timothy

    2011-01-01

    Once relegated to cinema or history lectures, bank runs have become a modern phenomenon that captures the interest of students. In this article, the authors explain a simple classroom experiment based on the Diamond-Dybvig model (1983) to demonstrate how a bank run--a seemingly irrational event--can occur rationally. They then present possible…

  7. T-shirts from "Run for 32"

    OpenAIRE

    2012-01-01

    Two views of t-shirts with "Run for 32" written on them The "Run for 32" race team, sponsored by TechSideline.com, participated in the SunTrust Rock 'n' Roll Half-Marathon, September 2, 2007. Shirt is inscribed with the names of the victims.; Compound Object

  8. Orthopaedic Perspective on Barefoot and Minimalist Running.

    Science.gov (United States)

    Roth, Jonathan; Neumann, Julie; Tao, Matthew

    2016-03-01

    In recent years, there has been a movement toward barefoot and minimalist running. Advocates assert that a lack of cushion and support promotes a forefoot or midfoot strike rather than a rearfoot strike, decreasing the impact transient and stress on the hip and knee. Although the change in gait is theorized to decrease injury risk, this concept has not yet been fully elucidated. However, research has shown diminished symptoms of chronic exertional compartment syndrome and anterior knee pain after a transition to minimalist running. Skeptics are concerned that, because of the effects of the natural environment and the lack of a standardized transition program, barefoot running could lead to additional, unforeseen injuries. Studies have shown that, with the transition to minimalist running, there is increased stress on the foot and ankle and risk of repetitive stress injuries. Nonetheless, despite the large gap of evidence-based knowledge on minimalist running, the potential benefits warrant further research and consideration.

  9. Middle cerebral artery blood velocity during running

    DEFF Research Database (Denmark)

    Lyngeraa, Tobias; Pedersen, Lars Møller; Mantoni, T

    2013-01-01

    for eight subjects, respectively, were excluded from analysis because of insufficient signal quality. Running increased mean arterial pressure and mean MCA velocity and induced rhythmic oscillations in BP and in MCA velocity corresponding to the difference between step rate and heart rate (HR) frequencies......) blood flow velocity, photoplethysmographic finger BP, and step frequency were measured continuously during three consecutive 5-min intervals of treadmill running at increasing running intensities. Data were analysed in the time and frequency domains. BP data for seven subjects and MCA velocity data....... During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow...

  10. Recent results of high p(T) physics at the CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Tsuno, Soushi; /Okayama U.

    2005-02-01

    The Tevatron Run II program has been in progress since 2001. The CDF experiment has accumulated roughly five times as much data as did Run I, with much improved detectors. Preliminary results from the CDF experiment are presented. The authors focus on recent high p{sub T} physics results in the Tevatron Run II program.

  11. The SVX II silicon vertex detector at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Worm, S. [New Mexico Univ., Albuquerque, NM (United States). New Mexico Center for Particle Physics; CDF Collaboration

    1996-09-01

    The CDF silicon vertex detector is being upgraded for use in Run II of the Fermilab collider. The increased luminosity in Run II, coupled with the desire for increased acceptance and secondary vertex triggering, necessitates a complete redesign of the previous generation tracker. Details of the design are described.

  12. Rocker shoe, minimalist shoe, and standard running shoe : A comparison of running economy

    NARCIS (Netherlands)

    Sobhani, Sobhan; Bredeweg, Steven; Dekker, Rienk; Kluitenberg, Bas; van den Heuvel, Edwin; Hijmans, Juha; Postema, Klaas

    2014-01-01

    Objectives: Running with rocker shoes is believed to prevent lower limb injuries. However, it is not clear how running in these shoes affects the energy expenditure. The purpose of this study was, therefore, to assess the effects of rocker shoes on running economy in comparison with standard and min

  13. A Runs-Test Algorithm: Contingent Reinforcement and Response Run Structures

    Science.gov (United States)

    Hachiga, Yosuke; Sakagami, Takayuki

    2010-01-01

    Four rats' choices between two levers were differentially reinforced using a runs-test algorithm. On each trial, a runs-test score was calculated based on the last 20 choices. In Experiment 1, the onset of stimulus lights cued when the runs score was smaller than criterion. Following cuing, the correct choice was occasionally reinforced with food,…

  14. Rocker shoe, minimalist shoe, and standard running shoe : A comparison of running economy

    NARCIS (Netherlands)

    Sobhani, Sobhan; Bredeweg, Steven; Dekker, Rienk; Kluitenberg, Bas; van den Heuvel, Edwin; Hijmans, Juha; Postema, Klaas

    Objectives: Running with rocker shoes is believed to prevent lower limb injuries. However, it is not clear how running in these shoes affects the energy expenditure. The purpose of this study was, therefore, to assess the effects of rocker shoes on running economy in comparison with standard and

  15. Energetics of running: a new perspective.

    Science.gov (United States)

    Kram, R; Taylor, C R

    1990-07-19

    The amount of energy used to run a mile is nearly the same whether it is run at top speed or at a leisurely pace (although it is used more rapidly at the higher speed). This puzzling independence of energy cost and speed is found generally among running animals, although, on a per gram basis, cost is much higher for smaller animals. Running involves little work against the environment; work is done by muscles and tendons to lift and accelerate the body and limbs. Some of the work is recovered from muscle-tendon springs without metabolic cost and work rate does not parallel metabolic rate with either speed or size. Regardless of the amount of work muscles do, they must be activated and develop force to support the weight of the body. Load-carrying experiments have shown that the cost of supporting an extra newton of load is the same as the weight-specific cost of running. Size differences in cost are proportional to stride frequency at equivalent speeds, suggesting that the time available for developing force is important in determining cost. We report a simple inverse relationship between the rate of energy used for running and the time the foot applies force to the ground during each stride. These results support the hypothesis that it is primarily the cost of supporting the animal's weight and the time course of generating this force that determines the cost of running.

  16. Running Economy from a Muscle Energetics Perspective

    Directory of Open Access Journals (Sweden)

    Jared R. Fletcher

    2017-06-01

    Full Text Available The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (Erun can be obtained with this approach. Erun is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of Erun from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting Erun are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics.

  17. Middle cerebral artery blood velocity during running.

    Science.gov (United States)

    Lyngeraa, T S; Pedersen, L M; Mantoni, T; Belhage, B; Rasmussen, L S; van Lieshout, J J; Pott, F C

    2013-02-01

    Running induces characteristic fluctuations in blood pressure (BP) of unknown consequence for organ blood flow. We hypothesized that running-induced BP oscillations are transferred to the cerebral vasculature. In 15 healthy volunteers, transcranial Doppler-determined middle cerebral artery (MCA) blood flow velocity, photoplethysmographic finger BP, and step frequency were measured continuously during three consecutive 5-min intervals of treadmill running at increasing running intensities. Data were analysed in the time and frequency domains. BP data for seven subjects and MCA velocity data for eight subjects, respectively, were excluded from analysis because of insufficient signal quality. Running increased mean arterial pressure and mean MCA velocity and induced rhythmic oscillations in BP and in MCA velocity corresponding to the difference between step rate and heart rate (HR) frequencies. During running, rhythmic oscillations in arterial BP induced by interference between HR and step frequency impact on cerebral blood velocity. For the exercise as a whole, average MCA velocity becomes elevated. These results suggest that running not only induces an increase in regional cerebral blood flow but also challenges cerebral autoregulation. © 2012 John Wiley & Sons A/S.

  18. The physiology of deep-water running.

    Science.gov (United States)

    Reilly, Thomas; Dowzer, Clare N; Cable, N T

    2003-12-01

    Deep-water running is performed in the deep end of a swimming pool, normally with the aid of a flotation vest. The method is used for purposes of preventing injury and promoting recovery from strenuous exercise and as a form of supplementary training for cardiovascular fitness. Both stroke volume and cardiac output increase during water immersion: an increase in blood volume largely offsets the cardiac decelerating reflex at rest. At submaximal exercise intensities, blood lactate responses to exercise during deep-water running are elevated in comparison to treadmill running at a given oxygen uptake (VO2). While VO2, minute ventilation and heart rate are decreased under maximal exercise conditions in the water, deep-water running nevertheless can be justified as providing an adequate stimulus for cardiovascular training. Responses to training programmes have confirmed the efficacy of deep-water running, although positive responses are most evident when measured in a water-based test. Aerobic performance is maintained with deep-water running for up to 6 weeks in trained endurance athletes; sedentary individuals benefit more than athletes in improving maximal oxygen uptake. There is some limited evidence of improvement in anaerobic measures and in upper body strength in individuals engaging in deep-water running. A reduction in spinal loading constitutes a role for deep-water running in the prevention of injury, while an alleviation of muscle soreness confirms its value in recovery training. Further research into the applications of deep-water running to exercise therapy and athletes' training is recommended.

  19. Implications of a Running Dark Photon Coupling

    CERN Document Server

    Davoudiasl, Hooman

    2015-01-01

    For an "invisible" dark photon $Z_d$ that dominantly decays into dark states, the running of its fine structure constant $\\alpha_d$ with momentum transfer $q > m_{Z_d}$ could be significant. A similar running in the kinetic mixing parameter $\\varepsilon^2$ can be induced through its dependence on $\\alpha_d(q)$. The running of couplings could potentially be detected in "dark matter beam" experiments, for which theoretical considerations imply $\\alpha_d (m_{Z_d}) \\lesssim 0.5$.

  20. Gravitational Baryogenesis in Running Vacuum models

    CERN Document Server

    Oikonomou, V K; Nunes, Rafael C

    2016-01-01

    We study the gravitational baryogenesis mechanism for generating baryon asymmetry in the context of running vacuum models. Regardless if these models can produce a viable cosmological evolution, we demonstrate that they produce a non-zero baryon-to-entropy ratio even if the Universe is filled with conformal matter. This is a sound difference between the running vacuum gravitational baryogenesis and the Einstein-Hilbert one, since in the latter case, the predicted baryon-to-entropy ratio is zero. We consider two running vacuum models and show that the resulting baryon-to-entropy ratio is compatible with the observational data.

  1. Muon Physics at Run-I and its upgrade plan

    Directory of Open Access Journals (Sweden)

    Benekos Nektarios Chr.

    2015-01-01

    Full Text Available The Large Hadron Collider (LHC and its multi-purpose Detector, ATLAS, has been operated successfully at record centre-of-mass energies of 7 and TeV. After this successful LHC Run-1, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity leveling. The final goal is to extend the data set from about few hundred fb−1 expected for LHC running to 3000 fb−1 by around 2030. To cope with the corresponding rate increase, the ATLAS detector needs to be upgraded. The upgrade will proceed in two steps: Phase I in the LHC shutdown 2018/19 and Phase II in 2023-25. The largest of the ATLAS Phase-1 upgrades concerns the replacement of the first muon station of the highrapidity region, the so called New Small Wheel. This configuration copes with the highest rates expected in Phase II and considerably enhances the performance of the forward muon system by adding triggering functionality to the first muon station. Prospects for the ongoing and future data taking are presented. This article presents the main muon physics results from LHC Run-1 based on a total luminosity of 30 fb^-1. Prospects for the ongoing and future data taking are also presented. We will conclude with an update of the status of the project and the steps towards a complete operational system, ready to be installed in ATLAS in 2018/19.

  2. New new-phenomena results from D-Zero

    Energy Technology Data Exchange (ETDEWEB)

    Qian, J.

    1998-06-01

    We have searched for diphoton events ({gamma}{gamma} /E{sub T}) with large missing transverse momentum, {gamma} /E{sub T} events ({gamma} /E{sub T}+{ge} 2 jets) with two or more jets, and diphoton events ({gamma}{gamma}) with high transverse energies in p{anti p} collisions at {radical}s = 1.8 TeV using approximately 100 pb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron in 1992-1996. No excess of events beyond the expected backgrounds is observed. The null results are interpreted in supersymmetric models with a dominant {tilde {xi}}{sup 0}{sub 2} {yields} {gamma}{tilde {xi}}{sup 0}{sub 1} decay and in terms of Dirac pointlike monopole production.

  3. High Resolution Nature Runs and the Big Data Challenge

    Science.gov (United States)

    Webster, W. Phillip; Duffy, Daniel Q.

    2015-01-01

    NASA's Global Modeling and Assimilation Office at Goddard Space Flight Center is undertaking a series of very computationally intensive Nature Runs and a downscaled reanalysis. The nature runs use the GEOS-5 as an Atmospheric General Circulation Model (AGCM) while the reanalysis uses the GEOS-5 in Data Assimilation mode. This paper will present computational challenges from three runs, two of which are AGCM and one is downscaled reanalysis using the full DAS. The nature runs will be completed at two surface grid resolutions, 7 and 3 kilometers and 72 vertical levels. The 7 km run spanned 2 years (2005-2006) and produced 4 PB of data while the 3 km run will span one year and generate 4 BP of data. The downscaled reanalysis (MERRA-II Modern-Era Reanalysis for Research and Applications) will cover 15 years and generate 1 PB of data. Our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS), a specialization of the concept of business process-as-a-service that is an evolving extension of IaaS, PaaS, and SaaS enabled by cloud computing. In this presentation, we will describe two projects that demonstrate this shift. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS. MERRA/AS enables MapReduce analytics over MERRA reanalysis data collection by bringing together the high-performance computing, scalable data management, and a domain-specific climate data services API. NASA's High-Performance Science Cloud (HPSC) is an example of the type of compute-storage fabric required to support CAaaS. The HPSC comprises a high speed Infinib and network, high performance file systems and object storage, and a virtual system environments specific for data intensive, science applications. These technologies are providing a new tier in the data and analytic services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility

  4. Jet reconstruction and substructure measurements in ATLAS and CMS with first Run-2 data [CMS speaker

    CERN Document Server

    Mozer, Matthias U

    2016-01-01

    Jets play an important role in LHC physics but jet reconstruction and calibration in the high pile-up environment of the 2015 and 2016 data-taking periods pose unique challenges. The ATLAS and CMS experiments have improved their jet reconstruction and correction methods compared to Run I in order to better clean jets of the additional particles generated in pile-up interactions. Beyond jets formed from the hadronization of quarks and gluons, hadronic decays of highly boosted heavy particles, such as top quarks or Z, W or H bosons, in a single fat jet is gaining importance in the search for new physics at the highest possible energies. The LHC experiments have used the time between the LHC Run I and Run II to refine the methods used to identify such boosted decays and make them more robust in the presence of the high pile-up encountered in Run II. The application of this work to early Run II data are presented.

  5. Reliability and validity of data for 2 newly developed shuttle run tests in children with cerebral palsy

    NARCIS (Netherlands)

    Verschuren, Olaf; Takken, Tim; Ketelaar, Majolijn; Gorter, Jan Willem; Helders, Paul J. M.

    2006-01-01

    Background and Purpose. The purpose of this study was to examine the reliability and validity of data obtained with 2 newly developed shuttle run tests (SRT-I and SRT-II) to measure aerobic power in children with cerebral palsy (CP) who were classified at level I or II on the Gross Motor Function Cl

  6. ALFA detector upgrade before LHC Run 2

    CERN Document Server

    Vorobel, Vit; The ATLAS collaboration

    2016-01-01

    The operation experience with ATLAS ALFA detectors in the LHC environment during the Run1 period has shown significant beam-induced heating. Subsequent comprehensive studies revealed that heating effects could be disastrous in the case of the larger beam intensities foreseen for higher luminosities in the LHC Run2. During the first LHC long shutdown (LS1) all ALFA detectors have been removed from the LHC tunnel and their covers - Roman Pots - underwent a geometry upgrade to minimize the impedance losses. It will be shown that this modification together with a system improving the internal heat transfer and an air cooling system, significantly shifted the temperatures of ALFA detectors away from the critical limits throughout the LHC Run2. Also ALFA trigger system was considerably upgraded to keep measured data safely inside the Run2 ATLAS latency budget and to minimize dead time. The needed hardware changes of the trigger system will be presented in the second part of the talk.

  7. Common running musculoskeletal injuries among recreational half ...

    African Journals Online (AJOL)

    Data were collected from runners (N=200) who officially ran half-marathon road ... Department of Sport Science, School of Physiotherapy, Sport Science and ..... Van Mechelen W. Running injuries: A review of the epidemiological literature.

