International Nuclear Information System (INIS)
Nakamura, Shin
2005-01-01
We propose a new method to describe a recoiling D-brane that is elastically scattered by closed strings in the nonrelativistic region. We utilize the low-energy effective field theory on the worldvolume of the D-brane, and the velocity of the D-brane is described by the time derivative of the expectation values of the massless scalar fields on the worldvolume. The effects of the closed strings are represented by a source term for the massless fields in this method. The momentum conservation condition between the closed strings and the D-brane is derived up to the relative sign of the momentum of the D-brane
International Nuclear Information System (INIS)
Okuda, Takuya; Takayanagi, Tadashi
2006-01-01
We define a ghost D-brane in superstring theories as an object that cancels the effects of an ordinary D-brane. The supergroups U(N|M) and OSp(N/M) arise as gauge symmetries in the supersymmetric world-volume theory of D-branes and ghost D-branes. A system with a pair of D-brane and ghost D-brane located at the same location is physically equivalent to the closed string vacuum. When they are separated, the system becomes a new brane configuration. We generalize the type I/heterotic duality by including n ghost D9-branes on the type I side and by considering the heterotic string whose gauge group is OSp(32+2n/2n). Motivated by the type IIB S-duality applied to D9- and ghost D9-branes, we also find type II-like closed superstrings with U(n/n) gauge symmetry
Phenomenological aspects of D-branes
International Nuclear Information System (INIS)
Quevedo, F.
2003-01-01
A general overview is presented on string phenomenology, emphasizing the role played by D-branes. A general discussion of the main challenges for string phenomenology is followed by recent progress made in constructing realistic models from D-branes and anti-branes at singularities and also from intersecting D-branes. Some possible cosmological implications of these classes of string models are also mentioned. (author)
Phenomenological aspects of D-branes
Energy Technology Data Exchange (ETDEWEB)
Quevedo, F [Centre for Mathematical Sciences, DAMTP, University of Cambridge, Cambridge (United Kingdom)
2003-08-15
A general overview is presented on string phenomenology, emphasizing the role played by D-branes. A general discussion of the main challenges for string phenomenology is followed by recent progress made in constructing realistic models from D-branes and anti-branes at singularities and also from intersecting D-branes. Some possible cosmological implications of these classes of string models are also mentioned. (author)
International Nuclear Information System (INIS)
Everett, L.; Kane, G.L.; King, S.F.
2000-01-01
We examine the flavor structure of the trilinear superpotential couplings which can result from embedding the Standard Model within D-brane sectors in Type IIB orientifold models, which are examples within the Type I string framework. We find in general that the allowed flavor structures of the Yukawa coupling matrices to leading order are given by basic variations on the d emocratic'' texture ansatz. In certain interesting cases, the Yukawa couplings have a novel structure in which a single right-handed fermion couples democratically at leading order to three left-handed fermions. We discuss the viability of such a s ingle right-handed democracy'' in detail; remarkably, even though there are large mixing angles in the u,d sectors separately, the CKM mixing angles are small. The analysis demonstrates the ways in which the Type I superstring framework can provide a rich setting for investigating novel resolutions to the flavor puzzle. (author)
Kaste, P.; Lutken, C.A.; Walcher, Johannes
2000-01-01
B-type D-branes are constructed on two different K3-fibrations over IP_1 using boundary conformal field theory at the rational Gepner points of these models. The microscopic CFT charges are compared with the Ramond charges of D-branes wrapped on holomorphic cycles of the corresponding Calabi-Yau manifold. We study in particular D4-branes and bundles localized on the K3 fibers, and find agreement with expectations. This provides a further test of the boundary CFT approach to $D$-brane physics.
D-Brane Recoil Mislays Information
Ellis, Jonathan Richard; Nanopoulos, Dimitri V
1998-01-01
We discuss the scattering of a light closed-string state off a $D$ brane, taking into account quantum recoil effects on the latter, which are described by a pair of logarithmic operators. The light-particle and $D$-brane subsystems may each be described by a world-sheet with an external source due to the interaction between them. This perturbs each subsystem away from criticality, which is compensated by dressing with a Liouville field whose zero mode we interpret as time. The resulting evolution equations for the $D$ brane and the closed string are of Fokker-Planck and modified quantum Liouville type, respectively. The apparent entropy of each subsystem increases as a result of the interaction between them, which we interpret as the loss of information resulting from non-observation of the other entangled subsystem. We speculate on the possible implications of these results for the propagation of closed strings through a dilute gas of virtual $D$ branes.
Progress in D-brane model building
International Nuclear Information System (INIS)
Marchesano, F.
2007-01-01
The state of the art in D-brane model building is briefly reviewed, focusing on recent achievements in the construction of D=4 N=1 type II string vacua with semi-realistic gauge sectors. Such progress relies on a better understanding of the spectrum of BPS D-branes, the effective field theory obtained from them and the explicit construction of vacua. We first consider D-branes in standard Calabi-Yau compactifications, and then the more involved case of compactifications with fluxes. We discuss how the non-trivial interplay between D-branes and fluxes modifies the previous model-building rules, as well as provides new possibilities to connect string theory to particle physics. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
D-branes in little string theory
International Nuclear Information System (INIS)
Israel, Dan; Pakman, Ari; Troost, Jan
2005-01-01
We analyze in detail the D-branes in the near-horizon limit of NS5-branes on a circle, the holographic dual of little string theory in a double scaling limit. We emphasize their geometry in the background of the NS5-branes and show the relation with D-branes in coset models. The exact one-point functions giving the coupling of the closed string states with the D-branes and the spectrum of open strings are computed. Using these results, we analyze several aspects of Hanany-Witten setups, using exact CFT analysis. In particular we identify the open string spectrum on the D-branes stretched between NS5-branes which confirms the low-energy analysis in brane constructions, and that allows to go to higher energy scales. As an application we show the emergence of the beta-function of the N=2 gauge theory on D4-branes stretching between NS5-branes from the boundary states describing the D4-branes. We also speculate on the possibility of getting a matrix model description of little string theory from the effective theory on the D1-branes. By considering D3-branes orthogonal to the NS5-branes we find a CFT incarnation of the Hanany-Witten effect of anomalous creation of D-branes. Finally we give an brief description of some non-BPS D-branes
International Nuclear Information System (INIS)
Kaste, P.; Lerche, W.; Luetken, C.A.; Walcher, J.
2000-01-01
B-type D-branes are constructed on two different K3-fibrations over P 1 using boundary conformal field theory at the rational Gepner points of these models. The microscopic CFT charges are compared with the Ramond charges of D-branes wrapped on holomorphic cycles of the corresponding Calabi-Yau manifold. We study in particular D4-branes and bundles localized on the K3 fibers, and find from CFT that each irreducible component of a bundle on K3 gains one modulus upon fibration over P 1 . This is in agreement with expectations and so provides a further test of the boundary CFT approach to D-brane physics
Moshe RozaliDepartment of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Darren Smyth(Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada)
2014-01-01
We discuss finite density configurations on probe D-branes, in the presence of worldvolume fermions. To this end we consider a phenomenological model whose bosonic sector is governed by the DBI action, and whose charged sector is purely fermionic. In this model, we demonstrate the existence of a compact worldvolume embedding, stabilized by a Fermi surface on the D- brane. The finite density state in the boundary QFT is a Fermi-like liquid. We comment on the possibility of realizing non-Fermi ...
Indian Academy of Sciences (India)
string theory, and then describe two ecent attempts using D-branes. The first ... ification of the theory Å =T 6/G, where G =G1 +ΩG2 with G1 2 discrete internal sym- ... Whereas in the latter case anomalousU(1) factors in the gauge group disap-.
International Nuclear Information System (INIS)
Alberghi, Gian Luigi; Caceres, Elena; Goldstein, Kevin; Lowe, David A. . lowe@het.brown.edu
2001-08-01
We present a candidate supergravity solution for a stacked configuration of stable non-BPS D-branes in Type II string theory compactified on T 4 /Z 2 . This gives a supergravity description of nonabelian tachyon condensation on the brane woldvolume. (author)
Energy Technology Data Exchange (ETDEWEB)
McGreevy, John Austen; /Stanford U., Phys. Dept.
2005-07-06
This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry, both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe
D-branes, orbifolds, and Ext groups
International Nuclear Information System (INIS)
Katz, Sheldon; Pantev, Tony; Sharpe, Eric
2003-01-01
In this note we extend previous work on massless Ramond spectra of open strings connecting D-branes wrapped on complex manifolds, to consider D-branes wrapped on smooth complex orbifolds. Using standard methods, we calculate the massless boundary Ramond sector spectra directly in BCFT, and find that the states in the spectrum are counted by Ext groups on quotient stacks (which provide a notion of homological algebra relevant for orbifolds). Subtleties that cropped up in our previous work also appear here. We also use the McKay correspondence to relate Ext groups on quotient stacks to Ext groups on (large radius) resolutions of the quotients. As stacks are not commonly used in the physics community, we include pedagogical discussions of some basic relevant properties of stacks
Schimmrigk, Rolf
2012-01-01
In this paper the problem of constructing spacetime from string theory is addressed in the context of D-brane physics. It is suggested that the knowledge of discrete configurations of D-branes is sufficient to reconstruct the motivic building blocks of certain Calabi-Yau varieties. The collections of D-branes involved have algebraic base points, leading to the notion of K-arithmetic D-crystals for algebraic number fields K. This idea can be tested for D0-branes in the framework of toroidal compactifications via the conjectures of Birch and Swinnerton-Dyer. For the special class of D0-crystals of Heegner type these conjectures can be interpreted as formulae that relate the canonical Neron-Tate height of the base points of the D-crystals to special values of the motivic L-function at the central point. In simple cases the knowledge of the D-crystals of Heegner type suffices to uniquely determine the geometry.
Canonical formulation of IIB D-branes
International Nuclear Information System (INIS)
Kamimura, K.
1998-01-01
We find Wess-Zumino actions for kappa invariant type IIB D-branes in explicit forms. A simple and compact expression is obtained by the use of spinor variables which are defined as power series of differential forms. Using the Wess-Zumino actions we develop the canonical formulation and find the complete set of the constraint equations for generic type IIB Dp-branes. The conserved global supersymmetry charges are determined and the algebra containing the central charges can be obtained explicitly. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Horowitz, Gary; /UC, Santa Barbara; Lawrence, Albion; /Brandeis U. /Santa Barbara, KITP; Silverstein, Eva; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP
2010-08-26
We study a simple model of a black hole in AdS and obtain a holographic description of the region inside the horizon. A key role is played by the dynamics of the scalar fields in the dual gauge theory. This leads to a proposal for a dual description of D-branes falling through the horizon of any AdS black hole. The proposal uses a field-dependent time reparameterization in the field theory. We relate this reparametrization to various gauge invariances of the theory. Finally, we speculate on information loss and the black hole singularity in this context.
D-brane anti-D-brane system in string theory
Hyakutake, Y
2003-01-01
In this paper, we review a system of D-brane and anti-D-brane in type II superstring theories. [A. Sen, hep-th/9904207 and references there in; Y.Hyakutake, Master-Th., Doctor-Th. (in Japanese)] This system is unstable an tachyonic modes, which have negative mass squared, appear from open strings between D-brane and anti-D-brane. The effective field theory on the world-volume is described by U(1) x U(1) gauge theory with a complex tachyon field. Since the mass squared of the techyon field is negative, a tachyon potential would be like a wine bottle. In order to make the system stable, the tachyon rolls down the potential and gets some vacuum expectation value. This is called the tachyon condensation mechanism. During this mechanism, Dp-brane and anti-Dp-brane annihilate completely, if we admit Sen's conjecture. The suspicions between tachyon condensation and Hawking radiation are also discussed. (author)
Noncommutative D-branes from covariant AdS superstring
International Nuclear Information System (INIS)
Sakaguchi, Makoto; Yoshida, Kentaroh
2008-01-01
We study noncommutative (NC) D-branes on AdS 5 xS 5 from κ-invariance of covariant Green-Schwarz action of an open string with a non-trivial world-volume flux. Finding boundary conditions to ensure the κ-invariance, we can see possible configurations of the NC D-branes. With this method 1/4 BPS NC D-branes are discussed. The resulting NC Dp-branes are 1/4 BPS at arbitrary position other than the p=1 case. The exceptional D-string is 1/2 BPS at the origin and 1/4 BPS outside the origin. Those are reduced to possible 1/4 BPS or 1/2 BPS AdS D-branes in the commutative limit. The same analysis is applied to an open superstring in a pp-wave and leads to 1/4 BPS configurations of NC D-branes. These D-branes are consistently obtained from AdS D-branes via the Penrose limit
D-Branes in the Background of NS Fivebranes
Elitzur, Shmuel; Rabinovici, Eliezer; Sarkisian, G; Kutasov, D; Elitzur, Shmuel; Giveon, Amit; Kutasov, David; Rabinovici, Eliezer; Sarkissian, Gor
2000-01-01
We study the dynamics of $D$-branes in the near-horizon geometry of $NS$ fivebranes. This leads to a holographically dual description of the physics of $D$-branes ending on and/or intersecting $NS5$-branes. We use it to verify some properties of such $D$-branes which were deduced indirectly in the past, and discuss some instabilities of non-supersymmetric brane configurations. Our construction also describes vacua of Little String Theory which are dual to open plus closed string theory in asymptotically linear dilaton spacetimes.
Multifield consequences for D-brane inflation
Energy Technology Data Exchange (ETDEWEB)
Dias, Mafalda; Frazer, Jonathan; Liddle, Andrew R., E-mail: m.dias@sussex.ac.uk, E-mail: j.frazer@sussex.ac.uk, E-mail: a.liddle@sussex.ac.uk [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom)
2012-06-01
We analyse the multifield behaviour in D-brane inflation when contributions from the bulk are taken into account. For this purpose, we study a large number of realisations of the potential; we find the nature of the inflationary trajectory to be very consistent despite the complex construction. Inflation is always canonical and occurs in the vicinity of an inflection point. Extending the transport method to non-slow-roll and to calculate the running, we obtain distributions for observables. The spectral index is typically blue and the running positive, putting the model under moderate pressure from WMAP7 constraints. The local f{sub NL} and tensor-to-scalar ratio are typically unobservably small, though we find approximately 0.5% of realisations to give observably large local f{sub NL}. Approximating the potential as sum-separable, we are able to give fully analytic explanations for the trends in observed behaviour. Finally we find the model suffers from the persistence of isocurvature perturbations, which can be expected to cause further evolution of adiabatic perturbations after inflation. We argue this is a typical problem for models of multifield inflation involving inflection points and renders models of this type technically unpredictive without a description of reheating.
Multifield consequences for D-brane inflation
International Nuclear Information System (INIS)
Dias, Mafalda; Frazer, Jonathan; Liddle, Andrew R.
2012-01-01
We analyse the multifield behaviour in D-brane inflation when contributions from the bulk are taken into account. For this purpose, we study a large number of realisations of the potential; we find the nature of the inflationary trajectory to be very consistent despite the complex construction. Inflation is always canonical and occurs in the vicinity of an inflection point. Extending the transport method to non-slow-roll and to calculate the running, we obtain distributions for observables. The spectral index is typically blue and the running positive, putting the model under moderate pressure from WMAP7 constraints. The local f NL and tensor-to-scalar ratio are typically unobservably small, though we find approximately 0.5% of realisations to give observably large local f NL . Approximating the potential as sum-separable, we are able to give fully analytic explanations for the trends in observed behaviour. Finally we find the model suffers from the persistence of isocurvature perturbations, which can be expected to cause further evolution of adiabatic perturbations after inflation. We argue this is a typical problem for models of multifield inflation involving inflection points and renders models of this type technically unpredictive without a description of reheating
The bosonic mother of fermionic D-branes
Chattaraputi, Auttakit; Englert, Francois; Houart, Laurent; Taormina, Anne
2002-01-01
We extend the search for fermionic subspaces of the bosonic string compactified on E8 X SO(16) lattices to include all fermionic D-branes. This extension constraints the truncation procedure previously proposed and relates the fermionic strings, supersymmetric or not, to the global structure of the SO(16) group. The specific properties of all the fermionic D-branes are found to be encoded in its universal covering, whose maximal toroid defines the configuration space torus of their mother bos...
On the microcanonical description D-brane thermodynamics
International Nuclear Information System (INIS)
Meana, Marco Laucelli; Penalba, Jesus Puente
1999-01-01
We study the microcanonical description of string gases in the presence of D-branes. We obtain exact expressions for the single string density of states and draw the regions in phase space where asymptotic approximations are valid. We are able to describe the whole range of energies including the SYM phase of the D-branes and we remark the importance of the infrared cut-off used in the high energy approximations. With the complete expression we can obtain the density of states of the multiple string gas and study its thermal properties, showing that the Hagedorn temperature is maximum for every system and there is never a phase transition whenever there is thermal contact among the strings attached to different D-branes
U-duality and D-brane combinatorics
Pioline, B
1998-01-01
We investigate D-brane instanton contributions to R^4 couplings in any toroidal compactification of type II theories. Starting from the 11D supergravity one-loop four-graviton amplitude computed by Green, Gutperle and Vanhove, we derive the non-perturbative O(e^{-1/\\lambda}) corrections to R^4 couplings by a sequence of T-dualities, and interpret them as precise configurations of bound states of D-branes wrapping cycles of the compactification torus. Dp-branes explicitely appear as fluxes on D(p+2)-branes, and as gauge instantons on D(p+4)-branes. Specific rules for weighting these contributions are obtained, which should carry over to more general situations. Furthermore, it is shown that U-duality in D<=6 relates these D-brane configurations to O(e^{-1/\\lambda^2}) instantons for which a geometric interpretation is still lacking.
Euclidean D-branes and higher-dimensional gauge theory
International Nuclear Information System (INIS)
Acharya, B.S.; Figueroa-O'Farrill, J.M.; Spence, B.; O'Loughlin, M.
1997-07-01
We consider euclidean D-branes wrapping around manifolds of exceptional holonomy in dimensions seven and eight. The resulting theory on the D-brane-that is, the dimensional reduction of 10-dimensional supersymmetric Yang-Mills theory-is a cohomological field theory which describes the topology of the moduli space of instantons. The 7-dimensional theory is an N T =2 (or balanced) cohomological theory given by an action potential of Chern-Simons type. As a by-product of this method, we construct a related cohomological field theory which describes the monopole moduli space on a 7-manifold of G 2 holonomy. (author). 22 refs, 3 tabs
Probing near extremal black holes with D-branes
International Nuclear Information System (INIS)
Maldacena, J.
1998-01-01
We calculate the one loop effective action for D-brane probes moving in the presence of near Bogomol close-quote nyi-Prasad-Sommerfield D-branes. The v 2 term agrees with supergravity in all cases and the static force agrees for a five-dimensional black hole with two large charges. It also agrees qualitatively in all the other cases. We make some comments on the M(atrix) theory interpretation of these results. copyright 1998 The American Physical Society
Intersecting D-branes and black hole entropy
Behrndt, Klaus; Bergshoeff, Eric
1996-01-01
In four dimensions there are 4 different types of extremal Maxwell/scalar black holes characterized by a scalar coupling parameter a with a = 0, 1/âˆš3, 1, âˆš3. These black holes can be described as intersections of ten-dimensional non-singular Ramond-Ramond objects, i.e, D-branes, waves and
q-deformed oscillators and D-branes on conifold
International Nuclear Information System (INIS)
Okuyama, Kazumi
2009-01-01
We study the q-deformed oscillator algebra acting on the wavefunctions of non-compact D-branes in the topological string on conifold. We find that the mirror B-model curve of conifold appears from the commutation relation of the q-deformed oscillators
D-brane disformal coupling and thermal dark matter
Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne
2017-11-01
Conformal and disformal couplings between a scalar field and matter occur naturally in general scalar-tensor theories. In D-brane models of cosmology and particle physics, these couplings originate from the D-brane action describing the dynamics of its transverse (the scalar) and longitudinal (matter) fluctuations, which are thus coupled. During the post-inflationary regime and before the onset of big bang nucleosynthesis (BBN), these couplings can modify the expansion rate felt by matter, changing the predictions for the thermal relic abundance of dark matter particles and thus the annihilation rate required to satisfy the dark matter content today. We study the D-brane-like conformal and disformal couplings effect on the expansion rate of the Universe prior to BBN and its impact on the dark matter relic abundance and annihilation rate. For a purely disformal coupling, the expansion rate is always enhanced with respect to the standard one. This gives rise to larger cross sections when compared to the standard thermal prediction for a range of dark matter masses, which will be probed by future experiments. In a D-brane-like scenario, the scale at which the expansion rate enhancement occurs depends on the string coupling and the string scale.
D-brane. Superstrings and new perspective of our world
Energy Technology Data Exchange (ETDEWEB)
Hashimoto, Koji [RIKEN, Saitama, Wako (Japan). Mathematical Physics Lab.
2012-07-01
Superstring theory is a promising theory which can potentially unify all the forces and the matters in particle physics. A new multi-dimensional object which is called ''D-brane'' was found. It drastically changed our perspective of a unified world. We may live on membrane-like hypersurfaces in higher dimensions (''braneworld scenario''), or we can create blackholes at particle accelerators, or the dynamics of quarks is shown to be equivalent to the higher dimensional gravity theory. All these scenarios are explained in this book with plain words but with little use of equations and with many figures. The book starts with a summary of long-standing problems in elementary particle physics and explains the D-branes and many applications of them. It ends with future roads for a unified ultimate theory of our world. (orig.)
Reheating the D-brane universe via instant preheating
International Nuclear Information System (INIS)
Panda, Sudhakar; Sami, M.; Thongkool, I.
2010-01-01
We investigate a possibility of reheating in a scenario of D-brane inflation in a warped deformed conifold background which includes perturbative corrections to throat geometry sourced by a chiral operator of dimension 3/2 in the conformal field theory. The effective D-brane potential, in this case, belongs to the class of nonoscillatory models of inflation for which the conventional reheating mechanism does not work. We find that gravitational particle production is inefficient and leads to reheating temperature of the order of 10 8 GeV. We show that instant preheating is quite suitable to the present scenario and can easily reheat the universe to a temperature which is higher by about 3 orders of magnitude than its counterpart associated with gravitational particle production. The reheating temperature is shown to be insensitive to a particular choice of inflationary parameters suitable to observations.
Extensive numerical study of a D-brane, anti-D-brane system in AdS5/CFT4
International Nuclear Information System (INIS)
Hegedűs, Árpád
2015-01-01
In this paper the hybrid-NLIE approach of http://dx.doi.org/10.1007/JHEP08(2012)022 is extended to the ground state of a D-brane anti-D-brane system in AdS/CFT. The hybrid-NLIE equations presented in the paper are finite component alternatives of the previously proposed TBA equations and they admit an appropriate framework for the numerical investigation of the ground state of the problem. Straightforward numerical iterative methods fail to converge, thus new numerical methods are worked out to solve the equations. Our numerical data confirm the previous TBA data. In view of the numerical results the mysterious L=1 case is also commented in the paper.
Level-rank duality of untwisted and twisted D-branes
International Nuclear Information System (INIS)
Naculich, Stephen G.; Schnitzer, Howard J.
2006-01-01
Level-rank duality of untwisted and twisted D-branes of WZW models is explored. We derive the relation between D0-brane charges of level-rank dual untwisted D-branes of su-bar (N) K and sp-bar (n) k , and of level-rank dual twisted D-branes of su-bar (2n+1) 2k+1 . The analysis of level-rank duality of twisted D-branes of su-bar (2n+1) 2k+1 is facilitated by their close relation to untwisted D-branes of sp-bar (n) k . We also demonstrate level-rank duality of the spectrum of an open string stretched between untwisted or twisted D-branes in each of these cases
Supersymmetric Orientifolds with D-branes at angles
International Nuclear Information System (INIS)
Schreyer, R.
2001-12-01
We show the construction and detailed calculation of N = 1 supersymmetric orientifold compactifications of type IIB string theory to six dimensions and type IIA string theory to four dimensions. The orbifold group in the six dimensional models is Z N and in the four dimensional models Z N x Z M . In addition, worldsheet parity Ω in combination with the complex conjugation R in the compact directions, which are chosen to be direct products of two-tori, is modded out. This naturally leads to the inclusion of D-branes intersecting at angles in the compact directions. Gauge theories are known to live on the worldvolume of D-branes and chiral fermions are expected to be localized at the intersection points. This opens up the possibility to construct new phenomenologically interesting compactifications of string theory. However, the four dimensional models under consideration lead to non-chiral spectra. This is a consequence of the symmetric choice of placing the D-branes on top of the orientifold fixed planes. Nevertheless, a generalization of our model presented in the recent literature has led to a N = 1 supersymmetric compactification to four dimensions including the SM gauge group and three families of chiral fermions. As a more formal aspect, we focus on the case of Z 2 in the six dimensional and Z 2 x Z 2 in the four dimensional ΩR orientifolds to explicitely present models T-dual to known Ω orientifolds. The equivalence of the massless spectra is verified. In addition to the standard consistency conditions from tadpole cancellation, we obtain constraints for some of the models from worldsheet duality using the boundary state formalism. (orig.)
Coset models and D-branes in group manifolds
International Nuclear Information System (INIS)
Orlando, Domenico
2006-01-01
We conjecture the existence of a duality between heterotic closed strings on homogeneous spaces and symmetry-preserving D-branes on group manifolds, based on the observation about the coincidence of the low-energy field description for the two theories. For the closed string side we also give an explicit proof of a no-renormalization theorem as a consequence of a hidden symmetry and infer that the same property should hold true for the higher order terms of the dbi action
On D-brane dynamics and moduli stabilization
Kitazawa, Noriaki
2017-09-01
We discuss the effect of the dynamics of D-branes on moduli stabilization in type IIB string theory compactifications, with reference to a concrete toy model of T6/Z 3 orientifold compactification with fractional D3-branes and anti-D3-branes at orbifold fixed points. The resulting attractive forces between anti-D3-branes and D3-branes, together with the repulsive forces between anti-D3-branes and O3-planes, can affect the stability of the compact space. There are no complex structure moduli in T6/Z 3 orientifold, which should thus capture some generic features of more general settings where all complex structure moduli are stabilized by three-form fluxes. The simultaneous presence of branes and anti-branes brings along the breaking of supersymmetry. Non-BPS combinations of this type are typical of “brane supersymmetry breaking” and are a necessary ingredient in the KKLT scenario for stabilizing the remaining Kähler moduli. The conclusion of our analysis is that, while mutual D-brane interactions sometimes help Kähler moduli stabilization, this is not always the case.
Phenomenological analysis of D-brane Pati-Salam vacua
Anastasopoulos, P.; Vlachos, N.D.
2010-01-01
In the present work we perform a phenomenological analysis of the effective low energy models with Pati-Salam (PS) gauge symmetry derived in the context of D-branes. A main issue in these models arises from the fact that the right-handed fermions and the PS-symmetry breaking Higgs field transform identically under the PS symmetry, causing unnatural matter-Higgs mixing effects. We argue that this problem could be solved in particular D-brane setups where these fields arise in different intersections. We further observe that whenever a large Higgs mass term is generated in a particular class of mass spectra, a splitting mechanism -reminiscent of the doublet triplet splitting- may protect the neutral Higgs components from a heavy mass term. We analyze the implications of each individual representation which in principle is available in these models in order to specify the minimal spectrum required to build up a consistent PS model which reconciles the low energy data. A short discussion is devoted on the effects...
Supergravity solutions for D-branes in Hpp-wave backgrounds
International Nuclear Information System (INIS)
Bain, P.; Meessen, P.; Zamaklar, M.
2002-05-01
We derive two families of supergravity solutions describing D-branes in the maximally supersymmetric Hpp-wave background. The first family of solutions corresponds to quarter-BPS D-branes. These solutions are delocalised along certain directions transverse to the pp-wave The second family corresponds to the non-supersymmetric D-branes. These solutions are fully localised. A peculiar feature of the nonsupersymmetric solutions is that gravity becomes repulsive close to the core of the D-brane. Both families preserve the amount of supersymmetry predicted by the D-brane probe/CFT analysis. All solutions are written in Brinkman coordinates. To construct these kind of solutions it is crucial to identify the coordinates in which the ansatz looks the simplest. We argue that the natural coordinates to get the supergravity description of the half-BPS branes are the Rosen coordinates. (author)
Statistical anisotropy from vector curvaton in D-brane inflation
International Nuclear Information System (INIS)
Dimopoulos, Konstantinos; Wills, Danielle; Zavala, Ivonne
2013-01-01
We investigate the possibility of embedding the vector curvaton paradigm in D-brane models of inflation in type IIB string theory in a simple toy model. The vector curvaton is identified with the U(1) gauge field that lives on the world volume of a D3-brane, which may be stationary or undergoing general motion in the internal space. The dilaton is considered as a spectator field which modulates the evolution of the vector field. In this set-up, the vector curvaton is able to generate measurable statistical anisotropy in the spectrum and bispectrum of the curvature perturbation assuming that the dilaton evolves as e −φ ∝a 2 where a(t) is the scale factor. Our work constitutes a first step towards exploring how such distinctive features may arise from the presence of several light fields that naturally appear in string theory models of cosmology.
A Delicate Universe: Compactification Obstacles to D-brane Inflation
International Nuclear Information System (INIS)
Baumann, Daniel; Dymarsky, Anatoly; McAllister, Liam; Klebanov, Igor R.; Steinhardt, Paul J.
2007-01-01
We investigate whether explicit models of warped D-brane inflation are possible in string compactifications. To this end, we study the potential for D3-brane motion in a warped conifold that includes holomorphically embedded D7-branes involved in moduli stabilization. The presence of the D7-branes significantly modifies the inflaton potential. We construct an example based on a very simple and symmetric embedding due to Kuperstein, z 1 =const, in which it is possible to fine-tune the potential so that slow-roll inflation can occur. The resulting model is rather delicate: inflation occurs in the vicinity of an inflection point, and the cosmological predictions are extremely sensitive to the precise shape of the potential
On D-branes from gauged linear sigma models
International Nuclear Information System (INIS)
Govindarajan, S.; Jayaraman, T.; Sarkar, T.
2001-01-01
We study both A-type and B-type D-branes in the gauged linear sigma model by considering worldsheets with boundary. The boundary conditions on the matter and vector multiplet fields are first considered in the large-volume phase/non-linear sigma model limit of the corresponding Calabi-Yau manifold, where we find that we need to add a contact term on the boundary. These considerations enable to us to derive the boundary conditions in the full gauged linear sigma model, including the addition of the appropriate boundary contact terms, such that these boundary conditions have the correct non-linear sigma model limit. Most of the analysis is for the case of Calabi-Yau manifolds with one Kaehler modulus (including those corresponding to hypersurfaces in weighted projective space), though we comment on possible generalisations
Heterotic/type I duality and D-brane instantons
Bachas, C.; Fabre, C.; Kiritsis, E.; Obers, N. A.; Vanhove, P.
1998-01-01
We study heterotic/type I duality in d = 8, 9 uncompactified dimensions. We consider the special ("BPS-saturated") F4 and R4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be motivated as arising from a D-brane instanton calculation on the type I side.
Heterotic/type I duality and D-brane instantons
International Nuclear Information System (INIS)
Bachas, C.; Fabre, C.; Vanhove, P.
1998-01-01
We study heterotic/type I duality in d=8,9 uncompactified dimensions. We consider the special (''BPS-saturated'') F 4 and R 4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be motivated as arising from a D-brane instanton calculation on the type I side. (orig.)
Heterotic / type-I duality and D-brane instantons
Bachas, C P; Kiritsis, Elias B; Obers, N A; Vanhove, P
1998-01-01
We study heterotic/type-I duality in d=8,9 uncompactified dimensions. We consider the special (``BPS saturated'') F^4 and R^4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be recognized easily as arising from a D-brane instanton calculation on the type-I side.
Anomalies and inflow on D-branes and O-planes
International Nuclear Information System (INIS)
Scrucca, Claudio A.; Serone, Marco
1999-01-01
We derive the general form of the anomaly for chiral spinors and self-dual antisymmetric tensors living on D-brane and O-plane intersections, using both path-integral and index theorem methods. We then show that the anomalous couplings to RR forms of D-branes and O-planes in a general background are precisely those required to cancel these anomalies through the inflow mechanism. This allows, for instance, for local anomaly cancellation in generic orientifold models, the relevant Green-Schwarz term being given by the sum of the anomalous couplings of all the D-branes and O-planes in the model
D-brane anti-brane annihilation in an expanding universe
International Nuclear Information System (INIS)
Majumdar, Mahbub; Davis, Anne-Christine
2003-01-01
The time-varying density of D-branes and anti-D-branes in an expanding universe is calculated. The D-brane anti-brane annihilation rate is shown to be too small to compete with the expansion rate of a FRW type universe and the branes over-close the universe. This brane problem is analogous to the old monopole problem. Interestingly however, it is shown that small dimension D-branes annihilate more slowly than high dimension branes. Hence, an initially brany universe may be filled with only low dimension branes at late times. When combined with an appropriate late inflationary theory this leads to an attractive dynamical way to create a realistic braneworld scenario. (author)
Metamaterials mimicking dynamic spacetime, D-brane and noncommutativity in string theory
International Nuclear Information System (INIS)
Miao Rongxin; Zheng Rui; Li Miao
2011-01-01
We propose a scheme to mimic the expanding cosmos in 1+2 dimensions in laboratory. Furthermore, we develop a general procedure to use nonlinear metamaterials to mimic D-brane and noncommutativity in string theory.
Monopoles and instantons on partially compactified D-branes
International Nuclear Information System (INIS)
Lee, K.; Yi, P.
1997-01-01
Motivated by the recent D-brane constructions of world-volume monopoles and instantons, we study the supersymmetric SU(N) Yang-Mills theory on S 1 xR 3+1 , spontaneously broken by a Wilson loop. In addition to the usual N-1 fundamental monopoles, the Nth Bogomol close-quote nyi-Prasad-Sommerfield monopole appears from the Kaluza-Klein sector. When all N monopoles are present, net magnetic charge vanishes and the solution can be reinterpreted as a Wilson-loop instanton of unit Pontryagin number. The instanton-multimonopole moduli space is explicitly constructed, and seen to be identical to a Coulomb phase moduli space of a U(1) N gauge theory in 2+1 dimensions related to Kronheimer close-quote s gauge theory of SU(N)-type. This extends the results by Intriligator and Seiberg to the finite couplings that, in the infrared limit of Kronheimer close-quote s theory, the Coulomb phase parametrizes a centered SU(N) instanton. We also elaborate on the case of restored SU(N) symmetry. copyright 1997 The American Physical Society
String creation, D-branes and effective field theory
International Nuclear Information System (INIS)
Hung Lingyan
2008-01-01
This paper addresses several unsettled issues associated with string creation in systems of orthogonal Dp-D(8-p) branes. The interaction between the branes can be understood either from the closed string or open string picture. In the closed string picture it has been noted that the DBI action fails to capture an extra RR exchange between the branes. We demonstrate how this problem persists upon lifting to M-theory. These D-brane systems are analysed in the closed string picture by using gauge-fixed boundary states in a non-standard lightcone gauge, in which RR exchange can be analysed precisely. The missing piece in the DBI action also manifests itself in the open string picture as a mismatch between the Coleman-Weinberg potential obtained from the effective field theory and the corresponding open string calculation. We show that this difference can be reconciled by taking into account the superghosts in the (0+1) effective theory of the chiral fermion, that arises from gauge fixing the spontaneously broken world-line local supersymmetries
Prospects of inflation in delicate D-brane cosmology
International Nuclear Information System (INIS)
Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji
2007-01-01
We study D-brane inflation in a warped conifold background that includes brane-position dependent corrections for the nonperturbative superpotential. Instead of stabilizing the volume modulus χ at instantaneous minima of the potential and studying the inflation dynamics with an effective single field (radial distance between a brane and an antibrane) φ, we investigate the multifield inflation scenario involving these two fields. The two-field dynamics with the potential V(φ,χ) in this model is significantly different from the effective single-field description in terms of the field φ when the field χ is integrated out. The latter picture underestimates the total number of e-foldings even by 1 order of magnitude. We show that a correct single-field description is provided by a field ψ obtained from a rotation in the two-field space along the background trajectory. This model can give a large number of e-foldings required to solve flatness and horizon problems at the expense of fine-tunings of model parameters. We also estimate the spectra of density perturbations and show that the slow-roll parameter η ψψ =M pl 2 V ,ψψ /V in terms of the rotated field ψ determines the spectral index of scalar metric perturbations. We find that it is generally difficult to satisfy, simultaneously, both constraints of the spectral index and the cosmic background explorer normalization, while the tensor to scalar ratio is sufficiently small to match with observations
D-brane probes in the matrix model
International Nuclear Information System (INIS)
Ferrari, Frank
2014-01-01
Recently, a new approach to large N gauge theories, based on a generalization of the concept of D-brane probes to any gauge field theory, was proposed. In the present note, we compute the probe action in the one matrix model with a quartic potential. This allows to illustrate several non-trivial aspects of the construction in an exactly solvable set-up. One of our main goal is to test the bare bubble approximation. The approximate free energy found in this approximation, which can be derived from a back-of-an-envelope calculation, matches the exact result for all values of the 't Hooft coupling with a surprising accuracy. Another goal is to illustrate the remarkable properties of the equivariant partial gauge-fixing procedure, which is at the heart of the formalism. For this we use a general ξ-gauge to compute the brane action. The action depends on ξ in a very non-trivial way, yet we show explicitly that its critical value does not and coincides with twice the free energy, as required by general consistency. This is made possible by a phenomenon of ghost condensation and the spontaneous breaking of the equivariant BRST symmetry
The supergravity fields for a D-brane with a travelling wave from string amplitudes
International Nuclear Information System (INIS)
Black, William; Russo, Rodolfo; Turton, David
2010-01-01
We calculate the supergravity fields sourced by a D-brane with a null travelling wave from disk amplitudes in type IIB string theory compactified on T 4 xS 1 . The amplitudes reproduce all the non-trivial features of the previously known two-charge supergravity solutions in the D-brane/momentum duality frame, providing a direct link between the microscopic bound states and their macroscopic descriptions.
Poisson-Lie T-duality open strings and D-branes
Klimcik, C.
1996-01-01
Global issues of the Poisson-Lie T-duality are addressed. It is shown that oriented open strings propagating on a group manifold G are dual to D-brane - anti-D-brane pairs propagating on the dual group manifold \\ti G. The D-branes coincide with the symplectic leaves of the standard Poisson structure induced on the dual group \\ti G by the dressing action of the group G. T-duality maps the momentum of the open string into the mutual distance of the D-branes in the pair. The whole picture is then extended to the full modular space M(D) of the Poisson-Lie equivalent \\si-models which is the space of all Manin triples of a given Drinfeld double.T-duality rotates the zero modes of pairs of D-branes living on targets belonging to M(D). In this more general case the D-branes are preimages of symplectic leaves in certain Poisson homogeneous spaces of their targets and, as such, they are either all even or all odd dimensional.
D-branes in a big bang/big crunch universe: Nappi-Witten gauged WZW model
Energy Technology Data Exchange (ETDEWEB)
Hikida, Yasuaki [School of Physics and BK-21 Physics Division, Seoul National University, Seoul 151-747 (Korea, Republic of); Nayak, Rashmi R. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' ' , Rome 00133 (Italy); Panigrahi, Kamal L. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' , Rome 00133 (Italy)
2005-05-01
We study D-branes in the Nappi-Witten model, which is a gauged WZW model based on (SL(2,R) x SU(2))/(U(1) x U(1)). The model describes a four dimensional space-time consisting of cosmological regions with big bang/big crunch singularities and static regions with closed time-like curves. The aim of this paper is to investigate by D-brane probes whether there are pathologies associated with the cosmological singularities and the closed time-like curves. We first classify D-branes in a group theoretical way, and then examine DBI actions for effective theories on the D-branes. In particular, we show that D-brane metric from the DBI action does not include singularities, and wave functions on the D-branes are well behaved even in the presence of closed time-like curves.
D-brane physics. From weak to strong coupling
Energy Technology Data Exchange (ETDEWEB)
Vieira Lopes, Daniel Ordine
2013-01-10
In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N=1 supersymmetric theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of the brane seven-dimensional action, and obtain the N=1 characteristic data. To discuss the moduli, we first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar potential from D- and F-terms generated from brane and background configurations that would break the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kaehler potential for the moduli space of brane deformations in Type IIB theories. In the second part of the thesis we discuss effects of brane intersections when the string coupling can become strong, and we work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular SU(5) model already discussed in the literature, we construct a model which contains a point of E{sub 8} singularity, and curves of E{sub 6} singularity. By explicitly resolving the space, we show that the resolution requires the introduction of higher dimensional fibers, and argue how we can circumvent this problem for the E{sub 6} curve, leading to the expected resolution that generate an E{sub 6} group, while at the E{sub 8} point we cannot make the resolution lead to an expected E{sub 8} structure.
U duality, D-branes, and black hole emission rates: Agreements and disagreements
International Nuclear Information System (INIS)
Dowker, F.; Kastor, D.; Traschen, J.
