WorldWideScience

Sample records for d-serine induced nephrotoxicity

  1. Evaluation of oxidative stress in D-serine induced nephrotoxicity

    International Nuclear Information System (INIS)

    Orozco-Ibarra, Marisol; Medina-Campos, Omar Noel; Sanchez-Gonzalez, Dolores Javier; Martinez-Martinez, Claudia Maria; Floriano-Sanchez, Esau; Santamaria, Abel; Ramirez, Victoria; Bobadilla, Norma A.; Pedraza-Chaverri, Jose

    2007-01-01

    It has been suggested that oxidative stress is involved in D-serine-induced nephrotoxicity. The purpose of this study was to assess if oxidative stress is involved in this experimental model using several approaches including (a) the determination of several markers of oxidative stress and the activity of some antioxidant enzymes in kidney and (b) the use of compounds with antioxidant or prooxidant effects. Rats were sacrificed at several periods of time (from 3 to 24 h) after a single i.p. injection of D-serine (400 mg/kg). Control rats were injected with L-serine (400 mg/kg) and sacrificed 24 h after. The following markers were used to assess the temporal aspects of renal damage: (a) urea nitrogen (BUN) and creatinine in blood serum, (b) kidney injury molecule (KIM-1) mRNA levels, and (c) tubular necrotic damage. In addition, creatinine clearance, proteinuria, and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) were measured 24 h after D-serine injection. Protein carbonyl content, malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), fluorescent products of lipid peroxidation, reactive oxygen species (ROS), glutathione (GSH) content, and heme oxygenase-1 (HO-1) expression were measured as markers of oxidative stress in the kidney. Additional experiments were performed using the following compounds with antioxidant or pro-oxidant effects before D-serine injection: (a) α-phenyl-tert-butyl-nitrone (PBN), a spin trapping agent; (b) 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) (FeTPPS), a soluble complex able to metabolize peroxynitrite; (c) aminotriazole (ATZ), a catalase (CAT) inhibitor; (d) stannous chloride (SnCl 2 ), an HO-1 inductor; (e) tin mesoporphyrin (SnMP), an HO inhibitor. In the time-course study, serum creatinine and BUN increased significantly on 15-24 and 20-24 h, respectively, and KIM-1 mRNA levels increased significantly on 6-24 h. Histological analyses revealed tubular necrosis at 12 h. The activity of antioxidant enzymes

  2. Cisplatin Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Seyed Seifollah Beladi Mousavi

    2014-02-01

    The standard approach to prevent cisplatin-induced nephrotoxicity is the administration of lower doses of cisplatin in combination with the administration of full intravenous isotonic saline before and after cisplatin administration. Although a number of pharmacologic agents including sodium thiosulfate, N-acetylcysteine, theophylline and glycine have been evaluated for prevention of nephrotoxicity, none have proved to have an established role, thus, additional clinical studies will be required to confirm their probable effects.

  3. Antibacterial-induced nephrotoxicity in the newborn.

    Science.gov (United States)

    Fanos, V; Cataldi, L

    1999-03-01

    Antibacterials are the primary cause of drug-induced kidney disease in all age groups and these agents bring about renal damage by 2 main mechanisms, namely, direct and immunologically mediated. For some antibacterials (aminoglycosides and vancomycin) nephrotoxicity is very frequent but generally reversible upon discontinuation of the drug. However, the development of acute renal failure with these agents is possible and its incidence in the newborn seems to be increasing. Antibacterials are very often used in the neonatal period especially in very low birthweight neonates. The role of neonatal age in developing nephrotoxicity has still to be defined. Since the traditional laboratory parameters of nephrotoxicity are abnormal only in the presence of substantial renal damage, the identification of early non-invasive markers of the renal damage (urinary microglobulins, enzymes and growth factors) is of importance. Aminoglycosides and glycopeptides are still frequently used, either alone or in combination, despite their low therapeutic index. Numerous factors intervene in bringing about the kidney damage induced by these 2 classes of antibacterials, such as factors related to the antibacterial itself and others related to the associated pathology as well as pharmacological factors. Nephrotoxicity can be caused by the beta-lactams and related compounds. Their potential to cause nephrotoxicity decreases in the order: carbapenems > cephalosporins > penicillins > monobactams. Third generation cephalosporins are frequently used in neonates. However, they are well tolerated compounds at the renal level. The nephrotoxicity of other classes of antibacterials is not discussed either because they are only used in neonates in exceptional circumstances, for example, chloramphenicol and cotrimoxazole (trimethoprim-sulfamethoxazole) or are not associated with significant nephrotoxicity, for example macrolides, clindamicin, quinolones, rifampicin (rifampin) and metronidazole

  4. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity

    Science.gov (United States)

    Karasawa, Takatoshi; Steyger, Peter S.

    2015-01-01

    Cisplatin is one of the most widely-used drugs to treat cancers. However, its nephrotoxic and ototoxic side-effects remain major clinical limitations. Recent studies have improved our understanding of the molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. While cisplatin binding to DNA is the major cytotoxic mechanism in proliferating (cancer) cells, nephrotoxicity and ototoxicity appear to result from toxic levels of reactive oxygen species and protein dysregulation within various cellular compartments. In this review, we discuss molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. We also discuss potential clinical strategies to prevent nephrotoxicity and ototoxicity and their current limitations. PMID:26101797

  5. Neonatal disruption of serine racemase causes schizophrenia-like behavioral abnormalities in adulthood: clinical rescue by d-serine.

    Directory of Open Access Journals (Sweden)

    Hiroko Hagiwara

    Full Text Available D-Serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA receptor, is synthesized from L-serine by serine racemase (SRR. Given the role of D-serine in both neurodevelopment and the pathophysiology of schizophrenia, we examined whether neonatal disruption of D-serine synthesis by SRR inhibition could induce behavioral abnormalities relevant to schizophrenia, in later life.Neonatal mice (7-9 days were injected with vehicle or phenazine methosulfate (Met-Phen: 3 mg/kg/day, an SRR inhibitor. Behavioral evaluations, such as spontaneous locomotion, novel object recognition test (NORT, and prepulse inhibition (PPI were performed at juvenile (5-6 weeks old and adult (10-12 weeks old stages. In addition, we tested the effects of D-serine on PPI deficits in adult mice after neonatal Met-Phen exposure. Finally, we assessed whether D-serine could prevent the onset of schizophrenia-like behavior in these mice. Neonatal Met-Phen treatment reduced D-serine levels in the brain, 24 hours after the final dose. Additionally, this treatment caused behavioral abnormalities relevant to prodromal symptoms in juveniles and to schizophrenia in adults. A single dose of D-serine improved PPI deficits in adult mice. Interestingly, chronic administration of D-serine (900 mg/kg/day from P35 to P70 significantly prevented the onset of PPI deficits after neonatal Met-Phen exposure.This study shows that disruption of D-serine synthesis during developmental stages leads to behavioral abnormalities relevant to prodromal symptoms and schizophrenia, in later life. Furthermore, early pharmacological intervention with D-serine may prevent the onset of psychosis in adult.

  6. Proteomic approaches in understanding a detected relationship between chemotherapy-induced nephrotoxicity and cell respiration in HK-2 cells.

    Science.gov (United States)

    Perez, Juliana Dinéia; Colucci, Juliana Almada; Sakata, Maísa Mayumi; Cunha, Tatiana Sousa; Arita, Danielle Yuri; Casarini, Dulce Elena

    2011-01-01

    Nephrotoxicity is a prominent component of the profile of chemotherapeutic agents and to date proteomics has represented the main technique to identify protein profiles in response to xenobiotic exposure. We made use of two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight analysis to evaluate chemotoxicity effects of cisplatin (CPT) and carboplatin (CB) on proteins from human renal proximal tubule epithelial cells (HK-2). Tandem mass spectrometry analysis showed that ATP synthase subunit α and serine hydroxymethyltransferase were only expressed in HK-2 cells exposed to CPT. Since CPT causes damage in cellular respiration, we suggest that this might be a protective adaptation to CPT-induced nephrotoxicity. Thioredoxin-dependent peroxide reductase disappeared in the CPT group and was upregulated in the CB group, suggesting that CB exposure stimulates preventive apoptotic mechanisms. We suggest a relationship between chemotherapeutic agent-induced nephrotoxicity and cell respiration. The identification of proteins differentially expressed in HK-2 cells, when exposed to CPT and CB, not only supplies important information to understand the molecular action mechanisms, which are triggered by metal-based drugs in cell nephrotoxicity, but also can lead to the design of more effective anticancer drugs. These results provide important insights into the investigation of possible biomarker(s) of toxicity that could eventually reduce the side effects of chemotherapeutic agents. Copyright © 2011 S. Karger AG, Basel.

  7. Mechanisms of herb-induced nephrotoxicity.

    Science.gov (United States)

    Allard, T; Wenner, T; Greten, H J; Efferth, T

    2013-01-01

    Herbal therapies gained much popularity among the general public, but compared to therapies approved by official authorities, toxicological studies are frequently not available for them. Hence, there may be inherent risks and the kidneys may be especially vulnerable to toxic effects. Herbs may induce nephrotoxicity by induction of apoptosis. High oxalate contents in Star fruit (Averrhoa carambola L.) may induce acute nephropathy. Triptolide from Thunder God Vine (Triperygium wilfordii Hook) is a diterpenoid epoxide with induces reactive oxygen species and nephrotubular apoptosis. Cranberry juice is discussed as promoter of kidney stone formation (nephrolithiasis). Abuse of guaifenesin from Roughbark (Guaicum officinale L.) increases stone formation. Aristolochia acids from Aristolochia fangchi Y.C.Wu ex L.D. Chow & S.M. Hwang causes the well-known aristolochic acid nephropathy and carcinogenesis by DNA adduct formation. Carboxyatractyloside from Impila (Callilepsis laureola DC.) inhibits mitochondrial ATP synthesis. Acute allergic interstitial nephritis was diagnosed after intake of Peruvian Cat's claw (Uncaria tomentosa Willd. DC.). Whether or not Willow Bark (Salix alba L.) induces analgesic nephropathwy is a matter of discussion. Other herbal therapies are considered to affect the rennin-angiotensisn-aldosterone (RAA) system Ephedra sinica Stapf with its ingredient ephedrine. Devil's Claw (Harpagophytum procumbens DC. Ex Meisn.) and licorice (Glycyrrhiza glabra L.) may inhibit major renal transport processes needed for filtration, secretion, and absorption. Strategies to minimize nephrotoxicity include (1) quality control and standardization of herbal products, (2) research on the molecular modes of action to better understand pathophysiological mechanisms of herbal products as well as (3) clinical trials to demonstrate efficacy and safety.

  8. Protective effect of Heliotropium eichwaldi against cisplatin-induced nephrotoxicity in mice.

    Science.gov (United States)

    Sharma, Surendra Kr; Goyal, Naveen

    2012-05-01

    The aim of the present study was to evaluate the nephroprotective effect of methanolic extract of Heliotropium eichwaldii (MHE) in mice with cisplatin-induced acute renal damage. Nephrotoxicity was induced by a single intraperitoneal injection of cisplatin (16mg/kg). Swiss albino mice were injected with vehicle, cisplatin, cisplatin plus MHE 200 mg/kg and cisplatin plus MHE 400mg/kg, respectively. MHE was administered for 7 d at a dose of 200 and 400 mg/kg per day orally starting 4 d before cisplatin injection. Animals were sacrificed 3d after treatment and blood as well as kidney tissue was isolated and analyzed. The various parameters such as blood urea nitrogen (BUN), serum creatinine (CRE), malondialdehyde (MDA), and catalase (CAT) and superoxide dismutase (SOD) activities were analyzed. MHE treatment significantly reduced BUN and serum CRE levels elevated by cisplatin administration (P<0.05). Also, it significantly attenuated cisplatin-induced increase in MDA level and improved the decreased CAT and SOD activities in renal cortical homogenates (P<0.05). Additionally, histopathological examination and scoring showed that MHE markedly ameliorated cisplatin-induced renal tubular necrosis. MHE can be considered a potential candidate for protection of nephrotoxicity induced by cisplatin.

  9. Phosphorylation of mouse serine racemase regulates D-serine synthesis

    DEFF Research Database (Denmark)

    Foltyn, Veronika N; Zehl, Martin; Dikopoltsev, Elena

    2010-01-01

    Serine racemase (SR) catalyses the synthesis of the transmitter/neuromodulator D-serine, which plays a major role in synaptic plasticity and N-methyl D-aspartate receptor neurotoxicity. We now report that SR is phosphorylated at Thr71 and Thr227 as revealed by mass spectrometric analysis and in v...... with a phosphorylation-deficient SR mutant indicate that Thr71 phosphorylation increases SR activity, suggesting a novel mechanism for regulating D-serine production....

  10. Contrast-induced nephrotoxicity: possible synergistic effect of stress hyperglycemia.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Oxidative stress on the renal tubules has been implicated as a mechanism of injury in both stress hyperglycemia and contrast-induced nephrotoxicity. The purpose of this study was to determine whether the combination of these effects has a synergistic effect on accentuating renal tubular apoptosis and therefore increasing the risk of contrast-induced nephrotoxicity.

  11. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  12. Tropisetron attenuates cisplatin-induced nephrotoxicity in mice.

    Science.gov (United States)

    Zirak, Mohammad Reza; Rahimian, Reza; Ghazi-Khansari, Mahmoud; Abbasi, Ata; Razmi, Ali; Mehr, Shahram Ejtemaei; Mousavizadeh, Kazem; Dehpour, Ahmad Reza

    2014-09-05

    Nephrotoxicity is one of the most important complications of cisplatin, a potent chemotherapeutic agent used in the treatment of various malignancies. 5-HT3 antagonists are widely used to counteract chemotherapy-induced emesis and new studies reveal that they poses notable anti-inflammatory properties. In current study, we investigated the effects of 5-HT3 antagonists on cisplatin induced nephrotoxicity in mice. To identify the underlying mechanism of renal protection by tropisetron, we investigated the probable involvement of alpha7 nicotinic acetylcholine receptor (α7nAChR). A single injection of cisplatin (20mg/kg; i.p) induced nephrotoxicity, 5-HT3 antagonists (tropisetron, granisetron and ondansetron,) were given twice daily for 3 day (3mg/kg; i.p). Finally animals were euthanized and blood sample was collected to measure urea and creatinin level. Also kidneys were removed for histopathological examination and biochemical measurements including glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) activity, inducible nitric oxide synthase (iNOS) expression and inflammatory cytokines. Tropisetron decreased the expression of inflammatory molecules including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and iNOS and improved histopathological damage and renal dysfunction. However other 5-HT3 antagonists, granisetron or ondansetron do not have any elicit effects on biochemical markers and histological damages. Since methyllycaconitine, antagonist of α7nAChR, was unable to reverse the beneficial effect of tropisetron, we concluded that this effect of tropisetron is not mediated by α7nAChR.Our results showed that tropisetron treatment markedly ameliorated the experimental cisplatin induced-nephrotoxicity and this effect might be 5-HT3 receptor and α7nAChR independent. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Protective Effect of Bauhinia purpurea on Gentamicin-induced Nephrotoxicity in Rats

    Science.gov (United States)

    Lakshmi, B. V. S.; Neelima, N.; Kasthuri, N.; Umarani, V.; Sudhakar, M.

    2009-01-01

    The present study was undertaken to evaluate the ethanol extract of leaves of Bauhinia purpurea and unripe pods of Bauhinia purpurea for its protective effects on gentamicin-induced nephrotoxicity in rats. Nephrotoxicity was induced in Wistar rats by intraperitoneal administration of gentamicin 100 mg/kg/d for eight days. Effect of concurrent administration of ethanol extract of leaves of Bauhinia purpurea and unripe pods of Bauhinia purpurea at a dose of 300 mg/kg/d given by oral route was determined using serum creatinine, serum uric acid, blood urea nitrogen and serum urea as indicators of kidney damage. The study groups contained six rats in each group. It was observed that the ethanol extract of leaves of Bauhinia purpurea and unripe pods of Bauhinia purpurea significantly protect rat kidneys from gentamicin-induced histopathological changes. Gentamicin-induced glomerular congestion, blood vessel congestion, epithelial desquamation, accumulation of inflammatory cells and necrosis of the kidney cells were found to be reduced in the groups receiving the leaf and unripe pods extract of Bauhinia purpurea along with gentamicin. The extracts also normalized the gentamicin-induced increase in serum creatinine, serum uric acid and blood urea nitrogen levels. This is also evidenced by the histopathological studies. PMID:20502576

  14. D-serine increases adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Sebastien eSultan

    2013-08-01

    Full Text Available Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. The neurogenic niche regulates the stem cell proliferation and the differentiation and survival of new neurons and a major contributor to the neurogenic niche are astrocytes. Among the molecules secreted by astrocytes, D-serine is an important gliotransmitter and is a co-agonist of the glutamate, N-methyl-D-aspartate (NMDA receptor. D-serine has been shown to enhance the proliferation of neural stem cells in vitro, but its effect on adult neurogenesis in vivo is unknown. Here, we tested the effect of exogenous administration of D-serine on adult neurogenesis in the mouse dentate gyrus. We found that 1 week of treatment with D-serine increased cell proliferation in vivo and in vitro and increased the density of neural stem cells and transit amplifying progenitors. Furthermore, D-serine increased the survival of newborn neurons. Together, these results indicate that D-serine treatment resulted in the improvement of several steps of adult neurogenesis in vivo.

  15. Chitosan Prevents Gentamicin-Induced Nephrotoxicity via a Carbonyl Stress-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Chu-Kung Chou

    2015-01-01

    Full Text Available Aminoglycosides are widely used to treat infections; however, their applications are limited by nephrotoxicity. With the increase of antibiotic resistance, the use of aminoglycosides is inevitable. Low-molecular-weight chitosan (LMWC has shown renal protective effects in dialysis patients. However, no study has evaluated LMWC for preventing aminoglycoside-induced nephrotoxicity or determined the mechanisms underlying the renal protective effects. In this study, LMWC (165 or 825 mg/kg/day or metformin (100 mg/kg/day was orally administered for 13 days to rats with nephropathy induced by gentamicin (GM, a kind of aminoglycoside (150 mg/kg/day i.p. for 6 days. Both LMCW doses improved renal function. Serum creatinine levels improved in rats treated with 165 and 825 mg/kg/day LMWC (from 2.14 ± 0.74 mg/dL to 1.26 ± 0.46 mg/dL and 0.69 ± 0.12 mg/dL, resp., P < 0.05. Blood urea nitrogen levels were also improved in these rats (from 73.73 ± 21.13 mg/dL to 58.70 ± 22.71 mg/dL and 28.82 ± 3.84 mg/dL, resp., P < 0.05. Additionally, renal tissue morphology improved after LMWC treatment, and accumulation of renal methylglyoxal, a damage factor associated with carbonyl stress, was reversed. These results show that LMWC prevents GM-induced renal toxicity via a carbonyl stress-dependent pathway.

  16. Effect of Coenzyme-Q10 on Doxorubicin-Induced Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Azza A. K. El-Sheikh

    2012-01-01

    Full Text Available Nephrotoxicity is one of the limiting factors for using doxorubicin (Dox as an anticancer chemotherapeutic. Here, we investigated possible protective effect of coenzyme-Q10 (CoQ10 on Dox-induced nephrotoxicity and the mechanisms involved. Two doses (10 and 100 mg/kg of CoQ10 were administered orally to rats for 8 days, in the presence or absence of nephrotoxicity induced by a single intraperitoneal injection of Dox (15 mg/kg at day 4 of the experiment. Our results showed that the low dose of CoQ10 succeeded in reversing Dox-induced nephrotoxicity to control levels (e.g., levels of blood urea nitrogen and serum creatinine, concentrations of renal reduced glutathione (GSH and malondialdehyde, catalase activity and caspase 3 expression, and renal histopathology. Alternatively, the high dose of CoQ10 showed no superior nephroprotection over the low dose, as there were no significant improvements in renal histopathology, catalase activity, or caspase 3 expression compared to the Dox-treated group. Interestingly, the high dose of CoQ10 alone significantly decreased renal GSH level as well as catalase activity and caused a mild induction of caspase 3 expression compared to control, probably due to a prooxidant effect at this dose of CoQ10. We conclude that CoQ10 protects from Dox-induced nephrotoxicity with a precaution to dosage adjustment.

  17. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yuhui; Huang, Jiawei; Gu, Ying; Liu, Cong; Li, Hong; Liu, Jing; Ren, Jiong; Yang, Zhangyou [State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038 (China); Peng, Shuangqing [Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Science, 20 Dongdajie Street, Fengtai District, Beijing 100071 (China); Wang, Weidong, E-mail: wwdwyl@sina.com [Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Li, Rong, E-mail: yuhui_hao@126.com [State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038 (China)

    2015-09-15

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MT −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after exposure to

  18. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    International Nuclear Information System (INIS)

    Hao, Yuhui; Huang, Jiawei; Gu, Ying; Liu, Cong; Li, Hong; Liu, Jing; Ren, Jiong; Yang, Zhangyou; Peng, Shuangqing; Wang, Weidong; Li, Rong

    2015-01-01

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MT −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after exposure to

  19. Neferine reduces cisplatin-induced nephrotoxicity by enhancing autophagy via the AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Li, Hui; Tang, Yuling; Wen, Long; Kong, Xianglong; Chen, Xuelian; Liu, Ping; Zhou, Zhiguo; Chen, Wenhang; Xiao, Chenggen; Xiao, Ping; Xiao, Xiangcheng

    2017-03-11

    Cisplatin is one of the most effective chemotherapeutic agents; however, its clinical use is limited by serious side effects of which nephrotoxicity is the most important. Nephrotoxicity induced by cisplatin is closely associated with autophagy reduction and caspase activation. In this study, we investigated whether neferine, an autophagy inducer, had a protective effect against cisplatin-induced nephrotoxicity. In an in vitro cisplatin-induced nephrotoxicity model, we determined that neferine was able to induce autophagy and that pretreatment with neferine not only attenuated cisplatin-induced cell apoptosis but further activated cell autophagy. This pro-survival effect was abolished by the autophagic flux inhibitor chloroquine. Furthermore, neferine pretreatment activated the AMPK/mTOR pathway; however, pharmacological inhibition of AMPK abolished neferine-mediated autophagy and nephroprotection against cisplatin-induced apoptosis. Collectively, our findings suggest for the first time the possible protective mechanism of neferine, which is crucial for its further development as a potential therapeutic agent for cisplatin-induced nephrotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Epigenetic Activation of ASCT2 in the Hippocampus Contributes to Depression-Like Behavior by Regulating D-Serine in Mice

    Directory of Open Access Journals (Sweden)

    Jiesi Wang

    2017-05-01

    Full Text Available The roles of D-serine in depression are raised concerned recently as an intrinsic co-agonist for the NMDA receptor. However, the mechanisms underlying its regulation are not fully elucidated. ASCT2 is a Na+-dependent D-serine transporter. We found that decreased D-serine and increased hippocampal ASCT2 levels correlated with chronic social defeat stress (CSDS in mice. Lentivirus-mediated shRNA-mediated knockdown of ASCT2 and the administration of exogenous D-serine in the hippocampus alleviated CSDS-induced social avoidance and immobility. In vivo and in vitro experiments revealed that upregulation of ASCT2 expression in CSDS was regulated through histone hyper-acetylation, not DNA methylation in its promoter region. Immunohistochemistry demonstrated the co-localization of ASCT2 and D-serine. Uptake of D-serine by ASCT2 was demonstrated by in vivo and in vitro experiments. Our results indicate that CSDS induces ASCT2 expression through epigenetic activation and decreases hippocampal D-serine levels, leading to social avoidance, and immobility. Thus, targeting D-serine transport represents an attractive new strategy for treating depression.

  1. D-serine : The right or wrong isoform?

    NARCIS (Netherlands)

    Fuchs, Sabine A; Berger, Ruud; de Koning, Tom J

    2011-01-01

    Only recently, d-amino acids have been identified in mammals. Of these, d-serine has been most extensively studied. d-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl-d-aspartate receptor (NMDAr), similar to

  2. Determination of the effects of levofloxacin on gentamicin induced nephrotoxicity in rabbits: a comparative study

    International Nuclear Information System (INIS)

    Naeem, U.; Jamal, S.; Waheed, A.

    2015-01-01

    Objective: To determine the effects of levofloxacin on gentamicin induced nephrotoxicity in rabbits. Study Design: Comparative experimental study. Place and Duration of Study: The animal house of Army Medical College, Rawalpindi, and the pathology department of Army Medical College, Rawalpindi, from July 2009 to January 2010. Material and Methods: The effects of levofloxacin on gentamicin-induced nephrotoxicity were evaluated in rabbits. Twenty four rabbits were used in this study which were randomly divided into four groups (n= 6 in each group). Six animals were injected for 15 days with saline (NaCl; 0.9%), six with gentamicin alone at doses of 20 mg/kg of body weight/12 h (intramuscularly), six with combination of gentamicin (20 mg/kg/12 h) with low therapeutic doses of levofloxacin (30 mg/kg/24 h) and the last six were treated with gentamicin and high therapeutic doses of levofloxacin (50 mg/kg/24 h). Levofloxacin was given by intraperitoneal route. Results: Gentamicin induced nephrotoxicity was evaluated by histopathological and serum analysis. The extent of nephrotoxicity was significantly increased when gentamicin was given in combination with levofloxacin both in low and high doses. Conclusion: Levofloxacin enhances gentamicin induced nephrotoxicity and extent of this nephrotoxicity increased with increasing dose of levofloxacin. (author)

  3. Contribution of the D-Serine-dependent pathway to the cellular mechanisms underlying cognitive aging

    Directory of Open Access Journals (Sweden)

    Emilie Rouaud

    2010-02-01

    Full Text Available An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-Methyl-D-Aspartate receptors (NMDA-R by its agonist D-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous D-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of D-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of D-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the D-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly.

  4. D-Serine rescues the deficits of hippocampal long-term potentiation and learning and memory induced by sodium fluoroacetate.

    Science.gov (United States)

    Han, Huili; Peng, Yan; Dong, Zhifang

    2015-06-01

    It is well known that bidirectional glia-neuron interactions play important roles in the neurophysiological and neuropathological processes. It is reported that impairing glial functions with sodium fluoroacetate (FAC) impaired hippocampal long-term depression (LTD) and spatial memory retrieval. However, it remains unknown whether FAC impairs hippocampal long-term potentiation (LTP) and learning and/or memory, and if so, whether pharmacological treatment with exogenous d-serine can recuse the impairment. Here, we reported that systemic administration of FAC (3mg/kg, i.p.) before training resulted in dramatic impairments of spatial learning and memory in water maze and fear memory in contextual fear conditioning. Furthermore, the behavioral deficits were accompanied by impaired LTP induction in the hippocampal CA1 area of brain slices. More importantly, exogenous d-serine treatment succeeded in recusing the deficits of hippocampal LTP and learning and memory induced by FAC. Together, these results suggest that astrocytic d-serine may be essential for hippocampal synaptic plasticity and memory, and that alteration of its levels may be relevant to the induction and potentially treatment of psychiatric and neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer

    Science.gov (United States)

    Pabla, Navjotsingh; Dong, Guie; Jiang, Man; Huang, Shuang; Kumar, M. Vijay; Messing, Robert O.; Dong, Zheng

    2011-01-01

    Cisplatin is a widely used cancer therapy drug that unfortunately has major side effects in normal tissues, notably nephrotoxicity in kidneys. Despite intensive research, the mechanism of cisplatin-induced nephrotoxicity remains unclear, and renoprotective approaches during cisplatin-based chemotherapy are lacking. Here we have identified PKCδ as a critical regulator of cisplatin nephrotoxicity, which can be effectively targeted for renoprotection during chemotherapy. We showed that early during cisplatin nephrotoxicity, Src interacted with, phosphorylated, and activated PKCδ in mouse kidney lysates. After activation, PKCδ regulated MAPKs, but not p53, to induce renal cell apoptosis. Thus, inhibition of PKCδ pharmacologically or genetically attenuated kidney cell apoptosis and tissue damage, preserving renal function during cisplatin treatment. Conversely, inhibition of PKCδ enhanced cisplatin-induced cell death in multiple cancer cell lines and, remarkably, enhanced the chemotherapeutic effects of cisplatin in several xenograft and syngeneic mouse tumor models while protecting kidneys from nephrotoxicity. Together these results demonstrate a role of PKCδ in cisplatin nephrotoxicity and support targeting PKCδ as an effective strategy for renoprotection during cisplatin-based cancer therapy. PMID:21633170

  6. Heterogeneity of D-Serine Distribution in the Human Central Nervous System

    Science.gov (United States)

    Suzuki, Masataka; Imanishi, Nobuaki; Mita, Masashi; Hamase, Kenji; Aiso, Sadakazu

    2017-01-01

    D-serine is an endogenous ligand for N-methyl-D-aspartate glutamate receptors. Accumulating evidence including genetic associations of D-serine metabolism with neurological or psychiatric diseases suggest that D-serine is crucial in human neurophysiology. However, distribution and regulation of D-serine in humans are not well understood. Here, we found that D-serine is heterogeneously distributed in the human central nervous system (CNS). The cerebrum contains the highest level of D-serine among the areas in the CNS. There is heterogeneity in its distribution in the cerebrum and even within the cerebral neocortex. The neocortical heterogeneity is associated with Brodmann or functional areas but is unrelated to basic patterns of cortical layer structure or regional expressional variation of metabolic enzymes for D-serine. Such D-serine distribution may reflect functional diversity of glutamatergic neurons in the human CNS, which may serve as a basis for clinical and pharmacological studies on D-serine modulation. PMID:28604057

  7. Possible mechanism of PNS protection against cisplatin-induced nephrotoxicity in rat models.

    Science.gov (United States)

    Liu, Xinwen; Huang, Zhenguang; Zou, Xiaoqin; Yang, Yufang; Qiu, Yue; Wen, Yan

    2015-01-01

    This study investigates the mechanism of the protective effect of Panax notoginsenosides (PNS) against cisplatin-induced nephrotoxicity via the hypoxia inducible factor 1 (HIF-1)/Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) pathway of autophagy. The rats underwent intraperitoneal injection with a single dose of cisplatin and a subset of rats were also intraperitoneally injected with 31.35 mg/kg PNS once a day. After 24 h exposure to cisplatin, the concentrations of urinary N-acetyl-β-D-glucosaminidase (NAG), blood urea nitrogen (BUN) and serum creatinine (Scr) were determined. The rat renal tissue was examined using H&E-staining, and the mitochondria of renal tubular epithelial cells were observed using transmission electron microscopy. The expressions of microtubule-associated protein-1 light chain (LC)3, autophagy-related gene (Atg)5, Beclin-1 and BNIP3 in rat renal tissue were detected using western blotting. The expression of HIF-1 was detected by immunohistochemistry. The results showed that PNS significantly protected against cisplatin-induced nephrotoxicity, as evidenced by decreasing the concentration of blood BUN and Scr, the attenuation of renal histopathological changes and the mitochondrial damages of renal cells, and the increase of mitochondria autophagosome in renal tubular epithelial cells. Additionally, PNS significantly increased the expression of LC3 and the ratio of LC3II/LC3I in rat renal tissue. Moreover, PNS significantly increased the expression of HIF-1α, BNIP3, Atg5 and Beclin-1 in rat renal tissue. In conclusion, the protective effect of PNS on cisplatin-induced nephrotoxicity was mainly due to its ability to enhancing the mitochondrial autophagy of renal tissue via the HIF-1α/BNIP3 pathway, and here is the first demonstration about it.

  8. Prevention of chemotherapy-induced nephrotoxicity in children with cancer

    Directory of Open Access Journals (Sweden)

    Fatemeh Ghane Sharbaf

    2017-01-01

    Full Text Available Children with cancer treated with cytotoxic drugs are frequently at risk of developing renal dysfunction. The cytotoxic drugs that are widely used for cancer treatment in children are cisplatin (CPL, ifosfamide (IFO, carboplatin, and methotrexate (MTX. Mechanisms of anticancer drug-induced renal disorders are different and include acute kidney injury (AKI, tubulointerstitial disease, vascular damage, hemolytic uremic syndrome (HUS, and intrarenal obstruction. CPL nephrotoxicity is dose-related and is often demonstrated with hypomagnesemia, hypokalemia, and impaired renal function with rising serum creatinine and blood urea nitrogen levels. CPL, mitomycin C, and gemcitabine treatment cause vascular injury and HUS. High-dose IFO, streptozocin, and azacitidine cause renal tubular dysfunction manifested by Fanconi syndrome, rickets, and osteomalacia. AKI is a common adverse effect of MTX, interferon-alpha, and nitrosourea compound treatment. These strategies to reduce the cytotoxic drug-induced nephrotoxicity should include adequate hydration, forced diuresis, and urinary alkalization. Amifostine, sodium thiosulfate, and diethyldithiocarbamate provide protection against CPL-induced renal toxicity.

  9. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism.

    Science.gov (United States)

    Wang, Yimin; Luo, Xiao; Pan, Hao; Huang, Wei; Wang, Xueping; Wen, Huali; Shen, Kezhen; Jin, Baiye

    2015-09-01

    Cisplatin induced nephrotoxicity is primarily caused by ROS (Reactive Oxygen Species) induced proximal tubular cell death. NADPH oxidase is major source of ROS production by cisplatin. Here, we reported that pharmacological inhibition of NADPH oxidase by acetovanillone (obtained from medicinal herb Picrorhiza kurroa) led to reduced cisplatin nephrotoxicity in mice. In this study we used various molecular biology and biochemistry methods a clinically relevant model of nephropathy, induced by an important chemotherapeutic drug cisplatin. Cisplatin-induced nephrotoxicity was evident by histological damage from loss of the tubular structure. The damage was also marked by the increase in blood urea nitrogen, creatinine, protein nitration as well as cell death markers such as caspase 3/7 activity and DNA fragmentation. Tubular cell death by cisplatin led to pro-inflammatory response by production of TNFα and IL1β followed by leukocyte/neutrophil infiltration which resulted in new wave of ROS involving more NADPH oxidases. Cisplatin-induced markers of kidney damage such as oxidative stress, cell death, inflammatory cytokine production and nephrotoxicity were attenuated by acetovanillone. In addition to that, acetovanillone enhanced cancer cell killing efficacy of cisplatin. Thus, pharmacological inhibition of NADPH oxidase can be protective for cisplatin-induced nephrotoxicity in mice. Copyright © 2015. Published by Elsevier Ltd.

  10. Amperometric Self-Referencing Ceramic Based Microelectrode Arrays for D-Serine Detection.

    Science.gov (United States)

    Campos-Beltrán, Diana; Konradsson-Geuken, Åsa; Quintero, Jorge E; Marshall, Lisa

    2018-03-06

    D-serine is the major D-amino acid in the mammalian central nervous system. As the dominant co-agonist of the endogenous synaptic NMDA receptor, D-serine plays a role in synaptic plasticity, learning, and memory. Alterations in D-serine are linked to neuropsychiatric disorders including schizophrenia. Thus, it is of increasing interest to monitor the concentration of D-serine in vivo as a relevant player in dynamic neuron-glia network activity. Here we present a procedure for amperometric detection of D-serine with self-referencing ceramic-based microelectrode arrays (MEAs) coated with D-amino acid oxidase from the yeast Rhodotorula gracilis (RgDAAO). We demonstrate in vitro D-serine recordings with a mean sensitivity of 8.61 ± 0.83 pA/µM to D-serine, a limit of detection (LOD) of 0.17 ± 0.01 µM, and a selectivity ratio of 80:1 or greater for D-serine over ascorbic acid (mean ± SEM; n = 12) that can be used for freely moving studies.

  11. Concomitant gentamicin‑induced nephrotoxicity and bilateral ...

    African Journals Online (AJOL)

    ... injections of gentamicin. Coexisting ototoxicity and nephrotoxicity from aminoglycosides can occur, though rare. Adverse effects of aminoglycosides are better prevented by a careful exercise of discretion by prescribers. Keywords: Acute kidney injury, aminoglycosides, co‑occurrence, gentamicin, nephrotoxicity, ototoxicity ...

  12. Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways.

    Science.gov (United States)

    Li, Fan; Yao, Yunyi; Huang, Hui; Hao, Hua; Ying, Mingzhong

    2018-06-12

    Cisplatin is a chemotherapeutic agent that widely used in the treatment of cancer. However, cisplatin has been reported to induce nephrotoxicity by directly inducing inflammatory response and oxidative stress. In this study, we aimed to investigate the protective effects and mechanism of xanthohumol on cisplatin-induced nephrotoxicity. The model of nephrotoxicity was induced by intraperitoneal injection of cisplatin and xanthohumol was given intraperitoneally for three consecutive days. The results showed that xanthohumol significantly attenuated kidney histological changes and serum creatinine and BUN production. The levels of TNF-α, IL-1ß and IL-6 in kidney tissues were suppressed by xanthohumol. The levels of malondialdehyde (MDA) and ROS were suppressed by treatment of xanthohumol. The activities of glutathione (GSH) and superoxide dismutase (SOD) decreased by cisplatin were reversed by xanthohumol. Furthermore, the expression of TLR4 and the activation of NF-κB induced by cisplatin were significantly inhibited by xanthohumol. The expression of Nrf2 and HO-1 were dose-dependently up-regulated by the treatment of xanthohumol. In conclusion, xanthohumol protects against cisplatin-induced nephrotoxicity by ameliorating inflammatory and oxidative responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Antioxidant effect of Arabic gum against mercuric chloride-induced nephrotoxicity.

    Science.gov (United States)

    Gado, Ali M; Aldahmash, Badr A

    2013-01-01

    The effects of Arabic gum (AG) against nephrotoxicity of mercury (Hg), an oxidative-stress inducing substance, in rats were investigated. A single dose of mercuric chloride (5 mg/kg intraperitoneal injection) induced renal toxicity, manifested biochemically by a significant increase in serum creatinine, blood urea nitrogen, thiobarbituric acid reactive substances, and total nitrate/nitrite production in kidney tissues. In addition, reduced glutathione, glutathione peroxidase, and catalase enzymes in renal tissues were significantly decreased. Pretreatment of rats with AG (7.5 g/kg/day per oral administration), starting 5 days before mercuric chloride injection and continuing through the experimental period, resulted in a complete reversal of Hg-induced increase in creatinine, blood urea nitrogen, thiobarbituric acid reactive substances, and total nitrate/nitrite to control values. Histopathologic examination of kidney tissues confirmed the biochemical data; pretreatment of AG prevented Hg-induced degenerative changes of kidney tissues. These results indicate that AG is an efficient cytoprotective agent against Hg-induced nephrotoxicity by a mechanism related at least in part to its ability to decrease oxidative and nitrosative stress and preserve the activity of antioxidant enzymes in kidney tissues.

  14. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    Science.gov (United States)

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  15. Evaluation of nephroprotective activity of Musa paradisiaca L. in gentamicin-induced nephrotoxicity.

    Science.gov (United States)

    Abbas, Khizar; Rizwani, Ghazala H; Zahid, Hina; Qadir, M Imran

    2017-05-01

    The objective of the study was to investigate the nephroprotective activity of methanolic extract of different morphological parts (bract, flower, trachea and tracheal fluid) of Musa paradisiaca L. (Family: Musaceae) against gentamicin-induced nephrotoxicity in mice. Gentamicin produced significant changes in biochemical (increased levels of blood urea nitrogen level, blood urea, and serum creatinine), and histological parameters in mice. Treatment with methanolic extract of bract (100 and 250mg/kg, b.w) and flowering stalk (trachea) (250 and 500mg/kg, b.w) significantly prevented biochemical and histological changes produced by gentamicin toxicity. The extracts of M. paradisiaca (bract and flowering stalk) could contribute a lead to discovery of a new drug for the treatment of drug-induced nephrotoxicity.

  16. The Protective Effects of Sika Deer Antler Protein on Cisplatin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Huihai Yang

    2017-08-01

    Full Text Available Background/Aims: This study measured the effect of Sika deer (Cervus nippon Temminck antler protein (SDAPR, glycoproteins (SDAG, and polysaccharides (SDAPO on cisplatin-induced cytotoxicity in HEK 293 cells, and investigated the effect of SDAPR against cisplatin-induced nephrotoxicity in mice. Methods: Cell viability was measured by MTT assay. ICR mice were randomly divided into five groups: control, cisplatin with vehicle, and cisplatin with SDAPR at three concentrations: 5, 10, or 20 mg/kg, p.o., 10 d. Cisplatin was injected on 7th day (25 mg/kg, i.p.. Renal function, oxidative stress, levels of inflammatory factors, and expression of apoptosis-related proteins were measured in vivo. Renal tissues were stained with TUNEL and H&E to observe renal cell apoptosis and pathological changes. Results: Pretreatment with SDAPR (125-2000 µg/mL significantly improved cell viability, with an EC50 of approximately 1000 µg/mL. SDAPR also ameliorated cisplatin-induced histopatholo- gic changes, and decreased blood urea nitrogen (BUN and creatinine (Cr (P < 0.05. Western blotting analysis showed SDAPR clearly decreased expression levels of cleaved-caspase-3 and Bax, and increased the expression level of Bcl-2 (P < 0.01. Additionally, SDAPR markedly regulated oxidative stress markers and inflammatory cytokines (P<0.05. TUNEL staining showed decreased apoptosis after SDAPR treatment (P < 0.01. Conclusions: These results indicate that SDAPR can be an effective dietary supplement, to relieve cisplatin-induced nephrotoxicity by improved antioxidase activity, suppressed inflammation, and inhibited apoptosis in vivo.

  17. Antinociceptive Effect of Rat D-Serine Racemase Inhibitors, L-Serine-O-Sulfate, and L-Erythro-3-Hydroxyaspartate in an Arthritic Pain Model

    Directory of Open Access Journals (Sweden)

    Claudio Laurido

    2012-01-01

    Full Text Available N-methyl-D-aspartic acid receptor (NMDAr activation requires the presence of D-serine, synthesized from L-serine by a pyridoxal 5′-phosphate-dependent serine racemase (SR. D-serine levels can be lowered by inhibiting the racemization of L-serine. L-serine-O-sulfate (LSOS and L-erythro-3-hydroxyaspartate (LEHA, among others, have proven to be effective in reducing the D-serine levels in culture cells. It is tempting then to try these compounds in their effectiveness to decrease nociceptive levels in rat arthritic pain. We measured the C-reflex paradigm and wind-up potentiation in the presence of intrathecally injected LSOS (100 μg/10 μL and LEHA (100 μg/10 μL in normal and monoarthritic rats. Both compounds decreased the wind-up activity in normal and monoarthritic rats. Accordingly, all the antinociceptive effects were abolished when 300 μg/10 μL of D-serine were injected intrathecally. Since no in vivo results have been presented so far, this constitutes the first evidence that SR inhibitions lower the D-serine levels, thus decreasing the NMDAr activity and the consequent development and maintenance of chronic pain.

  18. Gamma-aminobutyric acid aggravates nephrotoxicity induced by cisplatin in female rats.

    Science.gov (United States)

    Peysepar, Elham; Soltani, Nepton; Nematbakhsh, Mehdi; Eshraghi-Jazi, Fatemeh; Talebi, Ardeshir

    2016-01-01

    Cisplatin (CP) is a major antineoplastic drug for treatment of solid tumors. CP-induced nephrotoxicity may be gender-related. This is while gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the central nervous system that has renoprotective impacts on acute renal injury. This study was designed to investigate the protective role of GABA against CP-induced nephrotoxicity in male and female rats. Sixty Wistar male and female rats were used in eight experimental groups. Both genders received GABA (50 μg/kg/day; i. p.) for 14 days and CP (2.5 mg/kg/day; i. p.) was added from day 8 to the end of the study, and they were compared with the control groups. At the end of the study, all animals were sacrificed and the serum levels of blood urea nitrogen (BUN), creatinine (Cr), nitrite, malondialdehyde (MDA), and magnesium (Mg) were measured. The kidney tissue damage was also determined via staining. CP significantly increased the serum levels of Cr and BUN, kidney weight, and kidney tissue damage score in both genders (PGABA did not attenuate these markers in males; even these biomarkers were intensified in females. Serum level of Mg, and testis and uterus weights did not alter in the groups. However, the groups were significantly different in terms of nitrite and MDA levels. It seems that GABA did not improve nephrotoxicity induced by CP-treated rats, and it exacerbated renal damage in female rats.

  19. Sida rhomboidea.Roxb leaf extract ameliorates gentamicin induced nephrotoxicity and renal dysfunction in rats.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Devkar, Ranjitsinh V; Ramachandran, A V

    2010-10-28

    Sida rhomboidea.Roxb (SR) known as "Mahabala" in Ayurveda and marketed as "Shahadeyi" is used in ethnomedicine to treat ailments such as dysuria and urinary disorders. To evaluate nephroprotective potential of SR against gentamicin (GM) induced nephrotoxicity and renal dysfunction. Nephrotoxicity was induced in rats with GM (100 mg/kg bodyweight (i.p.) for 8 days) and were treated with SR extract (200 and 400 mg/kg bodyweight (p.o.) for 8 days) or 0.5% carboxymethyl cellulose (vehicle). Plasma and urine urea and creatinine, renal enzymatic and non-enzymatic antioxidants along with lipid peroxidation were evaluated in various experimental groups. GM treatment induced significant elevation (p<0.05) in plasma and urine urea, creatinine, renal lipid peroxidation along with significant decrement (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR treatment to GM treated rats (GM+SR) recorded significant decrement (p<0.05) in plasma and urine urea and creatinine, renal lipid peroxidation along with significant increment (p<0.05) in renal enzymatic and non-enzymatic antioxidants. SR leaf extract ameliorates GM induced nephrotoxicity and renal dysfunction and thus validates its ethnomedicinal use. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. The protective effect of ebselen on radiocontrast-induced nephrotoxicity.

    Science.gov (United States)

    Ozgur, Tumay; Tutanc, Murat; Zararsiz, Ismail; Motor, Sedat; Ozturk, Oktay Hasan; Yaldiz, Mehmet; Kurtgoz, Ozgur Yildirim

    2012-01-01

    Radiocontrast-induced nephropathy has become one of the most important causes of renal acute failure. The most effective management of reducing the incidence of contrast nephropathy is to understand and prevent its causes. We aimed to investigate the protective role of ebselen against radiocontrast-induced nephrotoxicity in terms of tissue oxidant/antioxidant parameters and light microscopy in rats. Albino Wistar rats were randomly separated into four groups. The Group 1 rats were treated with sodium chloride as the control group, Group 2 with radiocontrast, Group 3 with radiocontrast plus ebselen, and Group 4 with ebselen alone. After 24 h, the animals over the experimental period were euthanized and blood samples were analyzed for blood urea nitrogen (BUN) and serum creatinine (Cr) levels. Kidney sections were analyzed for malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, as well as histopathological changes. In the radiocontrast group, BUN, MDA, and GSH-Px levels increased while SOD activity decreased compared with the control group. These decays were improved by ebselen administration in the radiocontrast group. Significant histological deteriorations were observed in the radiocontrast group. We noted improvement in the histologic findings with ebselen administration. These results indicate that ebselen might produce a protective mechanism against radiocontrast-induced nephrotoxicity.

  1. Evaluation of risk factors for vancomycin-induced nephrotoxicity.

    Science.gov (United States)

    Park, So Jin; Lim, Na Ri; Park, Hyo Jung; Yang, Jae Wook; Kim, Min-Ji; Kim, Kyunga; In, Yong Won; Lee, Young Mee

    2018-05-09

    Background Vancomycin is a glycopeptide antibiotic of choice for the treatment of serious infections caused by multi-resistant Gram-positive bacteria. However, vancomycin-associated nephrotoxicity (VAN) often limits its use. Previous data suggested a few risk factors of VAN, including higher mean vancomycin trough level, higher daily doses, old age, long duration of vancomycin therapy, and concomitant nephrotoxins. Objective To evaluate the incidence and risk factors of VAN and determine whether higher vancomycin trough concentrations were associated with a greater risk for VAN. Settings A retrospective, observational, single-center study at the 1960-bed university-affiliated tertiary care hospital (Samsung Medical Center), Seoul, Korea. Method A retrospective analysis of adult patients who received vancomycin parenterally in a tertiary care medical center from March 1, 2013 to June 30, 2013 was performed. We excluded patients with a baseline serum creatinine level > 2 mg/dL and those who had a history of end-stage renal disease and dialysis at baseline. The clinical characteristics were compared between patients with nephrotoxicity and those without nephrotoxicity to identify the risk factors associated with VAN. Main outcome measure Incidence of VAN and VAN-associated risk factors were analyzed. Results Of the 315 vancomycin-treated patients, nephrotoxicity occurred in 15.2% of the patients. In multivariate analysis, higher vancomycin trough concentrations of > 20 mg∕L (OR 9.57, 95% CI 2.49-36.83, p < 0.01) and intensive care unit (ICU) residence (OR 2.86, 95% CI 1.41-5.82, p < 0.01) were independently associated with VAN. Conclusion Our findings suggest that higher vancomycin trough levels and ICU residence might be associated with a greater risk for VAN. More careful monitoring of vancomycin serum trough levels and patient status might facilitate the timely prevention of VAN.

  2. Effect of Helichrysum plicatum DC. subsp. plicatum ethanol extract on gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    Apaydin Yildirim, Betul; Kordali, Saban; Terim Kapakin, Kubra Asena; Yildirim, Fatih; Aktas Senocak, Esra; Altun, Serdar

    2017-06-01

    The aim of this study was to evaluate the possible therapeutic or protective effects of Helichrysum plicatum DC. subsp. plicatum ethanol extract (HPE) against gentamicin-induced nephrotoxicity. Thirty-six Sprague Dawley male rats weighing between 200 and 250 g were used as live material. They were formed into six groups containing 6 rats each and were allowed to adapt to laboratory conditions for 7 d. Group I: control, 5% DMSO intraperitoneal (i.p.); Group II: HPE 100 mg/(kg·d) i.p.; Group III: HPE 200 mg/(kg·d) i.p.; Group IV: gentamicin as 80 mg/(kg·d) i.p.; Group V: gentamicin as 80 mg/(kg·d) i.p.+HPE 100 mg/(kg·d) i.p.; and Group VI: gentamicin as 80 mg/(kg·d) i.p.+HPE 200 mg/(kg·d) i.p. for 8 d. Following treatment, serum, liver, and kidney tissues were used to assess blood urea nitrogen (BUN), creatinine, enzymatic and non-enzymatic antioxidants, and lipid peroxidation. Gentamicin significantly increased serum BUN, creatinin, and liver and kidney levels of malondialdehyde (MDA). It also decreased the activity of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Treatment with the HPE 100 mg/kg reversed gentamicin-induced alterations as evidenced by decreased serum BUN and creatinin, liver and kidney oxidant marker, and tubular necrosis as well as by an increase in antioxidant enzymes. It was found that HPE 200 mg/kg significantly increased liver and kidney tissue MDA levels in nephrotoxicity in rats. As a result, these findings support the proposition that HPE in 100 mg/kg dose demonstrates in the kidney and liver as free radicals and scavenger to prevent the toxic effects of gentamicin in both the biochemical and histopathology parameters.

  3. Crystal Structure of Serine Racemase that Produces Neurotransmitter font-variant:small-caps">d-Serine for Stimulation of the NMDA Receptor

    Science.gov (United States)

    Goto, Masaru

    font-variant:small-caps">d-Serine is an endogenous coagonist for the N-methyl-font-variant:small-caps">d-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5’-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of font-variant:small-caps">l-serine to yield font-variant:small-caps">d-serine and vice versa. We have determined the structures of three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe. Lys57 and Ser82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique lysino-font-variant:small-caps">d-alanyl residue at the active site, also binds the substrate serine in the active site, suggesting that the lysino-font-variant:small-caps">d-alanyl residue acts as a catalytic base in the same manner as Lys57 of the wild type enzyme.

  4. Cerebrospinal fluid D-serine concentrations in major depressive disorder negatively correlate with depression severity.

    Science.gov (United States)

    Ishiwata, Sayuri; Hattori, Kotaro; Sasayama, Daimei; Teraishi, Toshiya; Miyakawa, Tomoko; Yokota, Yuuki; Matsumura, Ryo; Nishikawa, Toru; Kunugi, Hiroshi

    2018-01-15

    D-serine is an endogenous co-agonist of N-methyl-D-aspartate receptor (NMDAR) and plays an important role in glutamate neurotransmission. Several studies suggested the possible involvement of D-serine related in the pathophysiology of psychiatric disorders including major depression disorders (MDD). We tried to examine whether cerebrospinal fluid (CSF) or plasma D-serine concentrations are altered in MDD and whether D-serine concentrations correlated with disease severity. 26 MDD patients and 27 healthy controls matched for age, sex and ethnicity were enrolled. We measured amino acids in these samples using by high-performance liquid chromatography with fluorometric detection. D-serine and L-serine, precursor of D-serine, levels in CSF or plasma were not significantly different in patients of MDD compared to controls. Furthermore, a significant correlation between D-serine levels in CSF and Hamilton Depression Rating Scale (HAMD)-17 score was observed (r = -0.65, p = 0.006). Furthermore, we found a positive correlation between CSF D-serine and HVA concentrations in MDD patients (r = 0.54, p = 0.007). CSF D-serine concentrations were correlated with those of plasma in MDD (r = 0.61, p = 0.01) but not in controls. In CSF, we also confirmed a significant correlation between D-serine and L-serine levels in MDD (r = 0.72, p depression severity and HVA concentrations and further investigation were required to reveal the effect of medication and disease heterogeneity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ameliorative potential of gemfibrozil and silymarin on experimentally induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    A.M. Kabel

    2013-12-01

    Conclusion: The combination of gemfibrozil and silymarin has protective effects against cisplatin-induced nephrotoxicity in rats better than each of these drugs alone due to anti-inflammatory and antioxidant properties of the used drugs.

  6. Sildenafil Ameliorates Gentamicin-Induced Nephrotoxicity in Rats: Role of iNOS and eNOS

    Directory of Open Access Journals (Sweden)

    Mohamed A. Morsy

    2014-01-01

    Full Text Available Gentamicin, an aminoglycoside antibiotic, is used for the treatment of serious Gram-negative infections. However, its usefulness is limited by its nephrotoxicity. Sildenafil, a selective phosphodiesterase-5 inhibitor, was reported to prevent or decrease tissue injury. The aim of this study is to evaluate the potential protective effects of sildenafil on gentamicin-induced nephrotoxicity in rats. Male Wistar rats were injected with gentamicin (100 mg/kg/day, i.p. for 6 days with and without sildenafil. Sildenafil administration resulted in nephroprotective effect in gentamicin-intoxicated rats as it significantly decreased serum creatinine and urea, urinary albumin, and renal malondialdehyde and nitrite/nitrate levels, with a concomitant increase in renal catalase and superoxide dismutase activities compared to gentamicin-treated rats. Moreover, immunohistochemical examination revealed that sildenafil treatment markedly reduced inducible nitric oxide synthase (iNOS expression, while expression of endothelial nitric oxide synthase (eNOS was markedly enhanced. The protective effects of sildenafil were verified histopathologically. In conclusion, sildenafil protects rats against gentamicin-induced nephrotoxicity possibly, in part, through its antioxidant activity, inhibition of iNOS expression, and induction of eNOS production.

  7. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    International Nuclear Information System (INIS)

    El-Naga, Reem N.

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  8. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    El-Naga, Reem N., E-mail: reemelnaga@hotmail.com

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  9. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response

    International Nuclear Information System (INIS)

    Soto, Armando; DelRaso, Nicholas J.; Schlager, John J.; Chan, Victor T.

    2008-01-01

    , metabolism and transport, inflammatory response, proteasome-mediated degradation of oxidatively damaged cytosolic proteins, Ras protein signal transduction, TGF-beta signaling pathway and mRNA transcription, processing, splicing and transport. On the other hand, major metabolic pathways, which include carbohydrate metabolism, TCA cycle, oxidative phosphorylation, ATP synthesis coupled electron transport, amino acid metabolism and transport, lipid metabolism, nucleotide metabolism, and vitamin metabolism, and oxidative stress response including induction of antioxidant genes and glutathione metabolism are down-regulated. As tubular epithelia have strong energy demand for normal functions, down-regulation of energy metabolism after D-serine treatment may be related to the mechanism of its nephrotoxicity. In addition, hydrogen peroxide, a reactive oxygen species, is produced as a byproduct of the metabolism of D-serine by D-amino acid oxidase in the peroxisomes of the tubular epithelia. Down-regulation of pathways for antioxidant genes induction and glutathione metabolism will likely exacerbate the cytotoxicity of this reactive oxygen species. The observation that the genes involved in apoptosis, DNA repair, proteasome pathway for the degradation of oxidatively damaged cytosolic proteins were up-regulated lends some supports to this premise. Up-regulation of pathways of cell proliferation cycle, DNA replication and gene expression process, including mRNA transcription, processing, splicing, transport, translation initiation, and protein transport along with protein complex assembly, suggests ongoing tissue repair and regeneration. Consistent with the fibrogenic function of the TGF-beta signaling pathway in various experimental renal diseases, genes encoding major extracellular matrix components such as collagens, laminins, fibronectin 1 and tenascins are also strongly up-regulated. Taken together, the results of this study provide important insights into the molecular mechanism

  10. Antioxidant effect of Arabic gum against mercuric chloride-induced nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Gado AM

    2013-10-01

    Full Text Available Ali M Gado,1 Badr A Aldahmash21Forensic Medicine and Clinical Toxicology Department, College of Medicine, Tanta University, Tanta, Egypt; 2Medical Laboratory Department, College of Health Sciences, King Saud University, Riyadh, Saudi ArabiaAbstract: The effects of Arabic gum (AG against nephrotoxicity of mercury (Hg, an oxidative-stress inducing substance, in rats were investigated. A single dose of mercuric chloride (5 mg/kg intraperitoneal injection induced renal toxicity, manifested biochemically by a significant increase in serum creatinine, blood urea nitrogen, thiobarbituric acid reactive substances, and total nitrate/nitrite production in kidney tissues. In addition, reduced glutathione, glutathione peroxidase, and catalase enzymes in renal tissues were significantly decreased. Pretreatment of rats with AG (7.5 g/kg/day per oral administration, starting 5 days before mercuric chloride injection and continuing through the experimental period, resulted in a complete reversal of Hg-induced increase in creatinine, blood urea nitrogen, thiobarbituric acid reactive substances, and total nitrate/nitrite to control values. Histopathologic examination of kidney tissues confirmed the biochemical data; pretreatment of AG prevented Hg-induced degenerative changes of kidney tissues. These results indicate that AG is an efficient cytoprotective agent against Hg-induced nephrotoxicity by a mechanism related at least in part to its ability to decrease oxidative and nitrosative stress and preserve the activity of antioxidant enzymes in kidney tissues.Keywords: mercury, acacia gum, oxidative stress, lipid per oxidation, kidney toxicity

  11. l-Serine Enhances Light-Induced Circadian Phase Resetting in Mice and Humans.

    Science.gov (United States)

    Yasuo, Shinobu; Iwamoto, Ayaka; Lee, Sang-Il; Ochiai, Shotaro; Hitachi, Rina; Shibata, Satomi; Uotsu, Nobuo; Tarumizu, Chie; Matsuoka, Sayuri; Furuse, Mitsuhiro; Higuchi, Shigekazu

    2017-12-01

    Background: The circadian clock is modulated by the timing of ingestion or food composition, but the effects of specific nutrients are poorly understood. Objective: We aimed to identify the amino acids that modulate the circadian clock and reset the light-induced circadian phase in mice and humans. Methods: Male CBA/N mice were orally administered 1 of 20 l-amino acids, and the circadian and light-induced phase shifts of wheel-running activity were analyzed. Antagonists of several neurotransmitter pathways were injected before l-serine administration, and light-induced phase shifts were analyzed. In addition, the effect of l-serine on the light-induced phase advance was investigated in healthy male students (mean ± SD age 22.2 ± 1.8 y) by using dim-light melatonin onset (DLMO) determined by saliva samples as an index of the circadian phase. Results: l-Serine administration enhanced light-induced phase shifts in mice (1.86-fold; P light-dark cycle by 6 h, l-serine administration slightly accelerated re-entrainment to the shifted cycle. In humans, l-serine ingestion before bedtime induced significantly larger phase advances of DLMO after bright-light exposure during the morning (means ± SEMs-l-serine: 25.9 ± 6.6 min; placebo: 12.1 ± 7.0 min; P light-induced phase resetting in mice and humans, and it may be useful for treating circadian disturbances. © 2017 American Society for Nutrition.

  12. Ketamine Metabolites Enantioselectively Decrease Intracellular D-Serine Concentrations in PC-12 Cells.

    Directory of Open Access Journals (Sweden)

    Nagendra S Singh

    Full Text Available D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac-dehydronorketamine and (2S,6S-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S-hydroxynorketamine and (2R,6R-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.

  13. Effect of nettle (Urtica dioica extract on gentamicin induced nephrotoxicity in male rabbits

    Directory of Open Access Journals (Sweden)

    Nadia Abdulkarim Salih

    2015-09-01

    Conclusions: Therefore, it can be assumed that the nephroprotective effect shown by nettle in gentamicin-induced nephrotoxicity can reserve intracellular levels of biological pathways and supportively enhance excretion of toxic levels of gentamicin.

  14. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs)

    International Nuclear Information System (INIS)

    Li, Qing; Guo, Dong; Dong, Zhongqi; Zhang, Wei; Zhang, Lei; Huang, Shiew-Mei; Polli, James E.; Shu, Yan

    2013-01-01

    The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT 3 ) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the chemotherapeutic cisplatin

  15. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Guo, Dong [Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Dong, Zhongqi [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Zhang, Wei [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Zhang, Lei; Huang, Shiew-Mei [Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD (United States); Polli, James E. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Shu, Yan, E-mail: yshu@rx.umaryland.edu [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States)

    2013-11-15

    The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT{sub 3}) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the chemotherapeutic

  16. FBXO22 Protein Is Required for Optimal Synthesis of the N-Methyl-d-Aspartate (NMDA) Receptor Coagonist d-Serine

    DEFF Research Database (Denmark)

    Dikopoltsev, Elena; Foltyn, Veronika N; Zehl, Martin

    2014-01-01

    d-Serine is a physiological activator of NMDA receptors (NMDARs) in the nervous system that mediates several NMDAR-mediated processes ranging from normal neurotransmission to neurodegeneration. d-Serine is synthesized from l-serine by serine racemase (SR), a brain-enriched enzyme. However, little......, SR interacts preferentially with free FBXO22 species. In vivo ubiquitination and SR half-life determination indicate that FBXO22 does not target SR to the proteasome system. FBXO22 primarily affects SR subcellular localization and seems to increase d-serine synthesis by preventing the association...... is known about the regulation of d-serine synthesis. We now demonstrate that the F-box only protein 22 (FBXO22) interacts with SR and is required for optimal d-serine synthesis in cells. Although FBXO22 is classically associated with the ubiquitin system and is recruited to the Skip1-Cul1-F-box E3 complex...

  17. Study of protective effects of melatonin on cisplatin-induced nephrotoxicity in rabbits

    International Nuclear Information System (INIS)

    Aslam, J.; Khan, W.; Bakhtiar, S.

    2017-01-01

    To evaluate the protective effects of melatonin on cisplatin-induced nephrotoxicity in rabbits. Study Design: Laboratory based randomized control trial. Place and Duration of Study: Department of Pharmacology and Therapeutics in collaboration with Clinico Pathologic Laboratory, Army Medical College, Rawalpindi, from Apr to Jun 2015. Material and Methods: Eighteen rabbits were divided into three groups, each consisting of six rabbits. Baseline serum urea, creatinine, sodium and potassium were measured. Rabbits were weighed for dose calculation. A single dose of cisplatin 10mg/kg was given as I/P injection to the toxic group. The protective group received 5 mg/kg I/P melatonin for three days. Rabbits were sacrificed 72 hours after the cisplatin dose and both kidneys were sent for histopathology. Statistical analysis was carried out by using Microsoft Office Excel 2010 and SPSS version 21. Student's t-test and one way ANOVA, followed by 'Post Hoc Tukey' test was used for biochemical parameters, while Chi Square' test was used for histopathological comparison. Results: Moderate nephrotoxicity (grade-II) was seen in the toxic group, with substantial elevations of serum urea and creatinine (p<0.001), and serum sodium and potassium (p<0.01). Melatonin ameliorated the renal injury. Conclusion: The protective effects of melatonin on cisplatin-induced nephrotoxicity were due to its antioxidant properties. (author)

  18. Anthocyanin – Rich Red Dye of Hibiscus Sabdariffa Calyx Modulates Cisplatin-induced Nephrotoxicity and Oxidative Stress in Rats

    Science.gov (United States)

    Ademiluyi, Adedayo O.; Oboh, Ganiyu; Agbebi, Oluwaseun J.; Akinyemi, Ayodele J.

    2013-01-01

    This study sought to investigate the protective effect of dietary inclusion of Hibiscus sabdariffa calyx red dye on cisplatin-induced nephrotoxicity and antioxidant status in rats. Adult male rats were randomly divided into four groups of six animals each. Groups I and II were fed basal diet while groups III and IV were fed diets containing 0.5% and 1% of the dye respectively for 20 days prior to cisplatin administration. Nephrotoxicity was induced by a single dose intraperitoneal administration of cisplatin (7 mg/kg b.w) and the experiment was terminated 3 days after. The kidney and plasma were studied for nephrotoxicity and oxidative stress indices. Cisplatin administration caused a significant (Psabdariffa dye could be attributed to its anthocyanin content. PMID:24711761

  19. Comparative study between dimethyl sulfoxide (dmso), allopurinol and urate oxidase administration in nephrotoxic rats induced with

    International Nuclear Information System (INIS)

    Heibashy, M.I.A.; El-Nahla, A.M.; Ibrahim, A.I.; Saleh, Sh.Y.A.