  8. Run 16, eIPM Summary

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dawson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jao, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-08-05

    Three problems with the eIPMs were corrected during the 2015 summer shutdown. These involved ac coupling and 'negative profiles', detector 'dead zone' created by biasing, and gain control on ramp. With respect to Run 16, problems dealt with included gain depletion on horizontal MCP and rf pickup on profile signals; it was found that the MCP was severely damaged over part of the aperture. Various corrective measures were applied. Some results of these measured obtained during Run 16 are shown. At the end of Run 16 there was a three-­day beam run to study polarized proton beams in the AGS. Attempts to minimize beam injection errors which increase emittance by using the eIPMs to measure the contribution of injection mismatch to the AGS output beam emittance are recounted. .

  9. ALFA detector before LHC Run 2

    CERN Document Server

    Vorobel, Vit; The ATLAS collaboration

    2016-01-01

    The operation experience with ATLAS ALFA detectors in the LHC environment during the Run1 period has shown significant beam-induced heating. Subsequent comprehensive studies revealed that heating effects could be disastrous in the case of the larger beam intensities foreseen for higher luminosities in the LHC Run2. During the first LHC long shutdown (LS1) all ALFA detectors have been removed from the LHC tunnel and their covers - Roman Pots - underwent a geometry upgrade to minimize the impedance losses. It will be shown that this modification together with a system improving the internal heat transfer and an air cooling system, significantly shifted the temperatures of ALFA detectors away from the critical limits throughout the LHC Run2. Also ALFA trigger system was considerably upgraded to keep measured data safely inside the Run2 ATLAS latency budget and to minimize dead time. The needed hardware changes of the trigger system are also described

  10. The CDF Run 2 Offline Computer Farms

    Institute of Scientific and Technical Information of China (English)

    JaroslavAntos; TanyaLevshina; 等

    2001-01-01

    Run 2 at Fermilab began in March,2001,CDF will collect data at a maximum rate of 20 MByte/sec during the run.The offline reconstruction of this data must keep up with the data taking rate.This reconstruction occurs on a large PC farm,which must have the capacity for quasi-real time data reconstruction,for reprocessing of some data and for generation and processing of Monte Carlo samples.In this paer we will give the design requirements ofr the farm,describe the hardware and software design used to meet those requirements,describe the early experiences with Run 2 data processing,and discussfuture prospects for the farm,including some ideas about Run 2b processing.

  11. Run 1 Legacy Performance : electrons/photons

    CERN Document Server

    Damazio, D O; The ATLAS collaboration

    2014-01-01

    In this talk, the run 1 legacy performance of the electron and photon reconstruction and identification in the ATLAS and CMS experiments will be described, as well as the associated systematic uncertainties. The two speakers should try to enlight the differences of performances between the two experiments, and explain what worked better/worse than planned, as well as the lessons for the run 2.

  12. Metadata aided run selection at ATLAS

    Science.gov (United States)

    Buckingham, R. M.; Gallas, E. J.; C-L Tseng, J.; Viegas, F.; Vinek, E.; ATLAS Collaboration

    2011-12-01

    Management of the large volume of data collected by any large scale scientific experiment requires the collection of coherent metadata quantities, which can be used by reconstruction or analysis programs and/or user interfaces, to pinpoint collections of data needed for specific purposes. In the ATLAS experiment at the LHC, we have collected metadata from systems storing non-event-wise data (Conditions) into a relational database. The Conditions metadata (COMA) database tables not only contain conditions known at the time of event recording, but also allow for the addition of conditions data collected as a result of later analysis of the data (such as improved measurements of beam conditions or assessments of data quality). A new web based interface called "runBrowser" makes these Conditions Metadata available as a Run based selection service. runBrowser, based on PHP and JavaScript, uses jQuery to present selection criteria and report results. It not only facilitates data selection by conditions attributes, but also gives the user information at each stage about the relationship between the conditions chosen and the remaining conditions criteria available. When a set of COMA selections are complete, runBrowser produces a human readable report as well as an XML file in a standardized ATLAS format. This XML can be saved for later use or refinement in a future runBrowser session, shared with physics/detector groups, or used as input to ELSSI (event level Metadata browser) or other ATLAS run or event processing services.

  13. Calcaneal loading during walking and running

    Science.gov (United States)

    Giddings, V. L.; Beaupre, G. S.; Whalen, R. T.; Carter, D. R.

    2000-01-01

    PURPOSE: This study of the foot uses experimentally measured kinematic and kinetic data with a numerical model to evaluate in vivo calcaneal stresses during walking and running. METHODS: External ground reaction forces (GRF) and kinematic data were measured during walking and running using cineradiography and force plate measurements. A contact-coupled finite element model of the foot was developed to assess the forces acting on the calcaneus during gait. RESULTS: We found that the calculated force-time profiles of the joint contact, ligament, and Achilles tendon forces varied with the time-history curve of the moment about the ankle joint. The model predicted peak talocalcaneal and calcaneocuboid joint loads of 5.4 and 4.2 body weights (BW) during walking and 11.1 and 7.9 BW during running. The maximum predicted Achilles tendon forces were 3.9 and 7.7 BW for walking and running. CONCLUSIONS: Large magnitude forces and calcaneal stresses are generated late in the stance phase, with maximum loads occurring at approximately 70% of the stance phase during walking and at approximately 60% of the stance phase during running, for the gait velocities analyzed. The trajectories of the principal stresses, during both walking and running, corresponded to each other and qualitatively to the calcaneal trabecular architecture.

  14. Running With an Elastic Lower Limb Exoskeleton.

    Science.gov (United States)

    Cherry, Michael S; Kota, Sridhar; Young, Aaron; Ferris, Daniel P

    2016-06-01

    Although there have been many lower limb robotic exoskeletons that have been tested for human walking, few devices have been tested for assisting running. It is possible that a pseudo-passive elastic exoskeleton could benefit human running without the addition of electrical motors due to the spring-like behavior of the human leg. We developed an elastic lower limb exoskeleton that added stiffness in parallel with the entire lower limb. Six healthy, young subjects ran on a treadmill at 2.3 m/s with and without the exoskeleton. Although the exoskeleton was designed to provide ~50% of normal leg stiffness during running, it only provided 24% of leg stiffness during testing. The difference in added leg stiffness was primarily due to soft tissue compression and harness compliance decreasing exoskeleton displacement during stance. As a result, the exoskeleton only supported about 7% of the peak vertical ground reaction force. There was a significant increase in metabolic cost when running with the exoskeleton compared with running without the exoskeleton (ANOVA, P exoskeletons for human running are human-machine interface compliance and the extra lower limb inertia from the exoskeleton.

  15. The CMS electron and photon trigger for the LHC Run 2

    CERN Document Server

    Beschi, Andrea

    2017-01-01

    to optimally reconstruct the electromagnetic trigger objects. The performance of the new trigger system will be presented, based on proton-proton collision data collected in Run II. The selection techniques used to trigger efficiently will be presented, along with the strategies employed to guarantee efficient triggering for new resonances and other new physics signals invo...

  16. Mechanical spring technology improves running economy in endurance runners

    OpenAIRE

    Riess, Kenneth James

    2014-01-01

    In recent years there has been an increase in participation in timed running events. With this increase, the motivation for individuals to run their best has motivated the running shoe industry to make design changes to traditional running foot wear in an effort to improve running economy (RE) and decrease running times. One such design change has been to incorporate mechanical springs (MS) into the midsole of the running shoe. Evaluation of this technology has yet to be performed. This study...

  17. Running kinematics and shock absorption do not change after brief exhaustive running.

    Science.gov (United States)

    Abt, John P; Sell, Timothy C; Chu, Yungchien; Lovalekar, Mita; Burdett, Ray G; Lephart, Scott M

    2011-06-01

    Because of the nature of running, the forces encountered require a proper coordination of joint action of the lower extremity to dissipate the ground reaction forces and accelerations through the kinetic chain. Running-related muscle fatigue may reduce the shock absorbing capacity of the lower extremity and alter running kinematics. The purpose of this study was to determine if a bout of exhaustive running at a physiologically determined high intensity, changes running kinematics, impact accelerations, and alters shock attenuating capabilities. It was hypothesized that as a result of fatigue induced by an exhaustive run, running kinematics, impact accelerations at the head and shank, acceleration reduction, and shock attenuation would change. A within-subject, repeated-measures design was used for this study. Twelve healthy, competitive male and female distance runners participated. Subjects performed 2 testing sessions consisting of a VO2max treadmill protocol to determine the heart rate at ventilatory threshold and a fatigue-inducing running bout at the identified ventilatory threshold heart rate. Kinematic data included knee flexion, pronation, time to maximum knee flexion, and time to maximum pronation. Acceleration data included shank acceleration, head acceleration, and shock attenuation. No significant differences resulted for the kinematic or acceleration variables. Although the results of this study do not support the original hypotheses, the influence of running fatigue on kinematics and accelerations remains inconclusive. Future research is necessary to examine fatigue-induced changes in running kinematics and accelerations and to determine the threshold at which point the changes may occur.

  18. Biomechanics of sprint running. A review.

    Science.gov (United States)

    Mero, A; Komi, P V; Gregor, R J

    1992-06-01

    Understanding of biomechanical factors in sprint running is useful because of their critical value to performance. Some variables measured in distance running are also important in sprint running. Significant factors include: reaction time, technique, electromyographic (EMG) activity, force production, neural factors and muscle structure. Although various methodologies have been used, results are clear and conclusions can be made. The reaction time of good athletes is short, but it does not correlate with performance levels. Sprint technique has been well analysed during acceleration, constant velocity and deceleration of the velocity curve. At the beginning of the sprint run, it is important to produce great force/power and generate high velocity in the block and acceleration phases. During the constant-speed phase, the events immediately before and during the braking phase are important in increasing explosive force/power and efficiency of movement in the propulsion phase. There are no research results available regarding force production in the sprint-deceleration phase. The EMG activity pattern of the main sprint muscles is described in the literature, but there is a need for research with highly skilled sprinters to better understand the simultaneous operation of many muscles. Skeletal muscle fibre characteristics are related to the selection of talent and the training-induced effects in sprint running. Efficient sprint running requires an optimal combination between the examined biomechanical variables and external factors such as footwear, ground and air resistance. Further research work is needed especially in the area of nervous system, muscles and force and power production during sprint running. Combining these with the measurements of sprinting economy and efficiency more knowledge can be achieved in the near future.

  19. The ATLAS Tau Trigger Performance during LHC Run 1 and Prospects for Run 2

    CERN Document Server

    Mitani, T; The ATLAS collaboration

    2016-01-01

    The ATLAS tau trigger is designed to select hadronic decays of the tau leptons. Tau lepton plays an important role in Standard Model (SM) physics, such as in Higgs boson decays. Tau lepton is also important in beyond the SM (BSM) scenarios, such as supersymmetry and exotic particles, as they are often produced preferentially in these models. During the 2010-2012 LHC run (Run1), the tau trigger was accomplished successfully, which leads several rewarding results such as evidence for $H\\rightarrow \\tau\\tau$. From the 2015 LHC run (Run2), LHC will be upgraded and overlapping interactions per bunch crossing (pile-up) are expected to increase by a factor two. It will be challenging to control trigger rates while keeping interesting physics events. This paper summarized the tau trigger performance in Run1 and its prospects for Run2.

  20. The design of the run Clever randomized trial

    DEFF Research Database (Denmark)

    Ramskov, Daniel; Nielsen, Rasmus Oestergaard; Sørensen, Henrik

    2016-01-01

    evidence-based running schedules to minimize the risk of injury. The existing literature on running volume and running intensity and the development of injuries show conflicting results. This may be related to previously applied study designs, methods used to quantify the performed running...... and the statistical analysis of the collected data. The aim of the Run Clever trial is to investigate if a focus on running intensity compared with a focus on running volume in a running schedule influences the overall injury risk differently. METHODS/DESIGN: The Run Clever trial is a randomized trial with a 24-week...

  1. Short-run and long-run effect of oil consumption on economic growth: ECM model

    Directory of Open Access Journals (Sweden)

    Sofyan Syahnur

    2014-04-01

    Full Text Available The aim of this study is to investigate the effect of oil consumption on economic growth of Aceh in the long-run and short-run by using Error Correction Model (ECM model during the period before the world commodity prices fall of 1985–2008. Four types of oil consumption will be focused on Avtur, Gasoline, Kerosene and Diesel. The data is collected from Central Bureau of Statistics of Aceh (BPS Aceh. The result of this study shows a merely positive effect of oil consumption type diesel to economic growth in Aceh both in the short run and the long run.

  2. Cross-training and periodization in running.

    Science.gov (United States)

    Brennan, D K; Wilder, R P

    1996-01-01

    Understanding the principles of cross-training and periodization will assist the coach and team physician in designing training programs that maximize performance while minimizing risk of injury. Cross-training is defined as simultaneous training for two or more sports or the use of multiple modes of training to enhance performance in one particular sport. This manuscript will review the benefits of three commonly used forms of cross training, deep water running, cycling and swimming, on running, training and performance. Periodization refers to the process of designing a progressive and appropriate training plan in order to optimize performance, yet minimize injury related to overtraining. The main structural components for periodization are macrocycles, mesocycles and microcycles. Physiological determinants for distance running performance, including VO2 max, lactate threshold and running economy, are presented as key components for the design of endurance training programs. Training intensity can be prescribed or monitored using running speed, heart rate, and rating of perceived exertion (RPE). The clinician must often make recommendations regarding the appropriate level of training or offer an alternative. By understanding the principles of cross-training and periodization, the clinician can assist the coach or athlete in preventing injury as well as assisting the attainment of peak performance.

  3. Run-Time Data-Flow Analysis

    Institute of Scientific and Technical Information of China (English)

    李剑慧; 臧斌宇; 吴蓉; 朱传琪

    2002-01-01

    Parallelizing compilers have made great progress in recent years. However, there still remains a gap between the current ability of parallelizing compilers and their final goals.In order to achieve the maximum parallelism, run-time techniques were used in parallelizing compilers during last few years. First, this paper presents a basic run-time privatization method.The definition of run-time dead code is given and its side effect is discussed. To eliminate the imprecision caused by the run-time dead code, backward data-flow information must be used.Proteus Test, which can use backward information in run-time, is then presented to exploit more dynamic parallelism. Also, a variation of Proteus Test, the Advanced Proteus Test, is offered to achieve partial parallelism. Proteus Test was implemented on the parallelizing compiler AFT.In the end of this paper the program fpppp.f of Spec95fp Benchmark is taken as an example, to show the effectiveness of Proteus Test.

  4. The Run-2 ATLAS Trigger System

    Science.gov (United States)

    Ruiz Martínez, A.; ATLAS Collaboration

    2016-10-01

    The ATLAS trigger successfully collected collision data during the first run of the LHC between 2009-2013 at different centre-of-mass energies between 900 GeV and 8TeV. The trigger system consists of a hardware Level-1 and a software-based high level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV and higher luminosity, resulting in up to five times higher rates of processes of interest. A brief review of the ATLAS trigger system upgrades that were implemented between Run-1 and Run-2, allowing to cope with the increased trigger rates while maintaining or even improving the efficiency to select physics processes of interest, will be given. This includes changes to the Level-1 calorimeter and muon trigger systems, the introduction of a new Level-1 topological trigger module and the merging of the previously two-level HLT system into a single event processing farm. A few examples will be shown, such as the impressive performance improvements in the HLT trigger algorithms used to identify leptons, hadrons and global event quantities like missing transverse energy. Finally, the status of the commissioning of the trigger system and its performance during the 2015 run will be presented.

  5. Exercise economy in skiing and running

    Directory of Open Access Journals (Sweden)

    Thomas eLosnegard

    2014-01-01

    Full Text Available Substantial inter-individual variations in exercise economy exist even in highly trained endurance athletes. The variation is believed to be determined partly by intrinsic factors. Therefore, in the present study, we compared exercise economy in V2-skating, double poling and uphill running. Ten highly trained male cross-country skiers (23 ± 3 years, 180 ± 6 cm, 75 ± 8 kg, VO2peak running: 76.3 ± 5.6 mL•kg-1•min-1 participated in the study. Exercise economy and VO2peak during treadmill running, ski skating (V2 technique and double poling were compared based on correlation analysis with subsequent criteria for interpreting the magnitude of correlation (r. There was a very large correlation in exercise economy between V2-skating and double poling (r = 0.81 and a large correlation between V2-skating and running (r = 0.53 and double poling and running (r = 0.58. There were trivial to moderate correlations between exercise economy and VO2peak (r = 0.00-0.23, cycle rate (r = 0.03-0.46, body mass (r = -0.09-0.46 and body height (r = 0.11-0.36. In conclusion, the inter-individual variation in exercise economy could only moderately be explained by differences in VO2peak, body mass and body height and therefore we suggest that other intrinsic factors contribute to the variation in exercise economy between highly trained subjects.