1998-01-01
An expression for the spacetime absorption coefficient of a scalar field in a five-dimensional, near-extremal black hole background is derived, which has the same form as that presented by Maldacena and Strominger, but is valid over a larger, U-duality invariant region of parameter space and in general disagrees with the corresponding D-brane result. We develop an argument, based on D-brane thermodynamics, which specifies the range of parameters over which agreement should be expected. For neutral emission, the spacetime and D-brane results agree over this range. However, for charged emission, we find disagreement in the 'fat black hole' regime, in which charge is quantized in smaller units on the brane than in the bulk of spacetime. We indicate a possible problem with the D-brane model in this regime. We also use the Born approximation to study the high frequency limit of the absorption coefficient and find that it approaches unity, for large black hole backgrounds, at frequencies still below the string scale, again in disagreement with D-brane results. copyright 1998 The American Physical Society
Orientifolds and D-branes in N=2 gauged linear sigma models
Brunner, Ilka
We study parity symmetries and boundary conditions in the framework of gauged linear sigma models. This allows us to investigate the Kaehler moduli dependence of the physics of D-branes as well as orientifolds in a Calabi-Yau compactification. We first determine the parity action on D-branes and define the set of orientifold-invariant D-branes in the linear sigma model. Using probe branes on top of orientifold planes, we derive a general formula for the type (SO vs Sp) of orientifold planes. As applications, we show how compactifications with and without vector structure arise naturally at different real slices of the Kaehler moduli space of a Calabi-Yau compactification. We observe that orientifold planes located at certain components of the fixed point locus can change type when navigating through the stringy regime.
Extensive numerical study of a D-brane, anti-D-brane system in AdS{sub 5}/CFT{sub 4}
Energy Technology Data Exchange (ETDEWEB)
Hegedűs, Árpád [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)
2015-04-20
In this paper the hybrid-NLIE approach of http://dx.doi.org/10.1007/JHEP08(2012)022 is extended to the ground state of a D-brane anti-D-brane system in AdS/CFT. The hybrid-NLIE equations presented in the paper are finite component alternatives of the previously proposed TBA equations and they admit an appropriate framework for the numerical investigation of the ground state of the problem. Straightforward numerical iterative methods fail to converge, thus new numerical methods are worked out to solve the equations. Our numerical data confirm the previous TBA data. In view of the numerical results the mysterious L=1 case is also commented in the paper.
Mirror symmetry, D-brane superpotentials and Ooguri-Vafa invariants of Calabi-Yau manifolds
Zhang, Shan-Shan; Yang, Fu-Zhong
2015-12-01
The D-brane superpotential is very important in the low energy effective theory. As the generating function of all disk instantons from the worldsheet point of view, it plays a crucial role in deriving some important properties of the compact Calabi-Yau manifolds. By using the generalized GKZ hypergeometric system, we will calculate the D-brane superpotentials of two non-Fermat type compact Calabi-Yau hypersurfaces in toric varieties, respectively. Then according to the mirror symmetry, we obtain the A-model superpotentials and the Ooguri-Vafa invariants for the mirror Calabi-Yau manifolds. Supported by Y4JT01VJ01 and NSFC(11475178)
D-brane description of new open string solutions in AdS5
International Nuclear Information System (INIS)
Kluson, J.
2008-01-01
In this Letter we find D-brane descriptions of some of new open string solutions that were found in (0804.3438 [hep-th]). These D5-brane and D3-brane configurations give gravitational dual descriptions of Wilson loops in some particular representations
Rolling down the throat in NS5-brane background: the case of electrified D-brane
International Nuclear Information System (INIS)
Nakayama, Yu; Takayanagi, Hiromitsu; Panigrahi, Kamal L.; Rey, Soo-Jong
2005-01-01
We study rolling radion dynamics of electrified D-brane in NS5-brane background, both in effective field theory and in full open string theory. We construct exact boundary states and, from them, extract conserved Noether currents. We argue that T-duality and Lorentz boost offer an intuitive approach. In the limit of large number of NS5-branes, both boundary wave functions and conserved currents are sharply peaked and agree with those deduced from the effective field theory. As the number of NS5-branes is reduced, width around the peak becomes wider by string corrections. We also study radiative decay process. By applying Lorentz covariance, we show how the decay of electrified D-brane is related to that of bare D-brane. We compute spectral moments of final state energy and winding quantum number. Using Lorentz covariance argument, we explain in elementary way why winding quantum number should be included and derive rules how to do so. We conclude that Kutasov's 'geometric realization' between radion rolling dynamics and tachyon rolling dynamics holds universally, both for bare and electrified D-branes. (author)
Witten Effect and Fractional Charges on the Domain Wall and the D-Brane-Like Dot
Kanazawa, I.; Maeda, R.
2018-04-01
We have discussed the anomalous excitations such as dyons, Majorana fermions, and quark-like fermions on the domain wall in topological materials and the D-brane-like dot, and the relation to low-energy hadrons in QCD, from the viewpoint of a field-theoretical formula.
New WZW D-branes from the algebra of Wilson loop operators
International Nuclear Information System (INIS)
Monnier, Samuel
2009-01-01
We investigate the algebra generated by the topological Wilson loop operators in WZW models. Wilson loops describe the nontrivial fixed points of the boundary renormalization group flows triggered by Kondo perturbations. Their enveloping algebra therefore encodes all the fixed points which can be reached by sequences of Kondo flows. This algebra is easily described in the case of SU(2), but displays a very rich structure for higher rank groups. In the latter case, its action on known D-branes creates a profusion of new and generically non-rational D-branes. We describe their symmetries and the geometry of their worldvolumes. We briefly explain how to extend these results to coset models.
D-branes in N=2 Liouville theory and its mirror
International Nuclear Information System (INIS)
Israel, Dan; Pakman, Ari; Troost, Jan
2005-01-01
We study D-branes in the mirror pair N=2 Liouville/supersymmetric SL(2,R)/U(1) coset superconformal field theories. We build D0-, D1- and D2-branes, on the basis of the boundary state construction for the H 3 + conformal field theory. We also construct D0-branes in an orbifold that rotates the angular direction of the cigar. We show how the poles of correlators associated to localized states and bulk interactions naturally decouple in the one-point functions of localized and extended branes. We stress the role played in the analysis of D-brane spectra by primaries in SL(2,R)/U(1) which are descendents of the parent theory
On the 3-form formulation of axion potentials from D-brane instantons
Energy Technology Data Exchange (ETDEWEB)
García-Valdecasas, Eduardo [Instituto de Física Teórica UAM-CSIC,C/Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid (Spain); Departamento de Física Teórica, Universidad Autónoma de Madrid,Campus de Cantoblanco, 28049 Madrid (Spain); Uranga, Angel [Instituto de Física Teórica UAM-CSIC,C/Nicolás Cabrera 13-15, Campus de Cantoblanco, 28049 Madrid (Spain)
2017-02-16
The study of axion models and quantum corrections to their potential has experienced great progress by phrasing the axion potential in terms of a 3-form field eating up the 2-form field dual to the axion. Such reformulation of the axion potential has been described for axion monodromy models and for axion potentials from non-perturbative gauge dynamics. In this paper we propose a 3-form description of the axion potentials from non-gauge D-brane instantons. Interestingly, the required 3-form field does not arise in the underlying geometry, but rather shows up in the KK compactification in the generalized geometry obtained when the backreaction of the D-brane instanton is taken into account.
Global D-brane models with stabilised moduli and light axions
Cicoli, Michele
2014-03-01
We review recent attempts to try to combine global issues of string compactifications, like moduli stabilisation, with local issues, like semi-realistic D-brane constructions. We list the main problems encountered, and outline a possible solution which allows globally consistent embeddings of chiral models. We also argue that this stabilisation mechanism leads to an axiverse. We finally illustrate our general claims in a concrete example where the Calabi-Yau manifold is explicitly described by toric geometry.
Comparing D-branes and black holes with 0- and 6-brane charges
International Nuclear Information System (INIS)
Pierre, J.M.
1997-01-01
We consider configurations of D6-branes with a D0-brane charge given by recent work of Taylor and compute interaction potentials with various D-brane probes using a 1-loop open string calculation. These results are compared to a supergravity calculation using the solution given by Sheinblatt of an extremal black hole carrying 0-brane and 6-brane charges. copyright 1997 The American Physical Society
High energy effects on D-brane and black hole emission rates
International Nuclear Information System (INIS)
Das, S.; Dasgupta, A.; Sarkar, T.
1997-01-01
We study the emission of scalar particles from a class of near-extremal five-dimensional black holes and the corresponding D-brane configuration at high energies. We show that the distribution functions and the black hole greybody factors are modified in the high energy tail of the Hawking spectrum in such a way that the emission rates exactly match. We extend the results to charged scalar emission and to four dimensions. copyright 1997 The American Physical Society
D-brane superpotentials and Ooguri-Vafa invariants of compact Calabi-Yau threefolds
Xu, Feng-Jun; Yang, Fu-Zhong
2015-04-01
We calculate the D-brane superpotentials for two compact Calabi-Yau manifolds X14(1,1,2,3,7) and X8(1,1,1,2,3) which are of non-Fermat type in the type II string theory. By constructing the open mirror symmetry, we also compute the Ooguri-Vafa invariants, which are related to the open Gromov-Witten invariants. Supported by NSFC (11075204, 11475178)
Nonthreshold D-brane bound states and black holes with nonzero entropy
International Nuclear Information System (INIS)
Costa, M.S.; Cvetic, M.
1997-01-01
We start with Bogomol close-quote nyi-Prasad-Sommerfield- (BPS) saturated configurations of two (orthogonally) intersecting M-branes and use the electromagnetic duality or dimensional reduction along a boost, in order to obtain new p-brane bound states. In the first case the resulting configurations are interpreted as BPS-saturated nonthreshold bound states of intersecting p-branes, and in the second case as p-branes intersecting at angles and their duals. As a by-product we deduce the enhancement of supersymmetry as the angle approaches zero. We also comment on the D-brane theory describing these new bound states, and a connection between the angle and the world-volume gauge fields of the D-brane system. We use these configurations to find new embeddings of the four- and five-dimensional black holes with nonzero entropy, whose entropy now also depends on the angle and world-volume gauge fields. The corresponding D-brane configuration sheds light on the microscopic entropy of such black holes. copyright 1997 The American Physical Society
Non-BPS D-branes in light-cone Green-Schwarz formalism
International Nuclear Information System (INIS)
Mukhopadhyay, Partha
2005-01-01
Non-BPS D-branes are difficult to describe covariantly in a manifestly supersymmetric formalism. For definiteness we concentrate on type-IIB string theory in flat background in light-cone Green-Schwarz formalism. We study both the boundary state and the boundary conformal field theory descriptions of these D-branes with manifest SO(8) covariance and go through various consistency checks. We analyze Sen's original construction of non-BPS D-branes given in terms of an orbifold boundary conformal field theory. We also directly study the relevant world-sheet theory by deriving the open string boundary condition from the covariant boundary state. Both these methods give the same open string spectrum which is consistent with the boundary state, as required by the world-sheet duality. The boundary condition found in the second method is given in terms of bi-local fields that are quadratic in Green-Schwarz fermions. We design a special 'doubling trick' suitable to handle such boundary conditions and prescribe rules for computing all possible correlation functions without boundary insertions. This prescription has been tested by computing disk one-point functions of several classes of closed string states and comparing the results with the boundary state computation. (author)
Closed string emission from unstable D-brane with background electric field
International Nuclear Information System (INIS)
Nagami, Kenji
2004-01-01
We study the closed string emission from an unstable Dp-brane with constant background electric field in bosonic string theory. The average total number density and the average total energy density of emitted closed strings are explicitly calculated in the presence of electric field. It is explicitly shown that the energy density in the UV region becomes finite whenever the background electric field is switched on. The energy density converted into closed strings in the presence of electric field is negligibly small compared with the D-brane tension in the weak string coupling limit. (author)
The energy-carrying velocity and rolling of tachyons of unstable D-branes
International Nuclear Information System (INIS)
Chung, Jin Hyun; L'Yi, Won Sik
2004-01-01
We show that the tachyons that originate from unstable D-branes carry energy and momentum at a velocity β = c 2 /v; where v is the phase velocity, which is greater than c. For an observer who moves with velocity β, the tachyon is observed to be moving from one of the ground states of the tachyon potential to a potential hill. The tachyon is found to either pass over the hill or bounce back to the original ground state. Another possible solution is the case that is margial to these; that is, the tachyon reaches the top of the potential hill and stays there forever.
Space-time uncertainty and approaches to D-brane field theory
International Nuclear Information System (INIS)
Yoneya, Tamiaki
2008-01-01
In connection with the space-time uncertainty principle which gives a simple qualitative characterization of non-local or non-commutative nature of short-distance space-time structure in string theory, the author's recent approaches toward field theories for D-branes are briefly outlined, putting emphasis on some key ideas lying in the background. The final section of the present report is devoted partially to a tribute to Yukawa on the occasion of the centennial of his birth. (author)
Inflation driven by single geometric tachyon with D-brane orbiting around NS5-branes
International Nuclear Information System (INIS)
Kwon, Pyung Seong; Jun, Gyeong Yun; Panigrahi, Kamal L.; Sami, M.
2012-01-01
We investigate models in which inflation is driven by a single geometrical tachyon. We assume that the D-brane as a probe brane in the background of NS5-branes has non-zero angular momentum which is shown to play similar role as the number of the scalar fields of the assisted inflation. We demonstrate that the angular momentum corrected effective potential allows to account for the observational constraint on COBE normalization, spectral index n S and the tensor to scalar ratio of perturbations consistent with WMAP seven years data.
Orientifold Planes, Type I Wilson Lines and Non-BPS D-branes
International Nuclear Information System (INIS)
Hyakutake, Y.; Imamura, Y.; Sugimoto, S.
2000-01-01
There is a longstanding puzzle concerned with the existence of Op-planes with p≥6, which are orientifold p-planes of negative charge with stuck Dp-branes. We study the consistency of configurations with various orientifold planes and propose a resolution to this puzzle. It is argued that O6-planes are possible in massive IIA theory with odd cosmological constant, while O7-planes and O8-planes are not allowed. Various relations between orientifold planes and non-BPS D-branes are also addressed. (author)
Orientifold Planes, Type I Wilson Lines and Non-BPS D-branes
Hyakutake, Yoshifumi; Imamura, Yosuke; Sugimoto, Shigeki
2000-01-01
There is a longstanding puzzle concerned with the existence of Op~-planes with p>=6, which are orientifold p-planes of negative charge with stuck Dp-branes. We study the consistency of configurations with various orientifold planes and propose a resolution to this puzzle. It is argued that O6~-planes are possible in massive IIA theory with odd cosmological constant, while O7~-planes and O8~-planes are not allowed. Various relations between orientifold planes and non-BPS D-branes are also addr...
D-branes in non-critical superstrings and duality in N = 1 gauge theories with flavor
International Nuclear Information System (INIS)
Murthy, S.; Troost, J.
2006-06-01
We study D-branes in the superstring background R 3,1 x SL(2, R) k =1/U(1) which are extended in the cigar direction. Some of these branes are new. The branes realize flavor in the four dimensional N = 1 gauge theories on the D-branes localized at the tip of the cigar. We study the analytic properties of the boundary conformal field theories on these branes with respect to their defining parameter and find non- trivial monodromies in this parameter. Through this approach, we gain a better understanding of the brane set-ups in ten dimensions involving wrapped NS5-branes. As one application, using the boundary conformal field theory description of the electric and magnetic D-branes, we can understand electric-magnetic (Seiberg) duality in N = 1 SQCD microscopically in a string theoretic context. (author)
DDF construction and D-brane boundary states in pure spinor formalism
International Nuclear Information System (INIS)
Mukhopadhyay, Partha
2006-01-01
Open string boundary conditions for non-BPS D-branes in type II string theories discussed in hep-th/0505157 give rise to two sectors with integer (R sector) and half-integer (NS sector) modes for the combined fermionic matter and bosonic ghost variables in pure spinor formalism. Exploiting the manifest supersymmetry of the formalism we explicitly construct the DDF (Del Giudice, Di Vecchia, Fubini) states in both the sectors which are in one-to-one correspondence with the states in light-cone Green-Schwarz formalism. We also give a proof of validity of this construction. A similar construction in the closed string sector enables us to define a physical Hilbert space in pure spinor formalism which is used to project the covariant boundary states of both the BPS and non-BPS instantonic D-branes. These projected boundary states take exactly the same form as those found in light-cone Green-Schwarz formalism and are suitable for computing the cylinder diagram with manifest open-closed duality
The N=1 effective actions of D-branes in Type IIA and IIB orientifolds
International Nuclear Information System (INIS)
Grimm, Thomas W.; Vieira Lopes, Daniel
2012-01-01
We discuss the four-dimensional N=1 effective actions of single space-time filling Dp-branes in general Type IIA and Type IIB Calabi-Yau orientifold compactifications. The effective actions depend on an infinite number of normal deformations and gauge connection modes. For D6-branes the N=1 Kähler potential, the gauge-coupling function, the superpotential and the D-terms are determined as functions of these fields. They can be expressed as integrals over chains which end on the D-brane cycle and a reference cycle. The infinite deformation space will reduce to a finite dimensional moduli space of special Lagrangian submanifolds upon imposing F- and D-term supersymmetry conditions. We show that the Type IIA moduli space geometry is captured by three real functionals encoding the deformations of special Lagrangian submanifolds, holomorphic three-forms and Kähler two-forms of Calabi-Yau manifolds. These elegantly combine in the N=1 Kähler potential, which reduces after applying mirror symmetry to the results previously determined for space-time filling D3-, D5- and D7-branes. We also propose general chain integral expressions for the Kähler potentials of Type IIB D-branes.
The D-instanton and other supersymmetric D-branes in IIB plane-wave string theory
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Green, Michael B.
2003-01-01
A class of D-branes for the type IIB plane-wave background is considered that preserve half the dynamical supersymmetries of the light-cone gauge. The D-branes of this type are the Euclidean (or instantonic) (0,0), (0,4), and (4,0) branes (where (r,s) denotes a brane oriented with r axes in the first four directions transverse to the +, - light-cone, and s axes in the second four directions). Corresponding Lorentzian D-branes are (+,-;0,0), (+,-;0,4), and (+,-;4,0). These are constructed in two ways. The first uses a boundary state formalism which implements appropriate fermionic gluing conditions and the second is based on a direct quantization of the open strings ending on the branes. In distinction to the D-branes considered earlier these have massless world-volume fermions but do not possess kinematical supersymmetries. Cylinder diagrams describing the overlap between a pair of boundary states displaced by some distance are evaluated. The open-string description of this system involves mode frequencies that are, in general, given by irrational solutions to transcendental equations. The closed-string and open-string descriptions are shown to be equivalent by a nontrivial implementation of the S modular transformation. A classical description of the D-instanton (the (0,0) case) in light-cone gauge is also given
D-branes in a non-critical superstrings and minimal super Yang-Mills in various dimensions
International Nuclear Information System (INIS)
Ashok, S.K.; Murthy, S.; Troost, J.
2005-11-01
We construct and analyze D-branes in superstring theories in even dimensions less than ten. The backgrounds under study are supersymmetric R d-1,1 x SL(2,R) k /U(1) where the level of the supercoset is tuned such as to provide bona fide string theory backgrounds. We provide exact boundary states for D-branes that are localized at the tip of the cigar SL(2,R)/U(1) supercoset conformal field theory. We analyze the spectra of open strings on these D-branes and show explicitly that they are consistent with supersymmetry in d = 2,4 and 6. The low energy theory on the world-volume of the D-brane in each case is pure Yang-Mills theory with minimal supersymmetry. In the case with four macroscopic flat directions d = 4, we realize an N = 1 super Yang-Mills theory, and we interpret the backreaction for the dilaton as the running of the gauge coupling, and study the relation between R-symmetry breaking in the gauge theory and the backreaction on the Rr axion. (author)
D-branes at toric singularities: model building, Yukawa couplings and flavour physics
International Nuclear Information System (INIS)
Krippendorf, Sven; Dolan, Matthew J.; Maharana, Anshuman; Quevedo, Fernando
2010-02-01
We discuss general properties of D-brane model building at toric singularities. Using dimer techniques to obtain the gauge theory from the structure of the singularity, we extract results on the matter sector and superpotential of the corresponding gauge theory. We show that the number of families in toric phases is always less than or equal to three, with a unique exception being the zeroth Hirzebruch surface. With the physical input of three generations we find that the lightest family of quarks is massless and the masses of the other two can be hierarchically separated. We compute the CKM matrix for explicit models in this setting and find the singularities possess sufficient structure to allow for realistic mixing between generations and CP violation. (author)
Boundary conformal field theory and the worldsheet approach to D-branes
Recknagel, Andreas
2013-01-01
Boundary conformal field theory is concerned with a class of two-dimensional quantum field theories which display a rich mathematical structure and have many applications ranging from string theory to condensed matter physics. In particular, the framework allows discussion of strings and branes directly at the quantum level. Written by internationally renowned experts, this comprehensive introduction to boundary conformal field theory reaches from theoretical foundations to recent developments, with an emphasis on the algebraic treatment of string backgrounds. Topics covered include basic concepts in conformal field theory with and without boundaries, the mathematical description of strings and D-branes, and the geometry of strongly curved spacetime. The book offers insights into string geometry that go beyond classical notions. Describing the theory from basic concepts, and providing numerous worked examples from conformal field theory and string theory, this reference is of interest to graduate students and...
Non-linear Yang-Mills instantons from strings are π-stable D-branes
International Nuclear Information System (INIS)
Enger, H.; Luetken, C.A.
2004-01-01
We show that B-type Π-stable D-branes do not in general reduce to the (Gieseker-) stable holomorphic vector bundles used in mathematics to construct moduli spaces. We show that solutions of the almost Hermitian Yang-Mills equations for the non-linear deformations of Yang-Mills instantons that appear in the low-energy geometric limit of strings exist iff they are π-stable, a geometric large volume version of Π-stability. This shows that π-stability is the correct physical stability concept. We speculate that this string-canonical choice of stable objects, which is encoded in and derived from the central charge of the string-algebra, should find applications to algebraic geometry where there is no canonical choice of stable geometrical objects
D-brane potentials from multi-trace deformations in AdS/CFT
International Nuclear Information System (INIS)
Bernamonti, Alice; Craps, Ben
2009-01-01
It is known that certain AdS boundary conditions allow smooth initial data to evolve into a big crunch. To study this type of cosmological singularity, one can use the dual quantum field theory, where the non-standard boundary conditions are reflected by the presence of a multi-trace potential unbounded below. For specific AdS 4 and AdS 5 models, we provide a D-brane (or M-brane) interpretation of the unbounded potential. Using probe brane computations, we show that the AdS boundary conditions of interest cause spherical branes to be pushed to the boundary of AdS in finite time, and that the corresponding potential agrees with the multi-trace deformation of the dual field theory. Systems with expanding spherical D3-branes are related to big crunch supergravity solutions by a phenomenon similar to geometric transition.
Instanton counting, Macdonald function and the moduli space of D-branes
International Nuclear Information System (INIS)
Awata, Hidetoshi; Kanno, Hiroaki
2005-01-01
We argue the connection of Nekrasov's partition function in the Ω background and the moduli space of D-branes, suggested by the idea of geometric engineering and Gopakumar-Vafa invariants. In the instanton expansion of N = 2 SU(2) Yang-Mills theory the Nakrasov's partition function with equivariant parameters ε 1 ,ε 2 of toric action on C 2 factorizes correctly as the character of SU(2) L x SU(2) R spin representation. We show that up to two instantons the spin contents are consistent with the Lefschetz action on the moduli space of D2-branes on (local) F 0 . We also present an attempt at constructing a refined topological vertex in terms of the Macdonald function. The refined topological vertex with two parameters of T 2 action allows us to obtain the generating functions of equivariant χ y and elliptic genera of the Hilbert scheme of n points on C 2 by the method of topological vertex
Constraints on effective Lagrangian of D-branes from non-commutative gauge theory
International Nuclear Information System (INIS)
Okawa, Yuji; Terashima, Seiji
2000-01-01
It was argued that there are two different descriptions of the effective Lagrangian of gauge fields on D-branes by non-commutative gauge theory and by ordinary gauge theory in the presence of a constant B field background. In the case of bosonic string theory, however, it was found in the previous works that the two descriptions are incompatible under the field redefinition which relates the non-commutative gauge field to the ordinary one found by Seiberg and Witten. In this paper we resolve this puzzle to observe the necessity of gauge-invariant but B-dependent correction terms involving metric in the field redefinition which have not been considered before. With the problem resolved, we establish a systematic method under the α' expansion to derive the constraints on the effective Lagrangian imposed by the compatibility of the two descriptions where the form of the field redefinition is not assumed
D-branes in a big bang/big crunch universe: Misner space
International Nuclear Information System (INIS)
Hikida, Yasuaki; Nayak, Rashmi R.; Panigrahi, Kamal L.
2005-01-01
We study D-branes in a two-dimensional lorentzian orbifold R 1,1 /Γ with a discrete boost Γ. This space is known as Misner or Milne space, and includes big crunch/big bang singularity. In this space, there are D0-branes in spiral orbits and D1-branes with or without flux on them. In particular, we observe imaginary parts of partition functions, and interpret them as the rates of open string pair creation for D0-branes and emission of winding closed strings for D1-branes. These phenomena occur due to the time-dependence of the background. Open string 2→2 scattering amplitude on a D1-brane is also computed and found to be less singular than closed string case
D-branes in a big bang/big crunch universe: Misner space
Energy Technology Data Exchange (ETDEWEB)
Hikida, Yasuaki [Theory Group, High Energy Accelerator Research Organization (KEK), Tukuba, Ibaraki 305-0801 (Japan); Nayak, Rashmi R. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' , Rome 00133 (Italy); Panigrahi, Kamal L. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' , Rome 00133 (Italy)
2005-09-01
We study D-branes in a two-dimensional lorentzian orbifold R{sup 1,1}/{gamma} with a discrete boost {gamma}. This space is known as Misner or Milne space, and includes big crunch/big bang singularity. In this space, there are D0-branes in spiral orbits and D1-branes with or without flux on them. In particular, we observe imaginary parts of partition functions, and interpret them as the rates of open string pair creation for D0-branes and emission of winding closed strings for D1-branes. These phenomena occur due to the time-dependence of the background. Open string 2{yields}2 scattering amplitude on a D1-brane is also computed and found to be less singular than closed string case.
Mirror symmetry in three-dimensional gauge theories, quivers and D-branes
International Nuclear Information System (INIS)
De Boer, J.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Hori, K.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Ooguri, H.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA; Oz, Y.; Ernest Orlando Lawrence Berkeley Nat. Lab., CA
1997-01-01
We construct and analyze dual N=4 supersymmetric gauge theories in three dimensions with unitary and symplectic gauge groups. The gauge groups and the field content of the theories are encoded in quiver diagrams. The duality exchanges the Coulomb and Higgs branches and the Fayet-Iliopoulos and mass parameters. We analyze the classical and the quantum moduli spaces of the theories and construct an explicit mirror map between the mass parameters and the Fayet-Iliopoulos parameters of the dual. The results generalize the relation between ALE spaces and moduli spaces of SU(n) and SO(2n) instantons. We interpret some of these results from the string theory viewpoint, for SU(n) by analyzing T-duality and extremal transitions in type II string compactifications, for SO(2n) by using D-branes as probes. Finally, we make a proposal for the moduli space of vacua of these theories in the absence of matter. (orig.)
Aspects of string theory compactifications. D-brane statistics and generalised geometry
Energy Technology Data Exchange (ETDEWEB)
Gmeiner, F.
2006-05-26
In this thesis we investigate two different aspects of string theory compactifications. The first part deals with the issue of the huge amount of possible string vacua, known as the landscape. Concretely we investigate a specific well defined subset of type II orientifold compactifications. We develop the necessary tools to construct a very large set of consistent models and investigate their gauge sector on a statistical basis. In particular we analyse the frequency distributions of gauge groups and the possible amount of chiral matter for compactifications to six and four dimensions. In the phenomenologically relevant case of four-dimensional compactifications, special attention is paid to solutions with gauge groups that include those of the standard model, as well as Pati-Salam, SU(5) and flipped SU(5) models. Additionally we investigate the frequency distribution of coupling constants and correlations between the observables in the gauge sector. These results are compared with a recent study of Gepner models. Moreover, we elaborate on questions concerning the finiteness of the number of solutions and the computational complexity of the algorithm. In the second part of this thesis we consider a new mathematical framework, called generalised geometry, to describe the six-manifolds used in string theory compactifications. In particular, the formulation of T-duality and mirror symmetry for nonlinear topological sigma models is investigated. Therefore we provide a reformulation and extension of the known topological A- and B-models to the generalised framework. The action of mirror symmetry on topological D-branes in this setup is presented and the transformation of the boundary conditions is analysed. To extend the considerations to D-branes in type II string theory, we introduce the notion of generalised calibrations. We show that the known calibration conditions of supersymmetric branes in type IIA and IIB can be obtained as special cases. Finally we investigate
Aspects of string theory compactifications. D-brane statistics and generalised geometry
International Nuclear Information System (INIS)
Gmeiner, F.
2006-01-01
In this thesis we investigate two different aspects of string theory compactifications. The first part deals with the issue of the huge amount of possible string vacua, known as the landscape. Concretely we investigate a specific well defined subset of type II orientifold compactifications. We develop the necessary tools to construct a very large set of consistent models and investigate their gauge sector on a statistical basis. In particular we analyse the frequency distributions of gauge groups and the possible amount of chiral matter for compactifications to six and four dimensions. In the phenomenologically relevant case of four-dimensional compactifications, special attention is paid to solutions with gauge groups that include those of the standard model, as well as Pati-Salam, SU(5) and flipped SU(5) models. Additionally we investigate the frequency distribution of coupling constants and correlations between the observables in the gauge sector. These results are compared with a recent study of Gepner models. Moreover, we elaborate on questions concerning the finiteness of the number of solutions and the computational complexity of the algorithm. In the second part of this thesis we consider a new mathematical framework, called generalised geometry, to describe the six-manifolds used in string theory compactifications. In particular, the formulation of T-duality and mirror symmetry for nonlinear topological sigma models is investigated. Therefore we provide a reformulation and extension of the known topological A- and B-models to the generalised framework. The action of mirror symmetry on topological D-branes in this setup is presented and the transformation of the boundary conditions is analysed. To extend the considerations to D-branes in type II string theory, we introduce the notion of generalised calibrations. We show that the known calibration conditions of supersymmetric branes in type IIA and IIB can be obtained as special cases. Finally we investigate
LHC Phenomenology and Cosmology of String-Inspired Intersecting D-Brane Models
Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian
2012-01-01
We discuss the phenomenology and cosmology of a Standard-like Model inspired by string theory, in which the gauge fields are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersection can give rise to chiral fermions. The energy scale associated with string physics is assumed to be near the Planck mass. To develop our program in the simplest way, we work within the construct of a minimal model with gauge-extended sector U (3)_B \\times Sp (1)_L \\times U (1)_{I_R} \\times U (1)_L. The resulting U (1) content gauges the baryon number B, the lepton number L, and a third additional abelian charge I_R which acts as the third isospin component of an SU(2)_R. All mixing angles and gauge couplings are fixed by rotation of the U(1) gauge fields to a basis diagonal in hypercharge Y and in an anomaly free linear combination of I_R and B-L. The anomalous $Z'$ gauge boson obtains a string scale St\\"uckelberg mass via a 4D version of the Green-Schwarz mechanism. To keep the realizatio...
Type IIB orientifolds, D-brane instantons and the large volume scenario
Energy Technology Data Exchange (ETDEWEB)
Plauschinn, Erik
2009-07-28
This thesis is concerned with a branch of research in String Theory called String Phenomenology which aims for a better understanding of the connection between String Theory and Particle Physics. In particular, in this work we cover three topics which are important in order to establish this connection. The first topic is about String Theory model building in the context of so-called type IIB orientifolds with orientifold three- and seven-planes. After giving a brief overview, we work out in detail an important consistency condition for String Theory constructions, the so-called tadpole cancellation condition, and we verify explicitly that chiral anomalies are cancelled via the generalised Green-Schwarz mechanism. The second topic is concerned with so-called D-brane instantons which are nonperturbative effects in type II String Theory constructions. We recall the instanton calculus for such configurations, we derive the so-called A eck-Dine-Seiberg superpotential in String Theory and we develop an important constraint, a chiral zero-mode constraint, for instanton contributions in the presence of a realistic Particle Physics sector. The third topic is about moduli stabilisation in type IIB string compactifications. More concretely, we review the so-called KKLT as well as Large Volume Scenario, and we construct and study a model for the latter scenario where the constraint mentioned above has been taken into account explicitly. Although the three topics studied in this thesis are slightly different in nature, there is nevertheless a complex interplay between them with many interrelations. In order to uncover these connections, a detailed study of each individual subject has been performed which has led to new results such as the chiral zero-mode constraint. (orig.)
Type IIB orientifolds, D-brane instantons and the large volume scenario
International Nuclear Information System (INIS)
Plauschinn, Erik
2009-01-01
This thesis is concerned with a branch of research in String Theory called String Phenomenology which aims for a better understanding of the connection between String Theory and Particle Physics. In particular, in this work we cover three topics which are important in order to establish this connection. The first topic is about String Theory model building in the context of so-called type IIB orientifolds with orientifold three- and seven-planes. After giving a brief overview, we work out in detail an important consistency condition for String Theory constructions, the so-called tadpole cancellation condition, and we verify explicitly that chiral anomalies are cancelled via the generalised Green-Schwarz mechanism. The second topic is concerned with so-called D-brane instantons which are nonperturbative effects in type II String Theory constructions. We recall the instanton calculus for such configurations, we derive the so-called A eck-Dine-Seiberg superpotential in String Theory and we develop an important constraint, a chiral zero-mode constraint, for instanton contributions in the presence of a realistic Particle Physics sector. The third topic is about moduli stabilisation in type IIB string compactifications. More concretely, we review the so-called KKLT as well as Large Volume Scenario, and we construct and study a model for the latter scenario where the constraint mentioned above has been taken into account explicitly. Although the three topics studied in this thesis are slightly different in nature, there is nevertheless a complex interplay between them with many interrelations. In order to uncover these connections, a detailed study of each individual subject has been performed which has led to new results such as the chiral zero-mode constraint. (orig.)
International Nuclear Information System (INIS)
Sevrin, Alexander; Staessens, Wieland; Wijns, Alexander
2008-01-01
We investigate N = (2, 2) supersymmetric nonlinear σ-models in the presence of a boundary. We restrict our attention to the case where the bulk geometry is described by chiral and twisted chiral superfields corresponding to a bihermitian bulk geometry with two commuting complex structures. The D-brane configurations preserving an N = 2 worldsheet supersymmetry are identified. Duality transformations interchanging chiral for twisted chiral fields and vice versa while preserving all supersymmetries are explicitly constructed. We illustrate our results with various explicit examples such as the WZW-model on the Hopf surface S 3 x S 1 . The duality transformations provide e.g new examples of coisotropic A-branes on Kaehler manifolds (which are not necessarily hyper-Kaehler). Finally, by dualizing a chiral and a twisted chiral field to a semi-chiral multiplet, we initiate the study of D-branes in bihermitian geometries where the cokernel of the commutator of the complex structures is non-empty.
Line bundle twisted chiral de Rham complex and bound states of D-branes on toric manifolds
International Nuclear Information System (INIS)
Parkhomenko, S.E.
2014-01-01
In this note we calculate elliptic genus in various examples of twisted chiral de Rham complex on two-dimensional toric compact manifolds and Calabi–Yau hypersurfaces in toric manifolds. At first the elliptic genus is calculated for the line bundle twisted chiral de Rham complex on a compact smooth toric manifold and K3 hypersurface in P 3 . Then we twist chiral de Rham complex by sheaves localized on positive codimension submanifolds in P 2 and calculate in each case the elliptic genus. In the last example the elliptic genus of chiral de Rham complex on P 2 twisted by SL(N) vector bundle with instanton number k is calculated. In all the cases considered we find the infinite tower of open string oscillator contributions and identify directly the open string boundary conditions of the corresponding bound state of D-branes
International Nuclear Information System (INIS)
Hayasaka, Kiyoshi; Nakayama, Ryuichi
2002-01-01
We point out that when a D-brane is placed in an NS-NS B field background with nonvanishing field strength (H=dB) along the D-brane worldvolume, the coordinate of one end of the open string does not commute with that of the other in the low energy limit. The degrees of the freedom associated with both ends are not decoupled and accordingly, the effective action must be quite different from that of the ordinary noncommutative gauge theory for a constant B background. We construct an associative and noncommutative product * which operates on the coordinates of both ends of the string and propose a new type of noncommutative gauge action for the low energy effective theory of a Dp-brane. This effective theory is bi-local and lives in twice as large dimensions (2D=2(p+1)) as in the H=0 case. When viewed as a theory in the D-dimensional space, this theory is nonlocal and we must force the two ends of the string to coincide. We will then propose a prescription for reducing this bi-local effective action to that in D dimensions and obtaining a local effective action
Elitzur, Shmuel; Sarkisian, G; Elitzur, Shmuel; Rabinovici, Eliezer; Sarkissian, Gor
1999-01-01
We discuss the effect of relevant boundary terms on the nature of branes. This is done for toroidal and orbifold compactifications of the bosonic string. Using the relative minimalization of the boundary entropy as a guiding principle, we uncover the more stable boundary conditions at different regions of moduli space. In some cases, Neumann boundary conditions dominate for small radii while Dirichlet boundary conditions dominate for large radii. The c=1 and c=2 moduli spaces are studied in some detail. The antisymmetric background field B is found to have a more limited role in the case of Dirichlet boundary conditions. This is due to some topological considerations. The results are subjected to T-duality tests and the special role of the points in moduli space fixed under T-duality is explained from least-action considerations.
Spiked instantons from intersecting D-branes
Directory of Open Access Journals (Sweden)
Nikita Nekrasov
2017-01-01
Full Text Available The moduli space of spiked instantons that arises in the context of the BPS/CFT correspondence [22] is realised as the moduli space of classical vacua, i.e. low-energy open string field configurations, of a certain stack of intersecting D1-branes and D5-branes in Type IIB string theory. The presence of a constant B-field induces an interesting dynamics involving the tachyon condensation.
Conformal symmetry for rotating D-branes
International Nuclear Information System (INIS)
Cao Liming; Matsuo, Yoshinori; Tsukioka, Takuya; Yoo, Chul-Moon
2009-01-01
We apply the Kerr/CFT correspondence to the rotating black p-brane solutions. These solutions give the simplest examples from string theory point of view. Their near horizon geometries have structures of AdS, even though black p-brane solutions do not have AdS-like structures in the non-rotating case. The microscopic entropy which can be calculated via the Cardy formula exactly agrees with Bekenstein-Hawking entropy.
D-brane solutions under market panic
Pincak, Richard
The relativistic quantum mechanic approach is used to develop stock market dynamics. The relativistic is conceptional here as the meaning of big external volatility or volatility shock on a financial market. We used a differential geometry approach with the parallel transport of prices to obtain a direct shift of the stock price movement. The prices are represented here as electrons with different spin orientation. Up and down orientations of the spin particle are likened here to an increase or a decrease of stock prices. The parallel transport of stock prices is enriched by Riemann curvature, which describes some arbitrage opportunities in the market. To solve the stock-price dynamics, we used the Dirac equation for bispinors on the spherical brane-world. We found out that when a spherical brane is abbreviated to the disk on the equator, we converge to the ideal behavior of financial market where Black-Scholes as well as semi-classical equations are sufficient. Full spherical brane-world scenarios can describe non-equilibrium market behavior where all arbitrage opportunities as well as transaction costs are taken into account. Real application of the model to the option pricing was done. The model developed in this paper brings quantitative different results of option pricing dynamics in the case of nonzero Riemann curvature.
D branes in background fluxes and Nielsen-Olesen instabilities
International Nuclear Information System (INIS)
Russo, Jorge G.
2016-01-01
In quantum field theory, charged particles with spin ≥1 may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes F_p_+_2, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are Dp branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic Dp brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin Dp quantum states which become very light at critical fields.
D branes in background fluxes and Nielsen-Olesen instabilities
Energy Technology Data Exchange (ETDEWEB)
Russo, Jorge G. [Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg. Lluis Companys, 23, 08010 Barcelona (Spain); Department de Fisica Cuantica i Astrofisica and Institut de Ciències del Cosmos,Universitat de Barcelona, Martí Franquès, 1, 08028 Barcelona (Spain)
2016-06-06
In quantum field theory, charged particles with spin ≥1 may become tachyonic in the present of magnetic fluxes above some critical field, signaling an instability of the vacuum. The phenomenon is generic, in particular, similar instabilities are known to exist in open and closed string theory, where a spinning string state can become tachyonic above a critical field. In compactifications involving RR fluxes F{sub p+2}, the quantum states which could become tachyonic by the same Nielsen-Olesen mechanism are Dp branes. By constructing an appropriate background with RR magnetic flux that takes into account back-reaction, we identify the possible tachyonic Dp brane states and compute the formula for the energy spectrum in a sector. More generally, we argue that in any background RR magnetic flux, there are high spin Dp quantum states which become very light at critical fields.