    2010-01-01

    This study was conducted to show whether DMSO, allopurinol and urate oxidase could offer ameliorating effects against abnormal alterations in kidney function tests in gentamicin (GM) induced nephrotoxic rats . Two experiments were carried out, the first one showed that daily injection of 80 mg GM/kg b. wt interapertonealy (I.P) for two weeks induced acute renal failure indicated by significant elevation in serum urea, creatinine, uric acid, potassium, inorganic phosphorus, TBARS and PTH and a significant decline in serum sodium, total and ionized calcium when compared with their corresponding values in saline injected rats. In the second experiment, comparisons were made between GM induced nephrotoxic rats and other nephrotoxic groups received daily pf I.P injection of DMSO (4 ml/kg b.wt), allopurinol (1.5 mg/100 g b.wt) and urate oxidase (10 mg/100 g b.wt) for 30 days after the incidence of nephrotoxicity. At all intervals, 10,20 and 30 days; serum urea, creatinine, uric acid, potassium, inorganic phosphorus, TBARS and PTH in DMSO, allopurinol and urate oxidase treated groups exhibited significant reduction than nephrotoxic untreated rats. During the same intervals, the levels of serum total and ionized calcium showed an opposite trend. serum sodium level did not show any significant difference between all treated groups except after 20 days , it was increased significantly in urate oxidase treated group and after 30 days in both allopurinol and urate oxidase treated groups. in term time intervals, a significant correction was recorded on the level of most measured parameters. in nephritic rats, the administration of DMSO, allopurinol or urate oxidase led to a significant amelioration effects in the kidney function tests and urate oxidase was the best protective.

  20. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Directory of Open Access Journals (Sweden)

    O. S. Adeyemi

    2014-01-01

    Full Text Available Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4 in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity.

  1. Moringa oleifera Supplemented Diets Prevented Nickel-Induced Nephrotoxicity in Wistar Rats

    Science.gov (United States)

    Adeyemi, O. S.; Elebiyo, T. C.

    2014-01-01

    Background. The Moringa oleifera plant has been implicated for several therapeutic potentials. Objective. To evaluate whether addition of M. oleifera to diet has protective effect against nickel-induced nephrotoxicity in rats. Methodology. Male Wistar rats were assigned into six groups of five. The rats were given oral exposure to 20 mg/kg nickel sulphate (NiSO4) in normal saline and sustained on either normal diet or diets supplemented with Moringa oleifera at different concentrations for 21 days. 24 hours after cessation of treatments, all animals were sacrificed under slight anesthesia. The blood and kidney samples were collected for biochemical and histopathology analyses, respectively. Results. NiSO4 exposure reduced the kidney-to-body weight ratio in rats and caused significant elevation in the levels of plasma creatinine, urea, and potassium. Also, the plasma level of sodium was decreased by NiSO4 exposure. However, addition of M. oleifera to diets averted the nickel-induced alteration to the level of creatinine and urea. The histopathology revealed damaged renal tubules and glomerular walls caused by NiSO4 exposure. In contrast, the damages were ameliorated by the M. oleifera supplemented diets. Conclusion. The addition of M. oleifera to diet afforded significant protection against nickel-induced nephrotoxicity. PMID:25295181

  2. Role of Free Radicals and Biotransformation in Trichloronitrobenzene-Induced Nephrotoxicity In Vitro.

    Science.gov (United States)

    Rankin, Gary O; Tyree, Connor; Pope, Deborah; Tate, Jordan; Racine, Christopher; Anestis, Dianne K; Brown, Kathleen C; Dial, Mason; Valentovic, Monica A

    2017-05-31

    This study determined the comparative nephrotoxic potential of four trichloronitrobenzenes (TCNBs) (2,3,4-; 2,4,5-; 2,4,6-; and 3,4,5-TCNB) and explored the effects of antioxidants and biotransformation inhibitors on TCNB-induced cytotoxicity in isolated renal cortical cells (IRCC) from male Fischer 344 rats. IRCC were incubated with a TCNB up to 1.0 mM for 15-120 min. Pretreatment with an antioxidant or cytochrome P450 (CYP), flavin monooxygenase (FMO), or peroxidase inhibitor was used in some experiments. Among the four TCNBs, the order of decreasing nephrotoxic potential was approximately 3,4,5- > 2,4,6- > 2,3,4- > 2,4,5-TCNB. The four TCNBs exhibited a similar profile of attenuation of cytotoxicity in response to antioxidant pretreatments. 2,3,4- and 3,4,5-TCNB cytotoxicity was attenuated by most of the biotransformation inhibitors tested, 2,4,5-TCNB cytotoxicity was only inhibited by isoniazid (CYP 2E1 inhibitor), and 2,4,6-TCNB-induced cytotoxicity was inhibited by one CYP inhibitor, one FMO inhibitor, and one peroxidase inhibitor. All of the CYP specific inhibitors tested offered some attenuation of 3,4,5-TCNB cytotoxicity. These results indicate that 3,4,5-TCNB is the most potent nephrotoxicant, free radicals play a role in the TCNB cytotoxicity, and the role of biotransformation in TCNB nephrotoxicity in vitro is variable and dependent on the position of the chloro groups.

  3. Cell-type specific mechanisms of D-serine uptake and release in the brain

    Directory of Open Access Journals (Sweden)

    Magalie eMartineau

    2014-05-01

    Full Text Available Accumulating evidence during the last decade established that D-serine is a key signaling molecule utilized by neurons and astroglia in the mammalian central nervous system. D-serine is increasingly appreciated as the main physiological endogenous coagonist for synaptic NMDA receptors at central excitatory synapses; it is mandatory for long-term changes in synaptic strength, memory, learning, and social interactions. Alterations in the extracellular levels of D-serine leading to disrupted cell-cell signaling are a trademark of many chronic or acute neurological (i.e. Alzheimer disease, epilepsy, stroke and psychiatric (i.e. schizophrenia disorders, and are associated with addictive behavior (i.e. cocaine addiction. Indeed, fine tuning of the extracellular levels of D-serine, achieved by various molecular machineries and signaling pathways, is necessary for maintenance of accurate NMDA receptor functions. Here, we review the experimental data supporting the notion that astroglia and neurons use different pathways to regulate levels of extracellular D-serine.

  4. Identification of novel indicators of cyclosporine A nephrotoxicity in a CD-1 mouse model

    International Nuclear Information System (INIS)

    O'Connell, Sein; Slattery, Craig; Ryan, Michael P.; McMorrow, Tara

    2011-01-01

    The calcineurin inhibitor cyclosporine A (CsA) is a widely used immunosuppressive agent. However, nephrotoxicity is a serious side effect observed in patients which limits clinical use of CsA. CsA nephrotoxicity is associated with tubulointerstitial injury progressing to nephropathy. This is typically diagnosed by invasive renal biopsy and is often only detected when the disease process is well advanced. Therefore identification of novel, early indicators of CsA nephrotoxicity could be clinically advantageous. This study aimed to establish a murine model of CsA nephrotoxicity and to identify urinary proteins that may indicate the onset of CsA-induced nephropathy using 2-D gel electrophoresis. CsA nephrotoxicity was induced in CD-1 mice by daily CsA administration for 4 weeks. By week 4, elevated serum creatinine and proteinuria were observed after CsA treatment indicating significant renal dysfunction. Decreased cadherin-1, increased α-smooth muscle actin and fibroblast specific protein 1 in kidney tissue indicated disruption of normal tubular architecture. Alterations in podocin and uromodulin were also observed which may indicate damage to other segments of the nephron. Proteomic analysis of urine identified a number of differentially regulated proteins that may be involved in early CsA nephropathy including cadherin 1, superoxide dismutase and vinculin. These findings suggest novel mechanisms of CsA nephrotoxicity and identify novel potential markers of the disease.

  5. D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period.

    Directory of Open Access Journals (Sweden)

    Claire N J Meunier

    Full Text Available N-methyl-D-aspartate receptors (NMDARs play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors.

  6. Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice.

    Directory of Open Access Journals (Sweden)

    Lamiaa A Ahmed

    Full Text Available Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice.Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg with or without oral administration of tempol (100 mg/kg/day. Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I-IV activities and mitochondrial nitric oxide synthase (mNOS protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma.This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.

  7. Gene Expression Analysis Reveals New Possible Mechanisms of Vancomycin-Induced Nephrotoxicity and Identifies Gene Markers Candidates

    OpenAIRE

    Dieterich, Christine; Puey, Angela; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C.; Ng, Hanna H.

    2008-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and...

  8. The uropathogenic species Staphylococcus saprophyticus tolerates a high concentration of D-serine.

    Science.gov (United States)

    Sakinç, Türkân; Michalski, Nadine; Kleine, Britta; Gatermann, Sören G

    2009-10-01

    Human urine contains a relatively high concentration of d-serine, which is toxic to several nonuropathogenic bacteria, but can be utilized or detoxified by uropathogenic Escherichia coli (UPEC). The sequenced genome of uropathogenic Staphylococcus saprophyticus contains a gene with homology to the d-serine deaminase gene (dsdA) of UPEC. We found the gene in several clinical isolates of S. saprophyticus; however, the gene was absent in Staphylococcus xylosus and Staphylococcus cohnii, phylogenetically close relatives of S. saprophyticus, and could also not be detected in isolates of Staphylococcus aureus, Staphylococcus epidermidis and 13 other staphylococcal species. In addition, the genomes of other sequenced staphylococci do not harbor homologues of this operon. Interestingly, S. saprophyticus could grow in media supplemented with relatively high concentrations of d-serine, whereas S. aureus, S. epidermidis and other staphylococcal species could not. The association of the dsdA gene with growth in media including d-serine was proved by introducing the gene into S. aureus Newman. Given the fact that UPEC and S. saprophyticus tolerate this compound, d-serine utilization and detoxification may be a general property of uropathogenic bacteria. © 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Protective Effect of Carvacrol on Renal Functional and Histopathological Changes in Gentamicin-Induced-Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Hassan Ahmadvand

    2016-04-01

    Full Text Available Background Nephrotoxicity is one of the most important side effects of the use of gentamicin sulphate (GS resulted in reactive oxygen species generation. Antioxidant compounds played effective roles in reduction of renal injuries caused by using of gentamicin. Carvacrol is a strong antioxidant compound. Objectives The aim of this study is to explore the effect of carvacrol inhibition in lesions of gentamicin-induced nephrotoxicity. Materials and Methods In this experimental study, 32 male mature Sprague-Dawley rats were divided into 4 groups of 8; group1: control, group 2 sham received daily carvacrol injection (74 mg/kg for 12 days, group 3 received daily GS injection (100 mg/kg for 12 days, group 4 received daily GS (100 mg/kg and carvacrol (74 mg/kg for 12 days. After 12 days, rats were anaesthetized, blood sample were obtained and kidneys were removed then stained with hematoxylin and eosin method and then were studied histophatologically. Serum creatinine and urea were measured. Results Flow treatment of nephrotoxic animals with carvacrol could significantly inhibit leukocyte infiltration (9.42% and tubular necrosis (38.18% in comparison with the nephrotoxic untreated group. Carvacrol significantly decreased the levels of urea and creatinine in treated group compared with the nephrotoxic untreated group. Conclusions The findings showed that carvacrol alleviates loss of leukocyte infiltration (9.42% and tubular necrosis and exerts beneficial effects on kidney function test in nephrotoxic group.

  10. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Zhai, Zhifang [Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Gang Huang [Department of Medical Genetics, Third Military Medical University, Chongqing 430038 (China); Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Hou, Weiping, E-mail: hwp0518@aliyun.com [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China)

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  11. Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice

    Science.gov (United States)

    Ahmed, Lamiaa A.; Shehata, Nagwa I.; Abdelkader, Noha F.; Khattab, Mahmoud M.

    2014-01-01

    Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction

  12. The synthesis, structure-toxicity relationship of cisplatin derivatives for the mechanism research of cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Hu, Jing; Wu, Tian-Ming; Li, Hong-Ze; Zuo, Ze-Ping; Zhao, Ying-Lan; Yang, Li

    2017-08-01

    Cisplatin is a widely used antineoplastic drug, while its nephrotoxicity limits the clinical application. Although several mechanisms contributing to nephrotoxicity have been reported, the direct protein targets are unclear. Herein we reported the synthesis of 29 cisplatin derivatives and the structure-toxicity relationship (STR) of these compounds with MTT assay in human renal proximal tubule cells (HK-2) and pig kidney epithelial cells (LLC-PK1). To the best of our knowledge, this study represented the first report regarding the structure-toxicity relationship (STR) of cisplatin derivatives. The potency of biotin-pyridine conjugated derivative 3 met the requirement for target identification, and the preliminary chemical proteomics results suggested that it is a promising tool for further target identification of cisplatin-induced nephrotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  13. Protective effects of the Morus alba L. leaf extracts on cisplatin-induced nephrotoxicity in rat

    Science.gov (United States)

    Nematbakhsh, M; Hajhashemi, V; Ghannadi, A; Talebi, A; Nikahd, M

    2013-01-01

    Cisplatin (CP) as an important anti-tumor drug causes nephrotoxicity mainly by oxidative stress and renin-angiotensin system (RAS). Since flavonoids have high antioxidant activity and probable role in the inhibition of RAS, this study was designed to investigate the protective effect of hydroalcoholic extract and flavonoid fraction of Morus alba leaves on cisplatin-induced nephrotoxicity in rat. Extracts of Morus alba leaves were prepared and analyzed Phytochemically. Male rats (160-200 g) were used in this study (n=7-9). Normal group received 0.2 ml normal saline intraperitoneally (i.p.) once daily for ten days. Control animals received CP on the third day and saline in the remaining days. Other groups received either hydroalcoholic extract (200, 400 and 600 mg/kg, i.p.) or flavonoid fraction (50, 100 and 200 mg/kg, i.p.) for two days before CP administration and thereafter until tenth day. Serum concentrations of blood urea nitrogen (BUN), creatinine (Cr) and nitric oxide were measured using standard methods. Also left kidneys were prepared for pathological study. The serum levels of BUN and Cr increased in animals received CP. Hydroalcoholic extract was ineffective in reversing these alterations but flavonoid fraction (50 and 100 mg/kg) significantly inhibited CP-induced increases of BUN and Cr. None of the treatments could affect serum concentration of nitric oxide. Flavonoid fraction could also prevent CP-induced pathological damage of the kidney. It seems that concurrent use of flavonoid fraction of Morus alba with CP can protect kidneys from CP-induced nephrotoxicity. PMID:24019816

  14. Parp1 protects against Aag-dependent alkylation-induced nephrotoxicity in a sex-dependent manner.

    Science.gov (United States)

    Calvo, Jennifer A; Allocca, Mariacarmela; Fake, Kimberly R; Muthupalani, Sureshkumar; Corrigan, Joshua J; Bronson, Roderick T; Samson, Leona D

    2016-07-19

    Nephrotoxicity is a common toxic side-effect of chemotherapeutic alkylating agents. Although the base excision repair (BER) pathway is essential in repairing DNA alkylation damage, under certain conditions the initiation of BER produces toxic repair intermediates that damage healthy tissues. We have shown that the alkyladenine DNA glycosylase, Aag (a.k.a. Mpg), an enzyme that initiates BER, mediates alkylation-induced whole-animal lethality and cytotoxicity in the pancreas, spleen, retina, and cerebellum, but not in the kidney. Cytotoxicity in both wild-type and Aag-transgenic mice (AagTg) was abrogated in the absence of Poly(ADP-ribose) polymerase-1 (Parp1). Here we report that Parp1-deficient mice expressing increased Aag (AagTg/Parp1-/-) develop sex-dependent kidney failure upon exposure to the alkylating agent, methyl methanesulfonate (MMS), and suffer increased whole-animal lethality compared to AagTg and wild-type mice. Macroscopic, histological, electron microscopic and immunohistochemical analyses revealed morphological kidney damage including dilated tubules, proteinaceous casts, vacuolation, collapse of the glomerular tuft, and deterioration of podocyte structure. Moreover, mice exhibited clinical signs of kidney disease indicating functional damage, including elevated blood nitrogen urea and creatinine, hypoproteinemia and proteinuria. Pharmacological Parp inhibition in AagTg mice also resulted in sensitivity to MMS-induced nephrotoxicity. These findings provide in vivo evidence that Parp1 modulates Aag-dependent MMS-induced nephrotoxicity in a sex-dependent manner and highlight the critical roles that Aag-initiated BER and Parp1 may play in determining the side-effects of chemotherapeutic alkylating agents.

  15. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Bidya Dhar [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Tatireddy, Srujana [National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037 (India); Koneru, Meghana [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Borkar, Roshan M. [National Centre for Mass Spectrometry, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Kumar, Jerald Mahesh [CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500 007 (India); Kuncha, Madhusudana [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Srinivas, R. [National Centre for Mass Spectrometry, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India); Shyam Sunder, R. [Faculty of Pharmacy, Osmania University, Hyderabad 500 007 (India); Sistla, Ramakrishna, E-mail: sistla@iict.res.in [Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007 (India)

    2014-05-15

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100 mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in

  16. The protective effect of curcumin against lithium-induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Mohammad Shaterpour

    2017-08-01

    Full Text Available Lithium is an element which has been used as salts of chloride or carbonate for many years in the treatment of some psychological disorders such as mania, bipolar or schizophrenic diseases. Chronic application of lithium may induce some serious nephropathies such as natriuresis, renal tubular acidosis, tubulointerstitial nephritis progression to progressive chronic kidney disease and hypercalcemia and, most commonly, nephrogenic diabetes insipidus. Curcumin is an antioxidant derived from Curcuma longa (turmeric or curcuma which has the ability to react directly with reactive species and up-regulation of many cytoprotective and antioxidant proteins. The preventive roles of curcumin in nephropathies were reported, but there was little information on the protective effect of curcumin against lithium-induced nephrotoxicity. In this study, male Wistar rats divided into five groups of six each and were treated as follows: group1; animals were received lithium chloride as 2 mmol/kg, group 2; animals were received normal saline (0, 5%, group 3; animals were received curcumin (200 mg/kg, group 4 animals were received curcumin plus lithium and group 5; animals were received solvent intraperitoneally for three weeks. Then the animals were killed and biochemical parameters of blood were assayed and histopathological assessment was performed. The results have shown that curcumin significantly improved the biochemicals (BUN, creatinine, malondialdehyde. Curcumin prevented significantly the histological parameters that were changed by lithium administration in rats. Our results provide new insights into beneficial usages of curcumin in chronic nephrotoxicity induced by lithium salts.

  17. Protective Effects of Cilastatin against Vancomycin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Blanca Humanes

    2015-01-01

    Full Text Available Vancomycin is a very effective antibiotic for treatment of severe infections. However, its use in clinical practice is limited by nephrotoxicity. Cilastatin is a dehydropeptidase I inhibitor that acts on the brush border membrane of the proximal tubule to prevent accumulation of imipenem and toxicity. The aim of this study was to investigate the potential protective effect of cilastatin on vancomycin-induced apoptosis and toxicity in cultured renal proximal tubular epithelial cells (RPTECs. Porcine RPTECs were cultured in the presence of vancomycin with and without cilastatin. Vancomycin induced dose-dependent apoptosis in cultured RPTECs, with DNA fragmentation, cell detachment, and a significant decrease in mitochondrial activity. Cilastatin prevented apoptotic events and diminished the antiproliferative effect and severe morphological changes induced by vancomycin. Cilastatin also improved the long-term recovery and survival of RPTECs exposed to vancomycin and partially attenuated vancomycin uptake by RPTECs. On the other hand, cilastatin had no effects on vancomycin-induced necrosis or the bactericidal effect of the antibiotic. This study indicates that cilastatin protects against vancomycin-induced proximal tubule apoptosis and increases cell viability, without compromising the antimicrobial effect of vancomycin. The beneficial effect could be attributed, at least in part, to decreased accumulation of vancomycin in RPTECs.

  18. A H2S Donor GYY4137 Exacerbates Cisplatin-Induced Nephrotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Mi Liu

    2016-01-01

    Full Text Available Accumulating evidence demonstrated that hydrogen sulfide (H2S is highly involved in inflammation, oxidative stress, and apoptosis and contributes to the pathogenesis of kidney diseases. However, the role of H2S in cisplatin nephrotoxicity is still debatable. Here we investigated the effect of GYY4137, a novel slow-releasing H2S donor, on cisplatin nephrotoxicity in mice. Male C57BL/6 mice were pretreated with GYY4137 for 72 h prior to cisplatin injection. After cisplatin treatment for 72 h, mice developed obvious renal dysfunction and kidney injury as evidenced by elevated blood urea nitrogen (BUN and histological damage. Consistently, these mice also showed increased proinflammatory cytokines such as TNF-α, IL-6, and IL-1β in circulation and/or kidney tissues. Meanwhile, circulating thiobarbituric aid-reactive substances (TBARS and renal apoptotic indices including caspase-3, Bak, and Bax were all elevated. However, application of GYY4137 further aggravated renal dysfunction and kidney structural injury in line with promoted inflammation, oxidative stress, and apoptotic response following cisplatin treatment. Taken together, our results suggested that GYY4137 exacerbated cisplatin-induced nephrotoxicity in mice possibly through promoting inflammation, oxidative stress, and apoptotic response.

  19. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid invivo screening method for nanotoxicity

    International Nuclear Information System (INIS)

    Lei Ronghui; Wu Chunqi; Yang Baohua; Ma Huazhai; Shi Chang; Wang Quanjun; Wang Qingxiu; Yuan Ye; Liao Mingyang

    2008-01-01

    Despite an increasing application of copper nanoparticles, there is a serious lack of information concerning their impact on human health and the environment. In this study, the biochemical compositions of urine, serum, and extracts of liver and kidney tissues of rats treated with nano-copper at the different doses (50, 100, and 200 mg/kg/d for 5 d) were investigated using 1 H NMR techniques with the pattern recognition methods. Serum biochemical analysis and histopathological examinations of the liver and kidney of all the rats were simultaneously performed. All the results indicated that the effects produced by nano-copper at a dose of 100 or 50 mg/kg/d were less than those induced at a higher dose of 200 mg/kg/d. Nano-copper induced overt hepatotoxicity and nephrotoxicity at 200 mg/kg/d for 5 d, which mainly involved scattered dot hepatocytic necrosis and widespread renal proximal tubule necrosis. Increased citrate, succinate, trimethylamine-N-oxide, glucose, and amino acids, accompanied by decreased creatinine levels were observed in the urine; furthermore, elevated levels of lactate, 3-hydroxybutyrate, acetate, creatine, triglycerides, and phosphatide and reduced glucose levels were observed in the serum. The predominant changes identified in the liver tissue aqueous extracts included increased lactate and creatine levels together with reduced glutamine and taurine levels, and the metabolic profile of the kidney tissue aqueous extracts showed an increase in lactate and a drop in glucose. In the chloroform/methanol extracts of the liver and kidney tissues, elevated triglyceride species were identified. These changes suggested that mitochondrial failure, enhanced ketogenesis, fatty acid β-oxidation, and glycolysis contributed to the hepatotoxicity and nephrotoxicity induced by nano-copper at 200 mg/kg/d for 5 d. An increase in triglycerides in the serum, liver and kidney tissues could serve as a potential sensitive biomarker reflecting the lipidosis induced by

  20. d-Limonene-induced male rat-specific nephrotoxicity: Evaluation of the association between d-limonene and alpha 2u-globulin

    International Nuclear Information System (INIS)

    Lehman-McKeeman, L.D.; Rodriguez, P.A.; Takigiku, R.; Caudill, D.; Fey, M.L.

    1989-01-01

    d-Limonene is a naturally occurring monoterpene, which when dosed orally, causes a male rat-specific nephrotoxicity manifested acutely as the exacerbation of protein droplets in proximal tubule cells. Experiments were conducted to examine the retention of [ 14 C]d-limonene in male and female rat kidney, to determine whether d-limonene or one or more of its metabolites associates with the male rat-specific protein, alpha 2u-globulin, and if so, to identify the bound material. The results indicated that, 24 hr after oral administration of 3 mmol d-limonene/kg, the renal concentration of d-limonene equivalents was approximately 2.5 times higher in male rats than in female rats. Equilibrium dialysis in the presence or absence of sodium dodecyl sulfate indicated that approximately 40% of the d-limonene equivalents in male rat kidney associated with proteins in a reversible manner, whereas no significant association was observed between d-limonene equivalents and female rat kidney proteins. Association between d-limonene and male rat kidney proteins was characterized by high-performance gel filtration and reverse-phase chromatography. Gel filtration HPLC indicated that d-limonene in male rat kidney is associated with a protein fraction having a molecular weight of approximately 20,000. Separation of alpha 2u-globulin from other kidney proteins by reverse-phase HPLC indicated that d-limonene associated with a protein present only in male rat kidney which was definitively identified as alpha 2u-globulin by amino acid sequencing. The major metabolite associated with alpha 2u-globulin was d-limonene-1,2-oxide. Parent d-limonene was also identified as a minor component in the alpha 2u-globulin fraction

  1. Plasma metabolic profiling analysis of nephrotoxicity induced by acyclovir using metabonomics coupled with multivariate data analysis.

    Science.gov (United States)

    Zhang, Xiuxiu; Li, Yubo; Zhou, Huifang; Fan, Simiao; Zhang, Zhenzhu; Wang, Lei; Zhang, Yanjun

    2014-08-01

    Acyclovir (ACV) is an antiviral agent. However, its use is limited by adverse side effect, particularly by its nephrotoxicity. Metabonomics technology can provide essential information on the metabolic profiles of biofluids and organs upon drug administration. Therefore, in this study, mass spectrometry-based metabonomics coupled with multivariate data analysis was used to identify the plasma metabolites and metabolic pathways related to nephrotoxicity caused by intraperitoneal injection of low (50mg/kg) and high (100mg/kg) doses of acyclovir. Sixteen biomarkers were identified by metabonomics and nephrotoxicity results revealed the dose-dependent effect of acyclovir on kidney tissues. The present study showed that the top four metabolic pathways interrupted by acyclovir included the metabolisms of arachidonic acid, tryptophan, arginine and proline, and glycerophospholipid. This research proves the established metabonomic approach can provide information on changes in metabolites and metabolic pathways, which can be applied to in-depth research on the mechanism of acyclovir-induced kidney injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Exopolysaccharide produced by Enterobacter sp. YG4 reduces uranium induced nephrotoxicity.

    Science.gov (United States)

    K, Nagaraj; Devasya, Rekha Punchapady; Bhagwath, Arun Ananthapadmanabha

    2016-01-01

    Uranium nephrotoxicity is a health concern with very few treatment options. Bacterial exopolysaccharides (EPS) possess multiple biological activities and appear as prospective candidates for treating uranium nephrotoxicity. This study focuses on the ability of an EPS produced by a bacterial strain Enterobacter sp. YG4 to reduce uranium nephrotoxicity in vivo. This bacterium was isolated from the gut contents of a slug Laevicaulis alte (Férussac). Based on the aniline blue staining reaction and infrared spectral analysis, the EPS was identified as β-glucan and its molecular weight was 11.99×10(6)Da. The EPS showed hydroxyl radical scavenging ability and total antioxidant capacity in vitro. To assess the protection provided by the EPS against uranium nephrotoxicity, a single dose of 2mg/kg uranyl nitrate was injected intraperitoneally to albino Wistar rats. As intervention, the EPS was administered orally (100mg/kg/day) for 4 consecutive days. The rats were sacrificed on the fifth day and analyses were conducted. Increased serum creatinine and urea nitrogen levels and histopathological alterations in kidneys were observed in uranyl nitrate treated animals. All these alterations were reduced with the administration of Enterobacter sp. YG4 EPS, emphasizing a novel approach in treating uranium nephrotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Prevention of cisplatin nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Hayati Fatemeh

    2016-01-01

    Full Text Available Cisplatin has a well-established role in the treatment of broad spectrum of malignancies; however its use is limited because of cisplatin-induced nephrotoxicity (CIN which can be progressive in more than 50% of cases. The most important risk factors for CIN include higher doses of cisplatin, previous cisplatin chemotherapy, underlying kidney damage and concurrent treatment with other potential nephrotoxin agents, such as aminoglycosides, nonsteroidal anti-inflammatory agents, or iodinated contrast media. Different strategies have been offered to diminish or prevent nephrotoxicity of cisplatin. The standard approach for prevention of CIN is the administration of lower doses of cisplatin in combination with full intravenous hydration prior and after cisplatin administration. Cisplatin-induced oxidative stress in the kidney may be prevented by natural antioxidant compounds. The results of this review show that many strategies for prevention of CIN exist, however, attention to the administration of these agent for CIN is necessary.

  4. Effect of commercial (vimang and hydroalcoholic extract of Mangifera indica (Mango on gentamicin-induced nephrotoxicity in rat

    Directory of Open Access Journals (Sweden)

    Abolfazl Khajavi Rad

    2011-09-01

    Conclusion: Mango products were able to improve kidney function in an established model of GM-induced nephrotoxicity in the rat. The beneficial effects of Mango on the rat kidney seem to be dose and time-dependent. However, more investigations are needed to elucidate Mango action on GM-induced renal toxicity.

  5. Virgin olive oil ameliorates deltamethrin-induced nephrotoxicity in mice: A biochemical and immunohistochemical assessment

    Directory of Open Access Journals (Sweden)

    Ali Reza khalatbary

    Full Text Available Objective: A major class of synthetic pyrethroid insecticide, deltamethrin (DM, can elicit pathophysiological effects through oxidative stress in non-targeted organisms such as mammals. There is accumulating evidence that virgin olive oil (VOO, a rich source of polyphenolic components, have anti-oxidant, anti-inflammatory, and anti-apoptotic properties. This study aimed to determine the protective and ameliorative effects of VOO against DM-induced nephrotoxicity. Methods & materials: Mice were randomly divided into four equal groups: DM group, DM plus VOO group, VOO group, and vehicle group. Five weeks after gavaging, kidney samples were taken for biochemical assessment of malondialdehyde (MDA, glutathione (GSH and catalase (CAT, and for immunohistochemical assessment of caspase-3, cyclooxygenase-2 (cox-2 and poly (ADP-ribose polymerase (PARP. Results: The MDA level in kidney was increased in the DM group, which was significantly decreased after VOO administration in the DM plus VOO group. The GSH level and CAT activiy in kidney were decreased in the DM group, which were significantly increased after VOO administration in the DM plus VOO group. Greater expression of caspase-3, cox-2, and PARP could be detected in the DM group, which was significantly attenuated in the DM plus VOO group. Also, the histopathological changes which were detected in the DM group attenuated after VOO consumption. Conclusion: Virgin olive oil exerted protective effects against deltamethrin-induced nephrotoxicity, which might be associated with its anti-apoptotic, anti-inflammatory, and anti-oxidative properties. Keywords: Deltamethrin, Virgin olive oil, Antioxidant, Apoptosis, Inflammation, Nephrotoxicity

  6. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity.

    Science.gov (United States)

    Lei, Ronghui; Wu, Chunqi; Yang, Baohua; Ma, Huazhai; Shi, Chang; Wang, Quanjun; Wang, Qingxiu; Yuan, Ye; Liao, Mingyang

    2008-10-15

    Despite an increasing application of copper nanoparticles, there is a serious lack of information concerning their impact on human health and the environment. In this study, the biochemical compositions of urine, serum, and extracts of liver and kidney tissues of rats treated with nano-copper at the different doses (50, 100, and 200 mg/kg/d for 5 d) were investigated using (1)H NMR techniques with the pattern recognition methods. Serum biochemical analysis and histopathological examinations of the liver and kidney of all the rats were simultaneously performed. All the results indicated that the effects produced by nano-copper at a dose of 100 or 50 mg/kg/d were less than those induced at a higher dose of 200 mg/kg/d. Nano-copper induced overt hepatotoxicity and nephrotoxicity at 200 mg/kg/d for 5 d, which mainly involved scattered dot hepatocytic necrosis and widespread renal proximal tubule necrosis. Increased citrate, succinate, trimethylamine-N-oxide, glucose, and amino acids, accompanied by decreased creatinine levels were observed in the urine; furthermore, elevated levels of lactate, 3-hydroxybutyrate, acetate, creatine, triglycerides, and phosphatide and reduced glucose levels were observed in the serum. The predominant changes identified in the liver tissue aqueous extracts included increased lactate and creatine levels together with reduced glutamine and taurine levels, and the metabolic profile of the kidney tissue aqueous extracts showed an increase in lactate and a drop in glucose. In the chloroform/methanol extracts of the liver and kidney tissues, elevated triglyceride species were identified. These changes suggested that mitochondrial failure, enhanced ketogenesis, fatty acid beta-oxidation, and glycolysis contributed to the hepatotoxicity and nephrotoxicity induced by nano-copper at 200 mg/kg/d for 5 d. An increase in triglycerides in the serum, liver and kidney tissues could serve as a potential sensitive biomarker reflecting the lipidosis induced

  7. Effects of a glycine transporter-1 inhibitor and D-serine on MK-801-induced immobility in the forced swimming test in rats.

    Science.gov (United States)

    Kawaura, Kazuaki; Koike, Hiroyuki; Kinoshita, Kohnosuke; Kambe, Daiji; Kaku, Ayaka; Karasawa, Jun-ichi; Chaki, Shigeyuki; Hikichi, Hirohiko

    2015-02-01

    Glutamatergic dysfunction, particularly the hypofunction of N-methyl-D-aspartate (NMDA) receptors, is involved in the pathophysiology of schizophrenia. The positive modulation of the glycine site on the NMDA receptor has been proposed as a novel therapeutic approach for schizophrenia. However, its efficacy against negative symptoms, which are poorly managed by current medications, has not been fully addressed. In the present study, the effects of the positive modulation of the glycine site on the NMDA receptor were investigated in an animal model of negative symptoms of schizophrenia. The subchronic administration of MK-801 increased immobility in the forced swimming test in rats without affecting spontaneous locomotor activity. The increased immobility induced by MK-801 was attenuated by the atypical antipsychotic clozapine but not by either the typical antipsychotic haloperidol or the antidepressant imipramine, indicating that the increased immobility induced by subchronic treatment with MK-801 in the forced swimming test may represent a negative symptom of schizophrenia. Likewise, positive modulation of the glycine sites on the NMDA receptor using an agonist for the glycine site, D-serine, and a glycine transporter-1 inhibitor, N-[(3R)-3-([1,1'-biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine hydrochloride (NFPS), significantly reversed the increase in immobility in MK-801-treated rats without reducing the immobility time in vehicle-treated rats. The present results show that the stimulation of the NMDA receptor through the glycine site on the receptor either directly with D-serine or by blocking glycine transporter-1 attenuates the immobility elicited by the subchronic administration of MK-801 and may be potentially useful for the treatment of negative symptoms of schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Histone deacetylase mediated silencing of AMWAP expression contributes to cisplatin nephrotoxicity

    Science.gov (United States)

    Ranganathan, Punithavathi; Hamad, Rania; Mohamed, Riyaz; Jayakumar, Calpurnia; Muthusamy, Thangaraju; Ramesh, Ganesan

    2015-01-01

    Cisplatin-induced acute kidney injury is a serious problem in cancer patients during treatment of solid tumors. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Since histone deacetylase (HDAC) inhibition augments cisplatin anti-tumor activity, we tested whether HDAC inhibitors can prevent cisplatin-induced nephrotoxicity and determined the underlying mechanism. Cisplatin up-regulated the expression of several HDACs in the kidney. Inhibition of HDAC with clinically used trichostatin A suppressed cisplatin-induced kidney injury, inflammation and epithelial cell apoptosis. Moreover, trichostatin A upregulated the novel anti-inflammatory protein, activated microglia/macrophage WAP domain protein (AMWAP), in epithelial cells which was enhanced with cisplatin treatment. Interestingly, HDAC1 and -2 specific inhibitors are sufficient to potently up-regulate AMWAP in epithelial cells. Administration of recombinant AMWAP or its epithelial cell-specific overexpression reduced cisplatin-induced kidney dysfunction. Moreover, AMWAP treatment suppressed epithelial cell apoptosis, and siRNA-based knockdown of AMWAP expression abolished trichostatin A-mediated suppression of epithelial cell apoptosis in vitro. Thus, HDAC-mediated silencing of AMWAP may contribute to cisplatin nephrotoxicity. Hence, HDAC1 and -2 specific inhibitors or AMWAP could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:26509586

  9. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence.

    Science.gov (United States)

    Kumar, Mukesh; Dahiya, Vicky; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Lahkar, Mangala

    2017-05-01

    Nephrotoxicity remain a major life-threatening complication in cancer patients on cisplatin chemotherapy. In this study, we investigated the protective effect and possible cellular mechanism of the hesperetin, a naturally-occurring bioflavonoid against cisplatin-induced renal injury in rats. Hesperetin was administered at a dose of 50mg/kg and 100mg/kg orally for 10days and cisplatin (7.5mg/kg, ip) was administered on the 5th day of experiment. Cisplatin induced nephrotoxicity was evidenced by alteration in the level of markers such as blood urea nitrogen, creatinine, serum albumin and severe histopathological changes in kidney. Cisplatin administration also resulted in significant increase in the tissue oxidative stress and inflammatory cytokines. The level of antioxidants enzymes were decreased significantly in the cisplatin administered rats. Hesperetin treatment (50mg/kg and 100mg/kg) normalized the renal function by attenuation of the cisplatin-induced oxidative stress, lipid peroxidation, and inflammatory cytokines and histopathological alterations. On the basis of these experimental findings our present study postulate that co-administration of hesperetin with cisplatin chemotherapy may be promising preventive approach to limit the major mortal side effect of cisplatin. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.

    Science.gov (United States)

    Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji

    2013-05-01

    d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Assessment of 99mTc-DMSA renoscintigraphy and uptake compared with creatinine clearance in rats with drug-induced nephrotoxicity, 1

    International Nuclear Information System (INIS)

    Yamada, Masafumi

    1991-01-01

    For evaluation of technetium-99m dimercaptosuccinic acid ( 99m Tc-DMSA) renal uptake as an absolute renal function, 99m Tc-DMSA uptake was compared with endogenous creatinine clearance (Ccr) in gentamicin-induced nephrotoxicity. Gentamicin (40 mg/kg/day) was given subcutaneously to male Wistar rats for periods of 3, 6, 9 and 12 days. On the next day, the renoscintigraphy was performed 2 hours following intravenous injection of 99m Tc-DMSA and Ccr was measured. On the 7th day, 99m Tc-DMSA uptake was significantly lower in the treated rats than that in control (32.27±0.92 vs 39.84±2.24%; p 99m Tc-DMSA uptake was measured and the histological examination was done. On the 4th day, 99m Tc-DMSA uptake was significantly lower than that on the 1st day (32.32±3.00 vs 38.91±1.95%; p 99m Tc-DMSA uptake reduces earlier than Ccr in gentamicin-induced nephrotoxicity and 99m Tc-DMSA uptake is a reliable indicator in the evaluation of a renal function in drug-induced nephrotoxicity. (author)

  12. Autocrine motility factor (neuroleukin, phosphohexose isomerase) induces cell movement through 12-lipoxygenase-dependent tyrosine phosphorylation and serine dephosphorylation events.

    Science.gov (United States)

    Timár, J; Tóth, S; Tóvári, J; Paku, S; Raz, A

    1999-01-01

    Autocrine motility factor (AMF) is one of the motility cytokines regulating tumor cell migration, therefore identification of the signaling pathway coupled with it has critical importance. Previous studies revealed several elements of this pathway predominated by lipoxygenase-PKC activations but the role for tyrosine kinases remained questionable. Motility cytokines frequently have mitogenic effect as well, producing activation of overlapping signaling pathways therefore we have used B16a melanoma cells as models where AMF has exclusive motility effect. Our studies revealed that in B16a cells AMF initiated rapid (1-5 min) activation of the protein tyrosine kinase (PTK) cascade inducing phosphorylation of 179, 125, 95 and 40/37 kD proteins which was mediated by upstream cyclo- and lipoxygenases. The phosphorylated proteins were localized to the cortical actin-stress fiber attachment zones in situ by confocal microscopy. On the other hand, AMF receptor activation induced significant decrease in overall serine-phosphorylation level of cellular proteins accompanied by serine phosphorylation of 200, 90, 78 and 65 kd proteins. The decrease in serine phosphorylation was independent of PTKs, PKC as well as cyclo- and lipoxygenases. However, AMF induced robust translocation of PKCalpha to the stress fibers and cortical actin suggesting a critical role for this kinase in the generation of the motility signal. Based on the significant decrease in serine phosphorylation after AMF stimulus in B16a cells we postulated the involvement of putative serine/threonine phosphatase(s) upstream lipoxygenase and activation of the protein tyrosine kinase cascade downstream cyclo- and lipoxygenase(s) in the previously identified autocrine motility signal.

  13. Tribulus terrestris-induced severe nephrotoxicity in a young healthy male.

    Science.gov (United States)

    Talasaz, Azita Hajhossein; Abbasi, Mohammad-Reza; Abkhiz, Saeed; Dashti-Khavidaki, Simin

    2010-11-01

    Herbal medications are being progressively utilized all over the world. Nevertheless, herbal remedies are not without hazards and several cases of adverse reactions have been described. Tribulus terrestris is traditionally used because of its aphrodisiac and antiurolithiatic activities with almost complete inhibition of stone formation. We report a case of T. terrestris-induced hepatotoxicity, nephrotoxicity and neurotoxicity in an Iranian male patient who used the plant's extract to prevent kidney stone formation. He presented with seizure and very high serum aminotransferases and creatinine after consuming herbal water for 2 days. Discontinuation of the herbal remedy resulted in improvement in symptoms and normalization of his liver enzymes.

  14. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  15. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    International Nuclear Information System (INIS)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-01-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  16. Ozone-induced airway hyperresponsiveness in patients with asthma: role of neutrophil-derived serine proteinases.

    Science.gov (United States)

    Hiltermann, T J; Peters, E A; Alberts, B; Kwikkers, K; Borggreven, P A; Hiemstra, P S; Dijkman, J H; van Bree, L A; Stolk, J

    1998-04-01

    Proteinase inhibitors may be of potential therapeutic value in the treatment of respiratory diseases such as chronic obstructive pulmonary disease (COPD) or asthma. Our aim was to study the role of neutrophils, and neutrophil-derived serine proteinases in an acute model in patients with asthma. Exposure to ozone induces an acute neutrophilic inflammatory reaction accompanied by an increase in airway hyperresponsiveness. It is thought that these two effects of ozone are linked, and that neutrophil-derived serine proteinases (i.e. elastase) may play a role in the ozone-induced airway hyperresponsiveness. Therefore, we examined the effect of recombinant antileukoprotease (rALP), one of the major serine proteinase inhibitors in the lung, on ozone-induced changes in airway hyperresponsiveness in this model. We observed that 16 h after exposure to ozone, airway hyperresponsiveness to methacholine was increased both following placebo and rALP treatment. There was no significant difference between placebo and rALP treatment (change in area under the dose-response curve to methacholine: 117.3+/-59.0 vs 193.6+/-59.6 % fall x DD; p=.12). Moreover, the immediate decrease in FEV1 after ozone exposure was not significantly different between the two groups (placebo: -29.6+/-6.7%; rALP: -20.9+/-3.8%; p=.11). In addition, no significant differences were observed in plasma levels of fibrinogen degradation products generated by neutrophil serine proteinases before and after exposure to ozone. We conclude that neutrophil-derived serine proteinases are not important mediators for ozone-induced hyperresponsiveness.

  17. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity

    International Nuclear Information System (INIS)

    Beger, Richard D.; Sun, Jinchun; Schnackenberg, Laura K.

    2010-01-01

    Hepatotoxicity and nephrotoxicity are two major reasons that drugs are withdrawn post-market, and hence it is of major concern to both the FDA and pharmaceutical companies. The number of cases of serious adverse effects (SAEs) in marketed drugs has climbed faster than the number of total drug prescriptions issued. In some cases, preclinical animal studies fail to identify the potential toxicity of a new chemical entity (NCE) under development. The current clinical chemistry biomarkers of liver and kidney injury are inadequate in terms of sensitivity and/or specificity, prompting the need to discover new translational specific biomarkers of organ injury. Metabolomics along with genomics and proteomics technologies have the capability of providing translational diagnostic and prognostic biomarkers specific for early stages of liver and kidney injury. Metabolomics has several advantages over the other omics platforms such as ease of sample preparation, data acquisition and use of biofluids collected through minimally invasive procedures in preclinical and clinical studies. The metabolomics platform is reviewed with particular emphasis on applications involving drug-induced hepatotoxicity and nephrotoxicity. Analytical platforms for metabolomics, chemometrics for mining metabolomics data and the applications of the metabolomics technologies are covered in detail with emphasis on recent work in the field.

  18. Effect of Taurine on Cisplatin -Induced Nephrotoxicity and Hepatoxicity in Male Rat

    Directory of Open Access Journals (Sweden)

    Noruzi M.

    2010-06-01

    Full Text Available Background and Objectives: Cisplatin, Platinum co-ordinate complex is a widely used antineaplastic agent for treatment of metastatic tumors. Taurine is an organic acid and an endogenous antioxidant. In this study we investigated the protective effect of taurine as an endogenous antioxidant against cisplatin induced nephrotoxicity and hepatotexicity.Methods: 24 male albino rats (180-220 grams were divided into 4 groups (n=6: (1: saline-treated group (2: cisplatin-treated group (10mg/kg, ip (3: group that received taurine (400mg/kg, ip 1hr before cisplatin (10mg/kg, ip administration (4: taurine (400mg/kg, ip. The animals were killed 7days after treatment and then blood samples were collected.Results: The results of this study indicated that cisplatin significantly increased CRATININ, URE, ALT, AST levels as compared to control group. Moreover, taurine significantly decreased CRATININ, URE, ALT and AST levels compared to cisplatin group.Conclusion: According to this study taurine prevents the incease of Creatinin, BUN, ALT and AST levels assisted by cisplatin, which may be due to its antioxidant properties.Keywords: Cisplatin; Taurine; Hepatoxicity; Nephrotoxicity; Nephrons.

  19. Iodinated contrast media nephrotoxicity

    International Nuclear Information System (INIS)

    Meyrier, A.

    1994-01-01

    In the late seventies, iodinated contrast agents (ICA) were considered to be a major cause of acute iatrogenic renal failure. Over the last decade new contrast agents have been synthesized, nonionic and less hyperosmolar. The incidence of acute renal failure due to ICAs, varies from 3.7 to 70% of cases according to the series, with an average figure of 10.2%. The pathophysiology of ICA nephrotoxicity was mainly studied in laboratory animal models. Three main factors are involved in an inducing ICA-mediated decrease in glomerular filtration rate: reduction of the renal plasma flow, a direct cytotoxic effect on renal tubular cells and erythrocyte alteration leading to intra-renal sludge. Excluding dysglobulinemias with urinary excretion of immunoglobulin light chains, which represent a special case of maximum nephrotoxicity, 4 main risk factors of renal toxicity have been identified in nondiabetic subjects: previous renal failure with serum creatinine levels greater than 140 μmol per liter, extracellular dehydration, age over 60 and use of high doses of ICA and/or repeated ICA injections before serum creatinine levels return to baseline. Preventive measures for avoiding ICA nephrotoxicity are threefold: maintain or restore adequate hydration with saline infusion, stop NSAID treatment several days before ICA administration, and allow a 5 day interval before repeating contrast media injections. New, nonionic and moderately hyperosmolar contrast agents appear to be much less nephrotoxic than conventional ICAs in laboratory animals and in high-risk patients. It is advisable to select such contrast media for investigating high-risk patients. This approach was recently substantiated in well designed, randomized clinical studies which included more than 2 000 patients. (author)

  20. Effect of nephrotoxic treatment with gentamicin on rats chronically exposed to uranium

    International Nuclear Information System (INIS)

    Rouas, Caroline; Stefani, Johanna; Grison, Stephane; Grandcolas, Line; Baudelin, Cedric; Dublineau, Isabelle; Pallardy, Marc; Gueguen, Yann

    2011-01-01

    Uranium is a radioactive heavy metal with a predominantly chemical toxicity, affecting especially the kidneys and more particularly the proximal tubular structure. Until now, few experimental studies have examined the effect of chronic low-dose exposure to uranium on kidney integrity: these mainly analyse standard markers such as creatinine and urea, and none has studied the effect of additional co-exposure to a nephrotoxic agent on rats chronically exposed to uranium. The aim of the present study is to examine the potential cumulative effect of treating uranium-exposed rats with a nephrotoxic drug. Neither physiological indicators (diuresis and creatinine clearance) nor standard plasma and urine markers (creatinine, urea and total protein) levels were deteriorated when uranium exposure was combined with gentamicin-induced nephrotoxicity. A histological study confirmed the preferential impact of gentamicin on the tubular structure and showed that uranium did not aggravate the histopathological renal lesions. Finally, the use of novel markers of kidney toxicity, such as KIM-1, osteopontin and kallikrein, provides new knowledge about the nephrotoxicity threshold of gentamicin, and allows us to conclude that under our experimental conditions, low dose uranium exposure did not induce signs of nephrotoxicity or enhance renal sensitivity to another nephrotoxicant.

  1. Amelioration of Cisplatin-Induced Nephrotoxicity in Rats by Curcumin

    African Journals Online (AJOL)

    Keywords: Cisplatin, Oxidative stress, Curcumin, α-Tocopherol, Nephrotoxicity. Tropical ... exerts various side effects in several organs particularly in ... Previous study provides evidence which ..... chemotherapy by cisplatin but further in vivo.

  2. Resveratrol influences platinum pharmacokinetics: A novel mechanism in protection against cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Darwish, Mostafa A; Abo-Youssef, Amira M; Khalaf, Marwa M; Abo-Saif, Ali A; Saleh, Ibrahim G; Abdelghany, Tamer M

    2018-06-15

    Cisplatin (CP) is a widely used drug in treatment of solid tumors. However, the use of CP was hampered by its serious side effects especially nephrotoxicity. This study aims to investigate the effect of resveratrol (RES) on CP-induced nephrotoxicity, particularly, the effect of RES on CP pharmacokinetics (PKs). Male white albino rats were divided to four group's six rats each. The first group received (1%) tween 80 in normal saline and served as control. The second group received RES (30 mg kg -1 ) per day for 14 consecutive day's i.p. The third and fourth groups were given a single i.p. injection of CP (6 mg kg -1 ) with or without pre-treatment of RES (30 mg kg -1 per day for 14 consecutive days), respectively. Following administration of CP, plasma, urine and kidney platinum concentration were monitored to study PKs of CP. Five days after the CP injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CP treatment significantly deteriorated kidney functions with subsequent alteration in redox balance of the kidney. On the other hand, RES successfully ameliorated CP-induced kidney injury and recovered normal kidney tissue redox status. Importantly, while RES pre-treatment did not significantly alter the plasma CP level, it dramatically decreased the urine concentration of CP and lowered its accumulation into the kidneys. Moreover, it increased CP plasma half-life (t 1/2 ) with subsequent decrease in its elimination rate constant, indicating an important role of PKs modulation in RES protection against CP-induced renal damage. Taken together, RES may protect the kidney tissue from the deleterious effects of CP through constringe of CP renal accumulation and enhancement of CP-induced oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Protective effects of Bombyx mori, quercetin and benazepril against doxorubicin induced cardiotoxicity and nephrotoxicity

    OpenAIRE

    Abdul S. Nazmi; Shibli J. Ahmad; Krishna K. Pillai; Mohammad Akhtar; Aftab Ahmad; Abul K. Najmi

    2016-01-01

    The present study was conducted with the aim of evaluating the protective effects of Bombyx mori, quercetin and benazepril on doxorubicin (DXR) induced cardiotoxicity and nephrotoxicity in rats. B. mori, quercetin and benazepril were administered for 7 days, and a single intravenous injection of 10 mg/kg body weight of DXR on day five. The animals were sacrificed 48 h after DXR administration. DXR produced a significant elevation in the malondialdehyde (MDA) level and significantly inhibited ...

  4. Effect of nephrotoxic treatment with gentamicin on rats chronically exposed to uranium.

    Science.gov (United States)

    Rouas, Caroline; Stefani, Johanna; Grison, Stéphane; Grandcolas, Line; Baudelin, Cédric; Dublineau, Isabelle; Pallardy, Marc; Gueguen, Yann

    2011-01-11

    Uranium is a radioactive heavy metal with a predominantly chemical toxicity, affecting especially the kidneys and more particularly the proximal tubular structure. Until now, few experimental studies have examined the effect of chronic low-dose exposure to uranium on kidney integrity: these mainly analyse standard markers such as creatinine and urea, and none has studied the effect of additional co-exposure to a nephrotoxic agent on rats chronically exposed to uranium. The aim of the present study is to examine the potential cumulative effect of treating uranium-exposed rats with a nephrotoxic drug. Neither physiological indicators (diuresis and creatinine clearance) nor standard plasma and urine markers (creatinine, urea and total protein) levels were deteriorated when uranium exposure was combined with gentamicin-induced nephrotoxicity. A histological study confirmed the preferential impact of gentamicin on the tubular structure and showed that uranium did not aggravate the histopathological renal lesions. Finally, the use of novel markers of kidney toxicity, such as KIM-1, osteopontin and kallikrein, provides new knowledge about the nephrotoxicity threshold of gentamicin, and allows us to conclude that under our experimental conditions, low dose uranium exposure did not induce signs of nephrotoxicity or enhance renal sensitivity to another nephrotoxicant. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  5. The Effects of Zataria Multiflora Hydroalcoholic Extract on Gentamicin Induced Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Saeed Hajihashemi

    2015-07-01

    Full Text Available Abstract Background: Gentamicin is an aminoglycoside antibiotic that broadly is used to treat gram negative bacteria infections, although it has side effects such as nephrotoxicity. According to antioxidant, anti-inflammatory and vasodilatory properties of Zataria Multiflora, the effects of co-treatment with zataria Multiflora and hydroalcholic extract on gentamicin induced nephrotoxicitj were investigated. Materials and Methods: In this study, male rats of Vistar race were divided into 4 groups: 1.control group, 2. co-treatment with gentamicin and vehicle group, 3. co-treatment with gentamicin and zataria Multifiora extract group, 4. co-treatment with zataria Multiflora extract and normal saline solution group. Zataria Multiflora hydroalcoholic extract was added to drinking water as 800 PPm concentration. They, systolic blood pressure and renal blood flow (RBF were measured. Also, the amounts of urea, creatinine, sodium, potassium and osmolarity were measured in plasma and urine samples Results: In co-treatment group with zataria Multiflora extract, the amounts of urea, creatinine, absolute sodium excretion and relative sodium and potassium excretion and malondialdehyde (MDA that have been inceased in treatment with gentamicin, significantly were reduced. Creatinine clearance, urine osmolarity, RBF and FRAP that was decreased in gentamicin group in compare to control group, significantly increased. Conclusion: Co-treatment prevents nephrotoxicity induced by gentamicin and attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, So it can be effective to cure rats receiving gentamicin.

  6. Proteomic candidate biomarkers of drug-induced nephrotoxicity in the rat.

    Directory of Open Access Journals (Sweden)

    Rodney Rouse

    Full Text Available Improved biomarkers of acute nephrotoxicity are coveted by the drug development industry, regulatory agencies, and clinicians. In an effort to identify such biomarkers, urinary peptide profiles of rats treated with two different nephrotoxins were investigated. 493 marker candidates were defined that showed a significant response to cis-platin comparing a cis-platin treated cohort to controls. Next, urine samples from rats that received three consecutive daily doses of 150 or 300 mg/kg gentamicin were examined. 557 potential biomarkers were initially identified; 108 of these gentamicin-response markers showed a clear temporal response to treatment. 39 of the cisplatin-response markers also displayed a clear response to gentamicin. Of the combined 147 peptides, 101 were similarly regulated by gentamicin or cis-platin and 54 could be identified by tandem mass spectrometry. Most were collagen type I and type III fragments up-regulated in response to gentamicin treatment. Based on these peptides, classification models were generated and validated in a longitudinal study. In agreement with histopathology, the observed changes in classification scores were transient, initiated after the first dose, and generally persistent over a period of 10-20 days before returning to control levels. The data support the hypothesis that gentamicin-induced renal toxicity up-regulates protease activity, resulting in an increase in several specific urinary collagen fragments. Urinary proteomic biomarkers identified here, especially those common to both nephrotoxins, may serve as a valuable tool to investigate potential new drug candidates for the risk of nephrotoxicity.

  7. Effect of Nigella sativa Linn oil on tramadol-induced hepato- and nephrotoxicity in adult male albino rats

    Directory of Open Access Journals (Sweden)

    A. Elkhateeb

    2015-01-01

    Full Text Available The present study was carried out to evaluate the role of Nigella sativa Linn (NsL oil against subacute tramadol-induced hepatotoxicity, nephrotoxicity as well as oxidative stress in adult male albino rats. Sixty adult male albino rats were divided into four groups. Group I: control group; 30 rats equally subdivided into: Ia; −ve control group, Ib; +ve control group received saline, Ic; +ve control group received corn oil. Group II: 10 rats received NsL oil; 1 mg/kg in 1 ml corn oil/day, group III: 10 rats received tramadol; 30 mg/kg/day, group IV: 10 rats received tramadol + NsL oil in the previous doses. Treatments were given by gavage for 30 days. Then rats were sacrificed and specimens from the livers and kidneys were taken for biochemical and histopathological study. Biochemical data showed elevated liver enzymes; alanine transaminase (ALT, aspartate transaminase (AST, gamma glutamyltransferase (GGT, bilirubin as well as urea and creatinine in tramadol group. A significant increase in hepatic and renal malondialdehyde (MDA and a decrease in glutathione peroxidase (GPx levels were also noticed. Histological analysis of the liver showed vacuolated hepatocyte cytoplasm indicating hydropic degeneration with binucleated cells, apoptotic nuclei, congested central veins, cellular infiltration and hemorrhage. Kidney sections revealed atrophied glomeruli with collapsed tufts and wide Bowman's space, degenerated tubules, hemorrhage and mononuclear cellular infiltration. There was also an increase in area % of collagen fibers in both organs. Concomitant use of NsL oil with tramadol induced partial improvement in the hepato- and nephrotoxic effects. In conclusion, this study suggested that concomitant use of NsL oil with tramadol proved to be capable of ameliorating tramadol-induced hepato- and nephrotoxicity which might be due to its antioxidant potential.

  8. Honey feeding protects kidney against cisplatin nephrotoxicity through suppression of inflammation.

    Science.gov (United States)

    Hamad, Rania; Jayakumar, Calpurnia; Ranganathan, Punithavathi; Mohamed, Riyaz; El-Hamamy, Mahmoud M I; Dessouki, Amina A; Ibrahim, Abdelazim; Ramesh, Ganesan

    2015-08-01

    Cisplatin is a highly effective chemotherapeutic drug used to treat a wide variety of solid tumors. However, its use was limited due its dose-limiting toxicity to the kidney. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Honey is a naturally occurring complex liquid and widely used in traditional Ayurvedic medicine to treat many illnesses. However, its effect on cisplatin nephrotoxicity is unknown. To determine the role of honey in cisplatin nephrotoxicity, animals were pretreated orally for a week and then cisplatin was administered. Honey feeding was continued for another 3 days. Our results show that animals with cisplatin-induced kidney dysfunction, as determined by increased serum creatinine, which received honey feeding had less kidney dysfunction. Improved kidney function was associated with better preservation of kidney morphology in honey-treated group as compared to the cisplatin alone-treated group. Interestingly, honey feeding significantly reduced cisplatin-induced tubular epithelial cell death, immune infiltration into the kidney as well as cytokine and chemokine expression and excretion as compared to cisplatin treated animals. Western blot analysis shows that cisplatin-induced increase in phosphorylation of NFkB was completely suppressed with honey feeding. In conclusion, honey feeding protects the kidney against cisplatin nephrotoxicity through suppression of inflammation and NFkB activation. © 2015 Wiley Publishing Asia Pty Ltd.

  9. D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression.

    Science.gov (United States)

    Moaddel, Ruin; Luckenbaugh, David A; Xie, Ying; Villaseñor, Alma; Brutsche, Nancy E; Machado-Vieira, Rodrigo; Ramamoorthy, Anuradha; Lorenzo, Maria Paz; Garcia, Antonia; Bernier, Michel; Torjman, Marc C; Barbas, Coral; Zarate, Carlos A; Wainer, Irving W

    2015-01-01

    (R,S)-ketamine is a rapid and effective antidepressant drug that produces a response in two thirds of patients with treatment-resistant depression (TRD). The underlying biochemical differences between a (R,S)-ketamine responder (KET-R) and non-responder (KET-NR) have not been definitively identified but may involve serine metabolism. The aim of the study was to examine the relationship between baseline plasma concentrations of D-serine and its precursor L-serine and antidepressant response to (R,S)-ketamine in TRD patients. Plasma samples were obtained from 21 TRD patients at baseline, 60 min before initiation of the (R,S)-ketamine infusion. Patients were classified as KET-Rs (n = 8) or KET-NRs (n = 13) based upon the difference in Montgomery-Åsberg Depression Rating Scale (MADRS) scores at baseline and 230 min after infusion, with response defined as a ≥50 % decrease in MADRS score. The plasma concentrations of D-serine and L-serine were determined using liquid chromatography-mass spectrometry. Baseline D-serine plasma concentrations were significantly lower in KET-Rs (3.02 ± 0.21 μM) than in KET-NRs (4.68 ± 0.81 μM), p < 0.001. A significant relationship between baseline D-serine plasma concentrations and percent change in MADRS at 230 min was determined using a Pearson correlation, r = 0.77, p < 0.001, with baseline D-serine explaining 60 % of the variance in (R,S)-ketamine response. The baseline concentrations of L-serine (L-Ser) in KET-Rs were also significantly lower than those measured in KET-NRs (66.2 ± 9.6 μM vs 242.9 ± 5.6 μM, respectively; p < 0.0001). The results demonstrate that the baseline D-serine plasma concentrations were significantly lower in KET-Rs than in KET-NRs and suggest that this variable can be used to predict an antidepressant response following (R,S)-ketamine administration.

  10. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    International Nuclear Information System (INIS)

    Chaim, Olga Meiri; Sade, Youssef Bacila; Bertoni da Silveira, Rafael; Toma, Leny; Kalapothakis, Evanguedes; Chavez-Olortegui, Carlos; Mangili, Oldemir Carlos; Gremski, Waldemiro; Dietrich, Carl Peter von; Nader, Helena B.; Sanches Veiga, Silvio

    2006-01-01

    Brown spider (Loxosceles genus) venom can induce dermonecrotic lesions at the bite site and systemic manifestations including fever, vomiting, convulsions, disseminated intravascular coagulation, hemolytic anemia and acute renal failure. The venom is composed of a mixture of proteins with several molecules biochemically and biologically well characterized. The mechanism by which the venom induces renal damage is unknown. By using mice exposed to Loxosceles intermedia recombinant dermonecrotic toxin (LiRecDT), we showed direct induction of renal injuries. Microscopic analysis of renal biopsies from dermonecrotic toxin-treated mice showed histological alterations including glomerular edema and tubular necrosis. Hyalinization of tubules with deposition of proteinaceous material in the tubule lumen, tubule epithelial cell vacuoles, tubular edema and epithelial cell lysis was also observed. Leukocytic infiltration was neither observed in the glomerulus nor the tubules. Renal vessels showed no sign of inflammatory response. Additionally, biochemical analyses showed such toxin-induced changes in renal function as urine alkalinization, hematuria and azotemia with elevation of blood urea nitrogen levels. Immunofluorescence with dermonecrotic toxin antibodies and confocal microscopy analysis showed deposition and direct binding of this toxin to renal intrinsic structures. By immunoblotting with a hyperimmune dermonecrotic toxin antiserum on renal lysates from toxin-treated mice, we detected a positive signal at the region of 33-35 kDa, which strengthens the idea that renal failure is directly induced by dermonecrotic toxin. Immunofluorescence reaction with dermonecrotic toxin antibodies revealed deposition and binding of this toxin directly in MDCK epithelial cells in culture. Similarly, dermonecrotic toxin treatment caused morphological alterations of MDCK cells including cytoplasmic vacuoles, blebs, evoked impaired spreading and detached cells from each other and from

  11. Virgin olive oil ameliorates deltamethrin-induced nephrotoxicity in mice: A biochemical and immunohistochemical assessment.

    Science.gov (United States)

    Khalatbary, Ali Reza; Ahmadvand, Hassan; Ghabaee, Davood Nasiry Zarrin; Malekshah, Abbasali Karimpour; Navazesh, Azam

    2016-01-01

    A major class of synthetic pyrethroid insecticide, deltamethrin (DM), can elicit pathophysiological effects through oxidative stress in non-targeted organisms such as mammals. There is accumulating evidence that virgin olive oil (VOO), a rich source of polyphenolic components, have anti-oxidant, anti-inflammatory, and anti-apoptotic properties. This study aimed to determine the protective and ameliorative effects of VOO against DM-induced nephrotoxicity. Mice were randomly divided into four equal groups: DM group, DM plus VOO group, VOO group, and vehicle group. Five weeks after gavaging, kidney samples were taken for biochemical assessment of malondialdehyde (MDA), glutathione (GSH) and catalase (CAT), and for immunohistochemical assessment of caspase-3, cyclooxygenase-2 (cox-2) and poly (ADP-ribose) polymerase (PARP). The MDA level in kidney was increased in the DM group, which was significantly decreased after VOO administration in the DM plus VOO group. The GSH level and CAT activiy in kidney were decreased in the DM group, which were significantly increased after VOO administration in the DM plus VOO group. Greater expression of caspase-3, cox-2, and PARP could be detected in the DM group, which was significantly attenuated in the DM plus VOO group. Also, the histopathological changes which were detected in the DM group attenuated after VOO consumption. Virgin olive oil exerted protective effects against deltamethrin-induced nephrotoxicity, which might be associated with its anti-apoptotic, anti-inflammatory, and anti-oxidative properties.

  12. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Abdel Rahim, Mona; Suddek, Ghada M; Salem, Hatem A

    2016-03-01

    The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α.

  13. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats.