  6. Exercise economy in skiing and running.

    Science.gov (United States)

    Losnegard, Thomas; Schäfer, Daniela; Hallén, Jostein

    2014-01-01

    Substantial inter-individual variations in exercise economy exist even in highly trained endurance athletes. The variation is believed to be determined partly by intrinsic factors. Therefore, in the present study, we compared exercise economy in V2-skating, double poling, and uphill running. Ten highly trained male cross-country skiers (23 ± 3 years, 180 ± 6 cm, 75 ± 8 kg, VO2peak running: 76.3 ± 5.6 mL·kg(-1)·min(-1)) participated in the study. Exercise economy and VO2peak during treadmill running, ski skating (V2 technique) and double poling were compared based on correlation analysis. There was a very large correlation in exercise economy between V2-skating and double poling (r = 0.81) and large correlations between V2-skating and running (r = 0.53) and double poling and running (r = 0.58). There were trivial to moderate correlations between exercise economy and the intrinsic factors VO2peak (r = 0.00-0.23), cycle rate (r = 0.03-0.46), body mass (r = -0.09-0.46) and body height (r = 0.11-0.36). In conclusion, the inter-individual variation in exercise economy could be explained only moderately by differences in VO2peak, body mass and body height. Apparently other intrinsic factors contribute to the variation in exercise economy between highly trained subjects.

  7. Jefferson Lab Data Acquisition Run Control System

    Energy Technology Data Exchange (ETDEWEB)

    Vardan Gyurjyan; Carl Timmer; David Abbott; William Heyes; Edward Jastrzembski; David Lawrence; Elliott Wolin

    2004-10-01

    A general overview of the Jefferson Lab data acquisition run control system is presented. This run control system is designed to operate the configuration, control, and monitoring of all Jefferson Lab experiments. It controls data-taking activities by coordinating the operation of DAQ sub-systems, online software components and third-party software such as external slow control systems. The main, unique feature which sets this system apart from conventional systems is its incorporation of intelligent agent concepts. Intelligent agents are autonomous programs which interact with each other through certain protocols on a peer-to-peer level. In this case, the protocols and standards used come from the domain-independent Foundation for Intelligent Physical Agents (FIPA), and the implementation used is the Java Agent Development Framework (JADE). A lightweight, XML/RDF-based language was developed to standardize the description of the run control system for configuration purposes.

  8. Footwear Decreases Gait Asymmetry during Running.

    Directory of Open Access Journals (Sweden)

    Stefan Hoerzer

    Full Text Available Previous research on elderly people has suggested that footwear may improve neuromuscular control of motion. If footwear does in fact improve neuromuscular control, then such an influence might already be present in young, healthy adults. A feature that is often used to assess neuromuscular control of motion is the level of gait asymmetry. The objectives of the study were (a to develop a comprehensive asymmetry index (CAI that is capable of detecting gait asymmetry changes caused by external boundary conditions such as footwear, and (b to use the CAI to investigate whether footwear influences gait asymmetry during running in a healthy, young cohort. Kinematic and kinetic data were collected for both legs of 15 subjects performing five barefoot and five shod over-ground running trials. Thirty continuous gait variables including ground reaction forces and variables of the hip, knee, and ankle joints were computed for each leg. For each individual, the differences between the variables for the right and left leg were calculated. Using this data, a principal component analysis was conducted to obtain the CAI. This study had two main outcomes. First, a sensitivity analysis suggested that the CAI had an improved sensitivity for detecting changes in gait asymmetry caused by external boundary conditions. The CAI may, therefore, have important clinical applications such as monitoring the progress of neuromuscular diseases (e.g. stroke or cerebral palsy. Second, the mean CAI for shod running (131.2 ± 48.5; mean ± standard deviation was significantly lower (p = 0.041 than the CAI for barefoot running (155.7 ± 39.5. This finding suggests that in healthy, young adults gait asymmetry is reduced when running in shoes compared to running barefoot, which may be a result of improved neuromuscular control caused by changes in the afferent sensory feedback.

  9. Health related aspects of PA & sport/running

    NARCIS (Netherlands)

    Dr. Johan de Jong

    2015-01-01

    The lecture presents an overview of the positive but also the negative health related aspects of running. An deeper insight will be offered when it comes to running, especially the mass running events.

  10. The design of the run Clever randomized trial

    DEFF Research Database (Denmark)

    Ramskov, Daniel; Nielsen, Rasmus Oestergaard; Sørensen, Henrik

    2016-01-01

    BACKGROUND: Injury incidence and prevalence in running populations have been investigated and documented in several studies. However, knowledge about injury etiology and prevention is needed. Training errors in running are modifiable risk factors and people engaged in recreational running need...... evidence-based running schedules to minimize the risk of injury. The existing literature on running volume and running intensity and the development of injuries show conflicting results. This may be related to previously applied study designs, methods used to quantify the performed running...... and the statistical analysis of the collected data. The aim of the Run Clever trial is to investigate if a focus on running intensity compared with a focus on running volume in a running schedule influences the overall injury risk differently. METHODS/DESIGN: The Run Clever trial is a randomized trial with a 24-week...

  11. Running vacuum versus the $\\Lambda$CDM

    CERN Document Server

    Gómez-Valent, Adrià; Pérez, Javier de Cruz

    2016-01-01

    It is well-known that a constant $\\Lambda$-term is a traditional building block of the concordance $\\Lambda$CDM model. We show that this assumption is not necessarily the optimal one from the phenomenological point of view. The class of running vacuum models, with a possible running of the gravitational coupling G, are capable to fit the overall cosmological data SNIa+BAO+H(z)+LSS+BBN+CMB better than the $\\Lambda$CDM, namely at a level of $\\sim 3\\sigma$ and with Akaike and Bayesian information criteria supporting a strong level of statistical evidence on this fact. Here we report on the results of such analysis.

  12. Abort Gap Cleaning for LHC Run 2

    Energy Technology Data Exchange (ETDEWEB)

    Uythoven, Jan [CERN; Boccardi, Andrea [CERN; Bravin, Enrico [CERN; Goddard, Brennan [CERN; Hemelsoet, Georges-Henry [CERN; Höfle, Wolfgang [CERN; Jacquet, Delphine [CERN; Kain, Verena [CERN; Mazzoni, Stefano [CERN; Meddahi, Malika [CERN; Valuch, Daniel [CERN; Gianfelice-Wendt, Eliana [Fermilab

    2014-07-01

    To minimize the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  13. Chaotic inflation with curvaton induced running

    DEFF Research Database (Denmark)

    Sloth, Martin Snoager

    2014-01-01

    While dust contamination now appears as a likely explanation of the apparent tension between the recent BICEP2 data and the Planck data, we will here explore the consequences of a large running in the spectral index as suggested by the BICEP2 collaboration as an alternative explanation...... of the apparent tension, but which would be in conflict with prediction of the simplest model of chaotic inflation. The large field chaotic model is sensitive to UV physics, and the nontrivial running of the spectral index suggested by the BICEP2 collaboration could therefore, if true, be telling us some...

  14. Abort Gap Cleaning for LHC Run 2

    CERN Document Server

    Uythoven, J; Bravin, E; Goddard, B; Hemelsoet, GH; Höfle, W; Jacquet, D; Kain, V; Mazzoni, S; Meddahi, M; Valuch, D

    2015-01-01

    To minimise the beam losses at the moment of an LHC beam dump the 3 μs long abort gap should contain as few particles as possible. Its population can be minimised by abort gap cleaning using the LHC transverse damper system. The LHC Run 1 experience is briefly recalled; changes foreseen for the LHC Run 2 are presented. They include improvements in the observation of the abort gap population and the mechanism to decide if cleaning is required, changes to the hardware of the transverse dampers to reduce the detrimental effect on the luminosity lifetime and proposed changes to the applied cleaning algorithms.

  15. Di-J/Ψ Studies, Level 3 Tracking and the D0 Run IIb Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Vint, Philip John [Imperial College, London (United Kingdom)

    2010-02-01

    The D0 detector underwent an upgrade to its silicon vertex detector and triggering systems during the transition from Run IIa to Run IIb to maximize its ability to fully exploit Run II at the Fermilab Tevatron. This thesis describes improvements made to the tracking and vertexing algorithms used by the high level trigger in both Run IIa and Run IIb, as well as a search for resonant di-J/Ψ states using both Run IIa and Run IIb data. Improvements made to the tracking and vertexing algorithms during Run IIa included the optimization of the existing tracking software to reduce overall processing time and the certification and testing of a new software release. Upgrades made to the high level trigger for Run IIb included the development of a new tracking algorithm and the inclusion of the new Layer 0 silicon detector into the existing software. The integration of Layer 0 into the high level trigger has led to an improvement in the overall impact parameter resolution for tracks of ~50%. The development of a new parameterization method for finding the error associated to the impact parameter of tracks returned by the high level tracking algorithm, in association with the inclusion of Layer 0, has led to improvements in vertex resolution of ~4.5 μm. A previous search in the di-J/Ψ channel revealed a unpredicted resonance at ~13.7 GeV/c2. A confirmation analysis is presented using 2.8 fb-1 of data and two different approaches to cuts. No significant excess is seen in the di-J/Ψ mass spectrum.

  16. Oxygen delivery does not limit peak running speed during incremental downhill running to exhaustion.

    Science.gov (United States)

    Liefeldt, G; Noakes, T D; Dennis, S C

    1992-01-01

    Oxygen consumption (VO2), ventilation (VI), respiratory exchange ratio (R), stride frequency and blood lactate concentrations were measured continuously in nine trained athletes during two continuous incremental treadmill runs to exhaustion on gradients of either 0 degree or -3 degrees. Compared to the run at 0 degree gradient, the athletes reached significantly higher maximal treadmill velocities but significantly lower VO2, VI, R and peak blood lactate concentrations (P less than 0.001) during downhill running. These lower VO2 and blood lactate concentrations at exhaustion indicated that factors other than oxygen delivery limited maximal performance during the downhill run. In contrast, stride frequencies were similar at each treadmill velocity; the higher maximal speed during the downhill run was achieved with a significantly longer stride length (P less than 0.001); maximal stride frequency was the same between tests. Equivalent maximal stride frequencies suggested that factors determining the rate of lower limb stride recovery may have limited maximal running speed during downhill running and, possibly, also during horizontal running.

  17. Short-run and long-run dynamics of farm land allocation

    DEFF Research Database (Denmark)

    Arnberg, Søren; Hansen, Lars Gårn

    2012-01-01

    that include acreage, output, and variable input utilization at the crop level. Results indicate that there are substantial differences between the short-run and long-run land allocation behaviour of Danish farmers and that there are substantial differences in the time lags associated with different crops...

  18. Weekly running volume and risk of running-related injuries among marathon runners

    DEFF Research Database (Denmark)

    Rasmussen, Christina Haugaard; Nielsen, Rasmus Østergaard; Juul, Martin Serup

    2013-01-01

    PURPOSEBACKGROUND: The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race.......PURPOSEBACKGROUND: The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race....

  19. Weekly running volume and risk of running-related injuries among marathon runners

    DEFF Research Database (Denmark)

    Rasmussen, Christina Haugaard; Nielsen, R.O.; Juul, Martin Serup

    2013-01-01

    The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race.......The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race....

  20. Sex differences in running mechanics and patellofemoral joint kinetics following an exhaustive run.

    Science.gov (United States)

    Willson, John D; Loss, Justin R; Willy, Richard W; Meardon, Stacey A

    2015-11-26

    Patellofemoral joint pain (PFP) is a common running-related injury that is more prevalent in females and thought to be associated with altered running mechanics. Changes in running mechanics have been observed following an exhaustive run but have not been analyzed relative to the sex bias for PFP. The purpose of this study was to test if females demonstrate unique changes in running mechanics associated with PFP following an exhaustive run. For this study, 18 females and 17 males ran to volitional exhaustion. Peak PFJ contact force and stress, PFJ contact force and stress loading rates, hip adduction excursion, and hip and knee joint frontal plane angular impulse were analyzed between females and males using separate 2 factor ANOVAs (2 (male/female)×2 (before/after exhaustion)). We observed similar changes in running mechanics among males and females over the course of the exhaustive run. Specifically, greater peak PFJ contact force loading rate (5%, P=.01), PFJ stress loading rate (5%, Pmechanics due to exhaustion do not appear to contribute to the sex bias for PFP.

  1. Weekly running volume and risk of running-related injuries among marathon runners

    DEFF Research Database (Denmark)

    Rasmussen, Christina Haugaard; Nielsen, Rasmus Østergaard; Juul, Martin Serup;

    2013-01-01

    PURPOSEBACKGROUND: The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race.......PURPOSEBACKGROUND: The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race....

  2. Comparison of fractions of inactive modules between Run1 and Run2

    CERN Document Server

    Motohashi, Kazuki; The ATLAS collaboration

    2015-01-01

    Fraction of inactive modules for each component of the ATLAS pixel detector at the end of Run 1 and the beginning of Run 2. A similar plot which uses a result of functionality tests during LS1 can be found in ATL-INDET-SLIDE-2014-388.

  3. Calf Compression Sleeves Change Biomechanics but Not Performance and Physiological Responses in Trail Running

    Science.gov (United States)

    Kerhervé, Hugo A.; Samozino, Pierre; Descombe, Fabrice; Pinay, Matthieu; Millet, Guillaume Y.; Pasqualini, Marion; Rupp, Thomas

    2017-01-01

    Introduction: The aim of this study was to determine whether calf compression sleeves (CS) affects physiological and biomechanical parameters, exercise performance, and perceived sensations of muscle fatigue, pain and soreness during prolonged (~2 h 30 min) outdoor trail running. Methods: Fourteen healthy trained males took part in a randomized, cross-over study consisting in two identical 24-km trail running sessions (each including one bout of running at constant rate on moderately flat terrain, and one period of all-out running on hilly terrain) wearing either degressive CS (23 ± 2 mmHg) or control sleeves (CON, Running time, heart rate and muscle oxygenation of the medial gastrocnemius muscle (measured using portable near-infrared spectroscopy) were monitored continuously. Muscle functional capabilities (power, stiffness) were determined using 20 s of maximal hopping before and after both sessions. Running biomechanics (kinematics, vertical and leg stiffness) were determined at 12 km·h−1 at the beginning, during, and at the end of both sessions. Exercise-induced Achilles tendon pain and delayed onset calf muscles soreness (DOMS) were assessed using visual analog scales. Results: Muscle oxygenation increased significantly in CS compared to CON at baseline and immediately after exercise (p run, and without any significant change in run times. Wearing CS was associated with (i) higher aerial time and leg stiffness in running at constant rate, (ii) with lower ground contact time, higher leg stiffness, and higher vertical stiffness in all-out running, and (iii) with lower ground contact time in hopping. Significant DOMS were induced in both CS and CON (>6 on a 10-cm scale) with no difference between conditions. However, Achilles tendon pain was significantly lower after the trial in CS than CON (p running but significantly changed running biomechanics and lower limb muscle functional capabilities toward a more dynamic behavior compared to control session

  4. Calf Compression Sleeves Change Biomechanics but Not Performance and Physiological Responses in Trail Running

    Directory of Open Access Journals (Sweden)

    Hugo A. Kerhervé

    2017-04-01

    Full Text Available Introduction: The aim of this study was to determine whether calf compression sleeves (CS affects physiological and biomechanical parameters, exercise performance, and perceived sensations of muscle fatigue, pain and soreness during prolonged (~2 h 30 min outdoor trail running.Methods: Fourteen healthy trained males took part in a randomized, cross-over study consisting in two identical 24-km trail running sessions (each including one bout of running at constant rate on moderately flat terrain, and one period of all-out running on hilly terrain wearing either degressive CS (23 ± 2 mmHg or control sleeves (CON, <4 mmHg. Running time, heart rate and muscle oxygenation of the medial gastrocnemius muscle (measured using portable near-infrared spectroscopy were monitored continuously. Muscle functional capabilities (power, stiffness were determined using 20 s of maximal hopping before and after both sessions. Running biomechanics (kinematics, vertical and leg stiffness were determined at 12 km·h−1 at the beginning, during, and at the end of both sessions. Exercise-induced Achilles tendon pain and delayed onset calf muscles soreness (DOMS were assessed using visual analog scales.Results: Muscle oxygenation increased significantly in CS compared to CON at baseline and immediately after exercise (p < 0.05, without any difference in deoxygenation kinetics during the run, and without any significant change in run times. Wearing CS was associated with (i higher aerial time and leg stiffness in running at constant rate, (ii with lower ground contact time, higher leg stiffness, and higher vertical stiffness in all-out running, and (iii with lower ground contact time in hopping. Significant DOMS were induced in both CS and CON (>6 on a 10-cm scale with no difference between conditions. However, Achilles tendon pain was significantly lower after the trial in CS than CON (p < 0.05.Discussion: Calf compression did not modify muscle oxygenation during ~2 h 30

  5. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  6. The effect of footwear on running performance and running economy in distance runners.