Electromagnetic dipole radiation of oscillating D-branes
International Nuclear Information System (INIS)
Savvidy, G.K.
2000-01-01
I emphasize analogy between Dp-branes in string theories and solitons in gauge theories comparing their common properties and showing differences. In string theory we do not have the full set of equations which define the theory in all orders of coupling constant as it was in gauge theories, nevertheless such solutions have been found as solutions of low energy superstring effective action carrying the RR charges. The existence of dynamical RR charged extended objects in string theory has been deduced also by considering string theory with mixed boundary conditions, when type II closed superstring theory is enriched by open strings with Neumann boundary conditions on p + 1 directions and Dirichlet conditions on the remaining 9-p transverse directions. We will show that for certain excitations of the string/D3-brane system Neumann boundary conditions emerge from the Born-Infeld dynamics. Here the excitations which are coming down the string with a polarization along a direction parallel to the brane are almost completely reflected just as in the case of all-normal Dirichlet excitations considered by Callan and Maldacena, but now the end of the string moves freely on the 3-brane realizing Polchinski's open string Neumann boundary condition dynamically. In the low energy limit ω → 0, i.e. for wavelengths much larger than the string scale only a small fraction ∼ ω 4 of the energy escapes in the form of dipole radiation. The physical interpretation is that a string attached to the 3-brane manifests itself as an electric charge, and waves on the string cause the end point of the string to freely oscillate and produce e.m. dipole radiation in the asymptotic outer region. The magnitude of emitted power is in fact exactly equal to the one given by Thomson formula in electrodynamics
D-branes and coherent topological charge structure in QCD
Thacker, Hank
2006-12-01
Monte Carlo studies of pure glue SU(3) gauge theory using the overlap-based topological charge operator have revealed a laminar structure in the QCD vacuum consisting of extended, thin, co- herent, locally 3-dimensional sheets of topological charge embedded in 4D space, with opposite sign sheets interleaved. Studies of localization properties of Dirac eigenmodes have also shown evidence for the delocalization of low-lying modes on effectively 3-dimensional surfaces. In this talk, I review some theoretical ideas which suggest the possibility of 3-dimensionally coherent topological charge structure in 4-dimensional gauge theory and provide a possible interpretation of the observed structure. I begin with Luscher's "Wilson bag" integral over the 3-index Chern- Simons tensor. The analogy with a Wilson loop as a charged world line in 2-dimensional CP N-1 sigma models suggests that the Wilson bag surface represents the world volume of a physical membrane. The large-N chiral Lagrangian arguments of Witten also indicate the existence of multiple "k-vacuum" states with discontinuous transitions between k-vacua at θ = odd multi- ples of π. The domain walls between these vacua have the properties of a Wilson bag surface. Finally, I review the AdS/CFT duality view of θ dependence in QCD. The dual realtionship be- tween topological charge in gauge theory and Ramond-Ramond charge in type IIA string theory suggests that the coherent topological charge sheets observed on the lattice are the holographic image of wrapped D6 branes.
Dynamical Formation of Horizons in Recoiling D Branes
Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John
2000-01-01
A toy calculation of string/D-particle interactions within a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induces the appearance of a microscopic event horizon, or `bubble', inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a `bounce' solution. Within such `bubbles', massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially three for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3 branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.
Supersymmetric composite models on intersecting D-branes
International Nuclear Information System (INIS)
Kitazawa, Noriaki
2004-01-01
We construct supersymmetric composite models of quarks and leptons from type IIA T6/(Z2xZ2) orientifold with intersecting D6-branes. In case of T6=T2xT2xT2 with no tilted T2, a composite model of supersymmetric SU(5) grand unified theory with four generations is constructed. In case of that one T2 is tilted, a composite model with SU(3)cxSU(2)LxU(1)Y gauge symmetry with three generations of left-handed quarks and leptons is constructed. These models are not realistic, but contain relatively fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The masses of some exotic particles are naturally generated through the Yukawa interactions among 'preons'
Gravity mediation in 6d brane-world supergravity
International Nuclear Information System (INIS)
Lee, H.M.
2005-09-01
We consider the gravity-mediated SUSY breaking within the effective theory of six-dimensional brane-world supergravity. We construct the supersymmetric bulk-brane action by Noether method and find the nontrivial moduli coupling of the brane F- and D-terms. We find that the low energy Kaehler potential is not of sequestered form, so gravity mediation may occur at tree level. In moduli stabilization with anomaly effects included, the scalar soft mass squared can be positive at tree level and it can be comparable to the anomaly mediation. (orig.)
Tachyon tube on non BPS D-branes
International Nuclear Information System (INIS)
Huang Wunghong
2004-01-01
We report our searches for a single tubular tachyonic solution of regular profile on unstable non BPS D3-branes. We first show that some extended Dirac-Born-Infeld tachyon actions in which new contributions are added to avoid the Derrick's no-go theorem still could not have a single regular tube solution. Next we use the Minahan-Zwiebach tachyon action to find the regular tube solutions with circular or elliptic cross section. With a critical electric field, the energy of the tube comes entirely from the D0 and strings, while the energy associated to the tubular D2-brane tension is vanishing. We also show that fluctuation spectrum around the tube solution does not contain tachyonic mode. The results are consistent with the identification of the tubular configuration as a BPS D2-brane. (author)
On D-brane anti D-brane effective actions and their corrections to all orders in alpha-prime
International Nuclear Information System (INIS)
Hatefi, Ehsan
2013-01-01
Based on a four point function, the S-matrix elements at disk level of the scattering amplitude of one closed string Ramond-Ramond field (C) and two tachyons and one scalar field, we find out new couplings in brane anti brane effective actions for p = n, p+2 = n cases. Using the infinite corrections of the vertex of one RR, one gauge and one scalar field and applying the correct expansion, it is investigated in detail how we produce the infinite gauge poles of the amplitude for p = n case. By discovering new higher derivative corrections of two tachyon-two scalar couplings in brane anti brane systems to all orders in α', we also obtain the infinite scalar poles in (t'+s'+u)-channel in field theory. Working with the complete form of the amplitude with the closed form of the expansion and comparing all the infinite contact terms of this amplitude, we derive several new Wess-Zumino couplings with all their infinite higher derivative corrections in the world volume of brane anti brane systems. In particular, in producing all the infinite scalar poles of C V φ V T V T > , one has to consider the fact that scalar's vertex operator in (-1)-picture must carry the internal σ 3 Chan-Paton matrix. The symmetric trace effective action has a non-zero coupling between Dφ (1)i and Dφ (2) i while this coupling does not exist in ordinary trace effective action
Flipped SU(5) from D-branes with type IIB fluxes
Energy Technology Data Exchange (ETDEWEB)
Chen Chingming [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu; Nanopoulos, D.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States) and Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)]. E-mail: dimitri@physics.tamu.edu
2006-02-16
We construct flipped SU(5) GUT models as type IIB flux vacua on Z{sub 2}xZ{sub 2} orientifolds. Turning on supergravity self-dual NSNS and RR three-form fluxes fixes the toroidal complex structure moduli and the dilaton. We give a specific example of a three-generation flipped SU(5) model with a complete Higgs sector where supersymmetry is softly broken by the supergravity fluxes in the closed string sector. All of the required Yukawa couplings are present if global U(1) factors resulting from a generalized Green-Schwarz mechanism are broken spontaneously or by world-sheet instantons. In addition, the model contains extra chiral and vector-like matter, potentially of mass O(M{sub string}) via trilinear superpotential couplings.
Finite temperature corrections to tachyon mass in intersecting D-branes
International Nuclear Information System (INIS)
Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu
2017-01-01
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.
Monopoles, vortices, domain walls and D-branes: The rules of interaction
International Nuclear Information System (INIS)
Sakai, Norisuke; Tong, David
2005-01-01
Non-abelian gauge theories in the Higgs phase admit a startling variety of BPS solitons. These include domain walls, vortex strings, confined monopoles threaded on vortex strings, vortex strings ending on domain walls, monopoles threaded on strings ending on domain walls, and more. After presenting a self-contained review of these objects, including several new results on the dynamics of domain walls, we go on to examine the possible interactions of solitons of various types. We point out the existence of a classical binding energy when the string ends on the domain wall which can be thought of as a BPS boojum with negative mass. We present an index theorem for domain walls in non-abelian gauge theories. We also answer questions such as: Which strings can end on which walls? What happens when monopoles pass through domain walls? What happens when domain walls pass through each other? (author)
Wess-Zumino terms for AdS D-branes
International Nuclear Information System (INIS)
Hatsuda, Machiko; Kamimura, Kiyoshi
2004-01-01
We show that Wess-Zumino terms for Dp branes with p>0 in the anti-de Sitter (AdS) space are given in terms of 'left-invariant' currents on the super-AdS group or the 'expanded' super-AdS group. As a result there is no topological extension of the super-AdS algebra. In the flat limit the global Lorentz rotational charges of the AdS space turn out to be brane charges of the supertranslation algebra representing the BPS mass. We also show that a D-instanton is described by the GL(1) degree of freedom in the Roiban-Siegel formalism based on the GL(4 vertical bar 4)/[Sp(4)xGL(1)]2 coset
Microstates of D1–D5(-P black holes, as interacting D-branes
Directory of Open Access Journals (Sweden)
Takeshi Morita
2015-07-01
Full Text Available In our previous study (Morita et al., 2014 [1], we figured out that the thermodynamics of the near extremal black p-branes can be explained as the collective motions of gravitationally interacting elementary p-branes (the p-soup proposal. We test this proposal in the near-extremal D1–D5 and D1–D5-P black holes and show that their thermodynamics also can be explained in a similar fashion, i.e. via the collective motions of the interacting elementary D1-branes and D5-branes (and waves. It may imply that the microscopic origins of these intersecting black branes and the black p-brane are explained in the unified picture. We also argue the relation between the p-soup proposal and the conformal field theory calculations of the D1–D5(-P black holes in superstring theory.
Microstates of D1–D5(-P) black holes, as interacting D-branes
International Nuclear Information System (INIS)
Morita, Takeshi; Shiba, Shotaro
2015-01-01
In our previous study (Morita et al., 2014 [1]), we figured out that the thermodynamics of the near extremal black p-branes can be explained as the collective motions of gravitationally interacting elementary p-branes (the p-soup proposal). We test this proposal in the near-extremal D1–D5 and D1–D5-P black holes and show that their thermodynamics also can be explained in a similar fashion, i.e. via the collective motions of the interacting elementary D1-branes and D5-branes (and waves). It may imply that the microscopic origins of these intersecting black branes and the black p-brane are explained in the unified picture. We also argue the relation between the p-soup proposal and the conformal field theory calculations of the D1–D5(-P) black holes in superstring theory
Ramond and Neveu-Schwarz paraspinning strings in presence of D-branes
Hamam, D.; Belaloui, N.
2018-03-01
We investigate the theory of an open parafermionic string between two parallel Dp-, Dq-branes in Ramond and Neveu-Schwarz sectors. Trilinear commutation relations between the string variables are postulated and the corresponding ones in terms of modes are derived. The analysis of the spectrum shows that one can again have a free tachyon Neveu-Schwarz model for some values of the order of the paraquantization associated to some values of p and q. The consistency of this model requires the calculation of the partition function and its confrontation with the results of the degeneracies. A perfect agreement between the two results is obtained and the closure of the Virasoro superalgebra is confirmed.
D-brane gases and stabilization of extra dimensions in dilaton gravity
International Nuclear Information System (INIS)
Arapoglu, Savas; Kaya, Ali
2004-01-01
We consider a toy cosmological model with a gas of wrapped Dp-branes in 10-dimensional dilaton gravity compactified on a p-dimensional Ricci flat internal manifold. A consistent generalization of the low energy effective field equations in the presence of a conserved brane source coupled to dilaton is obtained. It is then shown that the compact dimensions are dynamically stabilized in string frame as a result of a balance between negative winding and positive momentum pressures. Curiously, when p=6, i.e., when the observed space is three-dimensional, the dilaton becomes a constant and stabilization in Einstein frame is also realized
Microstates of D1–D5(-P) black holes, as interacting D-branes
Energy Technology Data Exchange (ETDEWEB)
Morita, Takeshi, E-mail: morita.takeshi@shizuoka.ac.jp [Department of Physics, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Shiba, Shotaro, E-mail: sshiba@cc.kyoto-su.ac.jp [Maskawa Institute for Science and Culture, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555 (Japan)
2015-07-30
In our previous study (Morita et al., 2014 [1]), we figured out that the thermodynamics of the near extremal black p-branes can be explained as the collective motions of gravitationally interacting elementary p-branes (the p-soup proposal). We test this proposal in the near-extremal D1–D5 and D1–D5-P black holes and show that their thermodynamics also can be explained in a similar fashion, i.e. via the collective motions of the interacting elementary D1-branes and D5-branes (and waves). It may imply that the microscopic origins of these intersecting black branes and the black p-brane are explained in the unified picture. We also argue the relation between the p-soup proposal and the conformal field theory calculations of the D1–D5(-P) black holes in superstring theory.
D-brane propagation in two-dimensional black hole geometries
International Nuclear Information System (INIS)
Nakayama, Yu; Rey, Soo-Jong; Sugawara, Yuji
2005-01-01
We study propagation of D0-brane in two-dimensional lorentzian black hole backgrounds by the method of boundary conformal field theory of SL(2,R)/U(1) supercoset at level k. Typically, such backgrounds arise as near-horizon geometries of k coincident non-extremal NS5-branes, where 1/k measures curvature of the backgrounds in string unit and hence size of string worldsheet effects. At classical level, string worldsheet effects are suppressed and D0-brane propagation in the lorentzian black hole geometry is simply given by the Wick rotation of D1-brane contour in the euclidean black hole geometry. Taking account of string worldsheet effects, boundary state of the lorentzian D0-brane is formally constructible via Wick rotation from that of the euclidean D1-brane. However, the construction is subject to ambiguities in boundary conditions. We propose exact boundary states describing the D0-brane, and clarify physical interpretations of various boundary states constructed from different boundary conditions. As it falls into the black hole, the D0-brane radiates off to the horizon and to the infinity. From the boundary states constructed, we compute physical observables of such radiative process. We find that part of the radiation to infinity is in effective thermal distribution at the Hawking temperature. We also find that part of the radiation to horizon is in the Hagedorn distribution, dominated by massive, highly non-relativistic closed string states, much like the tachyon matter. Remarkably, such distribution emerges only after string worldsheet effects are taken exactly into account. From these results, we observe that nature of the radiation distribution changes dramatically across the conifold geometry k = 1 (k = 3 for the bosonic case), exposing the 'string - black hole transition' therein
D-brane black holes: Large-N limit and the effective string description
Energy Technology Data Exchange (ETDEWEB)
Hassan, S F [International Centre for Theoretical Physics, Trieste (Italy); Wadia, S R [Theoretical Physics Div., CERN, Geneva (Switzerland)
1997-03-01
We address the derivation of the effective conformal field theory description of the 5-dimensional black hole, modelled by a collection of D1-and D5-branes, from the corresponding low energy U(Q{sub 1}) x U(Q{sub 5}) gauge theory. Finite horizon size at weak coupling requires both Q{sub 1} and Q{sub 5} to be large. We derive the results in the moduli space approximation (say for Q{sub 1} > Q{sub 5}) and appeal to supersymmetry to argue its validity beyond weak coupling. As a result of a combination of quenched Z{sub Q1} Wilson lines and a residual Weyl symmetry, the low-lying excitations of the U(Q{sub 1}) x U(Q{sub 5}) gauge theory are described by an effective N = 4 superconformal field theory with c = 6 in 1 + 1 dimensions, where the space is a circle of radius RQ{sub 1}Q{sub 5}. We also discuss the appearance of a marginal perturbation of the effective conformal field theory for large but finite values of Q{sub 5}. (author). 42 refs.
Finite temperature corrections to tachyon mass in intersecting D-branes
Energy Technology Data Exchange (ETDEWEB)
Sethi, Varun [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India); Chowdhury, Sudipto Paul [Institute of Physics, Sachivalaya Marg,Bhubaneswar 751005 (India); Sarkar, Swarnendu [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India)
2017-04-19
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.
Simplifying superstring and D-brane actions in AdS4 x CP3 superbackground
International Nuclear Information System (INIS)
Grassi, Pietro Antonio; Sorokin, Dmitri; Wulff, Linus
2009-01-01
By making an appropriate choice for gauge fixing kappa-symmetry we obtain a relatively simple form of the actions for a D = 11 superparticle in AdS 4 x S 7 /Z k , and for a D0-brane, fundamental string and D2-branes in the AdS 4 x CP 3 superbackground. They can be used to study various problems of string theory and the AdS 4 /CFT 3 correspondence, especially in regions of the theory which are not reachable by the OSp(6|4)/U(3) x SO(1,3) supercoset sigma-model. In particular, we present a simple form of the gauge-fixed superstring action in AdS 4 x CP 3 and briefly discuss issues of its T-dualization.
Bipartite field theories: from D-brane probes to scattering amplitudes
Franco, Sebastián
2012-11-01
We introduce and initiate the investigation of a general class of 4d, {N}=1 quiver gauge theories whose Lagrangian is defined by a bipartite graph on a Riemann surface, with or without boundaries. We refer to such class of theories as Bipartite Field Theories (BFTs). BFTs underlie a wide spectrum of interesting physical systems, including: D3-branes probing toric Calabi-Yau 3-folds, their mirror configurations of D6-branes, cluster integrable systems in (0 + 1) dimensions and leading singularities in scattering amplitudes for {N}=4 SYM. While our discussion is fully general, we focus on models that are relevant for scattering amplitudes. We investigate the BFT perspective on graph modifications, the emergence of Calabi-Yau manifolds (which arise as the master and moduli spaces of BFTs), the translation between square moves in the graph and Seiberg duality and the identification of dual theories by means of the underlying Calabi-Yaus, the phenomenon of loop reduction and the interpretation of the boundary operator for cells in the positive Grassmannian as higgsing in the BFT. We develop a technique based on generalized Kasteleyn matrices that permits an efficient determination of the Calabi-Yau geometries associated to arbitrary graphs. Our techniques allow us to go beyond the planar limit by both increasing the number of boundaries of the graphs and the genus of the underlying Riemann surface. Our investigation suggests a central role for Calabi-Yau manifolds in the context of leading singularities, whose full scope is yet to be uncovered.
Aspects of NT ≥ 2 topological gauge theories and D-branes
International Nuclear Information System (INIS)
Blau, M.; Thompson, G.
1996-12-01
Recently, topological field theories with extended N T > 1 topological symmetries have appeared in various contexts, e.g. in the discussion of S-duality in supersymmetry gauge theories, as world volume theories of Dirichlet p-branes in string theory, and in a general discussion of 'balanced' or critical topological theories. Here we will comment on, explain, or expand on various aspects of these theories, thus complementing the already existing discussions of such models in the literature. We comment on various aspects of topological gauge theories possessing N T ≥ 2 topological symmetry: 1. We show that the construction of Vafa-Witten and Dijkgraaf-Moore of 'balanced' topological field theories is equivalent to an earlier construction in terms of N T = 2 superfields inspired by supersymmetric quantum mechanics. 2. We explain the relation between topological field theories calculating signed and unsigned sums of Euler numbers of moduli spaces. 3. We show that the topological twist of N = 4 d = 4 Yang-Mills theory recently constructed by Marcus is formally a deformation of four-dimensional super-BF theory. 4. We construct a novel N T = 2 topological twist of N = 4 d = 3 Yang-Mills theory, a 'mirror' of the Casson invariant model, with certain unusual features (e.g. no bosonic scalar field and hence no underlying equivariant cohomology). 5. We give a complete classification of the topological twists of N = 8 d = 3 Yang-Mills theory and show that they are realized as world-volume theories of Dirichlet two-brane instantons wrapping supersymmetric three-cycles of Calabi-Yau three-folds and G 2 -holonomy Joyce manifolds. 6. We describe the topological gauge theories associated to D-string instantons on holomorphic curves in K3s and Calabi-Yau 3-folds. 48 refs
Dynamical SUSY Breaking at Meta-Stable Minima from D-branes at Obstructed Geometries
Franco, S; Franco, Sebastian; Uranga, Angel M .
2006-01-01
We study the existence of long-lived meta-stable supersymmetry breaking vacua in gauge theories with massless quarks, upon the addition of extra massive flavors. A simple realization is provided by a modified version of SQCD with N_{f,0} < N_c massless flavors, N_{f,1} massive flavors and additional singlet chiral fields. This theory has local meta-stable minima separated from a runaway behavior at infinity by a potential barrier. We find further examples of such meta-stable minima in flavored versions of quiver gauge theories on fractional branes at singularities with obstructed complex deformations, and study the case of the dP_1 theory in detail. Finally, we provide an explicit String Theory construction of such theories. The additional flavors arise from D7-branes on non-compact 4-cycles of the singularity, for which we find a new efficient description using dimer techniques.
New N=1 superconformal field theories in four dimensions from D-brane probes
International Nuclear Information System (INIS)
Aharony, O.; Kachru, S.; Silverstein, E.
1997-01-01
We present several new examples of non-trivial 4D N=1 superconformal field theories. Some of these theories exhibit exotic global symmetries, including non-simply laced groups (such as F 4 ). They are obtained by studying three-brane probes in F-theory compactifications on elliptic Calabi-Yau threefolds. The geometry of the compactification encodes in a simple way the behavior of the gauge coupling and the Kaehler potential on the Coulomb branch of these theories. (orig.)
Realistic D-brane models on warped throats: Fluxes, hierarchies and moduli stabilization
International Nuclear Information System (INIS)
Cascales, J.F.G.; Garcia del Moral, M.P.; Quevedo, F.; Uranga, A.
2004-01-01
We describe the construction of string theory models with semirealistic spectrum in a sector of (anti) D3-branes located at an orbifold singularity at the bottom of a highly warped throat geometry, which is a generalisation of the Klebanov-Strassler deformed conifold. These models realise the Randall-Sundrum proposal to naturally generate the Planck/electroweak hierarchy in a concrete string theory embedding, and yielding interesting chiral open string spectra. We describe examples with Standard Model gauge group (or left-right symmetric extensions) and three families of SM fermions, with correct quantum numbers including hypercharge. The dilaton and complex structure moduli of the geometry are stabilised by the 3-form fluxes required to build the throat. We describe diverse issues concerning the stabilisation of geometric Kahler moduli, like blow-up modes of the orbifold singularities, via D term potentials and gauge theory non-perturbative effects, like gaugino condensation. This local geometry, once embedded in a full compactification, could give rise to models with all moduli stabilised, and with the potential to lead to de Sitter vacua. Issues of gauge unification, proton stability, supersymmetry breaking and Yukawa couplings are also discussed. (author)
E{sub 6} Yukawa couplings in F-theory as D-brane instanton effects
Energy Technology Data Exchange (ETDEWEB)
Collinucci, Andrés [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, 1050 Bruxelles (Belgium); García-Etxebarria, Iñaki [Max Planck Institute for Physics,Föhringer Ring 6, 80805 Munich (Germany)
2017-03-29
At weak coupling the neighborhood of a E{sub 6} Yukawa point in SU(5) GUT F-theory models is described by a non-resolvable orientifold of the conifold. We explicitly show, first directly in IIB and then via a mirror symmetry argument, that in this limit the E{sub 6} Yukawa coupling is better described as coming from the non-perturbative contribution of a euclidean D1-brane wrapping the non-resolvable cycle. We also discuss how the M-theory description interpolates between the weak and strong coupling viewpoints.
International Nuclear Information System (INIS)
Bagnoud, Maxime; Carlevaro, Luca
2006-01-01
We study T 11-D-q x T q /Z n orbifold compactifications of eleven-dimensional supergravity and M-theory using a purely algebraic method. Given the description of maximal supergravities reduced on square tori as non-linear coset σ-models, we exploit the mapping between scalar fields of the reduced theory and directions in the tangent space over the coset to construct the orbifold action as a non-Cartan preserving finite order inner automorphism of the complexified U-duality algebra. Focusing on the exceptional serie of Cremmer-Julia groups, we compute the residual U-duality symmetry after orbifold projection and determine the reality properties of their corresponding Lie algebras. We carry out this analysis as far as the hyperbolic e 10 algebra, conjectured to be a symmetry of M-theory. In this case the residual subalgebras are shown to be described by a special class of Borcherds and Kac-Moody algebras, modded out by their centres and derivations. Furthermore, we construct an alternative description of the orbifold action in terms of equivalence classes of shift vectors, and, in D 1, we show that a root of e 10 can always be chosen as the class representative. Then, in the framework of the E 10/10 /K(E 10/10 ) effective σ-model approach to M-theory near a spacelike singularity, we identify these roots with brane configurations stabilizing the corresponding orbifolds. In the particular case of Z 2 orbifolds of M-theory descending to type 0' orientifolds, we argue that these roots can be interpreted as pairs of magnetized D9- and D9'-branes, carrying the lower-dimensional brane charges required for tadpole cancellation. More generally, we provide a classification of all such roots generating Z n product orbifolds for n≤6, and hint at their possible interpretation
International Nuclear Information System (INIS)
Hassan, S.F.; Wadia, S.R.
1998-02-01
We study the hypermultiplet moduli space of an N=4, U(Q 1 ) x U(Q 5 ) gauge theory in 1 + 1 dimensions to extract the effective SCFT description of near extremal 5-dimensional black holes modelled by a collection D1- and D5-branes. On the moduli space, excitations with fractional momenta arise due to a residual discrete gauge invariance. It is argued that, in the infra-red, the lowest energy excitations are described by an effective c = 6, N = 4 SCFT on T 4 , also valid in the large black hole regime. The ''effective string tension'' is obtained using T-duality covariance. While at the microscopic level, minimal scalars do not couple to (1,5) strings, in the effective theory a coupling is induced by (1,1) and (5,5) strings, leading to Hawking radiation. These considerations imply that, at least for such black holes, the calculation of the Hawking decay rate for minimal scalars has a sound foundation in string theory and statistical mechanics and, hence, there is no information loss. (author)
Adding a brane to the brane-anti-brane action in BSFT
International Nuclear Information System (INIS)
Jones, Nicholas T.; Henry Tye, S.-H.; Leblond, Louis
2003-01-01
We attempt to generalize the effective action for the D-brane-anti-D-brane system obtained from boundary superstring field theory (BSFT) by adding an extra D-brane to it to obtain a co-variantized action for 2 D-branes and 1 anti-D-brane. We discuss the approximations made to obtain the effective action in closed form. Among other properties, this effective action admits solitonic solutions of co-dimension 2 (vortices) when one of the D-brane is far separated from the brane-anti-brane pair. (author)
Landau degeneracy and black hole entropy
International Nuclear Information System (INIS)
Costa, M.S.; Perry, M.J.
1998-01-01
We consider the supergravity solution describing a configuration of intersecting D4-branes with non-vanishing world-volume gauge fields. The entropy of such a black hole is calculated in terms of the D-branes quantised charges. The non-extreme solution is also considered and the corresponding thermodynamical quantities are calculated in terms of a D-brane/anti-D-brane system. To perform the quantum mechanical D-brane analysis we study open strings with their ends on branes with a magnetic condensate. Applying the results to our D-brane system we manage to have a perfect agreement between the D-brane entropy counting and the corresponding semi-classical result. The Landau degeneracy of the open string states describing the excitations of the D-brane system enters in a crucial way. We also derive the near-extreme results which agree with the semi-classical calculations. (orig.)
Two lectures on D-geometry and noncommutative geometry
International Nuclear Information System (INIS)
Douglas, M.R.
1999-01-01
This is a write-up of lectures given at the 1998 Spring School at the Abdus Salam ICTP. We give a conceptual introduction to D-geometry, the study of geometry as seen by D-branes in string theory, and to noncommutative geometry as it has appeared in D-brane and Matrix theory physics. (author)
String theory for heavy-ion physicists
International Nuclear Information System (INIS)
Natsuume, Makoto
2007-01-01
In this article, we review the AdS/CFT duality for non-experts. Superstring theory has objects so-called D-branes, which are the key to understand the AdS/CFT duality. What is important about the D-brane is that the D-brane has two different descriptions. As I will explain in detail below, the D-brane can be described either by a gauge theory or by a black hole. So, the D-brane connects these two entirely different systems. However, the simplest AdS/CFT duality involves only adjoint matter and there is no fundamental matter such as quarks. Thus, an important question to address if we want to use the AdS/CFT duality for more realistic scenarios is how one can include fundamental matter. I will explain a simple way to describe fundamental matter; Sugimoto discusses more realistic methods in his article (in this volume). (author)
On the Generalized Geometry Origin of Noncommutative Gauge Theory
Jurco, Branislav; Vysoky, Jan
2013-01-01
We discuss noncommutative gauge theory from the generalized geometry point of view. We argue that the equivalence between the commutative and semiclassically noncommutative DBI actions is naturally encoded in the generalized geometry of D-branes.
Noncommutative Yang-Mills from equivalence of star products
International Nuclear Information System (INIS)
Jurco, B.; Schupp, P.
2000-01-01
It is shown that the transformation between ordinary and noncommutative Yang-Mills theory as formulated by Seiberg and Witten is due to the equivalence of certain star products on the D-brane world-volume. (orig.)
Noncommutative Yang-Mills from equivalence of star products
Energy Technology Data Exchange (ETDEWEB)
Jurco, B. [Max-Planck-Institut fuer Mathematik, Bonn (Germany); Schupp, P. [Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany)
2000-05-01
It is shown that the transformation between ordinary and noncommutative Yang-Mills theory as formulated by Seiberg and Witten is due to the equivalence of certain star products on the D-brane world-volume. (orig.)
String constraints on discrete symmetries in MSSM type II quivers
Energy Technology Data Exchange (ETDEWEB)
Anastasopoulos, Pascal [Technische Univ. Wien (Austria). Inst. fur Theor. Phys.; Cvetic, Mirjam [Univ. of Pennsylvania, Philadelphia PA (United States). Dept. of Physics and Astronomy; Univ. of Maribor (Slovenia). Center for Applied Mathematics and Theoretical Physics; Richter, Robert [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
We study the presence of discrete gauge symmetries in D-brane semirealistic compactifications. After establishing the constraints on the transformation behaviour of the chiral matter for the presence of a discrete gauge symmetry we perform a systematic search for discrete gauge symmetries within semi-realistic D-brane realizations, based on four D-brane stacks, of the MSSM and the MSSM with three right-handed neutrinos. The systematic search reveals that Proton hexality, a discrete symmetry which ensures the absence of R-parity violating terms as well as the absence of dangerous dimension 5 proton decay operators, is only rarely realized. Moreover, none of the semi-realistic local D-brane configurations exhibit any family dependent discrete gauge symmetry.
From UV/IR mixing to closed strings
International Nuclear Information System (INIS)
Lopez, Esperanza
2003-01-01
It was shown in [1] that the leading UV/IR mixing effects in noncommutative gauge theories on D-branes are able to capture information about the closed string spectrum of the parent string theory. The analysis was carried out for D-branes on nonsupersymmetric C 3 /Z N orbifolds of Type IIB. In this paper we consider D-branes on twisted circles compactifications of Type II string theory. We find that the signs of the leading UV/IR mixing effects know about the (mass) 2 gap between the lowest modes in NSNS and RR closed string towers. Moreover, the relevant piece of the field theory effective action can be reproduced purely in the language of closed strings. Remarkably, this approach unifies in a single structure, that of a closed string exchange between D-branes, both the leading planar and nonplanar effects associated to the absence of supersymmetry. (author)
Phase of N=2 theories in 1+1 dimensions with boundary
Energy Technology Data Exchange (ETDEWEB)
Herbst, M. [CERN, Geneva (Switzerland). Theory Division, Dept. of Physics; Hori, K.; Page, D. [Toronto Univ., ON (Canada). Dept. of Physics
2008-03-15
We study B-type D-branes in linear sigma models with Abelian gauge groups. The most important finding is the grade restriction rule. It classifies representations of the gauge group on the Chan-Paton factor, which can be used to define a family of D-branes over a region of the Kahler moduli space that connects special points of different character. As an application, we find a precise, transparent relation between D-branes in various geometric phases as well as free orbifold and Landau-Ginzburg points. The result reproduces and unifies many of the earlier mathematical results on equivalences of D-brane categories, including the McKay correspondence and Orlov's construction. (orig.)
Dirichlet branes and nonperturbative aspects of supersymmetric string and gauge theories
International Nuclear Information System (INIS)
Yin, Zheng
1999-01-01
In chapter 1 the author reviews some elements of string theory relevant to the rest of this report. He touches on both the classical, i.e. perturbative, string physics before D-branes rise to prominence, and some of the progresses they brought forth. In chapter 2 he proceeds to give an exact algebraic formulation of D-branes in curved spaces. This allows one to classify them in backgrounds of interest and study their geometric properties. He applies this formalism to string theory on Calabi-Yau and other supersymmetry preserving manifolds. Then he studies the behavior of the D-branes under mirror symmetry in chapter 3. Mirror symmetry is known to be a symmetry of string theory perturbatively. He finds evidence for its nonperturbative validity when D-branes are also considered and compute some dynamical consequences. In chapter 4 he turns to examine the consistency of curved and/or intersecting D-brane configurations. They have been used recently to extract information about the field theories that arise in certain limits. It turns out that there are potential quantum mechanical inconsistencies associated with them. What saves the day are certain subtle topological properties of D-branes. This resolution has implications for the conserved charges carried by the D-branes, which he computes for the cases studied in chapter 2. In chapter 5 he uses intersecting brane configurations to study three dimensional supersymmetric gauge theories. There is also a mirror symmetry there that, among other things, exchanges classical and quantum mechanical quantities of a (mirror) pair of theories. It has an elegant realization in term of a symmetry of string theory involving D-branes. The author employs it to study a wide class of 3d models. He also predicts new mirror pairs and unconventional 3d field theories without Lagrangian descriptions
Open string in the constant B-field background
International Nuclear Information System (INIS)
Jing Jian; Long Zhengwen
2005-01-01
A new method is proposed to quantize open strings in this paper. To illustrate our method, we analyze free open string as well as open string in the D-brane background with a nonvanishing B-field, respectively. The Poisson brackets among Fourier components are obtained firstly then we get the Poisson brackets among open string's coordinates. The noncommutativity of coordinates along the D-brane is reproduced. Some ambiguities in the previous discussions can be avoided
Topological insulators and superconductors from string theory
International Nuclear Information System (INIS)
Ryu, Shinsei; Takayanagi, Tadashi
2010-01-01
Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).
Extended holomorphic anomaly and loop amplitudes in open topological string
International Nuclear Information System (INIS)
Walcher, Johannes
2009-01-01
Open topological string amplitudes on compact Calabi-Yau threefolds are shown to satisfy an extension of the holomorphic anomaly equation of Bershadsky, Cecotti, Ooguri and Vafa. The total topological charge of the D-brane configuration must vanish in order to satisfy tadpole cancellation. The boundary state of such D-branes is holomorphically captured by a Hodge theoretic normal function. Its Griffiths' infinitesimal invariant is the analogue of the closed string Yukawa coupling and plays the role of the terminator in a Feynman diagram expansion for the topological string with D-branes. The holomorphic anomaly equation is solved and the holomorphic ambiguity is fixed for some representative worldsheets of low genus and with few boundaries on the real quintic.
Anisotropic inflation with derivative couplings
Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne
2018-05-01
We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.
More on microstate geometries of 4d black holes
International Nuclear Information System (INIS)
Bianchi, M.; Morales, J.F.; Pieri, L.; Zinnato, N.
2017-01-01
We construct explicit examples of microstate geometries of four-dimensional black holes that lift to smooth horizon-free geometries in five dimensions. Solutions consist of half-BPS D-brane atoms distributed in ℝ 3 . Charges and positions of the D-brane centers are constrained by the bubble equations and boundary conditions ensuring the regularity of the metric and the match with the black hole geometry. In the case of three centers, we find that the moduli spaces of solutions includes disjoint one-dimensional components of (generically) finite volume.
Particle creation and reheating in a braneworld inflationary scenario
Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.
2017-10-01
We study the cosmological particle creation in the tachyon inflation based on the D-brane dynamics in the Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter modifies the warp factor which results in two effects: a modification of the RSII cosmology and a modification of the tachyon potential. Besides, a string theory D-brane supports among other fields a U(1) gauge field reflecting open strings attached to the brane. We demonstrate how the interaction of the tachyon with the U(1) gauge field drives cosmological creation of massless particles and estimate the resulting reheating at the end of inflation.
T-Duality Group for Open String Theory
Kajiura, Hiroshige
2001-01-01
We study T-duality for open strings on tori $\\T^d$. The general boundary conditions for the open strings are constructed, and it is shown that T-duality group, which preserves the mass spectrum of closed strings, preserves also the mass spectrum of the open strings. The open strings are transformed to those with different boundary conditions by T-duality. We also discuss the T-duality for D-brane mass spectrum, and show that the D-branes and the open strings with both ends on them are transfo...
World-volumes and string target spaces
International Nuclear Information System (INIS)
Green, M.B.
1996-01-01
String duality suggests a fascinating juxtoposition of world-volume and target-space dynamics. This is particularly apparent in the D-brane description of stringy solitons that forms a major focus of this article (which is not intended to be a comprehensive review of this extensive and sophisticated subject). The article is divided into four sections: the oligarchy of string world-sheets; p-branes and world-volumes; world-sheets for world-volumes; boundary states. D-branes and space-time supersymmetry (orig.)
Orientifolds and duality cascades: confinement before the wall
Argurio, Riccardo; Bertolini, Matteo
2018-02-01
We consider D-branes at orientifold singularities and discuss two properties of the corresponding low energy four-dimensional effective theories which are not shared, generically, by other Calabi-Yau singularities. The first property is that duality cascades are finite and, unlike ordinary ones, do not require an infinite number of degrees of freedom to be UV-completed. The second is that orientifolds tend to stabilize runaway directions. These two properties can have interesting implications and widen in an intriguing way the variety of gauge theories one can describe using D-branes.
Recent Trends in Superstring Phenomenology
Bianchi, Massimo
2009-01-01
We review for non-experts possible phenomenological scenari in String Theory. In particular we focus on vacuum configurations with intersecting and/or magnetized unoriented D-branes. We will show how a TeV scale tension may be compatible with the existence of Large Extra Dimensions and how anomalous U(1)'s can give rise to interesting signatures at LHC or in cosmic rays. Finally, we discuss unoriented D-brane instantons as a source of non-perturbative effects that can contribute to moduli stabilization and susy braking in combination with fluxes. We conclude with an outlook and directions for future work.
Boundary string field theory and an open string one-loop
International Nuclear Information System (INIS)
Lee, Tae Jin; Viswanathan, K. S.; Yang, Yi
2003-01-01
We discuss the open string one-loop partition function in the tachyon condensation background of an unstable D-brane system. We evaluate the partition function by using the boundary-state formulation and find that it is in complete agreement with the result obtained in the boundary string field theory. This suggests that the open string higher loop diagrams may be produced consistently by using a closed string field theory, where the D-brane plays the role of a source for the closed string field
Surface/state correspondence and bulk local operators in pp-wave holography
Directory of Open Access Journals (Sweden)
Nakwoo Kim
2015-12-01
Full Text Available We apply the surface/state correspondence proposal of Miyaji et al. to IIB pp-waves and propose that the bulk local operators should be instantonic D-branes. In line with ordinary AdS/CFT correspondence, the bulk local operators in pp-waves also create a hole, or a boundary, in the dual gauge theory as pointed out by H. Verlinde, and by Y. Nakayama and H. Ooguri. We also present simple calculations which illustrate how to extract the spacetime metric of pp-waves from instantonic D-branes in boundary state formalism.
More on microstate geometries of 4d black holes
Energy Technology Data Exchange (ETDEWEB)
Bianchi, M. [Università di Roma Tor Vergata and I.N.F.N, Dipartimento di Fisica,Via della Ricerca Scientifica, I-00133 Rome (Italy); Morales, J.F. [I.N.F.N. - Sezione di Roma 2 and Università di Roma Tor Vergata, Dipartimento di Fisica,Via della Ricerca Scientifica, I-00133 Roma (Italy); Pieri, L. [Università di Roma Tor Vergata and I.N.F.N, Dipartimento di Fisica,Via della Ricerca Scientifica, I-00133 Rome (Italy); Center for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom); Zinnato, N. [Università di Roma Tor Vergata and I.N.F.N, Dipartimento di Fisica,Via della Ricerca Scientifica, I-00133 Rome (Italy)
2017-05-29
We construct explicit examples of microstate geometries of four-dimensional black holes that lift to smooth horizon-free geometries in five dimensions. Solutions consist of half-BPS D-brane atoms distributed in ℝ{sup 3}. Charges and positions of the D-brane centers are constrained by the bubble equations and boundary conditions ensuring the regularity of the metric and the match with the black hole geometry. In the case of three centers, we find that the moduli spaces of solutions includes disjoint one-dimensional components of (generically) finite volume.