    Science.gov (United States)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)-cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ-Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ-Cd induced diabetic nephrotoxic rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Com, Emmanuelle; Boitier, Eric; Marchandeau, Jean-Pierre; Brandenburg, Arnd; Schroeder, Susanne; Hoffmann, Dana; Mally, Angela; Gautier, Jean-Charles

    2012-01-01

    Gentamicin is an aminoglycoside antibiotic, which induces renal tubular necrosis in rats. In the context of the European InnoMed PredTox project, transcriptomic and proteomic studies were performed to provide new insights into the molecular mechanisms of gentamicin-induced nephrotoxicity. Male Wistar rats were treated with 25 and 75 mg/kg/day subcutaneously for 1, 3 and 14 days. Histopathology observations showed mild tubular degeneration/necrosis and regeneration and moderate mononuclear cell infiltrate after long-term treatment. Transcriptomic data indicated a strong treatment-related gene expression modulation in kidney and blood cells at the high dose after 14 days of treatment, with the regulation of 463 and 3241 genes, respectively. Of note, the induction of NF-kappa B pathway via the p38 MAPK cascade in the kidney, together with the activation of T-cell receptor signaling in blood cells were suggestive of inflammatory processes in relation with the recruitment of mononuclear cells in the kidney. Proteomic results showed a regulation of 163 proteins in kidney at the high dose after 14 days of treatment. These protein modulations were suggestive of a mitochondrial dysfunction with impairment of cellular energy production, induction of oxidative stress, an effect on protein biosynthesis and on cellular assembly and organization. Proteomic results also provided clues for potential nephrotoxicity biomarkers such as AGAT and PRBP4 which were strongly modulated in the kidney. Transcriptomic and proteomic data turned out to be complementary and their integration gave a more comprehensive insight into the putative mode of nephrotoxicity of gentamicin which was in accordance with histopathological findings. -- Highlights: ► Gentamicin induces renal tubular necrosis in rats. ► The mechanisms of gentamicin nephrotoxicity remain still elusive. ► Transcriptomic and proteomic analyses were performed to study this toxicity in rats. ► Transcriptomic and proteomic

  15. Intragastric exposure to titanium dioxide nanoparticles induced nephrotoxicity in mice, assessed by physiological and gene expression modifications

    Science.gov (United States)

    2013-01-01

    Background Numerous studies have demonstrated that titanium dioxide nanoparticles (TiO2 NPs) induced nephrotoxicity in animals. However, the nephrotoxic multiple molecular mechanisms are not clearly understood. Methods Mice were exposed to 2.5, 5 and 10 mg/kg TiO2 NPs by intragastric administration for 90 consecutive days, and their growth, element distribution, and oxidative stress in kidney as well as kidney gene expression profile were investigated using whole-genome microarray analysis technique. Results Our findings suggest that TiO2 NPs resulted in significant reduction of renal glomerulus number, apoptosis, infiltration of inflammatory cells, tissue necrosis or disorganization of renal tubules, coupled with decreased body weight, increased kidney indices, unbalance of element distribution, production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse kidney tissue. Furthermore, microarray analysis showed significant alterations in the expression of 1, 246 genes in the 10 mg/kg TiO2 NPs-exposed kidney. Of the genes altered, 1006 genes were associated with immune/inflammatory responses, apoptosis, biological processes, oxidative stress, ion transport, metabolic processes, the cell cycle, signal transduction, cell component, transcription, translation and cell differentiation, respectively. Specifically, the vital up-regulation of Bcl6, Cfi and Cfd caused immune/ inflammatory responses, the significant alterations of Axud1, Cyp4a12a, Cyp4a12b, Cyp4a14, and Cyp2d9 expression resulted in severe oxidative stress, and great suppression of Birc5, Crap2, and Tfrc expression led to renal cell apoptosis. Conclusions Axud1, Bcl6, Cf1, Cfd, Cyp4a12a, Cyp4a12b, Cyp2d9, Birc5, Crap2, and Tfrc may be potential biomarkers of kidney toxicity caused by TiO2 NPs exposure. PMID:23406204

  16. Renoprotective Effects of Total Glucosides from Paeony against Nephrotoxicity Induced by Total Alkaloids from Semen Strychni

    Directory of Open Access Journals (Sweden)

    Mingming Lv

    2017-01-01

    Full Text Available Semen Strychni have been shown to have therapeutic effect in improving blood circulation, relieving rheumatic pain, and treating cancer. However, Semen Strychni could cause severe nephrotoxicity. The present study was designed to evaluate whether treatment with total glucosides from paeony (TGP has renoprotective effect against nephrotoxicity induced by total alkaloids from Semen Strychni (TAS. The levels of blood urea nitrogen (BUN and creatinine (Cr were determined and histopathological changes were also examined to evaluate renal injury. Moreover, a HPLC-MS method was developed and validated to investigate the comparative toxicokinetics of strychnine and brucine in rats plasma after oral administration of TAS and pretreatment with TGP. Results demonstrated that the levels of BUN and Cr were significantly increased (p<0.05 in TAS group, together with tubule epithelium cloudy swelling, degeneration, and glomerular atrophy in rats’ kidneys. The TAS-induced kidney damage was alleviated after pretreatment with TGP. Besides, Tmax of strychnine and brucine were increased and T1/2 of strychnine and brucine were decreased after pretreatment with TGP. The toxicokinetics study showed that pretreatment with TGP could attenuate the absorption of strychnine and brucine, as well as accelerate their elimination. These results suggest that TGP possesses renoprotective effects.

  17. The Role of Biotransformation and Oxidative Stress in 3,5-Dichloroaniline (3,5-DCA) Induced Nephrotoxicity in Isolated Renal Cortical Cells from Male Fischer 344 Rats

    Science.gov (United States)

    Racine, Christopher R.; Ferguson, Travis; Preston, Debbie; Ward, Dakota; Ball, John; Anestis, Dianne; Valentovic, Monica; Rankin, Gary O.

    2016-01-01

    Among the mono- and dichloroanilines, 3,5-Dichloroaniline (3,5-DCA) is the most potent nephrotoxicant in vivo and in vitro. However, the role of renal biotransformation in 3,5-DCA induced nephrotoxicity is unknown. The current study was designed to determine the in vitro nephrotoxic potential of 3,5-DCA in isolated renal cortical cells (IRCC) obtained from male Fischer 344 rats, and the role of renal bioactivation and oxidative stress in 3,5-DCA nephrotoxicity. IRCC (~4 million cells/ml) from male rats were exposed to 3,5-DCA (0-1.0 mM) for up to 120 min. In IRCC, 3,5-DCA was cytotoxic at 1.0 mM by 60 min as evidenced by the increased release of lactate dehydrogenase (LDH), but 120 min was required for 3,5-DCA 0.5 mM to increase LDH release. In subsequent studies, IRCC were exposed to a pretreatment (antioxidant or enzyme inhibitor) prior to exposure to 3,5-DCA (1.0 mM) for 90 min. Cytotoxicity induced by 3,5-DCA was attenuated by pretreatment with inhibitors of flavin-containing monooxygenase (FMO; methimazole, N-octylamine), cytochrome P450 (CYP; piperonyl butoxide, metyrapone), or peroxidase (indomethacin, mercaptosuccinate) enzymes. Use of more selective CYP inhibitors suggested that the CYP 2C family contributed to 3,5-DCA bioactivation. Antioxidants (glutathione, N-acetyl-L-cysteine, α-tocopherol, ascorbate, pyruvate) also attenuated 3,5-DCA nephrotoxicity, but oxidized glutathione levels and the oxidized/reduced glutathione ratios were not increased. These results indicate that 3,5-DCA may be activated via several renal enzyme systems to toxic metabolites, and that free radicals, but not oxidative stress, contribute to 3,5-DCA induced nephrotoxicity in vitro. PMID:26808022

  18. Analysis of serine proteases from marine sponges by 2-D zymography.

    Science.gov (United States)

    Wilkesman, Jeff G; Schröder, Heinz C

    2007-02-01

    Proteolytic activities isolated from the marine demosponges Geodia cydonium and Suberites domuncula were analyzed by 2-D zymography, a technique that combines IEF and zymography. After purification, a 200 kDa proteolytically active protein band was obtained from G. cydonium when analyzed in gelatin copolymerized 1-D zymograms. The enzymatic activity was quantified using alpha-N-benzoyl-D-arginine p-nitroanilide (BAPNA) as a substrate and corresponded to a serine protease. The protease activity was resistant to urea and SDS. DTT and 2-mercaptoethanol (2-ME) did not significantly change the protease activity, but induced a shift in molecular mass of the proteolytic band to lower M(r) values as detected by zymography. Under mild denaturing conditions, lower M(r) bands (zymography, the protease from G. cydonium revealed a pI of 8.0 and an M(r) shift from 200 to 66 kDa. To contrast these results, a cytosolic sample from S. domuncula was analyzed. The proteolytic activity of this sponge after 2-D zymography corresponded to an M(r) of 40 kDa and a pI of 4.0. The biological function of both sponge proteases is not yet known. This study demonstrates that mild denaturing conditions required for IEF may alter the interpretation of the 2-D zymography, and care must be taken during sample preparation.

  19. Serine biosynthesis and transport defects.

    Science.gov (United States)

    El-Hattab, Ayman W

    2016-07-01

    l-serine is a non-essential amino acid that is biosynthesized via the enzymes phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Besides its role in protein synthesis, l-serine is a potent neurotrophic factor and a precursor of a number of essential compounds including phosphatidylserine, sphingomyelin, glycine, and d-serine. Serine biosynthesis defects result from impairments of PGDH, PSAT, or PSP leading to systemic serine deficiency. Serine biosynthesis defects present in a broad phenotypic spectrum that includes, at the severe end, Neu-Laxova syndrome, a lethal multiple congenital anomaly disease, intermediately, infantile serine biosynthesis defects with severe neurological manifestations and growth deficiency, and at the mild end, the childhood disease with intellectual disability. A serine transport defect resulting from deficiency of the ASCT1, the main transporter for serine in the central nervous system, has been recently described in children with neurological manifestations that overlap with those observed in serine biosynthesis defects. l-serine therapy may be beneficial in preventing or ameliorating symptoms in serine biosynthesis and transport defects, if started before neurological damage occurs. Herein, we review serine metabolism and transport, the clinical, biochemical, and molecular aspects of serine biosynthesis and transport defects, the mechanisms of these diseases, and the potential role of serine therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Adefovir nephrotoxicity in a renal allograft recipient

    Directory of Open Access Journals (Sweden)

    N George

    2015-01-01

    Full Text Available Adefovir dipivoxil, an oral prodrug of adefovir, is used in the treatment of lamivudine-resistant hepatitis B virus (HBV infection. Nephrotoxicity manifesting as proximal renal tubular dysfunction and acute tubular necrosis (ATN were commonly reported in the past, when higher doses were used for the treatment of human immunodeficiency virus infection. However, nephrotoxicity is rare at lower doses that are currently recommended for the treatment of HBV infection. A 31-year-old female was detected to be hepatitis B surface antigen positive months after a kidney transplant. The patient was initiated on lamivudine, but developed resistance after 1 year of treatment, at which time low-dose adefovir was added. The patient developed renal allograft dysfunction after 10 months of starting adefovir. Serum creatinine increased from 1.1 mg/dl to 1.9 mg/dl, along with progressively increasing sub-nephrotic proteinuria. Renal allograft biopsy revealed features of ATN. After discontinuation of adefovir, proteinuria resolved and renal dysfunction improved slowly over the next 2 years. Adefovir-induced nephrotoxicity, although uncommon at lower doses, needs to be considered in the differential diagnosis of renal dysfunction and sub-nephrotic proteinuria occurring in patients receiving adefovir for prolonged periods.

  1. Protective effect of hydroalcoholic extract of Pistacia vera against gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    Ehsani, Vahid; Amirteimoury, Morteza; Taghipour, Zahra; Shamsizadeh, Ali; Bazmandegan, Gholamreza; Rahnama, Amir; Khajehasani, Fatemeh; Fatemi, Iman

    2017-11-01

    Pistacia vera is a plant of the family Anacardiaceae found in Central and West Asia. P. vera nut (Pistachio) possess multiple pharmacological effects such as antimicrobial, anti-hyperlipidemia, antioxidant and anti-inflammatory. This study is designed to evaluate the protective effect of the hydroalcoholic extract of pistachio on gentamicin-induced nephrotoxicity in rats. Nephrotoxicity was induced in rats by intraperitoneal injection of gentamicin (100 mg/kg/day for 7 days). Hydroalcoholic extract of pistachio (10, 50 and 100 mg/kg/p.o) was administered for 7 days. The nephroprotective activity was evaluated by determining creatinine clearance, serum creatinine, urine volume, urine glucose and blood urea nitrogen (BUN) levels. The kidneys were processed for histopathological examinations and all specimens were examined for morphologic parameters involving tubular degeneration, tubular necrosis and tubule interstitial nephritis. Results showed a significant increase in the levels of serum creatinine, urine volume, urine glucose and BUN and decrease of creatinine clearance by gentamicin (GA) administration. Co-administration with pistachio extract showed reduction in the levels of serum creatinine, urine volume, urine glucose and BUN and increase of creatinine clearance in all doses but the most significant alteration was observed in doses of 100 mg/kg. Also, the nephroprotective effect of the GA was confirmed by the histological examination of the kidneys. The study revealed the nephroprotective effect of the hydroalcoholic extract of pistachio. These findings suggest that pistachio treatment may attenuate renal dysfunction and structural damage through the reduction of oxidative stress and inflammation in the kidney.

  2. Haloaniline-induced in vitro nephrotoxicity: effects of 4-haloanilines and 3,5-dihaloanilines.

    Science.gov (United States)

    Hong, S K; Anestis, D K; Henderson, T T; Rankin, G O

    2000-04-03

    Haloanilines are widely used as chemical intermediates in the manufacture of pesticides, dyes and drugs. The purpose of this study was to examine the in vitro nephrotoxic effects of the four 4-haloaniline and four 3,5-dihaloaniline isomers using renal cortical slices obtained from the kidneys of untreated, male Fischer 344 rats. Renal cortical slices were incubated with a haloaniline hydrochloride (0.1, 0.5, 1.0 or 2.0 mM, final concentration) or vehicle for 2 h, and toxicity determined by monitoring lactate dehydrogenase (LDH) release and changes in tissue gluconeogenesis capacity. At the concentrations tested, none of the 4-haloanilines increased LDH release. 4-Bromoaniline reduced gluconeogenesis at the lowest concentration (0.1 mM), but 4-iodoaniline 2.0 mM induced the largest decrease in gluconeogenesis (92% downward arrow). Among the 3,5-dihaloanilines, 3,5-dibromoaniline proved to be the most potent nephrotoxicant and 3,5-difluoroaniline the least potent nephrotoxicant. LDH release was increased by the dibromo (1.0 and 2. 0 mM), dichloro (2.0 mM) and diiodo (2.0 mM) derivatives, but not by 3,5-difluoroaniline. These results demonstrate that 3, 5-dihaloanilines are generally more potent nephrotoxicants in vitro than the 4-haloaniline isomers, and that bromo and iodo substitutions enhanced the nephrotoxic potential of aniline to the greatest degree.

  3. Nephrotoxicities [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Stuart L. Goldstein

    2017-01-01

    Full Text Available Nephrotoxic medication exposure is nearly ubiquitous in hospitalized patients and represents one of the most common causes of acute kidney injury (AKI in the hospitalized setting. Although provision of medications that are nephrotoxic has led to improved outcomes in terms of treatment of underlying illness, unnecessary nephrotoxic medication exposure can be viewed as a potentially modifiable adverse safety event if AKI can be prevented. The advancements in electronic health record development, standardization of AKI definitions, and the ability to identify AKI risk and development in near real time provide opportunities to reduce harm from nephrotoxicity.

  4. Improvement in regional CBF by L-serine contributes to its neuroprotective effect in rats after focal cerebral ischemia.

    Directory of Open Access Journals (Sweden)

    Tao-Jie Ren

    Full Text Available To investigate the mechanisms underlying the neuroprotective effect of L-serine, permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery while monitoring cerebral blood flow (CBF. Rats were divided into control and L-serine-treated groups after middle cerebral artery occlusion. The neurological deficit score and brain infarct volume were assessed. Nissl staining was used to quantify the cortical injury. L-serine and D-serine levels in the ischemic cortex were analyzed with high performance liquid chromatography. We found that L-serine treatment: 1 reduced the neurological deficit score, infarct volume and cortical neuron loss in a dose-dependent manner; 2 improved CBF in the cortex, and this effect was inhibited in the presence of apamin plus charybdotoxin while the alleviation of both neurological deficit score and infarct volume was blocked; and 3 increased the amount of L-serine and D-serine in the cortex, and inhibition of the conversion of L-serine into D-serine by aminooxyacetic acid did not affect the reduction of neurological deficit score and infarct volume by L-serine. In conclusion, improvement in regional CBF by L-serine may contribute to its neuroprotective effect on the ischemic brain, potentially through vasodilation which is mediated by the small- and intermediate-conductance Ca(2+-activated K(+ channels on the cerebral blood vessel endothelium.

  5. Effect of cyclooxygenase inhibitors on gentamicin-induced nephrotoxicity in rats.

    Science.gov (United States)

    Hosaka, E M; Santos, O F P; Seguro, A C; Vattimo, M F F

    2004-07-01

    The frequent use of nonsteroidal anti-inflammatory drugs (NSAID) in combination with gentamicin poses the additional risk of nephrotoxic renal failure. Cyclooxygenase-1 (COX-1) is the main enzyme responsible for the synthesis of renal vasodilator prostaglandins, while COX-2 participates predominantly in the inflammatory process. Both are inhibited by non-selective NSAID such as indomethacin. Selective COX-2 inhibitors such as rofecoxib seem to have fewer renal side effects than non-selective inhibitors. The objective of the present study was to determine whether the combined use of rofecoxib and gentamicin can prevent the increased renal injury caused by gentamicin and indomethacin. Male Wistar rats (250-300 g) were treated with gentamicin (100 mg/kg body weight, ip, N = 7), indomethacin (5 mg/kg, orally, N = 7), rofecoxib (1.4 mg/kg, orally, N = 7), gentamicin + rofecoxib (100 and 1.4 mg/kg, respectively) or gentamicin + indomethacin (100 and 5 mg/kg, respectively, N = 8) for 5 days. Creatinine clearance and alpha-glutathione-S-transferase concentrations were used as markers of renal injury. Animals were anesthetized with ether and sacrificed for blood collection. The use of gentamicin plus indomethacin led to worsened renal function (0.199 +/- 0.019 ml/min), as opposed to the absence of a nephrotoxic effect of rofecoxib when gentamicin plus rofexicob was used (0.242 +/- 0.011 ml/min). These results indicate that COX-2-selective inhibitors can be used as an alternative treatment to conventional NSAID, especially in situations in which risk factors for nephrotoxicity are present.

  6. Effect of cyclooxygenase inhibitors on gentamicin-induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Hosaka E.M.

    2004-01-01

    Full Text Available The frequent use of nonsteroidal anti-inflammatory drugs (NSAID in combination with gentamicin poses the additional risk of nephrotoxic renal failure. Cyclooxygenase-1 (COX-1 is the main enzyme responsible for the synthesis of renal vasodilator prostaglandins, while COX-2 participates predominantly in the inflammatory process. Both are inhibited by non-selective NSAID such as indomethacin. Selective COX-2 inhibitors such as rofecoxib seem to have fewer renal side effects than non-selective inhibitors. The objective of the present study was to determine whether the combined use of rofecoxib and gentamicin can prevent the increased renal injury caused by gentamicin and indomethacin. Male Wistar rats (250-300 g were treated with gentamicin (100 mg/kg body weight, ip, N = 7, indomethacin (5 mg/kg, orally, N = 7, rofecoxib (1.4 mg/kg, orally, N = 7, gentamicin + rofecoxib (100 and 1.4 mg/kg, respectively or gentamicin + indomethacin (100 and 5 mg/kg, respectively, N = 8 for 5 days. Creatinine clearance and alpha-glutathione-S-transferase concentrations were used as markers of renal injury. Animals were anesthetized with ether and sacrificed for blood collection. The use of gentamicin plus indomethacin led to worsened renal function (0.199 ± 0.019 ml/min, as opposed to the absence of a nephrotoxic effect of rofecoxib when gentamicin plus rofexicob was used (0.242 ± 0.011 ml/min. These results indicate that COX-2-selective inhibitors can be used as an alternative treatment to conventional NSAID, especially in situations in which risk factors for nephrotoxicity are present.

  7. Kidney-on-a-Chip: a New Technology for Predicting Drug Efficacy, Interactions, and Drug-induced Nephrotoxicity.

    Science.gov (United States)

    Lee, Jeonghwan; Kim, Sejoong

    2018-03-08

    The kidneys play a pivotal role in most drug-removal processes and are important when evaluating drug safety. Kidney dysfunction resulting from various drugs is an important issue in clinical practice and during the drug development process. Traditional in vivo animal experiments are limited with respect to evaluating drug efficacy and nephrotoxicity due to discrepancies in drug pharmacokinetics and pharmacodynamics between humans and animals, and static cell culture experiments cannot fully reflect the actual microphysiological environment in humans. A kidney-on-a-chip is a microfluidic device that allows the culture of living renal cells in 3-dimensional channels and mimics the human microphysiological environment, thus simulating the actual drug filtering, absorption, and secretion process.. In this review, we discuss recent developments in microfluidic culturing technique and describe current and future kidney-on-a-chip applications. We focus on pharmacological interactions and drug-induced nephrotoxicity, and additionally discuss the development of multi-organ chips and their possible applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Involvement of oxidative stress in the mechanism of p,p'-DDT-induced nephrotoxicity in adult rats.

    Science.gov (United States)

    Marouani, Neila; Hallegue, Dorsaf; Sakly, Mohsen; Benkhalifa, Moncef; Ben Rhouma, Khémais; Tebourbi, Olfa

    2017-07-01

    The 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (p,p'-DDT) is an organochlorine pesticide that persists in the environment and has a risk to human health. We investigated whether p,p'-DDT-induces nephrotoxicity in rats and whether oxidative stress and apoptosis are involved in the pathogenesis of this process. Male rats received the pesticide at doses of 50 and 100 mg/kg for 10 days. Renal damage was evaluated by histopathological examination and serum markers. The oxidative stress was evaluated by lipid peroxidation (LPO), metallothioneins (MTs) and protein carbonyl levels. Antioxidant enzymes were assessed by determination of superoxide dismutase (SOD) and catalase (CAT) activities. Glutathione-dependent enzymes and reducing power in kidney were evaluated by glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) activities. Renal tubular cells apoptosis was assessed through the TUNEL assay. After 10 days of treatment, an increase of serum creatinine and urea levels occurred, LPO and protein carbonyl levels were increased, while MTs level, SOD and CAT activities were decreased. Besides, the GPx, GR, GST, and GSH activities were decreased. Histological alterations in kidney tissue and intense apoptosis in renal tubular cells were observed. These results suggest that DDT sub-acute treatment causes oxidative stress and apoptosis, which may be the chief mechanisms of DDT-induced nephrotoxicity.

  9. Gentamicin Nephrotoxicity in Subclinical Renal Disease.

    Science.gov (United States)

    Frazier, Donita L.

    potential. Conclusions from these studies include (1) nephrectomized dogs are more susceptible to gentamicin-induced nephrotoxicity than intact dogs, (2) sensitivity is not totally dependent on serum drug concentrations, (3) nephrectomized dogs have hypertrophied nephrons with subcellular alterations in proximal tubule cells, (4) unlike intact dogs, the toxic response in nephrectomized dogs is characterized by oliguria and irreversibility, (5) dosage regimens of aminoglycosides should be based on individual drug disposition since it varies greatly in spontaneous disease states and (6) altered dosage regimens may decrease toxicity and increase efficacy.

  10. Antioxidant and anti-inflammatory effects of virgin coconut oil supplementation abrogate acute chemotherapy oxidative nephrotoxicity induced by anticancer drug methotrexate in rats.

    Science.gov (United States)

    Famurewa, Ademola C; Aja, Patrick M; Maduagwuna, Ekenechukwu K; Ekeleme-Egedigwe, Chima A; Ufebe, Odomero G; Azubuike-Osu, Sharon O

    2017-12-01

    Methotrexate (MTX) is an efficacious anticancer agent constrained in clinical use due to its toxicity on non-targeted tissue, a considerable source of worry to clinicians. Because the toxicity is associated with oxidative stress and inflammation, the study explored antioxidant and anti-inflammatory effect of virgin coconut oil (VCO) supplementation in nephrotoxicity induced by MTX in rats. Rats were randomized into 4 groups (n=6) as follows: Control group; MTX group injected with single dose of MTX (20mg/kg, ip) on day 14; VCO (5%)+MTX and VCO (15%)+MTX groups were pre-treated with VCO diet and injected with single dose of MTX (20mg/kg, ip) on day 14. After 3 days of MTX injection, serum kidney markers, renal activities of antioxidant enzymes and glutathione (GSH) content were determined. Lipid peroxidation level and inflammatory markers- interleukin-6 (IL-6), nitric oxide (NO) and C-reactive protein (CRP) were estimated in kidney. Histopathological alterations were examined for kidney damage. MTX nephrotoxicity was evidenced by markedly elevated serum renal markers along with significant decreases in renal GSH and activities of antioxidant enzymes confirmed by histopathology. Lipid peroxidation level, IL-6, NO and CRP markedly increased compared to control. VCO supplementation prior to MTX injection attenuated MTX-induced oxidative nephrotoxicity via prominent increases in GSH and antioxidant enzyme activities in a dose-dependent manner. The renal inflammatory markers and MDA depleted considerably compared to MTX control group. Histopathological alterations were mitigated to confirm the biochemical indices. VCO supplementation demonstrates nephroprotective activity by attenuating MTX oxidative nephrotoxicity via antioxidant and anti-inflammatory activities in kidney. Our results suggested that VCO may benefit cancer patients on MTX chemotherapy against kidney injury. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. IMRT limits nephrotoxicity after chemoradiotherapy for gastric cancer

    International Nuclear Information System (INIS)

    Trip, Anouk Kirsten; Nijkamp, Jasper; Tinteren, Harm van; Cats, Annemieke; Boot, Henk; Jansen, Edwin Petrus Marianus; Verheij, Marcel

    2014-01-01

    Objective: This observational study compares the effect of different radiotherapy techniques on late nephrotoxicity after postoperative chemoradiotherapy for gastric cancer. Patients and methods: Dosimetric parameters were compared between AP–PA, 3D-conformal and IMRT techniques. Renal function was measured by 99m Tc-MAG-3 renography, glomerular filtration rate (GFR) and the development of hypertension. Mixed effects models were used to compare renal function over time. Results: Eighty-seven patients treated between 2002 and 2010 were included, AP–PA (n = 31), 3D-conformal (n = 25) and IMRT (n = 31), all 45 Gy in 25 fractions. Concurrent chemotherapy: 5FU/leucovorin (n = 4), capecitabine (n = 37), and capecitabine/cisplatin (n = 46). Median follow-up time was 4.7 years (range 0.2–8). With IMRT, the mean dose to the left kidney was significantly lower. Left kidney function decreased progressively in the total study population, however with IMRT this occurred at a lower rate. A dose–effect relationship was present between mean dose to the left kidney and the left kidney function. GFR decreased only moderately in time, which was not different between techniques. Six patients developed hypertension, of whom none in the IMRT group. Conclusions: This study confirms progressive late nephrotoxicity in patients treated with postoperative chemoradiotherapy by different techniques for gastric cancer. Nephrotoxicity was less severe with IMRT and should be considered the preferred technique

  12. IMRT limits nephrotoxicity after chemoradiotherapy for gastric cancer.

    Science.gov (United States)

    Trip, Anouk Kirsten; Nijkamp, Jasper; van Tinteren, Harm; Cats, Annemieke; Boot, Henk; Jansen, Edwin Petrus Marianus; Verheij, Marcel

    2014-08-01

    This observational study compares the effect of different radiotherapy techniques on late nephrotoxicity after postoperative chemoradiotherapy for gastric cancer. Dosimetric parameters were compared between AP-PA, 3D-conformal and IMRT techniques. Renal function was measured by (99m)Tc-MAG-3 renography, glomerular filtration rate (GFR) and the development of hypertension. Mixed effects models were used to compare renal function over time. Eighty-seven patients treated between 2002 and 2010 were included, AP-PA (n=31), 3D-conformal (n=25) and IMRT (n=31), all 45 Gy in 25 fractions. Concurrent chemotherapy: 5FU/leucovorin (n=4), capecitabine (n=37), and capecitabine/cisplatin (n=46). Median follow-up time was 4.7 years (range 0.2-8). With IMRT, the mean dose to the left kidney was significantly lower. Left kidney function decreased progressively in the total study population, however with IMRT this occurred at a lower rate. A dose-effect relationship was present between mean dose to the left kidney and the left kidney function. GFR decreased only moderately in time, which was not different between techniques. Six patients developed hypertension, of whom none in the IMRT group. This study confirms progressive late nephrotoxicity in patients treated with postoperative chemoradiotherapy by different techniques for gastric cancer. Nephrotoxicity was less severe with IMRT and should be considered the preferred technique. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Nephrotoxicity and Chinese Herbal Medicine.

    Science.gov (United States)

    Yang, Bo; Xie, Yun; Guo, Maojuan; Rosner, Mitchell H; Yang, Hongtao; Ronco, Claudio

    2018-04-03

    Chinese herbal medicine has been practiced for the prevention, treatment, and cure of diseases for thousands of years. Herbal medicine involves the use of natural compounds, which have relatively complex active ingredients with varying degrees of side effects. Some of these herbal medicines are known to cause nephrotoxicity, which can be overlooked by physicians and patients due to the belief that herbal medications are innocuous. Some of the nephrotoxic components from herbs are aristolochic acids and other plant alkaloids. In addition, anthraquinones, flavonoids, and glycosides from herbs also are known to cause kidney toxicity. The kidney manifestations of nephrotoxicity associated with herbal medicine include acute kidney injury, CKD, nephrolithiasis, rhabdomyolysis, Fanconi syndrome, and urothelial carcinoma. Several factors contribute to the nephrotoxicity of herbal medicines, including the intrinsic toxicity of herbs, incorrect processing or storage, adulteration, contamination by heavy metals, incorrect dosing, and interactions between herbal medicines and medications. The exact incidence of kidney injury due to nephrotoxic herbal medicine is not known. However, clinicians should consider herbal medicine use in patients with unexplained AKI or progressive CKD. In addition, exposure to herbal medicine containing aristolochic acid may increase risk for future uroepithelial cancers, and patients require appropriate postexposure screening. Copyright © 2018 by the American Society of Nephrology.

  14. S-Allylmercaptocysteine Attenuates  Cisplatin-Induced Nephrotoxicity through  Suppression of Apoptosis, Oxidative Stress, and  Inflammation.

    Science.gov (United States)

    Zhu, Xiaosong; Jiang, Xiaoyan; Li, Ang; Zhao, Zhongxi; Li, Siying

    2017-02-20

    Cisplatin is a potent chemotherapeutic agent, but its clinical usage is limited by nephrotoxicity. S-allylmercaptocysteine (SAMC), one of the water-soluble organosulfur garlic derivatives, has antioxidant and anti-inflammatory properties and plays an important role in protecting cells from apoptosis. This study aims to examine the protective effects of SAMC on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection. Rats were treated with cisplatin with or without pre-treatment with SAMC. Renal function, histological change, oxidative stress markers and antioxidant enzyme activities were investigated. Apoptotic marker, nuclearfactor (NF)-κB activity, expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and inflammatory cytokines were also examined. The effect of SAMC on cell viability and apoptosis was examined in cultured human kidney (HK-2) cells. SAMC was confirmed to significantly attenuate cisplatin-induced renal damage by using histological pathology and molecular biological method. Pre-treatment with SAMC reduced NF-κB activity, up-regulated Nrf2 and NQO1 expression and down-regulated inflammatory cytokine levels after cisplatin administration. Cisplatin-induced apoptosis in HK-2 cells was significantly attenuated by SAMC. Thus our results suggest that SAMC could be a potential therapeutic agent in the treatment of the cisplatin-induced nephrotoxicity through its anti-apoptotic, anti-oxidant and anti-inflammatory effects.

  15. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    Science.gov (United States)

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  16. Amelioration of cisplatin-induced nephrotoxicity by ethanolic extract of Bauhinia purpurea: An in vivo study in rats.

    Science.gov (United States)

    Rana, Md Azmat; Khan, Rahat Ali; Nasiruddin, Mohammad; Khan, Aijaz Ahmed

    2016-01-01

    Our objective is to study the nephroprotective activity and antioxidant potential of Bauhinia purpurea unripe pods and bark against cisplatin-induced nephrotoxicity. Healthy adult albino rats of either sex (150-200 g) were randomly divided into six groups of six animals each Group I (vehicle control) and Group II (negative control). Group III (BBE200) and Group IV (BBE400) were administered the ethanolic extract of Bauhinia purpurea bark in doses of 200 and 400 mg/kg/day p.o., respectively, and Group V (BPE200) and Group VI (BPE400) were administered the ethanolic extract of Bauhinia purpurea unripe pods at doses of 200 and 400 mg/kg/day p.o., respectively. All the treatments were given for nine days. Cisplatin in a single dose of 6 mg/kg i.p. was given on the 4 th day to all groups, except the vehicle control group. On the 10 th day, blood and urine were collected for biochemical tests and the rats were sacrificed. The kidney was removed for histology and lipid peroxidation-antioxidant test. Cisplatin caused nephrotoxicity as evidenced by elevated blood urea, serum creatinine and urine glucose, and there was decreased creatinine clearance in Group II as compared with Group I. Administration of BBE and BPE at doses of 200 and 400 mg/kg in Group III and Group VI caused a dose-dependant reduction in the rise of blood urea, serum creatinine and urine glucose, and there was a dose-dependant increase in creatinine clearance compared with Group II. There was increased catalase and glutathione and decreased malondialdehyde levels in Group II, while BBE 400 (Group IV) and BPE 400 (Group VI) treatments significantly reversed the changes toward normal values. Histological examination of the kidney revealed protection in Group IV and Group VI compared with Group II. The ethanolic extract of Bauhinia purpurea unripe pods and bark has a nephroprotective activity against cisplatin-induced nephrotoxicity in rats.

  17. Histological Evidence of Nephroprotective Effect of Ashwagandha (Withania somnifera Root Extract against Gentamicin Induced Nephrotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Sadia Choudhury Shimmi

    2014-01-01

    Full Text Available Background: Kidney damage can occur due to exposure to nephrotoxic drugs, chemicals, toxins and infectious agents, ultimately leading to renal failure, management of which is a great challenge. So, efforts have been focused on traditional and herbal medicines for the treatment of renal failure. Ashwagandha (Withania somnifera may have free radical scavenging activity and can be used for the prevention and treatment of kidney damage. Objective: To observe the histological evidence of nephroprotective effect of Ashwagandha root against gentamicin induced nephrotoxicity in rats. Materials and Methods: This study was done in the department of Physiology, Sir Salimullah Medical College, Dhaka. A total number of 31 male Wistar albino rats were acclimatized for 14 days. Then, these were divided into two groups, control group consisted of 18 rats (Group A and Ashwagandha pretreated and gentamicin-treated group consisted of 13 rats (Group B. Control group was again subdivided into baseline control and gentamicin-treated control groups (A1 and A2 ─ each group contained 9 rats. All the animals received basal diet for 22 consecutive days. In addition to this, animals of Group A2 received gentamicin subcutaneously (100 mg/kg body weight/day from 15th to 22nd day and animals of Group B received Ashwagandha root extract (500 mg/kg body weight/day orally for 22 consecutive days and gentamicin subcutaneously (100 mg/kg body weight/day from 15th to 22nd day. All the animals were sacrificed on 23rd day. Then kidney samples were collected and histology was done by using standard laboratory procedure. Results: Histological examination of kidney revealed abnormal histological findings in 100% of gentamicin-treated rats. But 92.31% of rats in Ashwagandha pretreated and gentamicin-treated group showed almost normal structure and 7.69% showed mild histological changes. Conclusion: Ashwagandha root may have some nephroprotective effect against gentamicin induced

  18. The effect of sulforaphane on the levels of serum cystatin-c in acetaminophen- induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Eda Dokumacioglu

    2016-09-01

    Full Text Available Objective: The exposure of living creatures to drugs and chemicals often results in toxicity of liver and kidney. Drugs constitute an important and big part of the commu­nity and hospital-acquired kidney diseases. In this study, we investigated the effect of sulforaphane (SFN on the levels of cystatin-C and lipid peroxidation on acetamino­phen (APAP- induced nephrotoxicity in rats. Methods: Thirty-six Sprague-Dawley rats were separat­ed equally into four experimental groups: control group, SFN group, APAP group, and APAP + SFN group. In the experimental treatment groups APAP was administered oral gavage at 1 g/kg 3 h after SFN treatment in last day and, in the APAP + SFN group, SFN was administered oral gavage at a dose of 500 μg/kg exactly for three days. Rats were euthanized and sacrificed 24 h after APAP ad­ministration. Results: APAP administration showed to significant in­crease in serum BUN, creatinine, urea and LDH concen­trations as compared to the control datas indicating the induction of severe nephrotoxicity (p<0.001. SFN treat­ment significantly decreased the cystatin-C levels and lipid peroxidation compared to APAP group (p<0.05. Conclusion: The present study demonstrate that the at­tachment of SFN to the nephrotoxicity treatment protocol will be beneficial and further studies should be conducted for cystatin C which plays an important role in kidney tox­icity and disease to be routinized as a biomarker.

  19. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine...

  20. Tiron ameliorates oxidative stress and inflammation in titanium dioxide nanoparticles induced nephrotoxicity of male rats.

    Science.gov (United States)

    Morgan, Ashraf; Galal, Mona K; Ogaly, Hanan A; Ibrahim, Marwa A; Abd-Elsalam, Reham M; Noshy, Peter

    2017-09-01

    Although the widespread use of titanium dioxide nanoparticles (TiO 2 NPs), few studies were conducted on its hazard influence on human health. Tiron a synthetic vitamin E analog was proven to be a mitochondrial targeting antioxidant. The current investigation was performed to assess the efficacy of tiron against TiO 2 NPs induced nephrotoxicity. Eighty adult male rats divided into four different groups were used: group I was the control, group II received TiO2 NPs (100mg\\Kg BW), group III received TiO2 NPs plus tiron (470mg\\kg BW), and group IV received tiron alone. Urea, creatinine and total protein concentrations were measured in serum to assess the renal function. Antioxidant status was estimated by determining the activities of glutathione peroxidase, superoxide dismutase, malondialdehyde (MDA) level and glutathione concentration in renal tissue. As well as Renal fibrosis was evaluated though measuring of transforming growth factor-β1 (TGFβ1) and matrix metalloproteinase 9 (MMP9) expression levels and histopathological examination. TiO 2 NPs treated rats showed marked elevation of renal indices, depletion of renal antioxidant enzymes with marked increase in MDA concentration as well as significant up-regulation in fibrotic biomarkers TGFβ1 and MMP9. Oral administration of tiron to TiO 2 NPs treated rats significantly attenuate the renal dysfunction through decreasing of renal indices, increasing of antioxidant enzymes activities, down-regulate the expression of fibrotic genes and improving the histopathological picture for renal tissue. In conclusion, tiron was proved to attenuate the nephrotoxicity induced by TiO 2 NPs through its radical scavenging and metal chelating potency. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Effect of Honey and Royal Jelly against Cisplatin-Induced Nephrotoxicity in Patients with Cancer.

    Science.gov (United States)

    Osama, Hasnaa; Abdullah, Aya; Gamal, Bassma; Emad, Dina; Sayed, Doha; Hussein, Eman; Mahfouz, Eman; Tharwat, Joy; Sayed, Sally; Medhat, Shrouk; Bahaa, Treza; Abdelrahim, Mohamed E A

    2017-07-01

    Cisplatin constitutes one of the most potent antineoplastic drugs; however, nephrotoxicity limited its eligibility for optimal clinical use. This study was designed to evaluate the role of honey and royal jelly with antioxidant properties in the protection of cisplatin-induced acute kidney injury in patients with cancer. Patients with cancer assigned for cisplatin chemotherapy were randomly divided into bee honey and royal jelly groups pretreated before the initiation and during cisplatin chemotherapeutic regimen and control group on cisplatin only. Serum creatinine and urea levels were measured before and after the chemotherapeutic cycle and over 2 cycles. Patients on crude bee honey and royal jelly capsules showed lower serum levels of renal injury products (creatinine and urea) compared to those in the control group. The changes in kidney parameters were significantly (p honey group before and after cisplatin treatment. Royal jelly was found to be effective; however, the difference in creatinine and urea levels before and after chemotherapy was not statistically significant. The use of bee honey and royal jelly as natural compounds is effective in reducing cisplatin nephrotoxicity and may offer a promising chance for clinically meaningful prevention. This study has potentially important implications for the treatment of cisplatin kidney side effects and is considered to be the first to investigate this effect of honey and royal jelly in human subjects. However, due to its small sample size, we recommend further investigation using a larger sample size.

  2. Preventing or attenuating amphotericin B nephrotoxicity with dopamine receptor agonists: a literature review

    Directory of Open Access Journals (Sweden)

    Iman Karimzadeh

    2016-09-01

    Full Text Available Nephrotoxicity is generally considered as the most clinically significant and dose-limiting adverse reaction of amphotericin B. Currently, only the clinical effectiveness of salt loading and administering lipid formulations of amphotericin B have been clearly demonstrated to prevent its nephrotoxicity. In this review, we collected the published data related to dopamine receptor agonists in preventing amphotericin B nephrotoxicity. A literature search was conducted by the relevant keywords like ‘‘amphotericin B”, “nephrotoxicity’’, and ‘‘dopamine’’in databases such as Scopus, Medline, Embase and ISI Web of Knowledge. Four relevant articles were considered. Results of all the 3 experimental studies demonstrated that co-administration of dopamine (0.5-10 μg/kg/min as continuous intravenous infusion, SK&F R-105058, a prodrug of fenoldopam (10 mg/kg twice daily, orally or fenoldopam, a relatively selective dopamine receptor type 1 agonist, (0.5 or 1 μg/kg/min as continuous intravenous infusion can at least significantly mitigate the decrease in creatinine clearance caused by amphotericin B. Furthermore, fenoldopam and SK&F R-105058 can also protect against or delay amphotericin B-induced tubular damage. In contrast, the only clinical trial published until now found that simultaneous continuous intravenous infusion of low dose dopamine (3 μg/kg/min had no beneficial effect on the incidence, severity and time onset of developing amphotericin B-induced nephrotoxicity in autologous bone marrow transplant and leukemia patients. Considering the lack of beneficial effects in different settings such as acute kidney injury of any cause, negative results of the only clinical trial, and risk of significant adverse reactions, continuous intravenous infusion of low dose dopamine (1-3 μg/kg/min or selective dopamine receptor type 1 agonists (e.g., fenoldopam currently appears to have no promising clinical role in preventing or attenuating

  3. Protective effects of piperine on lead acetate induced-nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Sri Agus Sudjarwo

    2017-11-01

    Full Text Available Objective(s: In this study, we investigated the protective effects of piperine on lead acetate-induced renal damage in rat kidney tissue. Materials and Methods: Forty male rats were divided into 5 groups: negative control (rats were given aquadest daily, positive control (rats were given lead acetate 30 mg/kg BW orally once a day for 60 days, and the treatment group (rats were given piperine 50 mg; 100 mg and 200 mg/kg BW orally once a day for 65 days, and on 5th day, were given lead acetate 30 mg/kg BW one hr after piperine administration for 60 days. On day 65 levels of blood urea nitrogen (BUN, creatinine, malondialdehyde (MDA, Superoxide Dismutase (SOD, and Glutathione Peroxidase (GPx were measured. Also, kidney samples were collected for histopathological studies. Results: The results revealed that lead acetate toxicity induced a significant increase in the levels of BUN, creatinine, and MDA; moreover, a significant decrease in SOD and GPx. Lead acetate also altered kidney histopathology (kidney damage, necrosis of tubules compared to the negative control. However, administration of piperine significantly improved the kidney histopathology, decreased the levels of BUN, creatinine, and MDA, and also significantly increased the SOD and GPx in the kidney of lead acetate-treated rats. Conclusion: From the results of this study it was concluded that piperine could be a potent natural herbal product exhibiting nephroprotective effect against lead acetate induced nephrotoxicity in rats.

  4. Benfotiamine enhances antioxidant defenses and protects against cisplatin-induced DNA damage in nephrotoxic rats.

    Science.gov (United States)

    Harisa, Gamaleldin I

    2013-08-01

    The objective of the present study was to assess superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), paraoxonase (PON1), glutathione reductase (GR), and catalase (CAT) activities ratio and their relationship with DNA oxidative damage in rats treated with cisplatin (3 mg/kg bwt/day) in the presence and absence of benfotiamine (100 mg/kg/day) for 25 days. Cisplatin-induced renal damage was evidenced by renal dysfunction and elevated oxidative stress markers. SOD activity and levels of nitric oxide, protein carbonyl, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine were significantly increased by cisplatin treatment. Moreover, the ratios of GPx/GR, SOD/GPx, SOD/CAT, and SOD/PON1 were significantly increased compared to control. In contrast, glutathione levels were significantly decreased by cisplatin treatment. Simultaneous treatment of rats with cisplatin and benfotiamine ameliorate these variables to values near to those of control rats. This study suggests that benfotiamine can prevent cisplatin-induced nephrotoxicity by inhibiting formation reactive species of oxygen and nitrogen. © 2013 Wiley Periodicals, Inc.

  5. Efficacy of Glutamate Modulators in Tic Suppression: A Double-Blind, Randomized Control Trial of D-serine and Riluzole in Tourette Syndrome.

    Science.gov (United States)

    Lemmon, Monica E; Grados, Marco; Kline, Tina; Thompson, Carol B; Ali, Syed F; Singer, Harvey S

    2015-06-01

    It has been hypothesized that glutamatergic transmission may be altered in Tourette syndrome. In this study, we explored the efficacy of a glutamate agonist (D-serine) and antagonist (riluzole) as tic-suppressing agents in children with Tourette syndrome. We performed a parallel three-arm, 8-week, double-blind, randomized placebo-controlled treatment study in children with Tourette syndrome. Each child received 6 weeks of treatment with D-serine (maximum dose 30 mg/kg/day), riluzole (maximum dose 200 mg/day), or placebo, followed by a 2-week taper. The primary outcome measure was effective tic suppression as determined by the differences in the Yale Global Tic Severity Scale score; specifically, the total tic score and the combined score (total tic score + global impairment) between treatment arms after 6 weeks of treatment. Mann-Whitney U tests were performed to analyze differences between each group and the placebo group. Twenty-four patients (males = 21, ages 9-18) enrolled in the study; one patient dropped out before completion. Combined Yale Global Tic Severity Scale score and total tic scores improved in all groups. The 6-week mean percent improvement of the riluzole (n = 10), D-serine (n = 9), and placebo (n = 5) groups in the combined Yale Global Tic Severity Scale score were 43.7, 39.5, and 30.2 and for total tic scores were 38.0, 25.0, and 34.0, respectively. There were no significant differences in Yale Global Tic Severity Scale score or total tic score, respectively, between the riluzole and placebo (P = 0.35, 0.85) or D-serine and placebo (P = 0.50, 0.69) groups. Tics diminished by comparable percentages in the riluzole, D-serine, and placebo groups. These preliminary data suggest that D-serine and riluzole are not effective in tic suppression. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Identification of serine 348 on the apelin receptor as a novel regulatory phosphorylation site in apelin-13-induced G protein-independent biased signaling.

    Science.gov (United States)

    Chen, Xiaoyu; Bai, Bo; Tian, Yanjun; Du, Hui; Chen, Jing

    2014-11-07

    Phosphorylation plays vital roles in the regulation of G protein-coupled receptor (GPCR) functions. The apelin and apelin receptor (APJ) system is involved in the regulation of cardiovascular function and central control of body homeostasis. Here, using tandem mass spectrometry, we first identified phosphorylated serine residues in the C terminus of APJ. To determine the role of phosphorylation sites in APJ-mediated G protein-dependent and -independent signaling and function, we induced a mutation in the C-terminal serine residues and examined their effects on the interaction between APJ with G protein or GRK/β-arrestin and their downstream signaling. Mutation of serine 348 led to an elimination of both GRK and β-arrestin recruitment to APJ induced by apelin-13. Moreover, APJ internalization and G protein-independent ERK signaling were also abolished by point mutation at serine 348. In contrast, this mutant at serine residues had no demonstrable impact on apelin-13-induced G protein activation and its intracellular signaling. These findings suggest that mutation of serine 348 resulted in inactive GRK/β-arrestin. However, there was no change in the active G protein thus, APJ conformation was biased. These results provide important information on the molecular interplay and impact of the APJ function, which may be extrapolated to design novel drugs for cardiac hypertrophy based on this biased signal pathway. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Nephrotoxicity of cyclosporin A and contrast media

    International Nuclear Information System (INIS)

    Thomsen, H.S.; Larsen, S.; Skaarup, P.; Hemmingsen, L.; Dieperink, H.; Golman, K.; Herlev Hospital; Herlev Hospital; Centralsygehuset, Nykoebing Falster; Odense Sygehus; Malmoe Allmaenna Sjukhus

    1989-01-01

    Urine profiles (albumin, glucose, NAG, LDH, GGT and sodium) were followed for 22 h or 8 days after intravenous injection of diatrizoate, iohexol or saline in 30 adult Wistar rats in which nephrotoxicity was induced by daily peroral administration of 25 mg/kg body weight cyclosporin A over a 14-day period. Another 10 rats which had the vehicle of the cyclosporin A solution (placebo) and saline injected intravenously served as controls. The effect of iohexol and saline on the albumin excretion was similar, whereas diatrizoate increased it significantly. Both contrast media caused significantly increased excretion of all three enzymes. The contrast media had no effect on the excretion of glucose and sodium. Except for the fact that the excretion of NAG was significantly higher following iohexol than following diatrizoate 24 to 46 h after injection no significant differences between the two media were found from 24 h after injection among the rats given cyclosporin A. No contrast medium related changes were found by light microscopy of the kidneys. Neither iohexol nor diatrizoate potentiate acute cyclosporin A nephrotoxicity. (orig.)

  8. N-acetylcysteine protects rats with chronic renal failure from gadolinium-chelate nephrotoxicity.

    Directory of Open Access Journals (Sweden)

    Leonardo Victor Barbosa Pereira

    Full Text Available The aim of this study was to evaluate the effect of Gd-chelate on renal function, iron parameters and oxidative stress in rats with CRF and a possible protective effect of the antioxidant N-Acetylcysteine (NAC. Male Wistar rats were submitted to 5/6 nephrectomy (Nx to induced CRF. An ionic-cyclic Gd (Gadoterate Meglumine was administrated (1.5 mM/KgBW, intravenously 21 days after Nx. Clearance studies were performed in 4 groups of anesthetized animals 48 hours following Gd- chelate administration: 1--Nx (n = 7; 2--Nx+NAC (n = 6; 3--Nx+Gd (n = 7; 4--Nx+NAC+Gd (4.8 g/L in drinking water, initiated 2 days before Gd-chelate administration and maintained during 4 days (n = 6. This group was compared with a control. We measured glomerular filtration rate, GFR (inulin clearance, ml/min/kg BW, proteinuria (mg/24 hs, serum iron (µg/dL; serum ferritin (ng/mL; transferrin saturation (%, TIBC (µg/dL and TBARS (nmles/ml. Normal rats treated with the same dose of Gd-chelate presented similar GFR and proteinuria when compared with normal controls, indicating that at this dose Gd-chelate is not nephrotoxic to normal rats. Gd-chelate administration to Nx-rats results in a decrease of GFR and increased proteinuria associated with a decrease in TIBC, elevation of ferritin serum levels, transferrin oversaturation and plasmatic TBARS compared with Nx-rats. The prophylactic treatment with NAC reversed the decrease in GFR and the increase in proteinuria and all alterations in iron parameters and TBARS induced by Gd-chelate. NAC administration to Nx rat did not modify the inulin clearance and iron kinetics, indicating that the ameliorating effect of NAC was specific to Gd-chelate. These results suggest that NAC can prevent Gd-chelate nephrotoxicity in patients with chronic renal failure.

  9. Vitamin E, Vitamin C, or Losartan Is Not Nephroprotectant against Cisplatin-Induced Nephrotoxicity in Presence of Estrogen in Ovariectomized Rat Model

    Directory of Open Access Journals (Sweden)

    Mehdi Nematbakhsh

    2012-01-01

    Full Text Available Background. The nephroprotective effect of vitamins E and C or losartan against cisplatin (CP- induced nephrotoxicity when they are accompanied by estrogen was investigated. Methods. The ovariectomized rats received estradiol valerate for two weeks. At the end of the first week, a single dose of CP (7 mg/kg, IP was also administered, and they received placebo (group 1, vitamin E (group 2, vitamin C (group 3, or losartan (group 4 every day during the second week, and they were compared with another three control groups. Results. CP alone increased the serum levels of blood urea nitrogen (BUN, creatinine (Cr, and kidney tissue damage score (KTDS, significantly (P<0.05, however at the presence of estradiol and CP, vitamin C, vitamin E, or losartan not only did not decrease these parameters, but also increased them significantly (P<0.05. The serum level of superoxidase dismutase (SOD was reduced by CP (P<0.05, but it was increased when estradiol or estradiol plus vitamin C or losartan were added (P<0.05. Conclusion. The particular pharmacological dose of estrogen used in this study abolish the nephroprotective effects vitamins C and E or losartan against CP-induced nephrotoxicity.

  10. Nonalbumin proteinuria predominates in biopsy-proven tenofovir nephrotoxicity.

    Science.gov (United States)

    Sise, Meghan E; Hirsch, Jamie S; Canetta, Pietro A; Herlitz, Leal; Mohan, Sumit

    2015-05-15

    Tenofovir disoproxil fumarate (TDF) nephrotoxicity is characterized by proximal renal tubular injury and dysmorphic mitochondria resulting in proteinuria, orthoglycemic glycosuria, and other markers of proximal tubular dysfunction. The objective of this study was to determine the pattern of proteinuria in patients with biopsy-proven TDF nephrotoxicity. Retrospective chart review. Patients with biopsy-proven TDF nephrotoxicity were identified and their medical charts and biopsy reports were reviewed. Comparison was made with HIV-infected patients not on TDF who underwent kidney biopsy. We identified 43 biopsy-proven cases of TDF nephrotoxicity; mean age 54.7 ± 0.4 years, 53% men, 42% whites. Thirty-seven cases reported proteinuria by dipstick of which only 60% had at least 2+ proteinuria. Twenty-seven patients had urine protein quantified by either 24-h collection or spot urine protein-to-creatinine ratio; median proteinuria was 1742 mg/day [interquartile range (IQR) 1200-2000 mg] and 1667 mg/g creatinine (IQR 851-1967 mg/g), respectively. Ten patients had concurrent urinary albumin measured, with a median 236 mg/g creatinine (IQR 137-343 mg/g). The mean urine albumin-to-urine protein ratio (uAPR) was 0.17 (IQR 0.14-0.19), confirming that TDF nephrotoxicity is primarily associated with nonalbumin proteinuria. Control cases had a uAPR of 0.65 (IQR 0.55-0.79) P < 0.001. Histopathology showed the predominance of proximal tubular injury with characteristic mitochondrial abnormalities. In the largest published cohort of patients with biopsy-proven TDF nephrotoxicity, we show that low uAPR is a reliable feature of this disease. Because of the predominance of nonalbumin proteinuria, dipstick urinalysis may be unreliable in TDF nephrotoxicity.

  11. Contrast Media: Are There Differences in Nephrotoxicity among Contrast Media?

    Science.gov (United States)

    2014-01-01

    Iodinated contrast agents are usually classified based upon their osmolality—high, low, and isosmolar. Iodinated contrast agents are also nephrotoxic in some but not all patients resulting in loss of glomerular filtration rate. Over the past 30 years, nephrotoxicity has been linked to osmolality although the precise mechanism underlying such a link has been elusive. Improvements in our understanding of the pathogenesis of nephrotoxicity and prospective randomized clinical trials have attempted to further explore the relationship between osmolality and nephrotoxicity. In this review, the basis for our current understanding that there are little if any differences in nephrotoxic potential between low and isosmolar contrast media will be detailed using data from clinical studies. PMID:24587997

  12. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    Science.gov (United States)

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  13. Assessment of 99mTc-DMSA renoscintigraphy and uptake compared with creatinine clearance in rats with drug-induced nephrotoxicity, 2

    International Nuclear Information System (INIS)

    Yamada, Masafumi

    1991-01-01

    For evaluation of technetium-99m dimercaptosuccinic acid ( 99m Tc-DMSA) renal uptake as an absolute renal function, 99m Tc-DMSA uptake was compared with endogenous creatinine clearance (Ccr) in cisplatin-induced nephrotoxicity. At first, male Wistar rats were given intraperitoneally 1.8 mg/kg/day of cisplatin for periods of 3, 5, 7 and 9 days. On the next day, 99m Tc-DMSA uptake and Ccr were measured. Ccr of 5-day treated group was significantly lower than that of control (0.13±0.10 vs 0.34±0.05 ml/min/100 g; p 99m Tc-DMSA uptake did not change. 99m Tc-DMSA uptake of 7-day treated group was significantly lower than that of control (28.57±7.23 vs 39.84±2.23%; p 99m Tc-DMSA uptake was lower than that of control on the 8th, 11th and 15th day (32.40±3.86, 32.56±1.19, 35.21±2.97 vs 39.84±2.23%, respectively; p 99m Tc-DMSA uptake and Ccr was observed in the cisplatin-induced nephrotoxicity. 99m Tc-DMSA uptake was suggested to be a reliable indicator of a renal function in a different way from Ccr. (author)

  14. Far infrared radiation promotes rabbit renal proximal tubule cell proliferation and functional characteristics, and protects against cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Chiang, I-Ni; Pu, Yeong-Shiau; Huang, Chao-Yuan; Young, Tai-Horng

    2017-01-01

    Far infrared radiation, a subdivision of the electromagnetic spectrum, is beneficial for long-term tissue healing, anti-inflammatory effects, growth promotion, sleep modulation, acceleration of microcirculation, and pain relief. We investigated if far infrared radiation is beneficial for renal proximal tubule cell cultivation and renal tissue engineering. We observed the effects of far infrared radiation on renal proximal tubules cells, including its effects on cell proliferation, gene and protein expression, and viability. We also examined the protective effects of far infrared radiation against cisplatin, a nephrotoxic agent, using the human proximal tubule cell line HK-2. We found that daily exposure to far infrared radiation for 30 min significantly increased rabbit renal proximal tubule cell proliferation in vitro, as assessed by MTT assay. Far infrared radiation was not only beneficial to renal proximal tubule cell proliferation, it also increased the expression of ATPase Na+/K+ subunit alpha 1 and glucose transporter 1, as determined by western blotting. Using quantitative polymerase chain reaction, we found that far infrared radiation enhanced CDK5R1, GNAS, NPPB, and TEK expression. In the proximal tubule cell line HK-2, far infrared radiation protected against cisplatin-mediated nephrotoxicity by reducing apoptosis. Renal proximal tubule cell cultivation with far infrared radiation exposure resulted in better cell proliferation, significantly higher ATPase Na+/K+ subunit alpha 1 and glucose transporter 1 expression, and significantly enhanced expression of CDK5R1, GNAS, NPPB, and TEK. These results suggest that far infrared radiation improves cell proliferation and differentiation. In HK-2 cells, far infrared radiation mediated protective effects against cisplatin-induced nephrotoxicity by reducing apoptosis, as indicated by flow cytometry and caspase-3 assay.

  15. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence.

    Directory of Open Access Journals (Sweden)

    Bidya Dhar Sahu

    Full Text Available Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine; degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65 nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.

  16. Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant Defence

    Science.gov (United States)

    Sahu, Bidya Dhar; Kalvala, Anil Kumar; Koneru, Meghana; Mahesh Kumar, Jerald; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2014-01-01

    Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use. PMID:25184746

  17. 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshio Terada

    Full Text Available Nephrotoxicity is a frequent and major limitation in cisplatin (CDDP-based chemotherapy. 5-Aminolevulinic acid (ALA is widely distributed in animal cells, and it is a precursor of tetrapyrole compounds such as heme that is fundamentally important in aerobic energy metabolism. The aim of this study is to evaluate the protective role of ALA in CDDP-induced acute kidney injury (AKI.We used CDDP-induced AKI rat model and cultured renal tubular cells (NRK-52E. We divided four groups of rats: control, CDDP only, CDDP + ALA(post;(ALA 10 mg/kg + Fe in drinking water after CDDP, CDDP + ALA(pre & post.CDDP increased Cr up to 6.5 mg/dl, BUN up to 230 mg/dl, and ALA significantly reduced these changes. ALA ameliorates CDDP-induced morphological renal damages, and reduced tubular apoptosis evaluated by TUNEL staining and cleaved caspase 3. Protein and mRNA levels of ATP5α, complex(COX IV, UCP2, PGC-1α in renal tissue were significantly decreased by CDDP, and ALA ameliorates reduction of these enzymes. In contrast, Heme Oxigenase (HO-1 level is induced by CDDP treatment, and ALA treatment further up-regulates HO-1 levels. In NRK-52E cells, the CDDP-induced reduction of protein and mRNA levels of mitochondrial enzymes was significantly recovered by ALA + Fe. CDDP-induced apoptosis were ameliorated by ALA + Fe treatment. Furthermore, we evaluated the size of transplantated bladder carcinoma to the rat skin, and ALA did not change the anti cancer effects of CDDP.These data suggested that the protective role of ALA in cisplatin-induced AKI is via protection of mitochondrial viability and prevents tubular apoptosis. Also there are no significant effects of ALA on anticancer efficiency of CDDP in rats. Thus, ALA has the potential to prevent CDDP nephrotoxicity without compromising its anticancer efficacy.

  18. Iodinated contrast media nephrotoxicity. Nephrotoxicite des produits de contraste iodes

    Energy Technology Data Exchange (ETDEWEB)

    Meyrier, A. (Hopital Avicenne, 93 - Bobigny (France))

    1994-01-01

    In the late seventies, iodinated contrast agents (ICA) were considered to be a major cause of acute iatrogenic renal failure. Over the last decade new contrast agents have been synthesized, nonionic and less hyperosmolar. The incidence of acute renal failure due to ICAs, varies from 3.7 to 70% of cases according to the series, with an average figure of 10.2%. The pathophysiology of ICA nephrotoxicity was mainly studied in laboratory animal models. Three main factors are involved in an inducing ICA-mediated decrease in glomerular filtration rate: reduction of the renal plasma flow, a direct cytotoxic effect on renal tubular cells and erythrocyte alteration leading to intra-renal sludge. Excluding dysglobulinemias with urinary excretion of immunoglobulin light chains, which represent a special case of maximum nephrotoxicity, 4 main risk factors of renal toxicity have been identified in nondiabetic subjects: previous renal failure with serum creatinine levels greater than 140 [mu]mol per liter, extracellular dehydration, age over 60 and use of high doses of ICA and/or repeated ICA injections before serum creatinine levels return to baseline. Preventive measures for avoiding ICA nephrotoxicity are threefold: maintain or restore adequate hydration with saline infusion, stop NSAID treatment several days before ICA administration, and allow a 5 day interval before repeating contrast media injections. New, nonionic and moderately hyperosmolar contrast agents appear to be much less nephrotoxic than conventional ICAs in laboratory animals and in high-risk patients. It is advisable to select such contrast media for investigating high-risk patients. This approach was recently substantiated in well designed, randomized clinical studies which included more than 2 000 patients. (author).

  19. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    International Nuclear Information System (INIS)

    Liu, Senyan; Yao, Yunyi; Lu, Shijun; Aldous, Kenneth; Ding, Xinxin; Mei, Changlin; Gu, Jun

    2013-01-01

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity with the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity

  20. Sphingoid bases and the serine catabolic enzyme CHA1 define a novel feedforward/feedback mechanism in the response to serine availability.

    Science.gov (United States)

    Montefusco, David J; Newcomb, Benjamin; Gandy, Jason L; Brice, Sarah E; Matmati, Nabil; Cowart, L Ashley; Hannun, Yusuf A

    2012-03-16

    Targets of bioactive sphingolipids in Saccharomyces cerevisiae were previously identified using microarray experiments focused on sphingolipid-dependent responses to heat stress. One of these heat-induced genes is the serine deamidase/dehydratase Cha1 known to be regulated by increased serine availability. This study investigated the hypothesis that sphingolipids may mediate the induction of Cha1 in response to serine availability. The results showed that inhibition of de novo synthesis of sphingolipids, pharmacologically or genetically, prevented the induction of Cha1 in response to increased serine availability. Additional studies implicated the sphingoid bases phytosphingosine and dihydrosphingosine as the likely mediators of Cha1 up-regulation. The yeast protein kinases Pkh1 and Pkh2, known sphingoid base effectors, were found to mediate CHA1 up-regulation via the transcription factor Cha4. Because the results disclosed a role for sphingolipids in negative feedback regulation of serine metabolism, we investigated the effects of disrupting this mechanism on sphingolipid levels and on cell growth. Intriguingly, exposure of the cha1Δ strain to high serine resulted in hyperaccumulation of endogenous serine and in turn a significant accumulation of sphingoid bases and ceramides. Under these conditions, the cha1Δ strain displayed a significant growth defect that was sphingolipid-dependent. Together, this work reveals a feedforward/feedback loop whereby the sphingoid bases serve as sensors of serine availability and mediate up-regulation of Cha1 in response to serine availability, which in turn regulates sphingolipid levels by limiting serine accumulation.

  1. Attenuation of gentamycin-induced nephrotoxicity in rats by dietary inclusion of ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes.

    Science.gov (United States)

    Ademiluyi, Adedayo O; Oboh, Ganiyu; Ogunsuyi, Opeyemi B; Akinyemi, Ayodele J

    2012-10-01

    This study sought to investigate the modulatory effects of dietary inclusion of ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes on antioxidant status and renal damage induced by gentamycin in rats. Renal damage was induced in albino rats pretreated with dietary inclusion of ginger and turmeric (2% and 4%) by intraperitoneal (i.p.) administration of gentamycin (100 mg/kg body weight) for three days. Assays for renal damage biomarkers (plasma creatinine, plasma urea, blood urea nitrogen and plasma uric acid), malondialdehyde (MDA) content and reduced glutathione (GSH) content as well as renal antioxidant enzymes (catalase, glutathione-S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD)) were carried out. The study revealed significant (p turmeric rhizome (2% and 4%) prior to gentamycin administration significantly (p turmeric rhizomes may protect against gentamycin-induced nephrotoxicity and oxidative stress.