    Science.gov (United States)

    Fuller, Joel T; Bellenger, Clint R; Thewlis, Dominic; Tsiros, Margarita D; Buckley, Jonathan D

    2015-03-01

    The effect of footwear on running economy has been investigated in numerous studies. However, no systematic review and meta-analysis has synthesised the available literature and the effect of footwear on running performance is not known. The aim of this systematic review and meta-analysis was to investigate the effect of footwear on running performance and running economy in distance runners, by reviewing controlled trials that compare different footwear conditions or compare footwear with barefoot. The Web of Science, Scopus, MEDLINE, CENTRAL (Cochrane Central Register of Controlled Trials), EMBASE, AMED (Allied and Complementary Medicine), CINAHL and SPORTDiscus databases were searched from inception up until April 2014. Included articles reported on controlled trials that examined the effects of footwear or footwear characteristics (including shoe mass, cushioning, motion control, longitudinal bending stiffness, midsole viscoelasticity, drop height and comfort) on running performance or running economy and were published in a peer-reviewed journal. Of the 1,044 records retrieved, 19 studies were included in the systematic review and 14 studies were included in the meta-analysis. No studies were identified that reported effects on running performance. Individual studies reported significant, but trivial, beneficial effects on running economy for comfortable and stiff-soled shoes [standardised mean difference (SMD) economy for cushioned shoes (SMD = 0.37; P economy for training in minimalist shoes (SMD = 0.79; P economy for light shoes and barefoot compared with heavy shoes (SMD economy. Certain models of footwear and footwear characteristics can improve running economy. Future research in footwear performance should include measures of running performance.

  7. Numerical Modelling of Wave Run-Up

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke;

    2011-01-01

    Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...

  8. The Beautiful Physics of LHC Run 2

    CERN Document Server

    AUTHOR|(CDS)2108556

    2015-01-01

    Run 2 of the LHC offers some beautiful prospects for new physics, including flavour physics as well as more detailed studies of the Higgs boson and searches for new physics beyond the Standard Model (BSM). One of the possibilities for BSM physics is supersymmetry, and flavour physics plays various important r\\^oles in constraining supersymmetric models.

  9. EMBL rescue package keeps bioinformatics centre running

    CERN Multimedia

    Abott, A

    1999-01-01

    The threat to the EBI arising from the EC refusal to fund its running costs seems to have been temporarily lifted. At a meeting in EMBL, Heidelberg, delegates agreed in principle to make up the shortfall of 5 million euros. A final decision will be taken at a special meeting of the EMBL council in March (1 page).

  10. BEAM SCRUBBING FOR RHIC POLARIZED PROTON RUN.

    Energy Technology Data Exchange (ETDEWEB)

    ZHANG,S.Y.FISCHER,W.HUANG,H.ROSER,T.

    2004-07-05

    One of the intensity limiting factor of RHIC polarized proton beam is the electron cloud induced pressure rise. A beam scrubbing study shows that with a reasonable period of time of running high intensity 112-bunch proton beam, the pressure rise can be reduced, allowing higher beam intensity.

  11. Numerical Modelling of Wave Run-Up

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke

    2011-01-01

    Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...

  12. Common Running Overuse Injuries and Prevention

    Directory of Open Access Journals (Sweden)

    Žiga Kozinc

    2017-09-01

    Full Text Available Runners are particularly prone to developing overuse injuries. The most common running-related injuries include medial tibial stress syndrome, Achilles tendinopathy, plantar fasciitis, patellar tendinopathy, iliotibial band syndrome, tibial stress fractures, and patellofemoral pain syndrome. Two of the most significant risk factors appear to be injury history and weekly distance. Several trials have successfully identified biomechanical risk factors for specific injuries, with increased ground reaction forces, excessive foot pronation, hip internal rotation and hip adduction during stance phase being mentioned most often. However, evidence on interventions for lowering injury risk is limited, especially regarding exercise-based interventions. Biofeedback training for lowering ground reaction forces is one of the few methods proven to be effective. It seems that the best way to approach running injury prevention is through individualized treatment. Each athlete should be assessed separately and scanned for risk factors, which should be then addressed with specific exercises. This review provides an overview of most common running-related injuries, with a particular focus on risk factors, and emphasizes the problems encountered in preventing running-related injuries.

  13. Book Review: HTML5: Up and Running

    Directory of Open Access Journals (Sweden)

    Mark Cyzyk

    2011-04-01

    Full Text Available Mark Pilgrim's HTML5: Up and Running was one of the first books published on the subject. If you’re looking for a really good, well-written, entertaining, concise overview of what’s going on right this very minute with HTML5 technologies and techniques, this is a good book to have.

  14. Considerations in Running a Foreign Language University

    Institute of Scientific and Technical Information of China (English)

    陈乃芳

    2005-01-01

    To run a foreign language university well, four important things should be given priority: 1)pay constant attention to teacher education; 2) make sure the staff keep abreast of the latest teaching beliefs;3) back up teaching with high quality research; 4) do a good job in cultural and humanity education.

  15. ATLAS Data Preparation in Run 2

    CERN Document Server

    Laycock, Paul; The ATLAS collaboration

    2016-01-01

    In this presentation, the data preparation workflows for Run 2 are presented. Online data quality uses a new hybrid software release that incorporates the latest offline data quality monitoring software for the online environment. This is used to provide fast feedback in the control room during a data acquisition (DAQ) run, via a histogram-based monitoring framework as well as the online Event Display. Data are sent to several streams for offline processing at the dedicated Tier-0 computing facility, including dedicated calibration streams and an "express" physics stream containing approximately 2% of the main physics stream. This express stream is processed as data arrives, allowing a first look at the offline data quality within hours of a run end. A prompt calibration loop starts once an ATLAS DAQ run ends, nominally defining a 48 hour period in which calibrations and alignments can be derived using the dedicated calibration and express streams. The bulk processing of the main physics stream starts on expi...

  16. Event alignment, warping between running speeds

    DEFF Research Database (Denmark)

    Pontoppidan, Niels Henrik; Douglas, Ryan

    2004-01-01

    marine conditions (different load settings on the propeller curve) was in the range from 60 to 120 rotations per minute; furthermore the running speed was stable within periods of fixed load. Electronically controlled engines can change the angular timing of certain events, such as fuel injection...

  17. All Orthogonal Arrays with 18 Runs

    NARCIS (Netherlands)

    Schoen, E.D.

    2009-01-01

    All combinatorially inequivalent orthogonal arrays with 18 runs and eight or less factors are generated. Their potential as practical experimental designs is evaluated by a classification using generalized word-length patterns of the original arrays and those of their projections into less factors.

  18. Palm cooling does not improve running performance.

    Science.gov (United States)

    Scheadler, C M; Saunders, N W; Hanson, N J; Devor, S T

    2013-08-01

    The aim of this study was to test the efficacy of the BEX Runner palm cooling device during a combination of exercise and environmental heat stress. Twelve subjects completed two randomly ordered time-to-exhaustion runs at 75% VO2max, 30 °C, and 50% relative humidity with and without palm cooling. Time to exhaustion runs started once the warm-up had elicited a core temperature of 37.5 °C. Heart rate, Rating of Perceived Exertion, Feeling Scale, and core temperature were recorded at 2-min intervals during each run. Time to exhaustion was longer in control than treatment (46.7±31.1 vs. 41.3±26.3 min, respectively, prate-of-rise of core temperature was not different between control and treatment (0.047 vs. 0.048 °C · min-1, respectively). The use of the BEX Runner palm cooling device during a run in hot conditions did not eliminate or even attenuate the rise in core temperature. Exercise time in hot conditions did not increase with the use of the palm cooling device and time to exhaustion was reduced. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Chaotic inflation with curvaton induced running

    CERN Document Server

    Sloth, Martin S

    2014-01-01

    The apparent tension between the the recent BICEP2 data and the Planck data might be removed by allowing for a large running in the spectral index as suggested by the BICEP2 collaboration, but in disagreement with prediction of the simplest model of chaotic inflation. The large field chaotic model is sensitive to UV physics, and the non-trivial running of the spectral index hinted by the BICEP2 data could therefore be telling us some additional new information about the UV completion of inflation. However, before we can draw such strong conclusions with confidence, we might first have to carefully exclude the alternatives. Assuming monomial chaotic inflation is the right theory of inflation, we therefore explore the possibility that the running could be due to some other less UV sensitive degree of freedom. As an example, we ask if it is possible that the curvature perturbation spectrum has a contribution from a curvaton, which makes up for the large running in the spectrum. We find that this effect could mas...

  20. Jet performance in Run 2 at ATLAS

    CERN Document Server

    Kunigo, Takuto; The ATLAS collaboration

    2016-01-01

    Slides for the talk "Jet performance in Run 2" at BOOST 2016. In this talk, the jet energy calibration sequence ( including in-situ calibrations at $\\sqrt{s} = 13$ TeV ), jet energy scale and resolution uncertainties and the jet calibration plan for 2016 will be presented.

  1. Asperity deformation during running-in

    DEFF Research Database (Denmark)

    Jakobsen, Jørgen; Sivebæk, Ion Marius

    2011-01-01

    Asperities loaded in pure rolling against a hard, smooth surface will often be deformed at the first contact event and will thereby experience high normal stress, presumably of a magnitude near the Vickers hardness of the softer material. Continued running-in can be imagined to develop into lower...

  2. Asperity deformation during running-in

    DEFF Research Database (Denmark)

    Jakobsen, Jørgen; Sivebæk, Ion Marius

    2010-01-01

    Asperities loaded in pure rolling against a hard, smooth surface will often be deformed at the first contact event and will thereby experience high normal stress, presumably of a magnitude near the Vickers hardness of the softer material. Continued running-in can be imagined to develop into lower...

  3. Wave run-up on sandbag slopes

    Directory of Open Access Journals (Sweden)

    Thamnoon Rasmeemasmuang

    2014-03-01

    Full Text Available On occasions, sandbag revetments are temporarily applied to armour sandy beaches from erosion. Nevertheless, an empirical formula to determine the wave run -up height on sandbag slopes has not been available heretofore. In this study a wave run-up formula which considers the roughness of slope surfaces is proposed for the case of sandbag slopes. A series of laboratory experiments on the wave run -up on smooth slopes and sandbag slopes were conducted in a regular-wave flume, leading to the finding of empirical parameters for the formula. The proposed empirical formula is applicable to wave steepness ranging from 0.01 to 0.14 and to the thickness of placed sandbags relative to the wave height ranging from 0.17 to 3.0. The study shows that the wave run-up height computed by the formula for the sandbag slopes is 26-40% lower than that computed by the formula for the smooth slopes.

  4. A luminosity model of RHIC gold runs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y.

    2011-11-01

    In this note, we present a luminosity model for RHIC gold runs. The model is applied to the physics fills in 2007 run without cooling, and with the longitudinal cooling applied to one beam only. Having good comparison, the model is used to project a fill with the longitudinal cooling applied to both beams. Further development and possible applications of the model are discussed. To maximize the integrated luminosity, usually the higher beam intensity, smaller longitudinal and transverse emittance, and smaller {beta} are the directions to work on. In past 10 years, the RHIC gold runs have demonstrated a path toward this goal. Most recently, a successful commissioning of the bunched beam stochastic cooling, both longitudinal and transverse, has offered a chance of further RHIC luminosity improvement. With so many factors involved, a luminosity model would be useful to identify and project gains in the machine development. In this article, a preliminary model is proposed. In Section 2, several secondary factors, which are not yet included in the model, are identified based on the RHIC operation condition and experience in current runs. In Section 3, the RHIC beam store parameters used in the model are listed, and validated. In Section 4, the factors included in the model are discussed, and the luminosity model is presented. In Section 5, typical RHIC gold fills without cooling, and with partial cooling are used for comparison with the model. Then a projection of fills with more coolings is shown. In Section 6, further development of the model is discussed.

  5. Daytime running lights : its safety evidence revisited.

    NARCIS (Netherlands)

    Koornstra, M.J.

    1993-01-01

    Retrospective in-depth accident studies from several countries confirm that human perception errors are the main causal factor in road accidents. The share of accident types which are relevant for the effect of daytime running lights (DRL), such as overtaking and crossing accidents, in the total of

  6. The Run-2 ATLAS Trigger System

    CERN Document Server

    Ruiz-Martinez, Aranzazu; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger successfully collected collision data during the first run of the LHC between 2009-2013 at different centre-of-mass energies between 900 GeV and 8 TeV. The trigger system consists of a hardware Level-1 and a software-based high level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV and higher luminosity, resulting in roughly five times higher trigger rates. A brief review of the ATLAS trigger system upgrades that were implemented between Run-1 and Run-2, allowing to cope with the increased trigger rates while maintaining or even improving the efficiency to select physics processes of interest, will be given. This includes changes to the Level-1 calorimeter and muon trigger systems, the introduction of a new Level-1 topological trigger module and the merging of the previously two-level HLT system into a single event filter farm. A ...

  7. Validity of Self-Reported Running Distance.

    Science.gov (United States)

    Dideriksen, Mette; Soegaard, Cristina; Nielsen, Rasmus O

    2016-06-01

    It is unclear whether there is a difference between subjective evaluation and objective global positioning systems (GPS) measurement of running distance. The purpose of this study was to investigate if such difference exists. A total of 100 participants (51% men; median age, 41.5; body mass, 78.1 kg ±13.8 SD) completed a run of free choice, then subjectively reported the distance in kilometer (km). This information was subsequently compared with the distance derived from a nondifferential GPS watch using paired t-tests and Bland-Altman's 95% limits of agreement. No significant difference was found between the mean paired differences between subjective evaluations and GPS measurements (1.86%, 95% confidence interval = -1.53%; 5.25%, p = 0.96). The Bland-Altman 95% limits of agreement revealed considerable variation (lower limit = -28% and upper limit = 40%). Such variation exceeds the clinical error range of 10%. In conclusion, the mean running distance (km) is similar between self-reporting and GPS measurements. However, researchers should consider using GPS measurements in favor of subjective reporting of running distance because of considerable variation on an individual level.

  8. KINETIC CONSEQUENCES OF CONSTRAINING RUNNING BEHAVIOR

    Directory of Open Access Journals (Sweden)

    John A. Mercer

    2005-06-01

    Full Text Available It is known that impact forces increase with running velocity as well as when stride length increases. Since stride length naturally changes with changes in submaximal running velocity, it was not clear which factor, running velocity or stride length, played a critical role in determining impact characteristics. The aim of the study was to investigate whether or not stride length influences the relationship between running velocity and impact characteristics. Eight volunteers (mass=72.4 ± 8.9 kg; height = 1.7 ± 0.1 m; age = 25 ± 3.4 years completed two running conditions: preferred stride length (PSL and stride length constrained at 2.5 m (SL2.5. During each condition, participants ran at a variety of speeds with the intent that the range of speeds would be similar between conditions. During PSL, participants were given no instructions regarding stride length. During SL2.5, participants were required to strike targets placed on the floor that resulted in a stride length of 2.5 m. Ground reaction forces were recorded (1080 Hz as well as leg and head accelerations (uni-axial accelerometers. Impact force and impact attenuation (calculated as the ratio of head and leg impact accelerations were recorded for each running trial. Scatter plots were generated plotting each parameter against running velocity. Lines of best fit were calculated with the slopes recorded for analysis. The slopes were compared between conditions using paired t-tests. Data from two subjects were dropped from analysis since the velocity ranges were not similar between conditions resulting in the analysis of six subjects. The slope of impact force vs. velocity relationship was different between conditions (PSL: 0.178 ± 0.16 BW/m·s-1; SL2.5: -0.003 ± 0.14 BW/m·s-1; p < 0.05. The slope of the impact attenuation vs. velocity relationship was different between conditions (PSL: 5.12 ± 2.88 %/m·s-1; SL2.5: 1.39 ± 1.51 %/m·s-1; p < 0.05. Stride length was an important factor

  9. The CMS electron and photon trigger for the LHC Run 2

    Science.gov (United States)

    Dezoort, Gage; Xia, Fan

    2017-01-01

    The CMS experiment implements a sophisticated two-level triggering system composed of Level-1, instrumented by custom-design hardware boards, and a software High-Level-Trigger. A new Level-1 trigger architecture with improved performance is now being used to maintain the thresholds that were used in LHC Run I for the more challenging luminosity conditions experienced during Run II. The upgrades to the calorimetry trigger will be described along with performance data. The algorithms for the selection of final states with electrons and photons, both for precision measurements and for searches of new physics beyond the Standard Model, will be described in detail.