Toward an open-closed string theoretical description of a rolling tachyon
International Nuclear Information System (INIS)
Ohmori, Kazuki
2004-01-01
We consider how the time-dependent decay process of an unstable D-brane should be described in the full (quantum) open-closed string theory. It is argued that the system, starting from the unstable D-brane configuration, will evolve in time into the time-independent open string tachyon vacuum configuration which we assume to be finite, with the total energy conserved. As a concrete realization of this idea, we construct a toy model describing the open and closed string tachyons which admits such a time-dependent solution. The structure of our model has some resemblance to that of open-closed string field theory
Canonical differential geometry of string backgrounds
International Nuclear Information System (INIS)
Schuller, Frederic P.; Wohlfarth, Mattias N.R.
2006-01-01
String backgrounds and D-branes do not possess the structure of Lorentzian manifolds, but that of manifolds with area metric. Area metric geometry is a true generalization of metric geometry, which in particular may accommodate a B-field. While an area metric does not determine a connection, we identify the appropriate differential geometric structure which is of relevance for the minimal surface equation in such a generalized geometry. In particular the notion of a derivative action of areas on areas emerges naturally. Area metric geometry provides new tools in differential geometry, which promise to play a role in the description of gravitational dynamics on D-branes
New formulation of the first law of black hole thermodynamics: a stringy analogy
International Nuclear Information System (INIS)
Wu Shuangqing
2005-01-01
We consider the first laws of thermodynamics for a pair of systems made up of the two horizons of a Kerr-Newman black hole. These two systems are constructed in such a way that we only demand their 'horizon areas' to be the sum and difference of that of the outer and inner horizons of their prototype. Remarkably, these two copies bear a striking resemblance to the right- and left-movers in string theory and D-brane physics. Our reformulation of the first law of black hole thermodynamics can be thought of as an analogy of thermodynamics of effective string or D-brane models
On $R^4$ terms and MHV amplitudes in N = 5,6 supergravity vacua of Type II superstrings
Bianchi, Massimo
2011-01-01
We compute one-loop threshold corrections to $R^4$ terms in N= 5,6 supergravity vacua of Type II superstrings. We then discuss non-perturbative corrections generated by asymmetric D-brane instantons. Finally we derive generating functions for MHV amplitudes at tree level in N = 5, 6 supergravities.
The volume conjecture and topological strings
Dijkgraaf, R.; Fuji, H.
2009-01-01
In this paper, we discuss a relation between Jones-Witten theory of knot invariants and topological open string theory on the basis of the volume conjecture. We find a similar Hamiltonian structure for both theories, and interpret the AJ conjecture as the D-module structure for a D-brane partition
DEFF Research Database (Denmark)
Grignani, Gianluca; Orselli, Marta; Obers, Niels Anne Jacob
2011-01-01
-brane and a parallel anti-D-brane connected by a wormhole with F-string charge. In our thermal generalization, we put this configuration in hot flat space. We find that the finite temperature system behaves qualitatively different than its zero-temperature counterpart. In particular, for a given separation between...
Physics with large extra dimensions
Indian Academy of Sciences (India)
can then be accounted by the existence of large internal dimensions, in the sub- ... strongly coupled heterotic theory with one large dimension is described by a weakly ..... one additional U(1) factor corresponding to an extra 'U(1)' D-brane is ...
String theory and cosmological singularities
Indian Academy of Sciences (India)
recent times, string theory is providing new perspectives of such singularities which .... holes appear as stacks of a large number of D-branes wrapped in internal .... results into a well-known measure factor which makes the wave function into a.
Dirac-Born-Infeld action on the tachyon kink and vortex
International Nuclear Information System (INIS)
Sen, Ashoke
2003-01-01
The tachyon effective field theory describing the dynamics of a non-Bogomol'nyi-Prasad-Sommerfield (BPS) D-brane in superstring theory has an infinitely thin but finite tension kink solution describing a codimension one BPS D-brane. We study the world-volume theory of massless modes on the kink, and show that the world volume action has precisely the Dirac-Born-Infeld (DBI) form without any higher derivative corrections. We generalize this to a vortex solution in the effective field theory on a brane-antibrane pair. As in the case of the kink, the vortex is infinitely thin, has finite energy density, and the world-volume action on the vortex is again given exactly by the DBI action on a BPS D-brane. We also discuss the coupling of fermions and restoration of supersymmetry and κ symmetry on the world volume of the kink. The absence of higher derivative corrections to the DBI action on the soliton implies that all such corrections are related to higher derivative corrections to the original effective action on the world volume of a non-BPS D-brane or brane-antibrane pair
Mirror symmetry, toric branes and topological string amplitudes as polynomials
Energy Technology Data Exchange (ETDEWEB)
Alim, Murad
2009-07-13
The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)
Pramana – Journal of Physics | Indian Academy of Sciences
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics. Alok Kumar. Articles written in Pramana – Journal of Physics. Volume 62 Issue 3 March 2004 pp 695-698 String Theory. D -branes in p p -wave background · Alok Kumar Rashmi R Nayak Sanjay · More Details Abstract Fulltext PDF. We show the existence of classical solutions ...
The scales of brane nucleation processes
International Nuclear Information System (INIS)
Alwis, S.P. de
2007-01-01
The scales associated with Brown-Teitelboim-Bousso-Polchinski processes of brane nucleation, which result in changes of the flux parameters and the number of D-branes, are discussed in the context of type IIB models with all moduli stabilized. It is argued that such processes are unlikely to be described by effective field theory
Indian Academy of Sciences (India)
system of D3-branes oriented at an arbitrary angle is shown to preserve 1/16 supersym- metries. Finally a brief discussion of the open string construction is presented for both the cases. Keywords. pp-wave; D-branes. study of string theory in pp-wave background has been a subject of wide interest. 'Penrose' limit plays an ...
Hemisphere partition function and monodromy
Energy Technology Data Exchange (ETDEWEB)
Erkinger, David; Knapp, Johanna [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria)
2017-05-29
We discuss D-brane monodromies from the point of view of the gauged linear sigma model. We give a prescription on how to extract monodromy matrices directly from the hemisphere partition function. We illustrate this procedure by recomputing the monodromy matrices associated to one-parameter Calabi-Yau hypersurfaces in weighted projected space.
García-Bellido, J
2003-01-01
In this talk I will review the present status of inflationary cosmology and its emergence as the basic paradigm behind the Standard Cosmological Model, with parameters determined today at better than 10% level from CMB and LSS observations. I will also discuss the recent theoretical developments on the process of reheating after inflation and model building based on string theory and D-branes.
Large BCFT moduli in open string field theory
Czech Academy of Sciences Publication Activity Database
Maccaferri, C.; Schnabl, Martin
2015-01-01
Roč. 2015, č. 8 (2015), s. 149 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : String Field Theory * tachyon condensation * D-branes Subject RIV: BE - Theoretical Physics Impact factor: 6.023, year: 2015
Assisted inflation from geometric tachyon
International Nuclear Information System (INIS)
Panigrahi, Kamal L.; Singh, Harvendra
2007-01-01
We study the effect of rolling of N D3-branes in the vicinity of NS5-branes. We find out that this system coupled with the four dimensional gravity gives the slow roll assisted inflation of the scalar field theory. Once again this expectation is exactly similar to that of N-tachyon assisted inflation on unstable D-branes
K-theory, reality, and orientifolds
International Nuclear Information System (INIS)
Gukov, S.
2000-01-01
We use equivariant K-theory to classify charges of new (possibly non-supersymmetric) states localized on various orientifolds in type II string theory. We also comment on the stringy construction of new D-branes and demonstrate the discrete electric-magnetic duality in type I brane systems with p+q=7, as proposed by Witten. (orig.)
2001 spring school on superstrings and related matters
Energy Technology Data Exchange (ETDEWEB)
Bachas, C [ENS, Paris (France); Maldacena, J [Harvard University, Cambridge (United States); Narain, K S; Randjbar-Daemi, S [Abdus Salam International Center for Theoretical Physics, Trieste (Italy)
2002-05-15
This proceedings contains the lectures given at the 2001 Trieste Spring School on String Theory. Several important and active areas of research in string theory related topics were covered in this school. One of the main topics of the School was the recently conjectured duality between gauge theory living on D-branes and and gravity (or more precisely string theory) living in the near horizon geometry around the D-branes. J. Maldacena gave a set of lectures on the gauge theory/gravity duality in different examples. M. Strassler's lectures dealt with a very interesting generalization of the gauge theory/gravity duality for the case of a confining gauge theory. D. Kutasov's lectures dealt with Little String Theories (LST) that are supposed to describe the physics of the NS5-branes. Using the holographic principle, interesting features of LST were deduced by describing the string theory in the background of NS5-branes. E. Verlinde gave a set of lectures on holographic principle in the context of radiation dominated FRW universe. Other topics included lectures by R. Gopakumar on the solitons in non-commutative gauge theories that are relevant in the context of D-branes in the background on anti-symmetric tensor field, and lectures by M. Douglas on D-branes on Calabi-Yau spaces.
Mirror symmetry, toric branes and topological string amplitudes as polynomials
International Nuclear Information System (INIS)
Alim, Murad
2009-01-01
The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)
Mesonic quasinormal modes of the Sakai-Sugimoto model at high temperature
International Nuclear Information System (INIS)
Evans, Nick; Threlfall, Ed
2008-01-01
We examine the mesonic thermal spectrum of the Sakai-Sugimoto model of holographic QCD by finding the quasinormal frequencies of the supergravity dual. If flavor is added using D8-D8 branes there exist embeddings where the D-brane world volume contains a black hole. For these embeddings (the high-temperature phase of the Sakai-Sugimoto model) we determine the quasinormal spectra of scalar and vector mesons arising from the world volume Dirac-Born-Infeld (DBI) action of the D-brane. We stress the importance of a coordinate change that makes the infalling quasinormal modes regular at the horizon allowing a simple numerical shooting technique. Finally we examine the effect of finite spatial momentum on quasinormal spectra
International Nuclear Information System (INIS)
Aspinwall, Paul S.
2015-01-01
An exoflop occurs in the gauged linear σ-model by varying the Kähler form so that a subspace appears to shrink to a point and then reemerge “outside” the original manifold. This occurs for K3 surfaces where a rational curve is “flopped” from inside to outside the K3 surface. We see that whether a rational curve contracts to an orbifold phase or an exoflop depends on whether this curve is a line or conic. We study how the D-brane category of the smooth K3 surface is described by the exoflop and, in particular, find the location of a massless D-brane in the exoflop limit. We relate exoflops to noncommutative resolutions.
Gravitational-recoil effects on fermion propagation in space-time foam
Ellis, John R.; Nanopoulos, Dimitri V.; Volkov, G.
2000-01-01
Motivated by the possible experimental opportunities to test quantum gravity via its effects on high-energy neutrinos propagating through space-time foam, we discuss how to incorporate spin structures in our D-brane description of gravitational recoil effects in vacuo. We also point to an interesting analogous condensed-matter system. We use a suitable supersymmetrization of the Born-Infeld action for excited D-brane gravitational backgrounds to argue that energetic fermions may travel slower than the low-energy velocity of light: pulses of neutrinos at energies approaching 10^{19} eV: these would be observable only if M \\gsim 10^{27} GeV.
Nambu sigma model and effective membrane actions
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav, E-mail: jurco@karlin.mff.cuni.cz [Mathematical Institute, Charles University, Prague 186 75 (Czech Republic); Schupp, Peter, E-mail: p.schupp@jacobs-university.de [Jacobs University Bremen, 28759 Bremen (Germany); Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland (United Kingdom)
2012-07-09
We propose an effective action for a p{sup Prime }-brane with open p-branes ending on it. The action has dual descriptions similar to the commutative and non-commutative ones of the DBI action for D-branes and open strings. The Poisson structure governing the non-commutativity of the D-brane is replaced by a Nambu structure and the open-closed string relations are generalized to the case of p-branes utilizing a novel Nambu sigma model description of p-branes. In the case of an M5-brane our action interpolates between M5-actions already proposed in the literature and matrix-model like actions involving Nambu structures.
Nambu sigma model and effective membrane actions
International Nuclear Information System (INIS)
Jurčo, Branislav; Schupp, Peter
2012-01-01
We propose an effective action for a p ′ -brane with open p-branes ending on it. The action has dual descriptions similar to the commutative and non-commutative ones of the DBI action for D-branes and open strings. The Poisson structure governing the non-commutativity of the D-brane is replaced by a Nambu structure and the open-closed string relations are generalized to the case of p-branes utilizing a novel Nambu sigma model description of p-branes. In the case of an M5-brane our action interpolates between M5-actions already proposed in the literature and matrix-model like actions involving Nambu structures.
Minkowski vacuum transitions in (nongeometric) flux compactifications
International Nuclear Information System (INIS)
Herrera-Suarez, Wilberth; Loaiza-Brito, Oscar
2010-01-01
In this work we study the generalization of twisted homology to geometric and nongeometric backgrounds. In the process, we describe the necessary conditions to wrap a network of D-branes on twisted cycles. If the cycle is localized in time, we show how by an instantonic brane mediation, some D-branes transform into fluxes on different backgrounds, including nongeometric fluxes. As a consequence, we show that in the case of a IIB six-dimensional torus compactification on a simple orientifold, the flux superpotential is not invariant by this brane-flux transition, allowing the connection among different Minkowski vacuum solutions. For the case in which nongeometric fluxes are turned on, we also discuss some topological restrictions for the transition to occur. In this context, we show that there are some vacuum solutions protected to change by a brane-flux transition.
Open strings in the SL(2, R) WZWN model with solution for a rigidly rotating string
DEFF Research Database (Denmark)
Lomholt, Michael Andersen; Larsen, A.L.
2003-01-01
Boundary conditions and gluing conditions for open strings and D-branes in the SL(2, R) WZWN model, corresponding to AdS , are discussed. Some boundary conditions and gluing conditions previously considered in the literature are shown to be incompatible with the variation principle. We then consi......Boundary conditions and gluing conditions for open strings and D-branes in the SL(2, R) WZWN model, corresponding to AdS , are discussed. Some boundary conditions and gluing conditions previously considered in the literature are shown to be incompatible with the variation principle. We...... then consider open string boundary conditions corresponding to a certain field-dependent gluing condition. This allows us to consider open strings with constant energy and angular momentum. Classically, these open strings naturally generalize the open strings in flat Minkowski space. For rigidly rotating open...
Aspects of string phenomenology in particle physics and cosmology
Directory of Open Access Journals (Sweden)
Antoniadis I.
2017-01-01
Full Text Available I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.
Gauge/string duality in confining theories
International Nuclear Information System (INIS)
Edelstein, J.D.; Portugues, R.
2006-01-01
This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Gauge/string duality in confining theories
Energy Technology Data Exchange (ETDEWEB)
Edelstein, J.D. [Departamento de Fi sica de Particulas, Universidade de Santiago de Compostela and Instituto Galego de Fisica de Altas Enerxias (IGFAE), 15782 Santiago de Compostela (Spain); Instituto de Fisica de La Plata (IFLP), Universidad Nacional de La Plata, La Plata (Argentina); Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile); Portugues, R. [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)
2006-07-03
This is the content of a set of lectures given at the ''XIII Jorge Andre Swieca Summer School on Particles and Fields'', Campos do Jordao, Brazil in January 2005. They intend to be a basic introduction to the topic of gauge/gravity duality in confining theories. We start by reviewing some key aspects of the low energy physics of non-Abelian gauge theories. Then, we present the basics of the AdS/CFT correspondence and its extension both to gauge theories in different spacetime dimensions with sixteen supercharges and to more realistic situations with less supersymmetry. We discuss the different options of interest: placing D-branes at singularities and wrapping D-branes in calibrated cycles of special holonomy manifolds. We finally present an outline of a number of non-perturbative phenomena in non-Abelian gauge theories as seen from supergravity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Quantum A∞-structures for open-closed topological strings
International Nuclear Information System (INIS)
Herbst, M.
2006-02-01
We study factorizations of topological string amplitudes on higher genus Riemann surfaces with multiple boundary components and find quantum A ∞ -relations, which are the higher genus analog of the (classical) A ∞ -relations on the disk. For topological strings with c=3 the quantum A ∞ -relations are trivially satisfied on a single D-brane, whereas in a multiple D-brane configuration they may be used to compute open higher genus amplitudes recursively from disk amplitudes. This can be helpful in open Gromov-Witten theory in order to determine open string higher genus instanton corrections. Finally, we find that the quantum A ∞ -structure cannot quite be recast into a quantum master equation on the open string moduli space. (orig.)
Boundary Fixed Points, Enhanced Gauge Symmetry and Singular Bundles on K3
Fuchs, J; Lerche, Wolfgang; Lütken, C A; Schweigert, C; Walcher, J
2001-01-01
We investigate certain fixed points in the boundary conformal field theory representation of type IIA D-branes on Gepner points of K3. They correspond geometrically to degenerate brane configurations, and physically lead to enhanced gauge symmetries on the world-volume. Non-abelian gauge groups arise if the stabilizer group of the fixed points is realized projectively, which is similar to D-branes on orbifolds with discrete torsion. Moreover, the fixed point boundary states can be resolved into several irreducible components. These correspond to bound states at threshold and can be viewed as (non-locally free) sub-sheaves of semi-stable sheaves. Thus, the BCFT fixed points appear to carry two-fold geometrical information: on the one hand they probe the boundary of the instanton moduli space on K3, on the other hand they probe discrete torsion in D-geometry.
A universal nonlinear relation among boundary states in closed string field theory
International Nuclear Information System (INIS)
Kishimoto, Isao; Matsuo, Yutaka; Watanabe, Eitoku
2004-01-01
We show that the boundary states satisfy a nonlinear relation (the idempotency equation) with respect to the star product of closed string field theory. This relation is universal in the sense that various D-branes, including the infinitesimally deformed ones, satisfy the same equation, including the coefficient. This paper generalizes our analysis [hep-th/0306189] in the following senses. (1) We present a background-independent formulation based on conformal field theory. It illuminates the geometric nature of the relation and allows us to more systematically analyze the variations around the D-brane background. (2) We show that the Witten-type star product satisfies a similar relation but with a more divergent coefficient. (3) We determine the coefficient of the relation analytically. The result shows that the α parameter can be formally factored out, and the relation becomes universal. We present a conjecture on vacuum theory based on this computation. (author)
Exact marginality in open string field theory. A general framework
International Nuclear Information System (INIS)
Kiermaier, M.
2007-07-01
We construct analytic solutions of open bosonic string field theory for any exactly marginal deformation in any boundary conformal field theory when properly renormalized operator products of the marginal operator are given. We explicitly provide such renormalized operator products for a class of marginal deformations which include the deformations of flat D-branes in flat backgrounds by constant massless modes of the gauge field and of the scalar fields on the D-branes, the cosine potential for a space-like coordinate, and the hyperbolic cosine potential for the time-like coordinate. In our construction we use integrated vertex operators, which are closely related to finite deformations in boundary conformal field theory, while previous analytic solutions were based on unintegrated vertex operators. We also introduce a modified star product to formulate string field theory around the deformed background. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Aspinwall, Paul S. [Department of Mathematics, Duke University, Durham, NC 27708-0223 (United States)
2015-07-21
An exoflop occurs in the gauged linear σ-model by varying the Kähler form so that a subspace appears to shrink to a point and then reemerge “outside” the original manifold. This occurs for K3 surfaces where a rational curve is “flopped” from inside to outside the K3 surface. We see that whether a rational curve contracts to an orbifold phase or an exoflop depends on whether this curve is a line or conic. We study how the D-brane category of the smooth K3 surface is described by the exoflop and, in particular, find the location of a massless D-brane in the exoflop limit. We relate exoflops to noncommutative resolutions.
Godel space from wrapped M2-branes
Czech Academy of Sciences Publication Activity Database
Levi, T.S.; Raeymaekers, Joris; Van den Bleeken, D.; Van Herck, W.; Vercnocke, B.
2010-01-01
Roč. 2010, č. 4 (2010), s. 1-36 ISSN 1126-6708 Grant - others:EUROHORC(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : D-branes * black holes in string theory * M-theory * AdS-CFT correspondence Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.049, year: 2010 http://www.springerlink.com/content/g73p7458588pwv31/
2002 Spring school on superstrings and related matters
Energy Technology Data Exchange (ETDEWEB)
Bachas, C [ENS, Paris (France); Gava, E [INFN, Trieste (Italy); [Abdus Salam ICTP, Trieste (Italy); Maldacena, J [Harvard University, Cambridge (United States); Narain, K S; Randjbar-Daemi, S [Abdus Salam ICTP, Trieste (Italy)
2003-08-15
This CD contains the lecture notes given at the Spring School on Superstrings and related Matters, held at the Abdus Salam International Centre for Theoretical Physics from 18 to 26 March 2002. It contains lectures about M theory, G{sub 2}-manifolds and four dimensional physics, covariant quantization of the superstring, mirror symmetry, strings in flat space and plane waves from N=4 super Yang Mills, phenomenological aspects of D-branes and open string star algebra.
Outstanding junior investigator program. [Final technical report, 8/1/92-10/31/97
International Nuclear Information System (INIS)
Randall, Lisa; Rosenberg, Leslie
1999-01-01
Much of the authors work over the past five years has been aimed at bridging the gap between the exactly supersymmetric world of string theories and the world that is actually observed. Her report discusses the following subjects: (1) supersymmetry breaking; related work on the mass hierarchy and the relation between supersymmetry and grand unified theories; distinguishing between supersymmetric models; and the fundamental question of how gauge theories arise from D-branes
Impact of the two additional dimensions on the analysing power at small angles
International Nuclear Information System (INIS)
Selyugin, O. V.; Teryaev, O. V.
2007-01-01
Impact of the KK-modes in d-brane models of gravitation with large compactification radii and TeV-scale quantum gravity on the polarization effect in the hadron-hadron elastic scattering is examined in the Arkani-Hamed, Dimopoulos and Dvali (ADD) approach. It is shown that this effect can be found in measuring the spin correlation parameter AN at RHIC and LHC energies
Gauge/gravity duality and meta-stable dynamical supersymmetry breaking
International Nuclear Information System (INIS)
Argurio, Riccardo; Bertolini, Matteo; Franco, Sebastian; Kachru, Shamit
2007-01-01
We engineer a class of quiver gauge theories with several interesting features by studying D-branes at a simple Calabi-Yau singularity. At weak 't Hooft coupling we argue using field theory techniques that these theories admit both supersymmetric vacua and meta-stable non-supersymmetric vacua, though the arguments indicating the existence of the supersymmetry breaking states are not decisive. At strong 't Hooft coupling we find simple candidate gravity dual descriptions for both sets of vacua
2002 Spring school on superstrings and related matters
International Nuclear Information System (INIS)
Bachas, C.; Gava, E.; Maldacena, J.; Narain, K.S.; Randjbar-Daemi, S.
2003-01-01
This CD contains the lecture notes given at the Spring School on Superstrings and related Matters, held at the Abdus Salam International Centre for Theoretical Physics from 18 to 26 March 2002. It contains lectures about M theory, G 2 -manifolds and four dimensional physics, covariant quantization of the superstring, mirror symmetry, strings in flat space and plane waves from N=4 super Yang Mills, phenomenological aspects of D-branes and open string star algebra
Recent developments on high-energy gravitational scattering
CERN. Geneva
2015-01-01
After a quick reminder of earlier results I will discuss some recent progress in the high-energy gravitational scattering of particles, strings, and branes and, in particular: 1. Gravitational bremsstrahlung; 2. Causality constraints in the presence of higher derivative corrections; 3. Absorption of an energetic closed string by a stack of D-branes. These developments should eventually help us understand how information is preserved in the quantum analog of classical gravitational collapse.
Calabi-Yau structures on categories of matrix factorizations
Shklyarov, Dmytro
2017-09-01
Using tools of complex geometry, we construct explicit proper Calabi-Yau structures, that is, non-degenerate cyclic cocycles on differential graded categories of matrix factorizations of regular functions with isolated critical points. The formulas involve the Kapustin-Li trace and its higher corrections. From the physics perspective, our result yields explicit 'off-shell' models for categories of topological D-branes in B-twisted Landau-Ginzburg models.
$N=2^∗$ (non-)Abelian theory in the $\\Omega$ background from string theory
Samsonyan, Marine; Antoniadis, Ignatios
2018-01-01
We present a D-brane realisation of the Abelian and non-Abelian N = 2 ∗ theory both in five and four dimensions. We compute topological amplitudes in string theory for Ω deformed spacetime first with one and then with two parameters. In the field theory limit we recover the perturbative partition function of the deformed N = 2 ∗ theory in agreement with the existing literature.
Outstanding junior investigator program. [Final technical report, 8/1/92-10/31/97
Energy Technology Data Exchange (ETDEWEB)
Randall, Lisa; Rosenberg, Leslie
1999-12-18
Much of the authors work over the past five years has been aimed at bridging the gap between the exactly supersymmetric world of string theories and the world that is actually observed. Her report discusses the following subjects: (1) supersymmetry breaking; related work on the mass hierarchy and the relation between supersymmetry and grand unified theories; distinguishing between supersymmetric models; and the fundamental question of how gauge theories arise from D-branes.
Entropy of N=2 black holes and their M-brane description
International Nuclear Information System (INIS)
Behrndt, K.; Mohaupt, T.
1997-01-01
In this paper we discuss the M-brane description for an N=2 black hole. This solution is a result of the compactification of M-5-brane configurations over a Calabi-Yau threefold with arbitrary intersection numbers C ABC . In analogy with the D-brane description where one counts open string states we count here open M-2-branes which end on the M-5-brane. copyright 1997 The American Physical Society
One-loop masses of open-string scalar fields in string theory
International Nuclear Information System (INIS)
Kitazawa, Noriaki
2008-01-01
In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.
International Nuclear Information System (INIS)
Verlinde, Herman; Wang, L-T; Yavin, Itay; Wijnholt, Martijn
2008-01-01
We exhibit a simple and robust mechanism for bulk mediation of supersymmetry breaking between hidden and visible sectors localized on geometrically separated D-branes in type II string theory. The mediation proceeds via RR p-forms that couple via linear Chern-Simons terms to the abelian vector bosons on the branes. From a 4-d low energy perspective, the mechanism reduces to U(1) mediation
Unlocking the axion-dilaton in 5D supergravity
Czech Academy of Sciences Publication Activity Database
Raeymaekers, Joris; Van den Bleeken, D.
2014-01-01
Roč. 11, Nov (2014), s. 1-54 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : supergravity models * d-branes * m-theory * black holes in string theory Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014 http://link.springer.com/article/10.1007%2FJHEP11%282014%29029
Microstate solutions from black hole deconstruction
Czech Academy of Sciences Publication Activity Database
Raeymaekers, Joris; Van den Bleeken, D.
2015-01-01
Roč. 2015, č. 12 (2015), s. 095 ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Grant - others:AV ČR(CZ) TUB-14-03 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : back holes in string theory * AdS-CFT correspondence * D-branes * M-theory Subject RIV: BE - Theoretical Physics Impact factor: 6.023, year: 2015
Tachyon condensation in the D0/D4 system
International Nuclear Information System (INIS)
David, Justin R.
2000-01-01
The D0/D4 system with a Neveu-Schwarz B-field in the spatial directions of the D4-brane has a tachyon in the spectrum of the (0,4) strings. The tachyon signals the instability of the system to form a bound state of the D0-brane with the D4-brane. We use the Wess-Zumino-Witten like open superstring field theory formulated by Berkovits to study the tachyon potential for this system. The tachyon potential lies outside the universality class of the D-brane anti-D-brane system. It is a function of the B-field. We calculate the tachyon potential at the zeroth level approximation. The minimum of the tachyon potential in this case is expected to reproduce the mass defect involved in the formation of the D0/D4 bound state. We compare the minimum of the tachyon potential with the mass defect in three cases. For small values of the B-field we obtain 70% of the expected mass defect. For large values of the B-field with Pf(2πα' B) > 0 the potential reduces to that of the D-brane anti-D-brane reproducing 62% of the expected mass defect. For large values of the B-field with Pf(2πα' B) < 0 the minimum of the tachyon potential gives 25% of the expected mass defect. At the tachyon condensate we show that the (0,4) strings decouple from the low energy dynamics. (author)
Deriving all p-brane superalgebras via integrability
Grasso, D. T.; McArthur, I. N.
2018-03-01
In previous work we demonstrated that the enlarged super-Poincare algebras which underlie p-brane and D-brane actions in superstring theory can be directly determined based on the integrability of supersymmetry transformations assigned to fields appearing in Wess-Zumino terms. In that work we derived p-brane superalgebras for p = 2 and 3. Here we extend our previous results and give a compact expression for superalgebras for all valid p.
Evaporation of microscopic black holes in string theory and the bound on species
International Nuclear Information System (INIS)
Dvali, G.; Luest, D.
2010-01-01
We address the question how string compactifications with D-branes are consistent with the black hole bound, which arises in any theory with number of particle species to which the black holes can evaporate. For the Kaluza-Klein particles, both longitudinal and transversal to the D-branes, it is relatively easy to see that the black hole bound is saturated, and the geometric relations can be understood in the language of species-counting. We next address the question of the black hole evaporation into the higher string states and discover, that contrary to the naive intuition, the exponentially growing number of Regge states does not preclude the existence of semi-classical black holes of sub-stringy size. Our analysis indicates that the effective number of string resonances to which such micro black holes evaporate is not exponentially large but is bounded by N = 1/g s 2 , which suggests the interpretation of the well-known relation between the Planck and string scales as the saturation of the black hole bound on the species number. In addition, we also discuss some other issues in D-brane compactifications with a low string scale of order TeV, such as the masses of light moduli fields. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
International Nuclear Information System (INIS)
Danielsson, Ulf H.; Guijosa, Alberto; Kruczenski, Martin
2000-01-01
We examine the T-duality relation between 1+1 NCOS and the DLCQ limit of type IIA string theory. We show that, as long as there is a compact dimension, one can meaningfully define an 'NCOS' limit of IIB/A string theory even in the absence of D-branes (and even if there is no B-field). This yields a theory of closed strings with strictly positive winding, which is T-dual to DLCQ IIA/B without any D-branes. We call this the Type IIB/A Wound String Theory. The existence of decoupled sectors can be seen directly from the energy spectrum, and mirrors that of the DLCQ theory. It becomes clear then that all of the different p+1 NCOS theories are simply different states of this single Wound IIA/B theory which contain D-branes. We study some of the properties of this theory. In particular, we show that upon toroidal compactification, Wound string theory is U-dual to various Wrapped Brane theories which contain OM theory and the ODp theories as special states. (author)
Z'-gauge Bosons as Harbingers of Low Mass Strings
Anchordoqui, Luis A; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Taylor, Tomasz R
2012-01-01
Massive Z'-gauge bosons act as excellent harbingers for string compactifications with a low string scale. In D-brane models they are associated to U(1) gauge symmetries that are either anomalous in four dimensions or exhibit a hidden higher dimensional anomaly. We discuss the possible signals of massive Z'-gauge bosons at hadron collider machines (Tevatron, LHC) in a minimal D-brane model consisting out of four stacks of D-branes. In this construction, there are two massive gauge bosons, which can be naturally associated with baryon number B and B-L (L being lepton number). Here baryon number is always anomalous in four dimensions, whereas the presence of a four-dimensional B-L anomaly depends on the U(1)-charges of the right handed neutrinos. In case B-L is anomaly free, a mass hierarchy between the two associated Z'-gauge bosons can be explained. In our phenomenological discussion about the possible discovery of massive Z'-gauge bosons, we take as a benchmark scenario the dijet plus W signal, recently obser...
Anomaly on Superspace of Time Series Data
Capozziello, Salvatore; Pincak, Richard; Kanjamapornkul, Kabin
2017-11-01
We apply the G-theory and anomaly of ghost and antighost fields in the theory of supersymmetry to study a superspace over time series data for the detection of hidden general supply and demand equilibrium in the financial market. We provide proof of the existence of a general equilibrium point over 14 extradimensions of the new G-theory compared with the M-theory of the 11 dimensions model of Edward Witten. We found that the process of coupling between nonequilibrium and equilibrium spinor fields of expectation ghost fields in the superspace of time series data induces an infinitely long exact sequence of cohomology from a short exact sequence of moduli state space model. If we assume that the financial market is separated into two topological spaces of supply and demand as the D-brane and anti-D-brane model, then we can use a cohomology group to compute the stability of the market as a stable point of the general equilibrium of the interaction between D-branes of the market. We obtain the result that the general equilibrium will exist if and only if the 14th Batalin-Vilkovisky cohomology group with the negative dimensions underlying 14 major hidden factors influencing the market is zero.
On the stringy nature of winding modes in noncommutative thermal field theories
Arcioni, G; Gomis, J P; Vázquez-Mozo, Miguel Angel; Gomis, Joaquim
2000-01-01
We show that thermal noncommutative field theories admit a version of `channel duality' reminiscent of open/closed string duality, where non-planar thermal loops can be replaced by an infinite tower of tree-level exchanges of effective fields. These effective fields resemble closed strings in three aspects: their mass spectrum is that of closed-string winding modes, their interaction vertices contain extra moduli, and they can be regarded as propagating in a higher-dimensional `bulk' space-time. In noncommutative models that can be embedded in a D-brane, we show the precise relation between the effective `winding fields' and closed strings propagating off the D-brane. The winding fields represent the coherent coupling of the infinite tower of closed-string oscillator states. We derive a sum rule that expresses this effective coupling in terms of the elementary couplings of closed strings to the D-brane. We furthermore clarify the relation between the effective propagating dimension of the winding fields and t...
Yang-Mills instantons sitting on a Ricci-flat worldspace of double D4-branes
International Nuclear Information System (INIS)
Kim, Hongsu; Yoon, Yongsung
2001-01-01
Thus far, there seem to be no complete criteria that can settle the issue as to what the correct generalization of the Dirac-Born-Infeld (DBI) action, describing the low-energy dynamics of the D-branes, to the non-Abelian case would be. According to recent suggestions, one might pass the issue of worldvolume solitons from an Abelian to non-Abelian setting by considering the stack of multiple, coincident D-branes and use it as a guideline to construct or censor the relevant non-Abelian version of the DBI action. In this spirit, here we are interested in the explicit construction of SU(2) Yang-Mills (YM) instanton solutions in the background geometry of two coincident probe D4-brane worldspaces, particularly when the metric of the target spacetime in which the probe branes are embedded is given by the Ricci-flat, magnetic extremal 4-brane solution in type IIA supergravity theory with its worldspace metric being given by that of TaubendashNewman-Unti-Tamburino (NUT) and Eguchi-Hanson solutions, the two best-known gravitational instantons. Then we demonstrate that, with this YM instanton-gravitational instanton configuration on the probe D4-brane worldvolume, the energy of the probe branes attains its minimum value and hence enjoys a stable state provided one employs Tseytlin's non-Abelian DBI action for the description of multiple probe D-branes. In this way, we support the arguments in the literature in favor of Tseytlin's proposal for the non-Abelian DBI action
International Nuclear Information System (INIS)
Carroll, S.M.; Trodden, M.
1998-01-01
We propose a class of field theories featuring solitonic solutions in which topological defects can end when they intersect other defects of equal or higher dimensionality. Such configurations may be termed open-quotes Dirichlet topological defects,close quotes in analogy with the D-branes of string theory. Our discussion focuses on defects in scalar field theories with either gauge or global symmetries, in 3+1 dimensions; the types of defects considered include walls ending on walls, strings on walls, and strings on strings. copyright 1998 The American Physical Society
Torus knots and mirror symmetry
Brini, Andrea; Marino, Marcos
2012-01-01
We propose a spectral curve describing torus knots and links in the B-model. In particular, the application of the topological recursion to this curve generates all their colored HOMFLY invariants. The curve is obtained by exploiting the full Sl(2, Z) symmetry of the spectral curve of the resolved conifold, and should be regarded as the mirror of the topological D-brane associated to torus knots in the large N Gopakumar-Vafa duality. Moreover, we derive the curve as the large N limit of the matrix model computing torus knot invariants.
arXiv On Matrix Factorizations, Residue Pairings and Homological Mirror Symmetry
Lerche, Wolfgang
We argue how boundary B-type Landau-Ginzburg models based on matrix factorizations can be used to compute exact superpotentials for intersecting D-brane configurations on compact Calabi-Yau spaces. In this paper, we consider the dependence of open-string, boundary changing correlators on bulk moduli. This determines, via mirror symmetry, non-trivial disk instanton corrections in the A-model. As crucial ingredient we propose a differential equation that involves matrix analogs of Saito's higher residue pairings. As example, we compute from this for the elliptic curve certain quantum products m_2 and m_3, which reproduce genuine boundary changing, open Gromov-Witten invariants.
Time-localized projectors in string field theory with an E-field
International Nuclear Information System (INIS)
Maccaferri, C.; Scherer Santos, R.J.; Tolla, D.D.
2005-01-01
We extend the analysis of Bonora et al. [hep-th/0409063] to the case of a constant electric field turned on the world volume and on a transverse direction of a D-brane. We show that time localization is still obtained by inverting the discrete eigenvalues of the lump solution. The lifetime of the unstable soliton is shown to depend on two free parameters: the b parameter and the value of the electric field. As a by-product, we construct the normalized diagonal basis of the star algebra in the B μν -field background
Open string decoupling and tachyon condensation
International Nuclear Information System (INIS)
Chalmers, G.
2001-01-01
The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants g s and g YM at general values of the tachyon condensate. The closed sector is generated at the quantum level; it is also generated at the classical level through the condensation of the propagating open string modes on the D-brane degrees of freedom.
On multibrane solutions in open string field theory
Czech Academy of Sciences Publication Activity Database
Murata, Masaki; Schnabl, Martin
2011-01-01
Roč. 2011, č. 188 (2011), s. 50-55 ISSN 0375-9687. [International Conference on String Field Theory and Related Aspects (SFT2010). Kyoto, 18.10.2010-22.10.2010] Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * D-branes * open strings Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.063, year: 2011 http://ptp.ipap.jp/link?PTPS/188/50/
Chan-Paton soliton gauge states of the compactified open string
International Nuclear Information System (INIS)
Lee, J.-C.
2000-01-01
We study the mechanism of the enhanced gauge symmetry of the bosonic open string compactified on a torus by analyzing the zero-norm soliton (non-zero winding of the Wilson line) gauge states in the spectrum. Unlike the closed string case, we find that the soliton gauge state exists only at massive levels. These soliton gauge states correspond to the existence of enhanced massive gauge symmetries with transformation parameters containing both Einstein and Yang-Mills indices. In the T-dual picture, these symmetries exist only at some discrete values of compactified radii when N D-branes are coincident. (orig.)
Supersymmetry in open superstring field theory
Energy Technology Data Exchange (ETDEWEB)
Erler, Theodore [Arnold Sommerfeld Center, Ludwig-Maximilians University,Theresienstrasse 37, 80333 Munich (Germany)
2017-05-19
We realize the 16 unbroken supersymmetries on a BPS D-brane as invariances of the action of the corresponding open superstring field theory. We work in the small Hilbert space approach, where a symmetry of the action translates into a symmetry of the associated cyclic A{sub ∞} structure. We compute the supersymmetry algebra, being careful to disentangle the components which produce a translation, a gauge transformation, and a symmetry transformation which vanishes on-shell. Via the minimal model theorem, we illustrate how supersymmetry of the action implies supersymmetry of the tree level open string scattering amplitudes.
A matrix model from string field theory
Directory of Open Access Journals (Sweden)
Syoji Zeze
2016-09-01
Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
Entropy of non-extreme rotating black holes in string theories
International Nuclear Information System (INIS)
Youm, D.
1998-01-01
We formulate the Rindler space description of rotating black holes in string theories. We argue that the comoving frame is the natural frame for studying the thermodynamics of rotating black holes and the statistical analysis of rotating black holes gets simplified in this frame. We also calculate statistical entropies of a general class of rotating black holes in heterotic strings on tori by applying the D-brane description and the correspondence principle. We find at least a qualitative agreement between the Bekenstein-Hawking entropies and the statistical entropies of these black hole solutions. (orig.)