  2. Enhancement of Cisplatin Nephrotoxicity by Morphine and Its Attenuation by the Opioid Antagonist Naltrexone

    Directory of Open Access Journals (Sweden)

    Atefeh Aminian

    2016-07-01

    Full Text Available Nephrotoxicity is a major side effect of cisplatin, a widely used chemotherapy agent. Morphine and other opioids are also used extensively in different types of cancer for the clinical management of pain associated with local or metastatic neoplastic lesions. In addition to its analgesic effects, morphine has also been reported to possess potential immunomodulatory and antioxidant properties. Herein, we investigated the effects of morphine in a rat model of cisplatin-induced nephrotoxicity. Following administration of a single dose of cisplatin (5 mg/kg, animals received intraperitoneal injections of morphine (5 mg/kg/day and/or naltrexone (20 mg/kg/day, an opioid antagonist, for 5 days. Cisplatin-induced nephrotoxicity was detected by a significant increase in plasma urea and creatinine levels in addition to alterations in kidney tissue morphology. Levels of TNF-α and IL-1β were significantly increased in the renal tissue in cisplatin group. Moreover, glutathione (GSH concentration and superoxide dismutase activity were significantly reduced in renal tissue in cisplatin group compared with control animals. Treatment with morphine aggravated the deleterious effects of cisplatin at clinical, biochemical and histopathological levels; whereas naltrexone diminished the detrimental effects of morphine in animals receiving morphine and cisplatin. Morphine or naltrexone alone had no effect on the mentioned parameters. Our findings indicate that concomitant treatment with morphine might intensify cisplatin-induced renal damage in rats. These findings suggest that morphine and other opioids should be administered cautiously in patients receiving cisplatin chemotherapy.

  3. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations

    Science.gov (United States)

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2018-01-01

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  4. Lithium and nephrotoxicity: Unravelling the complex pathophysiological threads of the lightest metal.

    Science.gov (United States)

    Davis, J; Desmond, M; Berk, M

    2018-04-01

    While lithium remains the most efficacious treatment for bipolar disorder, it can cause significant nephrotoxicity. The molecular mechanisms behind both this process and the development of nephrogenic diabetes insipidus still remain to be fully elucidated but appear to involve alterations in glycogen synthase kinase 3 signalling, G2 cell cycle progression arrest, alterations in inositol and prostaglandin signalling pathways, and dysregulated trafficking and transcription of aquaporin 2 water channels. The end result of this is a tubulointerstitial nephropathy with microcyst formation and relative glomerular sparing, both visible on pathology specimens and increasingly noted on non-invasive imaging. This paper will elucidate on the current evidence pertaining to the pathophysiology of lithium induced nephrotoxicity. This article is protected by copyright. All rights reserved.

  5. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate.

    Science.gov (United States)

    Shrestha, Ritu; Lockless, Steve W; Sorg, Joseph A

    2017-06-23

    Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The ameliorative effects of virgin olive oil and olive leaf extract on amikacin-induced nephrotoxicity in the rat.

    Science.gov (United States)

    Abdel-Gayoum, Abdelgayoum A; Al-Hassan, Abdelrahman A; Ginawi, Ibrahim A; Alshankyty, Ibraheem M

    2015-01-01

    Amikacin is an important antibiotic, and its use is limited because of the induced nephrotoxicity. Thus, search for natural and synthetic agents that can moderate amikacin toxicity never stopped. The present study aims to investigate the possible ameliorative effects of virgin olive oil and olive leaf extract against the amikacin-induced nephrotoxicity in rat. 48 rats were distributed into 6 groups: 1-Animals of control (C) group were injected intraperitoneally (ip) with saline, 2-(AK); injected ip with amikacin {300 mg/kg/day for 12days}, 3-(OO) group: given olive oil {7 ml/kg/day for 16days}, 4-(OOAK) group: given olive oil as in OO and amikacin for 12days, 5-(OL) group: given olive leaf extract {50 mg/kg/day for 16days}, 6-(OLAK) group: given leaf extract as in OL and amikacin for 12days. Animals were fasted and sacrificed. Serum was used for biochemical analysis and kidneys for histopathology. Serum urea and creatinine were significantly ( P  groups. Serum uric acid was reduced in AK by 45.29%. Kidneys from AK showed necrosis, whereas, those from OOAK and OLAK showed mild histology. The serum triglyceride was decreased by 17.8% in OL, by 37.02% in OOAK and by 31.48% in OLAK. The calculated amikacin effect showed a significant positive correlation with urea ( r  = 0.521, P  = 0.0004), and a negative correlation with uric acid ( r  = ⿿ 0.58, P  virgin olive oil and by olive leaf extract. Amikacin did not cause dyslipidemia but reduced serum uric acid.

  7. Dosimetry considerations in the enhanced sensitivity of male Wistar rats to chronic ethylene glycol-induced nephrotoxicity

    International Nuclear Information System (INIS)

    Corley, R.A.; Wilson, D.M.; Hard, G.C.; Stebbins, K.E.; Bartels, M.J.; Soelberg, J.J.; Dryzga, M.D.; Gingell, R.; McMartin, K.E.; Snellings, W.M.

    2008-01-01

    Male Wistar rats have been shown to be the most sensitive sex, strain and species to ethylene glycol-induced nephrotoxicity in subchronic studies. A chronic toxicity and dosimetry study was therefore conducted in male Wistar rats administered ethylene glycol via the diet at 0, 50, 150, 300, or 400 mg/kg/day for up to twelve months. Subgroups of animals were included for metabolite analysis and renal clearance studies to provide a quantitative basis for extrapolating dose-response relationships from this sensitive animal model in human health risk assessments. Mortality occurred in 5 of 20 rats at 300 mg/kg/day (days 111-221) and 4 of 20 rats at 400 mg/kg/day (days 43-193), with remaining rats at this dose euthanized early (day 203) due to excessive weight loss. Increased water consumption and urine volume with decreased specific gravity occurred at 300 mg/kg/day presumably due to osmotic diuresis. Calculi (calcium oxalate crystals) occurred in the bladder or renal pelvis at ≥ 300 mg/kg/day. Rats dying early at ≥ 300 mg/kg/day had transitional cell hyperplasia with inflammation and hemorrhage of the bladder wall. Crystal nephropathy (basophilic foci, tubule or pelvic dilatation, birefringent crystals in the pelvic fornix, or transitional cell hyperplasia) affected most rats at 300 mg/kg/day, all at 400 mg/kg/day, but none at ≤ 150 mg/kg/day. No significant differences in kidney oxalate levels, the metabolite responsible for renal toxicity, were observed among control, 50 and 150 mg/kg/day groups. At 300 and 400 mg/kg/day, oxalate levels increased proportionally with the nephrotoxicity score supporting the oxalate crystal-induced nephrotoxicity mode of action. No treatment-related effects on the renal clearance of intravenously infused 3 H-inulin, a marker for glomerular filtration, and 14 C-oxalic acid were observed in rats surviving 12 months of exposure to ethylene glycol up to 300 mg/kg/day. In studies with naive male Wistar and F344 rats (a less sensitive

  8. [Current research situation of nephrotoxicity of Chinese herbal medicine].

    Science.gov (United States)

    Feng, Xue; Fang, Sai-Nan; Gao, Yu-Xin; Liu, Jian-Ping; Chen, Wei

    2018-02-01

    To provide the basis for the future research on the nephrotoxicity of Chinese herbal medicine through systematic and comprehensive summary of all the Chinese herbal medicines which may lead to nephrotoxicity. Foreign resources included PubMed and Cochrane library, and domestic research resources was China Food and Drug Administration(CDFA) Adverse Drug Reaction Monitoring Center database. The databases were searched from establishment to January 1, 2017. There was no limitation on research type. 28 English studies were found, including 97 Chinese herbs or prescriptions with the risk of nephrotoxicity. The following six Chinese herbal medicines with the risk of nephrotoxicity had a large number of studies: aristolochic acid(5 studies), Tripterygium wilfordii(4 studies), Erycibe obtusifolia(2 studies), Rheum palmatum(2 studies), Ephedra sinica(2 studies), and Atractylodes lances(2 studies). The remaining 91 Chinese medicines were reported with risk of nephrotoxicity in only 1 study respectively. CDFA reported 16 Chinese herbal medicines with the risk of nephrotoxicity, including Ganmaoqing Pian(capsule), Zhenju Jiangya Pian, T. wilfordii preparation, Vc-Yinqiao Pian, Chuanhuning injection, Shuanghuanglian injection, Qingkailing injection, Lianbizhi injection, herbal decoction containing Aristolochiae Radix, Guanxin Suhe Wan, Shugan Liqi Wan, Ershiwuwei Songshi Wan, herbal decoction containing Aristolochia Fangchi, herbal granules containing root of Kaempfer Dutchmanspipe, Ganmaotong(tablets), and Longdan Xiegan Wan. Currently, in addition to aristolochic acids, the most reported Chinese herbal medicine with the risk of nephrotoxicity is T. wilfordii preparation. Copyright© by the Chinese Pharmaceutical Association.

  9. Contrast media-associated nephrotoxicity - pathogenenesis and prevention

    International Nuclear Information System (INIS)

    Erley, C.M.; Duda, S.H.

    1997-01-01

    Contrast media-associated nephrotoxicity continues to be a relevant cause of acute renal failure, especially in patients with pre-existing renal insufficiency. Alterations in renal hemodynamics and direct tubular toxicity by contrast media are the primary factors believed to be responsible for contrast media-associated nephrotoxicity. We review recent insights into the pathogenesis of this complication and summarize prophylactic strategies focussing on hydration, vasoactive pharmacological agents, and prophylactic hemodialysis'. (orig.) [de

  10. Therapeutic Potential and Molecular Mechanisms of Emblica officinalis Gaertn in countering nephrotoxicity in rats induced by the chemotherapeutic agent cisplatin

    Directory of Open Access Journals (Sweden)

    Salma Malik

    2016-10-01

    Full Text Available Emblica officinalis Gaertn. belonging to family Euphorbiaceae is commonly known as Indian gooseberry or Amla in India. It is used as a ‘rejuvenating herb’ in traditional system of Indian medicine. It has been shown to possess antioxidant, anti-inflammatory and anti-apoptotic effects. Thus, on the basis of its biological effects, the present study was undertaken to evaluate the protective effect of the dried fruit extract of the E. Officinalis (EO in cisplatin-induced nephrotoxicity in rats and also to evaluate the mechanism of its nephroprotection. The study was done on male albino Wistar rats. They were divided into 6 groups (n=6 viz. control, cisplatin-control, cisplatin and EO (150, 300 and 600 mg/kg; p.o. respectively in different groups and EO only (600 mg/kg; p.o. only. EO was administered orally to the rats for a period of 10 days and on the 7th day, a single injection of cisplatin (8 mg/kg; i.p. was administered to the cisplatin-control and EO treatment groups. The rats were sacrificed on the 10th day. Cisplatin-control rats had deranged renal function parameters and the kidney histology confirmed the presence of acute tubular necrosis. Furthermore, there were increased oxidative stress, apoptosis and inflammation along with higher expression of MAPK pathway proteins in the rat kidney from the cisplatin-control group. Contrary to this, EO (600 mg/kg significantly normalized renal function, bolstered antioxidant status and ameliorated histological alterations. The inflammation and apoptosis were markedly lower in comparison to cisplatin-control rats. Furthermore, EO (600 mg/kg inhibited MAPK phosphorylation which was instrumental in preserving renal function and morphology. In conclusion, the results of our study demonstrated that EO attenuated cisplatin-induced nephrotoxicity in rats through suppression of MAPK induced inflammation and apoptosis.

  11. Effect of normobaric hyperoxia on gentamicin-induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Majid Tavafi

    2014-04-01

    Full Text Available Objective(s:Gentamicin sulphate (GS nephrotoxicity seems to be related to the generation of reactive oxygen species. There is evidence that oxygen preconditioning increases the activity of antioxidant enzymes. Materials and Methods: Forty eight female rats were divided into 6 groups (n=8 as follows: group 1 was the control, group 2 received daily GS, groups 3,4 and 5 received oxygen 2 hr/day for 2 days, 4 hr/day for 2 days, 4 hr/day for 4 days, recpectively and then received daily GS, group 6 received oxygen 2 hr/day for 2 days and then received 2 hr oxygen before daily GS injection. Oxygen (with 90% purity used at the flow rate of 4 l/min. GS administred for 8 days (100 mg/kg, IP. Tissue sections prepared from the left kidney, stained with PAS method and then studied hisopathologically and stereologically. The right kidneys were homogenized and the supernatants were prepared. Serum MDA, creatinine and urea, renal  MDA, gluthatione and catalase activity were measured. The data were analyzed by Mann-Whitney U test at the significant level of PResults: Oxygen therapy significantly improves serum creatinine and urea, preserve tubular volume density, reduce tubular necrosis in groups 4 and 6 compared to group 2. Oxygen therapy significantly increases renal catalase in groups 4 and 6 compared to group 2.   Conclusion: Pretreatment with normobaric hyperoxia and daily oxygen therapy improved gentamicin nephrotoxicity possibly via inhibition of lipid peroxidation and increasing the renal catalase activity but could not restore any parameter at the same levels as control group.

  12. Protective effect of metalloporphyrins against cisplatin-induced kidney injury in mice.

    Directory of Open Access Journals (Sweden)

    Hao Pan

    Full Text Available Oxidative and nitrative stress is a well-known phenomenon in cisplatin-induced nephrotoxicity. The purpose of this work is to study the role of two metalloporphyrins (FeTMPyP and MnTBAP, water soluble complexes, in cisplatin-induced renal damage and their ability to scavenge peroxynitrite. In cisplatin-induced nephropathy study in mice, renal nitrative stress was evident by the increase in protein nitration. Cisplatin-induced nephrotoxicity was also evident by the histological damage from the loss of the proximal tubular brush border, blebbing of apical membranes, tubular epithelial cell detachment from the basement membrane, or intra-luminal aggregation of cells and proteins and by the increase in blood urea nitrogen and serum creatinine. Cisplatin-induced apoptosis and cell death as shown by Caspase 3 assessments, TUNEL staining and DNA fragmentation Cisplatin-induced nitrative stress, apoptosis and nephrotoxicity were attenuated by both metalloporphyrins. Heme oxygenase (HO-1 also plays a critical role in metalloporphyrin-mediated protection of cisplatin-induced nephrotoxicity. It is evident that nitrative stress plays a critical role in cisplatin-induced nephrotoxicity in mice. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration and cisplatin-induced nephrotoxicity can be prevented with the use of metalloporphyrins.

  13. Antioxidantes da dieta como inibidores da nefrotoxicidade induzida pelo antitumoral cisplatina Dietary antioxidants as inhibitors of cisplatin-induced nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Lusânia Maria Greggi Antunes

    2004-03-01

    Full Text Available A cisplatina é uma droga antineoplásica altamente efetiva contra vários tipos de cânceres humanos, tais como tumores do testículo e ovário, câncer da cabeça e pescoço e câncer do pulmão. Entretanto, a nefrotoxicidade é um dos principais efeitos colaterais da terapia com a cisplatina. A gravidade da nefrotoxicidade induzida pela cisplatina está relacionada com a concentração de platina nos rins. As evidências mostram que a nefrotoxicidade induzida pela cisplatina é atribuída ao dano oxidativo resultante da geração de radicais livres, e que a administração de antioxidantes é eficiente na inibição destes efeitos colaterais. Uma abordagem alternativa para proteger os roedores dos efeitos colaterais da cisplatina é o uso de conhecidos antioxidantes da dieta. Alguns estudos têm sido realizados para diminuir a peroxidação lipídica e os efeitos citotóxicos induzidos pela cisplatina, com o emprego de antioxidantes da dieta, tais como, selenito de sódio, vitaminas C e E, curcumina e o carotenóide bixina. Nós sugerimos que aqueles antioxidantes da dieta têm efeito nefroprotetor, e que os mecanismos antioxidantes destes compostos deveriam ser explorados durante a quimioterapia com a cisplatina.Cisplatin is a highly effective antineoplastic drug used against several types of human cancers, such as testicular and ovarian tumors; head and neck; and lung cancer. However, nephrotoxicity is one of the most important side-effects of cisplatin therapy. The severity of cisplatin nephrotoxicity is related to platinum concentration in the kidneys. There is a growing amount of evidence that cisplatin-induced nephrotoxicity is ascribed to oxidative damage resulting from free radical generation and that the administration of antioxidants is efficient in inhibiting these side effects. An alternative approach aiming to protect rodents against cisplatin side-effects is the introduction of known dietary antioxidants. Some studies have been

  14. Protective effect and mechanism of action of lupane triterpenes from Cornus walteri in cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Lee, Seulah; Jung, Kiwon; Lee, Dahae; Lee, Seoung Rak; Lee, Kang Ro; Kang, Ki Sung; Kim, Ki Hyun

    2015-12-01

    The present study reports a renoprotective effect and the mechanism of action of lupane triterpenes isolated from Cornus walteri in cisplatin-induced renal toxicity. A phytochemical investigation of the MeOH extract of the stems and stem bark of C. walteri resulted in the isolation and identification of twelve lupane triterpenes. Among these, betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol ameliorated cisplatin-induced nephrotoxicity to 80% of the control value at 125 μM. Upregulated phosphorylation of JNK, ERK, and p38 following cisplatin treatment were markedly decreased after co-treatment with betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol. In addition, the protein expression level of cleaved caspase-3 and the percentage of apoptotic cells were also significantly reduced after co-treatment with betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol. These results show that blocking the MAPK signaling cascade plays a critical role in mediating the renoprotective effect of betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol isolated from C. walteri extract. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An analysis of 3D solvation structure in biomolecules: application to coiled coil serine and bacteriorhodopsin.

    Science.gov (United States)

    Hirano, Kenji; Yokogawa, Daisuke; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-06-17

    Three-dimensional (3D) solvation structure around coiled coil serine (Coil-Ser) and inner 3D hydration structure in bacteriorhodopsin (bR) were studied using a recently developed method named multicenter molecular Ornstein-Zernike equation (MC-MOZ) theory. In addition, a procedure for analyzing the 3D solvent distribution was proposed. The method enables us to calculate the coordination number of solvent water as well as the strength of hydrogen bonding between the water molecule and the protein. The results for Coil-Ser and bR showed very good agreement with the experimental observations.

  16. Evaluation of novel biomarkers of nephrotoxicity in Cynomolgus monkeys treated with gentamicin

    International Nuclear Information System (INIS)

    Gautier, Jean-Charles; Zhou, Xiaobing; Yang, Yi; Gury, Thierry; Qu, Zhe; Palazzi, Xavier; Léonard, Jean-François; Slaoui, Mohamed; Veeranagouda, Yaligara; Guizon, Isabelle; Boitier, Eric; Filali-Ansary, Aziz; Berg, Bart H.J. van den; Poetz, Oliver; Joos, Thomas; Zhang, Tianyi; Wang, Jufeng; Detilleux, Philippe; Li, Bo

    2016-01-01

    Most studies to evaluate kidney safety biomarkers have been performed in rats. This study was conducted in Cynomolgus monkeys in order to evaluate the potential usefulness of novel biomarkers of nephrotoxicity in this species. Groups of 3 males were given daily intramuscular injections of gentamicin, a nephrotoxic agent known to produce lesions in proximal tubules, at dose-levels of 10, 25, or 50 mg/kg/day for 10 days. Blood and 16-h urine samples were collected on Days − 7, − 3, 2, 4, 7, and at the end of the dosing period. Several novel kidney safety biomarkers were evaluated, with single- and multiplex immunoassays and in immunoprecipitation-LC/MS assays, in parallel to histopathology and conventional clinical pathology parameters. Treatment with gentamicin induced a dose-dependent increase in kidney tubular cell degeneration/necrosis, ranging from minimal to mild severity at 10 mg/kg/day, moderate at 25 mg/kg/day, and to severe at 50 mg/kg/day. The results showed that the novel urinary biomarkers, microalbumin, α1-microglobulin, clusterin, and osteopontin, together with the more traditional clinical pathology parameters, urinary total protein and N-acetyl-β-D-glucosaminidase (NAG), were more sensitive than blood urea nitrogen (BUN) and serum creatinine (sCr) to detect kidney injury in the monkeys given 10 mg/kg/day gentamicin for 10 days, a dose leading to an exposure which is slightly higher than the desired therapeutic exposure in clinics. Therefore, these urinary biomarkers represent non-invasive biomarkers of proximal tubule injury in Cynomolgus monkeys which may be potentially useful in humans. - Highlights: • Gentamicin induced kidney tubular cell degeneration/necrosis in Cynomolgus monkey • Urinary clusterin and osteopontin were sensitive biomarkers of kidney injury. • Microalbumin and α1-microglobulin in urine were also more sensitive than serum creatinine.

  17. Evaluation of novel biomarkers of nephrotoxicity in Cynomolgus monkeys treated with gentamicin

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, Jean-Charles, E-mail: jean-charles.gautier@sanofi.com [Sanofi R& D, Vitry-sur-Seine (France); Zhou, Xiaobing [National Center for Safety Evaluation of Drugs (NCSED), National Institutes for Food and Drug Control, Beijing (China); Yang, Yi [Sanofi R& D, Bridgewater (United States); Gury, Thierry [Sanofi R& D, Vitry-sur-Seine (France); Qu, Zhe [National Center for Safety Evaluation of Drugs (NCSED), National Institutes for Food and Drug Control, Beijing (China); Palazzi, Xavier; Léonard, Jean-François; Slaoui, Mohamed; Veeranagouda, Yaligara; Guizon, Isabelle; Boitier, Eric; Filali-Ansary, Aziz [Sanofi R& D, Vitry-sur-Seine (France); Berg, Bart H.J. van den; Poetz, Oliver; Joos, Thomas [Natural and Medical Sciences Institute at the University Tübingen (Germany); Zhang, Tianyi [Frontage Laboratories, Shanghai (China); Wang, Jufeng [National Center for Safety Evaluation of Drugs (NCSED), National Institutes for Food and Drug Control, Beijing (China); Detilleux, Philippe [Sanofi R& D, Vitry-sur-Seine (France); Li, Bo, E-mail: libo@nifdc.org.cn [National Center for Safety Evaluation of Drugs (NCSED), National Institutes for Food and Drug Control, Beijing (China)

    2016-07-15

    Most studies to evaluate kidney safety biomarkers have been performed in rats. This study was conducted in Cynomolgus monkeys in order to evaluate the potential usefulness of novel biomarkers of nephrotoxicity in this species. Groups of 3 males were given daily intramuscular injections of gentamicin, a nephrotoxic agent known to produce lesions in proximal tubules, at dose-levels of 10, 25, or 50 mg/kg/day for 10 days. Blood and 16-h urine samples were collected on Days − 7, − 3, 2, 4, 7, and at the end of the dosing period. Several novel kidney safety biomarkers were evaluated, with single- and multiplex immunoassays and in immunoprecipitation-LC/MS assays, in parallel to histopathology and conventional clinical pathology parameters. Treatment with gentamicin induced a dose-dependent increase in kidney tubular cell degeneration/necrosis, ranging from minimal to mild severity at 10 mg/kg/day, moderate at 25 mg/kg/day, and to severe at 50 mg/kg/day. The results showed that the novel urinary biomarkers, microalbumin, α1-microglobulin, clusterin, and osteopontin, together with the more traditional clinical pathology parameters, urinary total protein and N-acetyl-β-D-glucosaminidase (NAG), were more sensitive than blood urea nitrogen (BUN) and serum creatinine (sCr) to detect kidney injury in the monkeys given 10 mg/kg/day gentamicin for 10 days, a dose leading to an exposure which is slightly higher than the desired therapeutic exposure in clinics. Therefore, these urinary biomarkers represent non-invasive biomarkers of proximal tubule injury in Cynomolgus monkeys which may be potentially useful in humans. - Highlights: • Gentamicin induced kidney tubular cell degeneration/necrosis in Cynomolgus monkey • Urinary clusterin and osteopontin were sensitive biomarkers of kidney injury. • Microalbumin and α1-microglobulin in urine were also more sensitive than serum creatinine.

  18. Polymyxin B Nephrotoxicity: From Organ to Cell Damage.

    Directory of Open Access Journals (Sweden)

    Maria de Fátima Fernandes Vattimo

    Full Text Available Polymyxins have a long history of dose-limiting toxicity, but the underlying mechanism of polymyxin B-induced nephrotoxicity is unclear. This study investigated the link between the nephrotoxic effects of polymyxin B on renal metabolic functions and mitochondrial morphology in rats and on the structural integrity of LLC-PK1 cells. Fifteen Wistar rats were divided into two groups: Saline group, rats received 3 mL/kg of 0.9% NaCl intraperitoneally (i.p. once a day for 5 days; Polymyxin B group, rats received 4 mg/kg/day of polymyxin B i.p. once a day for 5 days. Renal function, renal hemodynamics, oxidative stress, mitochondrial injury and histological characteristics were assessed. Cell membrane damage was evaluated via lactate dehydrogenase and nitric oxide levels, cell viability, and apoptosis in cells exposed to 12.5 μM, 75 μM and 375 μM polymyxin B. Polymyxin B was immunolocated using Lissamine rhodamine-polymyxin B in LLC-PK1 cells. Polymyxin B administration in rats reduced creatinine clearance and increased renal vascular resistance and oxidative damage. Mitochondrial damage was confirmed by electron microscopy and cytosolic localization of cytochrome c. Histological analysis revealed tubular dilatation and necrosis in the renal cortex. The reduction in cell viability and the increase in apoptosis, lactate dehydrogenase levels and nitric oxide levels confirmed the cytotoxicity of polymyxin B. The incubation of LLC-PK1 cells resulted in mitochondrial localization of polymyxin B. This study demonstrates that polymyxin B nephrotoxicity is characterized by mitochondrial dysfunction and free radical generation in both LLC-PK1 cells and rat kidneys. These data also provide support for clinical studies on the side effects of polymyxin B.

  19. Evaluation of therapeutic potential of picrorhiza kurroa glycosidal extract against nimesulide nephrotoxicity: a pilot study

    International Nuclear Information System (INIS)

    Siddiqi, A.

    2015-01-01

    Picrorhiza kurroa (Pk) is a traditional Ayurvedic herb famous as a potent hepatoprotective agent, only few studies are available on the nephroprotective activity of this herb. The objective of this pilot study was to determine the therapeutic effectiveness of Pk against nimesulide induced toxicity. Methods: This laboratory based experimental study was conducted on mice at National Institute of Health, Islamabad from Dec 2012 to Jan 2013. The mice were divided in to 4 groups. One group was given only PK while the other three groups were given nimesulide in a dosage of 750 mg/kg body weight for 3 days to induce nephrotoxicity and protective effect of Pk was noted by giving 250 mg/kg and 500 mg/kg pk for 14 days to the two of the nimesulide induced nephrotoxicity groups. Biochemical assessment of kidney was done by measuring serum urea and creatinine. Also histology was done to confirm the findings of biochemical assessment. Results: In our pilot study out of 20 mice, 19 mice survived. Only 1 mouse of nimesulide group died. Mean serum urea of nimesulide group was 60 mg/dl and was decreased to 23 mg/dl and 25 mg/dl by two doses of Pk. Mean creatinine in group 2 was 0.55 mg/dl and was decreased to 0.21 and 0.19 mg/dl by two doses of Pk. Conclusion: Our study shows that nimesulide is a potential nephrotoxic drug and its toxic effects on kidney can be minimized by using glycosidal extract of Pk. (author)

  20. Evaluation of the Protective Role of Glycine max Seed Extract (Soybean Oil) in Drug-Induced Nephrotoxicity in Experimental Rats.

    Science.gov (United States)

    Ramasamy, Anand; Jothivel, Nandhakumar; Das, Saibal; Swapna, A; Albert, Alice Padmini; Barnwal, Preeti; Babu, Dinesh

    2017-09-28

    This study was conducted to evaluate the nephroprotective effect of Glycine max seed extract (soybean oil) against gentamicin- and rifampicin-induced nephrotoxicity in Sprague-Dawley rats and to compare its effects with those of vitamin E, which has well-established antioxidant and nephroprotective effects. Sixty male Sprague-Dawley rats (body weight 150-210 g) were divided into 10 groups. The first five groups were treated for 14 consecutive days with normal saline (5 ml/kg, by mouth [p.o.]); gentamicin (80 mg/kg intraperitoneally [i.p.]); gentamicin (80 mg/kg, i.p.) + vitamin E (250 mg/kg p.o.); gentamicin (80 mg/kg i.p.) + soybean oil (2.5 ml/kg p.o.); and gentamicin (80 mg/kg, i.p.) + soybean oil (5 ml/kg p.o.), respectively. For the next five groups, the same group allocation was done, but gentamicin was replaced with rifampicin (1 g/kg i.p.). Various biomarkers for nephrotoxicity in serum and urine were evaluated along with histopathological examination of kidneys. Analysis of variance (ANOVA) was done following Tukey's multiple comparison test; p Soybean oil in both doses significantly (p Soybean oil also showed strong antioxidant effects, causing significant (p Soybean oil demonstrated good nephroprotective activity due to antioxidant effects.

  1. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    International Nuclear Information System (INIS)

    Ding, Yu-Ju; Chen, Yau-Hung

    2012-01-01

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  2. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yu-Ju; Chen, Yau-Hung, E-mail: yauhung@mail.tku.edu.tw

    2012-05-15

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  3. Exposure to nerve growth factor worsens nephrotoxic effect induced by Cyclosporine A in HK-2 cells.

    Directory of Open Access Journals (Sweden)

    Donatella Vizza

    Full Text Available Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkA(NTR and p75(NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 (NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75(NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A.

  4. Caffeic Acid Phenethyl Ester as a Protective Agent against Nephrotoxicity and/or Oxidative Kidney Damage: A Detailed Systematic Review

    Directory of Open Access Journals (Sweden)

    Sumeyya Akyol

    2014-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE, an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury after ischemia/reperfusion (I/R. In this review, we summarized and critically evaluated the current knowledge regarding the protective effect of CAPE in nephrotoxicity induced by several special medicines such as cisplatin, doxorubicin, cyclosporine, gentamycin, methotrexate, and other causes leading to oxidative renal injury, namely, I/R models and senility.

  5. Drug induced acute kidney injury: an experimental animal study

    International Nuclear Information System (INIS)

    Khan, M.W.A.; Khan, B.T.; Qazi, R.A.; Ashraf, M.; Waqar, M.

    2017-01-01

    Objective: To assess the extent of drug induced nephrotoxicity in laboratory animals for determining the role and extent of iatrogenic kidney damage in patients exposed to nephrotoxic drugs in various clinical setups. Study Design: Randomized control trail. Place and Duration of study: Pharmacology department and animal house of Army Medical College from Jan 2011 to Aug 2011. Material and Methods: Thirty six mixed breed rabbits were used in this study. Animals were randomly divided into six groups consisting of six rabbits in each. Groups were named A, B, C, D, E and F. Group A was control group. Group B was given 0.9% normal saline. Group C rabbits were given acute nephrotoxic single dose of amphotericin B deoxycholate. Group D received 0.9% normal saline 10ml/kg followed by amphotericin B infusion. Group E was injected acute nephrotoxic regimen of cyclosporine and amphotericin B infusion. Group F received saline loading along with acute nephrotoxic regimen of cyclosporine and amphotericin B infusion. Results: Biochemical and histopathological analysis showed significant kidney injury in rabbits exposed to acute nephrotoxic doses of amphotericin B and cyclosporine. Toxicity was additive when the two drugs were administered simultaneously. Group of rabbits with saline loading had significantly lesser kidney damage. Conclusion: Iatrogenic acute kidney damage is a major cause of morbidity in experimental animals exposed to such nephrotoxic drugs like amphotericin B and cyclosporine, used either alone or in combination. Clinical studies are recommended to assess the extent of iatrogenic renal damage in patients and its economic burden. Efficient and cost effective protective measure may be adopted in clinical setups against such adverse effects. (author)

  6. Random mutagenesis of human serine racemase reveals residues important for the enzymatic activity

    Czech Academy of Sciences Publication Activity Database

    Hoffman, Hillary Elizabeth; Jirásková, Jana; Zvelebil, M.; Konvalinka, Jan

    2010-01-01

    Roč. 75, č. 1 (2010), s. 59-79 ISSN 0010-0765 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : D-serine * serine racemase * random mutagenesis Subject RIV: CE - Biochemistry Impact factor: 0.853, year: 2010

  7. Physicochemical properties of radiographic contrast media, potential nephrotoxicity and prophylaxis.

    Science.gov (United States)

    Hogstrom, Barry; Ikei, Nobuhiro

    2015-12-01

    Contrast induced nephropathy (CIN) remains a controversial topic. The clinical relevance of changes in laboratory parameters has been challenged; some authors have even suggested that CIN simply reflects natural fluctuations. Other areas of controversy include the pathophysiology of CIN, effectiveness of prophylactic approaches and differences in nephrotoxicity between individual contrast media (CM). The aim of this review is to summarize the current understanding of laboratory findings and explore its relationship to CM toxicity. © 2015 Wiley Publishing Asia Pty Ltd.

  8. The modulatory effect of Moringa oleifera leaf extract on endogenous antioxidant systems and inflammatory markers in an acetaminophen-induced nephrotoxic mice model

    Directory of Open Access Journals (Sweden)

    Govindarajan Karthivashan

    2016-07-01

    Full Text Available N-Acetyl-p-Aminophenol (APAP, also known as acetaminophen, is the most commonly used over-the counter analgesic and antipyretic medication. However, its overdose leads to both liver and kidney damage. APAP-induced toxicity is considered as one of the primary causes of acute liver failure; numerous scientific reports have focused majorly on APAP hepatotoxicity. Alternatively, not many works approach APAP nephrotoxicity focusing on both its mechanisms of action and therapeutic exploration. Moringa oleifera (MO is pervasive in nature, is reported to possess a surplus amount of nutrients, and is enriched with several bioactive candidates including trace elements that act as curatives for various clinical conditions. In this study, we evaluated the nephro-protective potential of MO leaf extract against APAP nephrotoxicity in male Balb/c mice. A single-dose acute oral toxicity design was implemented in this study. Group 2, 3, 4 and 5 received a toxic dose of APAP (400 mg/kg of bw, i.p and after an hour, these groups were administered with saline (10 mL/kg, silymarin—positive control (100 mg/kg of bw, i.p, MO leaf extract (100 mg/kg of bw, i.p, and MO leaf extract (200 mg/kg bw, i.p respectively. Group 1 was administered saline (10 mL/kg during both the sessions. APAP-treated mice exhibited a significant elevation of serum creatinine, blood urea nitrogen, sodium, potassium and chloride levels. A remarkable depletion of antioxidant enzymes such as SOD, CAT and GSH-Px with elevated MDA levels has been observed in APAP treated kidney tissues. They also exhibited a significant rise in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6 and decreased anti-inflammatory (IL-10 cytokine level in the kidney tissues. Disorganized glomerulus and dilated tubules with inflammatory cell infiltration were clearly observed in the histology of APAP treated mice kidneys. All these pathological changes were reversed in a dose-dependent manner after MO leaf extract

  9. The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise.

    Science.gov (United States)

    Reuther, C; Ganjam, G K; Dolga, A M; Culmsee, C

    2014-11-01

    It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.

  10. Olmesartan Attenuates Tacrolimus-Induced Biochemical and Ultrastructural Changes in Rat Kidney Tissue

    Directory of Open Access Journals (Sweden)

    Naif O. Al-Harbi

    2014-01-01

    Full Text Available Tacrolimus, a calcineurin inhibitor, is clinically used as an immunosuppressive agent in organ transplantation, but its use is limited due to its marked nephrotoxicity. The present study investigated the effect of olmesartan (angiotensin receptor blocker on tacrolimus-induced nephrotoxicity in rats. A total of 24 rats were divided into four groups, which included control, tacrolimus, tacrolimus + olmesartan, and olmesartan groups. Tacrolimus-induced nephrotoxicity was assessed biochemically and histopathologically. Tacrolimus significantly increased BUN and creatinine level. Treatment with olmesartan reversed tacrolimus-induced changes in the biochemical markers (BUN and creatinine of nephrotoxicity. Tacrolimus significantly decreased GSH level and catalase activity while increasing MDA level. Olmesartan also attenuated the effects of tacrolimus on MDA, GSH, and catalase. In tacrolimus group histological examination showed marked changes in renal tubule, mitochondria, and podocyte processes. Histopathological and ultrastructural studies showed that treatment with olmesartan prevented tacrolimus-induced renal damage. These results suggest that olmesartan has protective effects on tacrolimus-induced nephrotoxicity, implying that RAS might be playing role in tacrolimus-induced nephrotoxicity.

  11. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney

    International Nuclear Information System (INIS)

    Domitrović, Robert; Cvijanović, Olga; Pugel, Ester Pernjak; Zagorac, Gordana Blagojević; Mahmutefendić, Hana; Škoda, Marko

    2013-01-01

    The aim of this study was to investigate the effects of flavone luteolin against cisplatin (CP)-induced kidney injury in mice. Luteolin at doses of 10 mg/kg was administered intraperitoneally (ip) once daily for 3 days following single CP (10 or 20 mg/kg) ip injection. Mice were sacrificed 24 h after the last dose of luteolin. The CP treatment significantly increased serum creatinine and blood urea nitrogen and induced pathohistological changes in the kidneys. Renal oxidative/nitrosative stress was evidenced by decreased glutathione (GSH) levels and increased 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) formation as well as cytochrome P450 2E1 (CYP2E1) expression. The CP administration triggered inflammatory response in mice kidneys through activation of nuclear factor-kappaB (NF-κB) and overexpression of tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2). Simultaneously, the increase in renal p53 and caspase-3 expression indicated apoptosis of tubular cells. The administration of luteolin significantly reduced histological and biochemical changes induced by CP, decreased platinum (Pt) levels and suppressed oxidative/nitrosative stress, inflammation and apoptosis in the kidneys. These results suggest that luteolin is an effective nephroprotective agent, with potential to reduce Pt accumulation in the kidneys and ameliorate CP-induced nephrotoxicity

  12. Evaluation of body weight-based vancomycin therapy and the incidence of nephrotoxicity: a retrospective study in the northwest of China.

    Science.gov (United States)

    Dong, Mo-Han; Wang, Jing-Wen; Wu, Yin; Chen, Bei-Yu; Yu, Min; Wen, Ai-Dong

    2015-08-01

    To identify specific risk factors of vancomycin-induced nephrotoxicity in China, as the relationship between vancomycin therapy (dosing and trough concentration monitoring) and nephrotoxicity has been the subject of critical debate. The cases of 90 critically ill patients who received vancomycin therapy in Xijing Hospital in the northwest of China between March 2014 and January 2015 were reviewed retrospectively. Vancomycin dosing, blood serum trough concentration, and other independent risk factors associated with nephrotoxicity were evaluated in a multivariable model. Among the 90 critically ill patients, 59 were males; mean age was 46.3 years. The indications for vancomycin use were methicillin-resistant Staphylococcus aureus-associated pneumonia, central nervous system infection, and bacteremia. Clinical pharmacists prescribed weight-based dosing, ranging from 20 to 45mg/kg/day. Fourteen (15.6%) patients developed nephrotoxicity, with serum creatinine elevated significantly from a mean (standard deviation) of 90.0 (18.8) μmol/l to 133.8 (63.2) μmol/l (p = 0.015). It was found that those with a vancomycin dosage >38mg/kg/day (50.0% vs. 11.3%, p = 0.004) and a vancomycin serum trough concentration >20mg/l (57.1% vs. 12.0%, p = 0.01) were more likely to develop nephrotoxicity. The data from this study indicate that a vancomycin dosage >38mg/kg/day and a serum trough level >20mg/l are both independent factors associated with the development of nephrotoxicity, suggesting that renal function should be monitored closely during vancomycin treatment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Serine protease inhibitor A3K suppressed the formation of ocular surface squamous metaplasia in a mouse model of experimental dry eye.

    Science.gov (United States)

    Lin, Zhirong; Zhou, Yueping; Wang, Yuqian; Zhou, Tong; Li, Jie; Luo, Pingping; He, Hui; Wu, Huping; Liu, Zuguo

    2014-08-07

    To investigate the effects and possible mechanisms of serine protease inhibitor A3K (SERPINA3K) on the formation of ocular surface squamous metaplasia in a mouse dry eye model induced by topical benzalkonium chloride (BAC). The eye drops containing SERPINA3K were topically administered during the induction of BAC-induced dry eye. The clinical indications of dry eye were evaluated on day (D)16, including tear break-up time (BUT), tear volume, corneal fluorescein staining, and inflammatory index. Global specimens were collected on D16 and the following examinations were performed: histologic investigation, immunostaining of cytokeratin 10 (K10), p63 and Ki67 in the cornea, and Western blot analysis of tumor necrosis factor-α (TNF-α). Serine protease inhibitor A3K suppressed the formation of BAC-induced dry eye, presenting with longer BUTs, lower corneal fluorescein staining scores, and inflammatory index, while no significant changes in tear volume. It also reduced the severity of abnormal differentiation and proliferation on ocular surface with lower expressions of K10, p63, and Ki67, and retained the number of goblet cells in the conjunctival fornix. Serine protease inhibitor A3K significantly decreased the levels of TNF-α in the cornea. Topical application of SERPINA3K ameliorated the severity of ocular surface squamous metaplasia and suppressed the formation of BAC-induced dry eye. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  14. The role of magnesium supplementation in cisplatin-induced nephrotoxicity in a rat model: No nephroprotectant effect

    Directory of Open Access Journals (Sweden)

    Farzaneh Ashrafi

    2012-01-01

    Results: All CP-treated animals lost weight, and the percentage of weight loss in Group 1 (low dose Mg sulfate treated was significantly higher compared with the positive control group (Group 4, P < 0.05. The increase in blood urea nitrogen (BUN and creatinine (Cr levels in serum in Group 1 were more than those in other groups ( P < 0.05. No statistical differences were observed in serum magnesium, nitrite, and total protein levels among the groups. The kidney tissue damage in Groups 1-3 was not significantly different when compared with Group 4. Moreover, the kidney and testis weights in Group 1 were significantly greater than those in the positive control group (P < 0.05. Conclusion: Regarding the BUN and Cr levels in the serum, kidneys weight, and the histopathological study, the low dose of Mg supplementation intensifies kidney toxicity and renal dysfunction in CP-induced nephrotoxicity in the rat model. However, the protective role of Mg with moderate and high doses is not certain.

  15. Comparison of Protective Effect of Green Tea and Vitamin C Against Cypermethrin Induce Nephrotoxicity in Mice

    International Nuclear Information System (INIS)

    Manzoor, S.; Mehboob, K.; Naveed, A. K.

    2016-01-01

    Background: Insecticide toxicity is the problem of every person in under developed countries. It is necessary to counteract its effect by natural and cheap remedies like green tea and vitamin C. In this manner common man can also enjoy blessings of life. The current research was performed to compare the protective function of green tea and vitamin C on experimental cypermethrin provoked nephrotoxicity Method: Forty healthy Balb/C mice purchased from National Institute of Health, Islamabad, Pakistan and divided in to four groups (10 each). Group a was control which received only normal diet. Group B, group C and group D were experimental groups which were given Cypermethrin, Cypermethrin with green tea and Cypermethrin with vitamin C respectively. These groups were also given normal diet. After 1 month blood was drawn by intra-cardiac method to assess renal parameters. Results: One month research showed increase in serum urea to 6.8±.48 m.mol/l (n=3.9±.44) while green tea and vitamin C normalize them to 4.0±.83 m.mol/l and 3.4±.33 m.mol/l respectively. Serum creatinine increased to 42.90±3.28 m.mol/l (n=29.50±3.95) while green tea and vitamin C normalize them to 28.80±4.58 m.mol/l and 22.60±2.06 m.mol/l correspondingly. Conclusion The results showed that green tea and vitamin C neutralized toxicity induced by Cypermethrin in mice and their effect is comparable. (author)

  16. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies.

    Science.gov (United States)

    Pabla, N; Dong, Z

    2008-05-01

    Cisplatin is one of the most widely used and most potent chemotherapy drugs. However, side effects in normal tissues and organs, notably nephrotoxicity in the kidneys, limit the use of cisplatin and related platinum-based therapeutics. Recent research has shed significant new lights on the mechanism of cisplatin nephrotoxicity, especially on the signaling pathways leading to tubular cell death and inflammation. Renoprotective approaches are being discovered, but the protective effects are mostly partial, suggesting the need for combinatorial strategies. Importantly, it is unclear whether these approaches would limit the anticancer effects of cisplatin in tumors. Examination of tumor-bearing animals and identification of novel renoprotective strategies that do not diminish the anticancer efficacy of cisplatin are essential to the development of clinically applicable interventions.

  17. Murine nephrotoxic nephritis as a model of chronic kidney disease

    DEFF Research Database (Denmark)

    Ougaard, M. K.E.; Kvist, P. H.; Jensen, H. E.

    2018-01-01

    Using the nonaccelerated murine nephrotoxic nephritis (NTN) as a model of chronic kidney disease (CKD) could provide an easily inducible model that enables a rapid test of treatments. Originally, the NTN model was developed as an acute model of glomerulonephritis, but in this study we evaluate...... progressive mesangial expansion and significant renal fibrosis within three weeks suggesting CKD development. CD1 and C57BL/6 females showed a similar disease progression, but female mice seemed more susceptible to NTS compared to male mice. The presence of albuminuria, GFR decline, mesangial expansion...

  18. 131I-orthoiodohippurate clearance in the detection of cisplatin nephrotoxicity

    International Nuclear Information System (INIS)

    Hengst, W.; Wieler, H.; Rabs, U.; Buerger, R.A.

    1985-01-01

    In this study, 26 patients were treated with 20 mg cisplatin (CP)/m 2 body surface daily for 5 days as part of a combination therapy for testicular cancer. Simultaneously a vigorous hyperhydration (3000 ml daily) was applied to reduce the nephrotoxic effect induced by the drug. sup(131I)-orthoiodophippurate clearance values obtained by the modified method of Oberhausen did not show any significant evidence of tubular dysfunction after therapy. These results may have been due to the vigorous hydration as well as to the youth of the patients. (orig.) [de

  19. Protective effects of Bombyx mori, quercetin and benazepril against doxorubicin induced cardiotoxicity and nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Abdul S. Nazmi

    2016-09-01

    Full Text Available The present study was conducted with the aim of evaluating the protective effects of Bombyx mori, quercetin and benazepril on doxorubicin (DXR induced cardiotoxicity and nephrotoxicity in rats. B. mori, quercetin and benazepril were administered for 7 days, and a single intravenous injection of 10 mg/kg body weight of DXR on day five. The animals were sacrificed 48 h after DXR administration. DXR produced a significant elevation in the malondialdehyde (MDA level and significantly inhibited the activity of glutathione (GSH in the heart and the kidney followed by the activity of catalase (CAT in the heart tissue with a significant rise in the serum levels of aspartate transaminase (AST, lactate dehydrogenase (LDH, blood urea nitrogen (BUN, creatinine and a reduction in serum GSH levels indicating acute cardiac toxicity. B. mori, quercetin and benazepril pretreatment significantly reduced the MDA concentration and ameliorated the inhibition of cardiac GSH and CAT activity. B. mori, quercetin and benazepril also significantly improved the serum levels of AST, LDH, BUN, creatinine and GSH in DXR-treated rats. Furthermore, histological examination of the heart sections confirmed the myocardial injury with DXR administration, and the near normal pattern with B. mori, quercetin and benazepril pretreatment. The results provide clear evidence that the B. mori, quercetin and benazepril pretreatments offer significant protection against DXR-induced enzymatic changes in serum, cardiac and renal tissue damage.

  20. D-serine deficiency attenuates the behavioral and cellular effects induced by the hallucinogenic 5-HT(2A) receptor agonist DOI

    DEFF Research Database (Denmark)

    Santini, Martin A; Balu, Darrick T; Puhl, Matthew D

    2014-01-01

    Both the serotonin and glutamate systems have been implicated in the pathophysiology of schizophrenia, as well as in the mechanism of action of antipsychotic drugs. Psychedelic drugs act through the serotonin 2A receptor (5-HT2AR), and elicit a head-twitch response (HTR) in mice, which directly...... correlates to 5-HT2AR activation and is absent in 5-HT2AR knockout mice. The precise mechanism of this response remains unclear, but both an intrinsic cortico-cortical pathway and a thalamo-cortical pathway involving glutamate release have been proposed. Here, we used a genetic model of NMDAR hypofunction......RNA. These altered functional responses in SRKO mice were not associated with changes in cortical or hippocampal 5-HT levels or in 5-HT2AR and metabotropic glutamate-2 receptor (mGluR2) mRNA and protein expression. Together, these findings suggest that D-serine-dependent NMDAR activity is involved in mediating...

  1. The Effect of Serine Protease Inhibitors on Airway Inflammation in a Chronic Allergen-Induced Asthma Mouse Model

    Directory of Open Access Journals (Sweden)

    Chih-Che Lin

    2014-01-01

    Full Text Available Serine protease inhibitors reportedly attenuated airway inflammation and had antioxidant in multiorgan. However, the effects of the serine protease inhibitors nafamostat mesilate (FUT, gabexate mesilate (FOY, and ulinastatin (UTI on a long-term challenged mouse model of chronic asthma are unclear. BALB/c mice (6 mice/group were intratracheally inoculated with five doses of Dermatophagoides pteronyssinus (Der p; 50 μL, 1 mg/mL at one-week intervals. Therapeutic doses of FUT (0.0625 mg/kg, FOY (20 mg/kg, or UTI (10,000 U/kg were, respectively, injected intraperitoneally into these mice. Control mice received sterile PBS. At 3 days after the last challenge, mice were sacrificed to assess airway hyperresponsiveness (AHR, remodeling, and inflammation; lung histological features; and cytokine expression profiles. Compared with untreated controls, mice treated with FUT, FOY, and UTI had decreased AHR and goblet cell hyperplasia, decreased eosinophil and neutrophil infiltration, decreased Der p-induced IL-4 levels in serum and IL-5, IL-6, IL-13, and IL-17 levels in bronchoalveolar lavage fluid, and inhibited nuclear factor (NF-κB activity in lung tissues. The serine protease inhibitors FUT, FOY, and UTI have potential therapeutic benefits for treating asthma by downregulating Th2 cytokines and Th17 cell function and inhibiting NF-κB activation in lung tissue.

  2. Maintained activity of glycogen synthase kinase-3β despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    International Nuclear Information System (INIS)

    Lim, Yong-Whan; Yoon, Seung-Yong; Choi, Jung-Eun; Kim, Sang-Min; Lee, Hui-Sun; Choe, Han; Lee, Seung-Chul; Kim, Dong-Hou

    2010-01-01

    Glycogen synthase kinase-3β (GSK3β) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3β. However, the inactive form of GSK3β which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3β substrates, such as β-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3β at serine-9 and other substrates including tau, β-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3β inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3β may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3β inhibitors could be a valuable drug candidate in AD.

  3. Evaluation of the protective effect of agmatine against cisplatin nephrotoxicity with 99mTc-DMSA renal scintigraphy and cystatin-C.

    Science.gov (United States)

    Salihoglu, Yavuz Sami; Elri, Tarik; Gulle, Kanat; Can, Murat; Aras, Mustafa; Ozacmak, Hale Sayan; Cabuk, Mehmet

    2016-10-01

    The aim of the current study was to investigate whether agmatine (AGM) has a protective effect against cisplatin-induced nephrotoxicity. Thirty-two rats were randomly divided into four groups: (1) Saline (control); (2) Cisplatin (CDDP; 7.5 mg/kg intraperitoneally); (3) Agmatine (AGM; 10 mg/kg intraperitoneally); (4) Cisplatin plus agmatine (CDDP + AGM). Agmatine was given before and two consecutive days after cisplatin injection. All the animals underwent renal scintigraphy with 99mTc-DMSA. The levels of serum creatinine, cystatin C, and blood urea nitrogen (BUN) were measured in addition to examination of the tissue samples with light microscopy. Acute renal injury was assessed with biochemical analyses, scintigraphic imaging, and histopathological evaluation. In the cisplatin group, the levels of BUN, creatinine, and cystatin C were significantly higher than that of the controls. Histopathological examination showed remarkable damage of tubular and glomerular structures. Additionally, cisplatin caused markedly decreased renal 99mTc-DMSA uptake. AGM administration improved renal functions. Serum creatinine, BUN, and cystatin C levels had a tendency to normalize and, scintigraphic and histopathological findings showed significantly less evidence of renal toxicity than those observed in animals receiving cisplatin alone. Our data indicate that AGM has a protective effect against cisplatin-induced nephrotoxicity. Therefore, it may improve the therapeutic index of cisplatin. In addition, the early renal damage induced by cisplatin and protective effects of AGM against cisplatin nephrotoxicity was accurately demonstrated with 99mTc-DMSA renal scintigraphy.

  4. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy with 177Lu-octreotate

    International Nuclear Information System (INIS)

    Sabet, Amir; Ezziddin, Khaled; Reichman, Karl; Haslerud, Torjan; Ahmadzadehfar, Hojjat; Biersack, Hans-Juergen; Ezziddin, Samer; Pape, Ulrich-Frank; Nagarajah, James

    2014-01-01

    Renal radiation during peptide receptor radionuclide therapy (PRRT) may result in glomerular damage, a potential reduction of glomerular filtration rate (GFR) and ultimately lead to renal failure. While reported PRRT nephrotoxicity is limited to data derived from serum creatinine - allowing only approximate estimates of GFR - the aim of this study is to accurately determine PRRT-induced long-term changes of renal function and associated risk factors according to state-of-the-art GFR measurement. Nephrotoxicity was analysed using 99m Tc-diethylenetriaminepentaacetic acid (DTPA) clearance data of 74 consecutive patients with gastroenteropancreatic neuroendocrine tumours (GEP NET) undergoing PRRT with 177 Lu-octreotate. The mean follow-up period was 21 months (range 12-50) with a median of five GFR measurements per patient. The change of GFR was analysed by linear curve fit. Potential risk factors including diabetes mellitus, arterial hypertension, previous chemotherapy, renal impairment at baseline and cumulative administered activity were analysed regarding potential impact on renal function loss. In addition, Common Terminology Criteria for Adverse Events (CTCAE) v3.0 were used to compare nephrotoxicity determined by 99m Tc-DTPA clearance versus serum creatinine. The alteration in GFR differed widely among the patients (mean -2.1 ± 13.1 ml/min/m 2 per year, relative yearly reduction -1.8 ± 18.9 %). Fifteen patients (21 %) experienced a mild (2-10 ml/min/m 2 per year) and 16 patients (22 %) a significant (>10 ml/min/m 2 per year) decline of GFR following PRRT. However, 11 patients (15 %) showed an increase of >10 ml/min/m 2 per year. Relevant nephrotoxicity according to CTCAE (grade ≥3) was observed in one patient (1.3 %) with arterial hypertension and history of chemotherapy. Nephrotoxicity according to serum creatinine was discordant to that defined by GFR in 15 % of the assessments and led to underestimation in 12 % of patients. None of the investigated

  5. Novel quinolinone-phosphonic acid AMPA antagonists devoid of nephrotoxicity.

    Science.gov (United States)

    Cordi, Alex A; Desos, Patrice; Ruano, Elisabeth; Al-Badri, Hashim; Fugier, Claude; Chapman, Astrid G; Meldrum, Brian S; Thomas, Jean-Yves; Roger, Anita; Lestage, Pierre

    2002-10-01

    We reported previously the synthesis and structure-activity relationships (SAR) in a series of 2-(1H)-oxoquinolines bearing different acidic functions in the 3-position. Exploiting these SAR, we were able to identify 6,7-dichloro-2-(1H)-oxoquinoline-3-phosphonic acid compound 3 (S 17625) as a potent, in vivo active AMPA antagonist. Unfortunately, during the course of the development, nephrotoxicity was manifest at therapeutically effective doses. Considering that some similitude exists between S 17625 and probenecid, a compound known to protect against the nephrotoxicity and/or slow the clearance of different drugs, we decided to synthesise some new analogues of S 17625 incorporating some of the salient features of probenecid. Replacement of the chlorine in position 6 by a sulfonylamine led to very potent AMPA antagonists endowed with good in vivo activity and lacking nephrotoxicity potential. Amongst the compounds evaluated, derivatives 7a and 7s appear to be the most promising and are currently evaluated in therapeutically relevant stroke models.

  6. Crystallization and preliminary X-ray analysis of a d-Ala:d-Ser ligase associated with VanG-type vancomycin resistance

    International Nuclear Information System (INIS)

    Weber, Patrick; Meziane-Cherif, Djalal; Haouz, Ahmed; Saul, Frederick A.; Courvalin, Patrice

    2009-01-01

    The VanG d-alanine:d-serine ligase was crystallized in complex with ADP and diffraction data were collected at 2.35 Å resolution. Acquired VanG-type resistance to vancomycin in Enterococcus faecalis BM4518 arises from inducible synthesis of peptidoglycan precursors ending in d-alanyl-d-serine, to which vancomycin exhibits low binding affinity. VanG, a d-alanine:d-serine ligase, catalyzes the ATP-dependent synthesis of the d-Ala-d-Ser dipeptide, which is incorporated into the peptidoglycan synthesis of VanG-type vancomycin-resistant strains. Here, the purification, crystallization and preliminary crystallographic analysis of VanG in complex with ADP are reported. The crystal belonged to space group P3 1 21, with unit-cell parameters a = b = 116.1, c = 177.2 Å, and contained two molecules in the asymmetric unit. A complete data set has been collected to 2.35 Å resolution from a single crystal under cryogenic conditions using synchrotron radiation

  7. Nephrotoxicity of Natural Products.

    Science.gov (United States)

    Nauffal, Mary; Gabardi, Steven

    2016-01-01

    The manufacture and sale of natural products constitute a multi-billion dollar industry. Nearly a third of the American population admit to using some form of complementary or alternative medicine, with many using them in addition to prescription medications. Most patients fail to inform their healthcare providers of their natural product use and physicians rarely inquire. Annually, thousands of natural product-induced adverse events are reported to Poison Control Centers nationwide. Natural product manufacturers are not responsible for proving safety and efficacy, as the FDA does not regulate them. However, concerns exist surrounding the safety of natural products. This review provides details on natural products that have been associated with renal dysfunction. We have focused on products that have been associated with direct renal injury, immune-mediated nephrotoxicity, nephrolithiasis, rhabdomyolysis with acute renal injury, hepatorenal syndrome, and common adulterants or contaminants that are associated with renal dysfunction. The potential for natural products to cause renal dysfunction is justifiable. It is imperative that natural product use be monitored closely in all patients. Healthcare practitioners must play an active role in identifying patients using natural products and provide appropriate patient education. © 2016 S. Karger AG, Basel.

  8. Protective effect of selenium on cisplatin induced nephrotoxicity: A double-blind controlled randomized clinical trial.

    Science.gov (United States)

    Ghorbani, Ali; Omidvar, Bita; Parsi, Abazar

    2013-04-01

    Renal injury is common following cisplatin infusion. Some agents have been used to attenuate cisplatin nephrotoxicity. However, except hydration, none of them has been proved to be effective. In this study selenium as an antioxidant supplement was tested on cisplatin induced renal injury. 122 cancerous patients (85 male and 37 female; age range of 14 to 82 years old) were enrolled to receive chemotherapy regimens consisting cisplatin. They were allocated into two groups using a random number list . Investigators, patients and analyzers all, were blinded in allocation by using sealed opaque envelopes. Intervention group received a single 400 mcg selenium tablet and patients in control group took a placebo tablet which was similar with selenium preparation in color, weight, shape and taste. Primary end points were an increase in plasma creatinine above 1.5 mg/dl in men and 1.4mg/dl in women, or increase of plasma creatinine more than 50% from baseline or urine flow rate less than 0.5 ml/kg/h. Creatinine level was measured initially and on the 5th day after cisplatin therapy. There was no difference in cumulative dose of cisplatin between the groups (p=0.54). There were not evidences of acute renal failure (ARF) in cases. While, among placebo group, 7 patients had criteria of acute kidney injury. Conclusions :selenium could probably prevent cisplatin-induced acute kidney injury, when it is added to hydration therapy in cancerous patients.

  9. QiShenYiQi Pills, a Compound Chinese Medicine, Prevented Cisplatin Induced Acute Kidney Injury via Regulating Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2017-12-01

    Full Text Available Nephrotoxicity is a serious adverse effect of cisplatin chemotherapy that limits its clinical application, to deal with which no effective management is available so far. The present study was to investigate the potential protective effect of QiShenYiQi Pills (QSYQ, a compound Chinese medicine, against cisplatin induced nephrotoxicity in mice. Pretreatment with QSYQ significantly attenuated the cisplatin induced increase in plasma urea and creatinine, along with the histological damage, such as tubular necrosis, protein cast, and desquamation of epithelial cells, improved the renal microcirculation disturbance as indicated by renal blood flow, microvascular flow velocity, and the number of adherent leukocytes. Additionally, QSYQ prevented mitochondrial dysfunction by preventing the cisplatin induced downregulation of mitochondrial complex activity and the expression of NDUFA10, ATP5D, and Sirt3. Meanwhile, the cisplatin-increased renal thiobarbituric acid-reactive substances, caspase9, cleaved-caspase9, and cleaved-caspase3 were all diminished by QSYQ pretreatment. In summary, the pretreatment with QSYQ remarkably ameliorated the cisplatin induced nephrotoxicity in mice, possibly via the regulation of mitochondrial function, oxidative stress, and apoptosis.

  10. Method for the production of l-serine using genetically engineered microorganisms deficient in serine degradation pathways

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the microbiological industry, and specifically to the production of L-serine using genetically modified bacteria. The present invention provides genetically modified microorganisms, such as bacteria, wherein the expression of genes encoding for enzymes...... concentrations of serine. The present invention also provides methods for the production of L-serine or L-serine derivative using such genetically modified microorganisms....

  11. Influence of cytochalasin D-induced changes in cell shape on proteoglycan synthesis by cultured articular chondrocytes

    International Nuclear Information System (INIS)

    Newman, P.; Watt, F.M.

    1988-01-01

    There is growing evidence that cell shape regulates both proliferation and differentiated gene expression in a variety of cell types. The authors have explored the relationship between the morphology of articular chondrocytes in culture and the amount and type of proteoglycan they synthesize, using cytochalasin D to induce reversible cell rounding. When chondrocytes were prevented from spreading or when spread cells were induced to round up, 35 SO 4 incorporation into proteoglycan was stimulated. Incorporation into the cell layer was stimulated more than into the medium. When the cells were allowed to respread by removing cytochalasin D, proteoglycan synthesis returned to control levels. Cytochalasin D-induced stimulation of 35 SO 4 incorporation reflected an increase in core protein synthesis rather than lengthening of glycosaminoglycan chains, because [ 3 H]serine incorporation into core protein was also stimulated. Cytochalasm D-treatment of cells in suspension caused no further stimulation of 35 SO 4 incorporation, suggesting that the observed effects were due to cell rounding rather than exposure to cytochalasin D per se

  12. Curcumin ameliorates diclofenac sodium-induced nephrotoxicity in male albino rats.

    Science.gov (United States)

    Ahmed, Ahmady Y; Gad, Amany M; El-Raouf, Ola M Abd

    2017-10-01

    Exposure to drugs often results in toxicity in the kidney which represents the major control system maintaining homeostasis of the body and thus is especially susceptible to xenobiotics. Nephrotoxicity is a life-threatening side-effect of nonsteroidal anti-inflammatory drugs (NSAIDs). Diclofenac is one of the most frequently prescribed NSAIDs and have been reported to cause multiple organs damage. Curcumin (CUR) exhibits nephroprotective properties. Therefore, rats were divided into four groups; rats of groups 3 and 4 received diclofenac (100 mg/kg, i.m.), whereas rats of groups 2 and 4 received CUR (100 mg/kg, p.o.) for 3 days. Diclofenac revealed a significant increase in urea and creatinine levels and malondialdehyde concentration and marked reduction in catalase activity and reduced glutathione concentration. Histopathologically, diclofenac produced fatty changes and eosinophilic casts were detected in the renal tubules, those were attenuated by administration of CUR prior diclofenac. © 2017 Wiley Periodicals, Inc.

  13. Structural and Functional Adaptation of Vancomycin Resistance VanT Serine Racemases.

    Science.gov (United States)

    Meziane-Cherif, Djalal; Stogios, Peter J; Evdokimova, Elena; Egorova, Olga; Savchenko, Alexei; Courvalin, Patrice

    2015-08-11

    Vancomycin resistance in Gram-positive bacteria results from the replacement of the D-alanyl-D-alanine target of peptidoglycan precursors with D-alanyl-D-lactate or D-alanyl-D-serine (D-Ala-D-Ser), to which vancomycin has low binding affinity. VanT is one of the proteins required for the production of D-Ala-D-Ser-terminating precursors by converting L-Ser to D-Ser. VanT is composed of two domains, an N-terminal membrane-bound domain, likely involved in L-Ser uptake, and a C-terminal cytoplasmic catalytic domain which is related to bacterial alanine racemases. To gain insight into the molecular function of VanT, the crystal structure of the catalytic domain of VanTG from VanG-type resistant Enterococcus faecalis BM4518 was determined. The structure showed significant similarity to type III pyridoxal 5'-phosphate (PLP)-dependent alanine racemases, which are essential for peptidoglycan synthesis. Comparative structural analysis between VanTG and alanine racemases as well as site-directed mutagenesis identified three specific active site positions centered around Asn696 which are responsible for the L-amino acid specificity. This analysis also suggested that VanT racemases evolved from regular alanine racemases by acquiring additional selectivity toward serine while preserving that for alanine. The 4-fold-lower relative catalytic efficiency of VanTG against L-Ser versus L-Ala implied that this enzyme relies on its membrane-bound domain for L-Ser transport to increase the overall rate of d-Ser production. These findings illustrate how vancomycin pressure selected for molecular adaptation of a housekeeping enzyme to a bifunctional enzyme to allow for peptidoglycan remodeling, a strategy increasingly observed in antibiotic-resistant bacteria. Vancomycin is one of the drugs of last resort against Gram-positive antibiotic-resistant pathogens. However, bacteria have evolved a sophisticated mechanism which remodels the drug target, the D-alanine ending precursors in cell wall

  14. Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: Effects on tissue fibrosis and apoptosis.