  10. A novel running mechanic's class changes kinematics but not running economy.

    Science.gov (United States)

    Craighead, Daniel H; Lehecka, Nick; King, Deborah L

    2014-11-01

    A novel method of running technique instruction, Midstance to Midstance Running (MMR), was studied to determine how MMR affected kinematics and running economy (RE) of recreational runners. An experimental pre-post randomized groups design was used. Participants (n = 18) were recreational runners who ran at least 3 days a week and 5 km per run. All testing was performed on a treadmill at 2.8 m·s. The intervention group (n = 9) completed 8 weeks of instruction in MMR; the control group (n = 9) continued running without instruction. The MMR group showed significant decreases in stride length (SL) (p = 0.02) and maximum knee flexion velocity in stance (p = 0.01), and a significant increase in stride rate (SR) (p = 0.02) after 8 weeks. No significant changes were found in heart rate, rating of perceived exertion, or RE. Midstance to Midstance Running was effective in changing SR and SL, but was not effective in changing other kinematic variables such as foot contact position and maximum knee flexion during swing. Midstance to Midstance Running did not affect RE. Evidence suggests that MMR may be an appropriate instructional method for recreational runners trying to decrease SL and increase SR.

  11. Physiological assessment of isolated running does not directly replicate running capacity after triathlon-specific cycling.

    Science.gov (United States)

    Etxebarria, Naroa; Hunt, Julie; Ingham, Steve; Ferguson, Richard

    2014-01-01

    Triathlon running is affected by prior cycling and power output during triathlon cycling is variable in nature. We compared constant and triathlon-specific variable power cycling and their effect on subsequent submaximal running physiology. Nine well-trained male triathletes (age 24.6 ± 4.6 years, [Formula: see text] 4.5 ± 0.4 L · min(-1); mean ± SD) performed a submaximal incremental run test, under three conditions: no prior exercise and after a 1 h cycling trial at 65% of maximal aerobic power with either a constant or a variable power profile. The variable power protocol involved multiple 10-90 s intermittent efforts at 40-140% maximal aerobic power. During cycling, pulmonary ventilation (22%, ± 14%; mean; ± 90% confidence limits), blood lactate (179%, ± 48%) and rating of perceived exertion (7.3%, ± 10.2%) were all substantially higher during variable than during constant power cycling. At the start of the run, blood lactate was 64%, ± 61% higher after variable compared to constant power cycling, which decreased running velocity at 4 mM lactate threshold by 0.6, ± 0.9 km · h(-1). Physiological responses to incremental running are negatively affected by prior cycling and, to a greater extent, by variable compared to even-paced cycling. Testing and training of triathletes should account foe higher physiological cost of triathlon-specific cycling and its effect on subsequent running.

  12. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.

    Science.gov (United States)

    Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G

    2012-06-01

    Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.

  13. Muscle injury after low-intensity downhill running reduces running economy.

    Science.gov (United States)

    Baumann, Cory W; Green, Michael S; Doyle, J Andrew; Rupp, Jeffrey C; Ingalls, Christopher P; Corona, Benjamin T

    2014-05-01

    Contraction-induced muscle injury may reduce running economy (RE) by altering motor unit recruitment, lowering contraction economy, and disturbing running mechanics, any of which may have a deleterious effect on endurance performance. The purpose of this study was to determine if RE is reduced 2 days after performing injurious, low-intensity exercise in 11 healthy active men (27.5 ± 5.7 years; 50.05 ± 1.67 VO2peak). Running economy was determined at treadmill speeds eliciting 65 and 75% of the individual's peak rate of oxygen uptake (VO2peak) 1 day before and 2 days after injury induction. Lower extremity muscle injury was induced with a 30-minute downhill treadmill run (6 × 5 minutes runs, 2 minutes rest, -12% grade, and 12.9 km·h(-1)) that elicited 55% VO2peak. Maximal quadriceps isometric torque was reduced immediately and 2 days after the downhill run by 18 and 10%, and a moderate degree of muscle soreness was present. Two days after the injury, steady-state VO2 and metabolic work (VO2 L·km(-1)) were significantly greater (4-6%) during the 65% VO2peak run. Additionally, postinjury VCO2, VE and rating of perceived exertion were greater at 65% but not at 75% VO2peak, whereas whole blood-lactate concentrations did not change pre-injury to postinjury at either intensity. In conclusion, low-intensity downhill running reduces RE at 65% but not 75% VO2peak. The results of this study and other studies indicate the magnitude to which RE is altered after downhill running is dependent on the severity of the injury and intensity of the RE test.

  14. The ATLAS Tau Trigger Performance during LHC Run 1 and Prospects for Run 2

    CERN Document Server

    Sakurai, Yuki

    2014-01-01

    Triggering on hadronic tau decays is essential for a wide variety of analyses of interesting physics processes at ATLAS. The ATLAS tau trigger combines information from the tracking detectors and calorimeters to identify the signature of hadronically decaying tau leptons. In Run 2 operation expected to start in 2015, the trigger strategies will become more important than ever before. In this paper, the tau trigger performance during Run 1 is summarized and also an overview of the developments of Run 2 tau trigger strategy is presented.

  15. The ATLAS Tau Trigger Performance during LHC Run1 and Prospects for Run2

    CERN Document Server

    Sakurai, Y; The ATLAS collaboration

    2014-01-01

    Triggering on hadronic tau decays is essential for a wide variety of analyses of interesting physics processes at ATLAS. The ATLAS tau trigger combines information from the tracking detectors and calorimeters to identify the signature of hadronically decaying tau leptons. In Run2 operation expected to start in 2015, the trigger strategies will become more important than ever before. In this paper, the tau trigger performance during Run1 is summarized and also an overview of the developments of Run2 tau trigger strategy is presented.

  16. Run scenarios for the linear collider

    Energy Technology Data Exchange (ETDEWEB)

    M. Battaglia et al.

    2002-12-23

    We have examined how a Linear Collider program of 1000 fb{sup -1} could be constructed in the case that a very rich program of new physics is accessible at {radical}s {le} 500 GeV. We have examined possible run plans that would allow the measurement of the parameters of a 120 GeV Higgs boson, the top quark, and could give information on the sparticle masses in SUSY scenarios in which many states are accessible. We find that the construction of the run plan (the specific energies for collider operation, the mix of initial state electron polarization states, and the use of special e{sup -}e{sup -} runs) will depend quite sensitively on the specifics of the supersymmetry model, as the decay channels open to particular sparticles vary drastically and discontinuously as the underlying SUSY model parameters are varied. We have explored this dependence somewhat by considering two rather closely related SUSY model points. We have called for operation at a high energy to study kinematic end points, followed by runs in the vicinity of several two body production thresholds once their location is determined by the end point studies. For our benchmarks, the end point runs are capable of disentangling most sparticle states through the use of specific final states and beam polarizations. The estimated sparticle mass precisions, combined from end point and scan data, are given in Table VIII and the corresponding estimates for the mSUGRA parameters are in Table IX. The precision for the Higgs boson mass, width, cross-sections, branching ratios and couplings are given in Table X. The errors on the top quark mass and width are expected to be dominated by the systematic limits imposed by QCD non-perturbative effects. The run plan devotes at least two thirds of the accumulated luminosity near the maximum LC energy, so that the program would be sensitive to unexpected new phenomena at high mass scales. We conclude that with a 1 ab{sup -1} program, expected to take the first 6-7 years

  17. DESIGN IMPROVEMENT OF THE LOCOMOTIVE RUNNING GEARS

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2013-09-01

    Full Text Available Purpose. To determine the dynamic qualities of the mainline freight locomotives characterizing the safe motion in tangent and curved track sections at all operational speeds, one needs a whole set of studies, which includes a selection of the design scheme, development of the corresponding mathematical model of the locomotive spatial fluctuations, construction of the computer calculation program, conducting of the theoretical and then experimental studies of the new designs. In this case, one should compare the results with existing designs. One of the necessary conditions for the qualitative improvement of the traction rolling stock is to define the parameters of its running gears. Among the issues related to this problem, an important place is occupied by the task of determining the locomotive dynamic properties on the stage of projection, taking into account the selected technical solutions in the running gear design. Methodology. The mathematical modeling studies are carried out by the numerical integration method of the dynamic loading for the mainline locomotive using the software package «Dynamics of Rail Vehicles » («DYNRAIL». Findings. As a result of research for the improvement of locomotive running gear design it can be seen that the creation of the modern locomotive requires from engineers and scientists the realization of scientific and technical solutions. The solutions enhancing design speed with simultaneous improvement of the traction, braking and dynamic qualities to provide a simple and reliable design, especially the running gear, reducing the costs for maintenance and repair, low initial cost and operating costs for the whole service life, high traction force when starting, which is as close as possible to the ultimate force of adhesion, the ability to work in multiple traction mode and sufficient design speed. Practical Value. The generalization of theoretical, scientific and methodological, experimental studies aimed

  18. Run scenarios for the linear collider

    Energy Technology Data Exchange (ETDEWEB)

    M. Battaglia et al.

    2002-12-23

    We have examined how a Linear Collider program of 1000 fb{sup -1} could be constructed in the case that a very rich program of new physics is accessible at {radical}s {le} 500 GeV. We have examined possible run plans that would allow the measurement of the parameters of a 120 GeV Higgs boson, the top quark, and could give information on the sparticle masses in SUSY scenarios in which many states are accessible. We find that the construction of the run plan (the specific energies for collider operation, the mix of initial state electron polarization states, and the use of special e{sup -}e{sup -} runs) will depend quite sensitively on the specifics of the supersymmetry model, as the decay channels open to particular sparticles vary drastically and discontinuously as the underlying SUSY model parameters are varied. We have explored this dependence somewhat by considering two rather closely related SUSY model points. We have called for operation at a high energy to study kinematic end points, followed by runs in the vicinity of several two body production thresholds once their location is determined by the end point studies. For our benchmarks, the end point runs are capable of disentangling most sparticle states through the use of specific final states and beam polarizations. The estimated sparticle mass precisions, combined from end point and scan data, are given in Table VIII and the corresponding estimates for the mSUGRA parameters are in Table IX. The precision for the Higgs boson mass, width, cross-sections, branching ratios and couplings are given in Table X. The errors on the top quark mass and width are expected to be dominated by the systematic limits imposed by QCD non-perturbative effects. The run plan devotes at least two thirds of the accumulated luminosity near the maximum LC energy, so that the program would be sensitive to unexpected new phenomena at high mass scales. We conclude that with a 1 ab{sup -1} program, expected to take the first 6-7 years

  19. 28 CFR 544.34 - Inmate running events.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Inmate running events. 544.34 Section 544... EDUCATION Inmate Recreation Programs § 544.34 Inmate running events. Running events will ordinarily not... available for all inmate running events....

  20. Run-up distributions of waves breaking on sloping walls

    NARCIS (Netherlands)

    Battjes, J.A.

    1969-01-01

    Distributions of run-up are calculated by assigning to each individual wave in an irregular wave train a run-up value according to Hunt's formula. The use of this formula permits a normalization of the run-up in such a way that the run-up distributions are independent of slope angle, mean wave

  1. CMS computing operations during run 1

    CERN Document Server

    Adelman, J; Artieda, J; Bagliese, G; Ballestero, D; Bansal, S; Bauerdick, L; Behrenhof, W; Belforte, S; Bloom, K; Blumenfeld, B; Blyweert, S; Bonacorsi, D; Brew, C; Contreras, L; Cristofori, A; Cury, S; da Silva Gomes, D; Dolores Saiz Santos, M; Dost, J; Dykstra, D; Fajardo Hernandez, E; Fanzango, F; Fisk, I; Flix, J; Georges, A; Gi ffels, M; Gomez-Ceballos, G; Gowdy, S; Gutsche, O; Holzman, B; Janssen, X; Kaselis, R; Kcira, D; Kim, B; Klein, D; Klute, M; Kress, T; Kreuzer, P; Lahi , A; Larson, K; Letts, J; Levin, A; Linacre, J; Linares, J; Liu, S; Luyckx, S; Maes, M; Magini, N; Malta, A; Marra Da Silva, J; Mccartin, J; McCrea, A; Mohapatra, A; Molina, J; Mortensen, T; Padhi, S; Paus, C; Piperov, S; Ralph; Sartirana, A; Sciaba, A; S ligoi, I; Spinoso, V; Tadel, M; Traldi, S; Wissing, C; Wuerthwein, F; Yang, M; Zielinski, M; Zvada, M

    2014-01-01

    During the first run, CMS collected and processed more than 10B data events and simulated more than 15B events. Up to 100k processor cores were used simultaneously and 100PB of storage was managed. Each month petabytes of data were moved and hundreds of users accessed data samples. In this document we discuss the operational experience from this first run. We present the workflows and data flows that were executed, and we discuss the tools and services developed, and the operations and shift models used to sustain the system. Many techniques were followed from the original computing planning, but some were reactions to difficulties and opportunities. We also address the lessons learned from an operational perspective, and how this is shaping our thoughts for 2015.

  2. CMS Full Simulation for Run-2

    CERN Document Server

    Hildreth, M; Lange, D J; Kortelainen, M J

    2015-01-01

    During LHC shutdown between run-1 and run-2 intensive developments were carried out to improve performance of CMS simulation. For physics improvements migration from Geant4 9.4p03 to Geant4 10.0p02 has been performed. CPU performance has been improved by introduction of the Russian roulette method inside CMS calorimeters, optimization of CMS simulation sub-libraries, and usage of statics build of the simulation executable. As a result of these efforts, CMS simulation has been speeded up by about factor two. In this work we provide description of updates for different software components of CMS simulation. Development of a multi-threaded (MT) simulation approach for CMS will be also discuss.

  3. The CDF Run IIb silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, M.; Bacchetta, N.; Behari, S.; Benjamin, D.; Bisello, D.; Bolla, G.; Bortoletto, D.; Burghard, A.; Busetto, G.; Cabrera, S.; Canepa, A.; Castro, A.; Cardoso, G.; Chertok, M.; Ciobanu, C.; Derylo, G.; Fang, I.; Flaugher, B. E-mail: brenna@fnal.gov; Freeman, J.; Galtieri, L.; Galyardt, J.; Garcia-Sciveres, M.; Giurgiu, G.; Gorelov, I.; Haber, C.; Hara, K.; Hoeferkamp, M.; Holbrook, B.; Hrycyk, M.; Junk, T.; Kim, S.; Kobayashi, K.; Krieger, B.; Kruse, M.; Lander, R.; Lu, R.-S.; Lukens, P.; Malferrari, L.; Manea, C.; Margotti, A.; Maksimovic, P.; Merkel, P.; Moccia, S.; Nakano, I.; Naoumov, D.; Novak, J.; Okusawa, T.; Orlov, Y.; Pancaldi, G.; Pantano, D.; Pavlicek, V.; Pellett, D.; Seidel, S.; Semeria, F.; Takei, Y.; Tanaka, R.; Wang, Z.; Watje, P.; Weber, M.; Wester, W.; Wilkes, T.; Yamamoto, K.; Yao, W.; Zimmermann, S.; Zucchelli, S.; Zucchini, A

    2004-02-01

    Fermilab plans to deliver 5-15 fb{sup -1} of integrated luminosity to the CDF and D0 experiments. The current inner silicon detectors at CDF (SVXIIa and L00) will not tolerate the radiation dose associated with high-luminosity running and will need to be replaced. A new readout chip (SVX4) has been designed in radiation-hard 0.25 {mu}m, CMOS technology. Single-sided sensors are arranged in a compact structure, called a stave, with integrated readout and cooling systems. This paper describes the general design of the Run IIb system, testing results of prototype electrical components (staves), and prototype silicon sensor performance before and after irradiation.

  4. The Millennium Run Observatory: First Light

    CERN Document Server

    Overzier, R; Angulo, R E; Bertin, E; Blaizot, J; Henriques, B M B; Marleau, G -D; White, S D M

    2012-01-01

    Simulations of galaxy evolution aim to capture our current understanding as well as to make predictions for testing by future experiments. Simulations and observations are often compared in an indirect fashion: physical quantities are estimated from the data and compared to models. However, many applications can benefit from a more direct approach, where the observing process is also simulated and the models are seen fully from the observer's perspective. To facilitate this, we have developed the Millennium Run Observatory (MRObs), a theoretical virtual observatory which uses virtual telescopes to `observe' semi-analytic galaxy formation models based on the suite of Millennium Run dark matter simulations. The MRObs produces data that can be processed and analyzed using the standard software packages developed for real observations. At present, we produce images in forty filters from the rest-frame UV to IR for two stellar population synthesis models, three different models of IGM absorption, and two cosmologi...