Jejjala, Vishnumohan
2002-01-01
This Thesis explores aspects of superstring theory on orbifold spaces and applies some of the intuition gleaned from the study of the non-commutative geometry of space-time to understanding the fractional quantum Hall effect. The moduli space of vacua of marginal and relevant deformations of N = 4 super-Yang-Mills gauge theory in four dimensions is interpreted in terms of non-commutative geometry. A formalism for thinking about the algebraic geometry of the moduli space is developed. Within this framework, the representation theory of the algebras studied provides a natural exposition of D-brane fractionation. The non-commutative moduli space of deformations preserving N = 1 supersymmetry is examined in detail through various examples. In string theory, by the AdS/CFT correspondence, deformations of the N = 4 field theory are dual to the near-horizon geometries of D-branes on orbifolds of AdS5 x S 5. The physics of D-branes on the dual AdS backgrounds is explored. Quivers encapsulate the matter content of supersymmetric field theories on the worldvolumes of D-branes at orbifold singularities. New techniques for constructing quivers are presented here. When N is a normal subgroup of a finite group G, the quiver corresponding to fixed points of the orbifold M/G is computed from a G/N action on the quiver corresponding to M/G . These techniques prove useful for constructing non-Abelian quivers and for examining discrete torsion orbifolds. Quivers obtained through our constructions contain interesting low-energy phenomenology. The matter content on a brane at an isolated singularity of the Delta27 orbifold embeds the Standard Model. The symmetries of the quiver require exactly three generations of fields in the particle spectrum. Lepton masses are suppressed relative to quark masses because lepton Yukawa couplings do not appear in the superpotential. Lepton masses are generated through the Kahler potential and are related to the supersymmetry breaking scale. The model
Geometry, topology, and string theory
Energy Technology Data Exchange (ETDEWEB)
Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Applications of the D-instanton calculus in type IIB orientifold compactifications
Energy Technology Data Exchange (ETDEWEB)
Moster, Sebastian
2010-06-22
In this thesis string compactifications are studied in the formalism of the large-volume type IIB string theory. This class of compactifications possesses an in various regards phenomenologically interesting effective low-energy field theory. Theme of this thesis is the further development of these models motivated by recent knowledges in the D-brane instanton calculus of the string theory. After a short, general introduction in the string theory and especially in type IIB orbifolds and their consistency conditions the large-volume models are extensively presented and the hitherto knowledges on their phenomenology - like scale hierarchies, gauge couplings, supersymmetry breaking, and cosmological questions - discussed. An essential part in the construction of the large-volume models is the stabilizing of moduli fields by means of nonperturbative contribution to the superpotential in the effective low-energy field theory, which are caused by D-brane instantons or gaugino condensates. With recent knowledges in the D-brane instanton calculus it is shown that the moduli stabilization with the hitherto applied mechanism is not compatible with the existence of chiral fermions, as they occur in the standard model of elementary particle physics. A modified mechanism is proposed, in which the moduli fields are stabilized by additions of D-terms. Then by so-called ''polyinstanton corrections'' for the gauge-kinetic function a new large-volume scenario is constructed, in which the string scale without fine tuning lies not in an as in these model usual intermediate range of about 10{sup 11} GeV, but at 10{sup 16} GeV. By this this construction becomes interesting also for grand unified theories with SU(5) or SO(10) gauge groups. This is demonstrated on explicit models. Finally supersymmetry breaking is treated in large-volume scenarios. By the new mechanism for the moduli stabilization it is suggested that the supersymmetry breaking is caused by a
Localization of effective actions in open superstring field theory
Maccaferri, Carlo; Merlano, Alberto
2018-03-01
We consider the construction of the algebraic part of D-branes tree-level effective action from Berkovits open superstring field theory. Applying this construction to the quartic potential of massless fields carrying a specific worldsheet charge, we show that the full contribution to the potential localizes at the boundary of moduli space, reducing to elementary two-point functions. As examples of this general mechanism, we show how the Yang-Mills quartic potential and the instanton effective action of a Dp/D( p - 4) system are reproduced.
Butterfly tachyons in vacuum string field theory
International Nuclear Information System (INIS)
Matlock, Peter
2003-01-01
We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in vacuum string field theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation
Lectures on strings and dualities
International Nuclear Information System (INIS)
Vafa, C.
1997-01-01
In this set of lectures I review recent developments in string theory emphasizing their non-perturbative aspects and their recently discovered duality symmetries. The goal of the lectures is to make the recent exciting developments in string theory accessible to those with no previous background in string theory who wish to join the research effort in this area. Topics covered include a brief review of string theory, its compactifications, solitons and D-branes, black hole entropy and wed of string dualities. (author)
Applications of the D-instanton calculus in type IIB orientifold compactifications
International Nuclear Information System (INIS)
Moster, Sebastian
2010-01-01
In this thesis string compactifications are studied in the formalism of the large-volume type IIB string theory. This class of compactifications possesses an in various regards phenomenologically interesting effective low-energy field theory. Theme of this thesis is the further development of these models motivated by recent knowledges in the D-brane instanton calculus of the string theory. After a short, general introduction in the string theory and especially in type IIB orbifolds and their consistency conditions the large-volume models are extensively presented and the hitherto knowledges on their phenomenology - like scale hierarchies, gauge couplings, supersymmetry breaking, and cosmological questions - discussed. An essential part in the construction of the large-volume models is the stabilizing of moduli fields by means of nonperturbative contribution to the superpotential in the effective low-energy field theory, which are caused by D-brane instantons or gaugino condensates. With recent knowledges in the D-brane instanton calculus it is shown that the moduli stabilization with the hitherto applied mechanism is not compatible with the existence of chiral fermions, as they occur in the standard model of elementary particle physics. A modified mechanism is proposed, in which the moduli fields are stabilized by additions of D-terms. Then by so-called ''polyinstanton corrections'' for the gauge-kinetic function a new large-volume scenario is constructed, in which the string scale without fine tuning lies not in an as in these model usual intermediate range of about 10 11 GeV, but at 10 16 GeV. By this this construction becomes interesting also for grand unified theories with SU(5) or SO(10) gauge groups. This is demonstrated on explicit models. Finally supersymmetry breaking is treated in large-volume scenarios. By the new mechanism for the moduli stabilization it is suggested that the supersymmetry breaking is caused by a completely from the MSSM
Non-relativistic anyons from holography
Directory of Open Access Journals (Sweden)
Niko Jokela
2017-03-01
Full Text Available We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent z and with hyperscaling violation exponent θ. Our main focus will be on the collective excitations of the dense matter in the presence of an external magnetic field. Constraining the defect field theory to 2+1 dimensions, we will also allow the gauge fields become dynamical and study the properties of a strongly coupled anyonic fluid. We will deduce the universal properties of holographic matter and show that the Einstein relation always holds.
Yukawa's of light stringy states
Energy Technology Data Exchange (ETDEWEB)
Anastasopoulos, Pascal [Technische Univ. Wien (Austria). Inst. fuer Theoretische Physik; Bianchi, Massimo; Consoli, Dario [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Fisica; I.N.F.N., Sezione di Roma ' ' Tor Vergata' ' (Italy)
2017-01-15
Light massive string states can appear at D-brane intersections with small angles. We compute tri-linear Yukawa couplings of such open-string states to massless ones and to one another. Due to ambiguities in the normalisation of the vertex operators, that involve twist fields, we proceed via factorization of appropriate scattering amplitudes. Some peculiar features are observed that may lead to interesting signatures at colliders in the future. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Elliptic Genera of Symmetric Products and Second Quantized Strings
Dijkgraaf, R; Verlinde, Erik; Verlinde, Herman L
1997-01-01
In this note we prove an identity that equates the elliptic genus partition function of a supersymmetric sigma model on the $N$-fold symmetric product $M^N/S_N$ of a manifold $M$ to the partition function of a second quantized string theory on the space $M \\times S^1$. The generating function of these elliptic genera is shown to be (almost) an automorphic form for $O(3,2,\\Z)$. In the context of D-brane dynamics, this result gives a precise computation of the free energy of a gas of D-strings inside a higher-dimensional brane.
Counting dyons in N=4 string theory
Dijkgraaf, R; Verlinde, Herman L
1997-01-01
We present a microscopic index formula for the degeneracy of dyons in four-dimensional N=4 string theory. This counting formula is manifestly symmetric under the duality group, and its asymptotic growth reproduces the macroscopic Bekenstein-Hawking entropy. We give a derivation of this result in terms of the type II five-brane compactified on K3, by assuming that its fluctuations are described by a closed string theory on its world-volume. We find that the degeneracies are given in terms of the denominator of a generalized super Kac-Moody algebra. We also discuss the correspondence of this result with the counting of D-brane states.
On the S-matrix of type-0 string theory
International Nuclear Information System (INIS)
DeWolfe, Oliver; Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia; Walcher, Johannes
2003-01-01
The recent discovery of non-perturbatively stable two-dimensional string back-grounds and their dual matrix models allows the study of complete scattering matrices in string theory. In this note we adapt work of Moore, Plesser, and Ramgoolam on the bosonic string to compute the exact S-matrices of 0A and 0B string theory in two dimensions. Unitarity of the 0B theory requires the inclusion of massless soliton sectors carrying RR scalar charge as asymptotic states. We propose a regularization of IR divergences and find transition probabilities that distinguish the otherwise energetically degenerate soliton sectors. Unstable D-branes can decay into distinct soliton sectors. (author)
Geometry, topology, and string theory
International Nuclear Information System (INIS)
Varadarajan, Uday
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated
Energy Technology Data Exchange (ETDEWEB)
Benini, Francesco; /Princeton U.; Dymarsky, Anatoly; /Stanford U., ITP; Franco, Sebastian; /Santa Barbara, KITP; Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC; Verlinde, Herman; /Princeton, Inst. Advanced Study
2009-06-19
We discuss gravitational backgrounds where supersymmetry is broken at the end of a warped throat, and the SUSY-breaking is transmitted to the Standard Model via gauginos which live in (part of) the bulk of the throat geometry. We find that the leading effect arises from splittings of certain 'messenger mesons,' which are adjoint KK-modes of the D-branes supporting the Standard Model gauge group. This picture is a gravity dual of a strongly coupled field theory where SUSY is broken in a hidden sector and transmitted to the Standard Model via a relative of semi-direct gauge mediation.
String Resonances at Hadron Colliders
Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R
2014-01-01
[Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...
Multifield dynamics in Higgs-otic inflation
Energy Technology Data Exchange (ETDEWEB)
Bielleman, S.; Ibáñez, L.E.; Pedro, F.G.; Valenzuela, I. [Departamento de Física Teórica UAM and Instituto de Física Teórica UAM/CSIC,Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid (Spain)
2016-01-20
In Higgs-otic inflation a complex neutral scalar combination of the h{sup 0} and H{sup 0} MSSM Higgs fields plays the role of inflaton in a chaotic fashion. The potential is protected from large trans-Planckian corrections at large inflaton if the system is embedded in string theory so that the Higgs fields parametrize a D-brane position. The inflaton potential is then given by a DBI+CS D-brane action yielding an approximate linear behaviour at large field. The inflaton scalar potential is a 2-field model with specific non-canonical kinetic terms. Previous computations of the cosmological parameters (i.e. scalar and tensor perturbations) did not take into account the full 2-field character of the model, ignoring in particular the presence of isocurvature perturbations and their coupling to the adiabatic modes. It is well known that for generic 2-field potentials such effects may significantly alter the observational signatures of a given model. We perform a full analysis of adiabatic and isocurvature perturbations in the Higgs-otic 2-field model. We show that the predictivity of the model is increased compared to the adiabatic approximation. Isocurvature perturbations moderately feed back into adiabatic fluctuations. However, the isocurvature component is exponentially damped by the end of inflation. The tensor to scalar ratio varies in a region r=0.08–0.12, consistent with combined Planck/BICEP results.
Supergravity couplings to Noncommutative Branes, Open Wilson Lines and Generalised Star Products
International Nuclear Information System (INIS)
Das, S.R.; Trivedi, S.P.
2001-01-01
Noncommutative gauge theories can be constructed from ordinary U(∞) gauge theories in lower dimensions. Using this construction we identify the operators on noncommutative D-branes which couple to linearized supergravity backgrounds, from a knowledge of such couplings to lower dimensional D-branes with no B field. These operators belong to a class of gauge invariant observables involving open Wilson lines. Assuming a DBI form of the coupling we show, to second order in the gauge potential but to all orders of the noncommutativity parameter, that our proposal agrees with the operator obtained in terms of ordinary gauge fields by considering brane actions in backgrounds and then using the Seiberg-Witten map to rewrite this in terms of noncommutative gauge fields. Our result clarify why a certain commutative but non-associative 'generalized star product' appears both in the expansion of the open Wilson line, as well as in string amplitude computations of open string-closed string couplings. We outline how our procedure can be used to obtain operators in the noncommutative theory which are holographically dual to supergravity modes. (author)
van Herck, Walter; Wyder, Thomas
2010-04-01
The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.
On modular properties of the AdS3 CFT
International Nuclear Information System (INIS)
Baron, Walter H.; Nunez, Carmen A.
2011-01-01
We study modular properties of the AdS 3 Wess-Zumino-Novikov-Witten model. Although the Euclidean partition function is modular invariant, the characters on the Euclidean torus diverge and the regularization proposed in the literature removes information on the spectrum and the usual one to one map between characters and representations of rational models is lost. Reconsidering the characters defined on the Lorentzian torus and focusing on their structure as distributions, we obtain expressions that recover those properties. We study their modular transformations and find a generalized S matrix, depending on the sign of the real modular parameters, which has two diagonal blocks and one off-diagonal block, mixing discrete and continuous representations, that we fully determine. We then explore the relations among the modular transformations, the fusion algebra and the boundary states. We explicitly construct Ishibashi states for the maximally symmetric D-branes and show that the generalized S matrix defines the one-point functions associated to pointlike and H 2 -branes as well as the fusion rules of the degenerate representations of sl(2,R) appearing in the open string spectrum of the pointlike D-branes, through a generalized Verlinde theorem.
Harmonic superpositions of M-branes
International Nuclear Information System (INIS)
Tseytlin, A.A.
1996-01-01
We present solutions describing supersymmetric configurations of 2 or 3 orthogonally intersecting 2-branes and 5-branes of D=11 supergravity. The configurations which preserve 1/4 or 1/8 of maximal supersymmetry are 2 perpendicular to 2, 5 perpendicular to 5, 2 perpendicular to 5, 2 perpendicular to 2 perpendicular to 2, 5 perpendicular to 5 perpendicular to 5, 2 perpendicular to 2 perpendicular to 5 and 2 perpendicular to 5 perpendicular to 5 (2 perpendicular to 2 stands for orthogonal intersection of two 2-branes over a point, etc.; p-branes of the same type intersect over (p-2)-branes). There exists a simple rule which governs the construction of composite supersymmetric p-brane solutions in D=10 and 11 with a separate harmonic function assigned to each constituent 1/2-supersymmetric p-brane. The resulting picture of intersecting p-brane solutions complements their D-brane interpretation in D=10 and seems to support possible existence of a D=11 analogue of D-brane description. The D=11 solution describing intersecting 2-brane and 5-brane reduces in D=10 to a type II string solution corresponding to a fundamental string lying within a solitonic 5-brane (which further reduces to an extremal D=5 black hole). We also discuss a particular D=11 embedding of the extremal D=4 dyonic black hole solution with finite area of horizon. (orig.)
String pair production in non homogeneous backgrounds
Energy Technology Data Exchange (ETDEWEB)
Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)
2016-04-28
We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.
Grignani, Gianluca; Harmark, Troels; Kift, Callum; Marini, Andrea; Orselli, Marta
2017-11-01
In this paper we use the effective blackfold description of branes to extend the study of the thermal BIon, a D-brane, and parallel anti-D-brane connected by a wormhole with F-string charge in hot flat space, by introducing a radial boost along the brane. The boosted system behaves qualitatively differently from both the extremal and the thermal BIon considered previously. Interestingly, we are able to formulate a first law of thermodynamics for the system as a whole, despite the fact that it is not a stationary blackfold. In particular, the global temperature is given by the rest frame temperature times the gamma factor of special relativity which is the inverse transformation compared to the case of stationary blackfolds. In addition we define two new kinds of thermodynamic conjugate variables, the energy flux W and the integrated velocity on the brane. We find that a phase transition occurs by varying the energy flux W . Below a critical value of W the brane separation Δ changes only slightly with W . Instead above the critical value Δ grows exponentially.
Vacuum energies due to delta-like currents: multipole interactions
International Nuclear Information System (INIS)
Barone, F.A.; Borges, K.; Flores-Hidalgo, G.
2009-01-01
Full text. This work is devoted to a study about the quantum description of multipoles distributions by the use of external static currents concentrated along specific regions of space. For this task we consider models of bosonic quantum fields (scalar and electromagnetic fields) interacting with external currents which simulate the presence of charges, dipoles and quadrupoles distributions along D-dimensional static branes. Along the work we consider models in d+D+1 dimensions described by a quantum field coupled with an external current composed by two parts: the first one concentrated along a D-brane and the other one concentrated at a given point of space. This last part represents a point-like test-charge which is used to investigate the force field produced by the former one. Specifically, we consider models for the scalar field, with and without mass, coupled to currents describing distributions of charges, dipoles and quadrupoles currents along D-branes. These currents are given, respectively, by a Dirac's delta function, a directional derivative of a Dirac's delta function and the second derivative of a Dirac's delta function (coupled with a second rank tensor). We also extend the previous results for the electromagnetic case in order to bring them to more realistic contexts. We show that, as expected, there is an overall minus sing in comparing the results obtained for the scalar and electromagnetic fields. (author)
String pair production in non homogeneous backgrounds
International Nuclear Information System (INIS)
Bolognesi, S.; Rabinovici, E.; Tallarita, G.
2016-01-01
We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.
Forbidden territories in the string landscape
Kumar, Alok; Mukhopadhyay, Subir; Ray, Koushik
2007-12-01
Problems of stabilizing moduli of the type-IIB string theory on toroidal orientifolds T6/Z2, in presence of worldvolume fluxes on various D-branes, are considered. For Z2 actions, introducing either O9 or O3 planes, we rule out the possibility of moduli stabilization in a wide class of models with Script N = 1 supersymmetry, characterized by the type of fluxes turned on along D-brane worldvolume. Our results, in particular, imply that Abelian worldvolume fluxes can not by themselves stabilize closed string moduli, in a consistent supersymmtric model, for above orientifold compactifications. We also discuss other Z2 orientifolds of T6 and show that certain other brane wrappings are also ruled out by similar consistency requirements. In specific setups we consider examples with D9-branes wrapping on a complex three-torus with its world-volume fluxes taken to be semi-homogeneous bundles and D7-branes wrapping holomorphic four-cycles of the complex three-torus carrying world-volume fluxes.
Energy Technology Data Exchange (ETDEWEB)
Huang, Wung-Hong; Du, Yi-Hsien [Department of Physics, National Cheng Kung University,No. 1, University Road, Tainan City 701, Taiwan (China)
2017-02-07
We apply the transformation of mixing azimuthal and internal coordinate or mixing time and internal coordinate to a stack of N black M-branes to find the Melvin spacetime of a stack of N black D-branes with magnetic or electric flux in string theory, after the Kaluza-Klein reduction. We slightly extend previous formulas to investigate the external magnetic and electric effects on the butterfly effect and holographic mutual information. It shows that the Melvin fields do not modify the scrambling time and will enhance the mutual information. In addition, we also T-dualize and twist a stack of N black D-branes to find a Melvin Universe supported by the flux of the NSNS b-field, which describes a non-comutative spacetime. It also shows that the spatial noncommutativity does not modify the scrambling time and will enhance the mutual information. We also study the corrected mutual information in the backreaction geometry due to the shock wave in our three model spacetimes.
Unity from duality: gravity, gauge theory and strings
International Nuclear Information System (INIS)
Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.
2002-01-01
The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)
Brane gases in the early Universe
International Nuclear Information System (INIS)
Alexander, S.; Brandenberger, R.; Easson, D.
2000-01-01
Over the past decade it has become clear that fundamental strings are not the only fundamental degrees of freedom in string theory. D-branes are also part of the spectrum of fundamental states. In this paper we explore some possible effects of D-branes on early Universe string cosmology, starting with two key assumptions: firstly that the initial state of the Universe corresponded to a dense, hot gas in which all degrees of freedom were in thermal equilibrium, and secondly that the topology of the background space admits one-cycles. We argue by t duality that in this context the cosmological singularities are not present. We derive the equation of state of the brane gases and apply the results to suggest that, in an expanding background, the winding modes of fundamental strings will play the most important role at late times. In particular, we argue that the string winding modes will only allow four space-time dimensions to become large. The presence of brane winding modes with p>1 may lead to a hierarchy in the sizes of the extra dimensions
Towards realistic string vacua from branes at singularities
Conlon, Joseph P.; Maharana, Anshuman; Quevedo, Fernando
2009-05-01
We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo n (dPn) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.
Directory of Open Access Journals (Sweden)
Robert de Mello Koch
2017-05-01
Full Text Available We study the worldsheet S-matrix of a string attached to a D-brane in AdS5×S5. The D-brane is either a giant graviton or a dual giant graviton. In the gauge theory, the operators we consider belong to the su(2|3 sector of the theory. Magnon excitations of open strings can exhibit both elastic (when magnons in the bulk of the string scatter and inelastic (when magnons at the endpoint of an open string participate scattering. Both of these S-matrices are determined (up to an overall phase by the su(2|22 global symmetry of the theory. In this note we study the S-matrix for inelastic scattering. We show that it exhibits poles corresponding to boundstates of bulk and boundary magnons. A crossing equation is derived for the overall phase. It reproduces the crossing equation for maximal giant gravitons, in the appropriate limit. Finally, scattering in the su(2 sector is computed to two loops. This two loop result, which determines the overall phase to two loops, will be useful when a unique solution to the crossing equation is to be selected.
Introduction to branes and M-theory for relativists and cosmologists
International Nuclear Information System (INIS)
Ohta, Nobuyoshi
2003-01-01
We review the recent developments in superstrings. We start with a brief summary of various consistent superstring theories an discuss T-duality which necessarily leads to the presence of D-branes. The properties of D-branes are summarized and we discuss how these suggests the existence of 11-dimensional quantum theory, M-theory, which is believed to give rise to various superstrings as perturbative expansions around particular backgrounds in the theory. We also discuss the interpretation of brane solutions as black holes in string theories and statistical explanation of Bekenstein-Hawking entropy. The idea behind this interpretation is that there is a fundamental duality between closed (gravity) and open (gauge theory) string degrees of freedom, one of whose manifestation is what is known as AdS/CFT correspondence. The idea is used to discuss the greybody factors for BTZ black holes. Finally the entropy of various black holes are discussed in connection with Cardy-Verlinde formula. (author)
International Nuclear Information System (INIS)
Johnson, C.V.
1998-01-01
The nature of M-theory on K3 x I, where I is a line interval, is considered, with a view towards formulating a ''matrix theory'' representation of that situation. Various limits of this compactification of M-theory yield a number of well known N=1 six-dimensional compactifications of the heterotic and type I string theories. Geometrical relations between these limits give rise to string/string dualities between some of these compactifications. At a special point in the moduli space of compactifications, this motivates a partial definition of the matrix theory representation of the M-theory on K3 x I as the large N limit of a certain type IA orientifold model probed by a conglomerate of N D-branes. Such a definition in terms of D-branes and orientifold planes is suggestive, but necessarily incomplete, due to the low amount of supersymmetry. It is proposed - following hints from the orientifold model - that the complete matrix theory representation of the K3 x I compactified M-theory is given by the large N limit of compactification - on a suitable ''dual'' surface - of the ''little heterotic string'' N=1 six-dimensional quantum theories. (orig.)
Scattering of massive open strings in pure spinor
International Nuclear Information System (INIS)
Park, I.Y.
2011-01-01
In Park (2008) , it was proposed that the D-brane geometry could be produced by open string quantum effects. In an effort to verify the proposal, we consider scattering amplitudes involving massive open superstrings. The main goal of this paper is to set the ground for two-loop 'renormalization' of an oriented open superstring on a D-brane and to strengthen our skill in the pure spinor formulation of a superstring, an effective tool for multi-loop string diagrams. We start by reviewing scattering amplitudes of massless states in the 2D component method of the NSR formulation. A few examples of massive string scattering are worked out. The NSR results are then reproduced in the pure spinor formulation. We compute the amplitudes using the unintegrated form of the massive vertex operator constructed by Berkovits and Chandia (2002) . We point out that it may be possible to discover new Riemann type identities involving Jacobi θ-functions by comparing a NSR computation and the corresponding pure spinor computation.
The DBI action, higher-derivative supergravity, and flattening inflaton potentials
International Nuclear Information System (INIS)
Bielleman, Sjoerd; Ibáñez, Luis E.; Pedro, Francisco G.; Valenzuela, Irene; Wieck, Clemens
2016-01-01
In string theory compactifications it is common to find an effective Lagrangian for the scalar fields with a non-canonical kinetic term. We study the effective action of the scalar position moduli of Type II Dp-branes. In many instances the kinetic terms are in fact modified by a term proportional to the scalar potential itself. This can be linked to the appearance of higher-dimensional supersymmetric operators correcting the Kähler potential. We identify the supersymmetric dimension-eight operators describing the α"′ corrections captured by the D-brane Dirac-Born-Infeld action. Our analysis then allows an embedding of the D-brane moduli effective action into an N=1 supergravity formulation. The effects of the potential-dependent kinetic terms may be very important if one of the scalars is the inflaton, since they lead to a flattening of the scalar potential. We analyze this flattening effect in detail and compute its impact on the CMB observables for single-field inflation with monomial potentials.
Space-time foam effects on particle interactions and the Greisen-Zatsepin-Kuzmin cutoff
International Nuclear Information System (INIS)
Ellis, John; Mavromatos, N. E.; Nanopoulos, D. V.
2001-01-01
Modeling space-time foam using a noncritical Liouville-string model for the quantum fluctuations of D-branes with recoil, we discuss the issues of momentum and energy conservation in particle propagation and interactions. We argue that momentum should be conserved exactly during propagation and on the average during interactions, but that energy is conserved only on the average during propagation and is in general not conserved during particle interactions, because of changes in the background metric. We discuss the possible modification of the GZK cutoff on high-energy cosmic rays, in the light of this energy non-conservation as well as the possible modification of the usual relativistic momentum-energy relation
T-branes through 3d mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Collinucci, Andrés; Giacomelli, Simone [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Bruxelles (Belgium); Savelli, Raffaele [Institut de Physique Théorique, CEA Saclay,Orme de Merisiers, F-91191 Gif-sur-Yvette (France); Valandro, Roberto [Dipartimento di Fisica, Università di Trieste,Strada Costiera 11, 34151 Trieste (Italy); INFN, Sezione di Trieste,Via Valerio 2, 34127 Trieste (Italy); Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34151 Trieste (Italy)
2016-07-19
T-branes are exotic bound states of D-branes, characterized by mutually non-commuting vacuum expectation values for the worldvolume scalars. The M/F-theory geometry lifting D6/D7-brane configurations is blind to the T-brane data. In this paper, we make this data manifest, by probing the geometry with an M2-brane. We find that the effect of a T-brane is to deform the membrane worldvolume superpotential with monopole operators, which partially break the three-dimensional flavor symmetry, and reduce supersymmetry from N=4 to N=2. Our main tool is 3d mirror symmetry. Through this language, a very concrete framework is developed for understanding T-branes in M-theory. This leads us to uncover a new class of N=2 quiver gauge theories, whose Higgs branches mimic those of membranes at ADE singularities, but whose Coulomb branches differ from their N=4 counterparts.
The Real Topological String on a local Calabi-Yau
Krefl, Daniel
2009-01-01
We study the topological string on local P2 with O-plane and D-brane at its real locus, using three complementary techniques. In the A-model, we refine localization on the moduli space of maps with respect to the torus action preserved by the anti-holomorphic involution. This leads to a computation of open and unoriented Gromov-Witten invariants that can be applied to any toric Calabi-Yau with involution. We then show that the full topological string amplitudes can be reproduced within the topological vertex formalism. We obtain the real topological vertex with trivial fixed leg. Finally, we verify that the same results derive in the B-model from the extended holomorphic anomaly equation, together with appropriate boundary conditions. The expansion at the conifold exhibits a gap structure that belongs to a so far unidentified universality class.
RG cascades in hyperbolic quiver gauge theories
International Nuclear Information System (INIS)
Ahl Laamara, R.; Ait Ben Haddou, M.; Belhaj, A.; Drissi, L.B.; Saidi, E.H.
2004-01-01
In this paper, we provide a general classification of supersymmatric QFT4s into three basic sets: ordinary, affine and indefinite classes. The last class, which has not been enough explored in literature, is shown to share most of properties of ordinary and affine super-QFT4s. This includes, amongst others, its embedding in type II string on local Calabi-Yau threefolds. We give realizations of these supersymmetric QFT4s as D-brane world volume gauge theories. A special interest is devoted to hyperbolic subset for its peculiar features and for the role it plays in type IIB background with non-zero axion. We also study RG flows and duality cascades in case of hyperbolic quiver theories. Comments regarding the full indefinite sector are made
Light Cone 2017 : Frontiers in Light Front Hadron Physics : Theory and Experiment.
2018-01-01
LC2017 belongs to a series of Light-Cone conferences, which started in 1991. Light Cone conferences are held each year under the auspices of the International Light Cone Advisory Committee (ILCAC) (http://www.ilcacinc.org). The main objective of the Light Cone conference series is to provide a timely update of the progress in light-front theory and its phenomenological applications. Light-front theory provides a suitable framework to calculate observables such as scattering amplitudes, decay rates, spin effects, parton distributions, and other hadronic observables. One of the themes of the conference will be the interface between theory and experiment in hadron physics. The main topics of the program are: o Hadron Physics at present and future colliders o Light Front Field Theory in QED and QCD o AdS/QCD, D Branes and Strings o Hadron Structure : TMDs, GPDs and PDFs o Lattice QCD o QCD at high temperature and density o Higher order QCD corrections
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Travis; Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)
2017-02-22
We study the dynamics of gravitational lumps. By a lump, we mean a metric configuration that asymptotes to a flat space-time. Such lumps emerge in string theory as strong coupling descriptions of D-branes. We provide a physical argument that the broken global symmetries of such a background, generated by certain large diffeomorphisms, constrain the dynamics of localized modes. These modes include the translation zero modes and any localized tensor modes. The constraints we find are gravitational analogues of those found in brane physics. For the example of a Taub-NUT metric in eleven-dimensional supergravity, we argue that a critical value for the electric field arises from standard gravity without higher derivative interactions.
Massive quiver matrix models for massive charged particles in AdS
Energy Technology Data Exchange (ETDEWEB)
Asplund, Curtis T.; Denef, Frederik [Department of Physics, Columbia University,538 West 120th Street, New York, New York 10027 (United States); Dzienkowski, Eric [Department of Physics, Broida Hall, University of California Santa Barbara,Santa Barbara, California 93106 (United States)
2016-01-11
We present a new class of N=4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can be obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.
Non-abelian action of D0-branes from Matrix theory in the longitudinal 5-brane background
International Nuclear Information System (INIS)
Asano, Masako; Sekino, Yasuhiro
2002-01-01
We study one-loop effective action of Berkooz-Douglas Matrix theory and obtain non-abelian action of D0-branes in the background field produced by longitudinal 5-branes. Since these 5-branes do not have D0-brane charge and are not present in BFSS Matrix theory, our analysis provides an independent test for the coupling of D-branes to general weak backgrounds proposed by Taylor and Van Raamsdonk from the analysis of the BFSS model. The proposed couplings appear in the Berkooz-Douglas effective action precisely as expected, which suggests the consistency of the two matrix models. We also point out the existence of the terms which are not given by the symmetrized trace prescription in the Matrix theory effective action
U(1) mediation of flux supersymmetry breaking
Grimm, Thomas W.; Klemm, Albrecht
2008-10-01
We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with Script N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kähler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.
A string realisation of Ω-deformed Abelian N=2⁎ theory
Directory of Open Access Journals (Sweden)
Carlo Angelantonj
2017-10-01
Full Text Available The N=2⁎ supersymmetric gauge theory is a massive deformation of N=4, in which the adjoint hypermultiplet gets a mass. We present a D-brane realisation of the (non-Abelian N=2⁎ theory, and compute suitable topological amplitudes, which are expressed as a double series expansion. The coefficients determine couplings of higher-dimensional operators in the effective supergravity action that involve powers of the anti-self-dual N=2 chiral Weyl superfield and of self-dual gauge field strengths superpartners of the D5-brane coupling modulus. In the field theory limit, the result reproduces the Nekrasov partition function in the two-parameter Ω-background, in agreement with a recent proposal.
Exactly soluble dynamics of (p,q) string near macroscopic fundamental strings
International Nuclear Information System (INIS)
Bak, Dongsu; Rey, Soojong; Yee, Houng
2004-01-01
We study dynamics of type-IIB bound-state of a Dirichlet string and n fundamental strings in the background of N fundamental strings. Because of supergravity potential, the bound-state string is pulled to the background fundamental strings, whose motion is described by open string rolling radion field. The string coupling can be made controllably weak and, in the limit 1 2 st n 2 st N, the bound-state energy involved is small compared to the string scale. We thus propose rolling dynamics of open string radion in this system as an exactly solvable analog for rolling dynamics of open string tachyon in decaying D-brane. The dynamics bears a novel feature that the worldsheet electric field increases monotonically to the critical value as the bound-state string falls into the background string. Close to the background string, D string constituent inside the bound-state string decouples from fundamental string constituents. (author)
Deformation of the cubic open string field theory
Energy Technology Data Exchange (ETDEWEB)
Lee, Taejin, E-mail: taejin@kangwon.ac.kr
2017-05-10
We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.
Deformation of the cubic open string field theory
Directory of Open Access Journals (Sweden)
Taejin Lee
2017-05-01
Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.
String completion of an SU(3c⊗SU(3L⊗U(1X electroweak model
Directory of Open Access Journals (Sweden)
Andrea Addazi
2016-08-01
Full Text Available The extended electroweak SU(3c⊗SU(3L⊗U(1X symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (unoriented open strings, on Calabi–Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron–antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.
Classical hair in string theory. II. Explicit calculations
International Nuclear Information System (INIS)
Larsen, F.
1997-01-01
For pt.I see ibid., vol.475, p.627-44, 1996. After emphasizing the importance of obtaining a space-time understanding of black hole entropy, we further elaborate our program to identify the degrees of freedom of black holes with classical space-time degrees of freedom. The Cvetic-Youm dyonic black holes are discussed in some detail as an example. In this example hair degrees of freedom transforming as an effective string can be identified explicitly. We discuss issues concerning charge quantization, identification of winding, and tension renormalization that arise in counting the associated degrees of freedom. The possibility of other forms of hair in this example, and the prospects for making contact with D-brane ideas, are briefly considered. (orig.)
Spectral function and quark diffusion constant in non-critical holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Bu Yanyan, E-mail: yybu@itp.ac.cn [Institute of Theoretical Physics, Academia Sinica, Beijing 100190 (China); Yang Jinmin, E-mail: jmyang@itp.ac.cn [Institute of Theoretical Physics, Academia Sinica, Beijing 100190 (China)
2012-02-11
Motivated by recent studies of intersecting D-brane systems in critical string theory and phenomenological AdS/QCD models, we present a detailed analysis for the vector and scalar fluctuations in a non-critical holographic QCD model in the high temperature phase, i.e., the chiral symmetric phase. This model is described by N{sub f} pairs of D4 and D4{sup Macron} probe branes in a non-critical AdS{sub 6} black hole background. Focusing on the hydrodynamic as well as the high frequency limit, we analytically obtain spectral functions for vector and scalar modes on the flavor probe. Then we extract the light quark diffusion constant for flavor current using three different methods and find that different methods give the same results. We also compute the heavy quark diffusion constant for comparison with the light quark case.
Forcella, Davide; He, Yang-Hui; Zaffaroni, Alberto
2008-01-01
Supersymmetric gauge theories have an important but perhaps under-appreciated notion of a master space, which controls the full moduli space. For world-volume theories of D-branes probing a Calabi-Yau singularity X the situation is particularly illustrative. In the case of one physical brane, the master space F is the space of F-terms and a particular quotient thereof is X itself. We study various properties of F which encode such physical quantities as Higgsing, BPS spectra, hidden global symmetries, etc. Using the plethystic program we also discuss what happens at higher number N of branes. This letter is a summary and some extensions of the key points of a longer companion paper arXiv:0801.1585.
Conference on Strings, Duality, and Geometry
Phong, Duong; Yau, Shing-Tung; Mirror Symmetry IV
2002-01-01
This book presents contributions of participants of a workshop held at the Centre de Recherches Mathématiques (CRM), University of Montréal. It can be viewed as a sequel to Mirror Symmetry I (1998), Mirror Symmetry II (1996), and Mirror Symmetry III (1999), copublished by the AMS and International Press. The volume presents a broad survey of many of the noteworthy developments that have taken place in string theory, geometry, and duality since the mid 1990s. Some of the topics emphasized include the following: Integrable models and supersymmetric gauge theories; theory of M- and D-branes and noncommutative geometry; duality between strings and gauge theories; and elliptic genera and automorphic forms. Several introductory articles present an overview of the geometric and physical aspects of mirror symmetry and of corresponding developments in symplectic geometry. The book provides an efficient way for a very broad audience of mathematicians and physicists to explore the frontiers of research into this rapi...
A string realisation of Ω-deformed Abelian N =2* theory
Angelantonj, Carlo; Antoniadis, Ignatios; Samsonyan, Marine
2017-10-01
The N =2* supersymmetric gauge theory is a massive deformation of N = 4, in which the adjoint hypermultiplet gets a mass. We present a D-brane realisation of the (non-)Abelian N =2* theory, and compute suitable topological amplitudes, which are expressed as a double series expansion. The coefficients determine couplings of higher-dimensional operators in the effective supergravity action that involve powers of the anti-self-dual N = 2 chiral Weyl superfield and of self-dual gauge field strengths superpartners of the D5-brane coupling modulus. In the field theory limit, the result reproduces the Nekrasov partition function in the two-parameter Ω-background, in agreement with a recent proposal.
Intersection spaces, spatial homology truncation, and string theory
Banagl, Markus
2010-01-01
Intersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest to homotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.
The enhancon mechanism in string theory
International Nuclear Information System (INIS)
Jarv, Laur
2002-01-01
The enhancon mechanism is a specific phenomenon in string theory which resolves a certain naked spacetime singularity arising in the supergravity description related to N = 2 supersymmetric pure gauge theory. After reviewing the problem of singularities in general relativity as well as in string theory, and discussing the prototypical enhancon example constructed by wrapping D6-branes on a K3 surface, the thesis presents three generalisations to this static spherically symmetric case pertaining to large N SU(N) gauge theory. First we will use orientifolds to show how the enhancon mechanism also works in similar situations related to SO(2N+1), USp(2N) and SO(2N) gauge theories. Second we will wrap D-brane distributions on K3 to obtain the enhancon in oblate, toroidal and prolate shapes. Third we will study a rotating enhancon configuration and consider its implications for the black hole entropy and the second law of thermodynamics. (author)
A non-supersymmetric open-string theory and S-duality
International Nuclear Information System (INIS)
Bergman, O.; Gaberdiel, M.R.
1997-01-01
A non-supersymmetric ten-dimensional open-string theory is constructed as an orbifold of type I string theory, and as an orientifold of the bosonic type B theory. It is purely bosonic, and cancellation of massless tadpoles requires the gauge group to be SO(32) x SO(32). The spectrum of the theory contains a closed-string tachyon, and open-string tachyons in the (32,32) multiplet. The D-branes of this theory are analyzed, and it is found that the massless excitations of one of the 1-branes coincide with the world-sheet degrees of freedom of the D=26 bosonic string theory compactified on the SO(32) lattice. This suggests that the two theories are related by S-duality. (orig.)
One-loop Pfaffians and large-field inflation in string theory
Energy Technology Data Exchange (ETDEWEB)
Ruehle, Fabian, E-mail: fabian.ruehle@physics.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, Oxford University, 1 Keble Road, Oxford, OX1 3NP (United Kingdom); Wieck, Clemens, E-mail: clemens.wieck@uam.es [Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)
2017-06-10
We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.
Overproduction of cosmic superstrings
International Nuclear Information System (INIS)
Barnaby, Neil; Berndsen, Aaron; Cline, James M.; Stoica, Horace
2005-01-01
We show that the naive application of the Kibble mechanism seriously underestimates the initial density of cosmic superstrings that can be formed during the annihilation of D-branes in the early universe, as in models of brane-antibrane inflation. We study the formation of defects in effective field theories of the string theory tachyon both analytically, by solving the equation of motion of the tachyon field near the core of the defect, and numerically, by evolving the tachyon field on a lattice. We find that defects generically form with correlation lengths of order M s -1 rather than H -1 . Hence, defects localized in extra dimensions may be formed at the end of inflation. This implies that brane-antibrane inflation models where inflation is driven by branes which wrap the compact manifold may have problems with overclosure by cosmological relics, such as domain walls and monopoles
Non-perturbative transitions among intersecting-brane vacua
Angelantonj, Carlo; Dudas, Emilian; Pradisi, Gianfranco; 10.1007/JHEP07(2011)123
2011-01-01
We investigate the transmutation of D-branes into Abelian magnetic backgrounds on the world-volume of higher-dimensional branes, within the framework of global models with compact internal dimensions. The phenomenon, T-dual to brane recombination in the intersecting-brane picture, shares some similarities to inverse small-instanton transitions in non-compact spaces, though in this case the Abelian magnetic background is a consequence of the compactness of the internal manifold, and is not ascribed to a zero-size non-Abelian instanton growing to maximal size. We provide details of the transition in various supersymmetric orientifolds and non-supersymmetric tachyon-free vacua with Brane Supersymmetry Breaking, both from brane recombination and from a field theory Higgs mechanism viewpoints.
On the central charge extension of the N=4 SYM spin chain
International Nuclear Information System (INIS)
Berenstein, David
2015-01-01
In this paper it is argued that the central charge extension of the Coulomb branch of N=4 SYM theory appears as a limit of Beisert’s central charge extension of the planar N=4 spin chain in the presence of boundaries. These boundaries are interpreted as D-branes that source the central charge and are realized as giant gravitons and dual giant gravitons in the AdS dual. The BPS states that correspond to short representations of the centrally extended algebra on the spin chain can stop from existing when they cross walls of stability that depend on the position of the branes. These walls can be understood easily at weak coupling in the SU(2) sector.
U(1) mediation of flux supersymmetry breaking
International Nuclear Information System (INIS)
Grimm, Thomas W.; Klemm, Albrecht
2008-01-01
We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kaehler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.
Basic Concepts of String Theory
Blumenhagen, Ralph; Theisen, Stefan
2013-01-01
The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.
Note on the extended noncommutativity of coordinates
International Nuclear Information System (INIS)
Boulahoual, Amina; Sedra, My. Brahim
2001-04-01
We present in this short note an idea about a possible extension of the standard noncommutative algebra to the formal differential operators framework. In this sense, we develop an analysis and derive an extended noncommutative algebra given by [x a , x b ] * =i(θ+χ) ab where θ ab , is the standard noncommutative parameter and χ ab (x)≡χ ab μ (x)δ μ =1/2(x a θ μ b -x b θ a )δ μ is an antisymmetric non-constant vector-field shown to play the role of the extended deformation parameter. This idea was motivated by the importance of noncommutative geometry framework in the current subject of D-brane and matrix theory physics. (author)
Holographic duals of Kaluza-Klein black holes
International Nuclear Information System (INIS)
Azeyanagi, Tatsuo; Ogawa, Noriaki; Terashima, Seiji
2009-01-01
We apply Brown-Henneaux's method to the 5D extremal rotating Kaluza-Klein black holes essentially following the calculation of the Kerr/CFT correspondence, which is not based on supersymmetry nor string theory. We find that there are two completely different Virasoro algebras that can be obtained as the asymptotic symmetry algebras according to appropriate boundary conditions. The microscopic entropies are calculated by using the Cardy formula for both boundary conditions and they perfectly agree with the Bekenstein-Hawking entropy. The rotating Kaluza-Klein black holes contain a 4D dyonic Reissner-Nordstroem black hole and Myers-Perry black hole. Since the D-brane configurations corresponding to these black holes are known, we expect that our analysis will shed some light on deeper understanding of chiral CFT 2 's dual to extremal black holes.
Supersymmetric probes on the conifold
International Nuclear Information System (INIS)
Arean, Daniel; Crooks, David E.; Ramallo, Alfonso V.
2004-01-01
We study the supersymmetric embeddings of different D-brane probes in the AdS 5 xT 1,1 geometry. The main tool employed is kappa symmetry and the cases studied include D3-, D5- and D7-branes. We find a family of three-cycles of the T 1,1 space over which a D3-brane can be wrapped supersymmetrically and we determine the field content of the corresponding gauge theory duals. Supersymmetric configurations of D5-branes wrapping a two-cycle and of spacetime filling D7-branes are also found. The configurations in which the entire T 1,1 space is wrapped by a D5-brane (baryon vertex) and a D7-brane are also studied. Some other embeddings which break supersymmetry but are nevertheless stable are also determined. (author)
Introduction to string theory and string compactifications
International Nuclear Information System (INIS)
GarcIa-Compean, Hugo
2005-01-01
Basics of some topics on perturbative and non-perturbative string theory are reviewed. After a mathematical survey of the Standard Model of particle physics and GUTs, the bosonic string kinematics for the free case and with interaction is described. The effective action of the bosonic string and the spectrum is also discussed. T-duality in closed and open strings and the definition of D-brane are surveyed. Five perturbative superstring theories and their spectra is briefly outlined. Calabi-Yau three-fold compactifications of heterotic strings and their relation to some four-dimensional physics are given. Finally, non-perturbative issues like S-duality, M-theory and F-theory are also reviewed
The supersymmetric flavour problem in 5D GUTs and its consequences for LHC phenomenology
International Nuclear Information System (INIS)
Bruemmer, F.; Fichet, S.; Kraml, S.
2011-09-01
We study supersymmetric models with a GUT-sized extra dimension, where both the Higgs fields and the SUSY breaking hidden sector are localized on a 4D brane. Exponential wave function profiles of the matter fields give rise to hierarchical structures in the Yukawa couplings and soft terms. Such structures can naturally explain hierarchical fermion masses and mixings, while at the same time alleviating the supersymmetric flavour problem. We discuss two sources of supersymmetry breaking, radion mediation and brane fields, and perform a detailed numerical analysis, thoroughly taking into account the proliferation of unknown O(1) coefficients that occurs in this class of models. It turns out that additional assumptions on supersymmetry breaking are necessary to evade the stringent experimental bounds on lepton flavour violation. The favourable regions of parameter space are then examined with regards to their LHC phenomenology. They generically feature heavy gluinos and squarks beyond current bounds. Lepton flavour violation in SUSY cascade decays can give interesting signatures. (orig.)
The supersymmetric flavour problem in 5D GUTs and its consequences for LHC phenomenology
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fichet, S.; Kraml, S. [CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie
2011-09-15
We study supersymmetric models with a GUT-sized extra dimension, where both the Higgs fields and the SUSY breaking hidden sector are localized on a 4D brane. Exponential wave function profiles of the matter fields give rise to hierarchical structures in the Yukawa couplings and soft terms. Such structures can naturally explain hierarchical fermion masses and mixings, while at the same time alleviating the supersymmetric flavour problem. We discuss two sources of supersymmetry breaking, radion mediation and brane fields, and perform a detailed numerical analysis, thoroughly taking into account the proliferation of unknown O(1) coefficients that occurs in this class of models. It turns out that additional assumptions on supersymmetry breaking are necessary to evade the stringent experimental bounds on lepton flavour violation. The favourable regions of parameter space are then examined with regards to their LHC phenomenology. They generically feature heavy gluinos and squarks beyond current bounds. Lepton flavour violation in SUSY cascade decays can give interesting signatures. (orig.)
One-loop adjoint masses for non-supersymmetric intersecting branes
Energy Technology Data Exchange (ETDEWEB)
Anastasopoulos, P. [Technische Univ., Vienna (Austria). 1. Inst. fuer Theoretische Physik; Antoniadis, I. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Benakli, K. [CNRS, UPMC Univ. Paris (France). Lab. de Physique Theorique et Haute Energies; Goodsell, M.D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vichi, A. [Institute de Theorie des Phenomenes Physiques, EPFL, Lausanne (Switzerland)
2011-05-15
We consider breaking of supersymmetry in intersecting D-brane configurations by slight deviation of the angles from their supersymmetric values. We compute the masses generated by radiative corrections for the adjoint scalars on the brane world-volumes. In the open string channel, the string two-point function receives contributions only from the infrared and the ultraviolet limits. The latter is due to tree-level closed string uncanceled NS-NS tadpoles, which we explicitly reproduce from the effective Born-Infeld action. On the other hand, the infrared region reproduces the one-loop mediation of supersymmetry breaking in the effective gauge theory, via messengers and their Kaluza-Klein excitations. In the toroidal set-up considered here, it receives contributions only from N {approx} 4 and N {approx} 2 supersymmetric configurations, and thus always leads at leading order to a tachyonic direction, in agreement with effective field theory expectations. (orig.)
Deformation of the cubic open string field theory
International Nuclear Information System (INIS)
Lee, Taejin
2017-01-01
We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.
Energy momentum tensor and marginal deformations in open string field theory
International Nuclear Information System (INIS)
Sen, Ashoke
2004-01-01
Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a co-dimension one D-brane. (author)
Experimental Signatures of Strings and Branes
Antoniadis, I.
2007-01-01
Type I string theory provides a D-brane world description of our universe and leads to two new scenaria for physics beyond the Standard Model: low string scale and plit supersymmetry. Lowering the string scale in the TeV region provides a heoretical framework for solving the mass hierarchy problem and unifymg all interactions. The apparent weakn'ess of gravity can then be accounted by the existence of large internal dimensions, in the submillimeter region, and transverse to a braneworld where we must be confined. I review the main properties of this scenario and its implications for observations at both particle cofiders, and in non-accelerator gravity experiments. I also review the main properties of split supersymmetry and present a concrete string realization which guarantees gauge coupling unification at the conventional scale $M_{GUT}\\approx2$ x $10^{16}$GeV.
Logarithmic unification from symmetries enhanced in the sub-millimeter infrared
International Nuclear Information System (INIS)
Arkani-Hamed, Nima; Dimopoulos, Savas; March-Russell, John
1999-01-01
In theories with TeV string scale and sub-millimeter extra dimensions the attractive picture of logarithmic gauge coupling unification at 10 16 GeV is seemingly destroyed. In this paper we argue to the contrary that logarithmic unification can occur in such theories. The rationale for unification is no longer that a gauge symmetry is restored at short distances, but rather that a geometric symmetry is restored at large distances in the bulk away from our 3-brane. The apparent ''running'' of the gauge couplings to energies far above the string scale actually arises from the logarithmic variation of classical fields in (sets of) two large transverse dimensions. We present a number of N = 2 and N = 1 supersymmetric D-brane constructions illustrating this picture for unification
Holographic butterfly velocities in brane geometry and Einstein-Gauss-Bonnet gravity with matters
Huang, Wung-Hong
2018-03-01
In the first part of the paper we generalize the butterfly velocity formula to anisotropic spacetime. We apply the formula to evaluate the butterfly velocities in M-branes, D-branes, and strings backgrounds. We show that the butterfly velocities in M2-branes, M5-branes and the intersection M 2 ⊥ M 5 equal to those in fundamental strings, D4-branes and the intersection F 1 ⊥ D 4 backgrounds, respectively. These observations lead us to conjecture that the butterfly velocity is generally invariant under a double-dimensional reduction. In the second part of the paper, we study the butterfly velocity for Einstein-Gauss-Bonnet gravity with arbitrary matter fields. A general formula is obtained. We use this formula to compute the butterfly velocities in different backgrounds and discuss the associated properties.
D3-brane shells to black branes on the Coulomb branch
International Nuclear Information System (INIS)
Giddings, Steven B.; Ross, Simon F.
2000-01-01
We use the AdS-CFT duality to study the special point on the Coulomb branch of N=4 SU(N) gauge theory which corresponds to a spherically symmetric shell of D3-branes. This point is of interest both because the spacetime region inside the shell is flat, and because this configuration gives a very simple example of the transition between D-branes in the perturbative string regime and the nonperturbative regime of black holes. We discuss how this geometry is described in the dual gauge theory, through its effect on the two-point functions and Wilson loops. In the calculation of the two-point function, we stress the importance of absorption by the branes. (c) 1999 The American Physical Society
Correspondence principle for black holes and strings
International Nuclear Information System (INIS)
Horowitz, G.T.; Polchinski, J.
1997-01-01
For most black holes in string theory, the Schwarzschild radius in string units decreases as the string coupling is reduced. We formulate a correspondence principle, which states that (i) when the size of the horizon drops below the size of a string, the typical black hole state becomes a typical state of strings and D-branes with the same charges, and (ii) the mass does not change abruptly during the transition. This provides a statistical interpretation of black hole entropy. This approach does not yield the numerical coefficient, but gives the correct dependence on mass and charge in a wide range of cases, including neutral black holes. copyright 1997 The American Physical Society
Noncommutative o*(N) and usp*(2N) algebras and the corresponding gauge field theories
International Nuclear Information System (INIS)
Bars, I.; Sheikh-Jabbari, M.M.; Vasiliev, M.A.
2001-03-01
The extension of the noncommutative u * (N) Lie algebra to noncommutative orthogonal and symplectic Lie algebras is studied. Using an anti-automorphism of the star-matrix algebra, we show that the u * (N) can consistently be restricted to o * (N) and usp * (N) algebras that have new mathematical structures. We give explicit fundamental matrix representations of these algebras, through which the formulation for the corresponding noncommutative gauge field theories are obtained. In addition, we present a D-brane configuration with an orientifold which realizes geometrically our algebraic construction, thus embedding the new noncommutative gauge theories in superstring theory in the presence of a constant background magnetic field. Some algebraic generalizations that may have applications in other areas of physics are also discussed. (author)
Some aspects of noncommutative integrable systems a la Moyal
International Nuclear Information System (INIS)
Dafounansou, O.; El Boukili, A.; Sedra, M.B.
2005-12-01
Besides its various applications in string and D-brane physics, the non commutativity of space (-time) coordinates, based on the *-product, behaves as a more general framework providing more mathematical and physical information about the associated system. Similar to the Gelfand-Dickey framework of pseudo differential operators, the non commutativity a la Moyal applied to physical problems makes the study more systematic. Using these facts, as well as the backgrounds of Moyal momentum algebra introduced in previous works, we look for the important task of studying integrability in the noncommutativity framework. The main focus is on the noncommutative version of the Lax representation of two principal examples: the noncommutative sl 2 KdV equation and the noncommutative version of Burgers systems. Important properties are presented. (author)
Oriented open-closed string theory revisited
International Nuclear Information System (INIS)
Zwiebach, B.
1998-01-01
String theory on D-brane backgrounds is open-closed string theory. Given the relevance of this fact, we give details and elaborate upon our earlier construction of oriented open-closed string field theory. In order to incorporate explicitly closed strings, the classical sector of this theory is open strings with a homotopy associative A ∞ algebraic structure. We build a suitable Batalin-Vilkovisky algebra on moduli spaces of bordered Ricmann surfaces, the construction of which involves a few subtleties arising from the open string punctures and cyclicity conditions. All vertices coupling open and closed strings through disks are described explicitly. Subalgebras of the algebra of surfaces with boundaries are used to discuss symmetries of classical open string theory induced by the closed string sector, and to write classical open string field theory on general closed string backgrounds. We give a preliminary analysis of the ghost-dilaton theorem. copyright 1998 Academic Press, Inc
Integrable open spin chains and the doubling trick in N = 2 SYM with fundamental matter
International Nuclear Information System (INIS)
Erler, Theodore G.; Mann, Nelia
2006-01-01
We demonstrate that the one-loop anomalous dimension matrix in N = 2 SYM with a single chiral hypermultiplet of fundamental matter, which is dual to AdS 5 x S 5 with a D7-brane filling AdS 5 and wrapped around an S 3 in the S 5 , is an integrable open spin chain Hamiltonian. We also use the doubling trick to relate these open spin chains to closed spin chains in pure N = 4 SYM. By using the AdS/CFT correspondence, we find a relation between the corresponding open and closed strings that differs from a simple doubling trick by terms that vanish in the semiclassical limit. We also demonstrate that in some cases the closed string is simpler and easier to study than the corresponding open string, and we speculate on the nature of corrections due to the presence of D-branes that this implies
UV / IR mixing in noncommutative field theory via open string loops
International Nuclear Information System (INIS)
Kiem, Youngjai; Lee, Sangmin
2000-01-01
We explicitly evaluate one-loop (annulus) planar and nonplanar open string amplitudes in the presence of the background NS-NS two-form field. In the decoupling limit of Seiberg and Witten, we find that the nonplanar string amplitudes reproduce the UV/IR mixing of noncommutative field theories. In particular, the investigation of the UV regime of the open string amplitudes shows that certain IR closed string degrees of freedom survive the decoupling limit as previously predicted from the noncommutative field theory analysis. These degrees of freedom are responsible for the quadratic, linear and logarithmic IR singularities when the D-branes embedded in space-time have the codimension zero, one and two, respectively. The analysis is given for both bosonic and supersymmetric open strings
Super jackstraws and super waterwheels
International Nuclear Information System (INIS)
Cho, Jin-Ho
2007-01-01
We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p, q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p, q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2, R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p, q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the 'critical' Born-Infeld electric fields are along the common direction
International Nuclear Information System (INIS)
Hirano, Shinji
2007-01-01
We consider a D-brane type state which shares the characteristic of the recently found giant magnon of Hofman and Maldacena. More specifically we find a bound state of giant graviton (D3-brane) and giant magnon (F-string), which has exactly the same anomalous dimension as that of the giant magnon. It is described by the D3-brane with electric flux which is topologically a S 3 elongated by the electric flux. The angular momentum and energy are infinite, but split sensibly into two parts-the infinite part precisely the same as that of the giant magnon and the finite part which can be identified as the contribution from the giant graviton. We discuss that the corresponding dual gauge theory operator is not a simple chain type but rather admixture of the (sub-)determinant and chain types
Tanii, Yoshiaki
2014-01-01
This book is a pedagogical introduction to supergravity, a gravitational field theory that includes supersymmetry (symmetry between bosons and fermions) and is a generalization of Einstein's general relativity. Supergravity provides a low-energy effective theory of superstring theory, which has attracted much attention as a candidate for the unified theory of fundamental particles, and it is a useful tool for studying non-perturbative properties of superstring theory such as D-branes and string duality. This work considers classical supergravities in four and higher spacetime dimensions with their applications to superstring theory in mind. More concretely, it discusses classical Lagrangians (or field equations) and symmetry properties of supergravities. Besides local symmetries, supergravities often have global non-compact symmetries, which play a crucial role in their applications to superstring theory. One of the main features of this book is its detailed discussion of these non-compact symmetries. The aim...
Matrix factorizations, minimal models and Massey products
International Nuclear Information System (INIS)
Knapp, Johanna; Omer, Harun
2006-01-01
We present a method to compute the full non-linear deformations of matrix factorizations for ADE minimal models. This method is based on the calculation of higher products in the cohomology, called Massey products. The algorithm yields a polynomial ring whose vanishing relations encode the obstructions of the deformations of the D-branes characterized by these matrix factorizations. This coincides with the critical locus of the effective superpotential which can be computed by integrating these relations. Our results for the effective superpotential are in agreement with those obtained from solving the A-infinity relations. We point out a relation to the superpotentials of Kazama-Suzuki models. We will illustrate our findings by various examples, putting emphasis on the E 6 minimal model
Wavefunctions on magnetized branes in the conifold
International Nuclear Information System (INIS)
Abe, Hiroyuki; Oikawa, Akane; Otsuka, Hajime
2016-01-01
We study wavefunctions on D7-branes with magnetic fluxes in the conifold. Since some supersymmetric embeddings of D-branes on the AdS_5×T"1","1 geometry are known, we consider one of the embeddings, especially the spacetime filling D7-branes in which (a part of) the standard model is expected to be realized. The explicit form of induced metric on the D7-branes allows us to solve the Laplace and Dirac equations to evaluate matter wavefunctions in extra dimensions analytically. We find that the zero-mode wavefunctions can be localized depending on the configuration of magnetic fluxes on D7-branes, and show some phenomenological aspects.
Global embeddings for branes at toric singularities
Balasubramanian, Vijay; Braun, Volker; García-Etxebarria, Iñaki
2012-01-01
We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) (dP0)^3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.
Little string origin of surface defects
Energy Technology Data Exchange (ETDEWEB)
Haouzi, Nathan; Schmid, Christian [Center for Theoretical Physics, University of California, Berkeley,LeConte Hall, Berkeley (United States)
2017-05-16
We derive a large class of codimension-two defects of 4d N=4 Super Yang-Mills (SYM) theory from the (2,0) little string. The origin of the little string is type IIB theory compactified on an ADE singularity. The defects are D-branes wrapping the 2-cycles of the singularity. We use this construction to make contact with the description of SYM defects due to Gukov and Witten https://arxiv.org/abs/hep-th/0612073. Furthermore, we provide a geometric perspective on the nilpotent orbit classification of codimension-two defects, and the connection to ADE-type Toda CFT. The only data needed to specify the defects is a set of weights of the algebra obeying certain constraints, which we give explicitly. We highlight the differences between the defect classification in the little string theory and its (2,0) CFT limit.
Basic concepts of string theory
International Nuclear Information System (INIS)
Blumenhagen, Ralph
2013-01-01
The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.
Left-right entanglement entropy of Dp-branes
Energy Technology Data Exchange (ETDEWEB)
Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Randall Laboratory of Physics,The University of Michigan,450 Church Street, Ann Arbor, MI 48109-1120 (United States); Quiroz, Norma [Departamento de Ciencias Exactas, Tecnología y Metodología,Centro Universitario del Sur, Universidad de Guadalajara,Enrique Arreola Silva 883, C.P. 49000, Cd. Guzmán, Jalisco (Mexico)
2016-11-04
We compute the left-right entanglement entropy for Dp-branes in string theory. We employ the CFT approach to string theory Dp-branes, in particular, its presentation as coherent states of the closed string sector. The entanglement entropy is computed as the von Neumann entropy for a density matrix resulting from integration over the left-moving degrees of freedom. We discuss various crucial ambiguities related to sums over spin structures and argue that different choices capture different physics; however, we advance a themodynamic argument that seems to favor a particular choice of replica. We also consider Dp branes on compact dimensions and verify that the effects of T-duality act covariantly on the Dp brane entanglement entropy. We find that generically the left-right entanglement entropy provides a suitable generalization of boundary entropy and of the D-brane tension.
Jost, Jürgen
2007-01-01
This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.
Geometric regularizations and dual conifold transitions
International Nuclear Information System (INIS)
Landsteiner, Karl; Lazaroiu, Calin I.
2003-01-01
We consider a geometric regularization for the class of conifold transitions relating D-brane systems on noncompact Calabi-Yau spaces to certain flux backgrounds. This regularization respects the SL(2,Z) invariance of the flux superpotential, and allows for computation of the relevant periods through the method of Picard-Fuchs equations. The regularized geometry is a noncompact Calabi-Yau which can be viewed as a monodromic fibration, with the nontrivial monodromy being induced by the regulator. It reduces to the original, non-monodromic background when the regulator is removed. Using this regularization, we discuss the simple case of the local conifold, and show how the relevant field-theoretic information can be extracted in this approach. (author)
International Nuclear Information System (INIS)
Shiu, Gary; Wang Liantao
2004-01-01
We study the properties and phenomenology of particlelike states originating from D branes whose spatial dimensions are all compactified. They are nonperturbative states in string theory and we refer to them as D matter. In contrast to other nonperturbative objects such as 't Hooft-Polyakov monopoles, D-matter states could have perturbative couplings among themselves and with ordinary matter. The lightest D particle (LDP) could be stable because it is the lightest state carrying certain (integer or discrete) quantum numbers. Depending on the string scale, they could be cold dark matter candidates with properties similar to that of WIMPs or wimpzillas. The spectrum of excited states of D matter exhibits an interesting pattern which could be distinguished from that of Kaluza-Klein modes, winding states, and string resonances. We speculate about possible signatures of D matter from ultrahigh energy cosmic rays and colliders
On the field/string theory approach to theta dependence in large N Yang-Mills theory
International Nuclear Information System (INIS)
Gabadadze, Gregory
1999-01-01
The theta dependence of the vacuum energy in large N Yang-Mills theory has been studied some time ago by Witten using a duality of large N gauge theories with the string theory compactified on a certain space-time. We show that within the field theory context vacuum fluctuations of the topological charge give rise to the vacuum energy consistent with the string theory computation. Furthermore, we calculate 1/N suppressed corrections to the string theory result. The reconciliation of the string and field theory approaches is based on the fact that the gauge theory instantons carry zerobrane charge in the corresponding D-brane construction of Yang-Mills theory. Given the formula for the vacuum energy we study certain aspects of stability of the false vacua of the model for different realizations of the initial conditions. The vacuum structure appears to be different depending on whether N is infinite or, alternatively, large but finite
Topological extensions of Noether charge algebras carried by Dp-branes
International Nuclear Information System (INIS)
Hammer, H.
1998-01-01
We derive an extension of the supersymmetry algebra carried by D-branes in a massless type IIA superspace vacuum. We find that the extended algebra contains not only topological charges that probe the presence of compact space-time dimensions but also pieces that measure non-trivial configurations of the gauge field on the world-volume of the brane. Furthermore there are terms that measure the coupling of the non-triviality of the world-volume regarded as a U(1) bundle of the gauge field to possible compact space-time dimensions. In particular, the extended algebra carried by the D2-brane can contain the charge of a Dirac monopole of the gauge field. In the course of this work we derive a set of generalized Gamma-matrix identities that include the ones presently known for the IIA case. In the first part of the paper we give an introduction to the basic notions of Noether current algebras and charge algebras; furthermore we find a theorem that describes in a general context how the presence of a gauge field on the world-volume of an embedded object transforming under the symmetry group on the target space alters the algebra of the Noether charges, which otherwise would be the same as the algebra of the symmetry group. This is a phenomenon recently found by Sorokin and Townsend in the case of the M5-brane, but here we show that it holds quite generally, and in particular also in the case of D-branes. (orig.)
Strings, Branes and Symmetries
International Nuclear Information System (INIS)
Westerberg, A.
1997-01-01
Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs
International Nuclear Information System (INIS)
Gopakumar, R.
2002-01-01
Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect
Three-dimensional N=6 superconformal field theories and their membrane dynamics
International Nuclear Information System (INIS)
Berenstein, David; Trancanelli, Diego
2008-01-01
We analyze several aspects of the recent construction of three-dimensional conformal gauge theories by Aharony et al. in various regimes. We pay special attention to understanding how the M-theory geometry and interpretation can be extracted from the analysis of the field theory. We revisit the calculations of the moduli space of vacua and the complete characterization of chiral ring operators by analyzing the field theory compactified on a 2-sphere. We show that many of the states dual to these operators can be interpreted as D-brane states in the weak-coupling limit. Also, various features of the dual AdS geometry can be obtained by performing a strong coupling expansion around moduli space configurations, even though one is not taking the planar expansion. In particular, we show that at strong coupling the corresponding weak-coupling D-brane states of the chiral ring localize on particular submanifolds of the dual geometry that match the M-theory interpretation. We also study the massive spectrum of fields in the moduli space. We use this to investigate the dispersion relation of giant magnons from the field theory point of view. Our analysis predicts the exact functional form of the dispersion relation as a function of the world sheet momentum, independently of integrability assumptions, but not the exact form with respect to the 't Hooft coupling. We also get the dispersion relation of bound states of giant magnons from first principles, providing evidence for the full integrability of the corresponding spin chain model at strong 't Hooft coupling.
Kinetic mixing of the photon with hidden U(1)s in string phenomenology
International Nuclear Information System (INIS)
Abel, S.A.; Khoze, V.V.; Jaeckel, J.
2008-03-01
Embeddings of the standard model in type II string theory typically contain a variety of U(1) gauge factors arising from D-branes in the bulk. In general, there is no reason why only one of these - the one corresponding to weak hypercharge - should be massless. Observations require that standard model particles must be neutral (or have an extremely small charge) under additional massless U(1)s, i.e. the latter have to belong to a so called hidden sector. The exchange of heavy messengers, however, can lead to a kinetic mixing between the hypercharge and the hidden-sector U(1)s, that is testable with near future experiments. This provides a powerful probe of the hidden sectors and, as a consequence, of the string theory realisation itself. In the present paper, we show, using a variety of methods, how the kinetic mixing can be derived from the underlying type II string compactification, involving supersymmetric and nonsupersymmetric configurations of D-branes, both in large volumes and in warped backgrounds with fluxes. We first demonstrate by explicit example that kinetic mixing occurs in a completely supersymmetric set-up where we can use conformal field theory techniques. We then develop a supergravity approach which allows us to examine the phenomenon in more general backgrounds, where we find that kinetic mixing is natural in the context of flux compactifications. We discuss the phenomenological consequences for experiments at the low-energy frontier, searching for signatures of light, sub-electronvolt or even massless hidden-sector U(1) gauge bosons and minicharged particles. (orig.)
Kinetic mixing of the photon with hidden U(1)s in string phenomenology
Energy Technology Data Exchange (ETDEWEB)
Abel, S.A.; Khoze, V.V. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Goodsell, M.D. [Laboratoire de Physique Theorique et Hautes Energies, Paris (France); Jaeckel, J. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology]|[Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2008-03-15
Embeddings of the standard model in type II string theory typically contain a variety of U(1) gauge factors arising from D-branes in the bulk. In general, there is no reason why only one of these - the one corresponding to weak hypercharge - should be massless. Observations require that standard model particles must be neutral (or have an extremely small charge) under additional massless U(1)s, i.e. the latter have to belong to a so called hidden sector. The exchange of heavy messengers, however, can lead to a kinetic mixing between the hypercharge and the hidden-sector U(1)s, that is testable with near future experiments. This provides a powerful probe of the hidden sectors and, as a consequence, of the string theory realisation itself. In the present paper, we show, using a variety of methods, how the kinetic mixing can be derived from the underlying type II string compactification, involving supersymmetric and nonsupersymmetric configurations of D-branes, both in large volumes and in warped backgrounds with fluxes. We first demonstrate by explicit example that kinetic mixing occurs in a completely supersymmetric set-up where we can use conformal field theory techniques. We then develop a supergravity approach which allows us to examine the phenomenon in more general backgrounds, where we find that kinetic mixing is natural in the context of flux compactifications. We discuss the phenomenological consequences for experiments at the low-energy frontier, searching for signatures of light, sub-electronvolt or even massless hidden-sector U(1) gauge bosons and minicharged particles. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Gopakumar, R [Harish-Chandra Research Institute, Jhusi, Allahabad (India)
2002-05-15
Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect.
Geometry and physics of branes
Energy Technology Data Exchange (ETDEWEB)
Gal' tsov, D V
2003-03-21
The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two
Geometry and physics of branes
International Nuclear Information System (INIS)
Gal'tsov, D V
2003-01-01
The book brings together the contents of lecture courses delivered at the school 'Geometry and Physics of Branes' which took place at the Center 'Alessandro Volta' (Como, Italy) in the spring of 2001. The purpose of the school was to provide an introduction to some lines of research, related to the notion of branes in superstring theory, which are in the focus of attention both in the physical and mathematical communities. The book is structured into three parts: the first contains an elementary introduction to branes, the second is devoted to physical aspects (conformal field theory on open and unoriented surfaces and topics in string tachyon dynamics), and the last contains some more formal mathematical developments. An introduction to branes is given in a remarkably lucid contribution by A Lerda. It opens with a construction of p-brane solutions in classical IIA and IIB supergravities with particular emphasis on the 'fundamental string' solution, the NS5-brane and the D3-brane. Then, the quantum description of D-branes is discussed in terms of boundary states of the closed superstring, which is an alternative to the more common description in terms of open strings with Dirichlet boundary conditions in the transverse to the brane directions. When a constant gauge field is present in the D-brane worldvolume, the boundary states are coherent states of the string oscillators depending on the field strength tensor. The couplings of the brane to the bulk fields - the graviton, the dilaton, and the Kalb-Ramond fields - are then extracted and shown to be precisely the ones that are produced by the Dirac-Born-Infeld action governing the low-energy dynamics of the D-brane derived using the open strings formalism. It is also shown that in the classical limit, the boundary states correctly reproduce the parameters of the corresponding classical solutions. The second part of the book starts with a contribution by Y S Stanev devoted to the two-dimensional conformal field
Superstrings, conformal field theories and holographic duality
International Nuclear Information System (INIS)
Benichou, R.
2009-06-01
The first half of this work is dedicated to the study of non-compact Gepner models.The Landau-Ginzburg description provides an easy and direct access to the geometry of the singularity associated to the non-compact Gepner models. Using these tools, we are able to give an intuitive account of the chiral rings of the models, and of the massless moduli in particular. By studying orbifolds of the singular linear dilaton models, we describe mirror pairs of non-compact Gepner models by suitably adapting the Greene-Plesser construction of mirror pairs for the compact case. For particular models, we take a large level, low curvature limit in which we can analyze corrections to a flat space orbifold approximation of the non-compact Gepner models. We have also studied bound states in N=2 Liouville theory with boundary and deep throat D-branes. We have shown that the bound states can give rise to massless vector and hyper multiplets in a low-energy gauge theory on D-branes deep inside the throat. The second half of this work deals with the issue of the quantization of the string in the presence of Ramond-Ramond backgrounds. Using the pure spinor formalism on the world-sheet, we derive the T-duality rules for all target space couplings in an efficient manner. The world-sheet path integral derivation is a proof of the equivalence of the T-dual Ramond-Ramond backgrounds which is valid non-perturbatively in the string length over the curvature radius and to all orders in perturbation theory in the string coupling. Sigma models on supergroup manifolds are relevant for quantifying string in various Anti-de-Sitter space-time with Ramond-Ramond backgrounds. We show that the conformal current algebra is realized in non-linear sigma models on supergroup manifolds with vanishing dual Coxeter number, with or without a Wess-Zumino term. The current algebra is computed. We also prove that these models realize a non-chiral Kac-Moody algebra and construct an infinite set of commuting
Dirac operators on coset spaces
International Nuclear Information System (INIS)
Balachandran, A.P.; Immirzi, Giorgio; Lee, Joohan; Presnajder, Peter
2003-01-01
The Dirac operator for a manifold Q, and its chirality operator when Q is even dimensional, have a central role in noncommutative geometry. We systematically develop the theory of this operator when Q=G/H, where G and H are compact connected Lie groups and G is simple. An elementary discussion of the differential geometric and bundle theoretic aspects of G/H, including its projective modules and complex, Kaehler and Riemannian structures, is presented for this purpose. An attractive feature of our approach is that it transparently shows obstructions to spin- and spin c -structures. When a manifold is spin c and not spin, U(1) gauge fields have to be introduced in a particular way to define spinors, as shown by Avis, Isham, Cahen, and Gutt. Likewise, for manifolds like SU(3)/SO(3), which are not even spin c , we show that SU(2) and higher rank gauge fields have to be introduced to define spinors. This result has potential consequences for string theories if such manifolds occur as D-branes. The spectra and eigenstates of the Dirac operator on spheres S n =SO(n+1)/SO(n), invariant under SO(n+1), are explicitly found. Aspects of our work overlap with the earlier research of Cahen et al
Corfu lectures on wall-crossing, multi-centered black holes, and quiver invariants
Pioline, Boris
2013-01-01
The BPS state spectrum in four-dimensional gauge theories or string vacua with N=2 supersymmetries is well known to depend on the values of the parameters or moduli at spatial infinity. The BPS index is locally constant, but discontinuous across real codimension-one walls where some of the BPS states decay. By postulating that BPS states are bound states of more elementary constituents carrying their own degrees of freedom and interacting via supersymmetric quantum mechanics, we provide a physically transparent derivation of the universal wall-crossing formula which governs the jump of the index. The same physical picture suggests that at any point in moduli space, the total index can be written as a sum of contributions from all possible bound states of elementary, absolutely stable constituents with the same total charge. For D-brane bound states described by quivers, this `Coulomb branch formula' predicts that the cohomology of quiver moduli spaces is uniquely determined by certain `pure-Higgs' invariants,...
Dvali, Gia
2009-01-01
We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...
Brans-Dicke inflation in light of the Planck 2015 data
Energy Technology Data Exchange (ETDEWEB)
Tahmasebzadeh, B. [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of); Rezazadeh, K.; Karami, K., E-mail: b.tahmasebzadeh@iasbs.ac.ir, E-mail: rezazadeh86@gmail.com, E-mail: kkarami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., P.O. Box 66177-15175, Sanandaj (Iran, Islamic Republic of)
2016-07-01
We study inflation in the Brans-Dicke gravity as a special model of the scalar-tensor gravity. We obtain the inflationary observables containing the scalar spectral index, the tensor-to-scalar ratio, the running of the scalar spectral index and the equilateral non-Gaussianity parameter in terms of the general form of the potential in the Jordan frame. Then, we compare the results for various inflationary potentials in light of the Planck 2015 data. Our study shows that in the Brans-Dicke gravity, the power-law, inverse power-law and exponential potentials are ruled out by the Planck 2015 data. But, the hilltop, Higgs, Coleman-Weinberg and natural potentials can be compatible with Planck 2015 TT,TE,EE+lowP data at 95% CL. Moreover, the D-brane, SB SUSY and displaced quadratic potentials can be in well agreement with the observational data since their results can lie inside the 68% CL region of Planck 2015 TT,TE,EE+lowP data.
Energy Technology Data Exchange (ETDEWEB)
Fidanza, St
2003-11-15
In the first chapter (titled: non-commutative D-branes), we show that the B anti-symmetrical background fields can be embedded in the non-commutativity of branes and can distort gauge theories that branes convey. We know how to describe this transformation in the Abelian case thanks to the Kontsevic quantification formula. Moreover this formula combined to the Seiberg-Witter transformation allows one to compute more rapidly the explicit terms. For the non-Abelian case the situation is less clear. In the chapter 2 (titled: non-Abelian M5-branes), we have tackled the issue of the fields of a packet of N M5-branes. The direct approach based on a 6 dimensional super-symmetric multiplets has led to a stunning dead end, we have not been able to reproduce the expected anomaly in N{sup 3}. We have presented in a unified manner different gauge theories. We have shown that we can get a number of freedom degrees in the magnitude order of N{sup 3} from computations based on geometrical configurations of M2 membranes. In the chapter 3 (titled: systematizing mirror symmetry) we have shown that if the presence of a non-trivial Neveu-Schwarz flux constrains the compactification manifold geometry to shift from the Calabi-Yau case, we can yet specify a mirror symmetry that mixes geometry and background fields. (A.C.)
Meson widths from string worldsheet instantons
International Nuclear Information System (INIS)
Faulkner, Thomas; Liu, Hong
2009-01-01
We show that open strings living on a D-brane which lies outside an AdS black hole can tunnel into the black hole through worldsheet instantons. These instantons have a simple interpretation in terms of thermal quarks in the dual Yang-Mills (YM) theory. As an application we calculate the width of a meson in a strongly coupled quark-gluon plasma which is described holographically as a massless mode on a D7 brane in AdS 5 xS 5 . While the width of the meson is zero to all orders in the 1/√(λ) expansion with λ the 't Hooft coupling, it receives non-perturbative contributions in 1/√(λ) from worldsheet instantons. We find that the width increases quadratically with momentum at large momentum and comment on potential phenomenological implications of this enhancement for heavy ion collisions. We also comment on how this non-perturbative effect has important consequences for the phase structure of the YM theory obtained in the classical gravity limit
Nonlocal String Theories on AdS3 x S3 and Stable Non-Supersymmetric Backgrounds
International Nuclear Information System (INIS)
Silverstein, Eva M
2002-01-01
We exhibit a simple class of exactly marginal ''double-trace'' deformations of two dimensional CFTs which have AdS 3 duals, in which the deformation is given by a product of left and right-moving U(1) currents. In this special case the deformation on AdS 3 is generated by a local boundary term in three dimensions, which changes the physics also in the bulk via bulk-boundary propagators. However, the deformation is non-local in six dimensions and on the string worldsheet, like generic non-local string theories (NLSTs). Due to the simplicity of the deformation we can explicitly make computations in the non-local string theory and compare them to CFT computations, and we obtain precise agreement. We discuss the effect of the deformation on closed strings and on D-branes. The examples we analyze include a supersymmetry-breaking but exactly marginal ''double-trace'' deformation, which is dual to a string theory in which no destabilizing tadpoles are generated for moduli nonperturbatively in all couplings, despite the absence of supersymmetry. We explain how this cancellation works on the gravity side in string perturbation theory, and also non-perturbatively at leading order in the deformation parameter. We also discuss possible flat space limits of our construction
Stringy origin of diboson and dijet excesses at the LHC
Anchordoqui, Luis A; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R
2015-01-01
Very recently, the ATLAS and CMS collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8 -2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W^+W^- pairs are strongly constrained by semileptonic searches. We show that both the diboson and dijet excesses can be steered by an anomalous U(1) field with very small coupling to leptons. The Drell-Yan bounds are then readily avoided because of the leptophobic nature of the massive Z' gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau-Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string t...
Brans-Dicke inflation in light of the Planck 2015 data
International Nuclear Information System (INIS)
Tahmasebzadeh, B.; Rezazadeh, K.; Karami, K.
2016-01-01
We study inflation in the Brans-Dicke gravity as a special model of the scalar-tensor gravity. We obtain the inflationary observables containing the scalar spectral index, the tensor-to-scalar ratio, the running of the scalar spectral index and the equilateral non-Gaussianity parameter in terms of the general form of the potential in the Jordan frame. Then, we compare the results for various inflationary potentials in light of the Planck 2015 data. Our study shows that in the Brans-Dicke gravity, the power-law, inverse power-law and exponential potentials are ruled out by the Planck 2015 data. But, the hilltop, Higgs, Coleman-Weinberg and natural potentials can be compatible with Planck 2015 TT,TE,EE+lowP data at 95% CL. Moreover, the D-brane, SB SUSY and displaced quadratic potentials can be in well agreement with the observational data since their results can lie inside the 68% CL region of Planck 2015 TT,TE,EE+lowP data.
Energy Technology Data Exchange (ETDEWEB)
Araujo, T.; O Colgain, E. [Asia Pacific Center for Theoretical Physics, Pohang (Korea, Republic of); Sakamoto, J.; Yoshida, K. [Kyoto University, Department of Physics, Kyoto (Japan); Sheikh-Jabbari, M.M. [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)
2017-11-15
We showed in previous work that for homogeneous Yang-Baxter (YB) deformations of AdS{sub 5} x S{sup 5} the open string metric and coupling and as a result the closed string density e{sup -2Φ}√(g) remain undeformed. In this work, in addition to extending these results to the deformation associated with the modified CYBE or η-deformation, we identify the Page forms as the open string counterpart for RR fields and demonstrate case by case that the non-zero Page forms remain invariant under YB deformations. We give a physical meaning to the Killing vector I of generalized supergravity and show for all YB deformations: (1) I appears as a current for the center of mass motion on the worldvolume of a D-brane probing the background, (2) I is equal to the divergence of the noncommutativity parameter, (3) I exhibits ''holographic'' behavior where the radial component of I vanishes at the AdS boundary and (4) in pure spinor formalism I is related to a certain state in the BRST cohomology. (orig.)
Open BPS wall crossing and M-theory
International Nuclear Information System (INIS)
Aganagic, Mina; Yamazaki, Masahito
2010-01-01
Consider the degeneracies of BPS bound states of one D6-brane wrapping Calabi-Yau X with D0-branes and D2-branes. When we include D4-branes wrapping Lagrangian cycles in addition, D2-branes can end on them. These give rise to new bound states in the d=2, N=(2,2) theory of the D4-branes. We call these 'open' BPS states, in contrast to closed BPS states that arise from D-branes without boundaries. Lifting this to M-theory, we show that the generating function is captured by free Fock space spanned by M2-brane particles ending on M5-branes wrapping the Lagrangian. This implies that the open BPS bound states are counted by the square of the open topological string partition function on X, reduced to the corresponding chamber. Our results give new predictions for open BPS invariants and their wall crossing phenomena when we change the open and closed string moduli. We relate our results to the work of Cecotti and Vafa on wall crossing in the two-dimensional N=(2,2) theories. The findings from the crystal melting model for the open BPS invariants proposed recently fit well with the M-theory predictions.
Tree-level stability without spacetime fermions: novel examples in string theory
International Nuclear Information System (INIS)
Israel, Dan; Niarchos, Vasilis
2007-01-01
Is perturbative stability intimately tied with the existence of spacetime fermions in string theory in more than two dimensions? Type 0'B string theory in ten-dimensional flat space is a rare example of a non-tachyonic, non-supersymmetric string theory with a purely bosonic closed string spectrum. However, all known type 0' constructions exhibit massless NSNS tadpoles signaling the fact that we are not expanding around a true vacuum of the theory. In this note, we are searching for perturbatively stable examples of type 0' string theory without massless tadpoles in backgrounds with a spatially varying dilaton. We present two examples with this property in non-critical string theories that exhibit four- and six-dimensional Poincare invariance. We discuss the D-branes that can be embedded in this context and the type of gauge theories that can be constructed in this manner. We also comment on the embedding of these non-critical models in critical string theories and their holographic (Little String Theory) interpretation and propose a general conjecture for the role of asymptotic supersymmetry in perturbative string theory
Jet signals for low mass strings at the large hadron collider.
Anchordoqui, Luis A; Goldberg, Haim; Nawata, Satoshi; Taylor, Tomasz R
2008-05-02
The mass scale M{s} of superstring theory is an arbitrary parameter that can be as low as few TeVs if the Universe contains large extra dimensions. We propose a search for the effects of Regge excitations of fundamental strings at the CERN Large Hadron Collider (LHC), in the process pp-->gamma+jet. The underlying parton process is dominantly the single photon production in gluon fusion, gg-->gammag, with open string states propagating in intermediate channels. If the photon mixes with the gauge boson of the baryon number, which is a common feature of D-brane quivers, the amplitude appears already at the string disk level. It is completely determined by the mixing parameter-and it is otherwise model (compactification) independent. Even for relatively small mixing, 100 fb{-1} of LHC data could probe deviations from standard model physics, at a 5sigma significance, for M{s} as large as 3.3 TeV.
Lopez-Perez, Juan Antonio; Salt, Jose; Ros, Eduardo
2008-01-01
The Standard Model of particle physics describes the strong, weak, and electromagnetic forces between the fundamental particles of ordinary matter. However, it presents several problems and some questions remain unanswered so it cannot be considered a complete theory of fundamental interactions. Many extensions have been proposed in order to address these problems. Some important recent extensions are the Extra Dimensions theories. In the context of some models with Extra Dimensions of size about $1 TeV^{-}1$, in particular in the ADD model with only fermions confined to a D-brane, heavy Kaluza-Klein excitations are expected, with the same properties as SM gauge bosons but more massive. In this work, three hadronic decay modes of some of such massive gauge bosons, Z* and W*, are investigated using the ATLAS experiment at the Large Hadron Collider (LHC), presently under construction at CERN. These hadronic modes are more difficult to detect than the leptonic ones, but they should allow a measurement of the cou...
Constraining pre big-bang-nucleosynthesis expansion using cosmic antiprotons
International Nuclear Information System (INIS)
Schelke, M.; Catena, R.; Fornengo, N.; Masiero, A.; Pietroni, M.
2006-06-01
A host of dark energy models and non-standard cosmologies predict an enhanced Hubble rate in the early Universe: perfectly viable models, which satisfy Big Bang Nucleosynthesis (BBN), cosmic microwave background and general relativity tests, may nevertheless lead to enhancements of the Hubble rate up to many orders of magnitude. In this paper we show that strong bounds on the pre-BBN evolution of the Universe may be derived, under the assumption that dark matter is a thermal relic, by combining the dark matter relic density bound with constraints coming from the production of cosmic-ray antiprotons by dark matter annihilation in the Galaxy. The limits we derive can be sizable and apply to the Hubble rate around the temperature of dark matter decoupling. For dark matter masses lighter than 100 GeV, the bound on the Hubble-rate enhancement ranges from a factor of a few to a factor of 30, depending on the actual cosmological model, while for a mass of 500 GeV the bound falls in the range 50-500. Uncertainties in the derivation of the bounds and situations where the bounds become looser are discussed. We finally discuss how these limits apply to some specific realizations of non-standard cosmologies: a scalar-tensor gravity model, kination models and a Randall-Sundrum D-brane model. (Orig.)
Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy
Directory of Open Access Journals (Sweden)
Kazuki Hasebe
2017-07-01
Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.
Collective excitations of massive flavor branes
Directory of Open Access Journals (Sweden)
Georgios Itsios
2016-08-01
Full Text Available We study the intersections of two sets of D-branes of different dimensionalities. This configuration is dual to a supersymmetric gauge theory with flavor hypermultiplets in the fundamental representation of the gauge group which live on the defect of the unflavored theory determined by the directions common to the two types of branes. One set of branes is dual to the color degrees of freedom, while the other set adds flavor to the system. We work in the quenched approximation, i.e., where the flavor branes are considered as probes, and focus specifically on the case in which the quarks are massive. We study the thermodynamics and the speeds of first and zero sound at zero temperature and non-vanishing chemical potential. We show that the system undergoes a quantum phase transition when the chemical potential approaches its minimal value and we obtain the corresponding non-relativistic critical exponents that characterize its critical behavior. In the case of (2+1-dimensional intersections, we further study alternative quantization and the zero sound of the resulting anyonic fluid. We finally extend these results to non-zero temperature and magnetic field and compute the diffusion constant in the hydrodynamic regime. The numerical results we find match the predictions by the Einstein relation.
Introduction to the AdS/CFT Correspondence
Nąstase, Horaǧiu
2015-09-01
Preface; Introduction; Part I. Background: 1. Elements of quantum field theory and gauge theory; 2. Basics of general relativity. Anti-de Sitter space; 3. Basics of supersymmetry; 4. Basics of supergravity; 5. Kaluza-Klein dimensional reduction; 6. Black holes and p-branes; 7. String theory actions and spectra; 8. Elements of conformal field theory; 9. D-branes; Part II. Basics of AdS/CFT for N = 4 SYM vs AdS5 × S5: 10. The AdS/CFT correspondence: motivation, definition and spectra; 11. Witten prescription and 3-point correlator calculations; 12. Holography in Lorentzian signature: Poincaré and global; 13. Solitonic objects in AdS/CFT; 14. Quarks and the Wilson loop; 15. Finite temperature and N = 4 SYM plasmas; 16. Scattering processes and gravitational shockwave limit; 17. The pp-wave correspondence; 18. Spin chains; Part III. AdS/CFT Developments and Gauge-Gravity Dualities: 19. Other conformal cases; 20. The 3 dimensional ABJM model vs. AdS4 × CP3; 21. Gravity duals; 22. Holographic renormalization; 23. RG flow between fixed points; 24. Phenomenological gauge-gravity duality I: AdS/QCD; 25. Phenomenological gauge-gravity duality II: AdS/CMT; 26. Gluon scattering: the Alday-Maldacena prescription; 27. Holographic entanglement entropy: the Ryu-Takayanagi prescription.
Constraining pre big-bang-nucleosynthesis expansion using cosmic antiprotons
Energy Technology Data Exchange (ETDEWEB)
Schelke, M. [Istituto Nazionale di Fisica Nucleare, Torino (Italy); Catena, R. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fornengo, N. [Torino Univ. (Italy). Dipt. di Fisica Teorica]|[Istituto Nazionale di Fisica Nucleare, Torino (Italy); Masiero, A. [Pavoa Univ. (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Padova (Italy); Pietroni, M. [Istituto Nazionale di Fisica Nucleare, Padova (Italy)
2006-06-15
A host of dark energy models and non-standard cosmologies predict an enhanced Hubble rate in the early Universe: perfectly viable models, which satisfy Big Bang Nucleosynthesis (BBN), cosmic microwave background and general relativity tests, may nevertheless lead to enhancements of the Hubble rate up to many orders of magnitude. In this paper we show that strong bounds on the pre-BBN evolution of the Universe may be derived, under the assumption that dark matter is a thermal relic, by combining the dark matter relic density bound with constraints coming from the production of cosmic-ray antiprotons by dark matter annihilation in the Galaxy. The limits we derive can be sizable and apply to the Hubble rate around the temperature of dark matter decoupling. For dark matter masses lighter than 100 GeV, the bound on the Hubble-rate enhancement ranges from a factor of a few to a factor of 30, depending on the actual cosmological model, while for a mass of 500 GeV the bound falls in the range 50-500. Uncertainties in the derivation of the bounds and situations where the bounds become looser are discussed. We finally discuss how these limits apply to some specific realizations of non-standard cosmologies: a scalar-tensor gravity model, kination models and a Randall-Sundrum D-brane model. (Orig.)
Energy Technology Data Exchange (ETDEWEB)
Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)
2017-03-16
We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.
Quantum entanglement of baby universes
International Nuclear Information System (INIS)
Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi
2007-01-01
We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight
Quantum entanglement of baby universes
International Nuclear Information System (INIS)
Essman, Eric P.; Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi
2006-01-01
We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight
A study of open strings ending on giant gravitons, spin chains and integrability
International Nuclear Information System (INIS)
Berenstein, David; Correa, Diego H.; Vazquez, Samuel E.
2006-01-01
We systematically study the spectrum of open strings attached to half BPS giant gravitons in the N = 4 SYM AdS/CFT setup. We find that some null trajectories along the giant graviton are actually null geodesics of AdS 5 x S 5 , so that we can study the problem in a plane wave limit setup. We also find the description of these states at weak 't Hooft coupling in the dual CFT. We show how the dual description is given by an open spin chain with variable number of sites. We analyze this system in detail and find numerical evidence for integrability. We also discover an interesting instability of long open strings in Ramond-Ramond backgrounds that is characterized by having a continuum spectrum of the string, which is separated from the ground state by a gap. This instability arises from accelerating the D-brane on which the strings end via the Ramond-Ramond field. From the integrable spin chain point of view, this instability prevents us from formulating the integrable structure in terms of a Bethe Ansatz construction
Energy Technology Data Exchange (ETDEWEB)
Lawrence, Albion
2001-07-25
We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order {alpha}' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting.
Open string topological amplitudes and gaugino masses
International Nuclear Information System (INIS)
Antoniadis, I.; Narain, K.S.; Taylor, T.R.
2005-09-01
We discuss the moduli-dependent couplings of the higher derivative F-terms (TrW 2 ) h-1 , where W is the gauge N =1 chiral superfield. They are determined by the genus zero topological partition function F (0,h) , on a world-sheet with h boundaries. By string duality, these terms are also related to heterotic topological amplitudes studied in the past, with the topological twist applied only in the left-moving supersymmetric sector of the internal N =(2,0) superconformal field theory. The holomorphic anomaly of these couplings relates them to terms of the form Π n (TrW 2 ) h-2 , where Π's represent chiral projections of non-holomorphic functions of chiral superfields. An important property of these couplings is that they violate R-symmetry for h ≥ 3. As a result, once supersymmetry is broken by D-term expectation values, (TrW 2 ) 2 generates gaugino masses that can be hierarchically smaller than the scalar masses, behaving as m 1/2 ∼ m 0 4 in string units. Similarly, ΠTrW 2 generates Dirac masses for non-chiral brane fermions, of the same order of magnitude. This mechanism can be used for instance to obtain fermion masses at the TeV scale for scalar masses as high as m 0 ∼ O (10 13 ) GeV. We present explicit examples in toroidal string compactifications with intersecting D-branes. (author)
M-theory and U-duality on Td with gauge backgrounds
International Nuclear Information System (INIS)
Obers, N.A.; Pioline, B.; Rabinovici, E.
1998-01-01
The full U-duality symmetry of toroidally compactified M-theory can only be displayed by allowing non-rectangular tori with expectation values of the gauge fields. We construct an E d (Z) U-duality invariant mass formula incorporating non-vanishing gauge backgrounds of the M-theory three-form C. We interpret this mass formula from the point of view of the matrix gauge theory, and identify the coupling of the three-form to the gauge theory as a topological theta term, in agreement with earlier conjectures. We give a derivation of this fact from D-brane analysis, and obtain the matrix gauge theory description of other gauge backgrounds allowed by the discrete light-cone quantization. We further show that the conjectured extended U-duality symmetry of matrix theory on T d in the discrete light-cone quantization has an implementation as an action of E d+1 (Z) on the BPS spectrum. Some implications for the proper interpretation of the rank N of the matrix gauge theory are discussed. (orig.)
Towards Strange Metallic Holography
International Nuclear Information System (INIS)
2010-01-01
We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z (ge) 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.
Fundamental vortices, wall-crossing, and particle-vortex duality
Energy Technology Data Exchange (ETDEWEB)
Hwang, Chiung; Yi, Piljin [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Yoshida, Yutaka [Research Institute for Mathematical Sciences, Kyoto University,Kyoto 606-8502 (Japan)
2017-05-18
We explore 1d vortex dynamics of 3d supersymmetric Yang-Mills theories, as inferred from factorization of exact partition functions. Under Seiberg-like dualities, the 3d partition function must remain invariant, yet it is not a priori clear what should happen to the vortex dynamics. We observe that the 1d quivers for the vortices remain the same, and the net effect of the 3d duality map manifests as 1d Wall-Crossing phenomenon; although the vortex number can shift along such duality maps, the ranks of the 1d quiver theory are unaffected, leading to a notion of fundamental vortices as basic building blocks for topological sectors. For Aharony-type duality, in particular, where one must supply extra chiral fields to couple with monopole operators on the dual side, 1d wall-crossings of an infinite number of vortex quiver theories are neatly and collectively encoded by 3d determinant of such extra chiral fields. As such, 1d wall-crossing of the vortex theory encodes the particle-vortex duality embedded in the 3d Seiberg-like duality. For N=4, the D-brane picture is used to motivate this 3d/1d connection, while, for N=2, this 3d/1d connection is used to fine-tune otherwise ambiguous vortex dynamics. We also prove some identities of 3d supersymmetric partition functions for the Aharony duality using this vortex wall-crossing interpretation.
Stringy origin of diboson and dijet excesses at the LHC
Directory of Open Access Journals (Sweden)
Luis A. Anchordoqui
2015-10-01
Full Text Available Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8–2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W− pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1 field with very small coupling to leptons. The Drell–Yan bounds are then readily avoided because of the leptophobic nature of the massive Z′ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau–Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.
Stringy origin of diboson and dijet excesses at the LHC
Anchordoqui, Luis A.; Antoniadis, Ignatios; Goldberg, Haim; Huang, Xing; Lüst, Dieter; Taylor, Tomasz R.
2015-10-01
Very recently, the ATLAS and CMS Collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8-2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W+W- pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U (1) field with very small coupling to leptons. The Drell-Yan bounds are then readily avoided because of the leptophobic nature of the massive Z‧ gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau-Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Zγ topology would become a signature consistent only with a stringy origin.
U(N) instantons on N=(1/2) superspace: Exact solution and geometry of moduli space
International Nuclear Information System (INIS)
Britto, Ruth; Feng Bo; Lunin, Oleg; Rey, Soo-Jong
2004-01-01
We construct the exact solution of one (anti-)instanton in N=(1/2) super Yang-Mills theory defined on non(anti-)commutative superspace. We first identify N=(1/2) superconformal invariance as maximal spacetime symmetry. For the gauge group U(2), the SU(2) part of the solution is given by the standard (anti-)instanton, but the U(1) field strength also turns out to be nonzero. The solution is SO(4) rotationally symmetric. For the gauge group U(N), in contrast with the U(2) case, we show that the entire U(N) part of the solution is deformed by non(anti-)commutativity and fermion zero modes. The solution is no longer rotationally symmetric; it is polarized into an axially symmetric configuration because of the underlying non(anti-)commutativity. We compute the 'information metric' of one (anti-)instanton. We find that the moduli space geometry is deformed from the hyperbolic space H 5 (Euclidean anti-de Sitter space) in a way anticipated from reduced spacetime symmetry. Remarkably, the volume measure of the moduli space turns out to be independent of the non(anti-)commutativity. Implications for D branes in the Ramond-Ramond flux background and the gauge-gravity correspondence are discussed
Tachyon condensation on the elliptic curve
International Nuclear Information System (INIS)
Govindarajan, Suresh; Jockers, Hans; Lerche, Wolfgang; Warner, Nicholas P.
2007-01-01
We use the framework of matrix factorizations to study topological B-type D-branes on the cubic curve. Specifically, we elucidate how the brane RR charges are encoded in the matrix factors, by analyzing their structure in terms of sections of vector bundles in conjunction with equivariant R-symmetry. One particular advantage of matrix factorizations is that explicit moduli dependence is built in, thus giving us full control over the open-string moduli space. It allows one to study phenomena like discontinuous jumps of the cohomology over the moduli space, as well as formation of bound states at threshold. One interesting aspect is that certain gauge symmetries inherent to the matrix formulation lead to a non-trivial global structure of the moduli space. We also investigate topological tachyon condensation, which enables us to construct, in a systematic fashion, higher-dimensional matrix factorizations out of smaller ones; this amounts to obtaining branes with higher RR charges as composites of ones with minimal charges. As an application, we explicitly construct all rank two matrix factorizations
Exact potential and scattering amplitudes from the tachyon non-linear β -function
International Nuclear Information System (INIS)
Coletti, E.; Forini, V.; Nardelli, G.; Orselli, M.; Grignani, G.
2004-01-01
We compute, on the disk, the non-linear tachyon β-function, β T , of the open bosonic string theory. β T is determined both in an expansion to the third power of the field and to all orders in derivatives and in an expansion to any power of the tachyon field in the leading order in derivatives. We construct the Witten-Shatashvili (WS) space-time effective action S and prove that it has a very simple universal form in terms of the renormalized tachyon field and β T . The expression for S is well suited to studying both processes that are far off-shell, such as tachyon condensation, and close to the mass-shell, such as perturbative on-shell amplitudes. We evaluate S in a small derivative expansion, providing the exact tachyon potential. The normalization of S is fixed by requiring that the field redefinition that maps S into the tachyon effective action derived from the cubic string field theory is regular on-shell. The normalization factor is in precise agreement with the one required for verifying all the conjectures on tachyon condensation. The coordinates in the space of couplings in which the tachyon β-function is non linear are the most appropriate to study RG fixed points that can be interpreted as solitons of S, i.e. D-branes. (author)
Entanglement of heavy quark impurities and generalized gravitational entropy
Kumar, S. Prem; Silvani, Dorian
2018-01-01
We calculate the contribution from non-conformal heavy quark sources to the entanglement entropy (EE) of a spherical region in N=4 SUSY Yang-Mills theory. We apply the generalized gravitational entropy method to non-conformal probe D-brane embeddings in AdS5×S5, dual to pointlike impurities exhibiting flows between quarks in large-rank tensor representations and the fundamental representation. For the D5-brane embedding which describes the screening of fundamental quarks in the UV to the antisymmetric tensor representation in the IR, the EE excess decreases non-monotonically towards its IR asymptotic value, tracking the qualitative behaviour of the one-point function of static fields sourced by the impurity. We also examine two classes of D3-brane embeddings, one which connects a symmetric representation source in the UV to fundamental quarks in the IR, and a second category which yields the symmetric representation source on the Coulomb branch. The EE excess for the former increases from the UV to the IR, whilst decreasing and becoming negative for the latter. In all cases, the probe free energy on hyperbolic space with β = 2 π increases monotonically towards the IR, supporting its interpretation as a relative entropy. We identify universal corrections, depending logarithmically on the VEV, for the symmetric representation on the Coulomb branch.
Higher dimensional quantum Hall effect as A-class topological insulator
Energy Technology Data Exchange (ETDEWEB)
Hasebe, Kazuki, E-mail: khasebe@stanford.edu
2014-09-15
We perform a detail study of higher dimensional quantum Hall effects and A-class topological insulators with emphasis on their relations to non-commutative geometry. There are two different formulations of non-commutative geometry for higher dimensional fuzzy spheres: the ordinary commutator formulation and quantum Nambu bracket formulation. Corresponding to these formulations, we introduce two kinds of monopole gauge fields: non-abelian gauge field and antisymmetric tensor gauge field, which respectively realize the non-commutative geometry of fuzzy sphere in the lowest Landau level. We establish connection between the two types of monopole gauge fields through Chern–Simons term, and derive explicit form of tensor monopole gauge fields with higher string-like singularity. The connection between two types of monopole is applied to generalize the concept of flux attachment in quantum Hall effect to A-class topological insulator. We propose tensor type Chern–Simons theory as the effective field theory for membranes in A-class topological insulators. Membranes turn out to be fractionally charged objects and the phase entanglement mediated by tensor gauge field transforms the membrane statistics to be anyonic. The index theorem supports the dimensional hierarchy of A-class topological insulator. Analogies to D-brane physics of string theory are discussed too.
International Nuclear Information System (INIS)
Fathi, F.; Moayedi, S. K.; Shafabakhsh, M.
2015-01-01
More than 80 years ago, Born-Infeld electrodynamics was proposed in order to remove the point charge singularity in Maxwell electrodynamics. In this work, after a brief introduction to Lagrangian formulation of Abelian Born-Infeld model in the presence of an external source, we obtain the explicit forms of Gauss’s law and the energy density of an electrostatic field for Born-Infeld electrostatics. The electric field and the stored electrostatic energy per unit length for an infinite charged line and an infinitely long cylinder in Born-Infeld electrostatics are calculated. Numerical estimations in this paper show that the nonlinear corrections to Maxwell electrodynamics are considerable only for strong electric fields. We present an action functional for Abelian Born-Infeld model with an auxiliary scalar field in the presence of an external source. This action functional is a generalization of the action functional which was presented by Tseytlin in his studies on low energy dynamics of D-branes (Nucl. Phys. B469, 51 (1996); Int. J. Mod. Phys. A 19, 3427 (2004)). Finally, we derive the symmetric energy-momentum tensor for Abelian Born-Infeld model with an auxiliary scalar field
On Newton's law in supersymmetric braneworld models
Energy Technology Data Exchange (ETDEWEB)
Palma, G.A.
2007-05-15
We study the propagation of gravitons within 5-D supersymmetric braneworld models with a bulk scalar field. The setup considered here consists of a 5-D bulk spacetime bounded by two 4-D branes localized at the fixed points of an S{sup 1}/Z{sub 2} orbifold. There is a scalar field {phi} in the bulk which, provided a superpotential W({phi}), determines the warped geometry of the 5-D spacetime. This type of scenario is common in string theory, where the bulk scalar field {phi} is related to the volume of small compact extra dimensions. We show that, after the moduli are stabilized by supersymmetry breaking terms localized on the branes, the only relevant degrees of freedom in the bulk consist of a 5-D massive spectrum of gravitons. Then we analyze the gravitational interaction between massive bodies localized at the positive tension brane mediated by these bulk gravitons. It is shown that the Newtonian potential describing this interaction picks up a non-trivial contribution at short distances that depends on the shape of the superpotential W({phi}). We compute this contribution for dilatonic braneworld scenarios W({phi})=e{sup {alpha}}{sup {phi}} (where {alpha} is a constant) and discuss the particular case of 5-D Heterotic M-theory: It is argued that a specific footprint at micron scales could be observable in the near future. (orig.)
Nonassociativity, Malcev algebras and string theory
International Nuclear Information System (INIS)
Guenaydin, M.; Minic, D.
2013-01-01
Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
SUSY breaking mediation mechanisms and (g-2)μ, B→Xsγ, B→Xsl+l- and Bs→μ+μ-
International Nuclear Information System (INIS)
Baek, Seungwon; Ko, P.; Song, Wan Young
2003-01-01
We show that there are qualitative differences in correlations among (g-2)μ, B→X s γ, B→X l + l - and B s →μ + μ - in various SUSY breaking mediation mechanisms: minimal supergravity (mSUGRA), gauge mediation (GMSB), anomaly mediation (AMSB), guagino mediation (g-tildeMSB), weakly and strongly interacting string theories, and D brane models. After imposing the direct search limits on the Higgs boson and SUSY particle search limits and B→X s γ branching ratio, we find all the scenarios can accommodate the aμ≡(g-2)μ/2 in the range of (a few tens) x 10 -10 , and predict that the branching ratio for B→X s l + l - can differ from the standard model (SM) prediction by ±20% but no more. On the other hand, the B s →μ + μ - is sensitive to the SUSY breaking mediation mechanisms through the pseudoscalar and stop masses (m A and mt-tilde 1 ), and the stop mixing angle. In the GMSB with a small messenger number, the AMSB, the g-tildeMSB and the noscale scenarios, one finds that B(B s →μ + μ - ) -8 , which is below the search limit at the Tevatron Run II. Only the mSUGRA or string inspired models can generate a large branching ratio for this decay. (author)
Gauge unification, non-local breaking, open strings
International Nuclear Information System (INIS)
Trapletti, M.
2005-01-01
The issue of non-local GUT symmetry breaking is addressed in the context of open string model building. We study Z N xZ M ' orbifolds with all the GUT-breaking orbifold elements acting freely, as rotations accompanied by translations in the internal space. We consider open strings quantized on these backgrounds, distinguishing whether the translational action is parallel or perpendicular to the D-branes. GUT breaking is impossible in the purely perpendicular case, non-local GUT breaking is instead allowed in the purely parallel case. In the latter, the scale of breaking is set by the compactification moduli, and there are no fixed points with reduced gauge symmetry, where dangerous explicit GUT-breaking terms could be located. We investigate the mixed parallel+perpendicular case in a Z 2 xZ 2 ' example, having also a simplified field theory realization. It is a new S 1 /Z 2 xZ 2 ' orbifold-GUT model, with bulk gauge symmetry SU(5)xSU(5) broken locally to the Standard Model gauge group. In spite of the locality of the GUT symmetry breaking, there is no localized contribution to the running of the coupling constants, and the unification scale is completely set by the length of S 1
String Theory clues for the low-$\\ell$ CMB ?
Kitazawa, N.
2015-05-29
"Brane Supersymmetry Breaking" is a peculiar string-scale mechanism that can unpair Bose and Fermi excitations in orientifold models. It results from the simultaneous presence, in the vacuum, of collections of D-branes and orientifolds that are not mutually BPS, and is closely tied to the scale of string excitations. It also leaves behind, for a mixing of dilaton and internal breathing mode, an exponential potential that is just too steep for a scalar to emerge from the initial singularity while descending it. As a result, in this class of models the scalar can generically bounce off the exponential wall, and this dynamics brings along, in the power spectrum, an infrared depression typically followed by a pre-inflationary peak. We elaborate on a possible link between this type of bounce and the low-$\\ell$ end of the CMB angular power spectrum. For the first 32 multipoles, one can reach a 50 % reduction in $\\chi^{\\,2}$ with respect to the standard $\\Lambda$CDM setting.
Energy Technology Data Exchange (ETDEWEB)
Carlip, S [Department of Physics, University of California, Davis, CA 95616 (United States)
2006-10-21
The early 1980s, when I first learned theory, were desperate times for graduate students. We searched frantically for coherent introductions, passing tattered copies of review articles around like samizdat, struggling over obscure references to ancient models of strong interactions, and flocking to lectures-not least those by Joe Polchinski-that promised to really explain what was going on. If only this book had been around, it would have saved much grief. Volume I, The Bosonic String, offers a clear and well organized introduction to bosonic string theory. Topics range from the 'classical' (spectra, vertex operators, consistency conditions, etc.) to the 'modern' (D-branes first appear in an exercise at the end of chapter 1, noncommutative geometry shows up in chapter 8). Polchinski does not hesitate to discuss sophisticated matters-path integral measures, BRST symmetries, etc.-but his approach is pedagogical, and his writing is lucid, if sometimes a bit terse. Chapters end with problems that are sometimes difficult but never impossible. A very useful annotated bibliography directs readers to resources for further study, and a nearly 30-page glossary provides short but clear definitions of key terms. There is much here that will appeal to relativists. Polchinski uses the covariant Polyakov path integral approach to quantization from early on; he clearly distinguishes Weyl invariance from conformal invariance; he is appropriately careful about using complex coordinates on topologically nontrivial manifolds; he keeps the string world sheet metric explicit at the start instead of immediately hiding it by a gauge choice. Volume II includes an elegant introduction to anticommuting coordinates and superconformal transformations. A few conventions may cause confusion-%, Polchinski's stress-energy tensor, for instance, differs from the standard general relativistic definition by a factor of -2{pi}, and while this is briefly mentioned in the text
Role(s) of anti-symmetrical background field in string theory
International Nuclear Information System (INIS)
Fidanza, St.
2003-11-01
In the first chapter (titled: non-commutative D-branes), we show that the B anti-symmetrical background fields can be embedded in the non-commutativity of branes and can distort gauge theories that branes convey. We know how to describe this transformation in the Abelian case thanks to the Kontsevic quantification formula. Moreover this formula combined to the Seiberg-Witter transformation allows one to compute more rapidly the explicit terms. For the non-Abelian case the situation is less clear. In the chapter 2 (titled: non-Abelian M5-branes), we have tackled the issue of the fields of a packet of N M5-branes. The direct approach based on a 6 dimensional super-symmetric multiplets has led to a stunning dead end, we have not been able to reproduce the expected anomaly in N 3 . We have presented in a unified manner different gauge theories. We have shown that we can get a number of freedom degrees in the magnitude order of N 3 from computations based on geometrical configurations of M2 membranes. In the chapter 3 (titled: systematizing mirror symmetry) we have shown that if the presence of a non-trivial Neveu-Schwarz flux constrains the compactification manifold geometry to shift from the Calabi-Yau case, we can yet specify a mirror symmetry that mixes geometry and background fields. (A.C.)
International Nuclear Information System (INIS)
Lawrence, Albion
2001-01-01
We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order α' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting
T-duality with H-flux. Non-commutativity, T-folds and G x G structure
International Nuclear Information System (INIS)
Grange, P.
2006-09-01
Various approaches to T-duality with NSNS three-form flux are reconciled. Non-commutative torus fibrations are shown to be the open-string version of T-folds. The non-geometric T-dual of a three-torus with uniform flux is embedded into a generalized complex six-torus, and the non-geometry is probed by D0-branes regarded as generalized complex submanifolds. The non-commutativity scale, which is present in these compactifications, is given by a holomorphic Poisson bivector that also encodes the variation of the dimension of the world-volume of D-branes under monodromy. This bivector is shown to exist in SU(3) x SU(3) structure compactifications, which have been proposed as mirrors to NSNS-flux backgrounds. The two SU(3)-invariant spinors are generically not parallel, thereby giving rise to a non-trivial Poisson bivector. Furthermore we show that for non-geometric T-duals, the Poisson bivector may not be decomposable into the tensor product of vectors. (orig.)
Open Wilson lines as states of closed string
International Nuclear Information System (INIS)
Murakami, Koichi; Nakatsu, Toshio
2003-01-01
A system of a D-brane in bosonic string theory on a constant B field background is studied in order to obtain further insight into the bulk-boundary duality. Boundary states which describe arbitrary numbers of open-string tachyons and gluons are given. The UV behavior of field theories on the non-commutative world-volume is investigated by using these states. We take the zero-slope limits of the generating functions of one-loop amplitudes of gluons (and open-string tachyons) in which the region of the small open-string proper time is magnified. The existence of a B field allows the limits to be slightly different from the standard field theory limits of a closed-string. These limits enable us to obtained world-volume theories at a trans-string scale. In this limit the generating functions are shown to be factorized into two curved open Wilson lines (and their analogues) and become integrals on the space of paths with a Gaussian distribution around straight lines. These facts indicate the possibility that field theories on the non-commutative world-volume are topological at such a trans-string scale. We also give a proof of the Dhar-Kitazawa conjecture by determining an explicit correspondence between the closed-string states and the paths. Momentum eigenstates of closed-string or momentum loops also play an important role in these analyses. (author)
The hunt for new physics at the Large Hadron Collider
International Nuclear Information System (INIS)
AbdusSalam, S.; Adam-Bourdarios, C.; Aguilar-Saavedra, J.A.; Allanach, B.; Altunkaynak, B.; Wagner, C.E.M.
2010-01-01
The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesis of TeV scale strings and D brane models. An overview of these possibilities is presented in the spirit that it will serve as a companion to the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideas stands the test of the LHC data will govern the course of particle physics in the subsequent decades.
Nonuniversal soft parameters in the brane world and the flavor problem in supergravity
International Nuclear Information System (INIS)
Kyae, Bumseok; Shafi, Qaisar
2002-01-01
We consider gravity mediated supersymmetry (SUSY) breaking in 5D spacetime with two 4D branes B1 and B2 separated in the extra dimension. Using an off-shell 5D supergravity (SUGRA) formalism, we argue that the SUSY breaking scales could be nonuniversal even at the fundamental scale in a brane world setting, since SUSY breaking effects could be effectively localized. As an application, we suggest a model in which the two light chiral minimal supersymmetric standard model generations reside on B1, while the third generation is located on B2, and the Higgs multiplets as well as gravity and gauge multiplets reside in the bulk. For SUSY breaking of the order of 10-20 TeV caused by a hidden sector localized at B1, the scalars belonging to the first two generations can become sufficiently heavy to overcome the SUSY flavor problem. SUSY breaking on B2 from a different localized hidden sector gives rise to the third generation soft scalar masses of the order of 1 TeV. Gaugino masses are also of the order of 1 TeV if the size of the extra dimension is ∼10 -16 GeV -1 . As in 4D effective supersymmetric theory, an adjustment of TeV scale parameters is needed to realize the 100 GeV electroweak symmetry breaking scale
Progress in string theory research
2016-01-01
At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...
Near BPS Wilson loop in β-deformed theories
International Nuclear Information System (INIS)
Chu, C-S; Giataganas, Dimitrios
2007-01-01
We propose a definition of the Wilson loop operator in the N = 1 β-deformed supersymmetric Yang-Mills theory. Although the operator is not BPS, it has a finite expectation value at least up to order (g 2 N) 2 . This does not happen generally for a generic non-BPS Wilson loop whose expectation value is UV divergent. For this reason we call this a near-BPS Wilson loop. We derive the general form of the boundary condition satisfied by the dual string worldsheet and find that it is deformed. Finiteness of the expectation value of the Wilson loop fixes the boundary condition to be one which is characterized by the vielbein of the deformed supergravity metric. The Wilson loop operators provide natural candidates as dual descriptions to some of the existing D-brane configurations in the Lunin-Maldacena background. We also construct the string dual configuration for a near-1/4 BPS circular Wilson loop operator. The string lies on a deformed three-sphere instead of a two-sphere as in the undeformed case. The expectation value of the Wilson loop operator is computed using the AdS/CFT correspondence and is found to be independent of the deformation. We conjecture that the exact expectation value of the Wilson loop is given by the same matrix model as in the undeformed case
International Nuclear Information System (INIS)
Carlip, S
2006-01-01
The early 1980s, when I first learned theory, were desperate times for graduate students. We searched frantically for coherent introductions, passing tattered copies of review articles around like samizdat, struggling over obscure references to ancient models of strong interactions, and flocking to lectures-not least those by Joe Polchinski-that promised to really explain what was going on. If only this book had been around, it would have saved much grief. Volume I, The Bosonic String, offers a clear and well organized introduction to bosonic string theory. Topics range from the 'classical' (spectra, vertex operators, consistency conditions, etc.) to the 'modern' (D-branes first appear in an exercise at the end of chapter 1, noncommutative geometry shows up in chapter 8). Polchinski does not hesitate to discuss sophisticated matters-path integral measures, BRST symmetries, etc.-but his approach is pedagogical, and his writing is lucid, if sometimes a bit terse. Chapters end with problems that are sometimes difficult but never impossible. A very useful annotated bibliography directs readers to resources for further study, and a nearly 30-page glossary provides short but clear definitions of key terms. There is much here that will appeal to relativists. Polchinski uses the covariant Polyakov path integral approach to quantization from early on; he clearly distinguishes Weyl invariance from conformal invariance; he is appropriately careful about using complex coordinates on topologically nontrivial manifolds; he keeps the string world sheet metric explicit at the start instead of immediately hiding it by a gauge choice. Volume II includes an elegant introduction to anticommuting coordinates and superconformal transformations. A few conventions may cause confusion-%, Polchinski's stress-energy tensor, for instance, differs from the standard general relativistic definition by a factor of -2π, and while this is briefly mentioned in the text, it could easily be missed
Tachyon Condensation on the Elliptic Curve
Govindarajan, S; Lerche, Wolfgang; Warner, Nicholas P
2007-01-01
We use the framework of matrix factorizations to study topological B-type D-branes on the cubic curve. Specifically, we elucidate how the brane RR charges are encoded in the matrix factors, by analyzing their structure in terms of sections of vector bundles in conjunction with equivariant R-symmetry. One particular advantage of matrix factorizations is that explicit moduli dependence is built in, thus giving us full control over the open-string moduli space. It allows one to study phenomena like discontinuous jumps of the cohomology over the moduli space, as well as formation of bound states at threshold. One interesting aspect is that certain gauge symmetries inherent to the matrix formulation lead to a non-trivial global structure of the moduli space. We also investigate topological tachyon condensation, which enables us to construct, in a systematic fashion, higher-dimensional matrix factorizations out of smaller ones; this amounts to obtaining branes with higher RR charges as composites of ones with minim...
Dynamics and stability of light-like tachyon condensation
International Nuclear Information System (INIS)
Barnaby, Neil; Robinson, Patrick; Mulryne, David J.; Nunes, Nelson J.
2009-01-01
Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an 'island of stability' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.
Dynamics and stability of light-like tachyon condensation
Barnaby, Neil; Mulryne, David J.; Nunes, Nelson J.; Robinson, Patrick
2009-03-01
Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an ``island of stability'' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.
International Nuclear Information System (INIS)
Keski-Vakkuri, E.; Kraus, P.
1998-01-01
Polchinski and Pouliot have shown that M-momentum transfer between membranes in supergravity can be understood as a non-perturbative instanton effect in gauge theory. Here we consider a dual process: electric flux transmission between D-branes. We show that this process can be described in perturbation theory as virtual string pair creation, and is closely related to Schwinger's treatment of the pair creation of charged particles in a uniform electric field. Through the application of dualities, our perturbative calculation gives results for various non-perturbative amplitudes, including M-momentum transfer between gravitons, membranes and longitudinal fivebranes. Thus perturbation theory plus dualities are sufficient to demonstrate agreement between supergravity and gauge theory for a number of M-momentum transferring processes. A variety of other processes where branes are transmitted between branes, e.g. (p,q)-string transmission in IIB theory, can also be studied. We discuss the implications of our results for proving the eleven-dimensional Lorentz invariance of matrix theory. (orig.)