    Science.gov (United States)

    Al-Gayyar, Mohammed M H; Hassan, Hanan M; Alyoussef, Abdullah; Abbas, Ahmed; Darweish, Mohamed M; El-Hawwary, Amany A

    2016-03-01

    Sodium nitrite, a food preservative, has been reported to increase oxidative stress indicators such as lipid peroxidation, which can affect different organs including the kidney. Here, we investigated the toxic effects of oral sodium nitrite on kidney function in rats and evaluated potential protective effects of Nigella sativa oil (NSO). Seventy adult male Sprague-Dawley rats received 80 mg/kg sodium nitrite orally in the presence or absence of NSO (2.5, 5, and 10 ml/kg) for 12 weeks. Morphological changes were assessed by hematoxylin and eosin, Mallory trichome, and periodic acid-Schiff staining. Renal tissues were used for measurements of oxidative stress markers, C-reactive protein, cytochrome C oxidase, transforming growth factor (TGF)-beta1, monocyte chemotactic protein (MCP)-1, pJNK/JNK, and caspase-3. NSO significantly reduced sodium nitrite-induced elevation in serum urea and creatinine, as well as increasing normal appearance of renal tissue. NSO also prevented reductions in glycogen levels caused by sodium nitrite alone. Moreover, NSO treatment resulted in dose-dependent significant reductions in fibrosis markers after sodium nitrite-induced 3- and 2.7-fold increase in MCP-1 and TGF-beta1, respectively. Finally, NSO partially reduced the elevated caspase-3 and pJNK/JNK. NSO ameliorates sodium nitrite-induced nephrotoxicity through blocking oxidative stress, attenuation of fibrosis/inflammation, restoration of glycogen level, amelioration of cytochrome C oxidase, and inhibition of apoptosis.

  15. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy with {sup 177}Lu-octreotate

    Energy Technology Data Exchange (ETDEWEB)

    Sabet, Amir; Ezziddin, Khaled; Reichman, Karl; Haslerud, Torjan; Ahmadzadehfar, Hojjat; Biersack, Hans-Juergen; Ezziddin, Samer [University Hospital Bonn, Department of Nuclear Medicine, Bonn (Germany); Pape, Ulrich-Frank [Charite, University Medicine Berlin, Campus Virchow Clinic, Department of Hepatology and Gastroenterology, Berlin (Germany); Nagarajah, James [University Hospital, Department of Nuclear Medicine, Essen (Germany)

    2014-03-15

    Renal radiation during peptide receptor radionuclide therapy (PRRT) may result in glomerular damage, a potential reduction of glomerular filtration rate (GFR) and ultimately lead to renal failure. While reported PRRT nephrotoxicity is limited to data derived from serum creatinine - allowing only approximate estimates of GFR - the aim of this study is to accurately determine PRRT-induced long-term changes of renal function and associated risk factors according to state-of-the-art GFR measurement. Nephrotoxicity was analysed using {sup 99m}Tc-diethylenetriaminepentaacetic acid (DTPA) clearance data of 74 consecutive patients with gastroenteropancreatic neuroendocrine tumours (GEP NET) undergoing PRRT with {sup 177}Lu-octreotate. The mean follow-up period was 21 months (range 12-50) with a median of five GFR measurements per patient. The change of GFR was analysed by linear curve fit. Potential risk factors including diabetes mellitus, arterial hypertension, previous chemotherapy, renal impairment at baseline and cumulative administered activity were analysed regarding potential impact on renal function loss. In addition, Common Terminology Criteria for Adverse Events (CTCAE) v3.0 were used to compare nephrotoxicity determined by {sup 99m}Tc-DTPA clearance versus serum creatinine. The alteration in GFR differed widely among the patients (mean -2.1 ± 13.1 ml/min/m{sup 2} per year, relative yearly reduction -1.8 ± 18.9 %). Fifteen patients (21 %) experienced a mild (2-10 ml/min/m{sup 2} per year) and 16 patients (22 %) a significant (>10 ml/min/m{sup 2} per year) decline of GFR following PRRT. However, 11 patients (15 %) showed an increase of >10 ml/min/m{sup 2} per year. Relevant nephrotoxicity according to CTCAE (grade ≥3) was observed in one patient (1.3 %) with arterial hypertension and history of chemotherapy. Nephrotoxicity according to serum creatinine was discordant to that defined by GFR in 15 % of the assessments and led to underestimation in 12 % of

  16. [Influence of dose regimen on gentamycin nephrotoxicity in rats].

    Science.gov (United States)

    Oliveira, V C; Tejos, C R; Hosaka, E M; Andrade, S C; Araújo, M; Vattimo, M F

    2001-06-01

    The acute renal failure (ARF), that still presents a right mortality rate (50%) can be defined as an abrupt decline of the glomerular filtration, resultant of ischemic or toxicity event. The drugs nephrotoxicity is one of the most frequent cause (27%) of ARF and it is suggested that the interval of administration of the drug can interfere in this side effect, however the best administration regimen is not very well established. This study evaluated the renal function of rats that received gentamicin (100 mg/kg) in one dose or in two doses (2 x 50 mg/kg), by intraperitoneal infusion. The results obtained in this research, indicated that the single infusion of gentamicin determined smaller nephrotoxicity by the reduction of serum concentration of this drug in 24 hours, decreasing the intracellular accumulation of this gentamicin, which is one of the main cellular mechanisms of this renal injury. The single dose treatment regime, otherwise, shows advantages not only related to the nephrotoxicity effect, but also it is relevant to the cost and safety, which can be rationable factors in the administration of this drug.

  17. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity.

    Science.gov (United States)

    Dugbartey, George J; Bouma, Hjalmar R; Lobb, Ian; Sener, Alp

    2016-07-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Variation of nephrotoxicity biomarkers by urinary storage condition in rats.

    Science.gov (United States)

    Le, Jung-Min; Han, Young-Hwan; Choi, Su-Jeong; Park, Ju-Seong; Jang, Jeong-Jun; Bae, Re-Ji-Na; Lee, Mi Ju; Kim, Myoung Jun; Lee, Yong-Hoon; Kim, Duyeol; Lee, Hye-Young; Park, Sun-Hee; Park, Cheol-Beom; Kang, Jin Seok; Kang, Jong-Koo

    2014-12-01

    Recently, there has been an increase in the use of several nephrotoxicity biomarkers in preclinical experiments. In addition, it has been indicated that the result may have been influenced by secondary factors, such as sample storage condition or storage period. In this study, we have assessed the variation in urinary nephrotoxicity biomarkers as a result of urine storage conditions and storage period of the urine. Urine was sampled from specific pathogen-free Sprague-Dawley rats (19 weeks old), which were housed individually in hanged stainless steel wire mesh cages. Urine was stored at 20℃, at 4℃, or at -70℃ after sampling. The levels of the biomarkers such as beta-2 microglobulin (B2M), cystatin-C (Cys-C), N-acetyl-β- D-glucosaminidase (NAG), micro albumin (MA), micro protein (MP) were measured at 6, 24, 48 and 144 hr after sampling. The B2M level was significantly decreased at 6, 24, 48, and 144 hr compared to 0 hr at -70℃ (p storage conditions. Taken together, B2M and Cys-C levels were modulated by storage temperature and period. For the enhancement of test accuracy, it is suggested that strict protocols be established for samples to minimize the effects of the storage conditions on the detected levels of biomarkers.

  19. Risk factors for calcineurin inhibitor nephrotoxicity after renal transplantation: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Xia T

    2018-02-01

    Full Text Available Tianyi Xia, Sang Zhu, Yan Wen, Shouhong Gao, Mingming Li, Xia Tao, Feng Zhang, Wansheng Chen Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China Background: Nephrotoxicity of calcineurin inhibitors (CNIs is the major concern for long-term allograft survival despite its predominant role in current immunosuppressive regime after renal transplantation. CNI nephrotoxicity is multifactorial with demographic, environmental, and pharmacogenetic flexibility, whereas studies indicating risk factors for CNI nephrotoxicity obtained incomplete or conflicting results.Methods: A systematic review and meta-analysis of risk factors for CNI nephrotoxicity was performed on all retrieved studies through a comprehensive research of network database. Data were analyzed by Review Manager 5.2 with heterogeneity assessed using the Cochrane Q and I2 tests. CNI nephrotoxicity was primarily indicated with protocol biopsy or index-based clinical diagnosis, and the secondary outcome was defined as delayed graft function.Results: Twelve observational studies containing a total of 2,849 cases were identified. Donor age (odds ratio [OR], 1.01; 95% CI, 1.01–1.03; p=0.02, recipient zero-time arteriosclerosis (OR, 1.44; 95% CI, 1.04–1.99; p=0.03, and CYP3A5*3/*3 genotype (OR, 2.80; 95% CI, 2.63–2.98; p=0.00 were confirmed as risk factors for CNI nephrotoxicity. Subgroup and sensitivity analysis claimed donor age as a significant contributor in Asian and Caucasian areas.Conclusion: Older donor age, recipient zero-time arteriosclerosis, and CYP3A5*3/*3 genotype might add up the risk for CNI nephrotoxicity, which could be interpreted into a robust biomarker system. Keywords: calcineurin inhibitor, transplantation, nephrotoxicity, risk factor, systematic review, meta-analysis

  20. L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Zhu, Qinjian; Zhang, Xiaomei; Luo, Yuchang; Guo, Wen; Xu, Guoqiang; Shi, Jinsong; Xu, Zhenghong

    2015-02-01

    The direct fermentative production of L-serine by Corynebacterium glutamicum from sugars is attractive. However, superfluous by-product accumulation and low L-serine productivity limit its industrial production on large scale. This study aimed to investigate metabolic and bioprocess engineering strategies towards eliminating by-products as well as increasing L-serine productivity. Deletion of alaT and avtA encoding the transaminases and introduction of an attenuated mutant of acetohydroxyacid synthase (AHAS) increased both L-serine production level (26.23 g/L) and its productivity (0.27 g/L/h). Compared to the parent strain, the by-products L-alanine and L-valine accumulation in the resulting strain were reduced by 87 % (from 9.80 to 1.23 g/L) and 60 % (from 6.54 to 2.63 g/L), respectively. The modification decreased the metabolic flow towards the branched-chain amino acids (BCAAs) and induced to shift it towards L-serine production. Meanwhile, it was found that corn steep liquor (CSL) could stimulate cell growth and increase sucrose consumption rate as well as L-serine productivity. With addition of 2 g/L CSL, the resulting strain showed a significant improvement in the sucrose consumption rate (72 %) and the L-serine productivity (67 %). In fed-batch fermentation, 42.62 g/L of L-serine accumulation was achieved with a productivity of 0.44 g/L/h and yield of 0.21 g/g sucrose, which was the highest production of L-serine from sugars to date. The results demonstrated that combined metabolic and bioprocess engineering strategies could minimize by-product accumulation and improve L-serine productivity.

  1. Intravenous Vancomycin Associated With the Development of Nephrotoxicity in Patients With Class III Obesity.

    Science.gov (United States)

    Choi, Yookyung Christy; Saw, Stephen; Soliman, Daniel; Bingham, Angela L; Pontiggia, Laura; Hunter, Krystal; Chuang, Linda; Siemianowski, Laura A; Ereshefsky, Benjamin; Hollands, James M

    2017-11-01

    A consensus statement recommends initial intravenous (IV) vancomycin dosing of 15-20 mg/kg every 8- 24 hours, with an optional 25- to 30-mg/kg loading dose. Although some studies have shown an association between weight and the development of vancomycin-associated nephrotoxicity, results have been inconsistent. To evaluate the correlation between incidence of nephrotoxicity associated with weight-based IV vancomycin dosing strategies in nonobese and obese patients. This retrospective cohort study evaluated hospitalized adult patients admitted who received IV vancomycin. Patients were stratified into nonobese (body mass index [BMI] obesity class I and II (BMI 30-39.9kg/m 2 ), and obesity class III (BMI≥40 kg/m 2 ) groups; patients who were overweight but not obese were excluded. Incidence of nephrotoxicity and serum vancomycin trough concentrations were evaluated. Of a total of 62 documented cases of nephrotoxicity (15.1%), 13 (8.7%), 23 (14.3%), and 26 (26.3%) cases were observed in nonobese, obesity class I and II, and obesity class III groups, respectively ( P=0.002). Longer durations of therapy ( P20 mg/L ( Pobesity were 3-times as likely to develop nephrotoxicity when compared with nonobese patients (odds ratio [OR]=2.99; CI=1.12-7.94) and obesity class I and II patients (OR=3.14; CI=1.27-7.75). Obesity and other factors are associated with a higher risk of vancomycin-associated nephrotoxicity.

  2. Negative Role of RIG-I Serine 8 Phosphorylation in the Regulatin of Interferon-beta Production

    Energy Technology Data Exchange (ETDEWEB)

    E Nistal-Villan; M Gack; G Martinez-Delgado; N Maharaj; K Inn; H Yang; R Wang; A Aggarwal; J Jung; A Garcia-Sastre

    2011-12-31

    RIG-I (retinoic acid-inducible gene I) and TRIM25 (tripartite motif protein 25) have emerged as key regulatory factors to induce interferon (IFN)-mediated innate immune responses to limit viral replication. Upon recognition of viral RNA, TRIM25 E3 ligase binds the first caspase recruitment domain (CARD) of RIG-I and subsequently induces lysine 172 ubiquitination of the second CARD of RIG-I, which is essential for the interaction with downstream MAVS/IPS-1/CARDIF/VISA and, thereby, IFN-beta mRNA production. Although ubiquitination has emerged as a major factor involved in RIG-I activation, the potential contribution of other post-translational modifications, such as phosphorylation, to the regulation of RIG-I activity has not been addressed. Here, we report the identification of serine 8 phosphorylation at the first CARD of RIG-I as a negative regulatory mechanism of RIG-I-mediated IFN-beta production. Immunoblot analysis with a phosphospecific antibody showed that RIG-I serine 8 phosphorylation steady-state levels were decreased upon stimulation of cells with IFN-beta or virus infection. Substitution of serine 8 in the CARD RIG-I functional domain with phosphomimetic aspartate or glutamate results in decreased TRIM25 binding, RIG-I ubiquitination, MAVS binding, and downstream signaling. Finally, sequence comparison reveals that only primate species carry serine 8, whereas other animal species carry an asparagine, indicating that serine 8 phosphorylation may represent a primate-specific regulation of RIG-I activation. Collectively, these data suggest that the phosphorylation of RIG-I serine 8 operates as a negative switch of RIG-I activation by suppressing TRIM25 interaction, further underscoring the importance of RIG-I and TRIM25 connection in type I IFN signal transduction.

  3. DNA damage response in nephrotoxic and ischemic kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Mingjuan; Tang, Chengyuan [Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 (China); Ma, Zhengwei [Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912 (United States); Huang, Shuang [Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (United States); Dong, Zheng, E-mail: zdong@augusta.edu [Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 (China); Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912 (United States)

    2016-12-15

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.

  4. Severity of gentamicin's nephrotoxic effect on patients with infective endocarditis: a prospective observational cohort study of 373 patients

    DEFF Research Database (Denmark)

    Buchholtz, Kristine; Larsen, Carsten T; Hassager, Christian

    2009-01-01

    BACKGROUND: Gentamicin is often used to treat infective endocarditis (IE). Gentamicin is highly effective, but its applicability is reduced by its nephrotoxic effect. The aim of this study was to quantify the nephrotoxic effect of gentamicin and the association between the nephrotoxic effect...

  5. Oleic acid loading does not add to the nephrotoxic effect of albumin in an amphibian and chronic rat model of kidney injury

    NARCIS (Netherlands)

    van Timmeren, Mirjan M.; Gross, Marie-Luise; Hanke, Wilfried; Klok, Pieter A.; van Goor, Harry; Stegeman, Coen A.; Bakker, Stephan J. L.

    2008-01-01

    Background. Under proteinuric conditions, ultrafiltrated albumin can induce an inflammatory and fibrotic response in proximal tubular cells. It is unclear whether albumin per se or compounds bound to albumin are nephrotoxic. Some studies have supported the toxicity of albumin-bound fatty acids;

  6. The protective role of saffron petal extracts on gentamicininduced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Arash Omidi

    2016-07-01

    Full Text Available Different potentially therapeutic approaches to prevent or attenuate gentamicin sulfate (GM induced nephrotoxicity have been proposed. The present study was conducted to investigate the effect of the saffron petals extracts (Crocus sativus (SPE on male Wistar rats with kidney failure. Rats (40 were randomly assigned into five groups of 8 animals each: i the control group, that received normal saline (0.5 mL/kg; ii the GM group, that received GM (80 mg/kg by intraperitoneal (i.p. injection on a daily basis; iii the GM+SPE group that received the same dose of GM and SPE (40 mg/kg by i.p. injection on a daily basis; iv the GM+2SPE group, that received the same dose of GM and twofold of SPE (80 mg/kg by i.p. injection on a daily basis; whereas v 2SPE+GM group, that received 80 mg/kg of SPE a week before initiating the treatment with GM (prevention group. Significant differences were seen in the concentration of glucose, blood urea nitrogen (BUN, and creatinine between treatment groups and control in the male Wistar rats. GM was observed to cause nephrotoxicity, which was evidenced by an elevation of serum BUN and creatinine levels. The biochemical findings of the current study are concordant with those of histopathologic findings. The results of this study indicate that SPE especially in dose of 40 mg/kg can ameliorate harmful effects of GM on the kidney. The present results may suggest that the SPE have ameliorative effects on kidney failures induced by GM.

  7. Cloning and sequence analysis of serine proteinase of Gloydius ussuriensis venom gland

    International Nuclear Information System (INIS)

    Sun Dejun; Liu Shanshan; Yang Chunwei; Zhao Yizhuo; Chang Shufang; Yan Weiqun

    2005-01-01

    Objective: To construct a cDNA library by using mRNA from Gloydius ussuriensis (G. Ussuriensis) venom gland, to clone and analyze serine proteinase gene from the cDNA library. Methods: Total RNA was isolated from venom gland of G. ussuriensis, mRNA was purified by using mRNA isolation Kit. The whole length cDNA was synthesized by means of smart cDNA synthesis strategy, and amplified by long distance PCR procedure, lately cDAN was cloned into vector pBluescrip-sk. The recombinant cDNA was transformed into E. coli DH5α. The cDNA of serine proteinase gene in the venom gland of G. ussuriensis was detected and amplified using the in situ hybridization. The cDNA fragment was inserted into pGEMT vector, cloned and its nucleotide sequence was determined. Results: The capacity of cDNA library of venom gland was above 2.3 x 10 6 . Its open reading frame was composed of 702 nucleotides and coded a protein pre-zymogen of 234 amino acids. It contained 12 cysteine residues. The sequence analysis indicated that the deduced amino acid sequence of the cDNA fragment shared high identity with the thrombin-like enzyme genes of other snakes in the GenBank. the query sequence exhibited strong amino acid sequence homology of 85% to the serine proteas of T. gramineus, thrombin-like serine proteinase I of D. acutus and serine protease catroxase II of C. atrox respectively. Based on the amino acid sequences of other thrombin-like enzymes, the catalytic residues and disulfide bridges of this thrombin-like enzyme were deduced as follows: catalytic residues, His 41 , Asp 86 , Ser 180 ; and six disulfide bridges Cys 7 -Cys 139 , Cys 26 -Cys 42 , Cys 74 -Cys 232 , Cys 118 -Cys 186 , Cys 150 -Cys 165 , Cys 176 -Cys 201 . Conclusion: The capacity of cDNA library of venom gland is above 2.3 x 10 6 , overtop the level of 10 5 capicity. The constructed cDNA library of G. ussuriensis venom gland would be helpful platform to detect new target genes and further gene manipulate. The cloned serine

  8. Herbs with potential nephrotoxic effects according to traditional Persian medicine: Review and assessment of scientific evidence.

    Science.gov (United States)

    Kolangi, Fatemeh; Memariani, Zahra; Bozorgi, Mahboubeh; Mozaffarpur, Seyyed Ali; Mirzapour, Mohaddeseh

    2018-04-03

    The increased use of herbal remedies particularly in patients with kidney diseases indicated the importance of studies which focused on nephrotoxic plants. The present study aimed to review and assess the kidney-damaging herbs mentioned in the Persian medicine [PM] books. The main PM books were searched for nephrotoxic herbs and their relevant reformers traditionally proposed for preventing renal damage. PubMed, Scopus and Google Scholar were investigated for evaluation of the scientific evidence relating to the nephrotoxicity of herbs. A total of 64 plants with kidney damage potential and their reformer medicaments were recorded in 7 sources included in this review. Allium schoenoprasum and Marrubium vulgare were the most repeated and emphasized nephrotoxic plants in PM books, but there was not any relevant scientific evidence. Despite the lack of clinical studies, some evidence was found for 38% of plants that were related to renal damage. The most repeated reformers for reducing the renal side effects mainly consisted of gum tragacanth, gum Arabic, mastic gum, anise, jujube and honey and some evidence was found for their nephroprotective activities. The present study reviewed and assessed the herbs with adverse renal effects in the main PM books. Some evidence was in line with the potential nephrotoxicity of plants and their ‎reformers. Despite the lack of clinical research for evaluation of their renal damage, the herbs may be focused in term of their nephrotoxicity; and there is a need for further studies on the scientific basis of their nephrotoxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Simultaneous analysis of D-alanine, D-aspartic acid, and D-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues.

    Science.gov (United States)

    Karakawa, Sachise; Shimbo, Kazutaka; Yamada, Naoyuki; Mizukoshi, Toshimi; Miyano, Hiroshi; Mita, Masashi; Lindner, Wolfgang; Hamase, Kenji

    2015-11-10

    A highly sensitive and selective chiral LC-MS/MS method for D-alanine, D-aspartic acid and D-serine has been developed using the precolumn derivatization reagents, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Tag) or p-N,N,N-trimethylammonioanilyl N'-hydroxysuccinimidyl carbamate iodide (TAHS). The thus N-tagged enantiomers of the derivatized amino acids were nicely separated within 20min using the cinchona alkaloid-based zwittterionic ion-exchange type enantioselective column, Chiralpak ZWIX(+). The selected reaction monitoring was applied for detecting the target d-amino acids in biological matrices. By using the present chiral LC-MS/MS method, the three d-amino acids and their l-forms could be simultaneously determined in the range of 0.1-500nmol/mL. Finally, the technique was successfully applied to rat plasma and tissue samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Glycine serine interconversion in the rooster

    International Nuclear Information System (INIS)

    Sugahara, Michihiro; Kandatsu, Makoto

    1976-01-01

    Serine was isolated by the column chromatography from the hydrolyzates of proteins of the serum, the liver and the pectoral muscle which were obtained from the roosters fed a diet containing 2- 14 C glycine for 16 - 17 days. The carbon chain of serine was cut off by treating with sodium periodate. The specific activity of each carbon (as barium carbonate) was estimated. Carboxyl carbon had little radioactivity. The specific activity of hydroxymethyl carbon was 10 - 19% of that of methylene carbon. Glycine isolated from the same hydrolyzates was degraded by ninhydrin oxidation. Formaldehyde produced from 2-C was oxidized to carbon dioxide by treating with mercuric chloride. Carboxyl carbon had little radioactivity. The specific activities of 2-C of glycine and 2-C of serine in the same tissue protein were compared. The ratio of serine 2-C/glycine 2-C was between 0.7 - 1.5. These results seem to indicate that glycine directly converts to serine in the rooster. The quantitative significance of the pathways of glycine (serine) biosynthesis is discussed. (auth.)

  11. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174.

    Science.gov (United States)

    Arias, C A; Martín-Martinez, M; Blundell, T L; Arthur, M; Courvalin, P; Reynolds, P E

    1999-03-01

    Sequence determination of a region downstream from the vanXYc gene in Enterococcus gallinarum BM4174 revealed an open reading frame, designated vanT, that encodes a 698-amino-acid polypeptide with an amino-terminal domain containing 10 predicted transmembrane segments. The protein contained a highly conserved pyridoxal phosphate attachment site in the C-terminal domain, typical of alanine racemases. The protein was overexpressed in Escherichia coli, and serine racemase activity was detected in the membrane but not in the cytoplasmic fraction after centrifugation of sonicated cells, whereas alanine racemase activity was located almost exclusively in the cytoplasm. When the protein was overexpressed as a polypeptide lacking the predicted transmembrane domain, serine racemase activity was detected in the cytoplasm. The serine racemase activity was partially (64%) inhibited by D-cycloserine, whereas host alanine racemase activity was almost totally inhibited (97%). Serine racemase activity was also detected in membrane preparations of constitutively vancomycin-resistant E. gallinarum BM4174 but not in BM4175, in which insertional inactivation of the vanC-1 D-Ala:D-Ser ligase gene probably had a polar effect on expression of the vanXYc and vanT genes. Comparative modelling of the deduced C-terminal domain was based on the alignment of VanT with the Air alanine racemase from Bacillus stearothermophilus. The model revealed that almost all critical amino acids in the active site of Air were conserved in VanT, indicating that the C-terminal domain of VanT is likely to adopt a three-dimensional structure similar to that of Air and that the protein could exist as a dimer. These results indicate that the source of D-serine for peptidoglycan synthesis in vancomycin-resistant enterococci expressing the VanC phenotype involves racemization of L- to D-serine by a membrane-bound serine racemase.

  12. Protective Effect of Rosemary (Rosmarinus Officinalis) Extract on Naphthalene Induced Nephrotoxicity in Adult Male Albino Rat

    OpenAIRE

    Neveen M. El-Sherif; Noha Mohy Issa

    2015-01-01

    Background: Naphthalene (NA) is a common environmental contaminant and is abundant in tobacco smoke. Rosemary (Rosmarinus officinalis) is a herb commonly used as a spice and flavoring agents in food processing and is useful in the treatment of many diseases. Aim of the work: To study the nephrotoxicity of NA and to evaluate the possible protective role of rosemary extract in adult male albino rat. Materials and Methods: 25 animals were divided into three groups: Group I (Control group), G...

  13. Chemopreventive effect of tadalafil in cisplatin-induced ...

    African Journals Online (AJOL)

    Summary: Nephrotoxicity remains a common untoward effect of cisplatin therapy with limited effective chemopreventive options available till date. This study aims to evaluate the possible chemopreventive effect and mechanism(s) of action of 2 mgkg-1 and 5 mgkg-1 of Tadalafil in cisplatin-induced nephrotoxic rats. In this ...

  14. Serine protease from midgut of Bombus terrestris males

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Jana; Kindl, Jiří; Valterová, Irena; Pichová, Iva; Zarevúcka, Marie; Brabcová, J.; Jágr, Michal; Mikšík, Ivan

    2013-01-01

    Roč. 82, č. 3 (2013), s. 117-128 ISSN 0739-4462 R&D Projects: GA ČR GA203/09/1446; GA TA ČR TA01020969 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : Bombus terrestris * midgut * serine protease * bumblebee Subject RIV: CE - Biochemistry; CE - Biochemistry (FGU-C) Impact factor: 1.160, year: 2013

  15. Ameliorated effects of Lactobacillus delbrueckii subsp. lactis DSM 20076 and Pediococcus acidilactici NNRL B-5627 on Fumonisin B1-induced Hepatotoxicity and Nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Amira A. Abdellatef

    2016-04-01

    Full Text Available Oxidative stress has been implicated in a number of human regeneration and disease processes including atherosclerosis, pulmonary fibrosis, cancer, and different neurodegenerative diseases. The aim of this study was to evaluate the protective effects of Lactobacillus delbrueckii subsp. lactis DSM 20076 (LL-DSM and Pediococcus acidilactici NNRL B-5627 (PA-NNRL against the hepatic- and nephro-toxicity of fumonisin B1 (FB1 in FB1-treated rats for an experimental period of 4-weeks. Eighty mature male Sprague-Dawley rats were divided to 12 groups: 1 untreated group; 3 groups fed by a FB1-contaminated diet (50, 100 and 200 mg FB1/kg diet, respectively; 1 group fed orally by LL-DSM (1 ml/d; 1 group fed orally by PA-NNRL (1 ml/d; 3 groups co-administered by FB1-contaminated diet and LL-DSM (1 ml/d, and 3 groups co-administered by FB1-contaminated diet and PA-NNRL (1 ml/d. Malonaldehyde (MDA nitric oxide, glutathione content, SOD activity, total antioxidant capacity (TAC, total oxidant status (TOS and oxidative stress index (OSI were determined. DPA assay was used to assess apoptosis in liver and kidney tissues. The animals fed with FB1-contaminated diet showed a significant increase in oxidative stress markers and DNA fragmentation accompanied with significant decrease in GSH content, SOD activity, and TAC in liver and kidney tissues, especially at high-dosage of FB1 (T200. Probiotics antioxidant strains (LL-DSM and PA-NNRL relatively succeeded to restore almost all parameters investigated as well as to reduce DNA fragmentation in liver and kidney tissues. As a conclusion, probiotics may induce its protective role via increasing the antioxidant capacity, inhibition of lipid peroxidation, scavenging of free radicals and decreasing DNA lesions in liver and kidney of experimental animals tested.

  16. Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice

    International Nuclear Information System (INIS)

    Fouad, Amr A.; Al-Sultan, Ali Ibrahim; Refaie, Shereen M.; Yacoubi, Mohamed T.

    2010-01-01

    The nephroprotective effect of coenzyme Q10 was investigated in mice with acute renal injury induced by a single i.p. injection of cisplatin (5 mg/kg). Coenzyme Q10 treatment (10 mg/kg/day, i.p.) was applied for 6 consecutive days, starting 1 day before cisplatin administration. Coenzyme Q10 significantly reduced blood urea nitrogen and serum creatinine levels which were increased by cisplatin. Coenzyme Q10 significantly compensated deficits in the antioxidant defense mechanisms (reduced glutathione level and superoxide dismutase activity), suppressed lipid peroxidation, decreased the elevations of tumor necrosis factor-α, nitric oxide and platinum ion concentration, and attenuated the reductions of selenium and zinc ions in renal tissue resulted from cisplatin administration. Also, histopathological renal tissue damage mediated by cisplatin was ameliorated by coenzyme Q10 treatment. Immunohistochemical analysis revealed that coenzyme Q10 significantly decreased the cisplatin-induced overexpression of inducible nitric oxide synthase, nuclear factor-κB, caspase-3 and p53 in renal tissue. It was concluded that coenzyme Q10 represents a potential therapeutic option to protect against acute cisplatin nephrotoxicity commonly encountered in clinical practice.

  17. Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhenzhou, E-mail: jiangcpu@yahoo.com.cn; Bao, Qingli, E-mail: bao_ql@126.com; Sun, Lixin, E-mail: slxcpu@126.com; Huang, Xin, E-mail: huangxinhx66@sohu.com; Wang, Tao, E-mail: wangtao1331@126.com; Zhang, Shuang, E-mail: cat921@sina.com; Li, Han, E-mail: hapo1101@163.com; Zhang, Luyong, E-mail: lyzhang@cpu.edu.cn

    2013-01-15

    This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague–Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged and dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans. -- Highlights: ► AAI-induced acute renal failure in rats and the proximal tubule was the target. ► Tubular mitochondria were morphologically aberrant in ultrastructural examination. ► AAI impair mitochondrial bioenergetic function and mtDNA replication.

  18. Beneficial Effects of Bioactive Compounds in Mulberry Fruits against Cisplatin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Dahae Lee

    2018-04-01

    Full Text Available Mulberry, the fruit of white mulberry tree (Morus alba L., Moraceae, is commonly used in traditional Chinese medicines as a sedative, tonic, laxative, and emetic. In our continuing research of the bioactive metabolites from mulberry, chemical analysis of the fruits led to the isolation of five compounds, 1–5. The compounds were identified as butyl pyroglutamate (1, quercetin 3-O-β-d-glucoside (2, kaempferol 3-O-β-d-rutinoside (3, rutin (4, and 2-phenylethyl d-rutinoside (5 by spectroscopic data analysis, comparing their nuclear magnetic resonance (NMR data with those in published literature, and liquid chromatography–mass spectrometry analysis. The isolated compounds 1–5 were evaluated for their effects on anticancer drug-induced side effects by cell-based assays. Compound 1 exerted the highest protective effect against cisplatin-induced kidney cell damage. This effect was found to be mediated through the attenuation of phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38, mitogen-activated protein kinase, and caspase-3 in cisplatin-induced kidney cell damage.

  19. A New Bacillus licheniformis Mutant Strain Producing Serine Protease Efficient for Hvdrolvqis of Sov Meal Proteins.

    Science.gov (United States)

    Kostyleva, E V; Sereda, A S; Velikoretskaya, I A; Nefedova, L I; Sharikov, A Yu; Tsurikova, N V; Lobanov, N S; Semenova, M V; Sinitsyn, A P

    2016-07-01

    Induced mutagenesis with y-irradiation of the industrial strain Bacillus licheniformis-60 VKM B-2366,D was used to obtain a new highly active producer of an extracellular serine protease, Bacillus licheni- formis7 145. Samples of dry.concentrated preparations of serine protease produced by the original and mutant strains were obtained, and identity of their protein composition was'established. Alkaline serine protease sub- tilisin DY was the main component of the preparations. The biochemical and physicochemical properties of the Protolkheterm-145 enzyme preparation obtained from the mutant strain were studied. It exhibited pro- teolytic activity (1.5 times higher than the preparation from the initial strain) within broad ranges of pH (5- 11) and temperature (30-70'C).-Efficient hydrolysis of extruded soy meal protein at high concentrations (2 to 50%) in-the reaction mixture was.the main advantage of the Protolikheterm 145 preparation. Compared to,. the preparation obtained using the initial strain, the new preparation with increased proteolytic-activity pro- vided for more complete hydrolysis of the main non-nutritious soy,proteins.(glycinin and 0-conglycinin) with the yield of soluble protein increased by 19-28%, which decreased the cost of bioconversion of the protein- aceous material and indicated promise of the new preparation in resource-saving technologies for processing soy meals and cakes.

  20. The role of vitamin E in the prevention of zoledronic acid-induced nephrotoxicity in rats: a light and electron microscopy study.

    Science.gov (United States)

    Sert, İbrahim Unal; Kilic, Ozcan; Akand, Murat; Saglik, Lutfi; Avunduk, Mustafa Cihat; Erdemli, Esra

    2018-03-01

    Bisphosphonates are widely used in metastatic cancer such as prostate and breast cancer, and their nephrotoxic effects have been established previously. In this study we aimed to evaluate both the nephrotoxic effects of zoledronic acid (ZA) and the protective effects of vitamin E (Vit-E) on this process under light and electron microscopy. A total of 30 male Sprague-Dawley rats were divided into 3 groups. The first group constituted the control group. The second group was given i.v. ZA of 3 mg/kg once every 3 weeks for 12 weeks from the tail vein. The third group received the same dosage of ZA with an additional i.m . injection of 15 mg Vit-E every week for 12 weeks. Tissues were taken 4 days after the last dose of ZA for histopathological and ultrastructural evaluation. Paller score, tubular epithelial thickness and basal membrane thickness were calculated for each group. For group 2, the p -values are all < 0.001 for Paller score, epitelial thickness, and basal membrane thickness. For group 3 (ZA + Vit. E), the p -values are < 0.001 for Paller score, 0.996 for epitelial thickness, and < 0.001 basal membrane thickness. Significant differences were also observed in ultrastructural changes for group 2. However, adding Vit-E to ZA administration reversed all the histopathological changes to some degree, with statistical significance. Administration of ZA had nephrotoxic effects on rat kidney observed under both light and electron microscopy. Concomitant administration of Vit-E significantly reduces toxic histopathological effects of ZA.

  1. Understanding serine proteases implications on Leishmania spp lifecycle.

    Science.gov (United States)

    Alves, Carlos Roberto; Souza, Raquel Santos de; Charret, Karen Dos Santos; Côrtes, Luzia Monteiro de Castro; Sá-Silva, Matheus Pereira de; Barral-Veloso, Laura; Oliveira, Luiz Filipe Gonçalves; da Silva, Franklin Souza

    2018-01-01

    Serine proteases have significant functions over a broad range of relevant biological processes to the Leishmania spp lifecycle. Data gathered here present an update on the Leishmania spp serine proteases and the status of these enzymes as part of the parasite degradome. The serine protease genes (n = 26 to 28) in Leishmania spp, which encode proteins with a wide range of molecular masses (35 kDa-115 kDa), are described along with their degrees of chromosomal and allelic synteny. Amid 17 putative Leishmania spp serine proteases, only ∼18% were experimentally demonstrated, as: signal peptidases that remove the signal peptide from secretory pre-proteins, maturases of other proteins and with metacaspase-like activity. These enzymes include those of clans SB, SC and SF. Classical inhibitors of serine proteases are used as tools for the characterization and investigation of Leishmania spp. Endogenous serine protease inhibitors, which are ecotin-like, can act modulating host actions. However, crude or synthetic based-natural serine protease inhibitors, such as potato tuber extract, Stichodactyla helianthus protease inhibitor I, fukugetin and epoxy-α-lapachone act on parasitic serine proteases and are promising leishmanicidal agents. The functional interrelationship between serine proteases and other Leishmania spp proteins demonstrate essential functions of these enzymes in parasite physiology and therefore their value as targets for leishmaniasis treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Increased tolerance towards serine obtained by adaptive laboratory evolution

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Seoane, Jose Miguel; Koza, Anna

    2014-01-01

    The amino acid serine has previously been identified as one of the top 30 candidates of value added chemicals, making the production of serine from glucose attractive. Production of serine have previously been attempted in E. coli and C. glutamicum, however, titers sufficient for commercial...... by glyA), the conversion of serine to pyruvate (encoded by sdaA, sdaB and tdcG) was also deleted. As expected, the resulting strain turned out to be susceptible to even low concentrations of serine in the media. In order to improve the tolerance of the strain towards serine, adaptive laboratory evolution....... During the evolution experiment, the serine tolerance was increased substantially. Genome re-sequencing was subsequently used to analyze the genotype of a number of selected strains. These results reveal insights towards the adaptation process as well as the mechanism of serine tolerance....

  3. Serine racemase is expressed in islets and contributes to the regulation of glucose homeostasis.

    Science.gov (United States)

    Lockridge, Amber D; Baumann, Daniel C; Akhaphong, Brian; Abrenica, Alleah; Miller, Robert F; Alejandro, Emilyn U

    2016-11-01

    NMDA receptors (NMDARs) have recently been discovered as functional regulators of pancreatic β-cell insulin secretion. While these excitatory receptor channels have been extensively studied in the brain for their role in synaptic plasticity and development, little is known about how they work in β-cells. In neuronal cells, NMDAR activation requires the simultaneous binding of glutamate and a rate-limiting co-agonist, such as D-serine. D-serine levels and availability in most of the brain rely on endogenous synthesis by the enzyme serine racemase (Srr). Srr transcripts have been reported in human and mouse islets but it is not clear whether Srr is functionally expressed in β-cells or what its role in the pancreas might be. In this investigation, we reveal that Srr protein is highly expressed in primary human and mouse β-cells. Mice with whole body deletion of Srr (Srr KO) show improved glucose tolerance through enhanced insulin secretory capacity, possibly through Srr-mediated alterations in islet NMDAR expression and function. We observed elevated insulin sensitivity in some animals, suggesting Srr metabolic regulation in other peripheral organs as well. Srr expression in neonatal and embryonic islets, and adult deficits in Srr KO pancreas weight and islet insulin content, point toward a potential role for Srr in pancreatic development. These data reveal the first evidence that Srr may regulate glucose homeostasis in peripheral tissues and provide circumstantial evidence that D-serine may be an endogenous islet NMDAR co-agonist in β-cells.

  4. Hepatotoxic and Nephrotoxic Effects of Petroleum Fumes on Petrol ...

    African Journals Online (AJOL)

    DR SULEIMAN

    Hepatotoxic and Nephrotoxic Effects of Petroleum Fumes on Petrol Attendants in Ibadan, Nigeria. *1A.L. Ogunneye ... inhalation of petrol fumes is associated with adverse effect on the kidney and liver function. ..... neurotoxicity in mice. African ...

  5. Energetics of the molecular interactions of L-alanine and L-serine with xylitol, D-sorbitol, and D-mannitol in aqueous solutions at 298.15 K

    Science.gov (United States)

    Mezhevoi, I. N.; Badelin, V. G.

    2013-04-01

    Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.

  6. Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk.

    Science.gov (United States)

    Boyer, Alexandre; Gruson, Didier; Bouchet, Stéphane; Clouzeau, Benjamin; Hoang-Nam, Bui; Vargas, Frédéric; Gilles, Hilbert; Molimard, Mathieu; Rogues, Anne-Marie; Moore, Nicholas

    2013-04-01

    Aminoglycoside nephrotoxicity has been reported in patients with sepsis, and several risk factors have been described. Once-daily dosing and shorter treatment have reduced nephrotoxicity risk, and simplified aminoglycoside monitoring. This review focuses on nephrotoxicity associated with aminoglycosides in the subset of patients with septic shock or severe sepsis. These patients are radically different from those with less severe sepsis. They may have, for instance, renal impairment due to the shock per se, sepsis-related acute kidney injury, frequent association with pre-existing risk factors for renal failure such as diabetes, dehydration and other nephrotoxic treatments. In this category of patients, these risk factors might modify substantially the benefit-risk ratio of aminoglycosides. In addition, aminoglycoside administration in critically ill patients with sepsis is complicated by an extreme inter- and intra-individual variability in drug pharmacokinetic/pharmacodynamic characteristics: the volume of distribution (Vd) is frequently increased while the elimination constant can be either increased or decreased. Consequently, and although its effect on nephrotoxicity has not been explored, a different administration schedule, i.e. a high-dose once daily (HDOD), and several therapeutic drug monitoring (TDM) options have been proposed in these patients. This review describes the historical perspective of these different options, including those applying to subsets of patients in which aminoglycoside administration is even more complex (obese intensive care unit [ICU] patients, patients needing continuous or discontinuous renal replacement therapy [CRRT/DRRT]). A simple linear dose adjustment according to aminoglycoside serum concentration can be classified as low-intensity TDM. Nomograms have also been proposed, based on the maximum (peak) plasma concentration (Cmax) objectives, weight and creatinine clearance. The Sawchuk and Zaske method (based on the

  7. Serine proteinases and their inhibitors in fertilization

    Czech Academy of Sciences Publication Activity Database

    Jonáková, Věra; Jelínková-Slavíčková, Petra

    2004-01-01

    Roč. 8, 3,4 (2004), s. 108-110 ISSN 1211-8869. [Central European Conference on Human Tumor Markers /5./. Praha, 01.10.2004-03.10.2004] R&D Projects: GA ČR GA303/02/0433; GA ČR GP303/02/P069; GA ČR GP303/04/P070; GA MZd NJ7463 Institutional research plan: CEZ:AV0Z5052915 Keywords : serine proteinase * proteinase inhibitors * fertilization Subject RIV: CE - Biochemistry

  8. Protective Effect of Rosemary (Rosmarinus Officinalis Extract on Naphthalene Induced Nephrotoxicity in Adult Male Albino Rat

    Directory of Open Access Journals (Sweden)

    Neveen M. El-Sherif

    2015-02-01

    Full Text Available Background: Naphthalene (NA is a common environmental contaminant and is abundant in tobacco smoke. Rosemary (Rosmarinus officinalis is a herb commonly used as a spice and flavoring agents in food processing and is useful in the treatment of many diseases. Aim of the work: To study the nephrotoxicity of NA and to evaluate the possible protective role of rosemary extract in adult male albino rat. Materials and Methods: 25 animals were divided into three groups: Group I (Control group, Group II (NA treated group received NA at a dose of 200 mg/kg/day dissolved in 5 ml/kg corn oil orally by gastric tube, Group III (protected group received rosemary extract (10 ml/kg/day followed after 60 min by NA at the same previous dose orally by gastric tube. The experiment lasted 30 days. The following parameters were studied: Biochemical assessment of renal function, histological, immunohistochemical, morphometric studies and statistical analysis of the results. Results: NA treatment resulted in a highly significant increase in the mean values of serum urea and creatinine. NA induced histological changes in the form of glomerular congestion. Some glomeruli demonstrated marked mesangial expansion and hence that Bowman's spaces were almost completely obliterated. Shrinkage of renal glomeruli with widening of Bowman's spaces could also be seen. Focal tubular dilatation with appearance of casts inside the tubules was observed. Congested peritubular blood vessels and interstitial hemorrhage were also seen. The medullary region demonstrated vascular congestion and fibrosis. Focal cellular infiltration was presented in the interstitium. The renal cortex of NA treated rats showed a noticeable down regulation in alkaline phosphatase positive immunoreactive cells in some proximal convoluted tubules. NA induced up regulation of positive immunoreaction for inducible nitric oxide synthase in the proximal and distal convoluted tubules as well as in the collecting tubules

  9. D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats.

    Science.gov (United States)

    Rehman, Muneeb U; Tahir, Mir; Khan, Abdul Quaiyoom; Khan, Rehan; Oday-O-Hamiza; Lateef, Abdul; Hassan, Syed Kazim; Rashid, Sumaya; Ali, Nemat; Zeeshan, Mirza; Sultana, Sarwat

    2014-04-01

    D-limonene is a naturally occurring monoterpene and has been found to posses numerous therapeutic properties. In this study, we used D-limonene as a protective agent against the nephrotoxic effects of anticancer drug doxorubicin (Dox). Rats were given D-limonene at doses of 5% and 10% mixed with diet for 20 consecutive days. Dox was give at the dose of 20 mg/kg body weight intraperitoneally. The protective effects of D-limonene on Dox-induced oxidative stress and inflammation were investigated by assaying oxidative stress biomarkers, lipid peroxidation, serum toxicity markers, proinflammatory cytokines, and expression of nuclear factor kappa B (NFκB), cyclo-oxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and Nitrite levels. Administration of Dox (20 mg/kg body weight) in rats enhanced renal lipid peroxidation; depleted glutathione content and anti-oxidant enzymes; elevated levels of kidney toxicity markers viz. kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine; enhanced expression of NFκB, COX-2, and iNOS and nitric oxide. Treatment with D-limonene prevented oxidative stress by restoring the levels of antioxidant enzymes, further both doses of 5% and 10% showed significant decrease in inflammatory response. Both the doses of D-limonene significantly decreased the levels of kidney toxicity markers KIM-1, BUN, and creatinine. D-limonene also effectively decreased the Dox induced overexpression of NF-κB, COX-2, and iNOS and nitric oxide. Data from the present study indicate the protective role of D-limonene against Dox-induced renal damage.

  10. Biotransformation and nephrotoxicity of ochratoxin B in rats

    International Nuclear Information System (INIS)

    Mally, Angela; Keim-Heusler, Heike; Amberg, Alexander; Kurz, Michael; Zepnik, Herbert; Mantle, Peter; Voelkel, Wolfgang; Hard, Gordon C.; Dekant, Wolfgang

    2005-01-01

    and OTB have a similar potential to induce cytotoxicity in vitro, but large differences in their potential to induce nephrotoxicity in rodents. OTB is more extensively metabolized and more rapidly eliminated than OTA. The lack of specific retention of OTB in the kidneys and the differences in toxicokinetics may therefore provide an explanation for the lower toxicity of OTB

  11. Biodegradable in situ gelling system for subcutaneous administration of ellagic acid and ellagic acid loaded nanoparticles: evaluation of their antioxidant potential against cyclosporine induced nephrotoxicity in rats.

    Science.gov (United States)

    Sharma, G; Italia, J L; Sonaje, K; Tikoo, K; Ravi Kumar, M N V

    2007-03-12

    Ellagic acid (EA) is a potent antioxidant marketed as a nutritional supplement. Its pharmacological activity has been reported in wide variety of disease models; however its use has been limited owing to its poor biopharmaceutical properties, thereby poor bioavailability. The objective of the current study was to develop chitosan-glycerol phosphate (C-GP) in situ gelling system for sustained delivery of ellagic acid (EA) via subcutaneous route. EA was incorporated in the system employing propylene glycol (PG) and triethanolamine (TEA) as co-solvents; on the other hand EA loaded PLGA nanoparticles (np) were dispersed in the gelling system using water. These in situ gelling systems were thoroughly characterized for mechanical, rheological and swelling properties. These systems are liquid at room temperature and gels at 37 degrees C. The EA C-GP system showed an initial burst release in vitro with about 85% drug released in 12 h followed by a steady release till 160 h, on the other hand EA nanoparticles entrapped in the C-GP system displayed sustained release till 360 h. The histopathological analysis indicates the absence of inflammation on administration, suggesting that these formulations are safe during the studied period. Furthermore, the antioxidant potential of EA C-GP and EA np C-GP gels has been evaluated against cyclosporine induced nephrotoxicity in rats. The data indicates that formulations were effective against cyclosporine induced nephrotoxicity, where the EA C-GP gels showed activity at 10 times lower dose and the EA np C-GP gels at 150 times lower dose when compared to orally given EA. Formulating nanoparticles of EA and incorporating them in C-GP system results in 15 times lowering of dose in comparison EA C-GP gels which is quite significant. Together, these results indicate that the bioavailability of ellagic acid can be improved by subcutaneous formulations administered as simple EA or EA nps.

  12. A novel approach to contrast-induced nephrotoxicity: the melatonergic agent agomelatine

    Science.gov (United States)

    Karaman, Adem; Diyarbakir, Busra; Kose, Duygu; Özbek-Bilgin, Asli; Topcu, Atilla; Gundogdu, Cemal; Durur-Karakaya, Afak; Bayraktutan, Zafer; Alper, Fatih

    2016-01-01

    Objective: To study the potential nephroprotective role of agomelatine in rat renal tissue in cases of contrast-induced nephrotoxicity (CIN). The drug's action on the antioxidant system and proinflammatory cytokines, superoxide dismutase (SOD) activity, levels of glutathione (GSH) and malondialdehyde (MDA) and the gene expression of interleukin-6 (IL-6), tumour necrosis factor (TNF)-α and nuclear factor kappa B (NF-κB) was measured. Tubular necrosis and hyaline and haemorrhagic casts were also histopathologically evaluated. Methods: The institutional ethics and local animal care committees approved the study. Eight groups of six rats were put on the following drug regimens: Group 1: healthy controls, Group 2: GLY (glycerol), Group 3: CM (contrast media—iohexol 10 ml kg−1), Group 4: GLY+CM, Group 5: CM+AGO20 (agomelatine 20 mg kg−1), Group 6: GLY+CM+AGO20, Group 7: CM+AGO40 (agomelatine 40 mg kg−1) and Group 8: GLY+CM+AGO40. The groups were evaluated by one-way analysis of variance and Duncan's multiple comparison test. Results: Agomelatine administration significantly improved the serum levels of blood urea nitrogen (BUN) and creatinine, SOD activity, GSH and MDA. The use of agomelatine had substantial downregulatory consequences on TNF-α, NF-κB and IL-6 messenger RNA levels. Mild-to-severe hyaline and haemorrhagic casts and tubular necrosis were observed in all groups, except in the healthy group. The histopathological scores were better in the agomelatine treatment groups. Conclusion: Agomelatine has nephroprotective effects against CIN in rats. This effect can be attributed to its properties of reducing oxidative stress and inhibiting the secretion of proinflammatory cytokines (NF-κB, TNF-α and IL-6). Advances in knowledge: CIN is one of the most important adverse effects of radiological procedures. Renal failure, diabetes, malignancy, old age and non-steroidal anti-inflammatory drug use pose the risk of CIN in patients. Several

  13. Comparative acute nephrotoxicity of salicylic acid, 2,3-dihydroxybenzoic acid, and 2,5-dihydroxybenzoic acid in young and middle aged Fischer 344 rats.

    Science.gov (United States)

    McMahon, T F; Stefanski, S A; Wilson, R E; Blair, P C; Clark, A M; Birnbaum, L S

    1991-03-11

    Experimental evidence suggests that the oxidative metabolites 2,3- and 2,5-dihydroxybenzoic acid (DIOH) may be responsible for the nephrotoxicity of salicylic acid (SAL). In the present study, enzymuria in conjunction with glucose (GLU) and protein (PRO) excretion were used as endpoints to compare the relative nephrotoxicity of SAL with 2,3- and 2,5-DIOH. In addition, the effect of age on enzymuria and GLU and PRO excretion following treatment with SAL or 2,3- and 2,5-DIOH was investigated because the elderly are at greater risk for SAL-induced nephrotoxicity. Three and 12-month male Fischer 344 rats were administered either no treatment, vehicle, SAL, 2,3-DIOH, or 2,5-DIOH at 500 mg/kg p.o. in 5 ml/kg corn oil/DMSO (5:1). Effects of these treatments on functional integrity of renal tissue was assessed from 0--72 h after dosing by measurement of urinary creatinine, GLU, and PRO, as well as excretion of proximal and distal tubular renal enzymes. Enzymes measured as indicators of proximal tubular damage were N-acetyl-beta-glucosaminidase (NAG), gamma glutamyltransferase (GGT), alanine aminotransferase (ALT), and alkaline phosphatase (AP), while urinary lactate dehydrogenase (LD) and aspartate aminotransferase (AST) were measured as indicators of distal tubular damage. In comparison to 3-month vehicle-treated rats, 2,3- and 2,5-DIOH caused a significant increase between 0-8 h in excretion of urinary GLU and activities of AST, NAG, and LD, with peak effects occurring between 4-8 h. Toxic effects of either metabolite were not evident beyond 24 h, and toxicity of 2,5-DIOH was significantly greater in comparison to 2,3-DIOH. SAL treatment resulted in similar effects on enzymuria as well as GLU and PRO excretion, but peak effects did not occur until 16-24 h, and often persisted until 72 h after dosing. Maximal enzymuria in response to SAL treatment was significantly greater in 12- vs. 3-month rats for AST, NAG, and LD. In response to 2,3-DIOH treatment, the maximal

  14. Microbial Production of l-Serine from Renewable Feedstocks.

    Science.gov (United States)

    Zhang, Xiaomei; Xu, Guoqiang; Shi, Jinsong; Koffas, Mattheos A G; Xu, Zhenghong

    2018-07-01

    l-Serine is a non-essential amino acid that has wide and expanding applications in industry with a fast-growing market demand. Currently, extraction and enzymatic catalysis are the main processes for l-serine production. However, such approaches limit the industrial-scale applications of this important amino acid. Therefore, shifting to the direct fermentative production of l-serine from renewable feedstocks has attracted increasing attention. This review details the current status of microbial production of l-serine from renewable feedstocks. We also summarize the current trends in metabolic engineering strategies and techniques for the typical industrial organisms Corynebacterium glutamicum and Escherichia coli that have been developed to address and overcome major challenges in the l-serine production process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-A in normotensive and hypertensive rats.

    Science.gov (United States)

    Caires, A; Fernandes, G S; Leme, A M; Castino, B; Pessoa, E A; Fernandes, S M; Fonseca, C D; Vattimo, M F; Schor, N; Borges, F T

    2017-12-11

    Cyclosporin-A (CsA) is an immunosuppressant associated with acute kidney injury and chronic kidney disease. Nephrotoxicity associated with CsA involves the increase in afferent and efferent arteriole resistance, decreased renal blood flow (RBF) and glomerular filtration. The aim of this study was to evaluate the effect of Endothelin-1 (ET-1) receptor blockade with bosentan (BOS) and macitentan (MAC) antagonists on altered renal function induced by CsA in normotensive and hypertensive animals. Wistar and genetically hypertensive rats (SHR) were separated into control group, CsA group that received intraperitoneal injections of CsA (40 mg/kg) for 15 days, CsA+BOS and CsA+MAC that received CsA and BOS (5 mg/kg) or MAC (25 mg/kg) by gavage for 15 days. Plasma creatinine and urea, mean arterial pressure (MAP), RBF and renal vascular resistance (RVR), and immunohistochemistry for ET-1 in the kidney cortex were measured. CsA decreased renal function, as shown by increased creatinine and urea. There was a decrease in RBF and an increase in MAP and RVR in normotensive and hypertensive animals. These effects were partially reversed by ET-1 antagonists, especially in SHR where increased ET-1 production was observed in the kidney. Most MAC effects were similar to BOS, but BOS seemed to be better at reversing cyclosporine-induced changes in renal function in hypertensive animals. The results of this work suggested the direct participation of ET-1 in renal hemodynamics changes induced by cyclosporin in normotensive and hypertensive rats. The antagonists of ET-1 MAC and BOS reversed part of these effects.

  16. Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-A in normotensive and hypertensive rats

    Directory of Open Access Journals (Sweden)

    A. Caires

    2017-12-01

    Full Text Available Cyclosporin-A (CsA is an immunosuppressant associated with acute kidney injury and chronic kidney disease. Nephrotoxicity associated with CsA involves the increase in afferent and efferent arteriole resistance, decreased renal blood flow (RBF and glomerular filtration. The aim of this study was to evaluate the effect of Endothelin-1 (ET-1 receptor blockade with bosentan (BOS and macitentan (MAC antagonists on altered renal function induced by CsA in normotensive and hypertensive animals. Wistar and genetically hypertensive rats (SHR were separated into control group, CsA group that received intraperitoneal injections of CsA (40 mg/kg for 15 days, CsA+BOS and CsA+MAC that received CsA and BOS (5 mg/kg or MAC (25 mg/kg by gavage for 15 days. Plasma creatinine and urea, mean arterial pressure (MAP, RBF and renal vascular resistance (RVR, and immunohistochemistry for ET-1 in the kidney cortex were measured. CsA decreased renal function, as shown by increased creatinine and urea. There was a decrease in RBF and an increase in MAP and RVR in normotensive and hypertensive animals. These effects were partially reversed by ET-1 antagonists, especially in SHR where increased ET-1 production was observed in the kidney. Most MAC effects were similar to BOS, but BOS seemed to be better at reversing cyclosporine-induced changes in renal function in hypertensive animals. The results of this work suggested the direct participation of ET-1 in renal hemodynamics changes induced by cyclosporin in normotensive and hypertensive rats. The antagonists of ET-1 MAC and BOS reversed part of these effects.

  17. Mitigating potential of Ginkgo biloba extract and melatonin against hepatic and nephrotoxicity induced by Bisphenol A in male rats

    Directory of Open Access Journals (Sweden)

    Mayssaa M. Wahby

    2017-12-01

    Full Text Available Bisphenol A is one of the anthropogenic chemicals produced worldwide, currently released into the environment and causes endocrine-disruption. The largest environmental compartments of BPA are abiotic associated with water and suspended solids that becomes an integrated part of the food chain. The present study aimed to examine the possible protective role of Ginkgo biloba extract (GBE, melatonin and their combination against BPA-induced liver and kidney toxicity of male rats. Fifty rats were divided into five equal groups: control, BPA, BPA plus GBE, BPA plus melatonin and BPA plus GBE plus melatonin. The elevated activities of plasma ALT and AST in addition to increased levels of urea and creatinine concomitant with the decreased total plasma protein could reflect the injurious effect of BPA. Liver and kidney levels of TBARS were significantly increased, while GSH, SOD and GPX were decreased in BPA-treated rats. Also, CAT and GST activities were significantly disrupted in the liver and kidney of rats treated with BPA. Moreover, BPA significantly increased the proinflammatory cytokine TNF-α in the liver and kidney tissues. The histopathological analysis confirmed these results. All the previous alterations in the liver and kidney could be ameliorated when BPA-treated rats were co-administrated either with GBE, melatonin or their combination. These natural substances could exhibit protective effects against BPA-induced hepato- and nephrotoxicity owing to their antioxidative and anti-inflammatory potentials. Keywords: Bisphenol A, Ginkgo biloba extract, Melatonin, Lipid peroxidation, Antioxidant enzymes, Histopathological analysis

  18. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts.

    Science.gov (United States)

    Oppert, Brenda; Martynov, Alexander G; Elpidina, Elena N

    2012-09-01

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases. Published by Elsevier Inc.

  19. Effect of mannitol on acute amphotericin B nephrotoxicity.

    Science.gov (United States)

    Said, R; Marin, P; Anicama, H; Quintanilla, A; Levin, M L

    1980-01-01

    This study was undertaken to examine the value of mannitol as protection against the acute nephrotoxicity of amphotericin B under controlled conditions in a reproducible model of toxicity in the dog. Eleven dogs received amphotericin B, 2.5 mg x kg-1 b. wt. by i.v. infusion over a 4-h period. Six dogs were treated with mannitol, 6.25 g, i.v. every hour and five served as controls. Urinary volume (V), inulin clearance (CIn), p-aminohippurate clearance (CPAH), and Na excretion (UNaV) were measured every hour throughout the experiment. Although a higher urinary output was maintained in mannitol-treated dogs, a progressive decline in renal function was observed in treated and in control dogs. During the 4th h, mannitol-treated dogs showed higher CIn (37.4 vs. 19.7 ml x min-1 and CPAH (95 vs. 54 ml x min-1 than controls. However, statistically the differences were barely significant. The results fail to show that mannitol offers a definite protection against amphotericin B nephrotoxicity.

  20. The C-terminal sequence of several human serine proteases encodes host defense functions.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Walse, Björn; Svensson, Bo; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2011-01-01

    Serine proteases of the S1 family have maintained a common structure over an evolutionary span of more than one billion years, and evolved a variety of substrate specificities and diverse biological roles, involving digestion and degradation, blood clotting, fibrinolysis and epithelial homeostasis. We here show that a wide range of C-terminal peptide sequences of serine proteases, particularly from the coagulation and kallikrein systems, share characteristics common with classical antimicrobial peptides of innate immunity. Under physiological conditions, these peptides exert antimicrobial effects as well as immunomodulatory functions by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, selected peptides are protective against lipopolysaccharide-induced shock. Moreover, these S1-derived host defense peptides exhibit helical structures upon binding to lipopolysaccharide and also permeabilize liposomes. The results uncover new and fundamental aspects on host defense functions of serine proteases present particularly in blood and epithelia, and provide tools for the identification of host defense molecules of therapeutic interest. Copyright © 2011 S. Karger AG, Basel.

  1. Specific membrane binding of factor VIII is mediated by O-phospho-L-serine, a moiety of phosphatidylserine.

    Science.gov (United States)

    Gilbert, G E; Drinkwater, D

    1993-09-21

    Phosphatidylserine, a negatively charged lipid, is exposed on the platelet membrane following cell stimulation, correlating with the expression of factor VIII receptors. We have explored the importance of the negative electrostatic potential of phosphatidylserine vs chemical moieties of phosphatidylserine for specific membrane binding of factor VIII. Fluorescein-labeled factor VIII bound to membranes containing 15% phosphatidic acid, a negatively charged phospholipid, with low affinity compared to phosphatidylserine-containing membranes. Binding was not specific as it was inhibited by other proteins in plasma. Factor VIII bound to membranes containing 10% phosphatidylserine in spite of a varying net charge provided by 0-15% stearylamine, a positively charged lipid. The soluble phosphatidylserine moiety, O-phospho-L-serine, inhibited factor VIII binding to phosphatidylserine-containing membranes with a Ki of 20 mM, but the stereoisomer, O-phospho-D-serine, was 5-fold less effective. Furthermore, binding of factor VIII to membranes containing synthetic phosphatidyl-D-serine was 5-fold less than binding to membranes containing phosphatidyl-L-serine. Membranes containing synthetic phosphatidyl-L-homoserine, differing from phosphatidylserine by a single methylene, supported high-affinity binding, but it was not specific as factor VIII was displaced by other plasma proteins. O-Phospho-L-serine also inhibited the binding of factor VIII to platelet-derived microparticles with a Ki of 20 mM, and the stereoisomer was 4-fold less effective. These results indicate that membrane binding of factor VIII is mediated by a stereoselective recognition O-phospho-L-serine of phosphatidylserine and that negative electrostatic potential is of lesser importance.

  2. Influence of fluoride on streptozotocin induced diabetic nephrotoxicity in mice: Protective role of Asian ginseng (Panax ginseng & banaba (Lagerstroemia speciosa on mitochondrial oxidative stress

    Directory of Open Access Journals (Sweden)

    Mahaboob P Basha

    2013-01-01

    Full Text Available Background & objectives: Chronic fluoride intoxication through drinking water is a serious health problem. Patients with diabetes are known to have impaired renal function and elimination of fluoride from the body is mainly done through kidney. Fluoride toxicity in diabetes patients may aggravate complications. In this study, the influence of fluoride was assessed on streptozotocin (STZ induced diabetes in mice as also the efficacy/protective effective of oral supplementation of ginseng (GE and banaba leaf extracts (BLE. Methods: The efficacy of plant extracts, GE and BLE at doses of 50, 150, 250 mg/kg b.w./day alone and in combination, was tested for a period of 15 days on fluoride treated STZ induced diabetic animals. Results: Fluoride exposure to mice with STZ-induced diabetes produced significant changes in OSI (organo-somatic index, fluoride content, blood glucose, urea, serum creatinine and oxidative stress indices in kidney tissues with evident histological alterations. Among the antioxidant treatments, combination therapy of GE and BLE at 150 mg/kg b.w. significantly normalized the impaired biochemical variables in kidney tissues of fluoride toxicated diabetic mice. Interpretations & conclusions: High fluoride uptake was found to be diabetogenic and further aggravated the renal oxidative damage and thereby the toxicity in mice with STZ induced diabetes mice. GE and BLE exposure individually or in combination at a dose of 150 mg/kg b.w./day for 15 days exhibited protective effects on fluoride toxicated STZ induced nephrotoxicity in mice.

  3. Crystal structure of the NADP+ and tartrate-bound complex of L-serine 3-dehydrogenase from the hyperthermophilic archaeon Pyrobaculum calidifontis.

    Science.gov (United States)

    Yoneda, Kazunari; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa

    2018-05-01

    A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP + /sulfate ion at 1.18 Å and the structure in complex with NADP + /L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP + and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.

  4. Serine protease inhibitors of parasitic helminths.

    Science.gov (United States)

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.

  5. Hepatotoxic and Nephrotoxic Effects of Petroleum Fumes on Petrol ...

    African Journals Online (AJOL)

    The present study was conducted to evaluate the hepatotoxic and nephrotoxic effects of petroleum fumes on male and female petrol attendants. Investigations had been carried out on thirty (30) adult petrol attendants from different filling stations in Ibadan metropolis of Nigeria with ten (10) healthy adults as control. All the ...