  5. Instrumental Variables in the Long Run

    DEFF Research Database (Denmark)

    Casey, Gregory; Klemp, Marc Patrick Brag

    2017-01-01

    In the study of long-run economic growth, it is common to use historical or geographical variables as instruments for contemporary endogenous regressors. We study the interpretation of these conventional instrumental variable (IV) regressions in a general, yet simple, framework. Our aim...... is to estimate the long-run causal effect of changes in the endogenous explanatory variable. We find that conventional IV regressions generally cannot recover this parameter of interest. To estimate this parameter, therefore, we develop an augmented IV estimator that combines the conventional regression...... with a separate regression estimating the degree of persistence in the endogenous regressor. Importantly, our estimator can overcome a particular violation of the exclusion restriction that can arise when there is a time gap between the instrument and the endogenous explanatory variable. We apply our results...

  6. Measuring the running top-quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Langenfeld, U.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Berlin Univ. (Germany). Inst. fuer Physik

    2009-06-15

    We present the first direct determination of the running top-quark mass based on the total cross section of top-quark pair-production as measured at the Tevatron. Our theory prediction for the cross section includes various next-to-next-to-leading order QCD contributions, in particular all logarithmically enhanced terms near threshold, the Coulomb corrections at two loops and all explicitly scale dependent terms at NNLO accuracy. The result allows for an exact and independent variation of the renormalization and factorization scales. For Tevatron and LHC we study its dependence on all scales, on the parton luminosity and on the top-quark mass using both the conventional pole mass definition as well as the running mass in the MS scheme. We extract for the top-quark an MS mass of m({mu}=m) =160.0{sup +3.3}{sub -3.2} GeV. (orig.)

  7. Ergogenic effect of music during running performance

    OpenAIRE

    Van Dyck, Edith; Leman, Marc

    2016-01-01

    In running competitions portable music players and headphones are often banned. In some cases, runners have been disqualified after using such devices during competition. In this paper, it is discussed whether, aside from possible safety reasons, such competition regulations make sense and whether music can have an ergogenic effect on performance. Although a definitive conclusion on the regulation matter is not of our concern here, we review evidence of the fact that music is capable of enhan...

  8. FPU-Supported Running Error Analysis

    OpenAIRE

    T. Zahradnický; R. Lórencz

    2010-01-01

    A-posteriori forward rounding error analyses tend to give sharper error estimates than a-priori ones, as they use actual data quantities. One of such a-posteriori analysis – running error analysis – uses expressions consisting of two parts; one generates the error and the other propagates input errors to the output. This paper suggests replacing the error generating term with an FPU-extracted rounding error estimate, which produces a sharper error bound.

  9. 1987 DOE review: First collider run operation

    Energy Technology Data Exchange (ETDEWEB)

    Childress, S.; Crawford, J.; Dugan, G.; Edwards, H.; Finley, D.A.; Fowler, W.B.; Harrison, M.; Holmes, S.; Makara, J.N.; Malamud, E.

    1987-05-01

    This review covers the operations of the first run of the 1.8 TeV superconducting super collider. The papers enclosed cover: PBAR source status, fixed target operation, Tevatron cryogenic reliability and capacity upgrade, Tevatron Energy upgrade progress and plans, status of the D0 low beta insertion, 1.8 K and 4.7 K refrigeration for low-..beta.. quadrupoles, progress and plans for the LINAC and booster, near term and long term and long term performance improvements.

  10. Xiamen Runs Faster with Marathon Competition

    Institute of Scientific and Technical Information of China (English)

    MaZhijuan; YeShaojin

    2005-01-01

    On March 26, 15,920 contestants were running on Xiamen's Island Loop Road, dubbed as the world's most beautiful race lane. Along the 42.195kilometer lane, some 300 thousand spectators shouted and applauded for those runners. That was the Third Xiamen International Marathon Competition, which was called by local people """"a big festival"""". There has been never a sport game that makes the city so enthusiastic.

  11. The anatomy and biomechanics of running.

    Science.gov (United States)

    Nicola, Terry L; Jewison, David J

    2012-04-01

    To understand the normal series of biomechanical events of running, a comparative assessment to walking is helpful. Closed kinetic chain through the lower extremities, control of the lumbopelvic mechanism, and overall symmetry of movement has been described well enough that deviations from normal movement can now be associated with specific overuse injuries experienced by runners. This information in combination with a history of the runner's errors in their training program will lead to a more comprehensive treatment and prevention plan for related injuries.

  12. Footwear and running cardio-respiratory responses.

    Science.gov (United States)

    Rubin, D A; Butler, R J; Beckman, B; Hackney, A C

    2009-05-01

    This study compared cardio-respiratory responses during running wearing a motion control shoe (MC) or a cushioning shoe (CU) in a cross-over single blinded design. Fourteen runners (10F/4M, age=27.3+/-5.1 years, body mass=64.1+/-12.2 kg, height=167.8+/-7.5 cm, VO (2)max=52.3+/-8.8 ml/kg/min) completed a 40-min run at approximately 65% VO (2) max under both shoe conditions. Oxygen uptake (mL/kg/min; L/min), minute ventilation (L/min), respiratory exchange ratio, and heart rate were measured at minutes 8-10, 18-20, 28-30 and 38-40 of exercise. Rating of perceived exertion was obtained at minutes 10, 20, 30 and 40. Two (footwear) by four (time) repeated measures ANOVAs showed no differences between footwear conditions in overall oxygen consumption (MC=36.8+/-1.5 vs. CU=35.3+/-1.4 mL/kg/min, p=0.143), minute ventilation (MC=50.4+/-4 vs. CU=48.5+/-3.8, p=0.147), respiratory exchange ratio (MC=0.90+/-0.01 vs. CU=0.89+/-0.01, p=0.331), heart rate (MC=159+/-3 vs. CU=160+/-3, p=0.926), or rate of perceived exertion. The design of motion control footwear does not appear to affect cardio-respiratory or perceived exertion responses during submaximal running. The findings are specific to the shoes tested. Nonetheless, the outcomes suggest that footwear selection to reduce certain overuse injuries does not increase the work of running.

  13. Proposal for a running coupling JIMWLK equation

    CERN Document Server

    Lappi, T

    2014-01-01

    In the CGC framework the initial stages of a heavy ion collision at high energy are described as "glasma" field configurations. The initial condition for these evolving fields depends, in the CGC effective theory, on a probability distribution for color charges. The energy dependence of this distribution can be calculated from the JIMWLK renormalization group equation. We discuss recent work on a practical implementation of the running coupling constant in the Langevin method of solving the JIMWLK equation.

  14. The Aerodynamic Signature of Running Spiders

    OpenAIRE

    Jérôme Casas; Thomas Steinmann; Olivier Dangles

    2008-01-01

    International audience; Many predators display two foraging modes, an ambush strategy and a cruising mode. These foraging strategies have been classically studied in energetic, biomechanical and ecological terms, without considering the role of signals produced by predators and perceived by prey. Wolf spiders are a typical example; they hunt in leaf litter either using an ambush strategy or by moving at high speed, taking over unwary prey. Air flow upstream of running spiders is a source of i...

  15. Running with a powered knee and ankle prosthesis.

    Science.gov (United States)

    Shultz, Amanda H; Lawson, Brian E; Goldfarb, Michael

    2015-05-01

    This paper presents a running control architecture for a powered knee and ankle prosthesis that enables a transfemoral amputee to run with a biomechanically appropriate running gait and to intentionally transition between a walking and running gait. The control architecture consists firstly of a coordination level controller, which provides gait biomechanics representative of healthy running, and secondly of a gait selection controller that enables the user to intentionally transition between a running and walking gait. The running control architecture was implemented on a transfemoral prosthesis with powered knee and ankle joints, and the efficacy of the controller was assessed in a series of running trials with a transfemoral amputee subject. Specifically, treadmill trials were conducted to assess the extent to which the coordination controller provided a biomechanically appropriate running gait. Separate trials were conducted to assess the ability of the user to consistently and reliably transition between walking and running gaits.

  16. CMS Strip Detector: Operational Experience and Run1 to Run2 Transition

    CERN Document Server

    Butz, Erik Manuel

    2014-01-01

    The CMS silicon strip tracker is the largest silicon detector ever built. It has an active area of 200~m$^2$ of silicon segmented into almost 10 million readout channels. We describe some operational aspects of the system during its first years of operation during the LHC run 1. During the long shutdown 1 of the LHC an extensive work program was carried out on the strip tracker services in order to facilitate operation of the system at sub-zero temperatures in the LHC run~2 and beyond. We will describe these efforts and give a motivation of the choice of run~2 operating temperature. Finally, a brief outlook on the operation of the system in the upcoming run~2 will be given.

  17. Running vacuum cosmological models: linear scalar perturbations

    Science.gov (United States)

    Perico, E. L. D.; Tamayo, D. A.

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ(H2) or Λ(R). Such models assume an equation of state for the vacuum given by bar PΛ = - bar rhoΛ, relating its background pressure bar PΛ with its mean energy density bar rhoΛ ≡ Λ/8πG. This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely bar rhoΛ = Σibar rhoΛi. Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ(H2) scenario the vacuum is coupled with every matter component, whereas the Λ(R) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  18. The Run-Up of Subduction Zones

    Science.gov (United States)

    Riquelme, S.; Bravo, F. J.; Fuentes, M.; Matias, M.; Medina, M.

    2016-12-01

    Large earthquakes in subduction zones are liable to produce tsunamis that can cause destruction and fatalities. The Run-up is a geophysical parameter that quantifies damage and if critical facilities or population are exposed to. Here we use the coupling for certain subduction regions measured by different techniques (Potency and GPS observations) to define areas where large earthquakes can occur. Taking the slab 1.0 from the United States Geological Survey (USGS), we can define the geometry of the area including its tsunamigenic potential. By using stochastic earthquakes sources for each area with its maximum tsunamigenic potential, we calculate the numerical and analytical run-up for each case. Then, we perform a statistical analysis and calculate the envelope for both methods. Furthermore, we build an index of risk using: the closest slope to the shore in a piecewise linear approach (last slopecriteria) and the outputsfrom tsunami modeling. Results show that there are areas prone to produce higher run-up than others based on the size of the earthquake, geometrical constraints of the source, tectonic setting and the coast last slope. Based on these results, there are zones that have low risk index which can define escape routes or secure coastal areas for tsunami early warning, urban and planning purposes when detailed data is available.

  19. Constructing predictive models of human running.

    Science.gov (United States)

    Maus, Horst-Moritz; Revzen, Shai; Guckenheimer, John; Ludwig, Christian; Reger, Johann; Seyfarth, Andre

    2015-02-06

    Running is an essential mode of human locomotion, during which ballistic aerial phases alternate with phases when a single foot contacts the ground. The spring-loaded inverted pendulum (SLIP) provides a starting point for modelling running, and generates ground reaction forces that resemble those of the centre of mass (CoM) of a human runner. Here, we show that while SLIP reproduces within-step kinematics of the CoM in three dimensions, it fails to reproduce stability and predict future motions. We construct SLIP control models using data-driven Floquet analysis, and show how these models may be used to obtain predictive models of human running with six additional states comprising the position and velocity of the swing-leg ankle. Our methods are general, and may be applied to any rhythmic physical system. We provide an approach for identifying an event-driven linear controller that approximates an observed stabilization strategy, and for producing a reduced-state model which closely recovers the observed dynamics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Towards a measurement of the spectral runnings

    CERN Document Server

    Muñoz, Julian B; Raccanelli, Alvise; Kamionkowski, Marc; Silk, Joseph

    2016-01-01

    Single-field slow-roll inflation predicts a nearly scale-free power spectrum of perturbations, as observed at the scales accessible to current cosmological experiments. This spectrum is slightly red, showing a tilt $(1-n_s)\\sim 0.04$. A direct consequence of this tilt are nonvanishing runnings $\\alpha_s=\\mathrm d n_s/\\mathrm d\\log k$, and $\\beta_s=\\mathrm d\\alpha_s/\\mathrm d\\log k$, which in the minimal inflationary scenario should reach absolute values of $10^{-3}$ and $10^{-5}$, respectively. In this work we calculate how well future surveys can measure these two runnings. We consider a Stage-4 (S4) CMB experiment and show that it will be able to detect significant deviations from the inflationary prediction for $\\alpha_s$, although not for $\\beta_s$. Adding to the S4 CMB experiment the information from a WFIRST-like, a DESI-like, or a SKA-like galaxy survey improves the sensitivity to the runnings by $\\sim$ 5\\%, 15\\%, and 25\\%, respectively. A spectroscopic survey with a billion objects, such as SKA2, will...

  1. The energetics of ultra-endurance running.

    Science.gov (United States)

    Lazzer, Stefano; Salvadego, Desy; Rejc, Enrico; Buglione, Antonio; Antonutto, Guglielmo; di Prampero, Pietro Enrico

    2012-05-01

    Our objective was to determine the effects of long-lasting endurance events on the energy cost of running (C(r)), and the role of maximal oxygen uptake (VO(2max)), its fractional utilisation (F) and C(r) in determining the performance. Ten healthy runners (age range 26-59 years) participated in an ultra-endurance competition consisting of three running laps of 22, 48 and 20 km on three consecutive days in the North-East of Italy. Anthropometric characteristics and VO(2max) by a graded exercise test on a treadmill were determined 5 days before and 5 days after the competition. In addition, C(r) was determined on a treadmill before and after each running lap. Heart rate (HR) was recorded throughout the three laps. Results revealed that mean C(r) of the individual laps did not increase significantly with lap number (P = 0.200), thus ruling out any chronic lap effect. Even so, however, at the end of lap 3, C(r) was 18.0% (P increase of C(r-mean) during the competition yields to marked worsening of the performance, and (2) the three variables F, VO(2max) and C(r-mean) combined as described above explaining 87% of the total competition time variance.

  2. The aerodynamic signature of running spiders.

    Directory of Open Access Journals (Sweden)

    Jérôme Casas

    Full Text Available Many predators display two foraging modes, an ambush strategy and a cruising mode. These foraging strategies have been classically studied in energetic, biomechanical and ecological terms, without considering the role of signals produced by predators and perceived by prey. Wolf spiders are a typical example; they hunt in leaf litter either using an ambush strategy or by moving at high speed, taking over unwary prey. Air flow upstream of running spiders is a source of information for escaping prey, such as crickets and cockroaches. However, air displacement by running arthropods has not been previously examined. Here we show, using digital particle image velocimetry, that running spiders are highly conspicuous aerodynamically, due to substantial air displacement detectable up to several centimetres in front of them. This study explains the bimodal distribution of spider's foraging modes in terms of sensory ecology and is consistent with the escape distances and speeds of cricket prey. These findings may be relevant to the large and diverse array of arthropod prey-predator interactions in leaf litter.

  3. The aerodynamic signature of running spiders.

    Science.gov (United States)

    Casas, Jérôme; Steinmann, Thomas; Dangles, Olivier

    2008-05-07

    Many predators display two foraging modes, an ambush strategy and a cruising mode. These foraging strategies have been classically studied in energetic, biomechanical and ecological terms, without considering the role of signals produced by predators and perceived by prey. Wolf spiders are a typical example; they hunt in leaf litter either using an ambush strategy or by moving at high speed, taking over unwary prey. Air flow upstream of running spiders is a source of information for escaping prey, such as crickets and cockroaches. However, air displacement by running arthropods has not been previously examined. Here we show, using digital particle image velocimetry, that running spiders are highly conspicuous aerodynamically, due to substantial air displacement detectable up to several centimetres in front of them. This study explains the bimodal distribution of spider's foraging modes in terms of sensory ecology and is consistent with the escape distances and speeds of cricket prey. These findings may be relevant to the large and diverse array of arthropod prey-predator interactions in leaf litter.

  4. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  5. Prophylactic ankle taping: influence on treadmill-running kinematics and running economy.