Notes on properties of holographic strange metals
International Nuclear Information System (INIS)
Lee, Bum-Hoon; Pang, Da-Wei
2010-01-01
We investigate properties of holographic strange metals in p+2 dimensions, generalizing the analysis performed in [S. A. Hartnoll et al. J. High Energy Phys. 04 (2010) 120]. The bulk spacetime is a p+2-dimensional Lifshitz black hole, while the role of charge carriers is played by probe D-branes. We mainly focus on massless charge carriers, where most of the results can be obtained analytically. We obtain exact results for the free energy and calculate the entropy density and the heat capacity, as well as the speed of sound at low temperature. We obtain the DC conductivity and DC Hall conductivity and find that the DC conductivity takes a universal form in the large density limit, while the Hall conductivity is also universal in all dimensions. We also study the resistivity in different limits and clarify the condition for the linear dependence on the temperature, which is a key feature of strange metals. We show that our results for the DC conductivity are consistent with those obtained via the Kubo formula and we obtain the charge diffusion constant analytically. The corresponding properties of massive charge carriers are also discussed in brief.
Directory of Open Access Journals (Sweden)
Dariush Kaviani
2016-09-01
Full Text Available We study the temperature of extended objects in string theory. Rotating probe D-branes admit horizons and temperatures a la Unruh effect. We find that the induced metrics on slow rotating probe D1-branes in holographic string solutions including warped Calabi–Yau throats have distinct thermal horizons with characteristic Hawking temperatures even if there is no black hole in the bulk Calabi–Yau. Taking the UV/IR limits of the solution, we show that the world volume black hole nucleation depends on the deformation and the warping of the throat. We find that world volume horizons and temperatures of expected features form not in the regular confining IR region but in the singular nonconfining UV solution. In the conformal limit of the UV, we find horizons and temperatures similar to those on rotating probes in the AdS throat found in the literature. In this case, we also find that activating a background gauge field form the U(1 R-symmetry modifies the induced metric with its temperature describing two different classes of black hole solutions.
Oscillating supertubes and neutral rotating black hole microstates
International Nuclear Information System (INIS)
Mathur, Samir D.; Turton, David
2014-01-01
The construction of neutral black hole microstates is an important problem, with implications for the information paradox. In this paper we conjecture a construction of non-supersymmetric supergravity solutions describing D-brane configurations which carry mass and angular momentum, but no other conserved charges. We first study a classical string solution which locally carries dipole winding and momentum charges in two compact directions, but globally carries no net winding or momentum charge. We investigate its backreaction in the D1-D5 duality frame, where this object becomes a supertube which locally carries oscillating dipole D1-D5 and NS1-NS5 charges, and again carries no net charge. In the limit of an infinite straight supertube, we find an exact supergravity solution describing this object. We conjecture that a similar construction may be carried out based on a class of two-charge non-supersymmetric D1-D5 solutions. These results are a step towards demonstrating how neutral black hole microstates may be constructed in string theory
Non-topological non-commutativity in string theory
International Nuclear Information System (INIS)
Guttenberg, S.; Herbst, M.; Kreuzer, M.; Rashkov, R.
2008-01-01
Quantization of coordinates leads to the non-commutative product of deformation quantization, but is also at the roots of string theory, for which space-time coordinates become the dynamical fields of a two-dimensional conformal quantum field theory. Appositely, open string diagrams provided the inspiration for Kontsevich's solution of the long-standing problem of quantization of Poisson geometry by virtue of his formality theorem. In the context of D-brane physics non-commutativity is not limited, however, to the topological sector. We show that non-commutative effective actions still make sense when associativity is lost and establish a generalized Connes-Flato-Sternheimer condition through second order in a derivative expansion. The measure in general curved backgrounds is naturally provided by the Born-Infeld action and reduces to the symplectic measure in the topological limit, but remains non-singular even for degenerate Poisson structures. Analogous superspace deformations by RR-fields are also discussed. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Becker, Katrin; Becker, Melanie; Schwarz, John H.
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line
New relations for Einstein–Yang–Mills amplitudes
International Nuclear Information System (INIS)
Stieberger, Stephan; Taylor, Tomasz R.
2016-01-01
We obtain new relations between Einstein–Yang–Mills (EYM) amplitudes involving N gauge bosons plus a single graviton and pure Yang–Mills amplitudes involving N gauge bosons plus one additional vector boson inserted in a way typical for a gauge boson of a “spectator” group commuting with the group associated to original N gauge bosons. We show that such EYM amplitudes satisfy U(1) decoupling relations similar to Kleiss–Kuijf relations for Yang–Mills amplitudes. We consider a D-brane embedding of EYM amplitudes in the framework of disk amplitudes involving open and closed strings. A new set of monodromy relations is derived for mixed open–closed amplitudes with one closed string inserted on the disk world-sheet and a number of open strings at the boundary. These relations allow expressing the latter in terms of pure open string amplitudes and, in the field-theory limit, they yield the U(1) decoupling relations for EYM amplitudes.
String Theory Methods for Condensed Matter Physics
Nastase, Horatiu
2017-09-01
Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger
New grand unified models with intersecting D6-branes, neutrino masses, and flipped SU(5)
Energy Technology Data Exchange (ETDEWEB)
Cvetic, Mirjam [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396 (United States)]. E-mail: cvetic@cvetic.hep.upenn.edu; Langacker, Paul [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396 (United States); School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)
2007-07-30
We construct new supersymmetric SU(5) grand unified models based on Z{sub 4}xZ{sub 2} orientifolds with intersecting D6-branes. Unlike constructions based on Z{sub 2}xZ{sub 2} orientifolds, the orbifold images of the three-cycles wrapped by D6-branes correspond to new configurations and thus allow for models in which, in addition to the chiral sector in 10 and 5-bar representations of SU(5), only, there can be new sectors with (15+15-bar) and (10+10-bar) vector-pairs. We construct an example of such a globally consistent, supersymmetric model with four-families, two Standard Model Higgs pair-candidates and the gauge symmetry U(5)xU(1)xSp(4). In an N=2 sector, there are 5x(15+15-bar) and 1x(10+10-bar) vector-pairs, while another N=1 sector contains one vector-pair of 15-plets. The N=2 vector-pairs can obtain a large mass dynamically by parallel D6-brane splitting in a particular two-torus. The 15-vector-pairs provide, after symmetry breaking to the Standard Model (via parallel D-brane splitting), triplet pair candidates which can in principle play a role in generating Majorana-type masses for left-handed neutrinos, though the necessary Yukawa couplings are absent in the specific construction. This model can also be interpreted as a flipped SU(5)xU(1){sub X} grand unified model where the 10-vector-pairs can play the role of Higgs fields, though again there are phenomenological difficulties for the specific construction.
From the currency rate quotations onto strings and brane world scenarios
Horváth, D.; Pincak, R.
2012-11-01
In the paper, we study the projections of the real exchange rate dynamics onto the string-like topology. Our approach is inspired by the contemporary movements in the string theory. The string map of data is defined here by the boundary conditions, characteristic length, real valued and the method of redistribution of information. As a practical matter, this map represents the detrending and data standardization procedure. We introduced maps onto 1-end-point and 2-end-point open strings that satisfy the Dirichlet and Neumann boundary conditions. The questions of the choice of extra-dimensions, symmetries, duality and ways to the partial compactification are discussed. Subsequently, we pass to higher dimensional and more complex objects. The 2D-Brane was suggested which incorporated bid-ask spreads. Polarization by the spread was considered which admitted analyzing arbitrage opportunities on the market where transaction costs are taken into account. The model of the rotating string which naturally yields calculation of angular momentum is suitable for tracking of several currency pairs. The systematic way which allows one suggest more structured maps suitable for a simultaneous study of several currency pairs was analyzed by means of the Gâteaux generalized differential calculus. The effect of the string and brane maps on test data was studied by comparing their mean statistical characteristics. The study revealed notable differences between topologies. We review the dependence on the characteristic string length, mean fluctuations and properties of the intra-string statistics. The study explores the coupling of the string amplitude and volatility. The possible utilizations of the string theory approach in financial markets are slight.
Non-relativistic AdS branes and Newton-Hooke superalgebra
International Nuclear Information System (INIS)
Sakaguchi, Makoto; Yoshida, Kentaroh
2006-01-01
We examine a non-relativistic limit of D-branes in AdS 5 x S 5 and M-branes in AdS 4/7 x S 7/4 . First, Newton-Hooke superalgebras for the AdS branes are derived from AdS x S superalgebras as Inoenue-Wigner contractions. It is shown that the directions along which the AdS-brane worldvolume extends are restricted by requiring that the isometry on the AdS-brane worldvolume and the Lorentz symmetry in the transverse space naturally extend to the super-isometry. We also derive Newton-Hooke superalgebras for pp-wave branes and show that the directions along which a brane worldvolume extends are restricted. Then the Wess-Zumino terms of the AdS branes are derived by using the Chevalley-Eilenberg cohomology on the super-AdS x S algebra, and the non-relativistic limit of the AdS-brane actions is considered. We show that the consistent limit is possible for the following branes: Dp (even,even) for p = 1 mod 4 and Dp (odd,odd) for p = 3 mod 4 in AdS 5 x S 5 , and M2 (0,3), M2 (2,1), M5 (1,5) and M5 (3,3) in AdS 4 x S 7 and S 4 x AdS 7 . We furthermore present non-relativistic actions for the AdS branes
Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications
Energy Technology Data Exchange (ETDEWEB)
Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Kreuzer, Maximilian
2011-06-15
We analyse several explicit toric examples of compact K3-fibred Calabi-Yau three-folds which can be used for the study of string dualities and are crucial ingredients for the construction of LARGE Volume type IIB vacua with promising applications to cosmology and particle phenomenology. In order to build a phenomenologically viable model, on top of the two moduli corresponding to the base and the K3 fibre, we demand also the existence of two additional rigid divisors: the first supporting the non-perturbative effects needed to achieve moduli stabilisation, and the second allowing the presence of chiral matter on wrapped D-branes. We clarify the topology of these rigid divisors by discussing the interplay between a diagonal structure of the Calabi-Yau volume and D-terms. Del Pezzo divisors appearing in the volume form in a completely diagonal way are natural candidates for supporting non-perturbative effects and for quiver constructions, while 'non-diagonal' del Pezzo and rigid but not del Pezzo divisors are particularly interesting for model building in the geometric regime. Searching through the existing list of four dimensional reflexive lattice polytopes, we find 158 examples admitting a Calabi-Yau hypersurface which is a K3 fibration with four Kaehler moduli where at least one of them is a 'diagonal' del Pezzo. We work out explicitly the topological details of a few examples showing how, in the case of simplicial polytopes, all the del Pezzo divisors are 'diagonal', while 'non-diagonal' ones appear only in the case of non-simplicial polytopes. A companion paper will use these results in the study of moduli stabilisation for globally consistent explicit Calabi-Yau compactifications with the local presence of chirality. (orig.)
TOPICAL REVIEW: TeV mini black hole decay at future colliders
Casanova, Alex; Spallucci, Euro
2006-02-01
It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation leads to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of string theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions. The main modifications with respect to the original picture of black hole evaporation come from recent developments in non-perturbative string theory globally referred to as TeV-scale gravity. By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3 brane embedded into a higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at the TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and includes the presence of D-branes. This kind of topological defect in the bulk spacetime fabric acts as a sort of 'cosmic fly-paper' trapping electro-weak standard model elementary particles in our (3 + 1)-dimensional universe. Furthermore, unification of fundamental interactions at an energy scale many orders of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this review, we study higher dimensional black hole decay, considering not only the emission of particles according to the Hawking mechanism, but also their near-horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear
TeV mini black hole decay at future colliders
International Nuclear Information System (INIS)
Casanova, Alex; Spallucci, Euro
2006-01-01
It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation leads to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of string theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions. The main modifications with respect to the original picture of black hole evaporation come from recent developments in non-perturbative string theory globally referred to as TeV-scale gravity. By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3 brane embedded into a higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at the TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and includes the presence of D-branes. This kind of topological defect in the bulk spacetime fabric acts as a sort of 'cosmic fly-paper' trapping electro-weak standard model elementary particles in our (3 + 1)-dimensional universe. Furthermore, unification of fundamental interactions at an energy scale many orders of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this review, we study higher dimensional black hole decay, considering not only the emission of particles according to the Hawking mechanism, but also their near-horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear
Brane-induced Skyrmion on S3: Baryonic matter in holographic QCD
International Nuclear Information System (INIS)
Nawa, Kanabu; Suganuma, Hideo; Kojo, Toru
2009-01-01
We study baryonic matter in holographic QCD with D4/D8/D8 multi-D brane system in type IIA superstring theory. The baryon is described as the 'brane-induced Skyrmion', which is a topologically nontrivial chiral soliton in the four-dimensional meson effective action induced by holographic QCD. We employ the ''truncated-resonance model'' approach for the baryon analysis, including pion and ρ meson fields below the ultraviolet cutoff scale M KK ∼1 GeV, to keep the holographic duality with QCD. We describe the baryonic matter in large N c as single brane-induced Skyrmion on the three-dimensional closed manifold S 3 with finite radius R. The interactions between baryons are simulated by the curvature of the closed manifold S 3 , and the decrease of the size of S 3 represents the increase of the total baryon-number density in the medium in this modeling. We investigate the energy density, the field configuration, the mass and the root-mean-square radius of single baryon on S 3 as the function of its radius R. We find a new picture of 'pion dominance' near the critical density in the baryonic matter, where all the (axial) vector meson fields disappear and only the pion fields survive. We also find the swelling phenomena of the baryons as the precursor of the deconfinement, and propose the mechanism of the swelling in the general context of QCD. The properties of the deconfinement and the chiral symmetry restoration in the baryonic matter are examined by taking the proper order parameters. We also compare our truncated-resonance model with another instanton description of the baryon in holographic QCD, considering the role of cutoff scale M KK .
Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications
International Nuclear Information System (INIS)
Cicoli, Michele; Mayrhofer, Christoph; Kreuzer, Maximilian
2011-06-01
We analyse several explicit toric examples of compact K3-fibred Calabi-Yau three-folds which can be used for the study of string dualities and are crucial ingredients for the construction of LARGE Volume type IIB vacua with promising applications to cosmology and particle phenomenology. In order to build a phenomenologically viable model, on top of the two moduli corresponding to the base and the K3 fibre, we demand also the existence of two additional rigid divisors: the first supporting the non-perturbative effects needed to achieve moduli stabilisation, and the second allowing the presence of chiral matter on wrapped D-branes. We clarify the topology of these rigid divisors by discussing the interplay between a diagonal structure of the Calabi-Yau volume and D-terms. Del Pezzo divisors appearing in the volume form in a completely diagonal way are natural candidates for supporting non-perturbative effects and for quiver constructions, while 'non-diagonal' del Pezzo and rigid but not del Pezzo divisors are particularly interesting for model building in the geometric regime. Searching through the existing list of four dimensional reflexive lattice polytopes, we find 158 examples admitting a Calabi-Yau hypersurface which is a K3 fibration with four Kaehler moduli where at least one of them is a 'diagonal' del Pezzo. We work out explicitly the topological details of a few examples showing how, in the case of simplicial polytopes, all the del Pezzo divisors are 'diagonal', while 'non-diagonal' ones appear only in the case of non-simplicial polytopes. A companion paper will use these results in the study of moduli stabilisation for globally consistent explicit Calabi-Yau compactifications with the local presence of chirality. (orig.)
Moduli effective action in warped brane-world compactifications
International Nuclear Information System (INIS)
Garriga, Jaume; Pujolas, Oriol; Tanaka, Takahiro
2003-01-01
We consider a class of 5D brane-world solutions with a power-law warp factor a(y)∝y q , and bulk dilaton with profile phi∝lny, where y is the proper distance in the extra dimension. This class includes the heterotic M-theory brane-world of [Phys. Rev. D 59 (1999) 086001, and] and the Randall-Sundrum (RS) model as a limiting case. In general, there are two moduli fields y ± , corresponding to the 'positions' of two branes (which live at the fixed points of an orbifold compactification). Classically, the moduli are massless, due to a scaling symmetry of the action. However, in the absence of supersymmetry, they develop an effective potential at one loop. Local terms proportional to K ± 4 , where K ± =q/y ± is the local curvature scale at the location of the corresponding brane, are needed in order to remove the divergences in the effective potential. Such terms break the scaling symmetry and hence they may act as stabilizers for the moduli. When the branes are very close to each other, the effective potential induced by massless bulk fields behaves like V∼d -4 , where d is the separation between branes. When the branes are widely separated, the potentials for each one of the moduli generically develop a 'Coleman-Weinberg'-type behaviour of the form a 4 (y ± )K ± 4 ln(K ± /μ ± ), where μ ± are renormalization scales. In the RS case, the bulk geometry is AdS and K ± are equal to a constant, independent of the position of the branes, so these terms do not contribute to the mass of the moduli. However, for generic warp factor, they provide a simple stabilization mechanism. For q > or approx. 10, the observed hierarchy can be naturally generated by this potential, giving the lightest modulus a mass of order m - < or approx. TeV
Skyrmions with holography and hidden local symmetry
International Nuclear Information System (INIS)
Nawa, Kanabu; Hosaka, Atsushi; Suganuma, Hideo
2009-01-01
We study baryons as Skyrmions in holographic QCD with D4/D8/D8 multi-D brane system in type IIA superstring theory, and also in the nonlinear sigma model with hidden local symmetry. Comparing these two models, we find that the extra dimension and its nontrivial curvature can largely change the role of (axial) vector mesons for baryons in four-dimensional space-time. In the hidden local symmetry approach, the ρ-meson field as a massive Yang-Mills field has a singular configuration in Skyrmion, which gives a strong repulsion for the baryon as a stabilizer. When the a 1 meson is added in this approach, the stability of Skyrmion is lost by the cancellation of ρ and a 1 contributions. On the contrary, in holographic QCD, the ρ-meson field does not appear as a massive Yang-Mills field due to the extra dimension and its nontrivial curvature. We show that the ρ-meson field has a regular configuration in Skyrmion, which gives a weak attraction for the baryon in holographic QCD. We argue that Skyrmion with π, ρ, and a 1 mesons become stable due to the curved extra dimension and also the presence of the Skyrme term in holographic QCD. From this result, we also discuss the features of our truncated-resonance analysis on baryon properties with π and ρ mesons below the cutoff scale M KK ∼1 GeV in holographic QCD, which is compared with other 5D instanton analysis.
Supersymmetric gauge theories from string theory
International Nuclear Information System (INIS)
Metzger, St.
2005-12-01
This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G 2 -manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G 2 -manifold is known. Here we construct families of metrics on compact weak G 2 -manifolds, which contain two conical singularities. Weak G 2 -manifolds have properties that are similar to the ones of proper G 2 -manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E 8 x E 8 -heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)
Stringy models of modified gravity: space-time defects and structure formation
International Nuclear Information System (INIS)
Mavromatos, Nick E.; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan
2013-01-01
Starting from microscopic models of space-time foam, based on brane universes propagating in bulk space-times populated by D0-brane defects (''D-particles''), we arrive at effective actions used by a low-energy observer on the brane world to describe his/her observations of the Universe. These actions include, apart from the metric tensor field, also scalar (dilaton) and vector fields, the latter describing the interactions of low-energy matter on the brane world with the recoiling point-like space-time defect (D-particle). The vector field is proportional to the recoil velocity of the D-particle and as such it satisfies a certain constraint. The vector breaks locally Lorentz invariance, which however is assumed to be conserved on average in a space-time foam situation, involving the interaction of matter with populations of D-particle defects. In this paper we clarify the role of fluctuations of the vector field on structure formation and galactic growth. In particular we demonstrate that, already at the end of the radiation era, the (constrained) vector field associated with the recoil of the defects provides the seeds for a growing mode in the evolution of the Universe. Such a growing mode survives during the matter dominated era, provided the variance of the D-particle recoil velocities on the brane is larger than a critical value. We note that in this model, as a result of specific properties of D-brane dynamics in the bulk, there is no issue of overclosing the brane Universe for large defect densities. Thus, in these models, the presence of defects may be associated with large-structure formation. Although our string inspired models do have (conventional, from a particle physics point of view) dark matter components, nevertheless it is interesting that the role of ''extra'' dark matter is also provided by the population of massive defects. This is consistent with the weakly interacting character of the D-particle defects, which predominantly interact only
A realistic intersecting D6-brane model after the first LHC run
Li, Tianjun; Nanopoulos, D. V.; Raza, Shabbar; Wang, Xiao-Chuan
2014-08-01
needed to probe our D-brane model.
Minimal string theories and integrable hierarchies
Iyer, Ramakrishnan
Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non
International Nuclear Information System (INIS)
Halter, Sebastian
2012-01-01
This thesis is concerned with aspects of inflation both from a field theory and a string theory perspective. It aims at exploring new approaches to address the problem of moduli destabilization and the η-problem and to realize inflation in the matter sector. The first part is devoted to studying models of inflation in the framework of four-dimensional N=1 supergravity. We begin with investigating a new proposal to solve the problem of moduli destabilization, which seems to force us to choose between low-energy supersymmetry and high-scale inflation. This new approach is based on a particular way to couple the modulus to the F-term driving inflation. Using chaotic inflation with a shift symmetry as an example, we show that we can successfully combine low-energy supersymmetry and high-scale inflation. We construct a class of inflation models in N=1 supergravity where the inflaton resides in gauge non-singlet matter fields. These are extensions of a special class of hybrid inflation models, so-called tribrid inflation, where the η-problem can be solved by a Heisenberg symmetry. Compared to previously studied models, we have generalized our models with some inspiration from string theory. We investigate moduli stabilization during inflation and identify situations in which the inflaton slope is dominated by radiative corrections. We outline under which conditions this class of matter inflation models could be embedded into heterotic orbifold compactifications. In doing so, we suggest a new mechanism to stabilize some Kaehler moduli by F-terms for matter fields. In the second part, we consider models of warped D-brane inflation on a family of ten-dimensional supergravity backgrounds. We consider inflation along the radial direction near the tip of the warped throat and show that generically an inflection point arises for the inflaton potential, which is related to an inflection point of the dilaton profile. A universal scaling behaviour with the parameters of the
Aspects of stability and phenomenology in type IIA orientifolds with intersecting D6-branes
International Nuclear Information System (INIS)
Ott, T.
2004-01-01
Intersecting branes have been the subject of an elaborate string model building for several years. After a general introduction into string theory, this work introduces in detail the toroidal and Z N -orientifolds. The picture involving D9-branes with B-fluxes is shortly reviewed, but the main discussion employs the T-dual picture of intersecting D6-branes. The derivation of the R-R and NS-NS tadpole cancellation conditions in the conformal field theory is shown in great detail. Various aspects of the open and closed chiral and non-chiral massless spectrum are discussed, involving spacetime anomalies and the generalized Green-Schwarz mechanism. An introduction into possible gauge breaking mechanisms is given, too. Afterwards, both N=1 supersymmetric and non-supersymmetric approaches to low energy model building are treated. Firstly, the problem of complex structure instabilities in toroidal ΩR-orientifolds is approached by a Z 3 -orbifolded model. In particular, a stable non-supersymmetric standard-like model with three fermion generations is discussed. This model features the standard model gauge groups at the same time as having a massless hypercharge, but possessing an additional global B-L symmetry. The electroweak Higgs mechanism and the Yukawa couplings are not realized in the usual way. It is shown that this model descends naturally from a flipped SU(5) GUT model, where the string scale has to be at least of the order of the GUT scale. Secondly, supersymmetric models on the Z 4 -orbifold are discussed, involving exceptional 3-cycles and the explicit construction of fractional D-branes. A three generation Pati-Salam model is constructed as a particular example, where several brane recombination mechanisms are used, yielding non-flat and non-factorizable branes. This model even can be broken down to a MSSM-like model with a massless hypercharge. Finally, the possibility that unstable closed and open string moduli could have played the role of the inflaton in
Moduli effective action in warped brane-world compactifications
Energy Technology Data Exchange (ETDEWEB)
Garriga, Jaume E-mail: garriga@ifae.es; Pujolas, Oriol; Tanaka, Takahiro
2003-04-07
We consider a class of 5D brane-world solutions with a power-law warp factor a(y){proportional_to}y{sup q}, and bulk dilaton with profile phi{proportional_to}lny, where y is the proper distance in the extra dimension. This class includes the heterotic M-theory brane-world of [Phys. Rev. D 59 (1999) 086001, and] and the Randall-Sundrum (RS) model as a limiting case. In general, there are two moduli fields y{sub {+-}}, corresponding to the 'positions' of two branes (which live at the fixed points of an orbifold compactification). Classically, the moduli are massless, due to a scaling symmetry of the action. However, in the absence of supersymmetry, they develop an effective potential at one loop. Local terms proportional to K{sub {+-}}{sup 4}, where K{sub {+-}}=q/y{sub {+-}} is the local curvature scale at the location of the corresponding brane, are needed in order to remove the divergences in the effective potential. Such terms break the scaling symmetry and hence they may act as stabilizers for the moduli. When the branes are very close to each other, the effective potential induced by massless bulk fields behaves like V{approx}d{sup -4}, where d is the separation between branes. When the branes are widely separated, the potentials for each one of the moduli generically develop a 'Coleman-Weinberg'-type behaviour of the form a{sup 4}(y{sub {+-}})K{sub {+-}}{sup 4}ln(K{sub {+-}}/{mu}{sub {+-}}), where {mu}{sub {+-}} are renormalization scales. In the RS case, the bulk geometry is AdS and K{sub {+-}} are equal to a constant, independent of the position of the branes, so these terms do not contribute to the mass of the moduli. However, for generic warp factor, they provide a simple stabilization mechanism. For q > or approx. 10, the observed hierarchy can be naturally generated by this potential, giving the lightest modulus a mass of order m{sub -} < or approx. TeV.
Energy Technology Data Exchange (ETDEWEB)
Halter, Sebastian
2012-07-09
This thesis is concerned with aspects of inflation both from a field theory and a string theory perspective. It aims at exploring new approaches to address the problem of moduli destabilization and the η-problem and to realize inflation in the matter sector. The first part is devoted to studying models of inflation in the framework of four-dimensional N=1 supergravity. We begin with investigating a new proposal to solve the problem of moduli destabilization, which seems to force us to choose between low-energy supersymmetry and high-scale inflation. This new approach is based on a particular way to couple the modulus to the F-term driving inflation. Using chaotic inflation with a shift symmetry as an example, we show that we can successfully combine low-energy supersymmetry and high-scale inflation. We construct a class of inflation models in N=1 supergravity where the inflaton resides in gauge non-singlet matter fields. These are extensions of a special class of hybrid inflation models, so-called tribrid inflation, where the η-problem can be solved by a Heisenberg symmetry. Compared to previously studied models, we have generalized our models with some inspiration from string theory. We investigate moduli stabilization during inflation and identify situations in which the inflaton slope is dominated by radiative corrections. We outline under which conditions this class of matter inflation models could be embedded into heterotic orbifold compactifications. In doing so, we suggest a new mechanism to stabilize some Kaehler moduli by F-terms for matter fields. In the second part, we consider models of warped D-brane inflation on a family of ten-dimensional supergravity backgrounds. We consider inflation along the radial direction near the tip of the warped throat and show that generically an inflection point arises for the inflaton potential, which is related to an inflection point of the dilaton profile. A universal scaling behaviour with the parameters of the
Energy Technology Data Exchange (ETDEWEB)
Metzger, St
2005-12-15
This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G{sub 2}-manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G{sub 2}-manifold is known. Here we construct families of metrics on compact weak G{sub 2}-manifolds, which contain two conical singularities. Weak G{sub 2}-manifolds have properties that are similar to the ones of proper G{sub 2}-manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E{sub 8} x E{sub 8}-heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the
Gauge/gravity duality. Exploring universal features in quantum matter
Energy Technology Data Exchange (ETDEWEB)
Klug, Steffen
2013-07-09
In this dissertation strongly correlated quantum states of matter are explored with the help of the gauge/gravity duality, relating strongly coupled gauge theories to weakly curved gravitational theories. The main focus of the present work is on applications to condensed matter systems, in particular high temperature superconductors and quantum matter close to criticality at zero temperature. The gauge/gravity duality originates from string theory and is a particular realization of the holographic principle. Therefore, a brief overview of the conceptual ideas behind string theory and the ramifications of the holographic principle are given. Along the way, supersymmetry and supersymmetric field theories needed to understand the low energy effective field theories of superstring theory will be discussed. Armed with the string theory background, the double life of D-branes, extended object where open strings end, is explained as massive solitonic solutions to the type II supergravity equations of motion and their role in generating supersymmetric Yang-Mills theories. Connecting these two different pictures of D-branes will give an explicit construction of a gauge/gravity duality, the AdS{sub 5}/CFT{sub 4} correspondence between N=4 supersymmetric SU(N{sub c}) Yang-Mills theory in four dimensions with vanishing β-function to all orders, describing a true CFT, and type IIB supergravity in ten-dimensional AdS{sub 5} x S{sup 5} spacetime. Furthermore, the precise dictionary relating operators of the conformal field theory to fields in the gravitational theory is established. More precisely, the partitions functions of the strongly coupled N=4 supersymmetric Yang-Mills theory in the large N{sub c} limit is equal to the on-shell supergravity partition evaluated at the boundary of the AdS space. Applying the knowledge of perturbative quantum field theory and its relation to the quantum partition function the dictionary may be extended to finite temperature and finite
Gauge/gravity duality. Exploring universal features in quantum matter
International Nuclear Information System (INIS)
Klug, Steffen
2013-01-01
In this dissertation strongly correlated quantum states of matter are explored with the help of the gauge/gravity duality, relating strongly coupled gauge theories to weakly curved gravitational theories. The main focus of the present work is on applications to condensed matter systems, in particular high temperature superconductors and quantum matter close to criticality at zero temperature. The gauge/gravity duality originates from string theory and is a particular realization of the holographic principle. Therefore, a brief overview of the conceptual ideas behind string theory and the ramifications of the holographic principle are given. Along the way, supersymmetry and supersymmetric field theories needed to understand the low energy effective field theories of superstring theory will be discussed. Armed with the string theory background, the double life of D-branes, extended object where open strings end, is explained as massive solitonic solutions to the type II supergravity equations of motion and their role in generating supersymmetric Yang-Mills theories. Connecting these two different pictures of D-branes will give an explicit construction of a gauge/gravity duality, the AdS 5 /CFT 4 correspondence between N=4 supersymmetric SU(N c ) Yang-Mills theory in four dimensions with vanishing β-function to all orders, describing a true CFT, and type IIB supergravity in ten-dimensional AdS 5 x S 5 spacetime. Furthermore, the precise dictionary relating operators of the conformal field theory to fields in the gravitational theory is established. More precisely, the partitions functions of the strongly coupled N=4 supersymmetric Yang-Mills theory in the large N c limit is equal to the on-shell supergravity partition evaluated at the boundary of the AdS space. Applying the knowledge of perturbative quantum field theory and its relation to the quantum partition function the dictionary may be extended to finite temperature and finite density states. Thus, all aspects
International Nuclear Information System (INIS)
Wrochna, G.
2008-01-01
Full text: The year 2007 brought a further increase in our scientific output. The number of publications has grown by 10%, exceeding 300. This expands the systematic growth observed over the last 7 years. It is worth noting that this increase was obtained with a constant number of 140 scientists. Among those who contributed not only to the number but also to the value of the papers were two researchers who deserved a prize of '' IPJ achievement of 2007 ''. Prof. Wilczynski published several articles explaining the mechanisms of nuclear collisions at low and medium energies [Contrib. 2.3, 2.4]. Dr. Spalinski wrote a series of papers developing theories of cosmic inflation as a consequence of D-brane dynamics of string theory [p. 155]. Apart from these theories, the group led by Dr. Barlak found an important practical application of plasma discharges [Contrib. 9.2]. They developed a technique to prepare the surface of carbon and silicone carbide for firm adhesion to copper. On the experimental side, 2007 was the last but one year of preparation for the startup of the LHC accelerator. The Department of High Energy Physics created a GRID-based infrastructure for analysis of data from LHC experiments [Contrib. 6.6]. Last year also brought new achievements in education and outreach. We organized courses for teachers introducing nuclear energy and particle physics. Lecturers from the International Atomic Energy Agency and CERN, as well as visits of teachers to CERN made those courses especially attractive. The '' Scientific Picnic '' in Warsaw and science festivals in other cities gave occasion to explain advanced science with simple words and demonstrations. The '' Physics Playground '' for children organised by Drs Pawlowski and Rozynek was invited to South Korea [p. 22]. All these activities were appreciated by the Ministry of Science and Higher Education and honored by the award of '' Science popularizer of the year ''. Effort was invested in the preparation of new
International Nuclear Information System (INIS)
Hecht, Michael
2011-01-01
This thesis addresses two different topics within the field of string theory. In the first part it is shown how Hodge-theoretic methods in conjunction with open string mirror symmetry can be used to compute non-perturbative effective superpotential couplings for type II/F-theory compactifications with D-branes and fluxes on compact Calabi-Yau manifolds. This is achieved by studying the at structure of operators which derives from the open/closed Β-model geometry. We analyze the variation of mixed Hodge structure of the relative cohomology induced by a family of divisors, which is wrapped by a D7-brane. This leads to a Picard-Fuchs system of differential operators, which can be used to compute the moduli dependence of the superpotential couplings as well as the mirror maps at various points in the open/closed deformation space. These techniques are used to obtain predictions for genuine A-model Ooguri-Vafa invariants of special Lagrangian submanifolds in compact Calabi-Yau geometries and real enumerative invariants of on-shell domain wall tensions. By an open/closed duality the system of differential equations can also be obtained from a gauged linear σ-model, which describes a non-compact Calabi-Yau four-fold compactification without branes. This is used in the examples of multi-parameter models to study the various phases of the combined open/closed deformation space. It is furthermore shown how the brane geometry can be related to a F-theory compactification on a compact Calabi-Yau four-fold, where the Hodge-theoretic techniques can be used to compute the G-flux induced Gukov-Vafa-Witten potential. The dual F-theory picture also allows to conjecture the form of the Kaehler potential on the full open/closed deformation space. In the second part we analyze the background dependence of theories which derive from multiple wrapped M5-branes. Using the Kontsevich-Soibelman wall-crossing formula and the theory of mock modular forms we derive a holomorphic anomaly
Energy Technology Data Exchange (ETDEWEB)
Hecht, Michael
2011-10-20
This thesis addresses two different topics within the field of string theory. In the first part it is shown how Hodge-theoretic methods in conjunction with open string mirror symmetry can be used to compute non-perturbative effective superpotential couplings for type II/F-theory compactifications with D-branes and fluxes on compact Calabi-Yau manifolds. This is achieved by studying the at structure of operators which derives from the open/closed {beta}-model geometry. We analyze the variation of mixed Hodge structure of the relative cohomology induced by a family of divisors, which is wrapped by a D7-brane. This leads to a Picard-Fuchs system of differential operators, which can be used to compute the moduli dependence of the superpotential couplings as well as the mirror maps at various points in the open/closed deformation space. These techniques are used to obtain predictions for genuine A-model Ooguri-Vafa invariants of special Lagrangian submanifolds in compact Calabi-Yau geometries and real enumerative invariants of on-shell domain wall tensions. By an open/closed duality the system of differential equations can also be obtained from a gauged linear {sigma}-model, which describes a non-compact Calabi-Yau four-fold compactification without branes. This is used in the examples of multi-parameter models to study the various phases of the combined open/closed deformation space. It is furthermore shown how the brane geometry can be related to a F-theory compactification on a compact Calabi-Yau four-fold, where the Hodge-theoretic techniques can be used to compute the G-flux induced Gukov-Vafa-Witten potential. The dual F-theory picture also allows to conjecture the form of the Kaehler potential on the full open/closed deformation space. In the second part we analyze the background dependence of theories which derive from multiple wrapped M5-branes. Using the Kontsevich-Soibelman wall-crossing formula and the theory of mock modular forms we derive a holomorphic
Walcher, J.
2006-10-01
This book is a find. Mariño meets the challenge of filling in less than 200 pages the need for an accessible review of topological gauge / gravity duality. He is one of the pioneers of the subject and a clear expositor. It is no surprise that reading this book is a great pleasure. The existence of dualities between gauge theories and theories of gravity remains one of the most surprising recent discoveries in mathematical physics. While it is probably fair to say that we do not yet understand the full reach of such a relation, the impressive amount of evidence that has accumulated over the past years can be regarded as a substitute for a proof, and will certainly help to delineate the question of what is the most fundamental quantum mechanical theory. As has been the case in the past, it is in the context of Witten's 'topological' quantum theories that the mathematical framework is well enough established to firmly ground, and fully benefit from, the development of the physical theories. This book makes an important contribution to this new chapter in the math / physics interaction. There are two main instances of topological gauge/gravity duality. In the A-model, Chern Simons gauge theory on the 3-sphere is related to the closed topological string theory on the local Calabi Yau 3-fold {\\mathcal O}_{{\\mathbb P}^1}(-1) \\oplus{\\mathcal O}_{{\\mathbb P}^1} (-1), also known as the resolved conifold (Gopakumar-Vafa duality). In the B-model, certain types of matrix models are related on the gravity side to topological strings on certain cousins of the deformed conifold (Dijkgraaf-Vafa duality). In both cases, and similarly to the more physical AdS/CFT correspondence, the duality can be discovered by realizing the gauge theory as the target space theory of open strings ending on particular D-branes in a geometry closely related to the closed string background of the gravity theory. The A-branes supporting Chern Simons theory are wrapped on the Lagrangian three
Condensed matter analogues of cosmology
Kibble, Tom; Srivastava, Ajit
2013-10-01
Ranjkesh, V Simonka, M Ambrozic, Z Bradac and S Kralj Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystalsYoung-Ki Kim, Sergij V Shiyanovskii and Oleg D Lavrentovich Annihilation dynamics of stringlike topological defects in a nematic lyotropic liquid crystalR R Guimarães, R S Mendes, P R G Fernandes and H Mukai Duality between the dynamics of line-like brushes of point defects in 2D and strings in 3D in liquid crystalsSanatan Digal, Rajarshi Ray, P S Saumia and Ajit M Srivastava The multiuniverse transition in superfluid 3HeYury Bunkov Coherent topological defect dynamics and collective modes in superconductors and electronic crystalsD Mihailovic, T Mertelj, V V Kabanov and S Brazovskii Gaussianity revisited: exploring the Kibble-Zurek mechanism with superconducting ringsD J Weir, R Monaco, V P Koshelets, J Mygind and R J Rivers The Kibble-Zurek mechanism in a subcritical bifurcationM A Miranda, D Laroze and W González-Viñas Topological relics of symmetry breaking: winding numbers and scaling tilts from random vortex-antivortex pairsW H Zurek Causality and non-equilibrium second-order phase transitions in inhomogeneous systemsA del Campo, T W B Kibble and W H Zurek The role of causality in tunable Fermi gas condensatesJen-Tsung Hsiang, Chi-Yong Lin, Da-Shin Lee and Ray J Rivers Kibble-Zurek mechanism in a trapped ferromagnetic Bose-Einstein condensateHiroki Saito, Yuki Kawaguchi and Masahito Ueda D-brane solitons and boojums in field theory and Bose-Einstein condensatesKenichi Kasamatsu, Hiromitsu Takeuchi and Muneto Nitta Kibble-Zurek scaling and string-net coarsening in topologically ordered systemsAnushya Chandran, F J Burnell, Vedika Khemani and S L Sondhi Universal frozen spectra after time-dependent symmetry restoring phase transitionsFriedemann Queisser, Patrick Navez and Ralf Schützhold Microscopic theory of non-adiabatic response in real and imaginary timeC De Grandi, A
Integrable Scalar Cosmologies I. Foundations and links with String Theory
Fré, P.; Sagnotti, A.; Sorin, A. S.
2013-12-01
encouraging results that find a rationale in the ascertained behavior of corresponding two-dimensional dynamical systems.The structure of the paper is as follows. In Section 2 we derive an effective dynamical model that encompasses the possible d-dimensional Friedman-Lemaitre-Robertson-Walker (FLRW) spatially flat cosmologies driven by a scalar field ϕ with canonical kinetic term and self interaction produced by a potential function V(ϕ). In Section 3 we describe the methods used to build integrable dynamical systems and identify nine different families of one-scalar cosmologies that are integrable for suitable choices of the gauge function B(t) of Eq. (1.1). In Section 4 we analyze the generic properties of dynamical systems in two variables, we describe the general classification of their fixed points and we illustrate the corresponding behavior of the solutions of Section 3. We then discuss in detail the exact solutions of several particularly significant systems identified in Section 3 and illustrate a number of instructive lessons that can be drawn from them. In Section 5.1 we describe the gross features of 26 additional sporadic potentials and elaborate on the qualitative behavior of their solutions, on the basis of the key lessons drawn from the simpler examples of Section 4. We also elaborate briefly on the links with other integrable systems. In Section 6 we illustrate how exponential potentials accompany in String Theory a mechanism for supersymmetry breaking brought about by classically stable vacuum configurations of D branes and orientifolds with broken supersymmetry and discuss their behavior in lower dimensions. Under some assumptions that are spelled out in Section 6, we also describe the types of exponential potentials that can emerge, in four dimensions, from various types of branes present in String Theory. Insofar as possible, we work in a generic number of dimensions, but with critical superstrings in our mind, so that in most of the paper 4⩽d⩽10