  6. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae.

    Science.gov (United States)

    De Benedetti, Stefania; Bühl, Henrike; Gaballah, Ahmed; Klöckner, Anna; Otten, Christian; Schneider, Tanja; Sahl, Hans-Georg; Henrichfreise, Beate

    2014-01-01

    For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly. D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L-alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.

  7. Characterization of serine hydroxymethyltransferase GlyA as a potential source of D-alanine in Chlamydia pneumoniae

    Directory of Open Access Journals (Sweden)

    Stefania eDe Benedetti

    2014-02-01

    Full Text Available For intracellular Chlamydiaceae, there is no need to withstand osmotic challenges, and a functional cell wall has not been detected in these pathogens so far. Nevertheless, penicillin inhibits cell division in Chlamydiaceae resulting in enlarged aberrant bodies, a phenomenon known as chlamydial anomaly.D-alanine is a unique and essential component in the biosynthesis of bacterial cell walls. In free-living bacteria like Escherichia coli, penicillin-binding proteins such as monofunctional transpeptidases PBP2 and PBP3, the putative targets of penicillin in Chlamydiaceae, cross-link adjacent peptidoglycan strands via meso-diaminopimelic acid and D-Ala-D-Ala moieties of pentapeptide side chains. In the absence of genes coding for alanine racemase Alr and DadX homologs, the source of D-Ala and thus the presence of substrates for PBP2 and PBP3 activity in Chlamydiaceae has puzzled researchers for years. Interestingly, Chlamydiaceae genomes encode GlyA, a serine hydroxymethyltransferase that has been shown to exhibit slow racemization of D- and L- alanine as a side reaction in E. coli. We show that GlyA from Chlamydia pneumoniae can serve as a source of D-Ala. GlyA partially reversed the D-Ala auxotrophic phenotype of an E. coli racemase double mutant. Moreover, purified chlamydial GlyA had racemase activity on L-Ala in vitro and was inhibited by D-cycloserine, identifying GlyA, besides D-Ala ligase MurC/Ddl, as an additional target of this competitive inhibitor in Chlamydiaceae. Proof of D-Ala biosynthesis in Chlamydiaceae helps to clarify the structure of cell wall precursor lipid II and the role of chlamydial penicillin-binding proteins in the development of non-dividing aberrant chlamydial bodies and persistence in the presence of penicillin.

  8. Inhibition of Human Serine Racemase, an Emerging Target for Medicinal Chemistry

    Czech Academy of Sciences Publication Activity Database

    Jirásková-Vaníčková, Jana; Ettrich, Rüdiger; Vorlová, Barbora; Hoffman, Hillary Elizabeth; Lepšík, Martin; Jansa, Petr; Konvalinka, Jan

    2011-01-01

    Roč. 12, č. 7 (2011), s. 1037-1055 ISSN 1389-4501 R&D Projects: GA MŠk 1M0508; GA ČR GA203/08/0114 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z60870520 Keywords : amino acid analogs * L-erythro-3-hydroxyaspartate (L-EHA) * D-serine * neurodegenerative diseases * NMDA receptors * pyridoxal-5´-phosphate (PLP) Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 3.553, year: 2011

  9. The roles of serine protease, intracellular and extracellular phenoloxidase in activation of prophenoloxidase system, and characterization of phenoloxidase from shrimp haemocytes induced by lipopolysaccharide or dopamine

    Science.gov (United States)

    Xie, Peng; Pan, Luqing; Xu, Wujie; Yue, Feng

    2013-09-01

    We investigated the effects of lipopolysaccharide (LPS) and dopamine (DA) on the activation of the prophenoloxidase (proPO) system of Litopenaeus vannamei. LPS and DA were shown with a negative dose-dependent effect on hyalne cells (HC), semi-granular cells (SGC), large granular cells (LGC), and total haemocyte count (THC). When haemocytes were treated with LPS or DA, serine proteinase activity and intracellular phenoloxidase (PO) activity were significantly reduced, but extracellular PO activity increased significantly. These findings indicated that the reduction in haemocyte counts was mainly because of the degranulation and activation of the proPO system from semi-granule and large granule cells. The PKC inhibitor, chelerythrine, and the TPK inhibitor, genistein, had an inhibitory effect on extracellular PO activity, while serine proteinase and intracellular PO activity increased. This suggests that the LPS and DA induce the activation of proPO in haemocytes via PKC and TPK-related signaling pathways, but serine proteinase may be activated only by PKC, as the genistein effects were not statistically significant. Electrophoresis analysis revealed that POs induced by LPS or DA have the same molecular mass and high diphenolase activity. Two PO bands at 526 kDa and 272 kDa were observed in PAGE, while in the haemocyte lysate supernatant (HLS), only a 272-kDa band was observed. This band was resolved after SDS-PAGE under non-reducing and reducing conditions into two groups of POs, 166 kDa and 126 kDa, and 78.1 kDa and 73.6 kDa, respectively, suggesting that PO in L. vannamei is an oligomer, which may have different compositions intra- and extracellularly.

  10. Contrast media-associated nephrotoxicity - pathogenenesis and prevention; Kontrastmittelnephropathie - Pathogenese und Praevention

    Energy Technology Data Exchange (ETDEWEB)

    Erley, C.M. [Abt. Innere Medizin III, Sektion Nieren- und Hochdruckkrankheiten, Tuebingen Univ. (Germany); Duda, S.H. [Tuebingen Univ. (Germany). Abt. fuer Radiologische Diagnostik

    1997-07-01

    Contrast media-associated nephrotoxicity continues to be a relevant cause of acute renal failure, especially in patients with pre-existing renal insufficiency. Alterations in renal hemodynamics and direct tubular toxicity by contrast media are the primary factors believed to be responsible for contrast media-associated nephrotoxicity. We review recent insights into the pathogenesis of this complication and summarize prophylactic strategies focussing on hydration, vasoactive pharmacological agents, and prophylactic hemodialysis`. (orig.) [Deutsch] Die Kontrastmittelnephropathie (KMN) stellt insbesondere bei Patienten mit eingeschraenkter Nierenfunktion ein erhebliches medizinisches Problem dar. Die Genese der KMN ist nach wie vor nicht eindeutig geklaert. Neben haemodynamischen Veraenderungen durch die Kontrastmittel spielen tubulotoxische Schaeden eine grosse Rolle. Die vorliegende Uebersicht beschreibt die zur Zeit bekannten pathophysiologischen Vorgaenge bei der KMN und die zur Zeit angewendeten Praeventivmassnahmen. (orig.)

  11. Upregulation of AMWAP: a novel mechanism for HDAC inhibitors to protect against cisplatin nephrotoxicity.

    Science.gov (United States)

    Tang, Jinhua; Zhuang, Shougang

    2016-02-01

    Histone deacetylases have been reported to protect against renal tubular damage in several animal models of acute renal injury, including cisplatin nephrotoxicity. However, the mechanism involved is not well defined. In this study, Ranganathan et al. identify activated microglia/macrophage WAP domain protein as the novel mediator of histone deacetylase inhibitor-mediated renal protection in a murine model of cisplatin nephrotoxicity. Activated microglia/macrophage WAP-mediated renal protection is associated with suppression of inflammation and renal epithelial cell apoptosis. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Crystal structure and characterization of a novel L-serine ammonia-lyase from Rhizomucor miehei

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhen [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China); Yan, Qiaojuan [College of Engineering, China Agricultural University, Beijing 100083 (China); Ma, Qingjun [Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Jiang, Zhengqiang, E-mail: zhqjiang@cau.edu.cn [College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center of Food Nutrition and Human Health, China Agricultural University, Beijing 100083 (China)

    2015-10-23

    L-serine ammonia-lyase, as a member of the β-family of pyridoxal-5′-phosphate (PLP) dependent enzymes, catalyzes the conversion of L-serine (L-threonine) to pyruvate (α-ketobutyrate) and ammonia. The crystal structure of L-serine ammonia-lyase from Rhizomucor miehei (RmSDH) was solved at 1.76 Å resolution by X-ray diffraction method. The overall structure of RmSDH had the characteristic β-family PLP dependent enzyme fold. It consisted of two distinct domains, both of which show the typical open twisted α/β structure. A PLP cofactor was located in the crevice between the two domains, which was attached to Lys52 by a Schiff-base linkage. Unique residue substitutions (Gly78, Pro79, Ser146, Ser147 and Thr312) were discovered at the catalytic site of RmSDH by comparison of structures of RmSDH and other reported eukaryotic L-serine ammonia-lyases. Optimal pH and temperature of the purified RmSDH were 7.5 and 40 °C, respectively. It was stable in the pH range of 7.0–9.0 and at temperatures below 40 °C. This is the first crystal structure of a fungal L-serine ammonia-lyase. It will be useful to study the catalytic mechanism of β-elimination enzymes and will provide a basis for further enzyme engineering. - Highlights: • The crystal structure of a fungal L-serine ammonia-lyase (RmSDH) was solved. • Five unique residue substitutions are found at the catalytic site of RmSDH. • RmSDH was expressed in Pichia. pastoris and biochemically characterized. • RmSDH has potential application in splitting D/L-serine.

  13. Nephrotoxicity of mercapturic acids of three structurally related 2,2-difluoroethylenes in the rat. Indications for different bioactivation mechanisms.

    NARCIS (Netherlands)

    Commandeur, J.N.M.; Brakenhoff, J.P.G.; de Kanter, F.J.J.; Vermeulen, N.P.E.

    1988-01-01

    The biotransformation and the hepato- and nephrotoxicity of the mercapturic acids (N-acetyl-1-cysteine S-conjugates) of three structurally related 2,2-difluoroethylenes were investigated in vivo in the rat. All mercapturic acids appeared to cause nephrotoxicity, without any measureable effect on the

  14. Melamine nephrotoxicity: an emerging epidemic in an era of globalization.

    Science.gov (United States)

    Bhalla, Vivek; Grimm, Paul C; Chertow, Glenn M; Pao, Alan C

    2009-04-01

    Recent outbreaks of nephrolithiasis and acute kidney injury among children in China have been linked to ingestion of milk-based infant formula contaminated with melamine. These cases provide evidence in humans for the nephrotoxicity of melamine, which previously had been described only in animals. The consequences of this outbreak are already severe and will likely continue to worsen. Herein we summarize the global impact of the melamine milk contamination, the reemergence of melamine-tainted animal feed, and potential mechanisms of melamine nephrotoxicity. Large-scale epidemiologic studies are necessary to further characterize this disease and to assess its potential long-term sequelae. This epidemic of environmental kidney disease highlights the morbidity associated with adulterated food products available in today's global marketplace and reminds us of the unique vulnerability of the kidney to environmental insults. Melamine is the latest in a growing list of diverse potentially toxic compounds about which nephrologists and other health-care providers responsible for the diagnosis and management of kidney disease must now be aware.

  15. Effects of royal jelly on genotoxicity and nephrotoxicity induced by valproic acid in albino mice

    Directory of Open Access Journals (Sweden)

    Sanaa R. Galaly

    2014-03-01

    Full Text Available Epilepsy is one of the most common neurological diseases affecting at least 50 million people worldwide. Valproic acid (VPA is a widely used antiepileptic medication for both generalized and partial seizures of epilepsy. The objective of the study was to investigate the anti-mutagenic and anti-histopathologic effects of royal jelly (RJ on VPA-induced genotoxicity and nephrotoxicity in male albino mice (Mus musculus. 80 Mice were used for 21 days; they were divided into eight groups, (G1 served as normal control group, G2 received VPA (100 mg/kg and (G3–G5 received RJ at doses 50, 100 and 200 mg/kg respectively. While (G6–G8 were administrated RJ simultaneously with VPA. In RJ treated mice at doses of 50 and 100 mg/kg, the kidney sections showed normal histological structure with non significant changes in chromosomal aberrations (CA and mitotic index (MI, while RJ at dose of 200 mg/kg showed mild inflammatory cells infiltration and hyperemic glomeruli but not highly significant changes in CA and MI. The cortex of VPA treated mice revealed congested glomeruli with inflammatory cells infiltration, and marked degeneration of almost structures of the glomeruli including some vacuoles in mesangial cells with dark mesangial substances on the ultrastructure level. Some proximal tubules showed degeneration of microvilli on the apical parts of some cells. Cells of the distal tubules attained obliterated lumen and vacuolated lining epithelium. The results also revealed that valproic acid induced a high frequency of CA in bone marrow cells of mice and MI was significantly decreased indicating bone marrow cytotoxicity. The treatment of mice with RJ at doses 50, 100 and 200 mg/kg for 21 days simultaneously with VPA resulted in abating the histological alterations in renal tissues with significant reduction in chromosomal aberrations, for doses of 50 and 100 mg/kg, and elevation in mitotic index (P < 0.05. RJ at doses 50 and 100 mg/kg appeared

  16. Are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections?

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, Ulf [University of Lund, Department of Diagnostic Radiology, Trelleborg (Sweden); Almen, Torsten [Skaane University Hospital, Department of Clinical Sciences/Medical Radiology, University of Lund, Malmoe (Sweden); Jacobsson, Bo [University of Gothenburg and the Sahlgrenska Academy, Department of Diagnostic Radiology, The Queen Silvia Children' s Hospital, Goeteborg (Sweden); Aspelin, Peter [Karolinska Institute and University Hospital, Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Stockholm (Sweden)

    2012-06-15

    We oppose the opinion that the intra-arterial administration of iodine-based contrast media (CM) appears to pose a greater risk of contrast medium-induced nephropathy (CIN) than intravenous administration since (1) in intra-arterial coronary procedures and most other intra-arterial angiographic examinations, CM injections are also intravenous relative to the kidneys, (2) there is a lack of comparative trials studying the risk of CIN between intra-arterial and intravenous procedures with matched risk factors and CM doses, (3) a bias selection of patients with fewer risk factors may explain the seemingly lower rate of CIN after CT in comparison with coronary interventions, (4) the rate of CIN following intra-arterial coronary procedures may also be exaggerated owing to other causes of acute kidney failure, such as haemodynamic instability and microembolisation, (5) roughly the same gram-iodine/GFR ratio ({approx}1:1) as a limit of relatively safe CM doses has preliminarily been found for both intravenous CT and intra-arterial coronary procedures and (6) the substantially higher injected intravenous CM dose rate during CT relative to an intra-arterial coronary procedure might actually pose a higher risk of CIN following CT. Key Points circle Most intra-arterial injections of contrast media are intravenous relative to the kidneys. circle No evidence that intravenous CM injections should be less nephrotoxic than intra-arterial. circle Considerably higher dose rates of CM are used for CT relative to intra-arterial procedures. circle Higher dose rates may pose higher nephrotoxic risk for intravenous based CT studies. (orig.)

  17. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174.

    Science.gov (United States)

    Arias, C A; Weisner, J; Blackburn, J M; Reynolds, P E

    2000-07-01

    Vancomycin resistance in Enterococcus gallinarum results from the production of UDP-MurNAc-pentapeptide[D-Ser]. VanT, a membrane-bound serine racemase, is one of three proteins essential for this resistance. To investigate the selectivity of racemization of L-Ser or L-Ala by VanT, a strain of Escherichia coli TKL-10 that requires D-Ala for growth at 42 degrees C was used as host for transformation experiments using plasmids containing the full-length vanT from Ent. gallinarum or the alanine racemase gene (alr) of Bacillus stearothermophilus: both plasmids were able to complement E. coli TKL-10 at 42 degrees C. No alanine or serine racemase activities were detected in the host strain E. coli TKL-10 grown at 30, 34 or 37 degrees C. Serine and alanine racemase activities were found almost exclusively (96%) in the membrane fraction of E. coli TKL-10/pCA4(vanT): the alanine racemase activity of VanT was 14% of the serine racemase activity in both E. coli TKL-10/pCA4(vanT) and E. coli XL-1 Blue/pCA4(vanT). Alanine racemase activity was present mainly (95%) in the cytoplasmic fraction of E. coli TKL-10/pJW40(alr), with a trace (1.6%) of serine racemase activity. Additionally, DNA encoding the soluble domain of VanT was cloned and expressed in E. coli M15 as a His-tagged polypeptide and purified: this polypeptide also exhibited both serine and alanine racemase activities; the latter was approximately 18% of the serine racemase activity, similar to that of the full-length, membrane-bound enzyme. N-terminal sequencing of the purified His-tagged polypeptide revealed a single amino acid sequence, indicating that the formation of heterodimers between subunits of His-tagged C-VanT and endogenous alanine racemases from E. coli was unlikely. The authors conclude that the membrane-bound serine racemase VanT also has alanine racemase activity but is able to racemize serine more efficiently than alanine, and that the cytoplasmic domain is responsible for the racemase activity.

  18. Enhancement of L-Serine Production by Corynebacterium ...

    African Journals Online (AJOL)

    glutamicum SYPS-062 cultivation process for efficient production of L-serine on a large scale. ... central intermediate for a number of cellular .... impeller, oxygen and pH electrodes, under the ... equation. The yield of L-serine was regressed with respect to the medium ..... is not essential for activity but is required for inhibition.

  19. Serine:glyoxylate aminotransferase mutant of barley

    International Nuclear Information System (INIS)

    Blackwell, R.; Murray, A.; Joy, K.; Lea, P.

    1987-01-01

    A photorespiratory mutant of barley (LaPr 85/84), deficient in both of the major peaks of serine:glyoxylate aminotransferase activity detected in the wild type, also lacks serine:pyruvate and asparagine:glyoxylate aminotransferase activities. Genetic analysis of the mutation demonstrated that these three activities are all carried on the same enzyme. The mutant, when placed in air, accumulated a large pool of serine, showed the expected rate (50%) of ammonia release during photorespiration but produced CO 2 at twice the wild type rate when it was fed [ 14 C] glyoxylate. Compared with the wild type, LaPr 85/84 exhibited abnormal transient changes in chlorophyll a fluorescence when the CO 2 concentration of the air was altered, indicating that the rates of the fluorescence quenching mechanisms were affected in vivo by the lack of this enzyme

  20. Hepatotoxicity and nephrotoxicity of 3-bromopyruvate in mice.

    Science.gov (United States)

    Pan, Qiong; Sun, Yiming; Jin, Qili; Li, Qixiang; Wang, Qing; Liu, Hao; Zhao, Surong

    2016-11-01

    To investigate the hepatotoxicity and nephrotoxicity of 3-Bromopyruvate (3BP) in mice. Fifteen nude mice were grafted subcutaneously in the left flank with MDA-MB-231 cells, then all mice were divided into control group (PBS), 3BP group (8 mg/kg), positive group (DNR: 0.8 mg/kg) when tumor volume reached approximately 100 mm3. 28 days later, tumors, livers and kidneys were stored in 4 % formalin solution and stained with hematoxylin and eosin staining. The Kunming mice experiment included control group (PBS), 3BP group (4mg/kg; 8mg/kg; 16mg/kg), positive group (DNR: 0.8 mg/kg). 24 hours later, the blood were used for the determination of hepatic damage serum biomarkers. Livers were stored in 4 % formalin solution for the later detection. 3BP at the dose of 8mg/kg had a good effect on inhibiting tumor growth in nude mice and did not damage liver and kidney tissues. Kunming mice experiment showed 3BP at the dose of 16mg/kg did damage to liver tissues. 3-Bromopyruvate at the dose of suppressing tumor growth did not exhibit hepatotoxicity and nephrotoxicity in nude mice, and the effect on liver was confirmed in Kunming mice.

  1. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Sheng, E-mail: Lin.Yu-Sheng@epa.gov [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC (United States); Ho, Wen-Chao [Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan (China); Caffrey, James L. [Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, TX (United States); Sonawane, Babasaheb [National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC (United States)

    2014-10-15

    Background: Despite animal evidence suggests that zinc modulates cadmium nephrotoxicity, limited human data are available. Objective: To test the hypothesis that low serum zinc concentrations may increase the risk of cadmium-mediated renal dysfunction in humans. Methods: Data from 1545 subjects aged 20 or older in the National Health and Nutrition Examination Survey (NHANES), 2011–2012 were analyzed. Renal function was defined as impaired when estimated glomerular filtration rate (eGFR) fell below 60 ml/min/1.73 m{sup 2} and/or the urinary albumin-to-creatinine ratio surpassed 2.5 in men and 3.5 mg/mmol in women. Results: Within the study cohort, 117 subjects had reduced eGFR and 214 had elevated urinary albumin. After adjusting for potential confounders, subjects with elevated blood cadmium (>0.53 μg/L) were more likely to have a reduced eGFR (odds ratio [OR]=2.21, 95% confidence interval [CI]: 1.09–4.50) and a higher urinary albumin (OR=2.04, 95% CI: 1.13–3.69) than their low cadmium (<0.18 μg/L) peers. In addition, for any given cadmium exposure, low serum zinc is associated with elevated risk of reduced eGFR (OR=3.38, 95% CI: 1.39–8.28). A similar increase in the odds ratio was observed between declining serum zinc and albuminuria but failed to reach statistical significance. Those with lower serum zinc/blood cadmium ratios were likewise at a greater risk of renal dysfunction (p<0.01). Conclusions: This study results suggest that low serum zinc concentrations are associated with an increased risk of cadmium nephrotoxicity. Elevated cadmium exposure is global public health issue and the assessment of zinc nutritional status may be an important covariate in determining its effective renal toxicity. - Highlights: • Blood cadmium was associated with increased risk of nephrotoxicity. • Low serum zinc may exacerbate risk of cadmium-mediated renal dysfunction. • Both zinc deficiency and elevated cadmium exposure are global public health issues.

  2. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  3. Effect of high saturated free fatty acids feeding on progression of renal failure in rat model of experimental nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Zaid O. Ibraheem

    2012-02-01

    Full Text Available The current study evaluates the impact of high saturated fat feeding in rat model of experimental nephrotoxicity induced by gentamicin. Sprague-Dawley rats weighing 200 g were randomized into four groups; the first one received the standard rodents chow for 8 weeks and was treated as control, the second group (HFDreceived an experimental high fat diet rich in palm kernel oil (40% of Calories as fat for the same period. The third group (HFDG was given 80 mg/kg (body weight/day gentamicin sulphate intraperitoneally during the last 24 days of the feeding period while the fourth group was given gentamicin as above along with the standard rodents chow. Renal function was assessed through measuring serum creatinine, creatinine clearance and absolute and fractional excretion of both sodium and potassium. At the end, rats underwent a surgical procedure for blood pressure measurement. Renal function study showed a stronger nephrotoxicity for HFDG group. Hypertension was observed in HFD group while the pressure declined after gentamicin co-administration. Overall, changing the feeding behavior toward using more SAFFAs for rats injected with gentamicin promotes the progression of renal failure.

  4. Characterization of a serine protease-mediated cell death program activated in human leukemia cells

    International Nuclear Information System (INIS)

    O'Connell, A.R.; Holohan, C.; Torriglia, A.; Lee, B.F.; Stenson-Cox, C.

    2006-01-01

    Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis

  5. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity.

    Science.gov (United States)

    Takayama, S; White, M F; Kahn, C R

    1988-03-05

    The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function

  6. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy

    Science.gov (United States)

    Kramer, Rita; Bielawski, Jacek; Kistner-Griffin, Emily; Othman, Alaa; Alecu, Irina; Ernst, Daniela; Kornhauser, Drew; Hornemann, Thorsten; Spassieva, Stefka

    2015-01-01

    Peripheral neuropathy is a major dose-limiting side effect of paclitaxel and cisplatin chemotherapy. In the current study, we tested the involvement of a novel class of neurotoxic sphingolipids, the 1-deoxysphingolipids. 1-Deoxysphingolipids are produced when the enzyme serine palmitoyltransferase uses l-alanine instead of l-serine as its amino acid substrate. We tested whether treatment of cells with paclitaxel (250 nM, 1 µM) and cisplatin (250 nM, 1 µM) would result in elevated cellular levels of 1-deoxysphingolipids. Our results revealed that paclitaxel, but not cisplatin treatment, caused a dose-dependent elevation of 1-deoxysphingolipids levels and an increase in the message and activity of serine palmitoyltransferase (P peripheral neuropathy symptoms [evaluated by the European Organization for Research and Treatment of Cancer (EORTC) QLQ-chemotherapy-induced peripheral neuropathy-20 (CIPN20) instrument] and the 1-deoxysphingolipid plasma levels (measured by mass spectrometry) in 27 patients with breast cancer who were treated with paclitaxel chemotherapy. Our results showed that there was an association between the incidence and severity of neuropathy and the levels of very-long-chain 1-deoxyceramides such as C24 (P neuropathy (P peripheral neuropathy.—Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., Kornhauser, D., Hornemann, T., Spassieva, S. Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. PMID:26198449

  7. Dual function of a bee venom serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals.

    Science.gov (United States)

    Choo, Young Moo; Lee, Kwang Sik; Yoon, Hyung Joo; Kim, Bo Yeon; Sohn, Mi Ri; Roh, Jong Yul; Je, Yeon Ho; Kim, Nam Jung; Kim, Iksoo; Woo, Soo Dong; Sohn, Hung Dae; Jin, Byung Rae

    2010-05-03

    Bee venom contains a variety of peptides and enzymes, including serine proteases. While the presence of serine proteases in bee venom has been demonstrated, the role of these proteins in bee venom has not been elucidated. Furthermore, there is currently no information available regarding the melanization response or the fibrin(ogen)olytic activity of bee venom serine protease, and the molecular mechanism of its action remains unknown. Here we show that bee venom serine protease (Bi-VSP) is a multifunctional enzyme. In insects, Bi-VSP acts as an arthropod prophenoloxidase (proPO)-activating factor (PPAF), thereby triggering the phenoloxidase (PO) cascade. Bi-VSP injected through the stinger induces a lethal melanization response in target insects by modulating the innate immune response. In mammals, Bi-VSP acts similarly to snake venom serine protease, which exhibits fibrin(ogen)olytic activity. Bi-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products, defining roles for Bi-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings provide a novel view of the mechanism of bee venom in which the bee venom serine protease kills target insects via a melanization strategy and exhibits fibrin(ogen)olytic activity.

  8. Two novel pyrrolooxazole pigments formed by the Maillard reaction between glucose and threonine or serine.

    Science.gov (United States)

    Noda, Kyoko; Murata, Masatsune

    2017-02-01

    Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300-360 nm under acidic and neutral conditions and at 320-390 nm under alkaline conditions.

  9. Administration of colistin sulfate in endotoxic model at slow and sustained fashion may reverse shock without causing nephrotoxicity in its optimal concentration.

    Science.gov (United States)

    Haque, Anwarul; Ishii, Yoshikazu; Akasaka, Yoshikiyo; Matsumoto, Tetsuya; Tateda, Kazuhiro

    2017-12-01

    Despite of proven LPS neutralizing activity, intravenous polymyxin use was waned due to experience of associated nephrotoxicity. But, increasing resistance to all available antibiotics has necessitated their resurgence and the prodrug of colistin sulfate (CS), known as colistin-methanesulfonate (CMS), is increasingly used as the only therapeutic option in many infections. Currently available CMS employ very different dose definitions and thus because of complex pharmacokinetics/pharmacodynamics information and short half-life, this drug use remains confusing. We aimed to expose CS in endotoxic shock models by micro-osmotic pump and evaluated its effectiveness. We used micro-osmotic pumps to deliver either sterile saline or CS at different dosages ranging from 0.25mg/day to 7mg/day for consecutive 3days in LPS (8mg/kg body weight) induced endotoxic mice and observed their outcome twice daily for a week to determine the survival rate. Serum pro-inflammatory cytokine levels and apoptosis in renal tissues in these models were evaluated. We showed endotoxic shock was reversed and all mice survived with a CS administration at a dosage of 2mg/day for 3 days, in comparison to survival rate with saline administration (p≤0.0001) in endotoxic models. CS infusion in shock models using micro-osmotic pump ameliorated rising of serum TNF-α, IL-12p70 and IL-6 levels. Nephrotoxicity was evident only with a higher dosage, but not with a lower dosage which was optimum to control endotoxic shock in models. These results highlighted that an optimal dosage of CS effectively improved outcome in endotoxic shock models without causing nephrotoxicity when administered at a slow and sustained manner. And a higher CS dosage administration was nephrotoxic and fatal. Thus this study bought an opportunity to consider future investigations with CS administration in murine Gram-negative bacterial infections in a novel way. Copyright © 2017 International Society for Chemotherapy of Infection

  10. Identification of B cell recognized linear epitopes in a snake venom serine proteinase from the central American bushmaster Lachesis stenophrys.

    Science.gov (United States)

    Madrigal, M; Alape-Girón, A; Barboza-Arguedas, E; Aguilar-Ulloa, W; Flores-Díaz, M

    2017-12-15

    Snake venom serine proteinases are toxins that perturb hemostasis acting on proteins from the blood coagulation cascade, the fibrinolytic or the kallikrein-kinin system. Despite the relevance of these enzymes in envenomations by viper bites, the characterization of the antibody response to these toxins at the molecular level has not been previously addressed. In this work surface-located B cell recognized linear epitopes from a Lachesis stenophrys venom serine proteinase (UniProt accession number Q072L7) were predicted using an artificial neuronal network at the ABCpred server, the corresponding peptides were synthesized and their immunoreactivity was analyzed against a panel of experimental and therapeutic antivenoms. A molecular model of the L. stenophrys enzyme was built using as a template the structure of the D. acutus Dav-PA serine proteinase (Q9I8X1), which displays the highest degree of sequence similarity to the L. stenophrys enzyme among proteins of known 3D structure, and the surface-located epitopes were identified in the protein model using iCn3D. A total of 13 peptides corresponding to the surface exposed predicted epitopes from L. stenophrys serine proteinase were synthesized and, their reactivity with a rabbit antiserum against the recombinant enzyme and a panel of antivenoms was evaluated by a capture ELISA. Some of the epitopes recognized by monospecific and polyspecific antivenoms comprise sequences overlapping motifs conserved in viper venom serine proteinases. The identification and characterization of relevant epitopes recognized by B cells in snake venom toxins may provide valuable information for the preparation of immunogens that help in the production of improved therapeutic antivenoms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    Science.gov (United States)

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  12. Tri-domain Bifunctional Inhibitor of Metallocarboxypeptidases A and Serine Proteases Isolated from Marine Annelid Sabellastarte magnifica*

    Science.gov (United States)

    Alonso-del-Rivero, Maday; Trejo, Sebastian A.; Reytor, Mey L.; Rodriguez-de-la-Vega, Monica; Delfin, Julieta; Diaz, Joaquin; González-González, Yamile; Canals, Francesc; Chavez, Maria Angeles; Aviles, Francesc X.

    2012-01-01

    This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar Ki values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature. PMID:22411994

  13. 3-MCPD 1-palmitate induced renal tubular cell apoptosis in vivo via JNK/p53 pathway

    Science.gov (United States)

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing-induced food contaminants with nephrotoxicity, but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD este...

  14. Regulation of calcium release from the endoplasmic reticulum by the serine hydrolase ABHD2.

    Science.gov (United States)

    Yun, Bogeon; Lee, HeeJung; Powell, Roger; Reisdorph, Nichole; Ewing, Heather; Gelb, Michael H; Hsu, Ku-Lung; Cravatt, Benjamin F; Leslie, Christina C

    2017-09-02

    The serine hydrolase inhibitors pyrrophenone and KT195 inhibit cell death induced by A23187 and H 2 O 2 by blocking the release of calcium from the endoplasmic reticulum and mitochondrial calcium uptake. The effect of pyrrophenone and KT195 on these processes is not due to inhibition of their known targets, cytosolic phospholipase A 2 and α/β-hydrolase domain-containing (ABHD) 6, respectively, but represent off-target effects. To identify targets of KT195, fibroblasts were treated with KT195-alkyne to covalently label protein targets followed by click chemistry with biotin azide, enrichment on streptavidin beads and tryptic peptide analysis by mass spectrometry. Although several serine hydrolases were identified, α/β-hydrolase domain-containing 2 (ABHD2) was the only target in which both KT195 and pyrrophenone competed for binding to KT195-alkyne. ABHD2 is a serine hydrolase with a predicted transmembrane domain consistent with its pull-down from the membrane proteome. Subcellular fractionation showed localization of ABHD2 to the endoplasmic reticulum but not to mitochondria or mitochondrial-associated membranes. Knockdown of ABHD2 with shRNA attenuated calcium release from the endoplasmic reticulum, mitochondrial calcium uptake and cell death in fibroblasts stimulated with A23187. The results describe a novel mechanism for regulating calcium transfer from the endoplasmic reticulum to mitochondria that involves the serine hydrolase ABHD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Aging Kidney: Increased Susceptibility to Nephrotoxicity

    Science.gov (United States)

    Wang, Xinhui; Bonventre, Joseph V.; Parrish, Alan R.

    2014-01-01

    Three decades have passed since a series of studies indicated that the aging kidney was characterized by increased susceptibility to nephrotoxic injury. Data from these experimental models is strengthened by clinical data demonstrating that the aging population has an increased incidence and severity of acute kidney injury (AKI). Since then a number of studies have focused on age-dependent alterations in pathways that predispose the kidney to acute insult. This review will focus on the mechanisms that are altered by aging in the kidney that may increase susceptibility to injury, including hemodynamics, oxidative stress, apoptosis, autophagy, inflammation and decreased repair. PMID:25257519

  16. Nephrotoxicity Of Polymyxin B: Experimental Study In Cells And Implications For Nursing Practice

    Directory of Open Access Journals (Sweden)

    Luciana Barros de Moura Neiva

    2014-04-01

    Full Text Available The aim of the study was to characterize the cell damage mechanisms involved in the pathophysiology of cytotoxicity of polymyxin B in proximal tubular cells (LLC - PK1 and discuss about the nurses interventions to identify at risk patients and consider prevention or treatment of nephrotoxicity acute kidney injury. This is a quantitative experimental in vitro study, in which the cells were exposed to 375μM polymyxin B sulfate concentration. Cell viability was determined by exclusion of fluorescent dyes and morphological method with visualization of apoptotic bodies for fluorescence microscopy. Cells exposed to polymyxin B showed reduced viability, increased number of apoptotic cells and a higher concentration of the enzyme lactate dehydrogenase. The administration of polymyxin B in vitro showed the need for actions to minimize adverse effects such as nephrotoxicity.

  17. Analysis of L-serine-O-phosphate in cerebrospinal spinal fluid by derivatization-liquid chromatography/mass spectrometry.

    Science.gov (United States)

    McNaney, Colleen A; Benitex, Yulia; Luchetti, David; Labasi, Jeffrey M; Olah, Timothy V; Morgan, Daniel G; Drexler, Dieter M

    2014-05-01

    L-serine-O-phosphate (L-SOP), the precursor of L-serine, is a potent agonist against the group III metabotropic glutamate receptors (mGluRs) and, thus, is of interest as a potential biomarker for monitoring modulation of neurotransmitter release. So far, no reports are available on the analysis of L-SOP in cerebrospinal fluid (CSF). Here a novel method is presented to determine L-SOP levels in CSF employing precolumn derivatization with (5-N-succinimidoxy-5-oxopentyl)triphenylphosphonium bromide (SPTPP) coupled to liquid chromatography/mass spectrometry (derivatization-LC/MS, d-LC/MS). Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    Science.gov (United States)

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  19. Site-specific and synergistic stimulation of methylation on the bacterial chemotaxis receptor Tsr by serine and CheW

    Directory of Open Access Journals (Sweden)

    Weis Robert M

    2005-03-01

    serine and CheW binding to Tsr is attributed to distinct influences on receptor structure; changes in the conformation of the Tsr dimer induced by serine binding improve methylation efficiency, and CheW binding changes the arrangement among Tsr dimers, which increases access to methylation sites.

  20. Improved α-Amylase Production by Dephosphorylation Mutation of CreD, an Arrestin-Like Protein Required for Glucose-Induced Endocytosis of Maltose Permease and Carbon Catabolite Derepression in Aspergillus oryzae.

    Science.gov (United States)

    Tanaka, Mizuki; Hiramoto, Tetsuya; Tada, Hinako; Shintani, Takahiro; Gomi, Katsuya

    2017-07-01

    Aspergillus oryzae produces copious amount of amylolytic enzymes, and MalP, a major maltose permease, is required for the expression of amylase-encoding genes. The expression of these genes is strongly repressed by carbon catabolite repression (CCR) in the presence of glucose. MalP is transported from the plasma membrane to the vacuole by endocytosis, which requires the homolog of E6-AP carboxyl terminus ubiquitin ligase HulA, an ortholog of yeast Rsp5. In yeast, arrestin-like proteins mediate endocytosis as adaptors of Rsp5 and transporters. In the present study, we examined the involvement of CreD, an arrestin-like protein, in glucose-induced MalP endocytosis and CCR of amylase-encoding genes. Deletion of creD inhibited the glucose-induced endocytosis of MalP, and CreD showed physical interaction with HulA. Phosphorylation of CreD was detected by Western blotting, and two serine residues were determined as the putative phosphorylation sites. However, the phosphorylation state of the serine residues did not regulate MalP endocytosis and its interaction with HulA. Although α-amylase production was significantly repressed by creD deletion, both phosphorylation and dephosphorylation mimics of CreD had a negligible effect on α-amylase activity. Interestingly, dephosphorylation of CreD was required for CCR relief of amylase genes that was triggered by disruption of the deubiquitinating enzyme-encoding gene creB The α-amylase activity of the creB mutant was 1.6-fold higher than that of the wild type, and the dephosphorylation mimic of CreD further improved the α-amylase activity by 2.6-fold. These results indicate that a combination of the dephosphorylation mutation of CreD and creB disruption increased the production of amylolytic enzymes in A. oryzae IMPORTANCE In eukaryotes, glucose induces carbon catabolite repression (CCR) and proteolytic degradation of plasma membrane transporters via endocytosis. Glucose-induced endocytosis of transporters is mediated by

  1. Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRASG12D-driven Pancreatic TumorigenesisSummary

    Directory of Open Access Journals (Sweden)

    Nicolas Chuvin

    2017-09-01

    Full Text Available Background & Aims: Transforming growth factor beta (TGFβ acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFβ activates the canonical SMAD pathway through its interaction with the serine/threonine kinase type I and II heterotetrameric receptors. Previous studies investigating TGFβ-mediated signaling in the pancreas relied either on loss-of-function approaches or on ligand overexpression, and its effects on acinar cells have so far remained elusive. Methods: We developed a transgenic mouse model allowing tamoxifen-inducible and Cre-mediated conditional activation of a constitutively active type I TGFβ receptor (TβRICA in the pancreatic acinar compartment. Results: We observed that TβRICA expression induced acinar-to-ductal metaplasia (ADM reprogramming, eventually facilitating the onset of KRASG12D-induced pre-cancerous pancreatic intraepithelial neoplasia. This phenotype was characterized by the cellular activation of apoptosis and dedifferentiation, two hallmarks of ADM, whereas at the molecular level, we evidenced a modulation in the expression of transcription factors such as Hnf1β, Sox9, and Hes1. Conclusions: We demonstrate that TGFβ pathway activation plays a crucial role in pancreatic tumor initiation through its capacity to induce ADM, providing a favorable environment for KRASG12D-dependent carcinogenesis. Such findings are highly relevant for the development of early detection markers and of potentially novel treatments for pancreatic cancer patients. Keywords: Pancreas, Cancer, TGFβ, Acinar-to-Ductal Metaplasia, KRASG12D

  2. Chemopreventive Effect of Tadalafil in Cisplatin-Induced ...

    African Journals Online (AJOL)

    olayemitoyin

    mgkg-1 and 5 mgkg-1 of Tadalafil in cisplatin-induced nephrotoxic rats. In this study, twenty-five male ... mitochondria, and reduced nicotinamide adenine dinucletide .... Laboratory Centrifuge (Model SM 112, Surgifriend. Medicals, England) at ...

  3. Metabolomic Analysis of Complex Chinese Remedies: Examples of Induced Nephrotoxicity in the Mouse from a Series of Remedies Containing Aristolochic Acid

    Directory of Open Access Journals (Sweden)

    Dong-Ming Tsai

    2013-01-01

    Full Text Available Aristolochic acid nephropathy is caused by aristolochic acid (AA and AA-containing herbs. In traditional Chinese medicine, a principle called “Jun-Chen-Zou-Shi” may be utilized to construct a remedial herbal formula that attempts to mitigate the toxicity of the main ingredient. This study used Bu-Fei-A-Jiao-Tang (BFAJT to test if the compound remedy based on a principle of “Jun-Chen-Zou-Shi” can decrease the toxicity of AA-containing herbs. We compared the three toxicities of AA standard, Madouling (an Aristolochia herb, and a herbal formula BFAJT. AA standard was given for BALB/c mice at a dose of 5 mg/kg bw/day or 7.5 mg/kg bw/day for 10 days. Madouling and BFAJT were given at an equivalence of AA 0.5 mg/kg bw/day for 21 days. Nephrotoxicity was evaluated by metabolomics and histopathology. The urinary metabolomics profiles were characterized by 1H NMR spectroscopy. The spectral data was analyzed with partial least squares discriminant analysis, and the significant differential metabolites between groups were identified. The result showed different degrees of acute renal tubular injuries, and metabolomics analysis found that the kidney injuries were focused in proximal renal tubules. Both metabolomics and pathological studies revealed that AA standard, Madouling, and BFAJT were all nephrotoxicants. The compositions of the compound remedy did not diminish the nephrotoxicity caused by AA.

  4. Protective Effects of Intralipid and Caffeic Acid Phenethyl Ester on Nephrotoxicity Caused by Dichlorvos in Rats

    Directory of Open Access Journals (Sweden)

    Muhammet Murat Celik

    2015-01-01

    Full Text Available The protective effects of Caffeic Acid Phenethyl Ester (CAPE and intralipid (IL on nephrotoxicity caused by acute Dichlorvos (D toxicity were investigated in this study. Forty-eight Wistar Albino rats were divided into 7 groups as follows: Control, D, CAPE, intralipid, D + CAPE, D + IL, and D + CAPE + IL. When compared to D group, the oxidative stress index (OSI values were significantly lower in Control, CAPE, and D + IL + CAPE groups. When compared to D + IL + CAPE group, the TOS and OSI values were significantly higher in D group (P<0.05. When mitotic cell counts were assessed in the renal tissues, it was found that mitotic cell count was significantly higher in the D group while it was lower in the D + CAPE, D + IL, and D + IL + CAPE groups when compared to the control group (P<0.05. Also, immune reactivity showed increased apoptosis in D group and low profile of apoptosis in the D + CAPE group when compared to the Control group. The apoptosis level was significantly lower in D + IL + CAPE compared to D group (P<0.05 in the kidneys. As a result, we concluded that Dichlorvos can be used either alone or in combination with CAPE and IL as supportive therapy or as facilitator for the therapeutic effect of the routine treatment in the patients presenting with pesticide poisoning.

  5. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  6. Phellinus rimosus improves mitochondrial energy status and attenuates nephrotoxicity in diabetic rats.

    Science.gov (United States)

    Rony, K A; Ajith, T A; Kuttikadan, Tony A; Blaze, R; Janardhanan, K K

    2017-09-26

    Mitochondrial dysfunction and increase in reactive oxygen species during diabetes can lead to pathological consequences in kidneys. The present study was aimed to investigate the effect of Phellinus rimosus in the streptozotocin (STZ)-induced diabetic rat renal mitochondria and the possible mechanism of protection. Phellinus rimosus (50 and 250 mg/kg, p.o) was treated after inducing diabetes by STZ (45 mg/kg, i.p) in rats. The serum samples were subjected to creatinine and urea estimation. Mitochondrial antioxidant status such as mitochondrial superoxide dismutase, glutathione peroxidase, and reduced glutathione; adenosine triphosphate level; and lipid peroxidation were measured. The activities of Krebs cycle enzymes such as isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, III, and IV in kidney mitochondria were also determined. Administration of P. rimosus (250 mg/kg b.wt) once daily for 30 days, significantly (p<0.05) enhanced the activities of Krebs cycle dehydrogenases, mitochondrial electron transport chain complexes, and ATP level. Further, P. rimosus had significantly protected the renal mitochondrial antioxidant status and lipid peroxidation. The results of the study concluded that by limiting the extent of renal mitochondrial damage in the hyperglycemic state, P. rimosus alleviated nephrotoxicity.

  7. Serine Proteolytic Pathway Activation Reveals an Expanded Ensemble of Wound Response Genes in Drosophila

    Science.gov (United States)

    Patterson, Rachel A.; Juarez, Michelle T.; Hermann, Anita; Sasik, Roman; Hardiman, Gary; McGinnis, William

    2013-01-01

    After injury to the animal epidermis, a variety of genes are transcriptionally activated in nearby cells to regenerate the missing cells and facilitate barrier repair. The range and types of diffusible wound signals that are produced by damaged epidermis and function to activate repair genes during epidermal regeneration remains a subject of very active study in many animals. In Drosophila embryos, we have discovered that serine protease function is locally activated around wound sites, and is also required for localized activation of epidermal repair genes. The serine protease trypsin is sufficient to induce a striking global epidermal wound response without inflicting cell death or compromising the integrity of the epithelial barrier. We developed a trypsin wounding treatment as an amplification tool to more fully understand the changes in the Drosophila transcriptome that occur after epidermal injury. By comparing our array results with similar results on mammalian skin wounding we can see which evolutionarily conserved pathways are activated after epidermal wounding in very diverse animals. Our innovative serine protease-mediated wounding protocol allowed us to identify 8 additional genes that are activated in epidermal cells in the immediate vicinity of puncture wounds, and the functions of many of these genes suggest novel genetic pathways that may control epidermal wound repair. Additionally, our data augments the evidence that clean puncture wounding can mount a powerful innate immune transcriptional response, with different innate immune genes being activated in an interesting variety of ways. These include puncture-induced activation only in epidermal cells in the immediate vicinity of wounds, or in all epidermal cells, or specifically in the fat body, or in multiple tissues. PMID:23637905

  8. [1-14C]Glycolate metabolism and serine biosynthesis in soybean plants

    International Nuclear Information System (INIS)

    Calmes, J.; Viala, G.; Latche, J.C.; Cavalie, G.

    1977-01-01

    [1- 14 C]Glycolate metabolism was examined in leafy shoots of soybean plants (Glycine max (L.) Merr., var. Adepta). Only small amounts of 14 C were incorporated into evolved carbon dioxide and glucidic compounds. Free and protein glycine was labelled but higher levels of radioactivity were found in free serine. Changes in the distribution of 14 C with time showed that metabolic conversion glycollate → glycine → serine occurred very early and serine biosynthesis was more important in the shoot than in the leaves. Carbon dioxide labelling was always slight compared to serine labelling. These data suggest strong relations between glycollate and nitrogen metabolism

  9. Effects of quercetin on kidney injury induced by doxorubicin.

    Science.gov (United States)

    Yagmurca, M; Yasar, Z; Bas, O

    2015-01-01

    The anthracycline antitumor drug doxorubicine causes severe nephrotoxicity in a variety of experimental animals and may be nephrotoxic to humans. The aim of present study was to determine the protective effects of quercetin against doxorubicin-induced kidney injury with light microscopy. Forty male Wistar albino rats were divided into four groups: control, doxorubicin, doxorubicin+quercetin and quercetin. A single dose of 20 mg/kg/ i.p. doxorubicin was used to induce injury. Quercetin was administrated orally against doxorubicin toxicity. The kidneys were examined under light microscopy after H-E (hematoxylin-eosin) staining and the changes were scored. Significant tissue injury was observed in doxorubicin-administered group. Among these injuries, renal tubular dilatation, tubular vacuolar changes, glomerular vacuolization, decrease in bowman space, bowman capsule thickening, and interstitial infiltration were evident. However, the injury induced by doxorubicin was attenuated with quercetin administration. Quercetin decreased doxorubicin-induced kidney damage (Tab. 1, Fig. 4, Ref. 27).

  10. Serine protease inhibitors containing a Kunitz domain: their role in modulation of host inflammatory responses and parasite survival.

    Science.gov (United States)

    de Magalhães, Mariana T Q; Mambelli, Fábio S; Santos, Bruno P O; Morais, Suellen B; Oliveira, Sergio C

    2018-03-31

    Proteins containing a Kunitz domain have the typical serine protease inhibition function ranging from sea anemone to man. Protease inhibitors play major roles in infection, inflammation disorders and cancer. This review discusses the role of serine proteases containing a Kunitz domain in immunomodulation induced by helminth parasites. Helminth parasites are associated with protection from inflammatory conditions. Therefore, interest has raised whether worm parasites or their products hold potential as drugs for treatment of immunological disorders. Finally, we also propose the use of recombinant SmKI-1 from Schistosoma mansoni as a potential therapeutic molecule to treat inflammatory diseases. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. The VA, VCD, Raman and ROA spectra of tri-L-serine in aqueous solution

    DEFF Research Database (Denmark)

    Jürgensen, Vibeke Würtz; Jalkanen, Karl J.

    2006-01-01

    The structures of one conformer of the nonionic neutral and zwitterionic species of L-serinyl L-serinyl L-serine (SSS or tri-L-serine), together with its cationic and anionic species and the capped N-acetyl tri-L-serine N'-methylamide analog were optimized with density functional theory with the ......The structures of one conformer of the nonionic neutral and zwitterionic species of L-serinyl L-serinyl L-serine (SSS or tri-L-serine), together with its cationic and anionic species and the capped N-acetyl tri-L-serine N'-methylamide analog were optimized with density functional theory...

  12. Cumulative or delayed nephrotoxicity after cisplatin (DDP) treatment.

    Science.gov (United States)

    Pinnarò, P; Ruggeri, E M; Carlini, P; Giovannelli, M; Cognetti, F

    1986-04-30

    The present retrospective study reports data regarding renal toxicity in 115 patients (63 males, 52 females; median age, 56 years) who received cumulative doses of cisplatin (DDP) greater than or equal to 200 mg/m2. DDP was administered alone or in combination at a dose of 50-70 mg/m2 in 91 patients, and at a dose of 100 mg/m2 in 22 patients. Two patients after progression of ovarian carcinoma treated with conventional doses of DDP received 4 and 2 courses, respectively, of high-dose DDP (40 mg/m2 for 5 days) in hypertonic saline. The median number of DDP courses was 6 (range 2-14), and the median cumulative dose was 350 mg/m2 (range, 200-1200). Serum creatinine and urea nitrogen were determined before initiating the treatment and again 13-16 days after each administration. The incidence of azotemia (creatinina levels that exceeded 1.5 mg/dl) was similar before (7.8%) and after (6.1%) DDP doses of 200 mg/m2. Azotemia appears to be related to the association of DDP with other potentially nephrotoxic antineoplastic drugs (methotrexate) more than to the dose per course of DDP. Of 59 patients followed for 2 months or more after discontinuing the DDP treatment, 3 (5.1%) presented creatinine values higher than 1.5 mg/dl. The data deny that the incidence of nephrotoxicity is higher in patients receiving higher cumulative doses of DDP and confirm that increases in serum creatinine levels may occur some time after discontinuation of the drug.

  13. Convergent synthesis of a deuterium-labeled serine dipeptide lipid for analysis of biological samples.

    Science.gov (United States)

    Dietz, Christopher; Clark, Robert B; Nichols, Frank C; Smith, Michael B

    2017-05-30

    Bacterial serine dipeptide lipids are known to promote inflammatory processes and are detected in human tissues associated with periodontal disease or atherosclerosis. Accurate quantification of bacterial serine lipid, specifically lipid 654 [((S)-15-methyl-3-((13-methyltetradecanoyl)oxy)hexadecanoyl)glycyl-l-serine, (3S)-l-serine] isolated from Porphyromonas gingivalis, in biological samples requires the preparation of a stable isotope internal standard for sample supplementation and subsequent mass spectrometric analysis. This report describes the convergent synthesis of a deuterium-substituted serine dipeptide lipid, which is an isotopically labeled homologue that represents a dominant form of serine dipeptide lipid recovered in bacteria. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Nephroprotective Effect of Bauhinia tomentosa Linn against Cisplatin-Induced Renal Damage.

    Science.gov (United States)

    Kannan, Narayanan; Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2016-01-01

    Cisplatin (CP) is an important chemotherapeutic drug used for the treatment of a wide variety of solid tumors. However, clinical use of CP has been limited due to its adverse effect of nephrotoxicity. In the present study, we evaluate the nephroprotective effect of Bauhinia tomentosa against CP-induced renal damage in rats. Administration of methonolic extract of B. tomentosa (250 mg/kg b.w.) results in a significant increase in antioxidant enzymes including superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Furthermore, treatment with B. tomentosa increased body weight and relative organ weight when compared with that of the CP-induced control group. Moreover, treatment with B. tomentosa extract significantly decreased lipid peroxidation(LPO), serum urea, and creatinine when compared with the CP-induced control group. Thus, the present study highlights the potential role of B. tomentosa and its use as a new protective strategy against CP-induced nephrotoxicity.

  15.  The potential nephrotoxicity of antiretroviral drugs

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2012-09-01

    Full Text Available  The intensive studies carried out in many scientific laboratories and the efforts of numerous pharmaceutical companies have led to the development of drugs which are able to effectively inhibitHIV proliferation. At present, a number of antiretroviral agents with different mechanisms of actionare available. Unfortunately, long-term use of antiretroviral drugs, however, does not remainindifferent to the patient and can cause significant side effects.In the present work, the antiretroviral drugs with a nephrotoxicity potential most commonly usedin clinical practice are described. In the review attention has also been focused on the nephropathyresulting from the HIV infection alone and the influence of genetic factors on the occurrenceof pathological changes in the kidney.

  16. Imaging MS in Toxicology: An Investigation of Juvenile Rat Nephrotoxicity Associated with Dabrafenib Administration

    Science.gov (United States)

    Groseclose, M. Reid; Laffan, Susan B.; Frazier, Kendall S.; Hughes-Earle, Angela; Castellino, Stephen

    2015-06-01

    As part of an investigative nephrotoxicity study, kidney tissues from juvenile rats orally administered dabrafenib at different age intervals between postnatal day (PND) 7 to 35 were investigated by MALDI and LDI imaging mass spectrometry (IMS) to determine the chemical composition of tubular deposits. In the youngest age group (PND 7-13), MALDI IMS demonstrated that a dabrafenib carboxylic acid metabolite was diffusely localized to the regions of tubular deposits (medulla and corticomedullary junction); however, no dabrafenib-related material was detected directly from the deposits. Rather, the LDI IMS analysis determined that the deposits were composed primarily of calcium phosphate. Based on these data, the dabrafenib associated nephrotoxicity, including the formation of tubular deposits, was determined to be age dependent. Furthermore, immature renal function was hypothesized to be responsible for the susceptibility of the youngest pups.

  17. Nephrotoxicity of uranyl acetate: effect on rat kidney brush border membrane vesicles

    International Nuclear Information System (INIS)

    Goldman, M.; Yaari, A.; Moran, A.; Doshnitzki, Z.; Cohen-Luria, R.

    2006-01-01

    Since the Gulf war exposure to depleted uranium, a known nephrotoxic agent, there is a renewed interest in the toxic effects of uranium in general and its mechanism of nephrotoxicity which is still largely unknown in particular. In order to investigate the mechanism responsible for uranium nephrotoxicity and the therapeutic effect of urine alkalization, we utilized rat renal brush border membrane vesicles (BBMV). Uranyl acetate (UA) caused a decrease in glucose transport in BBMV. The apparent K i of uranyl was 139±30 μg uranyl/mg protein of BBMV. Uranyl at 140 μg/mg protein of BBMV reduced the maximal capacity of the system to transport glucose [V max 2.2±0.2 and 0.96±0.16 nmol/mg protein for control and uranyl treated BBMV (P m (1.54±0.33 and 1.54±0.51 mM for control, and uranyl treated BBMV, respectively). This reduction in V max is at least partially due to a decrease in the number of sodium-coupled glucose transporters as apparent from the reduction in phlorizin binding to the uranyl treated membranes, V max was reduced from 247±13 pmol/mg protein in control BBMV to 119±3 pmol/mg protein in treated vesicles (P<0.001). The pH of the medium has a profound effect on the toxicity of UA on sodium-coupled glucose transport in BBMV: higher toxicity at neutral pH (around pH 7.0), and practically no toxicity at alkaline pH (7.6). This is the first report showing a direct inhibitory dose and pH dependent effect of uranyl on the glucose transport system in isolated apical membrane from kidney cortex. (orig.)

  18. Nephroprotective, Diuretic and Antioxidant Effects of Some Medicinal Herbs in Gentamicin-Nephrotoxic Rats

    Directory of Open Access Journals (Sweden)

    Mostafa Abbas Shalaby

    2014-02-01

    Conclusion: Aqueous extracts of Petroselinum sativum, Eruca sativa and Curcuma longa produce nephroprotective, diuretic and antioxidant effects in GM - nephrotoxic rats. These herbs may be beneficial for patients who suffer from kidney diseases and those on GM therapy. [J Intercult Ethnopharmacol 2014; 3(1.000: 1-8

  19. Site-specific DNA Inversion by Serine Recombinases

    Science.gov (United States)

    2015-01-01

    Reversible site-specific DNA inversion reactions are widely distributed in bacteria and their viruses. They control a range of biological reactions that most often involve alterations of molecules on the surface of cells or phage. These programmed DNA rearrangements usually occur at a low frequency, thereby preadapting a small subset of the population to a change in environmental conditions, or in the case of phages, an expanded host range. A dedicated recombinase, sometimes with the aid of additional regulatory or DNA architectural proteins, catalyzes the inversion of DNA. RecA or other components of the general recombination-repair machinery are not involved. This chapter discusses site-specific DNA inversion reactions mediated by the serine recombinase family of enzymes and focuses on the extensively studied serine DNA invertases that are stringently controlled by the Fis-bound enhancer regulatory system. The first section summarizes biological features and general properties of inversion reactions by the Fis/enhancer-dependent serine invertases and the recently described serine DNA invertases in Bacteroides. Mechanistic studies of reactions catalyzed by the Hin and Gin invertases are then discussed in more depth, particularly with regards to recent advances in our understanding of the function of the Fis/enhancer regulatory system, the assembly of the active recombination complex (invertasome) containing the Fis/enhancer, and the process of DNA strand exchange by rotation of synapsed subunit pairs within the invertasome. The role of DNA topological forces that function in concert with the Fis/enhancer controlling element in specifying the overwhelming bias for DNA inversion over deletion and intermolecular recombination is emphasized. PMID:25844275

  20. New L-Serine Derivative Ligands as Cocatalysts for Diels-Alder Reaction

    Science.gov (United States)

    Sousa, Carlos A. D.; Rodríguez-Borges, José E.; Freire, Cristina

    2013-01-01

    New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward. PMID:24383009

  1. Serine integrase chimeras with activity in E. coli and HeLa cells

    Directory of Open Access Journals (Sweden)

    Alfonso P. Farruggio

    2014-09-01

    Full Text Available In recent years, application of serine integrases for genomic engineering has increased in popularity. The factor-independence and unidirectionality of these large serine recombinases makes them well suited for reactions such as site-directed vector integration and cassette exchange in a wide variety of organisms. In order to generate information that might be useful for altering the specificity of serine integrases and to improve their efficiency, we tested a hybridization strategy that has been successful with several small serine recombinases. We created chimeras derived from three characterized members of the serine integrase family, phiC31, phiBT1, and TG1 integrases, by joining their amino- and carboxy-terminal portions. We found that several phiBT1-phiC31 (BC and phiC31-TG1 (CT hybrid integrases are active in E. coli. BC chimeras function on native att-sites and on att-sites that are hybrids between those of the two donor enzymes, while CT chimeras only act on the latter att-sites. A BC hybrid, BC{−1}, was also active in human HeLa cells. Our work is the first to demonstrate chimeric serine integrase activity. This analysis sheds light on integrase structure and function, and establishes a potentially tractable means to probe the specificity of the thousands of putative large serine recombinases that have been revealed by bioinformatics studies.

  2. Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability.

    Directory of Open Access Journals (Sweden)

    Daniel J White

    Full Text Available The EVI1 (ecotropic viral integration site 1 gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196 in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D, which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain.

  3. Mosaic serine proteases in the mammalian central nervous system.

    Science.gov (United States)

    Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi

    2008-01-01

    We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.

  4. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Directory of Open Access Journals (Sweden)

    Lior Doron

    Full Text Available Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  5. The story of an exceptional serine protease, tissue-type plasminogen activator (tPA).

    Science.gov (United States)

    Hébert, M; Lesept, F; Vivien, D; Macrez, R

    2016-03-01

    The only acute treatment of ischemic stroke approved by the health authorities is tissue recombinant plasminogen activator (tPA)-induced thrombolysis. Under physiological conditions, tPA, belonging to the serine protease family, is secreted by endothelial and brain cells (neurons, astrocytes, microglia, oligodendrocytes). Although revascularisation induced by tPA is beneficial during a stroke, research over the past 20 years shows that tPA can also be deleterious for the brain parenchyma. Thus, in this review of the literature, after a brief history on the discovery of tPA, we reviewed current knowledge of mechanisms by which tPA can influence brain function in physiological and pathological conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Engineering of High Yield Production of L-serine in Escherichia coli

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Schneider, Konstantin; Christensen, Hanne Bjerre

    2016-01-01

    by deletion of three L-serine deaminases sdaA, sdaB, and tdcG, as well as serine hydroxyl methyl transferase (SHMT) encoded by glyA. Upon overexpression of the serine production pathway, consisting of a feedback resistant version of serA along with serB and serC, this quadruple deletion strain showed a very...

  7. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex.

    Science.gov (United States)

    Siritapetawee, Jaruwan; Thumanu, Kanjana; Sojikul, Punchapat; Thammasirirak, Sompong

    2012-07-01

    A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) latex and designated as a 48-kDa antimicrobial protease (AMP48) in a previous publication. In this work, the enzyme was characterized for more biochemical and medicinal properties. Enzyme activity of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean trypsin inhibitor, indicating that the enzyme was a plant serine protease. The N-terminal amino acid sequences (A-Q-E-G-G-K-D-D-D-G-G) of AMP48 had no sequence similarity matches with any sequence databases of BLAST search and other plant serine protease. The secondary structure of this enzyme was composed of high α-helix (51%) and low β-sheet (9%). AMP48 had fibrinogenolytic activity with maximal activity between 55 and 60°C at pH 8. The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ subunits of human fibrinogen. In addition, the fibrinolytic activity was observed through the degradation products by SDS-PAGE and emphasized its activity by monitoring the alteration of secondary structure of fibrin clot after enzyme digestion using ATR-FTIR spectroscopy. This study presented the potential role to use AMP48 as antithrombotic for treatment thromboembolic disorders such as strokes, pulmonary emboli and deep vein thrombosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Comparison of Rates of Nephrotoxicity Associated with Vancomycin in Combination with Piperacillin-Tazobactam Administered as an Extended versus Standard Infusion.

    Science.gov (United States)

    Mousavi, Mariam; Zapolskaya, Tanya; Scipione, Marco R; Louie, Eddie; Papadopoulos, John; Dubrovskaya, Yanina

    2017-03-01

    Despite recent reports of relatively high rates (16-37%) of acute kidney injury (AKI) in patients receiving the combination of intravenous piperacillin-tazobactam (PTZ) and vancomycin, data are limited evaluating the impact of PTZ infusion strategy on the occurrence of nephrotoxicity. The objective of this study was to compare the rates of nephrotoxicity in patients receiving vancomycin in combination with PTZ administered as an extended infusion (EI) versus a standard infusion (SI). Single-center, retrospective, matched-cohort study. Large academic tertiary care hospital. Two hundred eighty adults with a creatinine clearance (CrCl) of 40 ml/minute or higher who received at least 96 hours of vancomycin plus PTZ EI (140 patients) or vancomycin plus PTZ SI (140 patients) between January 1, 2009, and December 31, 2011, and between January 1, 2013, and December 31, 2014 (year 2012 was skipped due the closure of inpatient units following Superstorm Sandy); 48 patients in each group were admitted to the intensive care unit. The median age of all patients was 67 (interquartile range [IQR] 54-77) years, and CrCl was 75 (IQR 55-107) ml/minute. Nephrotoxicity was assessed by the risk, injury, failure, loss, and end-stage kidney disease (RIFLE) and Acute Kidney Injury Network (AKIN) criteria. Rates of AKI, according to these criteria, were similar between groups: 17.9% versus 17.1% (p=1) and 32.9% versus 29.3% (p=0.596) for the PTZ EI and PTZ SI groups, respectively. When controlling for residual differences between groups in a conditional logistic regression analysis, no association was observed between receipt of PTZ EI and RIFLE-defined AKI (odds ratio 0.522, 95% confidence interval 0.043-6.295, p=0.609). Time to onset of nephrotoxicity was 4 (IQR 3-6) days, with no significant difference noted between groups (p=0.887). Our findings suggest a similar rate of nephrotoxicity between patients who received vancomycin in combination with PTZ EI versus PTZ SI. These results need

  9. CDK2 and PKA mediated-sequential phosphorylation is critical for p19INK4d function in the DNA damage response.

    Directory of Open Access Journals (Sweden)

    Mariela C Marazita

    Full Text Available DNA damage triggers a phosphorylation-based signaling cascade known as the DNA damage response. p19INK4d, a member of the INK4 family of CDK4/6 inhibitors, has been reported to participate in the DNA damage response promoting DNA repair and cell survival. Here, we provide mechanistic insight into the activation mechanism of p19INK4d linked to the response to DNA damage. Results showed that p19INK4d becomes phosphorylated following UV radiation, β-amyloid peptide and cisplatin treatments. ATM-Chk2/ATR-Chk1 signaling pathways were found to be differentially involved in p19INK4d phosphorylation depending on the type of DNA damage. Two sequential phosphorylation events at serine 76 and threonine 141 were identified using p19INK4d single-point mutants in metabolic labeling assays with (32P-orthophosphate. CDK2 and PKA were found to participate in p19INK4d phosphorylation process and that they would mediate serine 76 and threonine 141 modifications respectively. Nuclear translocation of p19INK4d induced by DNA damage was shown to be dependent on serine 76 phosphorylation. Most importantly, both phosphorylation sites were found to be crucial for p19INK4d function in DNA repair and cell survival. In contrast, serine 76 and threonine 141 were dispensable for CDK4/6 inhibition highlighting the independence of p19INK4d functions, in agreement with our previous findings. These results constitute the first description of the activation mechanism of p19INK4d in response to genotoxic stress and demonstrate the functional relevance of this activation following DNA damage.