    Science.gov (United States)

    Paulson, Sally; Braun, William A

    2014-02-01

    Prophylactic ankle taping (PAT) is commonly used in sport. Prophylactic ankle taping may restrict ankle motion, which would affect the kinetic chain and alter gait. The purpose of this study was to examine the effects of PAT on lower extremity (LE) kinematics and running economy during treadmill running. Twelve recreational runners (9 women, 3 men; M ± SD age = 31.33 ± 8.04 years, height = 1.67 ± 0.81 m, mass = 61.84 ± 9.38 kg) completed two 20-minute running sessions (PAT and no tape: control [CON]) at a self-selected pace. Before each run, reflective markers were placed along the right side of the body. Sagittal plane kinematic data (60 Hz) were captured 4 times, and expired gases were measured for 2-minute after each video capture during both trials. Stride frequency, stride length, LE kinematic variables at initial contact and end contact (EC) were calculated. Cardiorespiratory variables and heart rate were also measured. Running economy was normalized to oxygen uptake per unit body mass per kilometer (milliliter per kilogram per kilometer) as running speeds varied. At EC, the PAT hip angle significantly decreased (p = 0.01) by 3.82°, whereas CON decreased by 0.85°. The range of motion tended to decrease over the 20-minute run (p = 0.08). Heart rate significantly increased over time (6.7%) but was not different between conditions. Prophylactic ankle taping did not significantly affect the physiological measures associated with the metabolic cost of treadmill running or the other kinematic variables. These findings suggest that the hip angle continued to decrease during the PAT condition at push-off in recreational runners without impacting the metabolic cost of transport.

  6. Oil shale project run summary for small retort Run S-10

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, F.J.; Sandholtz, W.A.; Raley, J.H.; Laswell, B.H. (eds.)

    1978-06-01

    A combustion run using sidewall heaters to control heat loss and computer control to set heater power were conducted to study the effectiveness of the heater control system, compare results with a one-dimensional retort model when radial heat loss is not significant, and determine effects of recycling off-gas to the retort (by comparison with future runs). It is concluded that adequate simulation of in-situ processing in laboratory retorts requires control of heat losses. (JRD)

  7. Warm-up with a weighted vest improves running performance via leg stiffness and running economy.

    Science.gov (United States)

    Barnes, K R; Hopkins, W G; McGuigan, M R; Kilding, A E

    2015-01-01

    To determine the effects of "strides" with a weighted-vest during a warm-up on endurance performance and its potential neuromuscular and metabolic mediators. A bout of resistance exercise can enhance subsequent high-intensity performance, but little is known about such priming exercise for endurance performance. A crossover with 5-7 days between an experimental and control trial was performed by 11 well-trained distance runners. Each trial was preceded by a warm-up consisting of a 10-min self-paced jog, a 5-min submaximal run to determine running economy, and six 10-s strides with or without a weighted-vest (20% of body mass). After a 10-min recovery period, runners performed a series of jumps to determine leg stiffness and other neuromuscular characteristics, another 5-min submaximal run, and an incremental treadmill test to determine peak running speed. Clinical and non-clinical forms of magnitude-based inference were used to assess outcomes. Correlations and linear regression were used to assess relationships between performance and underlying measures. The weighted-vest condition resulted in a very-large enhancement of peak running speed (2.9%; 90% confidence limits ±0.8%), a moderate increase in leg stiffness (20.4%; ±4.2%) and a large improvement in running economy (6.0%; ±1.6%); there were also small-moderate clear reductions in cardiorespiratory measures. Relationships between change scores showed that changes in leg stiffness could explain all the improvements in performance and economy. Strides with a weighted-vest have a priming effect on leg stiffness and running economy. It is postulated the associated major effect on peak treadmill running speed will translate into enhancement of competitive endurance performance. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  8. Measurements for improvement of running capacity. : Physiological and biomechanical evaluations

    OpenAIRE

    Gullstrand, Lennart

    2009-01-01

    Introduction: Running is included in a large number of sports and one of the most well investigated modes of locomotion in both physiology and biomechanics. This thesis focuses on how some new methods from both areas may be used to capture running capacity in mid-distance and distance running from laboratory and field recordings. Measurement of running economy is included and defined as oxygen uptake at a given submaximal velocity in a steady-state condition. Running economy...

  9. Effects of a minimalist shoe on running economy and 5-km running performance.

    Science.gov (United States)

    Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D

    2016-09-01

    The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h(-1) in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h(-1) (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P economy and 5-km running performance.

  10. The Robust Running Ape: Unraveling the Deep Underpinnings of Coordinated Human Running Proficiency

    Directory of Open Access Journals (Sweden)

    John Kiely

    2017-06-01

    Full Text Available In comparison to other mammals, humans are not especially strong, swift or supple. Nevertheless, despite these apparent physical limitations, we are among Natures most superbly well-adapted endurance runners. Paradoxically, however, notwithstanding this evolutionary-bestowed proficiency, running-related injuries, and Overuse syndromes in particular, are widely pervasive. The term ‘coordination’ is similarly ubiquitous within contemporary coaching, conditioning, and rehabilitation cultures. Various theoretical models of coordination exist within the academic literature. However, the specific neural and biological underpinnings of ‘running coordination,’ and the nature of their integration, remain poorly elaborated. Conventionally running is considered a mundane, readily mastered coordination skill. This illusion of coordinative simplicity, however, is founded upon a platform of immense neural and biological complexities. This extensive complexity presents extreme organizational difficulties yet, simultaneously, provides a multiplicity of viable pathways through which the computational and mechanical burden of running can be proficiently dispersed amongst expanded networks of conditioned neural and peripheral tissue collaborators. Learning to adequately harness this available complexity, however, is a painstakingly slowly emerging, practice-driven process, greatly facilitated by innate evolutionary organizing principles serving to constrain otherwise overwhelming complexity to manageable proportions. As we accumulate running experiences persistent plastic remodeling customizes networked neural connectivity and biological tissue properties to best fit our unique neural and architectural idiosyncrasies, and personal histories: thus neural and peripheral tissue plasticity embeds coordination habits. When, however, coordinative processes are compromised—under the integrated influence of fatigue and/or accumulative cycles of injury, overuse

  11. GRID Computing at Belle II

    CERN Document Server

    Bansal, Vikas

    2015-01-01

    The Belle II experiment at the SuperKEKB collider in Tsukuba, Japan, will start physics data taking in 2018 and will accumulate 50 ab$^{-1}$ of e$^{+}$e$^{-}$ collision data, about 50 times larger than the data set of the earlier Belle experiment. The computing requirements of Belle II are comparable to those of a run I high-p$_T$ LHC experiment. Computing will make full use of such grids in North America, Asia, Europe, and Australia, and high speed networking. Results of an initial MC simulation campaign with 3 ab$^{-1}$ equivalent luminosity will be described

  12. Status of Higgs couplings after Run-1 of the LHC using Lilith 1.0

    CERN Document Server

    Bernon, Jeremy; Kraml, Sabine

    2014-01-01

    We provide an update of the global fits of the couplings of the 125.5 GeV Higgs boson using all publicly available experimental results from Run-1 of the LHC as per Summer 2014. The fits are done by means of the new public code Lilith 1.0. We present a selection of results given in terms of signal strengths, reduced couplings, and for the Two-Higgs-Doublet Models of Type I and II.

  13. Comparative analysis of the physical readiness athletes of different qualifying groups specializing in run orienteering.

    Directory of Open Access Journals (Sweden)

    Himenes K. R.

    2011-08-01

    Full Text Available Confirmed the leading role of physical preparation in the structure of the training process of athletes who specialize in run orienteering. It is shown that more skilled orienteriers (I discharge and CMS had much more significant correlations between indexes of physical preparedness (eight than less-skilled (III-II discharges athletes (three. This suggests that the growth of sportsmanship is associated not only with increasing level of physical preparedness, but also its structure.

  14. Comparative analysis of the physical readiness athletes of different qualifying groups specializing in run orienteering.

    OpenAIRE

    Himenes K. R.

    2011-01-01

    Confirmed the leading role of physical preparation in the structure of the training process of athletes who specialize in run orienteering. It is shown that more skilled orienteriers (I discharge and CMS) had much more significant correlations between indexes of physical preparedness (eight) than less-skilled (III-II discharges) athletes (three). This suggests that the growth of sportsmanship is associated not only with increasing level of physical preparedness, but also its structure.

  15. Comparative analysis of the physical readiness athletes of different qualifying groups specializing in run orienteering

    OpenAIRE

    Хименес, Христина Робертовна

    2011-01-01

    Confirmed the leading role of physical preparation in the structure of the training process of athletes who specialize in run orienteering. It is shown that more skilled orienteriers (I discharge and CMS) had much more significant correlations between indexes of physical preparedness (eight) than less-skilled (III-II discharges) athletes (three). This suggests that the growth of sportsmanship is associated not only with increasing level of physical preparedness, but also its structure.

  16. The Effects of Backwards Running Training on Forward Running Economy in Trained Males.

    Science.gov (United States)

    Ordway, Jason D; Laubach, Lloyd L; Vanderburgh, Paul M; Jackson, Kurt J

    2016-03-01

    Backwards running (BR) results in greater cardiopulmonary response and muscle activity compared with forward running (FR). BR has traditionally been used in rehabilitation for disorders such as stroke and lower leg extremity injuries, as well as in short bursts during various athletic events. The aim of this study was to measure the effects of sustained backwards running training on forward running economy in trained male athletes. Eight highly trained, male runners (26.13 ± 6.11 years, 174.7 ± 6.4 cm, 68.4 ± 9.24 kg, 8.61 ± 3.21% body fat, 71.40 ± 7.31 ml·kg(-1)·min(-1)) trained with BR while harnessed on a treadmill at 161 m·min(-1) for 5 weeks following a 5-week BR run-in period at a lower speed (134 m·min(-1)). Subjects were tested at baseline, postfamiliarized, and post-BR training for body composition, a ramped VO2max test, and an economy test designed for trained male runners. Subjects improved forward running economy by 2.54% (1.19 ± 1.26 ml·kg(-1)·min(-1), p = 0.032) at 215 m·min(-1). VO2max, body mass, lean mass, fat mass, and % body fat did not change (p > 0.05). Five weeks of BR training improved FR economy in healthy, trained male runners without altering VO2max or body composition. The improvements observed in this study could be a beneficial form of training to an already economical population to improve running economy.

  17. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy.

    Science.gov (United States)

    Moore, Isabel S

    2016-06-01

    Running economy (RE) has a strong relationship with running performance, and modifiable running biomechanics are a determining factor of RE. The purposes of this review were to (1) examine the intrinsic and extrinsic modifiable biomechanical factors affecting RE; (2) assess training-induced changes in RE and running biomechanics; (3) evaluate whether an economical running technique can be recommended and; (4) discuss potential areas for future research. Based on current evidence, the intrinsic factors that appeared beneficial for RE were using a preferred stride length range, which allows for stride length deviations up to 3 % shorter than preferred stride length; lower vertical oscillation; greater leg stiffness; low lower limb moment of inertia; less leg extension at toe-off; larger stride angles; alignment of the ground reaction force and leg axis during propulsion; maintaining arm swing; low thigh antagonist-agonist muscular coactivation; and low activation of lower limb muscles during propulsion. Extrinsic factors associated with a better RE were a firm, compliant shoe-surface interaction and being barefoot or wearing lightweight shoes. Several other modifiable biomechanical factors presented inconsistent relationships with RE. Running biomechanics during ground contact appeared to play an important role, specifically those during propulsion. Therefore, this phase has the strongest direct links with RE. Recurring methodological problems exist within the literature, such as cross-comparisons, assessing variables in isolation, and acute to short-term interventions. Therefore, recommending a general economical running technique should be approached with caution. Future work should focus on interdisciplinary longitudinal investigations combining RE, kinematics, kinetics, and neuromuscular and anatomical aspects, as well as applying a synergistic approach to understanding the role of kinetics.

  18. Prevalence of Injury in Ultra Trail Running

    Directory of Open Access Journals (Sweden)

    Malliaropoulos Nikolaos

    2015-06-01

    Full Text Available Purpose. The purpose of the study was to find the rate of musculoskeletal injuries in ultra-trail runners, investigate the most sensitive anatomical areas, and discover associated predicting factors to aid in the effective prevention and rapid rehabilitation of trail running injuries. Methods. Forty ultra trail runners responded to an epidemiological questionnaire. Results. At least one running injury was reported by 90% of the sample, with a total of 135 injuries were reported (111 overuse injuries, 24 appeared during competing. Lower back pain was the most common source of injury (42.5%. Running in the mountains (p = 0.0004 and following a personalized training schedule (p = 0.0995 were found to be protective factors. Runners involved in physical labor are associated with more injuries (p = 0.058. Higher-level runners are associated with more injuries than lower-level cohorts (p = 0.067, with symptoms most commonly arising in the lower back (p = 0.091, hip joint (p = 0.083, and the plantar surface of the foot (p = 0.054. Experienced runners (> 6 years are at greater risk of developing injuries (p = 0.001, especially in the lower back (p = 0.012, tibia (p = 0.049, and the plantar surface of the foot (p = 0 .028. Double training sessions could cause hip joint injury (p = 0.060. Conclusions. In order to avoid injury, it is recommended to train mostly on mountain trails and have a training program designed by professionals.

  19. Blood glutathione status following distance running.

    Science.gov (United States)

    Dufaux, B; Heine, O; Kothe, A; Prinz, U; Rost, R

    1997-02-01

    In 12 moderately trained subjects reduced glutathione (GSH) and oxidized glutathione (GSSG) as well as thiobarbituric acid reactive substances (TBARS) were measured in the blood before and during the first two hours and first two days after a 2.5-h run. The participants covered between 19 and 26 km (20.8 +/- 2.5 km, mean +/- SD). The running speed was between 53 and 82% of the speed at which blood lactate concentration reached 4 mmol/L lactate (67.9 +/- 8.2%, mean +/- SD) assessed during a previously performed treadmill test. Blood samples were collected 1 h before, immediately before, immediately after, 1 and 2 h after, as well as 1 and 2 days after the run. Immediately after exercise GSH was significantly decreased (p < 0.01) and GSSG significantly increased (p < 0.01). In all subjects the ratio of GSH to GSSG showed a marked decline to 18 +/- 4% (mean +/- SD) of the pre-exercise values (p < 0.01). One hour later the mean GSH and GSSG values returned to baseline. However, there were considerable inter-individual differences. In some subjects the GSH/ GSSG ratio overshot the pre-exercise levels, in others the ratio remained low even two hours after exercise. Compared with the pre-exercise values TBARS concentrations did not change significantly at any time point after exercise. The findings suggest that after prolonged exercise in moderately trained subjects a critical shift in the blood glutathione redox status may be reached. The changes observed were generally short-lived, the duration of which may have depended on the relative importance of reactive oxygen species generation by the capillary endothelial cells and neutrophil and eosinophil granulocytes after the end of exercise.

  20. Towards a measurement of the spectral runnings

    Science.gov (United States)

    Muñoz, Julian B.; Kovetz, Ely D.; Raccanelli, Alvise; Kamionkowski, Marc; Silk, Joseph

    2017-05-01

    Single-field slow-roll inflation predicts a nearly scale-free power spectrum of perturbations, as observed at the scales accessible to current cosmological experiments. This spectrum is slightly red, showing a tilt (1-ns)~ 0.04. A direct consequence of this tilt are nonvanishing runnings αs= d ns/ dlog k, and βs= dαs/ dlog k, which in the minimal inflationary scenario should reach absolute values of 10-3 and 10-5, respectively. In this work we calculate how well future surveys can measure these two runnings. We consider a Stage-4 (S4) CMB experiment and show that it will be able to detect significant deviations from the inflationary prediction for αs, although not for βs. Adding to the S4 CMB experiment the information from a WFIRST-like or a DESI-like survey improves the sensitivity to the runnings by ~ 20%, and 30%, respectively. A spectroscopic survey with a billion objects, such as the SKA, will add enough information to the S4 measurements to allow a detection of αs=10-3, required to probe the single-field slow-roll inflationary paradigm. We show that only a very-futuristic interferometer targeting the dark ages will be capable of measuring the minimal inflationary prediction for βs. The results of other probes, such as a stochastic background of gravitational waves observable by LIGO, the Ly-α forest, and spectral distortions, are shown for comparison. Finally, we study the claims that large values of βs, if extrapolated to the smallest scales, can produce primordial black holes of tens of solar masses, which we show to be easily testable by the S4 CMB experiment.

  1. Contribution of trunk muscularity on sprint run.

    Science.gov (United States)

    Kubo, T; Hoshikawa, Y; Muramatsu, M; Iida, T; Komori, S; Shibukawa, K; Kanehisa, H

    2011-03-01

    This study aimed to investigate how the trunk muscularity is related to sprint running performance. In 23 youth soccer players, the cross-sectional images at the mid level of each of L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1 were obtained using magnetic resonance imaging to determine the cross-sectional areas (CSAs) of rectus abdominis, oblique, psoas major, quadratus lumborum and erector spinae muscles. The times taken to sprint over 20 m were measured, and the mean velocity of running was calculated for each of the 2 distances (V (10 m) and V (20 m)) and for the distance from 10 m to 20 m (V (10-20 m)). The CSA values of the 5 slice levels for all muscles except for the quadratus lumborum and those of the 3 slice levels (L1-L2, L2-L3 and L3-L4) for the quadratus lumborum were averaged and expressed relative to the two-third power of body mass (CSA/BM (2/3)). The CSA/BM (2/3) values of the erector spinae and quadratus lumborum were selected as significant contributors to predict V (10 m) ( R(2)=0.450), V (20 m) ( R(2)=0.504) and V (10-20 m) ( R(2)=0.420). The current results indicate that the muscularity of the erector spinae and quadratus lumborum contributes to achieving a high performance in sprint running over distances of less than 20 m.

  2. Running on Empty? The Compensatory Reserve Index

    Science.gov (United States)

    2013-12-01

    Running on empty? The compensatory reserve index Steven L. Moulton, MD, Jane Mulligan , PhD, Greg Z. Grudic, PhD, and Victor A. Convertino, PhD, San...reserve index. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Moulton S. L., Mulligan J., Grudic G. Z., Convertino V...2003;196:679Y684. 25. Convertino VA, Grudic GZ, Mulligan J, Moulton S. Estimation of individual-specific progression to cardiovascular instability using

  3. The Running Barbed Tie-over Dressing

    Directory of Open Access Journals (Sweden)

    Cormac W. Joyce, MB, BCh, MRCSI

    2014-04-01

    Full Text Available Summary: Barbed suture technology is becoming increasingly popular in plastic surgery and is now being used in body contouring surgery and facial rejuvenation. We describe the novel application of a barbed suture as a running tie-over dressing for skin grafts. The barbs act as anchors in the skin, so constant tensioning of the suture is not required. The bidirectional nature of the suture prevents any slippage, and the barbs even act as a grip on the underlying wool dressing. Furthermore, the method described is both quick and simple to learn and would be useful for the sole operator.

  4. ATLAS Data Preparation in Run 2

    CERN Document Server

    Laycock, Paul; The ATLAS collaboration

    2017-01-01

    In this contribution, the data preparation workflows for Run 2 are presented. The challenges posed by the excellent performance and high live time fraction of the LHC are discussed, and the solutions implemented by ATLAS are described. The prompt calibration loop procedures are described and examples are given. Several levels of data quality assessment are used to quickly spot problems in the control room and prevent data loss, and to provide the final selection used for physics analysis. Finally the data quality efficiency for physics analysis is shown.

  5. SUSY searches at the LHC Run2

    CERN Document Server

    Giordano, Ferdinando

    2016-01-01

    After a period of maintenance the LHC was restarted in 2015 delivering p-p collision at a new center of mass energy of 13 TeV, this new achievement by the machine opened the phase space of many searches for physics beyond the standard model (BSM). In this talk a summary of the LHC searches for supersymmetry (SUSY) pursued by the ATLAS and CMS collaborations is presented, covering a broad number of models and scenarios. Even at this early stage the new searches greatly extend the reach of the previous Run1 analyses limiting the phase space for natural SUSY to exist.

  6. LHCb: The LHCb Silicon Tracker: Running experience

    CERN Multimedia

    Saornil Gamarra, S

    2012-01-01

    The LHCb Silicon Tracker is part of the main tracking system of the LHCb detector at the LHC. It measures very precisely the particle trajectories coming from the interaction point in the region of high occupancies around the beam axis. After presenting our production and comissioning issues in TWEPP 2008, we report on our running experience. Focusing on electronic and hardware issues as well as operation and maintenance adversities, we describe the lessons learned and the pitfalls encountered after three years of successful operation.

  7. Analysis of Biomechanical Factors in Bend Running

    Directory of Open Access Journals (Sweden)

    Bing Zhang

    2013-03-01

    Full Text Available Sprint running is the demonstration of comprehensive abilities of technology and tactics, under various conditions. However, whether it is just to allocate the tracks for short-distance athletes from different racetracks has been the hot topic. This study analyzes its forces, differences in different tracks and winding influences, in the aspects of sport biomechanics. The results indicate, many disadvantages exist in inner tracks, middle tracks are the best and outer ones are inferior to middle ones. Thus it provides references for training of short-distance items in biomechanics and psychology, etc.

  8. ATLAS Run-2 status and performance

    CERN Document Server

    Pastore, Francesca; The ATLAS collaboration

    2015-01-01

    During the 2013/2014 shutdown of the LHC the ATLAS detector has been improved. A new silicon pixel detector layers has been installed, and the muon detector coverage has been improved substantially. In addition nearly all other parts of the detector have also been revised to adapt them to the higher pileup conditions or make them more robust in general. This talk will describe these improvements, and how they affect the performance of physics objects. The initial results showing the detector performance as obtained from cosmic runs and/or initial beam data will also be shown.

  9. Effect of motion control running shoes compared with neutral shoes on tibial rotation during running.

    Science.gov (United States)

    Rose, Alice; Birch, Ivan; Kuisma, Raija

    2011-09-01

    To determine whether a motion control running shoe reduces tibial rotation in the transverse plane during treadmill running. An experimental study measuring tibial rotation in volunteer participants using a repeated measures design. Human Movement Laboratory, School of Health Professions, University of Brighton. Twenty-four healthy participants were tested. The group comprised males and females with size 6, 7, 9 and 11 feet. The age range for participants was 19 to 31 years. The total range of proximal tibial rotation was measured using the Codamotion 3-D Movement Analysis System. A one-tailed paired t-test indicated a statistically significant decrease in the total range of proximal tibial rotation when a motion control shoe was worn (mean difference 1.38°, 95% confidence interval 0.03 to 2.73, P=0.04). There is a difference in tibial rotation in the transverse plane between a motion control running shoe and a neutral running shoe. The results from this study have implications for the use of supportive running shoes as a form of injury prevention. Copyright © 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  10. Body borne loads impact walk-to-run and running biomechanics.

    Science.gov (United States)

    Brown, T N; O'Donovan, M; Hasselquist, L; Corner, B D; Schiffman, J M

    2014-01-01

    The purpose of this study was to perform a biomechanics-based assessment of body borne load during the walk-to-run transition and steady-state running because historical research has limited load carriage assessment to prolonged walking. Fifteen male military personnel had trunk and lower limb biomechanics examined during these locomotor tasks with three different load configurations (light, ∼6 kg, medium, ∼20 kg, and heavy, ∼40 kg). Subject-based means of the dependent variables were submitted to repeated measures ANOVA to test the effects of load configuration. During the walk-to-run transition, the hip decreased (P=0.001) and knee increased (P=0.004) their contribution to joint power with the addition of load. Additionally, greater peak trunk (P=0.001), hip (P=0.001), and knee flexion (Prun transition. Body borne load had no significant effect (P>0.05) on distribution of lower limb joint power during steady-state running, but increased peak trunk (Prun transition the load carrier may move joint power production distally down the kinetic chain and adopt biomechanical profiles to maintain performance of the task. The load carrier, however, may not adopt lower limb kinematic adaptations necessary to shift joint power distribution during steady-state running, despite exhibiting potentially detrimental larger lower limb joint loads. As such, further study appears needed to determine how load carriage impairs maximal locomotor performance.

  11. Accumulated oxygen deficit and shuttle run performance in physically active men and women.

    Science.gov (United States)

    Ramsbottom, R; Nevill, M E; Nevill, A M; Hazeldine, R

    1997-04-01

    The aim of this study was to establish the validity of using shuttle run performance over 20 m to predict accumulated oxygen deficit. A new high-intensity shuttle run test (HIST) was devised, during which subjects ran to exhaustion at a speed equivalent to 120% of their performance attained during a progressive shuttle run test. The reliability of the new test was examined and found to be acceptable for 18 subjects who performed the test twice on separate days (r = 0.84, P sprint- and eight endurance-trained athletes at 120% of their respective progressive shuttle run performances (615 +/- 111 vs 273 +/- 84 m, P < 0.01, study II). The strongest predictor of accumulated oxygen deficit for 27 subjects was found to be the geometric mean of the performances on the new test and on the progressive shuttle run test (r = 0.74, study III). The regression equation for this relationship was then used to estimate the accumulated oxygen deficit for a second group of 16 subjects (study IV). The correlation between the estimated and measured accumulated oxygen deficits was significant (r = 0.79, P < 0.01). The results from studies III and IV were therefore combined with the data from six new subjects to give a regression equation for predictive purposes based on 49 subjects.

  12. Running energetics in the pronghorn antelope.

    Science.gov (United States)

    Lindstedt, S L; Hokanson, J F; Wells, D J; Swain, S D; Hoppeler, H; Navarro, V

    1991-10-24

    The pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h-1, second only to the cheetah (Acionyx jubatus) among land vertebrates, a possible response to predation in the exposed habitat of the North American prairie. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h-1. We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h-1 in an average 32-kg animal. The resulting range of predicted values, 3.2-5.1 ml O2 kg-1 s-1, far surpasses the predicted maximum aerobic capacity of a 32-kg mammal (1.5 ml O2 kg-1 s-1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed greater than 20 ms-1 (70 km h-1), attained without unique respiratory-system structures.

  13. Primordial gravitational waves in running vacuum cosmologies

    Science.gov (United States)

    Tamayo, D. A.; Lima, J. A. S.; Alves, M. E. S.; de Araujo, J. C. N.

    2017-01-01

    We investigate the cosmological production of gravitational waves in a nonsingular flat cosmology powered by a "running vacuum" energy density described by ρΛ ≡ ρΛ(H), a phenomenological expression potentially linked with the renormalization group approach in quantum field theory in curved spacetimes. The model can be interpreted as a particular case of the class recently discussed by Perico et al. (2013) [25] which is termed complete in the sense that the cosmic evolution occurs between two extreme de Sitter stages (early and late time de Sitter phases). The gravitational wave equation is derived and its time-dependent part numerically integrated since the primordial de Sitter stage. The generated spectrum of gravitons is also compared with the standard calculations where an abrupt transition, from the early de Sitter to the radiation phase, is usually assumed. It is found that the stochastic background of gravitons is very similar to the one predicted by the cosmic concordance model plus inflation except at higher frequencies (ν ≳ 100 kHz). This remarkable signature of a "running vacuum" cosmology combined with the proposed high frequency gravitational wave detectors and measurements of the CMB polarization (B-modes) may provide a new window to confront more conventional models of inflation.

  14. GRETINA commissioning and engineering run resolution analysis

    Science.gov (United States)

    Tarlow, Thomas; Beausang, Con; Ross, Tim; Hughes, Richard; Gell, Kristen; Good, Erin

    2012-10-01

    GRETINA, the first stage in the full Gamma Ray Energy Tracking Array (GRETA), consists of seven modules covering approximately 1 solid angle. Each module is made up of four large, highly-segmented germanium detectors capable of measuring the interaction points of individual gamma-rays. GRETINA has recently been assembled and commissioned in LBNL via a series of engineering and commissioning runs. Here we report on an analysis of data from the first engineering run (ER01) which was intended to probe the response of the data acquisition system to high multiplicity gamma-ray cascades. For this experiment the 122Sn(40Ar, 4n) reaction at a beam energy of 210 MeV was utilized to populate high spin states in 158Er. A variety of beam currents, targets and trigger conditions were utilized to test the acquisition. Here we report on the measured energy resolution, both with calibration and in-beam sources as well as a gamma-gamma coincidence analysis to confirm the known level scheme and the capability of the data acquisition system for high fold coincidence measurements. This work was partly supported by the US Department of Energy via grant numbers DE-FG52-09NA29454 and DE-FG02-05-ER41379.

  15. The Run-2 ATLAS Trigger System

    CERN Document Server

    Ruiz-Martinez, Aranzazu; The ATLAS collaboration

    2016-01-01

    The ATLAS trigger has been successfully collecting collision data during the first run of the LHC between 2009-2013 at a centre-of-mass energy between 900 GeV and 8 TeV. The trigger system consists of a hardware Level-1 (L1) and a software based high-level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. In Run-2, the LHC will operate at centre-of-mass energies of 13 and 14 TeV resulting in roughly five times higher trigger rates. We will briefly review the ATLAS trigger system upgrades that were implemented during the shutdown, allowing us to cope with the increased trigger rates while maintaining or even improving our efficiency to select relevant physics processes. This includes changes to the L1 calorimeter and muon trigger systems, the introduction of a new L1 topological trigger module and the merging of the previously two-level HLT system into a single event filter farm. At hand of a few examples, we will show the ...

  16. Can cycle power predict sprint running performance?

    Science.gov (United States)

    van Ingen Schenau, G J; Jacobs, R; de Koning, J J

    1991-01-01

    A major criticism of present models of the energetics and mechanics of sprint running concerns the application of estimates of parameters which seem to be adapted from measurements of running during actual competitions. This study presents a model which does not perpetuate this solecism. Using data obtained during supra-maximal cycle ergometer tests of highly trained athletes, the kinetics of the anaerobic and aerobic pathways were modelled. Internal power wasted in the acceleration and deceleration of body limbs and the power necessary to overcome air friction was calculated from data in the literature. Assuming a mechanical efficiency as found during submaximal cycling, a power equation was constructed which also included the power necessary to accelerate the body at the start of movement. The differential equation thus obtained was solved through simulation. The model appeared to predict realistic times at 100 m (10.47 s), 200 m (19.63 s) and 400 m (42.99 s) distances. By comparison with other methods it is argued that power equations of locomotion should include the concept of mechanical efficiency.

  17. SALIVARY ANTIMICROBIAL PROTEIN RESPONSE TO PROLONGED RUNNING

    Directory of Open Access Journals (Sweden)

    Suzanne Schneider

    2013-01-01

    Full Text Available Prolonged exercise may compromise immunity through a reduction of salivary antimicrobial proteins (AMPs. Salivary IgA (IgA has been extensively studied, but little is known about the effect of acute, prolonged exercise on AMPs including lysozyme (Lys and lactoferrin (Lac. Objective: To determine the effect of a 50-km trail race on salivary cortisol (Cort, IgA, Lys, and Lac. Methods: 14 subjects: (6 females, 8 males completed a 50km ultramarathon. Saliva was collected pre, immediately after (post and 1.5 hrs post race ( 1.5. Results: Lac concentration was higher at 1.5 hrs post race compared to post exercise (p0.05. IgA concentration, secretion rate, and IgA/Osm were lower 1.5 hrs post compared to pre race (p<0.05. Cort concentration was higher at post compared to 1.5 (p<0.05, but was unaltered from pre race levels. Subjects finished in 7.81 ± 1.2 hrs. Saliva flow rate did not differ between time points. Saliva Osm increased at post (p<0.05 compared to pre race. Conclusions: The intensity could have been too low to alter Lys and Lac secretion rates and thus, may not be as sensitive as IgA to changes in response to prolonged running. Results expand our understanding of the mucosal immune system and may have implications for predicting illness after prolonged running.

  18. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.

    Science.gov (United States)

    Verheul, Jasper; Clansey, Adam C; Lake, Mark J

    2016-12-08

    It remains to be determined whether running training influences the amplitude of lower limb muscle activations prior to and during the first half of stance, and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n=13) and low mileage (LM; muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training.

  19. Option Valuation with Long-run and Short-run Volatility Components

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Ornthanalai, Chayawat;

    This paper presents a new model for the valuation of European options, in which the volatility of returns consists of two components. One of these components is a long-run component, and it can be modeled as fully persistent. The other component is short-run and has a zero mean. Our model can...... be viewed as an affine version of Engle and Lee (1999), allowing for easy valuation of European options. The model substantially outperforms a benchmark single-component volatility model that is well-established in the literature, and it fits options better than a model that combines conditional...

  20. Comparison of CMS Resistive Plate Chambers performance during LHC RUN-1 and RUN-2

    CERN Document Server

    Shah, Mehar Ali

    2016-01-01

    The Resistive Plate Chambers detector system at the CMS experiment at the LHC provides robustness and redundancy to the muon trigger. A total of 1056 double-gap chambers cover the pseudo-rapidity region < 1.6. The main detector parameters and environmental conditions are constantly and closely monitored to achieve operational stability and high quality data in the harsh conditions of the second run period of the LHC with center-of-mass energy of 13 TeV. First results of overall detector stability with 2015 data and comparisons with data from the LHC RUN-1 period at 8 TeV are presented.