  10. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  11. Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study

    Czech Academy of Sciences Publication Activity Database

    Vorlová, Barbora; Nachtigallová, Dana; Jirásková-Vaníčková, Jana; Ajani, Haresh; Jansa, Petr; Řezáč, Jan; Fanfrlík, Jindřich; Otyepka, M.; Hobza, Pavel; Konvalinka, Jan; Lepšík, Martin

    2015-01-01

    Roč. 89, Jan 7 (2015), s. 189-197 ISSN 0223-5234 R&D Projects: GA ČR GBP208/12/G016 Grant - others:GA MŠk(CZ) ED2.1.00/03.0058 Program:ED Institutional support: RVO:61388963 Keywords : NMDA receptor * pyridoxal-5 '-phosphate-dependent enzyme * human/mouse serine racemase * malonate-based inhibitors * semiempirical quantum mechanical calculations Subject RIV: CE - Biochemistry Impact factor: 3.902, year: 2015

  12. Purification and Characterization of a New Serine Protease (VLCII) Isolated from Vipera lebetina Venom: Its Role in Hemostasis.

    Science.gov (United States)

    Amel, Kadi-Saci; Fatima, Laraba-Djebari

    2015-08-01

    Snake venom serine proteinases (SVSPs) affect various physiological functions including blood coagulation, fibrinolysis, and platelet aggregation. Coagulant serine proteinase (VLCII) was purified from Vipera lebetina venom using three chromatographic steps: gel filtration on SephadexG-75, DEAE-Sephadex A-50, and reversed-phase high-performance liquid chromatography (RP-HPLC) on C8 column. VLCII appeared homogenous (60 kDa) when tested on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). VLCII as a thrombin-like enzyme was able to hydrolyze Nα-CBZ L-arginine-p-nitroanilide hydrochloride and could be a serine protease because it is inhibited by phenylmethylsulfonyl fluoride. The proteolytic activity of VLCII was not affected by ethylenediaminetetraacetic acid and 1.10-phenanthroline. It showed high coagulant activity against human plasma and cleaved both Aα chain and Bβ chain of bovine fibrinogen. The isolated VLCII displayed proaggregating effect on human platelet in a concentration-dependent manner with an absence of lag time. Clopidogrel P2Y12 adenosine diphosphate (ADP) receptor inhibitor reduced markedly the aggregating effect induced by VLCII than aspirin, indicating the involvement of ADP signaling pathway. © 2015 Wiley Periodicals, Inc.

  13. Endovascular revascularization of TASC C and D femoropopliteal occlusive disease using carbon dioxide as contrast

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Cynthia de Almeida; Teivelis, Marcelo Passos; Kuzniec, Sergio; Fukuda, Juliana Maria; Wolosker, Nelson [Hospital Israelita Albert Einstein, São Paulo, SP (Brazil)

    2016-07-01

    To analyze the results of ten angioplasties of TASC C and D femoropopliteal lesions using CO{sub 2} as primary contrast in patients with no formal contraindication to iodine, aiming to decrease allergic reactions and potential nephrotoxicity in high-risk patients. We describe the results of ten angioplasties of TASC C and D femoropopliteal lesions using CO{sub 2} as primary contrast in patients with high risk for open revascularization and no formal contraindication to iodine. We analyzed feasibility of the procedures, complications, quality of the angiographic images, clinical and surgical outcomes, and costs of C and D lesions treated using CO{sub 2} as contrast medium. The use of CO{sub 2} in C and D lesions needed iodine complementation in most of the cases (nine cases) but decreased the potential nephrotoxicity of iodine contrast medium by the reduction of its volume in this group of high-risk patients. The extension of the arterial lesions was the factor that most contributed to the need for iodine supplementation due to the difficulty to visualize the refill after a long arterial occlusion. The use of CO{sub 2} as contrast in patients with C and D lesions with no restriction for iodine contrast medium was an alternative that did not dismiss the need of iodine supplementation in most of the cases, but could decrease the potential nephrotoxicity of iodine constrast medium.

  14. Nephron segment specific microRNA biomarkers of pre-clinical drug-induced renal toxicity: Opportunities and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nassirpour, Rounak, E-mail: Rounak.nassirpour@pfizer.com [Drug Safety, Pfizer Worldwide Research and Development, 1 Burtt Rd, Andover, MA 01810 (United States); Ramaiah, Shashi K. [Drug Safety, Pfizer Worldwide Research and Development, 610 Main Street, Cambridge, MA 02139 (United States); Whiteley, Laurence O. [Drug Safety, Pfizer Worldwide Research and Development, 1 Burtt Rd, Andover, MA 01810 (United States)

    2016-12-01

    Drug-induced nephrotoxicity is a common drug development complication for pharmaceutical companies. Sensitive, specific, translatable and non-invasive biomarkers of renal toxicity are urgently needed to diagnose nephron segment specific injury. The currently available gold standard biomarkers for nephrotoxicity are not kidney-specific, lack sensitivity for early detection, and are not suitable for renal damage localization (glomerular vs tubulointerstitial injury). MicroRNAs (miRNAs) are increasingly gaining momentum as promising biomarkers of various organ toxicities, including drug induced renal injury. This is mostly due to their stability in easily accessible biofluids, ease of developing nucleic acids detection compared to protein detection assays, as well as their interspecies translatability. Increasing concordance of miRNA findings by standardizing methodology most suitable for their detection and quantitation, as well as characterization of their expression pattern in a cell type specific manner, will accelerate progress toward validation of these miRNAs as biomarkers in pre-clinical, and clinical settings. This review aims to highlight the current pre-clinical findings surrounding miRNAs as biomarkers in two important segments of the nephron, the glomerulus and tubules. - Highlights: • miRNAs are promising biomarkers of drug-induced kidney injury. • Summarized pre-clinical miRNA biomarkers of drug-induced nephrotoxicity. • Described the strengths and challenges associated with miRNAs as biomarkers.

  15. Dosage compensation of serine-4 transfer RNA in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Birchler, J.A.; Owenby, R.K.; Jacobson, K.B.

    1982-01-01

    A dosage series of the X chromosome site for serine-4 transfer RNA consisting of one of three copies in females and one to two in males was constructed to test whether transfer RNA expression is governed by dosage compensation. A dosage effect on the level of the serine-4 isoacceptor was observed in both females and males when the structural locus was varied. However, in males, each dose had a relatively greater expression so the normal one dose was slightly greater than the total female value and the duplicated male had the highest relative expression of all the types examined. Serine-4 levels in males and females from an isogenic Oregon-R stock were similar. Thus the transfer RNA levels conform to the expectations of dosage compensation

  16. Nephrotoxic effects of lead nitrate exposure in diabetic and nondiabetic rats: Involvement of oxidative stress and the protective role of sodium selenite.

    Science.gov (United States)

    Baş, Hatice; Kalender, Yusuf

    2016-10-01

    Heavy metals are known to be toxic to organisms. The present study was undertaken to evaluate the protective effect of sodium selenite against lead nitrate (LN)-induced nephrotoxicity in diabetic and nondiabetic rats. Animals were divided into eight groups where the first was served as a control, whereas the remaining groups were treated with sodium selenite (1 mg/kg b.w.), LN (22.5 mg/kg b.w.) and a combination of LN and sodium selenite and diabetic forms of these groups. Changes in antioxidant enzyme activities, malondialdehide levels, serum urea, uric acid, creatinine levels, body, and kidney weights and histopathological changes were determined after 28 days. LN caused severe histopathological changes, increment in urea, uric acid, creatinine, and MDA levels, also decreasing in antioxidant enzyme activities, body, and kidney weights. In sodium selenite + LN group, we observed the protective effect of sodium selenite on examining parameters. Also diabetes caused alterations on these parameters compared with nondiabetic animals. We found that sodium selenite did not show protective effect on diabetes caused damages. As a result, LN caused nephrotoxicity and sodium selenite alleviated this toxicity but sodium selenite did not protect kidneys against diabetes mediated toxicity. Also, LN caused more harmfull effects in diabetic groups compared with nondiabetic groups. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1229-1240, 2016. © 2015 Wiley Periodicals, Inc.

  17. Involvement of reversible binding to alpha 2u-globulin in 1,4-dichlorobenzene-induced nephrotoxicity.

    Science.gov (United States)

    Charbonneau, M; Strasser, J; Lock, E A; Turner, M J; Swenberg, J A

    1989-06-01

    Similarly to unleaded gasoline, 1,4-dichlorobenzene (1,4-DCB) administered for 2 years caused a dose-related increase in the incidence of renal tumors in male but not in female rats or in either sex of mice. Unleaded gasoline and 2,2,4-trimethylpentane (TMP), a component of unleaded gasoline, increased protein droplet formation and cell proliferation in male but not in female rat kidneys. These protein droplets contained, alpha 2u-globulin, a male rat-specific low-molecular-weight protein and 2,4,4-trimethyl-2-pentanol, a metabolite of TMP that was reversibly bound to this protein. Studies were undertaken to determine if 1,4-DCB produced similar effects; 1,2-DCB was used for comparison since it did not produce renal carcinogenesis in male rats. Gel filtration chromatography of a 116,000g supernatant prepared from kidneys of 1,4-[14C]DCB-treated rats showed that radiolabel coeluted with alpha 2u-globulin as one sharp peak as opposed to a multipeak pattern observed for 1,2-[14C]DCB; the maximal quantity of radiolabel for 1,4-DCB was twice that for 1,2-DCB. Equilibrium dialysis of kidney cytosol in the presence or absence of sodium dodecyl sulfate demonstrated that the radiolabel was reversibly bound to alpha 2u-globulin; the amount for 1,4-[14C]DCB-treated rats was almost twice as much as that for 1,2-[14C]DCB-treated rats. 1,2-DCB was also shown to be covalently bound to renal alpha 2u-globulin, and covalently bound to liver and plasma high-molecular-weight proteins. 1,4-DCB and, to a minor extent, 2,5-dichlorophenol, the major metabolite of 1,4-DCB, were reversibly bound to renal alpha 2u-globulin from 1,4-DCB-treated rats. 1,4-DCB increased protein droplet formation in male but not in female rat kidneys, whereas equimolar doses of 1,2-DCB showed no effect in either sex. Renal cell proliferation, measured by [3H]thymidine incorporation into renal DNA, was increased after 1,4-DCB but not after 1,2-DCB treatment. Nephrotoxicity and biochemical alterations induced by

  18. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein.

    Directory of Open Access Journals (Sweden)

    Mark J White

    2011-03-01

    Full Text Available Mycobacterium tuberculosis remains a significant global health concern largely due to its ability to persist for extended periods within the granuloma of the host. While residing within the granuloma, the tubercle bacilli are likely to be exposed to stress that can result in formation of aberrant proteins with altered structures. Bacteria encode stress responsive determinants such as proteases and chaperones to deal with misfolded or unfolded proteins. pepD encodes an HtrA-like serine protease and is thought to process proteins altered following exposure of M. tuberculosis to extra-cytoplasmic stress. PepD functions both as a protease and chaperone in vitro, and is required for aspects of M. tuberculosis virulence in vivo. pepD is directly regulated by the stress-responsive two-component signal transduction system MprAB and indirectly by extracytoplasmic function (ECF sigma factor SigE. Loss of PepD also impacts expression of other stress-responsive determinants in M. tuberculosis. To further understand the role of PepD in stress adaptation by M. tuberculosis, a proteomics approach was taken to identify binding proteins and possible substrates of this protein. Using subcellular fractionation, the cellular localization of wild-type and PepD variants was determined. Purified fractions as well as whole cell lysates from Mycobacterium smegmatis or M. tuberculosis strains expressing a catalytically compromised PepD variant were immunoprecipitated for PepD and subjected to LC-MS/MS analyses. Using this strategy, the 35-kDa antigen encoding a homolog of the PspA phage shock protein was identified as a predominant binding partner and substrate of PepD. We postulate that proteolytic cleavage of the 35-kDa antigen by PepD helps maintain cell wall homeostasis in Mycobacterium and regulates specific stress response pathways during periods of extracytoplasmic stress.

  19. Isolation and characterization of a serine proteinase with thrombin-like activity from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    A.V Pérez

    2008-01-01

    Full Text Available A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13% of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg and fibrinogen (minimum coagulant dose = 4.2 µg in vitro, and promotes defibrin(ogenation in vivo (minimum defibrin(ogenating dose = 1.0 µg. In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.

  20. Trypsin- and Chymotrypsin-Like Serine Proteases in Schistosoma mansoni - 'The Undiscovered Country'

    Czech Academy of Sciences Publication Activity Database

    Horn, Martin; Fajtová, Pavla; Arreola, L. R.; Ulrychová, Lenka; Bartošová-Sojková, Pavla; Franta, Zdeněk; Protasio, A. V.; Opavský, David; Vondrášek, Jiří; McKerrow, J. H.; Mareš, Michael; Caffrey, C. R.; Dvořák, Jan

    2014-01-01

    Roč. 8, č. 3 (2014), e2766/1-e2766/13 ISSN 1935-2735 R&D Projects: GA ČR(CZ) GAP302/11/1481; GA MŠk(CZ) ME10011 EU Projects: European Commission(XE) 248642 - SCHISTOSOMA PROTEASE Institutional support: RVO:61388963 ; RVO:68378050 ; RVO:60077344 Keywords : schistosomiasis * blood fluke * serine protease Subject RIV: CE - Biochemistry; EB - Genetics ; Molecular Biology (UMG-J); FN - Epidemiology, Contagious Diseases ; Clinical Immunology (BC-A) Impact factor: 4.446, year: 2014 http://www.plosntds.org/article/info%3Adoi%2F10.1371%2Fjournal.pntd.0002766

  1. Environmental exposure to low-doses of ionizing radiation. Effects on early nephrotoxicity in mice.

    Science.gov (United States)

    Bellés, Montserrat; Gonzalo, Sergio; Serra, Noemí; Esplugas, Roser; Arenas, Meritxell; Domingo, José Luis; Linares, Victoria

    2017-07-01

    mechanisms involved in the internal IR-induced nephrotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  3. Endothelin-1 stimulates catalase activity through the PKCδ mediated phosphorylation of Serine 167

    Science.gov (United States)

    Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Hou, Yali; Kangath, Archana; Pardo, Daniel; Fineman, Jeffrey R.; Black, Stephen M.

    2013-01-01

    Our previous studies have shown that endothelin-1 (ET-1) stimulates catalase activity in endothelial cells and lambs with acute increases in pulmonary blood flow (PBF), without altering gene expression. The purpose of this study was to investigate the molecular mechanism by which this occurs. Exposing pulmonary arterial endothelial cells (PAEC) to ET-1 increased catalase activity and decreased cellular hydrogen peroxide (H2O2) levels. These changes correlated with an increase in serine phosphorylated catalase. Using the inhibitory peptide δV1.1, this phosphorylation was shown to be PKCδ dependent. Mass spectrometry identified serine167 as the phosphorylation site. Site-directed mutagenesis was used to generate a phospho-mimic (S167D) catalase. Activity assays using recombinant protein purified from E.coli or transiently transfected COS-7 cells, demonstrated that S167D-catalase had an increased ability to degrade H2O2 compared to the wildtype enzyme. Using a phospho-specific antibody, we were able to verify that pS167 catalase levels are modulated in lambs with acute increases in PBF in the presence and absence of the ET receptor antagonist, tezosentan. S167 is being located on the dimeric interface suggesting it could be involved in regulating the formation of catalase tetramers. To evaluate this possibility we utilized analytical gel-filtration to examine the multimeric structure of recombinant wildtype- and S167D-catalase. We found that recombinant wildtype catalase was present as a mixture of monomers and dimers while S167D catalase was primarily tetrameric. Further, the incubation of wildtype catalase with PKCδ was sufficient to convert wildtype catalase into a tetrameric structure. In conclusion, this is the first report indicating that the phosphorylation of catalase regulates its multimeric structure and activity. PMID:24211614

  4. Tenofovir-related nephrotoxicity: case report and review of the literature.

    Science.gov (United States)

    James, Christopher W; Steinhaus, Mary C; Szabo, Susan; Dressier, Robert M

    2004-03-01

    Tenofovir is a nucleotide reverse transcriptase inhibitor for treatment of human immunodeficiency virus (HIV) infection. Several cases of renal failure associated with tenofovir therapy recently have been reported. A 54-year-old man with HIV experienced decreasing renal function and Fanconi's syndrome secondary to tenofovir therapy. His condition gradually improved after discontinuation of the drug. The available medical literature for reported cases of tenofovir-related nephrotoxicity indicates that this complication is apparently rare. However, our case report and literature review underscore the importance of monitoring renal function when treating patients with any nucleotide reverse transcriptase inhibitor.

  5. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Directory of Open Access Journals (Sweden)

    Leah Theresa Sigle

    2013-09-01

    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  6. D-serine in health and disease

    NARCIS (Netherlands)

    Fuchs, S.A.

    2010-01-01

    Amino acids are among the most important molecules for living beings, since they are used to build peptides and proteins. Depending on their spatial positioning, amino acids can occur as D- or L-amino acids. This determines the function of peptides and proteins in the human body. It was long thought

  7. Reprogramming One-Carbon Metabolic Pathways To Decouple l-Serine Catabolism from Cell Growth in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Yun; Shang, Xiuling; Lai, Shujuan; Zhang, Yu; Hu, Qitiao; Chai, Xin; Wang, Bo; Liu, Shuwen; Wen, Tingyi

    2018-02-16

    l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13 CH 2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.

  8. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Xin; Zhang, Xiaomei; Xu, Guoqiang; Zhang, Xiaojuan; Shi, Jinsong; Xu, Zhenghong

    2018-05-03

    L-Serine is widely used in the pharmaceutical, food, and cosmetics industries. Although direct fermentative production of L-serine from sugar in Corynebacterium glutamicum has been achieved, the L-serine yield remains relatively low. In this study, atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the L-serine yield based on engineered C. glutamicum ΔSSAAI strain. Subsequently, we developed a novel high-throughput screening method using a biosensor constructed based on NCgl0581, a transcriptional factor specifically responsive to L-serine, so that L-serine concentration within single cell of C. glutamicum can be monitored via fluorescence-activated cell sorting (FACS). Novel L-serine-producing mutants were isolated from a large library of mutagenized cells. The mutant strain A36-pDser was screened from 1.2 × 10 5 cells, and the magnesium ion concentration in the medium was optimized specifically for this mutant. C. glutamicum A36-pDser accumulated 34.78 g/L L-serine with a yield of 0.35 g/g sucrose, which were 35.9 and 66.7% higher than those of the parent C. glutamicum ΔSSAAI-pDser strain, respectively. The L-serine yield achieved in this mutant was the highest of all reported L-serine-producing strains of C. glutamicum. Moreover, the whole-genome sequencing identified 11 non-synonymous mutations of genes associated with metabolic and transport pathways, which might be responsible for the higher L-serine production and better cell growth in C. glutamicum A36-pDser. This study explored an effective mutagenesis strategy and reported a novel high-throughput screening method for the development of L-serine-producing strains.

  9. Activation-induced cytidine deaminase (AID)-dependent somatic hypermutation requires a splice isoform of the serine/arginine-rich (SR) protein SRSF1.

    Science.gov (United States)

    Kanehiro, Yuichi; Todo, Kagefumi; Negishi, Misaki; Fukuoka, Junji; Gan, Wenjian; Hikasa, Takuya; Kaga, Yoshiaki; Takemoto, Masayuki; Magari, Masaki; Li, Xialu; Manley, James L; Ohmori, Hitoshi; Kanayama, Naoki

    2012-01-24

    Somatic hypermutation (SHM) of Ig variable region (IgV) genes requires both IgV transcription and the enzyme activation-induced cytidine deaminase (AID). Identification of a cofactor responsible for the fact that IgV genes are much more sensitive to AID-induced mutagenesis than other genes is a key question in immunology. Here, we describe an essential role for a splice isoform of the prototypical serine/arginine-rich (SR) protein SRSF1, termed SRSF1-3, in AID-induced SHM in a DT40 chicken B-cell line. Unexpectedly, we found that SHM does not occur in a DT40 line lacking SRSF1-3 (DT40-ASF), although it is readily detectable in parental DT40 cells. Strikingly, overexpression of AID in DT40-ASF cells led to a large increase in nonspecific (off-target) mutations. In contrast, introduction of SRSF1-3, but not SRSF1, into these cells specifically restored SHM without increasing off-target mutations. Furthermore, we found that SRSF1-3 binds preferentially to the IgV gene and inhibits processing of the Ig transcript, providing a mechanism by which SRSF1-3 makes the IgV gene available for AID-dependent SHM. SRSF1 not only acts as an essential splicing factor but also regulates diverse aspects of mRNA metabolism and maintains genome stability. Our findings, thus, define an unexpected and important role for SRSF1, particularly for its splice variant, in enabling AID to function specifically on its natural substrate during SHM.

  10. Selective inhibition reveals cyclin-dependent kinase 2 as another kinase that phosphorylates the androgen receptor at serine 81

    Czech Academy of Sciences Publication Activity Database

    Jorda, Radek; Bučková, Zuzana; Řezníčková, Eva; Bouchal, J.; Kryštof, Vladimír

    2018-01-01

    Roč. 1865, č. 2 (2018), s. 354-363 ISSN 0167-4889 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk(CZ) LO1304 Institutional support: RVO:61389030 Keywords : Androgen receptor * Cyclin-dependent kinase * Inhibitor * Phosphorylation * Serine 81 Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.521, year: 2016

  11. Renoprotective effects of antioxidants against cisplatin nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Hajian Shabnam

    2014-04-01

    Full Text Available Nephrotoxicity is the major limitation for the clinical use of cisplatin as an anti-tumoural drug. Intracellular effects of cisplatin cause tubular damage and tubular dysfunction with sodium, potassium, and magnesium wasting. Renoperotective strategies against cisplatin are classified on 8 targets: 1 Decrease of cisplatin uptake by renal cell, 2 Inhibition of cisplatin metabolism, 3 Blocking cell death pathways, 4 Cyclin-dependent kinase inhibitors, 5 Pharmacologic, molecular, and genetic blockade of p53, 6 Inhibition of specific Mitogen-activated protein kinase, 7 Antioxidants usage for renoprotection against cisplatin injury and inhibit of oxidative stress, 8 Suppress of inflammation. The oxidation reactions can produce free radicals, which start chain reactions and subsequently can cause a large number of diseases in humans. Antioxidant from natural products have attracted the physicians’ attentions, nowadays. The natural product antioxidants detoxify reactive oxygen species (ROS in kidneys, without affecting the anticancer efficacy of cisplatin. Hence, antioxidants have potential therapeutic applications.

  12. LOCALIZATION OF POLYSOME-BOUND ALBUMIN AND SERINE DEHYDRATASE IN RAT LIVER CELL FRACTIONS

    Science.gov (United States)

    Ikehara, Yukio; Pitot, Henry C.

    1973-01-01

    The polysomes involved in albumin and serine dehydratase synthesis were identified and localized by the binding to rat liver polysomes of anti-rat serum albumin and anti-serine dehydratase [125I]Fab dimer and monomer. Techniques were developed for the isolation of undegraded free and membrane-bound polysomes and for the preparation of [125I]Fab monomers and dimers from the IgG obtained from the antisera to the two proteins, rat serum albumin and serine dehydratase. The distribution of anti-rat serum albumin [125I]Fab dimer in the polysome profile is in accordance with the size of polysomes that are expected to be synthesizing albumin. By direct precipitation, it has been demonstrated that nascent chains isolated from the membrane-bound polysomes by puromycin were precipitated by anti-rat serum albumin-IgG at a level of 5–6 times those released from free polysomes. Anti-rat serum albumin-[125I]Fab dimer reacted with membrane-bound polysomes almost exclusively compared to the binding of nonimmune, control [125I]Fab dimer; a significant degree of binding of anti-rat serum albumin-[125I]Fab to free polysomes was also obtained. The [125I]Fab dimer made from normal control rabbit serum does not react with polysomes from liver at all and this preparation will not interact with polysomes extracted from tissues that do not synthesize rat serum albumin. Both anti-serine dehydratase-[125I]Fab monomer and dimer react with free and bound polysomes from livers of animals fed a chow diet or those fed a high 90% protein diet and given glucagon. In the latter instance, however, it is clear that the majority of the binding occurs to the bound polysomes. Furthermore, the specificity of this reaction may be further shown by the use of kidney polysomes that do not normally synthesize serine dehydratase. When these latter polysomes are isolated, even after the addition of crude and purified serine dehydratase, no reaction with anti-serine dehydratase-Fab fragments could be

  13. Suramin protects from cisplatin-induced acute kidney injury

    Science.gov (United States)

    Dupre, Tess V.; Doll, Mark A.; Shah, Parag P.; Sharp, Cierra N.; Kiefer, Alex; Scherzer, Michael T.; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E.; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G.; Beverly, Levi J.

    2015-01-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer. PMID:26661653

  14. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  15. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology.

    Science.gov (United States)

    Sasabe, Jumpei; Suzuki, Masataka

    2018-05-22

    Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.

  16. Intervention with Serine Protease Activity with Small Peptides

    DEFF Research Database (Denmark)

    Xu, Peng

    2015-01-01

    Serine proteases perform proteolytic reactions in many physiological and metabolic processes and have been certified as targets for therapeutics. Small peptides can be used as potent antagonists to target serine proteases and intervene with their activities. Urokinase-type plasminogen activator (u......PA) plays an important role in plasminogen activation system, which has many physiological and pathological functions and is closely associated with the metastasis of tumor cells. Based on a mono-cyclic peptidic inhibitor of murine uPA (muPA), mupain-1, which was screened out from a phage-display library...... before, we elucidated the binding and inhibitory mechanism by using multiple techniques, like X-ray crystallography, site-directed mutagenesis, isothermal titration calorimetry and surface plasmon resonance analysis. By studying the peptide-enzyme interaction, we discovered an unusual inhibitor...

  17. Tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces cell proliferation in normal human bronchial epithelial cells through NFκB activation and cyclin D1 up-regulation

    International Nuclear Information System (INIS)

    Ho, Y.-S.; Chen, Chien-Ho; Wang, Y.-J.; Pestell, Richard G.; Albanese, Chris; Chen, R.-J.; Chang, M.-C.; Jeng, J.-H.; Lin, S.-Y.; Liang, Y.-C.; Tseng, H.; Lee, W.-S.; Lin, J.-K.; Chu, J.-S.; Chen, L.-C.; Lee, C.-H.; Tso, W.-L.; Lai, Y.-C.; Wu, C.-H.

    2005-01-01

    Cigarette smoke contains several carcinogens known to initiate and promote tumorigenesis as well as metastasis. Nicotine is one of the major components of the cigarette smoke and the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific carcinogen. Here, we demonstrated that NNK stimulated cell proliferation in normal human bronchial epithelial cells (NHBE) and small airway epithelial cells (SAEC). Cells exposed to NNK resulted in an increase in the level of cyclin D1 protein (as early as 3-6 h). Increased phosphorylation of the Rb Ser 795 was detected at 6-15 h after NNK treatment and thereby promoted cells entering into the S phase (at 15-21 h). The increased cyclin D1 protein level was induced through activation of the transcription factor, nuclear factor kB (NFκB), in the NHBE cells. Treatment of the NHBE cells with PD98059, an ERK1/2 (extracellular signal-regulated protein kinase)-specific inhibitor, specifically suppressed the NNK-induced IκBα phosphorylation at position 32 of the serine residue, suggesting that the ERK1/2 kinase was involved in the IκBα phosphorylation induced by NFκB activation. To determine whether the NNK-induced NFκB activation and cyclin D1 induction were also observed in vivo, A/J mice were treated with NNK (9.1 mg) for 20 weeks and the results showed a significant induction of cyclin D1 and NFκB translocation determined by immunoblotting analyses. We further demonstrated that the nicotine acetylcholine receptor (nAchR), which contains the α3-subunit, was the major target mediating NNK-induced cyclin D1 expression in the NHBE cells. In summary, our findings demonstrate for the first time that NNK could stimulate normal human bronchial cell proliferation through activation of the NFκB, which in turn up-regulated the cyclin D1 expression

  18. Serine esterase and hemolytic activity in human cloned cytotoxic T lymphocytes

    OpenAIRE

    1988-01-01

    Target cell lysis by most murine cytotoxic T lymphocytes appears to be mediated by a complement (C9)-like protein called perforin, contained in high-density cytoplasmic granules. These granules also contain high levels of serine esterase activity, which may also play a role in cytolysis. Analysis of 17 cloned human cytotoxic T lymphocytes revealed the presence of serine esterase that is very similar to its murine counterpart in substrate and inhibitor specificities, pH optimum, and molecular ...

  19. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity

    OpenAIRE

    Ojha, Shreesh; Venkataraman, Balaji; Kurdi, Amani; Mahgoub, Eglal; Sadek, Bassem; Rajesh, Mohanraj

    2016-01-01

    Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in th...

  20. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  1. Alveolar Macrophages Play a Key Role in Cockroach-Induced Allergic Inflammation via TNF-α Pathway

    Science.gov (United States)

    Kim, Joo Young; Sohn, Jung Ho; Choi, Je-Min; Lee, Jae-Hyun; Hong, Chein-Soo; Lee, Joo-Shil; Park, Jung-Won

    2012-01-01

    The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR)-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF)-α. We determined whether the serine protease in German cockroach extract (GCE) enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR), inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL)-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model. PMID:23094102

  2. Acute toxicity induced by 2-aryl-N-methylsuccinimides.

    Science.gov (United States)

    Rankin, G O; Shih, H C; Teets, V J; Nicoll, D W; Brown, P I

    1990-04-01

    Phensuximide (PSX) is a 2-arylsuccinimide useful in the treatment of absence seizures. PSX is a mild urotoxicant and is structurally related to N-phenylsuccinimide (NPS) and its antifungal derivatives. Since substitution of the phenyl ring of NPS with chloro or tert-butyl groups can produce compounds with enhanced nephrotoxic potential, it was felt that similar substitutions on the phenyl ring of PSX also might produce derivatives with enhanced nephrotoxic potential. Three derivatives of PSX were prepared and tested: 2-(3-chlorophenyl)-N-methylsuccinimide (CPMS); 2-(4-tert-butylphenyl)-N-methylsuccinimide (BPMS) and 2-(3,5-dichlorophenyl)-N-methylsuccinimide (DPMS). In one set of experiments, male Fischer 344 rats were administered a single intraperitoneal (i.p.) injection of a succinimide (0.4 or 1.0 mmol kg-1) or vehicle (sesame oil, 2.5 ml kg-1) and renal function monitored at 24 and 48 h. Only minor changes in renal function were noted with the PSX derivatives. BPMS and DPMS (1.0 mmol kg-1) treatment induced mild renal tubular necrosis and thickening of the glomerular membranes. However, no significant morphological changes were noted in ureters, bladder or liver in any treatment group. In a second set of experiments, rats were pretreated with phenobarbital (75 mg kg-1 day-1, i.p., 3 days) followed by a single i.p. injection of DPMS (0.4 or 1.0 mmol kg-1) or DPMS vehicle. Renal function was monitored as before. Phenobarbital pretreatment did not markedly enhance the functional nephrotoxicity induced by DPMS (0.4 mmol), but tubular necrosis was greater than observed in non-phenobarbital-pretreated rats receiving DPMS (1.0 mmol kg-1). In addition, hepatotoxicity was observed as the appearance of numerous non-staining vacuoles in hypertrophied hepatocytes. In the phenobarbital plus DPMS (1.0 mmol kg-1) treatment group, all rats died by 48 h. Prior to death, rats exhibited increased proteinuria (+3), hematuria (+3) and blood urea nitrogen concentration. At 24 h

  3. Investigations of nephrotoxicity caused by ionic and non-ionic contrast media in rats with previously damaged and not previously damaged kidneys and special view to urinary enzyme determinations

    International Nuclear Information System (INIS)

    Hofmeister, R.

    1988-01-01

    In this study ionic (meglumine amidotrizoate) and non-ionic contrast media (SHH 340 AB, Iohexol, Iopromide, Iosimide and Iopamidol) were tested for their nephrotoxicity in rats. During the experiment detections of urea nitrogen, serum creatinine and urinary enzymes as well as histological examinations of the kidneys were carried out for the diagnosis of acute renal damage. The results obtained in this study demonstrate that rats are not very sensitive to non-ionic contrast media with regard to kidney damage and determinations of urinary enzymes are valuable for the diagnosis of contrast media induced acute kidney damage in living animals. (orig./MG) [de

  4. Protective effect and mechanism of action of saponins isolated from the seeds of gac (Momordica cochinchinensis Spreng.) against cisplatin-induced damage in LLC-PK1 kidney cells.

    Science.gov (United States)

    Jung, Kiwon; Lee, Dahae; Yu, Jae Sik; Namgung, Hojin; Kang, Ki Sung; Kim, Ki Hyun

    2016-03-01

    This study was performed to investigate the renoprotective effect and mechanism of Momordicae Semen, gac seeds, against the cisplatin-induced damage in LLC-PK1 kidney cells. In order to identify the active components, three major saponins were isolated from extract of the gac seed, gypsogenin 3-O-β-d-galactopyranosyl(1→2)-[α-L-rhamnopyranosyl(1→3)]-β-d-glucuronopyranoside (1), quillaic acid 3-O-β-D-galactopyranosyl(1→2)-[α-L-rhamnopyranosyl(1→3)]-β-D-glucuronopyranoside (2), and momordica saponin I (3). Compounds 1 and 2 ameliorated cisplatin-induced nephrotoxicity up to 80% of the control value at both 5 and 25μM. Phosphorylation of MAPKs was decreased along cisplatin treatment after treatment with compounds 1 and 2. These results show that blocking the MAPKs signaling cascade plays a critical role in mediating the renoprotective effect of Momordicae Semen extract and compounds 1 and 2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. GluN2C/GluN2D subunit-selective NMDA receptor potentiator CIQ reverses MK-801-induced impairment in prepulse inhibition and working memory in Y-maze test in mice

    Science.gov (United States)

    Suryavanshi, P S; Ugale, R R; Yilmazer-Hanke, D; Stairs, D J; Dravid, S M

    2014-01-01

    Background and Purpose Despite ample evidence supporting the N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia, progress in the development of effective therapeutics based on this hypothesis has been limited. Facilitation of NMDA receptor function by co-agonists (d-serine or glycine) only partially alleviates the symptoms in schizophrenia; other means to facilitate NMDA receptors are required. NMDA receptor sub-types differ in their subunit composition, with varied GluN2 subunits (GluN2A-GluN2D) imparting different physiological, biochemical and pharmacological properties. CIQ is a positive allosteric modulator that is selective for GluN2C/GluN2D-containing NMDA receptors (Mullasseril et al.). Experimental Approach The effect of systemic administration of CIQ was tested on impairment in prepulse inhibition (PPI), hyperlocomotion and stereotypy induced by i.p. administration of MK-801 and methamphetamine. The effect of CIQ was also tested on MK-801-induced impairment in working memory in Y-maze spontaneous alternation test. Key Results We found that systemic administration of CIQ (20 mg·kg−1, i.p.) in mice reversed MK-801 (0.15 mg·kg−1, i.p.)-induced, but not methamphetamine (3 mg·kg−1, i.p.)-induced, deficit in PPI. MK-801 increased the startle amplitude to pulse alone, which was not reversed by CIQ. In contrast, methamphetamine reduced the startle amplitude to pulse alone, which was reversed by CIQ. CIQ also partially attenuated MK-801- and methamphetamine-induced hyperlocomotion and stereotyped behaviours. Additionally, CIQ reversed the MK-801-induced working memory deficit in spontaneous alternation in a Y-maze. Conclusion and Implications Together, these results suggest that facilitation of GluN2C/GluN2D-containing receptors may serve as an important therapeutic strategy for treating positive and cognitive symptoms in schizophrenia. PMID:24236947

  6. Protein kinase A phosphorylates serine 267 in the homeodomain of engrailed-2 leading to decreased DNA binding

    DEFF Research Database (Denmark)

    Hjerrild, Majbrit; Stensballe, Allan; Jensen, Ole N

    2004-01-01

    Engrailed-2 (En-2) belongs to an evolutionarily conserved family of DNA binding homeodomain-containing proteins that are expressed in mammalian brain during development. Here, we demonstrate that serine 267 in the homeodomain of En-2 is phosphorylated by protein kinase A (PKA) in forskolin......-treated COS-7 cells. Furthermore, we analyze the physiological function of En-2 phosphorylation by PKA. The nuclear localization of En-2 is not influenced by the phosphorylation of serine 267. However, substitution of serine 267 with alanine resulted in increased binding of En-2 to DNA, while replacing serine...

  7. Nefrotoxicidade por lítio Lithium nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Jobson Lopes de Oliveira

    2010-01-01

    Full Text Available O lítio é amplamente empregado na terapia do transtorno bipolar. Sua toxicidade renal inclui distúrbio na capacidade de concentração urinária e natriurese, acidose tubular renal, nefrite túbulo-intersticial evoluindo para doença renal crônica e hipercalcemia. O efeito adverso mais comum é o diabetes insipidus nefrogênico, que acomete de 20%-40% dos pacientes semanas após o início do tratamento. A nefropatia crônica correlaciona-se com a duração do uso de lítio. A detecção precoce de disfunção renal deve ser feita através de monitoração rigorosa dos pacientes e colaboração entre o psiquiatra e o nefrologista. Recentes trabalhos experimentais e clínicos começam a esclarecer os mecanismos pelos quais o lítio induz alteração da função renal. No presente trabalho, objetivamos revisar a patogênese, a apresentação clínica, os aspectos histopatológicos e o tratamento da nefrotoxicidade induzida pelo lítio.Lithium is widely used in the therapy of bipolar disorder. Its toxicity includes urinary concentration deficit and natriuresis, renal tubular acidosis, tubulointerstitial nephritis which complicates with chronic kidney disease and hypercalcemia. The most common adverse effect is diabetes insipidus, which occurs in 20-40% of patients some weeks after initiation of treatment. Such chronic nephropathy correlates with duration of lithium use. Early detection of renal dysfunction should be achieved by rigorous monitoring of patients and collaboration between the psychiatrist and nephrologist. Recent experimental and clinical studies are now clarifying the mechanisms by which lithium induces renal abnormalities. The aim of this work is to review the pathogenesis, clinical presentation, histopathologic aspects and treatment of lithium nephrotoxicity.

  8. Insuficiência renal aguda nefrotóxica: prevalência, evolução clínica e desfecho Nephrotoxic acute renal failure: prevalence, clinical course and outcome

    Directory of Open Access Journals (Sweden)

    Patrícia S. Pinto

    2009-09-01

    Full Text Available INTRODUÇÃO: A insuficiência renal aguda (IRA nefrotóxica é frequente e importante causa de morbimortalidade. OBJETIVO: Avaliar a prevalência, o curso clínico e o desfecho da IRA nefrotóxica. PACIENTES e MÉTODOS: Coorte histórica realizada em um hospital de ensino terciário, no período de fevereiro a novembro de 1997. Foram incluídos pacientes acima de 12 anos, com diagnóstico de IRA, acompanhados pela equipe de Interconsulta de Nefrologia. Foram excluídos transplantados renais, portadores de insuficiência renal crônica, dialisados por intoxicação exógena e aqueles transferidos de hospital durante o tratamento. RESULTADOS: Dos 234 pacientes acompanhados, 12% apresentaram IRA nefrotóxica e 24%, IRA multifatorial associada ao uso de drogas nefrotóxica. Entre as comorbidades mais prevalentes, estão hipertensão arterial, hepatopatias, neoplasias, insuficiência cardíaca congestiva e diabetes mellitus. Quinze por cento necessitaram de diálise, e o tipo mais frequentemente usado foi hemodiálise venovenosa contínua; 42% eram oligúricos, 44,7% evoluíram para óbito e 33% recuperaram a função renal. Antibióticos, AINH e contraste radiológico foram as drogas nefrotóxicas mais prevalentes.Os medicamentos nefrotóxicos implicados foram, em ordem de frequência, vancomicina, aminoglicosídeos, aciclovir, quimioterápicos e contraste radiológico. Hepatopatia foi a única variável com significância estatística (p = 0,03, IC = 1,08 a 6,49 em análise multivariada. Na comparação entre IRA nefrotóxica e não nefrotóxica, houve aumento da mortalidade proporcionalmente aos dias de internação. CONCLUSÃO: IRA nefrotóxica é frequente, grave e deve ser continuamente monitorada, tanto ambulatorialmente quanto no ambiente intra-hospitalar.INTRODUCTION: Nephrotoxic acute renal failure (ARF is a frequent and important cause of morbidity and mortality. OBJECTIVE: To assess the prevalence, clinical course, and outcome of

  9. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells.

    Science.gov (United States)

    Osman, Islam; Poulose, Ninu; Ganapathy, Vadivel; Segar, Lakshman

    2016-11-15

    Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[ 14 C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. D-glyceric aciduria is caused by genetic deficiency of D-glycerate kinase (GLYCTK)

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Fischer, Kathleen; Wang, Raymond

    2010-01-01

    D-glyceric aciduria is a rare inborn error of serine and fructose metabolism that was first described in 1974. Most affected individuals have presented with neurological symptoms. The molecular basis of D-glyceric aciduria is largely unknown; possible causes that have been discussed are deficienc...

  11. Serine proteases SP1 and SP13 mediate the melanization response of Asian corn borer, Ostrinia furnacalis, against entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Chu, Yuan; Liu, Yang; Shen, Dongxu; Hong, Fang; Wang, Guirong; An, Chunju

    2015-06-01

    Exposure to entomopathogenic fungi is one approach for insect pest control. Little is known about the immune interactions between fungus and its insect host. Melanization is a prominent immune response in insects in defending against pathogens such as bacteria and fungi. Clip domain serine proteases in insect plasma have been implicated in the activation of prophenoloxidase, a key enzyme in the melanization. The relationship between host melanization and the infection by a fungus needs to be established. We report here that the injection of entomopathogenic fungus Beauveria bassiana induced both melanin synthesis and phenoloxidase activity in its host insect, the Asian corn borer, Ostrinia furnacalis (Guenée). qRT-PCR analysis showed several distinct patterns of expression of 13 clip-domain serine proteases in response to the challenge of fungi, with seven increased, two decreased, and four unchanged. Of special interest among these clip-domain serine protease genes are SP1 and SP13, the orthologs of Manduca sexta HP6 and PAP1 which are involved in the prophenoloxidase activation pathway. Recombinant O. furnacalis SP1 was found to activate proSP13 and induce the phenoloxidase activity in corn borer plasma. Additionally, SP13 was determined to directly cleave prophenoloxidase and therefore act as the prophenoloxidase activating protease. Our work thus reveals a biochemical mechanism in the melanization in corn borer associated with the challenge by B. bassiana injection. These insights could provide valuable information for better understanding the immune responses of Asian corn borer against B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Increased response to oxidative stress challenge of nano-copper-induced apoptosis in mesangial cells

    International Nuclear Information System (INIS)

    Xu, Pengjuan; Li, Zhigui; Zhang, Xiaochen; Yang, Zhuo

    2014-01-01

    Recently, many studies reported that nanosized copper particles (nano-Cu, the particle size was around 15–30 nm), one of the nanometer materials, could induce nephrotoxicity. To detect the effect of nano-Cu on mesangial cells (MCs), and investigate the underlying mechanism, MCs were treated with different concentrations of nano-Cu (1, 10, and 30 μg/mL) to determine the oxidative stress and apoptotic changes. It was revealed that nano-Cu could induce a decreased viability in MCs together with a significant increase in the number of apoptotic cells by using cell counting kit-8 assay and flow cytometry. The apoptotic morphological changes induced by nano-Cu in MCs were demonstrated by Hochest33342 staining. Results showed that nano-Cu induced the nuclear fragmentation in MCs. Meanwhile, nano-Cu significantly increased the levels of reactive oxygen species, especially increased the levels of H 2 O 2 . It also decreased the activity of total SOD enzyme. In addition, when pre-treated with N-(2-mercaptopropionyl)-glycine, the cell apoptosis induced by nano-Cu was significantly decreased. These results suggest that oxidative stress plays an important role in the nano-Cu toxicity in MCs, which may be the main mechanism of nano-Cu-induced nephrotoxicity

  13. Identification and purification of O-acetyl-L-serine sulphhydrylase in Penicillium chrysogenum

    DEFF Research Database (Denmark)

    østergaard, Simon; Theilgaard, Hanne Birgitte; Nielsen, Jens Bredal

    1998-01-01

    We have demonstrated that Penicillium chrysogenum possesses the L-cysteine biosynthetic enzyme O-acetyI-L-serine sulphhydrylase (EC 4.2.99.8) of the direct sulphhydrylation pathway. The finding of this enzyme, and thus the presence of the direct sulphhydrylation pathway in P. chrysogenum, creates...... the potential for increasing the overall yield in penicillin production by enhancing the enzymatic activity of this microorganism. Only O-acetyl-L-serine sulphhydrylase and O-acetyl-L-homoserine sulphhydrylase (EC 4.2.99.10) have been demonstrated to use O-acetyl-L-serine as substrate for the formation of L-cysteine....... The purified enzyme did not catalyse the formation of L-homocysteine from O-acetyl-L-homoserine and sulphide, excluding the possibility that the purified enzyme was O-acetyI-L-homoserine sulphhydrylase with multiple substrate specificity. The purification enhanced the enzymatic specific activity 93-fold...

  14. Hexokinase 2 from Saccharomyces cerevisiae: regulation of oligomeric structure by in vivo phosphorylation at serine-14.

    Science.gov (United States)

    Behlke, J; Heidrich, K; Naumann, M; Müller, E C; Otto, A; Reuter, R; Kriegel, T

    1998-08-25

    Homodimeric hexokinase 2 from Saccharomyces cerevisiae is known to have two sites of phosphorylation: for serine-14 the modification in vivo increases with glucose exhaustion [Kriegel et al. (1994) Biochemistry 33, 148-152], while for serine-157 it occurs in vitro with ATP in the presence of nonphosphorylateable five-carbon analogues of glucose [Heidrich et al. (1997) Biochemistry 36, 1960-1964]. We show now by site-directed mutagenesis and sedimentation analysis that serine-14 phosphorylation affects the oligomeric state of hexokinase, its substitution by glutamate causing complete dissociation; glutamate exchange for serine-157 does not. Phosphorylation of wild-type hexokinase at serine-14 likewise causes dissociation in vitro. In view of the higher glucose affinity of monomeric hexokinase and the high hexokinase concentration in yeast [Womack, F., and Colowick, S. P. (1978) Arch. Biochem. Biophys. 191, 742-747; Mayes, E. L., Hoggett, J. G., and Kellett, G. L. (1983) Eur. J. Biochem. 133, 127-134], we speculate that the in vivo phosphorylation at serine-14 as transiently occurring in glucose derepression might provide a mechanism to improve glucose utilization from low level and/or that nuclear localization of the monomer might be involved in the signal transduction whereby glucose causes catabolite repression.

  15. Punica granatum improves renal function in gentamicin-induced nephropathy in rats via attenuation of oxidative stress.

    Science.gov (United States)

    Mestry, Snehal N; Gawali, Nitin B; Pai, Sarayu A; Gursahani, Malvika S; Dhodi, Jayesh B; Munshi, Renuka; Juvekar, Archana R

    2018-03-16

    Gentamicin is widely used as an antibiotic for the treatment of gram negative infections. Evidences indicates that oxidative stress is involved in gentamicin-induced nephrotoxicity. In Ayurvedic medicine, Punica granatum Linn. is considered as 'a pharmacy unto itself". It has been claimed in traditional literature, to treat various kidney ailments due to its antioxidant potential. To explore the possible mechanism of action of methanolic extract of P.granatum leaves (MPGL) in exerting a protective effect on gentamicin-induced nephropathy. Animals were administered with gentamicin (80 mg/kg/day i.m.) and simultaneously with MPGL (100, 200 and 400 mg/kg p.o.) or metformin (100 mg/kg p.o.) for 8 days. A satellite group was employed in order to check for reversibility of nephrotoxic effects post discontinuation of gentamicin administration. At the end of the study, all the rats were sacrificed and serum-urine parameters were investigated. Antioxidant enzymes and tumor necrosis factor alpha (TNF-α) levels were determined in the kidney tissues along with histopathological examination of kidneys. Increase in serum creatinine, urea, TNF-α, lipid peroxidation along with fall in the antioxidant enzymes activity and degeneration of tubules, arterioles as revealed by histopathological examination confirmed the manifestation of nephrotoxicity caused due to gentamicin. Simultaneous administration of MPGL and gentamicin protected kidneys against nephrotoxic effects of gentamicin as evidenced from normalization of renal function parameters and amelioration of histopathological changes. Data suggests that MPGL attenuated oxidative stress associated renal injury by preserving antioxidant enzymes, reducing lipid peroxidation and inhibiting inflammatory mediators such as TNF-α. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  16. Effects of benfotiamine and coenzyme Q10 on kidney damage induced gentamicin.

    Science.gov (United States)

    Ustuner, Mehmet Alperen; Kaman, Dilara; Colakoglu, Neriman

    2017-12-01

    Gentamicin (GM) is an effective antibiotic against severe infection but has limitations related to nephrotoxicity. In this study, we investigated whether benfotiamine (BFT) and coenzyme Q10 (CoQ10), could ameliorate the nephrotoxic effect of GM in rats. Rats were divided into five groups. Group 1 and 2 served as control and sham respectively, Group 3 as GM group, Group 4 as GM+CoQ10 and Group 5 as GM+BFT for 8days. At the end of the study, all rats were euthanized by cervical decapitation and then blood samples and kidneys were collected for further analysis. Serum urea, creatinine, cytokine TNF-a, oxidant and antioxidant parameters, as well as histopathological examination of kidney tissues were assessed. Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated serum creatinine, urea and KIM-1 level as compared with the controls. Moreover, a significant increase in serum malondialdehyde, reduced glutathione. Histopathological examination of renal tissue in gentamisin administered group, there were extremly pronounced necrotic tubules in the renal cortex and hyalen cast accumulation in the medullar tubuli. BFT given to GM rats reduced these nephrotoxicity parameters. Serum creatinine, urea, and KIM-1 were almost normalized in the GM+BFT group. Benfotiamin treatment was significantly decreased necrotic tubuli and hyalen deposition in gentamisin plus benfotiamin group. CoQ10 given to GM rats did not cause any statistically significant alterations in these nephrotoxicity parameters when compared with GM group but histopathological examination of renal tissue in GM+CoQ10 administered group, CoQ10 treatment was decreased necrotic tubuli rate and hyalen accumulation in tubuli. The results from our study indicate that BFT supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A clip domain serine protease involved in moulting in the silkworm, Bombyx mori: cloning, characterization, expression patterns and functional analysis.

    Science.gov (United States)

    Liu, H-W; Wang, L-L; Meng, Z; Tang, X; Li, Y-S; Xia, Q-Y; Zhao, P

    2017-10-01

    Clip domain serine proteases (CLIPs), characterized by one or more conserved clip domains, are essential components of extracellular signalling cascades in various biological processes, especially in innate immunity and the embryonic development of insects. Additionally, CLIPs may have additional non-immune functions in insect development. In the present study, the clip domain serine protease gene Bombyx mori serine protease 95 (BmSP95), which encodes a 527-residue protein, was cloned from the integument of B. mori. Bioinformatics analysis indicated that BmSP95 is a typical CLIP of the subfamily D and possesses a clip domain at the N terminus, a trypsin-like serine protease (tryp_spc) domain at the C terminus and a conserved proline-rich motif between these two domains. At the transcriptional level, BmSP95 is expressed in the integument during moulting and metamorphosis, and the expression pattern is consistent with the fluctuating 20-hydroxyecdysone (20E) titre in B. mori. At the translational level, BmSP95 protein is synthesized in the epidermal cells, secreted as a zymogen and activated in the moulting fluid. Immunofluorescence revealed that BmSP95 is distributed into the old endocuticle in the moulting stage. The expression of BmSP95 was upregulated by 20E. Moreover, expression of BmSP95 was downregulated by pathogen infection. RNA interference-mediated silencing of BmSP95 led to delayed moulting from pupa to moth. These results suggest that BmSP95 is involved in integument remodelling during moulting and metamorphosis. © 2017 The Royal Entomological Society.

  18. ATM-mediated Snail Serine 100 phosphorylation regulates cellular radiosensitivity

    International Nuclear Information System (INIS)

    Boohaker, Rebecca J.; Cui, Xiaoli; Stackhouse, Murray; Xu, Bo

    2013-01-01

    Purpose: Activation of the DNA damage responsive protein kinase ATM is a critical step for cellular survival in response to ionizing irradiation (IR). Direct targets of ATM regulating radiosensitivity remain to be fully investigated. We have recently reported that ATM phosphorylates the transcriptional repressor Snail on Serine 100. We aimed to further study the functional significance of ATM-mediated Snail phosphorylation in response to IR. Material and methods: We transfected vector-only, wild-type, the Serine 100 to alanine (S100A) or to glutamic acid (S100E) substitution of Snail into various cell lines. We assessed colony formation, γ-H2AX focus formation and the invasion index in the cells treated with or without IR. Results: We found that over-expression of the S100A mutant Snail in HeLa cells significantly increased radiosensitivity. Meanwhile the expression of S100E, a phospho-mimicking mutation, resulted in enhanced radio-resistance. Interestingly, S100E could rescue the radiosensitive phenotype in ATM-deficient cells. We also found that expression of S100E increased γ-H2AX focus formation and compromised inhibition of invasion in response to IR independent of cell survival. Conclusion: ATM-mediated Snail Serine 100 phosphorylation in response to IR plays an important part in the regulation of radiosensitivity

  19. KSR1 is a functional protein kinase capable of serine autophosphorylation and direct phosphorylation of MEK1

    International Nuclear Information System (INIS)

    Goettel, Jeremy A.; Liang, Dongchun; Hilliard, Valda C.; Edelblum, Karen L.; Broadus, Matthew R.; Gould, Kathleen L.; Hanks, Steven K.; Polk, D. Brent

    2011-01-01

    The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1 -/- colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.

  20. Role of biomarkers of nephrotoxic acute kidney injury in deliberate poisoning and envenomation in less developed countries.

    Science.gov (United States)

    Mohamed, Fahim; Endre, Zoltan H; Buckley, Nicholas A

    2015-07-01

    Acute kidney injury (AKI) has diverse causes and is associated with increased mortality and morbidity. In less developed countries (LDC), nephrotoxic AKI (ToxAKI) is common and mainly due to deliberate ingestion of nephrotoxic pesticides, toxic plants or to snake envenomation. ToxAKI shares some pathophysiological pathways with the much more intensively studied ischaemic AKI, but in contrast to ischaemic AKI, most victims are young, previously healthy adults. Diagnosis of AKI is currently based on a rise in serum creatinine. However this may delay diagnosis because of the kinetics of creatinine. Baseline creatinine values are also rarely available in LDC. Novel renal injury biomarkers offer a way forward because they usually increase more rapidly in AKI and are normally regarded as absent or very low in concentration, thereby reducing the need for a baseline estimate. This should increase sensitivity and speed of diagnosis. Specificity should also be increased for urine biomarkers since many originate from the renal tubular epithelium. Earlier diagnosis of ToxAKI should allow earlier initiation of appropriate therapy. However, translation of novel biomarkers of ToxAKI into clinical practice requires better understanding of non-renal factors in poisoning that alter biomarkers and the influence of dose of nephrotoxin on biomarker performance. Further issues are establishing LDC population-based normal ranges and assessing sampling and analytical parameters for low resource settings. The potential role of renal biomarkers in exploring ToxAKI aetiologies for chronic kidney disease of unknown origin (CKDu) is a high research priority in LDC. Therefore, developing more sensitive biomarkers for early diagnosis of nephrotoxicity is a critical step to making progress against AKI and CKDu in the developing world. © 2015 The British Pharmacological Society.

  1. Pyrazolo[3,4-d]pyrimidines as novel inhibitors of O-acetyl-L-serine sulfhydrylase of Entamoeba histolytica: an in silico study.

    Science.gov (United States)

    Yadava, Umesh; Shukla, Bindesh Kumar; Roychoudhury, Mihir; Kumar, Devesh

    2015-04-01

    Amoebiasis, a worldwide explosive epidemic, caused by the gastrointestinal anaerobic protozoan parasite Entamoeba histolytica, infects the large intestine and, in advance stages, liver, kidney, brain and lung. Metronidazole (MNZ)-the first line medicament against amoebiasis-is potentially carcinogenic to humans and shows significant side-effects. Pyrazolo[3,4-d]pyrimidine compounds have been reported to demonstrate antiamoebic activity. In silico molecular docking simulations on nine pyrazolo[3,4-d]pyrimidine molecules without linkers (molecules 1-9) and nine pyrazolo[3,4-d]pyrimidine molecules with a trimethylene linker (molecules 10-18) along with the reference drug metronidazole (MNZ) were conducted using the modules of the programs Glide-SP, Glide-XP and Autodock with O-acetyl-L-serine sulfhydrylase (OASS) enzyme-a promising target for inhibiting the growth of Entamoeba histolytica. Docking simulations using Glide-SP demonstrate good agreement with reported biological activities of molecules 1-9 and indicate that molecules 2 and 4 may act as potential high affinity inhibitors. Trimethylene linker molecules show improved binding affinities among which molecules 15 and 16 supersede. MD simulations on the best docked poses of molecules 2, 4, 15, 16 and MNZ were carried out for 20 ns using DESMOND. It was observed that the docking complexes of molecules 4, 15 and MNZ remain stable in aqueous conditions and do not undergo noticeable fluctuations during the course of the dynamics. Relative binding free energy calculations of the ligands with the enzyme were executed on the best docked poses using the molecular mechanics generalized Born surface area (MM-GBSA) approach, which show good agreement with the reported biological activities.

  2. Effect of quercetin on metallothionein, nitric oxide synthases and cyclooxygenase-2 expression on experimental chronic cadmium nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Morales, Ana I.; Vicente-Sanchez, Cesar; Jerkic, Mirjana; Santiago, Jose M.; Sanchez-Gonzalez, Penelope D.; Perez-Barriocanal, Fernando; Lopez-Novoa, Jose M.

    2006-01-01

    Inflammation can play a key role in Cd-induced dysfunctions. Quercetin is a potent oxygen free radical scavenger and a metal chelator. Our aim was to study the effect of quercetin on Cd-induced kidney damage and metallothionein expression. The study was performed in Wistar rats that were administered during 9 weeks with either cadmium (1.2 mg Cd/kg/day, s.c.), quercetin (50 mg/kg/day, i.p.) or cadmium + quercetin. Renal toxicity was evaluated by measuring blood urea nitrogen concentration and urinary excretion of enzymes marker of tubular damage. Endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) renal expression were assessed by Western blot. Renal expression of metallothionein 1 and 2 (MT-1, MT-2) and eNOS mRNA was assessed by Northern blot. Our data demonstrated that Cd-induced renal toxicity was markedly reduced in rats that also received quercetin. MT-1 and MT-2 mRNA levels in kidney were substantially increased during treatment with Cd, being even higher when the animals received Cd and quercetin. Renal eNOS expression was significantly higher in rats receiving Cd and quercetin than in animals receiving Cd alone or in control rats. In the group that received Cd, COX-2 and iNOS expression was markedly higher than in control rats. In the group Cd + quercetin, no changes in COX-2 and iNOS expression were observed compared with the control group. Our results demonstrate that quercetin treatment prevents Cd-induced overexpression of iNOS and COX-2, and increases MT expression. These effects can explain the protection by quercetin of Cd-induced nephrotoxicity

  3. Cocaine-induced adaptation of dopamine D2S, but not D2L autoreceptors.

    Science.gov (United States)

    Robinson, Brooks G; Condon, Alec F; Radl, Daniela; Borrelli, Emiliana; Williams, John T; Neve, Kim A

    2017-11-20

    The dopamine D2 receptor has two splice variants, D2S (Short) and D2L (Long). In dopamine neurons, both variants can act as autoreceptors to regulate neuronal excitability and dopamine release, but the roles of each variant are incompletely characterized. In a previous study we used viral receptor expression in D2 receptor knockout mice to show distinct effects of calcium signaling on D2S and D2L autoreceptor function (Gantz et al., 2015). However, the cocaine-induced plasticity of D2 receptor desensitization observed in wild type mice was not recapitulated with this method of receptor expression. Here we use mice with genetic knockouts of either the D2S or D2L variant to investigate cocaine-induced plasticity in D2 receptor signaling. Following a single in vivo cocaine exposure, the desensitization of D2 receptors from neurons expressing only the D2S variant was reduced. This did not occur in D2L-expressing neurons, indicating differential drug-induced plasticity between the variants.

  4. Effects of inhibition of serine palmitoyltransferase (SPT and sphingosine kinase 1 (SphK1 on palmitate induced insulin resistance in L6 myotubes.

    Directory of Open Access Journals (Sweden)

    Agnieszka Mikłosz

    Full Text Available BACKGROUND: The objective of this study was to examine the effects of short (2 h and prolonged (18 h inhibition of serine palmitoyltransferase (SPT and sphingosine kinase 1 (SphK1 on palmitate (PA induced insulin resistance in L6 myotubes. METHODS: L6 myotubes were treated simultaneously with either PA and myriocin (SPT inhibitor or PA and Ski II (SphK1inhibitor for different time periods (2 h and 18 h. Insulin stimulated glucose uptake was measured using radioactive isotope. Expression of insulin signaling proteins was determined using Western blot analyses. Intracellular sphingolipids content [sphinganine (SFA, ceramide (CER, sphingosine (SFO, sphingosine-1-phosphate (S1P] were estimated by HPLC. RESULTS: Our results revealed that both short and prolonged time of inhibition of SPT by myriocin was sufficient to prevent ceramide accumulation and simultaneously reverse palmitate induced inhibition of insulin-stimulated glucose transport. In contrast, prolonged inhibition of SphK1 intensified the effect of PA on insulin-stimulated glucose uptake and attenuated further the activity of insulin signaling proteins (pGSK3β/GSK3β ratio in L6 myotubes. These effects were related to the accumulation of sphingosine in palmitate treated myotubes. CONCLUSION: Myriocin is more effective in restoration of palmitate induced insulin resistance in L6 myocytes, despite of the time of SPT inhibition, comparing to SKII (a specific SphK1 inhibitor. Observed changes in insulin signaling proteins were related to the content of specific sphingolipids, namely to the reduction of ceramide. Interestingly, inactivation of SphK1 augmented the effect of PA induced insulin resistance in L6 myotubes, which was associated with further inhibition of insulin stimulated PKB and GSK3β phosphorylation, glucose uptake and the accumulation of sphingosine.

  5. Role of lycopene against hepatorenal oxidative stress induced by sodium fluoride and gamma rays

    International Nuclear Information System (INIS)

    Mansour, H.H.; Abd El Azeem, M.G.; Ismael, N.E.R.

    2011-01-01

    Fluorosis is a serious public health problem in many parts of the world. The present study have been designed to evaluate the potential efficacy of lycopene in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) and gamma radiation (IRR) induced oxidative stress in male mice. Biochemical and histopathological examinations were utilized for evaluation of the oxidative stress, hepatotoxicity and nephrotoxicity. Results showed that NaF and IRR (2 Gy) caused elevation in liver and kidney MDA and NO (x) levels and reduction in SOD activity and GSH content. The activities of AST, ALT, LDH, ALP, urea nitrogen, creatinine and lipid profiles were increased, HDL-c was decreased. Ultrastructural examination of liver and kidney tissues confirmed the biochemical data. Irradiation exhibited hepatocytes with varying lesions that included lysis of cytoplasm with fragmented endoplasmic reticulum, dilated blood sinusoids with thickness membrane. Serious damage of the epithelial cells lining the proximal tubules of irradiated mice was manifested by development of dilated rough endoplasmic reticulum, swelling mitochondria and pyknotic nuclei also, degeneration in brush border. NaF induced degeneration in nucleus, mitochondria, erosion in brush border in kidney, fragmentation in endoplasmic reticulum, thickness of blood sinusoids membrane in liver. Serious damage of the hepatocytes and proximal tubules of the mice treated with NaF and exposed to irradiation. Administration of lycopene (5 mg/kg, oral gavage), prior to NaF and/or IRR, ameliorated the hepatotoxicity and nephrotoxicity induced by NaF and/or IRR. The present results revealed that lycopene has a protective effect against NaF and/or IRR-induced hepatotoxicity and nephrotoxicity by antagonizing the free radicals generation and enhancement of the antioxidant defense mechanisms.

  6. Protective role of ginseng against gentamicin induced changes in kidney of albino mice

    International Nuclear Information System (INIS)

    Hafeez, M.; Saeed, F.

    2011-01-01

    Background: Use of gentamicin is now limited due to its toxic effects, mainly on kidney and vestibular system. Herbal products including ginseng has been reported to possess protective effects against drugs induced nephrotoxicity in experimental animals. The current investigation was designed to evaluate the effects of ginseng on gentamicin induced nephrotoxicity. Methods: Eighteen male albino mice of 6-8 weeks age, were divided into 3 groups. Group-A served as control and was given normal mouse diet; Group-B was given 80 mg/Kg/day of gentamicin intraperitoneally dissolved in 1 ml of distilled water for fifteen days. Group-C was given 80 mg/Kg/day of gentamicin intraperitoneally dissolved in 1 ml of distilled water along with 100 mg/Kg/day of ginseng orally dissolved in 1 ml of distilled water, also for fifteen days. At the end of the experiment, blood was drawn from each animal by cardiac puncture for renal function tests. Each animal was then sacrificed and kidneys removed for routine histological studies. Results: In group B, weight of the animals and kidneys decreased and there was significant increase in mean serum urea, creatinine and intraluminal diameter (p<0.001) of proximal convoluted tubules as compared to the controls (group-A). Moderate to severe necrotic and degenerative changes in proximal convoluted tubules were seen in this group. When the Ginseng and gentamicin were given together (group-C), a statistically significant improvement in the mean body and kidney weight along with improvement in renal function tests and tubular diameter were seen (p<0.001). Conclusion: It appears that Ginseng has some protective role against gentamicin induced nephrotoxicity. (author)

  7. Effect of nephrotoxic drugs on the development of radiation nephropathy after bone marrow transplantation

    International Nuclear Information System (INIS)

    Lawton, C.A.; Fish, B.L.; Moulder, J.E.

    1994-01-01

    Chronic renal failure is a significant cause of late morbidity in bone marrow transplant patients whose conditioning regimen includes total body irradiation (TBI). Radiation is a major cause of this syndrome (bone marrow transplant nephropathy), but it may not be the only cause. These studies use a rat syngeneic bone marrow transplant model to determine whether nephrotoxic agents used in conjunction with bone marrow transplantation (BMT) could be enhancing or accelerating the development of radiation nephropathy. Rats received 11-17 Gy TBI in six fractions over 3 days followed by syngeneic bone marrow transplant. In conjunction with the bone marrow transplants, animals received either no drugs, cyclosporine, amphotericin, gentamicin, or busulfan. Drugs were given in schedules analogous to their use in clinical bone marrow transplantation. Drug doses were chosen so that the drug regimen alone caused detectable acute nephrotoxicity. Animals were followed for 6 months with periodic renal function tests. Gentamicin had no apparent interactions with TBI. Amphotericin increased the incidence of engraftment failure, but did not enhance radiation nephropathy. Cyclosporin with TBI caused late morbidity that appeared to be due to neurological problems, but did not enhance radiation nephropathy. Busulfan resulted in a significant enhancement of radiation nephropathy. Of the nephrotoxins used in conjunction with bone marrow transplantation only radiation and busulfan were found to be risk factors for bone marrow transplant nephropathy. 34 refs., 4 figs., 2 tabs

  8. Influence of the O-phosphorylation of serine, threonine and tyrosine in proteins on the amidic N-15 chemical shielding anisotropy tensors

    Czech Academy of Sciences Publication Activity Database

    Emmer, J.; Vavrinská, A.; Sychrovský, Vladimír; Benda, Ladislav; Kříž, Z.; Koča, J.; Boelens, R.; Sklenář, V.; Trantírek, L.

    2013-01-01

    Roč. 55, č. 1 (2013), s. 59-70 ISSN 0925-2738 R&D Projects: GA ČR GAP205/10/0228 Grant - others:CEITEC(XE) CZ.1.05/1.1.00/02.0068 Institutional support: RVO:61388963 Keywords : CSA * phosphorylation * amidic nitrogen * serine * threonine * tyrosine * protein * NMR Subject RIV: CE - Biochemistry Impact factor: 3.305, year: 2013

  9. Nephrotoxicity of cyclosporin A in patients with newly diagnosed type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Jensen, T; Dieperink, H

    1990-01-01

    Renal function was studied in 18 patients with Type 1 diabetes mellitus. All were participating in the Canadian-European randomized placebo-controlled cyclosporin trial in newly diagnosed Type 1 diabetic patients, nine being randomized to placebo, and nine to cyclosporin A. During treatment for 12...... corrected for differences in blood glucose control it appeared that in three out of nine patients glomerular filtration rate had not completely returned to the reference range of the placebo group. We conclude that the nephrotoxic side-effects of cyclosporin A treatment for 1 year are reversible. There are...

  10. Structural basis of metallo-β-lactamase, serine-β-lactamase and penicillin-binding protein inhibition by cyclic boronates

    Science.gov (United States)

    Brem, Jürgen; Cain, Ricky; Cahill, Samuel; McDonough, Michael A.; Clifton, Ian J.; Jiménez-Castellanos, Juan-Carlos; Avison, Matthew B.; Spencer, James; Fishwick, Colin W. G.; Schofield, Christopher J.

    2016-08-01

    β-Lactamases enable resistance to almost all β-lactam antibiotics. Pioneering work revealed that acyclic boronic acids can act as `transition state analogue' inhibitors of nucleophilic serine enzymes, including serine-β-lactamases. Here we report biochemical and biophysical analyses revealing that cyclic boronates potently inhibit both nucleophilic serine and zinc-dependent β-lactamases by a mechanism involving mimicking of the common tetrahedral intermediate. Cyclic boronates also potently inhibit the non-essential penicillin-binding protein PBP 5 by the same mechanism of action. The results open the way for development of dual action inhibitors effective against both serine- and metallo-β-lactamases, and which could also have antimicrobial activity through inhibition of PBPs.

  11. A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): implications for the design of pest-resistant transgenic cotton plants.

    Science.gov (United States)

    Oliveira-Neto, Osmundo B; Batista, João A N; Rigden, Daniel J; Fragoso, Rodrigo R; Silva, Rodrigo O; Gomes, Eliane A; Franco, Octávio L; Dias, Simoni C; Cordeiro, Célia M T; Monnerat, Rose G; Grossi-De-Sá, Maria F

    2004-09-01

    Fourteen different cDNA fragments encoding serine proteinases were isolated by reverse transcription-PCR from cotton boll weevil (Anthonomus grandis) larvae. A large diversity between the sequences was observed, with a mean pairwise identity of 22% in the amino acid sequence. The cDNAs encompassed 11 trypsin-like sequences classifiable into three families and three chymotrypsin-like sequences belonging to a single family. Using a combination of 5' and 3' RACE, the full-length sequence was obtained for five of the cDNAs, named Agser2, Agser5, Agser6, Agser10 and Agser21. The encoded proteins included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Southern blotting analysis suggested that one or two copies of these serine proteinase genes exist in the A. grandis genome. Northern blotting analysis of Agser2 and Agser5 showed that for both genes, expression is induced upon feeding and is concentrated in the gut of larvae and adult insects. Reverse northern analysis of the 14 cDNA fragments showed that only two trypsin-like and two chymotrypsin-like were expressed at detectable levels. Under the effect of the serine proteinase inhibitors soybean Kunitz trypsin inhibitor and black-eyed pea trypsin/chymotrypsin inhibitor, expression of one of the trypsin-like sequences was upregulated while expression of the two chymotrypsin-like sequences was downregulated. Copyright 2004 Elsevier Ltd.

  12. Proximal Tubular Injury in Medullary Rays Is an Early Sign of Acute Tacrolimus Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Diane Cosner

    2015-01-01

    Full Text Available Tacrolimus (FK506 is one of the principal immunosuppressive agents used after solid organ transplantations to prevent allograft rejection. Chronic renal injury induced by tacrolimus is characterized by linear fibrosis in the medullary rays; however, the early morphologic findings of acute tacrolimus nephrotoxicity are not well characterized. Kidney injury molecule-1 (KIM-1 is a specific injury biomarker that has been proven to be useful in the diagnosis of mild to severe acute tubular injury on renal biopsies. This study was motivated by a patient with acute kidney injury associated with elevated serum tacrolimus levels in whom KIM-1 staining was present only in proximal tubules located in the medullary rays in the setting of otherwise normal light, immunofluorescent, and electron microscopy. We subsequently evaluated KIM-1 expression in 45 protocol and 39 indicated renal transplant biopsies to determine whether higher serum levels of tacrolimus were associated with acute segment specific injury to the proximal tubule, as reflected by KIM-1 staining in the proximal tubules of the cortical medullary rays. The data suggest that tacrolimus toxicity preferentially affects proximal tubules in medullary rays and that this targeted injury is a precursor lesion for the linear fibrosis seen in chronic tacrolimus toxicity.

  13. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism.

    Science.gov (United States)

    Igamberdiev, Abir U; Kleczkowski, Leszek A

    2018-01-01

    Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate - serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked to GABA shunt via transamination reactions and via participation of the same reductase for both glyoxylate and succinic semialdehyde. In this review paper we present a hypothesis of the regulation of redox balance in stressed plant cells via participation of the reactions associated with glycerate and phosphorylated serine pathways. We consider these pathways as important processes linking carbon and nitrogen metabolism and maintaining cellular redox and energy levels in stress conditions.

  14. Prevention of pulmonary vascular and myocardial remodeling by the combined tyrosine and serine-/threonine kinase inhibitor, sorafenib, in pulmonary hypertension and right heart failure

    Directory of Open Access Journals (Sweden)

    M. Klein

    2008-06-01

    Full Text Available Inhibition of tyrosine kinases can reverse pulmonary hypertension but little is known about the role of serine-/threonine kinases in vascular and myocardial remodeling. We investigated the effects of sorafenib, an inhibitor of the tyrosine kinases VEGFR, PDGFR and c-kit as well as the serine-/threonine kinase Raf-1, in pulmonary hypertension and right ventricular (RV pressure overload. In monocrotaline treated rats, sorafenib (10 mg·kg–1·d–1 p.o. reduced pulmonary arterial pressure, pulmonary artery muscularization and RV hypertrophy, and improved systemic hemodynamics (table 1. Sorafenib prevented phosphorylation of Raf-1 and suppressed activation of downstream signaling pathways (Erk 1/2. After pulmonary banding, sorafenib, but not the PDGFR/c-KIT/ABL-inhibitor imatinib reduced RV mass and RV filling pressure significantly. Congruent with these results, sorafenib only prevented ERK phosphorylation and vasopressin induced hypertrophy of the cardiomyocyte cell line H9c2 dose dependently (IC50 = 300 nM. Combined inhibition of tyrosine and serine-/threonine kinases by sorafenib prevents vascular and cardiac remodeling in pulmonary hypertension, which is partly mediated via inhibition of the Raf kinase pathway.

  15. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hsiu-Ying, E-mail: hychung@mail.fcu.edu.tw; Li, Cheng Che

    2013-03-01

    A highly biocompatible peptide, triplet repeats of asparagine-serine-serine (3NSS) was designed to regulate mineral deposition from aqueous ions in saliva for the reconstruction of enamel lesions. Healthy human enamel was sectioned and acid demineralized to create lesions, then exposed to the 3NSS peptide solution, and finally immersed in artificial saliva for 24 h. The surface morphology and roughness were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. X-ray diffraction (XRD) was used to identify the phases and crystallinity of the deposited minerals observed on the enamel surface. Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to quantitatively analyze the mineral variation by calculating the relative integrated-area of characteristic bands. Nanohardness and elastic modulus measured by nanoindentation at various treatment stages were utilized to evaluate the degree of recovery. Biomimetic effects were accessed according to the degree of nanohardness recovery and the amount of hydroxyapatite deposition. The charged segments in the 3NSS peptide greatly attracted aqueous ions from artificial saliva to form hydroxyapatite crystals to fill enamel caries, in particular the interrod areas, resulting in a slight reduction in overall surface roughness. Additionally, the deposited hydroxyapatites were of a small crystalline size in the presence of the 3NSS peptide, which effectively restrained the plastic deformations and thus resulted in greater improvements in nanohardness and elastic modulus. The degree of nanohardness recovery was 5 times greater for remineralized enamel samples treated with the 3NSS peptide compared to samples without peptide treatment. - Highlights: Black-Right-Pointing-Pointer The degree of nanohardness recovery of enamel was 4 times greater with the aid of 3NSS peptide. Black-Right-Pointing-Pointer 3NSS peptide promoted the formation of hydroxyapatites with

  16. Serine proteinase inhibitors from nematodes and the arms race between host and pathogen.

    Science.gov (United States)

    Zang, X; Maizels, R M

    2001-03-01

    Serine proteinase inhibitors are encoded by a large gene family of long evolutionary standing. Recent discoveries of parasite proteins that inhibit human serine proteinases, together with the complete genomic sequence from Caenorhabditis elegans, have provided a set of new serine proteinase inhibitors from more primitive metazoan animals such as nematodes. The structural features (e.g. reactive centre residues), gene organization (including intron arrangements) and inhibitory function and targets (e.g. inflammatory and coagulation pathway proteinase) all contribute important new insights into proteinase inhibitor evolution. Some parasite products have evolved that block enzymes in the mammalian host, but the human host responds with a significant immune response to the parasite inhibitors. Thus, infection produces a finely balanced conflict between host and pathogen at the molecular level, and this might have accelerated the evolution of these proteins in parasitic species as well as their hosts.

  17. Squash inhibitor family of serine proteinases

    International Nuclear Information System (INIS)

    Otlewski, J.; Krowarsch, D.

    1996-01-01

    Squash inhibitors of serine proteinases form an uniform family of small proteins. They are built of 27-33 amino-acid residues and cross-linked with three disulfide bridges. The reactive site peptide bond (P1-P1') is between residue 5 (Lys, Arg or Leu) and 6 (always Ile). High resolution X-ray structures are available for two squash inhibitors complexed with trypsin. NMR solution structures have also been determined for free inhibitors. The major structural motif is a distorted, triple-stranded antiparallel beta-sheet. A similar folding motif has been recently found in a number of proteins, including: conotoxins from fish-hunting snails, carboxypeptidase inhibitor from potato, kalata B1 polypeptide, and in some growth factors (e.g. nerve growth factor, transforming growth factor β2, platelet-derived growth factor). Squash inhibitors are highly stable and rigid proteins. They inhibit a number of serine proteinases: trypsin, plasmin, kallikrein, blood clotting factors: X a and XII a , cathepsin G. The inhibition spectrum can be much broadened if specific amino-acid substitutions are introduced, especially at residues which contact proteinase. Squash inhibitors inhibit proteinases via the standard mechanism. According to the mechanism, inhibitors are substrates which exhibit at neutral pH a high k cat /K m index for hydrolysis and resynthesis of the reactive site, and a low value of the hydrolysis constant. (author)

  18. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region.

    Science.gov (United States)

    Bellacosa, A; Testa, J R; Staal, S P; Tsichlis, P N

    1991-10-11

    The v-akt oncogene codes for a 105-kilodalton fusion phosphoprotein containing Gag sequences at its amino terminus. Sequence analysis of v-akt and biochemical characterization of its product revealed that it codes for a protein kinase C-related serine-threonine kinase whose cellular homolog is expressed in most tissues, with the highest amount found in thymus. Although Akt is a serine-threonine kinase, part of its regulatory region is similar to the Src homology-2 domain, a structural motif characteristic of cytoplasmic tyrosine kinases that functions in protein-protein interactions. This suggests that Akt may form a functional link between tyrosine and serine-threonine phosphorylation pathways.

  19. Protective Effect of Forced Hydration with Isotonic Saline, Potassium Chloride and Magnesium Sulfate on Cisplatin Nephrotoxicity: An Initial Evaluation

    Directory of Open Access Journals (Sweden)

    Seyed Seifollah Beladi Mousavi

    2013-12-01

    How to cite this article: Beladi Mousavi SS, Hossainzadeh M, Khanzadeh A, Hayati F, Beladi Mousavi M, Zeraati AA, et al. Protective Effect of Forced Hydration with Isotonic Saline, Potassium Chloride and Magnesium Sulfate on Cisplatin Nephrotoxicity: An Initial Evaluation. Asia Pac J Med Toxicol 2013;2:136-9.

  20. Continuous infusion of amphotericin B: preliminary experience at Faculdade de Medicina da Fundação ABC.

    Science.gov (United States)

    Uehara, Roberto Palermo; Sá, Victor Hugo Lara de; Koshimura, Erika Tae; Prudente, Fernanda Vilas Boas; Tucunduva, Luciana Tomanik Cardozo de Mello; Gonçalves, Marina Sahade; Samano, Eliana Sueco Tibana; del Giglio, Auro

    2005-09-01

    Intravenous amphotericin B deoxycholate (AmB-D) infusions, usually given over 4 hours, frequently induce nephrotoxicity and undesirable infusion-related side effects such as rigors and chills. There is evidence in the literature that the use of AmB-D in the form of continuous 24-hour infusion is less toxic than the usual four-hour infusion of this drug. Our objective was to evaluate the efficacy and safety of continuous infusion of AmB-D for the treatment of persistent fever in neutropenic patients with hematological malignancies after chemotherapy. Observational retrospective analysis of our experience with continuous infusion of AmB-D, at Faculdade de Medicina da Fundação ABC and Hospital Estadual Mário Covas in Santo André. From October 2003 to May 2004, 12 patients with hematological malignancies and chemotherapy-induced neutropenia received 13 cycles of continuous infusion of AmB-D. The median dose of AmB-D was 0.84 mg/kg/day (0.33 to 2.30 mg/kg/day). Concomitant use of nephrotoxic medications occurred in 92% of the cycles. Nephrotoxicity occurred in 30.76% of the cycles, hypokalemia in 16.67%, hepatotoxicity in 30% and adverse infusion-related events in 23%. All patients survived for at least seven days after starting continuous infusion of AmB-D, and clinical resolution occurred in 76% of the cycles. Continuous infusion of AmB-D can be used in our Institution as an alternative to the more toxic four-hour infusion of AmB-D and possibly also as an alternative to the more expensive liposomal formulations of the drug.

  1. Recent progress on MHD-induced loss of D-D fusion products in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Darrow, D.S.; Budny, R.V.; Cheng, C.Z.; Fredrickson, E.D.; Herrmann, H.; Mynick, H.E.; Schivell, J.

    1993-08-01

    This paper reviews the recent progress made toward understanding the MHD-induced loss of D-D fusion products which has been seen on TFTR since 1988. These measurements have been made using the ''lost alpha'' diagnostic, which is described briefly. The largest MHD- induced loss occurs with coherent 3/2 or 2/1 MHD activity (kink/tearing modes), which can cause up to ∼3--5 times the first-orbit loss at I∼1.6--1.8 MA, roughly a ∼20--30% global los of D-D fusion products. Modeling of these MHD-induced losses has progressed to the point where the basic loss mechanism can be accounted for qualitatively, but the experimental results can not yet be understood quantitatively. Several alpha loss codes are being developed to improve the quantitative comparison between experiment and theory

  2. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    Science.gov (United States)

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Fatal cerebral edema associated with serine deficiency in CSF

    NARCIS (Netherlands)

    Keularts, Irene M. L. W.; Leroy, Piet L. J. M.; Rubio-Gozalbo, Estela M.; Spaapen, Leo J. M.; Weber, Biene; Dorland, Bert; de Koning, Tom J.; Verhoeven-Duif, Nanda M.

    2010-01-01

    Two young girls without a notable medical history except for asthma presented with an acute toxic encephalopathy with very low serine concentrations both in plasma and cerebrospinal fluid (CSF) comparable to patients with 3-phosphoglycerate dehydrogenase (3-PGDH) deficiency. Clinical symptoms and

  4. Apolipoprotein CIII Reduces Proinflammatory Cytokine-Induced Apoptosis in Rat Pancreatic Islets via the Akt Prosurvival Pathway

    DEFF Research Database (Denmark)

    Størling, Joachim; Juntti-Berggren, Lisa; Olivecrona, Gunilla

    2011-01-01

    Apolipoprotein CIII (ApoCIII) is mainly synthesized in the liver and is important for triglyceride metabolism. The plasma concentration of ApoCIII is elevated in patients with type 1 diabetes (T1D), and in vitro ApoCIII causes apoptosis in pancreatic ß-cells in the absence of inflammatory stress...... of the survival serine-threonine kinase Akt. Inhibition of the Akt signaling pathway by the phosphatidylinositol 3 kinase inhibitor LY294002 counteracted the antiapoptotic effect of ApoCIII on cytokine-induced apoptosis. We conclude that ApoCIII in the presence of T1D-relevant proinflammatory cytokines reduces...

  5. Biochemical Aspects of a Serine Protease from Caesalpinia echinata Lam. (Brazilwood Seeds: A Potential Tool to Access the Mobilization of Seed Storage Proteins

    Directory of Open Access Journals (Sweden)

    Priscila Praxedes-Garcia

    2012-01-01

    Full Text Available Several proteins have been isolated from seeds of leguminous, but this is the first report that a protease was obtained from seeds of Caesalpinia echinata Lam., a tree belonging to the Fabaceae family. This enzyme was purified to homogeneity by hydrophobic interaction and anion exchange chromatographies and gel filtration. This 61-kDa serine protease (CeSP hydrolyses H-D-prolyl-L-phenylalanyl-L-arginine-p-nitroanilide (Km 55.7 μM in an optimum pH of 7.1, and this activity is effectively retained until 50∘C. CeSP remained stable in the presence of kosmotropic anions (PO4 3−, SO4 2−, and CH3COO− or chaotropic cations (K+ and Na+. It is strongly inhibited by TLCK, a serine protease inhibitor, but not by E-64, EDTA or pepstatin A. The characteristics of the purified enzyme allowed us to classify it as a serine protease. The role of CeSP in the seeds cannot be assigned yet but is possible to infer that it is involved in the mobilization of seed storage proteins.

  6. Stevia and stevioside protect against cisplatin nephrotoxicity through inhibition of ERK1/2, STAT3, and NF-κB activation.

    Science.gov (United States)

    Potočnjak, Iva; Broznić, Dalibor; Kindl, Marija; Kropek, Matija; Vladimir-Knežević, Sanda; Domitrović, Robert

    2017-09-01

    We investigated the effect of natural sweetener Stevia rebaudiana and its constituent stevioside in cisplatin (CP)-induced kidney injury. Male BALB/cN mice were orally administered 10, 20, and 50 mg/kg body weight of Stevia rebaudiana ethanol extract (SE) or stevioside 50 mg/kg, 48 h after intraperitoneal administration of CP (13 mg/kg). Two days later, CP treatment resulted in histopathological changes showing kidney injury. Increased expression of 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and heme oxygenase-1 (HO-1) in mice kidneys suggested oxidative stress. CP treatment also increased renal expression of nuclear factor-kappaB (NF-κB) p65 subunit and phosphorylated inhibitor of NF-κB (IκBα), as well as expression of pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Induction of apoptosis and inhibition of the cell cycle in kidneys was evidenced by increased expression of p53, Bax, caspase-9, and p21, proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), with concomitant suppression of Bcl-2 and cyclin D1 expression. The number of apoptotic cells in kidneys was also assessed. CP administration resulted in activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3). Both SE and stevioside attenuated CP nephrotoxicity by suppressing oxidative stress, inflammation, and apoptosis through mechanism involving ERK1/2, STAT3, and NF-κB suppression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Resveratrol rescues cadmium-induced mitochondrial injury by enhancing transcriptional regulation of PGC-1α and SOD2 via the Sirt3/FoxO3a pathway in TCMK-1 cells

    International Nuclear Information System (INIS)

    Fu, Beibei; Zhao, Jiamin; Peng, Wei; Wu, Haibo; Zhang, Yong

    2017-01-01

    Resveratrol has been reported to ameliorate Cd-induced nephrotoxicity. However, the beneficial effects of resveratrol on Cd-induced nephrotoxicity and the underlying mechanisms of this protection remain unclear. Here, we showed that mouse renal tubular epithelial (TCMK-1) cells exposed to Cd experienced significantly increased mitochondrial reactive oxygen species (mROS) production, as well as decreased mitochondrial biogenesis and function. Cd exposure dramatically decreased Sirt3 protein expression and activity and promoted the acetylation of forkhead box O3 (FoxO3a). Moreover, Cd exposure led to a decreased binding affinity of FoxO3a to the promoters of both peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α and superoxide dismutase 2 (SOD2), powerful and broad regulators of mitochondrial biogenesis and mROS metabolism. Meanwhile, resveratrol remarkably reduced mROS generation by promoting Sirt3 enrichment within the mitochondria and subsequent upregulation of FoxO3a-mediated mitochondria gene expression of PGC-1α and SOD2. Importantly, mechanistic study revealed that ERK1/2 activation was associated with increased apoptosis induced by Cd, resveratrol suppressed Cd-induced apoptosis in mice kidney. Taken together, our data suggest a novel mechanism of action for resveratrol-attenuated Cd-induced cellular damage, which, in part, was mediated through the activation of the Sirt3/FoxO3a signaling pathway. - Highlights: • Resveratrol alleviates Cd-induced mitochondrial damage and improves mitochondrial biogenesis. • Mitochondrial-protective effect of resveratrol on Cd-induced nephrotoxicity is through a Sirt3-FoxO3a-dependent mechanism. • Resveratrol suppresses Cd-induced apoptosis through ERK1/2 in vivo.

  8. Thermophysical property characterization of aqueous amino acid salt solution containing serine

    International Nuclear Information System (INIS)

    Navarro, Shanille S.; Leron, Rhoda B.; Soriano, Allan N.; Li, Meng-Hui

    2014-01-01

    Highlights: • Thermophysical properties of aqueous potassium and sodium salt solutions of serine were studied. • Density, viscosity, refractive index and electrolytic conductivity of the solution were measured. • The concentrations of amino acid salt ranges from x 1 = 0.009 to 0.07. • The temperature range studied was (298.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: Thermophysical property characterization of aqueous potassium and sodium salt solutions containing serine was conducted in this study; specifically the system’s density, refractive index, electrical conductivity, and viscosity. Measurements were obtained over a temperature range of (298.15 to 343.15) K and at normal atmospheric pressure. Composition range from x 1 = 0.009 to 0.07 for aqueous potassium and sodium salt solutions containing serine was used. The sensitivity of the system’s thermophysical properties on temperature and composition variation were discussed and correlated based on the equations proposed for room temperature ionic liquids. The density, viscosity, and refractive index measurements of the aqueous systems were found to decrease as the temperature increases at fixed concentration and the values increase as the salt concentration increases (water composition decreases) at fixed temperature. Whereas, a different trend was observed for the electrical conductivity data; at fixed concentration, the conductivity values increase as the temperature increases and at fixed temperature, its value generally increases as the salt concentration increases but only to a certain level (specific concentration) wherein the conductivity of the solution starts to decrease when the concentration of the salt is further increased. Calculation results show that the applied models were satisfactory in representing the measured properties in the aqueous amino acid salt solution containing serine

  9. Alteration in cellular viability, pro-inflammatory cytokines and nitric oxide production in nephrotoxicity generation by Amphotericin B: involvement of PKA pathway signaling.

    Science.gov (United States)

    França, F D; Ferreira, A F; Lara, R C; Rossoni, J V; Costa, D C; Moraes, K C M; Tagliati, C A; Chaves, M M

    2014-12-01

    Amphotericin B is one of the most effective antifungal agents; however, its use is often limited owing to adverse effects, especially nephrotoxicity. The purpose of this study was to evaluate the effect of inhibiting the PKA signaling pathway in nephrotoxicity using Amphotericin B from the assessment of cell viability, pro-inflammatory cytokines and nitric oxide (NO) production in LLC-PK1 and MDCK cell lines. Amphotericin B proved to be cytotoxic for both cell lines, as assessed by the mitochondrial enzyme activity (MTT) assay; caused DNA fragmentation, determined by flow cytometry using the propidium iodide (PI) dye; and activated the PKA pathway (western blot assay). In MDCK cells, the inhibition of the PKA signaling pathway (using the H89 inhibitor) caused a significant reduction in DNA fragmentation. In both cells lines the production of interleukin-6 (IL)-6 proved to be a dependent PKA pathway, whereas tumor necrosis factor-alpha (TNF-α) was not influenced by the inhibition of the PKA pathway. The NO production was increased when cells were pre-incubated with H89 followed by Amphotericin B, and this production produced a dependent PKA pathway in LLC-PK1 and MDCK cells lines. Therefore, considering the present study's results as a whole, it can be concluded that the inhibition of the PKA signaling pathway can aid in reducing the degree of nephrotoxicity caused by Amphotericin B. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Irving, Roy M. [Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706 (United States); Pinkerton, Marie E. [Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706 (United States); Elfarra, Adnan A., E-mail: elfarra@svm.vetmed.wisc.edu [Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706 (United States); Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-02-15

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague–Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S{sub 2}–S{sub 3} segments) while DCVCS primarily affected the outer cortical proximal tubules (S{sub 1}–S{sub 2} segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37 °C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. - Highlights: ► NA-DCVCS and NA-DCVC toxicity are distinct from DCVCS toxicity. ► NA-DCVCS readily reacts with GSH to form mono- and di-GSH conjugates. ► Liver glutathione S-transferases enhance NA-DCVCS GSH conjugate formation. ► Renal localization of lesions suggests a role for NA-DCVCS in TCE nephrotoxicity.

  11. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene

    International Nuclear Information System (INIS)

    Irving, Roy M.; Pinkerton, Marie E.; Elfarra, Adnan A.

    2013-01-01

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague–Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S 2 –S 3 segments) while DCVCS primarily affected the outer cortical proximal tubules (S 1 –S 2 segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37 °C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. - Highlights: ► NA-DCVCS and NA-DCVC toxicity are distinct from DCVCS toxicity. ► NA-DCVCS readily reacts with GSH to form mono- and di-GSH conjugates. ► Liver glutathione S-transferases enhance NA-DCVCS GSH conjugate formation. ► Renal localization of lesions suggests a role for NA-DCVCS in TCE nephrotoxicity

  12. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  13. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura; Lees-Miller, Susan P

    2015-08-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Serine 62-Phosphorylated MYC Associates with Nuclear Lamins and Its Regulation by CIP2A Is Essential for Regenerative Proliferation

    Directory of Open Access Journals (Sweden)

    Kevin Myant

    2015-08-01

    Full Text Available An understanding of the mechanisms determining MYC’s transcriptional and proliferation-promoting activities in vivo could facilitate approaches for MYC targeting. However, post-translational mechanisms that control MYC function in vivo are poorly understood. Here, we demonstrate that MYC phosphorylation at serine 62 enhances MYC accumulation on Lamin A/C-associated nuclear structures and that the protein phosphatase 2A (PP2A inhibitor protein CIP2A is required for this process. CIP2A is also critical for serum-induced MYC phosphorylation and for MYC-elicited proliferation induction in vitro. Complementary transgenic approaches and an intestinal regeneration model further demonstrated the in vivo importance of CIP2A and serine 62 phosphorylation for MYC activity upon DNA damage. However, targeting of CIP2A did not influence the normal function of intestinal crypt cells. These data underline the importance of nuclear organization in the regulation of MYC phosphorylation, leading to an in vivo demonstration of a strategy for inhibiting MYC activity without detrimental physiological effects.

  15. Alterations in the Helicoverpa armigera midgut digestive physiology after ingestion of pigeon pea inducible leucine aminopeptidase.

    Directory of Open Access Journals (Sweden)

    Purushottam R Lomate

    Full Text Available Jasmonate inducible plant leucine aminopeptidase (LAP is proposed to serve as direct defense in the insect midgut. However, exact functions of inducible plant LAPs in the insect midgut remain to be estimated. In the present investigation, we report the direct defensive role of pigeon pea inducible LAP in the midgut of Helicoverpa armigera (Lepidoptera: Noctuidae and responses of midgut soluble aminopeptidases and serine proteinases upon LAP ingestion. Larval growth and survival was significantly reduced on the diets supplemented with pigeon pea LAP. Aminopeptidase activities in larvae remain unaltered in presence or absence of inducible LAP in the diet. On the contrary, serine proteinase activities were significantly decreased in the larvae reared on pigeon pea LAP containing diet as compared to larvae fed on diet without LAP. Our data suggest that pigeon pea inducible LAP is responsible for the degradation of midgut serine proteinases upon ingestion. Reduction in the aminopeptidase activity with LpNA in the H. armigera larvae was compensated with an induction of aminopeptidase activity with ApNA. Our findings could be helpful to further dissect the roles of plant inducible LAPs in the direct plant defense against herbivory.

  16. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.

    Science.gov (United States)

    Gharib, Ola Ali

    2009-11-27

    Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  17. Cooking methods employing natural anti-oxidant food additives effectively reduced concentration of nephrotoxic and carcinogenic aristolochic acids in contaminated food grains.

    Science.gov (United States)

    Li, Weiwei; Chan, Chi-Kong; Wong, Yee-Lam; Chan, K K Jason; Chan, Ho Wai; Chan, Wan

    2018-10-30

    Emerging evidence suggests that aristolochic acids (AA) produced naturally by a common weed Aristolochia clematitis in the cultivation fields is contaminating the food products in Balkan Peninsula and acting as the etiological agent in the development of Balkan endemic nephropathy. In this study, we investigated the combined use of natural anti-oxidative "food additives" and different cooking methods to find a solution for the widespread contamination of AA in food products. The results indicated that the addition of healthy dietary supplements (such as cysteine, glutathione, ascorbic acid, citric acid and magnesium) during cooking, is a highly efficient method in lowering the concentration of AA in the final food products. Because previous observation indicated one of the toxicological mechanisms by which AA exert its toxicity is to induce oxidative stress in internal organs, it is anticipated that these added anti-oxidants will also help to attenuate the nephrotoxicity of AA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. ANTIOXIDANT EFFECTS OF L-SERINE AGAINST FATTY STREAK FORMATION IN HYPERCHOLESTEROLEMIC ANIMALS

    Directory of Open Access Journals (Sweden)

    Ahmad Movahedian

    2010-12-01

    Full Text Available   Abstract INTRODUCTION: Peroxidation of blood lipoproteins is regarded as a key event in the development of atherosclerosis. Evidence suggests that oxidative modification of amino acids in low-density lipoprotein (LDL particles leads to its convert into an atherogenic form, which is taken up by macrophages. Therefore the reduction of oxidative modification of lipoproteins by increasing plasma antioxidant capacity may prevent cardiovascular disease. methods: In this study, the antioxidant and anti-fatty streak effects of L-serine were investigated in hypercholesterolemic rabbits. Rabbits were randomly divided into three groups which were fed high-cholesterol diet (hypercholesterolemic control group, high-cholesterol + L-serine diet (treatment group, and normal diet (control for twelve weeks and then blood samples were obtained to measure plasma cholesterol, triglyceride (TG, high-density lipoprotein (HDL, low-density lipoprotein (LDL, antioxidant capacity (AC, malondialdehyde (MDA, and conjugated dienes (CDS. Right and left coronary arteries were also obtained for histological evaluation. results: No significant difference was observed in plasma cholesterol, TG, HDL, LDL and CDS levels between treatment and hypercholesterolemic control groups (P>0.05. The levels of plasma MDA and AC were 0.29‌ µM and 56%, respectively in the treatment group which showed a significant change in comparison with hypercholesterolemic control groups (P<0.05. The mean size of produced fatty streak also showed significant reduction in the treatment group compared to the hypercholesterolemic group (P<0.05. CONCLUSIONS: The results showed that L-serine has antioxidant and anti-fatty streak effects without any influence on plasma lipid levels in hypercholesterolemic rabbits.     Keywords: Atherosclerosis, cholesterol, L-serine, antioxidant, lipids, fatty streak.

  19. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Aburto, Andrés [Program of M.Sc., Faculty of Medicine, Universidad Austral de Chile, Valdivia (Chile); Barría, Agustín [School of Biochemistry, Faculty of Sciences, Universidad Austral de Chile, Valdivia (Chile); Cárdenas, Areli [Ph.D. Program, Faculty of Sciences, Universidad Austral de Chile, Valdivia (Chile); Carpio, Daniel; Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia (Chile); Burgos, Maria E. [Department of Nephrology, Faculty of Medicine, Universidad Austral de Chile, Valdivia (Chile); Ardiles, Leopoldo, E-mail: leopoldoardiles@gmail.com [Department of Nephrology, Faculty of Medicine, Universidad Austral de Chile, Valdivia (Chile)

    2014-10-15

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observed a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity.

  20. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    International Nuclear Information System (INIS)

    Aburto, Andrés; Barría, Agustín; Cárdenas, Areli; Carpio, Daniel; Figueroa, Carlos D.; Burgos, Maria E.; Ardiles, Leopoldo

    2014-01-01

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observed a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity

  1. Serine Protease Zymography: Low-Cost, Rapid, and Highly Sensitive RAMA Casein Zymography.

    Science.gov (United States)

    Yasumitsu, Hidetaro

    2017-01-01

    To detect serine protease activity by zymography, casein and CBB stain have been used as a substrate and a detection procedure, respectively. Casein zymography has been using substrate concentration at 1 mg/mL and employing conventional CBB stain. Although ordinary casein zymography provides reproducible results, it has several disadvantages including time-consuming and relative low sensitivity. Improved casein zymography, RAMA casein zymography, is rapid and highly sensitive. RAMA casein zymography completes the detection process within 1 h after incubation and increases the sensitivity at least by tenfold. In addition to serine protease, the method also detects metalloprotease 7 (MMP7, Matrilysin) with high sensitivity.

  2. Inhibition of growth hormone and prolactin secretion by a serine proteinase inhibitor

    International Nuclear Information System (INIS)

    Rappay, G.; Nagy, I.; Makara, G.B.; Horvath, G.; Karteszi, M.; Bacsy, E.; Stark, E.

    1984-01-01

    The action of the tripeptide aldehyde t-butyloxycarbonyl-DPhe-Pro-Arg-H (boc-fPR-H), belonging to a family of serine proteinase inhibitors, on the release of immunoreactive prolactin (iPRL) and growth hormone (iGH) has been studied. In rat anterior pituitary cell cultures and pituitary quarters 1 mM boc-fPR-H inhibited basal iPRL and iGH release. Thyroliberin-induced iPRL release by cultured cells was also markedly inhibited with a concomitant accumulation of intracellular iPRL. During the short- and long-term exposure of cells to boc-fPR-H there were no changes in total cell protein contents and in activities of some lysosomal marker enzymes. The marked inhibition of basal as well as stimulated hormone release in the presence of the enzyme inhibitor might suggest that at least a portion of the hormones is released via a proteolytic enzyme-dependent process

  3. Increased phosphorylation of histone H3 at serine 10 is involved in Epstein-Barr virus latent membrane protein-1-induced carcinogenesis of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Li, Binbin; Huang, Guoliang; Zhang, Xiangning; Li, Rong; Wang, Jian; Dong, Ziming; He, Zhiwei

    2013-01-01

    Increased histone H3 phosphorylation is an essential regulatory mechanism for neoplastic cell transformation. We aimed to explore the role of histone H3 phosphorylation at serine10 (p-H3Ser10) in Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1)-induced carcinogenesis of nasopharyngeal carcinoma (NPC). The expression of p-H3Ser10 was detected by the immunohistochemical analysis in NPC, chronic nasopharyngitis and normal nasopharynx tissues, and its correlation with LMP1 was analyzed in NPC tissues and cell lines. Using the small interfering RNA (siRNA)-H3 and histone H3 mutant (S10A), the effect of histone H3 Ser10 motif on LMP1-induced CNE1 cell proliferation, transformation and activator protein-1 (AP-1) activation were evaluated by CCK-8, focus-forming and reporter gene assay respectively. Mitogen- and stress-activated kinase 1 (MSK1) kinase activity and phosphorylation were detected by in vitro kinase assay and western blot. Using MSK1 inhibitor H89 or siRNA-MSK1, the regulatory role of MSK1 on histone H3 phosphorylation and AP-1 activation were analyzed. Immunohistochemical analysis revealed that the expression of p-H3Ser10 was significantly higher in the poorly differentiated NPC tissues than that in chronic nasopharyngitis (p <0.05) and normal nasopharynx tissues (p <0.001). Moreover, high level of p-H3Ser10 was positively correlated with the expression of LMP1 in NPC tissues (χ 2 =6.700, p =0.01; C=0.350) and cell lines. The knockdown and mutant (S10A) of histone H3 suppressed LMP1-induced CNE1 cell proliferation, foci formation and AP-1 activation. In addition, LMP1 could increase MSK1 kinase activity and phosphorylation. MSK1 inhibitor H89 or knockdown of MSK1 by siRNA blocked LMP1-induced phosphorylation of histone H3 at Ser10 and AP-1 activation. EBV-LMP1 can induce phosphorylation of histone H3 at Ser10 via MSK1. Increased phosphorylation of histone H3 at Ser10 is likely a crucial regulatory mechanism involved in LMP1-induced carcinogenesis of

  4. Multipolar electrostatics based on the Kriging machine learning method: an application to serine.

    Science.gov (United States)

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-04-01

    A multipolar, polarizable electrostatic method for future use in a novel force field is described. Quantum Chemical Topology (QCT) is used to partition the electron density of a chemical system into atoms, then the machine learning method Kriging is used to build models that relate the multipole moments of the atoms to the positions of their surrounding nuclei. The pilot system serine is used to study both the influence of the level of theory and the set of data generator methods used. The latter consists of: (i) sampling of protein structures deposited in the Protein Data Bank (PDB), or (ii) normal mode distortion along either (a) Cartesian coordinates, or (b) redundant internal coordinates. Wavefunctions for the sampled geometries were obtained at the HF/6-31G(d,p), B3LYP/apc-1, and MP2/cc-pVDZ levels of theory, prior to calculation of the atomic multipole moments by volume integration. The average absolute error (over an independent test set of conformations) in the total atom-atom electrostatic interaction energy of serine, using Kriging models built with the three data generator methods is 11.3 kJ mol⁻¹ (PDB), 8.2 kJ mol⁻¹ (Cartesian distortion), and 10.1 kJ mol⁻¹ (redundant internal distortion) at the HF/6-31G(d,p) level. At the B3LYP/apc-1 level, the respective errors are 7.7 kJ mol⁻¹, 6.7 kJ mol⁻¹, and 4.9 kJ mol⁻¹, while at the MP2/cc-pVDZ level they are 6.5 kJ mol⁻¹, 5.3 kJ mol⁻¹, and 4.0 kJ mol⁻¹. The ranges of geometries generated by the redundant internal coordinate distortion and by extraction from the PDB are much wider than the range generated by Cartesian distortion. The atomic multipole moment and electrostatic interaction energy predictions for the B3LYP/apc-1 and MP2/cc-pVDZ levels are similar, and both are better than the corresponding predictions at the HF/6-31G(d,p) level.

  5. Possible (enzymatic) routes and biological sites for metabolic reduction of BNP7787, a new protector against cisplatin-induced side-effects.

    NARCIS (Netherlands)

    Verschraagen, M.; Boven, E.; Torun, E; Hausheer, FH; Vijgh, van der WJ

    2004-01-01

    Disodium 2,2'-dithio-bis-ethane sulfonate (BNP7787) is under investigation as a potential new chemoprotector against cisplatin-induced nephrotoxicity. The selective protection of BNP7787 appears to arise from the preferential uptake of the drug in the kidneys, where BNP7787 would undergo

  6. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  7. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Gharib Ola

    2009-11-01

    Full Text Available Abstract Background Trichloroethylene (TCE may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1 the control group treated with vehicle, (2 Kombucha (KT-treated group, (3 TCE-treated group and (4 KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT and lactate dehydrogenase (LDH activities were also measured. Results TCE administration increased the malondiahyde (MDA and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  8. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    Science.gov (United States)

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice.

    Science.gov (United States)

    Fattori, Victor; Borghi, Sergio M; Guazelli, Carla F S; Giroldo, Andressa C; Crespigio, Jefferson; Bussmann, Allan J C; Coelho-Silva, Letícia; Ludwig, Natasha G; Mazzuco, Tânia L; Casagrande, Rubia; Verri, Waldiceu A

    2017-06-01

    Acute kidney injury (AKI) represents a complex clinical condition associated with significant morbidity and mortality. Approximately, 19-33% AKI episodes in hospitalized patients are related to drug-induced nephrotoxicity. Although, considered safe, non-steroidal anti-inflammatory drugs such as diclofenac have received special attention in the past years due to the potential risk of renal damage. Vinpocetine is a nootropic drug known to have anti-inflammatory properties. In this study, we investigated the effect and mechanisms of vinpocetine in a model of diclofenac-induced AKI. We observed that diclofenac increased proteinuria and blood urea, creatinine, and oxidative stress levels 24h after its administration. In renal tissue, diclofenac also increased oxidative stress and induced morphological changes consistent with renal damage. Moreover, diclofenac induced kidney cells apoptosis, up-regulated proinflammatory cytokines, and induced the activation of NF-κB in renal tissue. On the other hand, vinpocetine reduced diclofenac-induced blood urea and creatinine. In the kidneys, vinpocetine inhibited diclofenac-induced oxidative stress, morphological changes, apoptosis, cytokine production, and NF-κB activation. To our knowledge, this is the first study demonstrating that diclofenac-induced AKI increases NF-κB activation, and that vinpocetine reduces the nephrotoxic effects of diclofenac. Therefore, vinpocetine is a promising molecule for the treatment of diclofenac-induced AKI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Metabolism of serine in growing rats and chicks at various dietary protein levels

    International Nuclear Information System (INIS)

    Tanaka, Hideyuki; Yamaguchi, Michio; Kametaka, Masao

    1976-01-01

    The metabolic fate of the carbon skeleton of L-serine-U- 14 C has been investigated, in vivo and in vitro, in growing rats and chicks fed the diets with various protein calories percents (C %) at 410 kcal of metabolizable energy. The incorporation of 14 C into body protein at 12 hr after the injection of serine- 14 C was about 49% of the injected dose in rats fed the 10 or 15 PC% diet, though the value was reduced in rats fed lower and higher protein diets. The 14 CO 2 production was smaller in rats fed the 10 and 15 PC% diet, and it showed an inverse pattern to that of the 14 C incorporation into body protein. Urinary excretion of 14 C was higher in rats fed 10 and higher PC% diets, whose growth rate and net body protein retention were maximum. In contrast to the case of rats, the incorporation of 14 C into body protein of chicks at 6 hr after the injection was rather reduced in the 15 PC% group. The proportion of 14 C excreted as uric acid was remarkably increased above the 10 PC% group, and about 19% of the injected dose was recovered in the 50 PC% group. The catabolic rate of serine in the liver slices of rats and chicks was increased by high protein diets. These results support the concept that the nutritional significance of metabolism of the carbon skeleton of serine in growing rats and chicks is different from each other, especially at high protein diets. (auth.)

  11. Study of vitamin D serum level in patients with epilepsy treated with enzyme-inducing and non enzyme-inducing medications

    Directory of Open Access Journals (Sweden)

    sima Hashemipour

    2014-01-01

    Full Text Available Background : Changes of serum minerals and vitamin D have been reported in anticonvulsant drugs user patients. The present study aimed at comparing the changes of serum minerals and vitamin D among two groups of enzyme-inducing and non enzyme-inducing anticonvulsant drug users. Methods: In this study 22 patients treated with enzyme-inducing drugs (carbamazepin, phenytoin, phenobarbital were compared to 25 patients of matched sex, age, and BMI treated with non enzyme-inducing drugs (sodium evaporate, lamotrigine. Serum calcium, phosphate, parathormone, and 25-hydroxy vitamin D were calculated in both groups. Calcium was measured by Calorimetery method. Parathormone and vitamin D were measured using ELISA method. Results: The mean serum vitamin D level was lower in enzyme-inducing than non enzyme-inducing drugs users (15.9±8.3 and 24.2±14.8, P=0.02. Frequency of vitamin D deficiency was higher in enzyme-inducing compared to non enzyme-inducing drugs users, 84% and 48% , respectively (P=0.016. The mean serum calcium level was significantly lower in enzyme-inducing drugs users. (8.7±0.2 vs. 9.0± 0.7, p= 0.05. Four percent in enzyme-inducing group compared to twenty four percent of non enzyme-inducing group had secondary hyperparathyroidism (P=0.016. Conclusion: While vitamin D deficiency is more frequent in enzyme-inducing drug users, secondary hyperparathyroidism is less frequent.

  12. Ser/Thr Phosphorylation Regulates the Fatty Acyl-AMP Ligase Activity of FadD32, an Essential Enzyme in Mycolic Acid Biosynthesis*

    Science.gov (United States)

    Le, Nguyen-Hung; Molle, Virginie; Eynard, Nathalie; Miras, Mathieu; Stella, Alexandre; Bardou, Fabienne; Galandrin, Ségolène; Guillet, Valérie; André-Leroux, Gwenaëlle; Bellinzoni, Marco; Alzari, Pedro; Mourey, Lionel; Burlet-Schiltz, Odile; Daffé, Mamadou; Marrakchi, Hedia

    2016-01-01

    Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is a well known source of antituberculous drug targets. Among the promising new targets in the pathway, FadD32 is an essential enzyme required for the activation of the long meromycolic chain of mycolic acids and is essential for mycobacterial growth. Following the in-depth biochemical, biophysical, and structural characterization of FadD32, we investigated its putative regulation via post-translational modifications. Comparison of the fatty acyl-AMP ligase activity between phosphorylated and dephosphorylated FadD32 isoforms showed that the native protein is phosphorylated by serine/threonine protein kinases and that this phosphorylation induced a significant loss of activity. Mass spectrometry analysis of the native protein confirmed the post-translational modifications and identified Thr-552 as the phosphosite. Phosphoablative and phosphomimetic FadD32 mutant proteins confirmed both the position and the importance of the modification and its correlation with the negative regulation of FadD32 activity. Investigation of the mycolic acid condensation reaction catalyzed by Pks13, involving FadD32 as a partner, showed that FadD32 phosphorylation also impacts the condensation activity. Altogether, our results bring to light FadD32 phosphorylation by serine/threonine protein kinases and its correlation with the enzyme-negative regulation, thus shedding a new horizon on the mycolic acid biosynthesis modulation and possible inhibition strategies for this promising drug target. PMID:27590338

  13. Incorporation of glycine and serine into sporulating cells of Bacillus subtilis

    International Nuclear Information System (INIS)

    Mitani, Takahiko; Kadota, Hajime

    1976-01-01

    The changes during growth and sporulation in activities of cells of Bacillus subtilis to incorporate various amino acids were investigated with wild-type strain and its asporogenous mutant. In the case of wild type strain the uptake of valine, phenylalanine, and proline was largest during the logarithmic growth period. The uptake of these amino acids decreased rapidly during the early stationary phase. The uptake of valine and cysteine increased again to some extent just prior to the forespore stage. The uptake of glycine and serine, however, was largest at the forespore stage at which the formation of spore coat took place. From these observed phenomena it was assumed that the remarkable incorporation of glycine and serine into the wild type strain during sporulation was closely related to the formation of spore coat. (auth.)

  14. Assays of D-Amino Acid Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Elena Rosini

    2018-01-01

    Full Text Available D-amino acid oxidase (DAAO is a well-known flavoenzyme that catalyzes the oxidative FAD-dependent deamination of D-amino acids. As a result of the absolute stereoselectivity and broad substrate specificity, microbial DAAOs have been employed as industrial biocatalysts in the production of semi-synthetic cephalosporins and enantiomerically pure amino acids. Moreover, in mammals, DAAO is present in specific brain areas and degrades D-serine, an endogenous coagonist of the N-methyl-D-aspartate receptors (NMDARs. Dysregulation of D-serine metabolism due to an altered DAAO functionality is related to pathological NMDARs dysfunctions such as in amyotrophic lateral sclerosis and schizophrenia. In this protocol paper, we describe a variety of direct assays based on the determination of molecular oxygen consumption, reduction of alternative electron acceptors, or α-keto acid production, of coupled assays to detect the hydrogen peroxide or the ammonium production, and an indirect assay of the α-keto acid production based on a chemical derivatization. These analytical assays allow the determination of DAAO activity both on recombinant enzyme preparations, in cells, and in tissue samples.

  15. D-penicillamine induced degenerative dermopathy

    Directory of Open Access Journals (Sweden)

    Sujay Khandpur

    2015-01-01

    Full Text Available D-penicillamine interferes with elastin and collagen metabolism and produces several cutaneous and multi-systemic side-effects. We present two cases of Wilson′s disease who on long-term penicillamine therapy developed drug-induced degenerative dermopathy manifesting as skin fragility over pressure sites and cutis laxa-like changes.

  16. Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486.

    Science.gov (United States)

    Kalandadze, Avtandil; Wu, Ying; Robinson, Michael B

    2002-11-29

    Na(+)-dependent glutamate transporters are required for the clearance of extracellular glutamate and influence both physiological and pathological effects of this excitatory amino acid. In the present study, the effects of a protein kinase C (PKC) activator on the cell surface expression and activity of the GLT-1 subtype of glutamate transporter were examined in two model systems, primary co-cultures of neurons and astrocytes that endogenously express GLT-1 and C6 glioma cells transfected with GLT-1. In both systems, activation of PKC with phorbol ester caused a decrease in GLT-1 cell surface expression. This effect is opposite to the one observed for the EAAC1 subtype of glutamate transporter (Davis, K. E., Straff, D. J., Weinstein, E. A., Bannerman, P. G., Correale, D. M., Rothstein, J. D., and Robinson, M. B. (1998) J. Neurosci. 18, 2475-2485). Several recombinant chimeric proteins between GLT-1 and EAAC1 transporter subtypes were generated to identify domains required for the subtype-specific redistribution of GLT-1. We identified a carboxyl-terminal domain consisting of 43 amino acids (amino acids 475-517) that is required for PKC-induced GLT-1 redistribution. Mutation of a non-conserved serine residue at position 486 partially attenuated but did not completely abolish the PKC-dependent redistribution of GLT-1. Although we observed a phorbol ester-dependent incorporation of (32)P into immunoprecipitable GLT-1, mutation of serine 486 did not reduce this signal. We also found that chimeras containing the first 446 amino acids of GLT-1 were not functional unless amino acids 475-517 of GLT-1 were also present. These non-functional transporters were not as efficiently expressed on the cell surface and migrated to a smaller molecular weight, suggesting that a subtype-specific interaction is required for the formation of functional transporters. These studies demonstrate a novel effect of PKC on GLT-1 activity and define a unique carboxyl-terminal domain as an

  17. The pro-coagulant fibrinogenolytic serine protease isoenzymes purified from Daboia russelii russelii venom coagulate the blood through factor V activation: role of glycosylation on enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Ashis K Mukherjee

    Full Text Available Proteases from Russell's viper venom (RVV induce a variety of toxic effects in victim. Therefore, four new RVV protease isoenzymes of molecular mass 32901.044 Da, 333631.179 Da, 333571.472 Da, and 34594.776 Da, were characterized in this study. The first 10 N-terminal residues of these serine protease isoenzymes showed significant sequence homology with N-terminal sequences of snake venom thrombin-like and factor V-activating serine proteases, which was reconfirmed by peptide mass fingerprinting analysis. These proteases were found to be different from previously reported factor V activators isolated from snake venoms. These proteases showed significantly different fibrinogenolytic, BAEE-esterase and plasma clotting activities but no fibrinolytic, TAME-esterase or amidolytic activity against the chromogenic substrate for trypsin, thrombin, plasmin and factor Xa. Their Km and Vmax values towards fibrinogen were determined in the range of 6.6 to 10.5 µM and 111.0 to 125.5 units/mg protein, respectively. On the basis of fibrinogen degradation pattern, they may be classified as A/B serine proteases isolated from snake venom. These proteases contain ∼ 42% to 44% of N-linked carbohydrates by mass whereas partially deglycosylated enzymes showed significantly less catalytic activity as compared to native enzymes. In vitro these protease isoenzymes induce blood coagulation through factor V activation, whereas in vivo they provoke dose-dependent defibrinogenation and anticoagulant activity in the mouse model. At a dose of 5 mg/kg, none of these protease isoenzymes were found to be lethal in mice or house geckos, suggesting therapeutic application of these anticoagulant peptides for the prevention of thrombosis.

  18. Assessment and partial purification of serine protease inhibitors from Rhipicephalus (Boophilus annulatuslarvae

    Directory of Open Access Journals (Sweden)

    Sedigheh Nabian

    Full Text Available Ticks are rich sources of serine protease inhibitors, particularly those that prevent blood clotting and inflammatory responses during blood feeding. The tick Rhipicephalus (Boophlus annulatusis an important ectoparasite of cattle. The aims of this study were to characterize and purify the serine protease inhibitors present in R. (B. annulatus larval extract. The inhibitors were characterized by means of one and two-dimensional reverse zymography, and purified using affinity chromatography on a trypsin-Sepharose column. The analysis on one and two-dimensional reverse zymography of the larval extract showed trypsin inhibitory activity at between 13 and 40 kDa. Through non-reducing SDS-PAGE and reverse zymography for proteins purified by trypsin-Sepharose affinity chromatography, some protein bands with molecular weights between 13 and 34 kDa were detected. Western blotting showed that five protein bands at 48, 70, 110, 130 and 250 kDa reacted positively with immune serum, whereas there was no positive reaction in the range of 13-40 kDa. Serine protease inhibitors from R. (B. annulatus have anti-trypsin activity similar to inhibitors belonging to several other hard tick species, thus suggesting that these proteins may be useful as targets in anti-tick vaccines.

  19. [Epidemiology of induced abortion in Côte d'Ivoire].

    Science.gov (United States)

    Vroh, Joseph Benie Bi; Tiembre, Issaka; Attoh-Toure, Harvey; Kouadio, Daniel Ekra; Kouakou, Lucien; Coulibaly, Lazare; Kouakou, Hyacinthe Andoh; Tagliante-Saracino, Janine

    2012-06-08

    The objective of this study was to examine induced abortion in Côte d'Ivoire. A nationwide cross-sectional descriptive study of induced abortion was carried out in 2007 among 3,057 women aged 15-49 years. The study showed that induced abortion is a widespread practice in Côte d'Ivoire, with a prevalence estimated at 42.5%. The women who had undergone an abortion were generally under 25, unmarried, and illiterate, and had used contraception. More than half (52.1%) of all induced abortions were performed at home by traditional abortionists or were self-induced with plants or decoctions. The main reasons for induced abortion were concern about the reaction of parents (27.7%), age (22.2%), a lack of financial resources (21.3%) and the desire of women to continue their education. More than half of the participants (55.8%) stated that they had suffered complications, which were more common after a home abortion than after a hospital abortion. Political and legal measures or reforms aimed at changing abortion laws in Côte d'Ivoire and better access to family planning are required in order to prevent or treat the social issue of induced abortion.

  20. D2O-induced cell excitation

    International Nuclear Information System (INIS)

    Andjus, P.R.; Vucelic, D.

    1990-01-01

    The effects of deuterium oxide (D 2 O) on giant internodal cells of the fresh water alga Chara gymnophylla, were investigated. D 2 O causes membrane excitation followed by potassium leakage. The primary effect consists of an almost instantaneous membrane depolarization resembling an action potential with incomplete repolarization. A hypothesis was proposed which deals with an osmotic stress effect of D 2 O on membrane ion channels followed by the suppression of the electrogenic pump activity. The initial changes (potential spike and rapid K+ efflux) may represent the previously undetected link between the D 2 O-induced temporary arrest of protoplasmic streaming and the early events triggered at the plasma membrane level as the primary site of D 2 O action

  1. A role for D1 dopamine receptors in striatal methamphetamine-induced neurotoxicity.

    Science.gov (United States)

    Friend, Danielle M; Keefe, Kristen A

    2013-10-25

    Methamphetamine (METH) exposure results in long-term damage to the dopamine system in both human METH abusers and animal models. One factor that has been heavily implicated in this METH-induced damage to the dopaminergic system is the activation of D1 dopamine (DA) receptors. However, a significant caveat to the studies investigating the role of the receptor in such toxicity is that genetic and pharmacological manipulations of the D1 DA receptor also mitigate METH-induced hyperthermia. Importantly, METH-induced hyperthermia is tightly associated with the neurotoxicity, such that simply cooling animals during METH exposure protects against the neurotoxicity. Therefore, it is difficult to determine whether D1 DA receptors per se play an important role in METH-induced neurotoxicity or whether the protection observed simply resulted from a mitigation of METH-induced hyperthermia. To answer this important question, the current study infused a D1 DA receptor antagonist into striatum during METH exposure while controlling for METH-induced hyperthermia. Here we found that even when METH-induced hyperthermia is maintained, the coadministration of a D1 DA receptor antagonist protects against METH-induced neurotoxicity, strongly suggesting that D1 DA receptors play an important role in METH-induced neurotoxicity apart from the mitigation of METH-induced hyperthermia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Nephroprotective effect of Bauhinia variegata (Linn.) whole stem extract against cisplatin-induced nephropathy in rats

    Science.gov (United States)

    Pani, Saumya R.; Mishra, Satyaranjan; Sahoo, Sabuj; Panda, Prasana K.

    2011-01-01

    The nephroprotective activity of the ethanolic extract of Bauhinia variegata (Linn.) whole stem against cisplatin-induced nephropathy was investigated by an in vivo method in rats. Acute nephrotoxicity was induced by i.p. injection of cisplatin (7 mg/kg of body weight (b.w.)). Administration of ethanol extract at dose levels of 400 and 200 mg/kg (b.w.) to cisplatin-intoxicated rats for 14 days attenuated the biochemical and histological signs of nephrotoxicity of cisplatin in a dose-dependent fashion. Ethanol extract at 400 mg/kg decreased the serum level of creatinine (0.65 ± 0.09; P<0.001) and urea (32.86 ± 5.88; P<0.001) associated with a significant increase in body weight (7.16 ± 1.10; P<0.001) and urine volume output (11.95 ± 0.79; P<0.05) as compared to the toxic control group. The ethanol extract of B. variegata at 400 mg/kg (b.w.) exhibited significant and comparable nephroprotective potential to that of the standard polyherbal drug cystone. The statistically (one-way-ANOVA followed by Tukey-Kramer multiple comparison) processed results suggested the protective action of B. variegate whole stem against cisplatin-induced nephropathy. PMID:21572659

  3. Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88.

    Science.gov (United States)

    Shao, Fenli; Tan, Tao; Tan, Yang; Sun, Yang; Wu, Xingxin; Xu, Qiang

    2016-09-01

    Psoriasis is a chronic inflammatory skin disease with excessive activation of toll-like receptors (TLRs), which play important roles in developing psoriasis. Targeting TLR signaling remains a challenge for treating psoriasis. Here, we found that andrographolide (Andro), a small-molecule natural product, alleviated imiquimod- but not interleukin 23 (IL-23)-induced psoriasis in mice with reducing expressions of IL-23 and IL-1β in the skin. The improvement in imiquimod-induced psoriasis by Andro was not observed in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) knockout mice. Furthermore, Andro inhibited mRNA expressions of IL-23, IL-6 and IL-1β but not CD80 and CD86 in bone-marrow derived dendritic cells (BMDCs) treated with lipopolysaccharide (LPS) in a MAP1LC3B-dependent manner. In addition, Andro inhibited imiquimod-induced mRNA expressions of IL-23, IL-6, IL-1β, CD80 and CD86 in BMDCs from mice. Interestingly, Andro induced a degradation of myeloid differentiation factor 88 (MyD88) and blocked the recruitment of TNF receptor-associated factor 6 (TRAF6) to MyD88 upon LPS stimulation in BMDCs from mice. Blockade of autophagic proteolysis using NH4Cl or MAP1LC3B(-/-) BMDCs abolished the Andro-induced MyD88 degradation. In conclusion, Andro controls activation of MyD88-dependent cytokines and alleviates psoriasis in mice via inducing autophagic proteolysis of MyD88, which could be a novel strategy to treat psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Optimization of the Conditions for Extraction of Serine Protease from Kesinai Plant (Streblus asper Leaves Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Md. Zaidul Islam Sarker

    2011-11-01

    Full Text Available Response surface methodology (RSM using a central composite design (CCD was employed to optimize the conditions for extraction of serine protease from kesinai (Streblus asper leaves. The effect of independent variables, namely temperature (42.5,47.5, X1, mixing time (2–6 min, X2, buffer content (0–80 mL, X3 and buffer pH (4.5–10.5, X4 on specific activity, storage stability, temperature and oxidizing agent stability of serine protease from kesinai leaves was investigated. The study demonstrated that use of the optimum temperature, mixing time, buffer content and buffer pH conditions protected serine protease during extraction, as demonstrated by low activity loss. It was found that the interaction effect of mixing time and buffer content improved the serine protease stability, and the buffer pH had the most significant effect on the specific activity of the enzyme. The most desirable conditions of 2.5 °C temperature, 4 min mixing time, 40 mL buffer at pH 7.5 was established for serine protease extraction from kesinai leaves.

  5. The efficacy and nephrotoxicity associated with colistin use in an intensive care unit in Vietnam: Use of colistin in a population of lower body weight

    Directory of Open Access Journals (Sweden)

    Nguyen Gia Binh

    2015-06-01

    Conclusion: A personalized dosing protocol of colistin was effective, with low nephrotoxicity, among critically ill Vietnamese patients with low body weight. Further studies are warranted for assessing the efficacy and toxicity in a larger cohort.

  6. Efficacy of a novel chelator BPCBG for removing uranium and protecting against uranium-induced renal cell damage in rats and HK-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Yizhong; Wang, Dan [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Li, Zhiming [Department of Chemistry, Fudan University, Shanghai 200433 (China); Hu, Yuxing; Xu, Aihong [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Wang, Quanrui [Department of Chemistry, Fudan University, Shanghai 200433 (China); Shao, Chunlin [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Chen, Honghong, E-mail: hhchen@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China)

    2013-05-15

    Chelation therapy is a known effective method to increase the excretion of U(VI) from the body. Until now, no any uranium chelator has been approved for emergency medical use worldwide. The present study aimed to evaluate the efficacy of new ligand BPCBG containing two catechol groups and two aminocarboxylic acid groups in decorporation of U(VI) and protection against acute U(VI) nephrotoxicity in rats, and further explored the detoxification mechanism of BPCBG for U(VI)-induced nephrotoxicity in HK-2 cells with comparison to DTPA-CaNa{sub 3}. Chelating agents were administered at various times before or after injections of U(VI) in rats. The U(VI) levels in urine, kidneys and femurs were measured 24 h after U(VI) injections. Histopathological changes in the kidney and serum urea and creatinine and urine protein were examined. After treatment of U(VI)-exposed HK-2 cells with chelating agent, the intracellular U(VI) contents, formation of micronuclei, lactate dehydrogenase (LDH) activity and production of reactive oxygen species (ROS) were assessed. It was found that prompt, advanced or delayed injections of BPCBG effectively increased 24 h-urinary U(VI) excretion and decreased the levels of U(VI) in kidney and bone. Meanwhile, BPCBG injection obviously reduced the severity of the U(VI)-induced histological alterations in the kidney, which was in parallel with the amelioration noted in serum indicators, urea and creatinine, and urine protein of U(VI) nephrotoxicity. In U(VI)-exposed HK-2 cells, immediate and delayed treatment with BPCBG significantly decreased the formation of micronuclei and LDH release by inhibiting the cellular U(VI) intake, promoting the intracellular U(VI) release and inhibiting the production of intracellular ROS. Our data suggest that BPCBG is a novel bi-functional U(VI) decorporation agent with a better efficacy than DTPA-CaNa{sub 3}. - Highlights: ► BPCBG accelerated the urine U(VI) excretion and reduced the tissues U(VI) in rats.

  7. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.

    Science.gov (United States)

    Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara

    2012-12-01

    Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.

  8. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    Directory of Open Access Journals (Sweden)

    Nicolas Faller

    Full Text Available Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity o