WorldWideScience

Sample records for d-amino acid peptide

  1. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP.

    Science.gov (United States)

    Jia, Fengjing; Wang, Jiayi; Peng, Jinxiu; Zhao, Ping; Kong, Ziqing; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-10-01

    With the increasing emergence of resistant microbes toward conventional antimicrobial agents, there is an urgent need for the development of antimicrobial agents with novel action mode. Antimicrobial peptides (AMPs) are believed to be one kind of ideal alternatives. However, AMPs can be easily degraded by protease, which limited their therapeutic use. In the present study, D-amino acid substitution strategy was employed to enhance the stability of polybia-CP. We investigated the stability of peptides against the degradation of trypsin and chymotrypsin by determining the antimicrobial activity or determining the HPLC profile of peptides after incubation with proteases. Our results showed that both the all D-amino acid derivative (D-CP) and partial D-lysine substitution derivative (D-lys-CP) have an improved stability against trypsin and chymotrypsin. Although D-CP takes left-hand α-helical conformation and D-lys-CP loses some α-helical content, both of the D-amino acid-substituted derivatives maintain their parental peptides' membrane active action mode. In addition, D-lys-CP showed a slight weaker antimicrobial activity than polybia-CP, but the hemolytic activity decreased greatly. These results suggest that D-CP and D-lys-CP can offer strategy to improve the property of AMPs and may be leading compounds for the development of novel antimicrobial agents. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Nutritional and medicinal aspects of D-amino acids.

    Science.gov (United States)

    Friedman, Mendel; Levin, Carol E

    2012-05-01

    This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.

  3. d-Amino acid mutation of PMI as potent dual peptide inhibitors of p53-MDM2/MDMX interactions.

    Science.gov (United States)

    Li, Xiang; Liu, Chao; Chen, Si; Hu, Honggang; Su, Jiacan; Zou, Yan

    2017-10-15

    According to the previously reported potent dual l-peptide PMI of p53-MDM2/MDMX interactions, a series of d-amino acid mutational PMI analogues, PMI-1-4, with enhanced proteolytic resistence and in vitro tumor cell inhibitory activities were reported, of which Liposome-PMI-1 showed a stronger inhibitory activity against the U87 cell lines than Nutlin-3. This d-amino acid mutation strategy may give a hand for enhancing the potential of peptide drugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Acquisition and Assimilation of Nitrogen as Peptide-Bound and D-Enantiomers of Amino Acids by Wheat

    Science.gov (United States)

    Hill, Paul W.; Quilliam, Richard S.; DeLuca, Thomas H.; Farrar, John; Farrell, Mark; Roberts, Paula; Newsham, Kevin K.; Hopkins, David W.; Bardgett, Richard D.; Jones, David L.

    2011-01-01

    Nitrogen is a key regulator of primary productivity in many terrestrial ecosystems. Historically, only inorganic N (NH4 + and NO3 -) and L-amino acids have been considered to be important to the N nutrition of terrestrial plants. However, amino acids are also present in soil as small peptides and in D-enantiomeric form. We compared the uptake and assimilation of N as free amino acid and short homopeptide in both L- and D-enantiomeric forms. Sterile roots of wheat (Triticum aestivum L.) plants were exposed to solutions containing either 14C-labelled L-alanine, D-alanine, L-trialanine or D-trialanine at a concentration likely to be found in soil solution (10 µM). Over 5 h, plants took up L-alanine, D-alanine and L-trialanine at rates of 0.9±0.3, 0.3±0.06 and 0.3±0.04 µmol g−1 root DW h−1, respectively. The rate of N uptake as L-trialanine was the same as that as L-alanine. Plants lost ca.60% of amino acid C taken up in respiration, regardless of the enantiomeric form, but more (ca.80%) of the L-trialanine C than amino acid C was respired. When supplied in solutions of mixed N form, N uptake as D-alanine was ca.5-fold faster than as NO3 -, but slower than as L-alanine, L-trialanine and NH4 +. Plants showed a limited capacity to take up D-trialanine (0.04±0.03 µmol g−1 root DW h−1), but did not appear to be able to metabolise it. We conclude that wheat is able to utilise L-peptide and D-amino acid N at rates comparable to those of N forms of acknowledged importance, namely L-amino acids and inorganic N. This is true even when solutes are supplied at realistic soil concentrations and when other forms of N are available. We suggest that it may be necessary to reconsider which forms of soil N are important in the terrestrial N cycle. PMID:21541281

  5. Oostatic peptides containing d-amino acids: synthesis, oostatic activity, degradation, accumulation in ovaries and NMR study

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Tykva, Richard; Holík, Josef; Bennettová, Blanka; Buděšínský, Miloš; Vlasáková, Věra; Černý, Bohuslav; Slaninová, Jiřina

    2012-01-01

    Roč. 42, č. 5 (2012), s. 1715-1725 ISSN 0939-4451 R&D Projects: GA ČR GA203/06/1272 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50380511; CEZ:AV0Z50070508 Keywords : D-amino acids * oostatic peptide synthesis * H-3 labeling * oostatic activity in Neobellieria bullata * H-3 incorporation * Peptide degradation * NMR study Subject RIV: CC - Organic Chemistry Impact factor: 3.914, year: 2012

  6. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    Science.gov (United States)

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics.

    Science.gov (United States)

    Wang, Huaimin; Feng, Zhaoqianqi; Xu, Bing

    2017-02-01

    Nanostructures formed by peptides that self-assemble in water through non-covalent interactions have attracted considerable attention because peptides possess several unique advantages, such as modular design and easiness of synthesis, convenient modification with known functional motifs, good biocompatibility, low immunogenicity and toxicity, inherent biodegradability, and fast responses to a wide range of external stimuli. After about two decades of development, peptide-based supramolecular nanostructures have already shown great potentials in the fields of biomedicine. Among a range of biomedical applications, using such nanostructures for cancer therapy has attracted increased interests since cancer remains the major threat for human health. Comparing with L-peptides, nanostructures containing peptides made of D-amino acid (i.e., D-peptides) bear a unique advantage, biostability (i.e., resistance towards most of endogenous enzymes). The exploration of nanostructures containing D-amino acids, especially their biomedical applications, is still in its infancy. Herein we review the recent progress of D-amino acid-containing supramolecular nanofibers as an emerging class of biomaterials that exhibit unique features for the development of cancer therapeutics. In addition, we give a brief perspective about the challenges and promises in this research direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Science.gov (United States)

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  9. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  10. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-06-01

    Full Text Available Host defense peptides (HDPs are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs.

  11. Analysis of Peptides and Conjugates by Amino Acid Analysis

    DEFF Research Database (Denmark)

    Højrup, Peter

    2015-01-01

    Amino acid analysis is a highly accurate method for characterization of the composition of synthetic peptides. Together with mass spectrometry, it gives a reliable control of peptide quality and quantity before conjugation and immunization.Peptides are hydrolyzed, preferably in gas phase, with 6 M...... HCl at 110 °C for 20-24 h and the resulting amino acids analyzed by ion-exchange chromatography with post-column ninhydrin derivatization. Depending on the hydrolysis conditions, tryptophan is destroyed, and cysteine also, unless derivatized, and the amides, glutamine and asparagine, are deamidated...... to glutamic acid and aspartic acid, respectively. Three different ways of calculating results are suggested, and taking the above limitations into account, a quantitation better than 5 % can usually be obtained....

  12. Tetrazine-Containing Amino Acid for Peptide Modification and Live Cell Labeling.

    Directory of Open Access Journals (Sweden)

    Zhongqiu Ni

    Full Text Available A novel amino acid derivative 3-(4-(1, 2, 4, 5-tetrazine-3-yl phenyl-2-aminopropanoic acid was synthesized in this study. The compound possessed better water-solubility and was synthesized more easily compared with the well-known and commercially available 3-(p-benzylamino-1, 2, 4, 5-tetrazine. Tetrazine-containing amino acid showed excellent stability in biological media and might be used for cancer cell labeling. Moreover, the compound remained relatively stable in 50% TFA/DCM with little decomposition after prolonged exposure at room temperature. The compound could be utilized as phenylalanine or tyrosine analogue in peptide modification, and the tetrazine-containing peptide demonstrated more significant biological activity than that of the parent peptide. The combination of tetrazine group and amino acid offered broad development prospects of the bioorthogonal labeling and peptide synthesis.

  13. Stereoselective determination of amino acids in beta-amyloid peptides and senile plaques.

    Science.gov (United States)

    Thorsén, G; Bergquist, J; Westlind-Danielsson, A; Josefsson, B

    2001-06-01

    A novel method for the determination of the enantiomeric composition of peptides is presented. In this paper, the focus has been on beta-amyloid peptides from deceased Alzheimer's disease patients. The peptides are hydrolyzed using mineral acid. The free amino acids are derivatized with the chiral reagent (+)- or (-)-1-(9-anthryl)-2-propyl chloroformate and subsequently separated using micellar electrokinetic chromatography (MEKC) and detected using laser-induced fluorescence (LIF) detection. The high separation efficiency of the MEKC-LIF system, yielding approximately 1 million theoretical plates/m for most amino acids, facilitates the simultaneous chiral determination of nine amino acids. The samples that have been analyzed were standard 1-40 beta-amyloid peptides, in vitro precipitated beta-amyloid fibrils, and human senile plaque samples.

  14. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    Science.gov (United States)

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  15. Thalassospiramide G, a New γ-Amino-Acid-Bearing Peptide from the Marine Bacterium Thalassospira sp.

    Directory of Open Access Journals (Sweden)

    Sang Kook Lee

    2013-02-01

    Full Text Available In the chemical investigation of marine unicellular bacteria, a new peptide, thalassospiramide G (1, along with thalassospiramides A and D (2–3, was discovered from a large culture of Thalassospira sp. The structure of thalassospiramide G, bearing γ-amino acids, such as 4-amino-5-hydroxy-penta-2-enoic acid (AHPEA, 4-amino-3,5-dihydroxy-pentanoic acid (ADPA, and unique 2-amino-1-(1H-indol-3-yl ethanone (AIEN, was determined via extensive spectroscopic analysis. The absolute configuration of thalassospiramide D (3, including 4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA, was rigorously determined by 1H–1H coupling constant analysis and chemical derivatization. Thalassospiramides A and D (2–3 inhibited nitric oxide (NO production in lipopolysaccharide (LPS-stimulated mouse macrophage RAW 264.7 cells, with IC50 values of 16.4 and 4.8 μM, respectively.

  16. Far UV irradiation of DNA in the presence of proteins, amino acids or peptides

    International Nuclear Information System (INIS)

    Larcom, L.L.; Rains, C.A.

    1985-01-01

    The DNA of bacteriophage SPO2c12 was subjected to 254 nm irradiation in solutions containing lysozyme or histone. The sensitivity of phage DNA to biological inactivation by UV increased as the amount of lysozyme bound per DNA strand increased. Although binding constants could not be measured for the DNA-histone interaction, this protein had a protective effect which was greater under conditions which cause enhanced binding. No crosslinking of either protein could be detected. Irradiation was also performed in the presence of various amino acids and short peptides. These were chosen to include amino acids which: (1) are positively charged, (2) absorb UV of this wavelength or (3) form UV-induced crosslinks to DNA. None of the amino acids tested affected sensitivity of the DNA to biological inactivation. Peptides containing a UV-absorbing amino acid and a positively charged amino acid enhanced sensitivity. For each of these peptides, a mixture of the constituent amino acids had the same effect as the peptide itself. Under the conditions used, no evidence for formation of DNA-amino acid crosslinks was found. The results indicate that proteins and peptides can sensitize DNA to UV inactivation by mechanisms other than covalent crosslink formation. (author)

  17. Investigation of solid-phase hydrogenation of amino acids and peptides

    International Nuclear Information System (INIS)

    Zolotarev, Yu.A.; Myasoedov, N.F.; Zajtsev, D.A.; Lubnin, M.Yu.; Tatur, V.Yu.; Kozik, V.S.; Dorokhova, E.M.; Rozenberg, S.N.

    1990-01-01

    The possibility of synthesizing amino acids and peptides multiply labelled with tritium or deuterium by the method of solid-phase isotopic exchange with gaseous hydrogen isotopes was verified. Establishment of the isotopic hydrogen equilibrium between the gaseous phase and the solid phase formed by the amino acid molecules was found experimentally. The activation energy of the isotopic exchange is 13 kcal/mol. A mathematical model was set up for the isotopic exchange with a probable substitution of hydrogen atoms. Uniformly labelled amino acids were obtained in a high optical purity and with 80 to 90% hydrogen substitution by deuterium and tritium. Tritiated peptides were prepared in high yields at molar activities of 1.5 to 3.7 TBq/mmol. (author). 4 tabs

  18. Distinguishing d- and l-aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry.

    Science.gov (United States)

    Zheng, Xueyun; Deng, Liulin; Baker, Erin S; Ibrahim, Yehia M; Petyuk, Vladislav A; Smith, Richard D

    2017-07-11

    While α-linked amino acids in the l-form are exclusively utilized in mammalian protein building, β-linked and d-form amino acids also have important biological roles. Unfortunately, the structural elucidation and separation of these different amino acid types in peptides has been analytically challenging to date due to the numerous isomers present, limiting our knowledge about their existence and biological roles. Here, we utilized an ultrahigh resolution ion mobility spectrometry platform coupled with mass spectrometry (IMS-MS) to separate amyloid β (Aβ) peptides containing l-aspartic acid, d-aspartic acid, l-isoaspartic acid, and d-isoaspartic acid residues which span α- and β-linked amino acids in both d- and l-forms. The results illustrate how IMS-MS could be used to better understand age-related diseases or protein folding disorders resulting from amino acid modifications.

  19. D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions.

    Science.gov (United States)

    Di Grazia, Antonio; Cappiello, Floriana; Cohen, Hadar; Casciaro, Bruno; Luca, Vincenzo; Pini, Alessandro; Di, Y Peter; Shai, Yechiel; Mangoni, Maria Luisa

    2015-12-01

    Naturally occurring antimicrobial peptides (AMPs) represent promising future antibiotics. We have previously isolated esculentin-1a(1-21)NH2, a short peptide derived from the frog skin AMP esculentin-1a, with a potent anti-Pseudomonal activity. Here, we investigated additional functions of the peptide and properties responsible for these activities. For that purpose, we synthesized the peptide, as well as its structurally altered analog containing two D-amino acids. The peptides were then biophysically and biologically investigated for their cytotoxicity and immunomodulating activities. The data revealed that compared to the wild-type, the diastereomer: (1) is significantly less toxic towards mammalian cells, in agreement with its lower α-helical structure, as determined by circular dichroism spectroscopy; (2) is more effective against the biofilm form of Pseudomonas aeruginosa (responsible for lung infections in cystic fibrosis sufferers), while maintaining a high activity against the free-living form of this important pathogen; (3) is more stable in serum; (4) has a higher activity in promoting migration of lung epithelial cells, and presumably in healing damaged lung tissue, and (5) disaggregates and detoxifies the bacterial lipopolysaccharide (LPS), albeit less than the wild-type. Light scattering studies revealed a correlation between anti-LPS activity and the ability to disaggregate the LPS. Besides shedding light on the multifunction properties of esculentin-1a(1-21)NH2, the D-amino acid containing isomer may serve as an attractive template for the development of new anti-Pseudomonal compounds with additional beneficial properties. Furthermore, together with other studies, incorporation of D-amino acids may serve as a general approach to optimize the future design of new AMPs.

  20. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    Science.gov (United States)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  1. Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules.

    Science.gov (United States)

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2014-06-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Phospholyl(borane) Amino Acids and Peptides: Stereoselective Synthesis and Fluorescent Properties with Large Stokes Shift.

    Science.gov (United States)

    Arribat, Mathieu; Rémond, Emmanuelle; Clément, Sébastien; Lee, Arie Van Der; Cavelier, Florine

    2018-01-24

    The synthesis of phospholyl(borane) amino acids was stereoselectively achieved by reaction of phospholide anion with iodo α-amino ester derived from l-aspartic acid or l-serine, followed by in situ complexation with borane. Phospholyl(borane) amino acids are easy to store and can be subjected to direct transformation into the corresponding free phospholyl, gold complex, oxide or sulfur derivatives as well as phospholinium salts, thus offering a variety of side chains. After selective deprotection of carboxylic function or amine, C- or N- peptide coupling with an alanine moiety proved the possible incorporation into peptides. Such phospholyl amino acid and peptide derivatives exhibit fluorescent properties with a large Stokes shift (160 nm) and fluorescence up to 535 nm, depending on the phosphole aromaticity and the chemical environment. These phospholyl(borane) amino acids constitute a new class of unnatural amino acids useful for structure-activities relationship studies and appear to be promising fluorophores for the development of labeled peptides.

  3. THE D-AMINO ACID CONTENT OF FOODSTUFFS SUBJECTED TO VARIOUS TECHNOLOGICAL PROCEDURES

    Directory of Open Access Journals (Sweden)

    János Csapó

    2000-06-01

    Full Text Available D-amino acids occurring in dietary proteins originate as a consequence of technological intervention while basic materials are being prepared for consumption. Foodstuffs are the most significant sources of D-amino acids, as in the process of cooking or during the various processing procedures used in the food industry dietary proteins undergo racemisation to a greater or lesser degree. Food stores are now selling increasing quantities of foods (such as breakfast cereals, baked potatoes, liquid and powdered infant foods, meat substitutes and other supplements which in some cases contain substantial quantities of D-amino acids, which in turn possess characteristics harmful with respect to digestion and health. Alkali treatment catalyses the racemisation of optically active amino acids. The degree of racemisation undergone varies from protein to protein, but the relative order of the degree of racemisation of the individual amino acids within proteins shows a high level of similarity. The principal factors influencing racemisation are the pH of the medium, heat treatment, the duration of the application of alkaline treatment and the structure of the respective amino acids. D-amino acids formed in the course of treatment with alkalis or heat give rise to a deterioration in quality and reduce the extent to which food thus treated can be used safely. The presence of D-amino acids in proteins leads to a decrease in digestibility and the availability of the other amino acids. This results in a reduction in the quantities of the L-enantiomers of the essential amino acids, as the peptide bonds cannot split in the normal way. Some D-amino acids can exert an isomer-toxic effect and have the capacity to give rise to changes in the biological effect of lysinoalanine.

  4. Effects of alkali or acid treatment on the isomerization of amino acids.

    Science.gov (United States)

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue. Copyright © 2012. Published by Elsevier B.V.

  5. Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.

    Science.gov (United States)

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale

    2012-05-07

    The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.

  6. Thermodynamics of the interactions of some amino acids and peptides with dodecyltrimethylammonium bromide and tetradecyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Talele, Paurnima; Kishore, Nand

    2014-01-01

    Highlights: • Interactions of amino acids and peptides were studied with two cationic surfactants. • Partial molar properties and hydration numbers did not change significantly. • Measured properties indicate balance of polar and non-polar interactions. • Peptide bonds did not strengthen the extent of polar interactions with surfactant. • Results provide quantitative fine details of cationic surfactant–amino acids/peptides interactions. -- Abstract: The values of apparent molar volume V 2,ϕ and apparent molar adiabatic compressibility K S,2,ϕ of amino acids glycine, L-alanine, DL-α-amino-n-butyric acid, L-valine, L-leucine and peptides glycyl-glycine, glycyl-glycyl-glycine and glycyl-leucine have been determined in aqueous solutions of cationic surfactants dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) by means of density and sound velocity measurements. The heat evolved or absorbed (q) during the course of interactions of amino acids and peptides with the aqueous solutions of surfactants were determined by isothermal titration calorimetry at T = 298.15 K. The values of standard partial molar volume V 2,m 0 and standard partial molar adiabatic compressibility K s,2,m 0 at infinite dilution were calculated from the values of V 2,ϕ and K S,2,ϕ . Similarly the values of limiting enthalpies of dilution (Δ dil H 0 ) of the amino acids/peptides were calculated from heat evolved or absorbed during calorimetric experiments. The standard partial molar quantities of transfer from water to aqueous surfactant solutions have been used to identify the interactions of amino acids and peptides with surfactants in terms of ionic–ionic, ionic–hydrophobic and hydrophobic–hydrophobic group interactions

  7. Systems chemistry of α-amino acids and peptides

    Directory of Open Access Journals (Sweden)

    Danger Grégoire

    2014-02-01

    Full Text Available Pathways have been disclosed in the past decade, which support the possibility that α-amino acids could have contributed to self-organization processes leading to the emergence of life. It is proposed that the systems chemistry of these simple building blocks may have led to features of self-organization through the realization of protometabolisms based on unidirectional loops involving both peptide formation and breakdown and additional feedback processes. Potential peptide activating agents have been identified. Scenarios of peptide elongation are proposed to account for peptide elongation both at the N-terminus and the C-terminus and new indications that these processes could be involved in symmetry breaking have been provided.

  8. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity.

    Science.gov (United States)

    Hänchen, Anne; Rausch, Saskia; Landmann, Benjamin; Toti, Luigi; Nusser, Antje; Süssmuth, Roderich D

    2013-03-18

    The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    Science.gov (United States)

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Reactions of tritium atoms with amino acids, deuterated amino acids and mixtures of amino acids. Additivity property and isotope effect

    International Nuclear Information System (INIS)

    Badun, G.A.; Filatov, Eh.S.

    1988-01-01

    Interaction of tritium atoms with glycine (1) and leucine (2) amino acids, deuterated amino acids, their mixtures and glycylleucine (3) peptide in the 77-300 K temperature range is studied in isothermal and gradient regimes. Tagged amino acids were separated from targets after conducting the reaction. At T 150 K are associated with intermolecular transmission of free valence in the mixture of amino acids. Regularities of the reaction found for the mixture of amino acids are conserved for (3) as well, i.e. the peptide bond does not essentially affect the reaction of isotopic exchange conditioned by atomic tritium

  11. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    Science.gov (United States)

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  12. Distribution, industrial applications, and enzymatic synthesis of D-amino acids.

    Science.gov (United States)

    Gao, Xiuzhen; Ma, Qinyuan; Zhu, Hailiang

    2015-04-01

    D-Amino acids exist widely in microbes, plants, animals, and food and can be applied in pharmaceutical, food, and cosmetics. Because of their widespread applications in industry, D-amino acids have recently received more and more attention. Enzymes including D-hydantoinase, N-acyl-D-amino acid amidohydrolase, D-amino acid amidase, D-aminopeptidase, D-peptidase, L-amino acid oxidase, D-amino acid aminotransferase, and D-amino acid dehydrogenase can be used for D-amino acids synthesis by kinetic resolution or asymmetric amination. In this review, the distribution, industrial applications, and enzymatic synthesis methods are summarized. And, among all the current enzymatic methods, D-amino acid dehydrogenase method not only produces D-amino acid by a one-step reaction but also takes environment and atom economics into consideration; therefore, it is deserved to be paid more attention.

  13. Structural similarity between β(3)-peptides synthesized from β(3)-homo-amino acids and aspartic acid monomers.

    Science.gov (United States)

    Ahmed, Sahar; Sprules, Tara; Kaur, Kamaljit

    2014-07-01

    Formation of stable secondary structures by oligomers that mimic natural peptides is a key asset for enhanced biological response. Here we show that oligomeric β(3)-hexapeptides synthesized from L-aspartic acid monomers (β(3)-peptides 1, 5a, and 6) or homologated β(3)-amino acids (β(3)-peptide 2), fold into similar stable 14-helical secondary structures in solution, except that the former form right-handed 14-helix and the later form left-handed 14-helix. β(3)-Peptides from L-Asp monomers contain an additional amide bond in the side chains that provides opportunities for more hydrogen bonding. However, based on the NMR solution structures, we found that β(3)-peptide from L-Asp monomers (1) and from homologated amino acids (2) form similar structures with no additional side-chain interactions. These results suggest that the β(3)-peptides derived from L-Asp are promising peptide-mimetics that can be readily synthesized using L-Asp monomers as well as the right-handed 14-helical conformation of these β(3)-peptides (such as 1 and 6) may prove beneficial in the design of mimics for right-handed α-helix of α-peptides. © 2014 Wiley Periodicals, Inc.

  14. Human acid β-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site

    International Nuclear Information System (INIS)

    Dinur, T.; Osiecki, K.M.; Legler, G.; Gatt, S.; Desnick, R.J.; Grabowski, G.A.

    1986-01-01

    Human acid β-glucosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) cleaves the glucosidic bonds of glucosylceramide and synthetic β-glucosides. The deficient activity of this hydrolase is the enzymatic defect in the subtypes and variants of Gaucher disease, the most prevalent lysosomal storage disease. To isolate and characterize the catalytic site of the normal enzyme, brominated 3 H-labeled conduritol B epoxide ( 3 H-Br-CBE), which inhibits the enzyme by binding covalently to this site, was used as an affinity label. Under optimal conditions 1 mol of 3 H-Br-CBE bound to 1 mol of pure enzyme protein, indicating the presence of a single catalytic site per enzyme subunit. After V 8 protease digestion of the 3 H-Br-CBE-labeled homogeneous enzyme, three radiolabeled peptides, designated peptide A, B, or C, were resolved by reverse-phase HPLC. The partial amino acid sequence (37 residues) of peptide A (M/sub r/, 5000) was determined. The sequence of this peptide, which contained the catalytic site, had exact homology to the sequence near the carboxyl terminus of the protein, as predicted from the nucleotide sequence of the full-length cDNA encoding acid β-glucosidase

  15. Stereoconversion of amino acids and peptides in uryl-pendant binol schiff bases.

    Science.gov (United States)

    Park, Hyunjung; Nandhakumar, Raju; Hong, Jooyeon; Ham, Sihyun; Chin, Jik; Kim, Kwan Mook

    2008-01-01

    (S)-2-Hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde (1) forms Schiff bases with a wide range of nonderivatized amino acids, including unnatural ones. Multiple hydrogen bonds, including resonance-assisted ones, fix the whole orientation of the imine and provoke structural rigidity around the imine C==N bond. Due to the structural difference and the increase in acidity of the alpha proton of the amino acid, the imine formed with an L-amino acid (1-l-aa) is converted into the imine of the D-amino acid (1-D-aa), with a D/L ratio of more than 10 for most amino acids at equilibrium. N-terminal amino acids in dipeptides are also predominantly epimerized to the D form upon imine formation with 1. Density functional theory calculations show that 1-D-Ala is more stable than 1-L-Ala by 1.64 kcal mol(-1), a value that is in qualitative agreement with the experimental result. Deuterium exchange of the alpha proton of alanine in the imine form was studied by (1)H NMR spectroscopy and the results support a stepwise mechanism in the L-into-D conversion rather than a concerted one; that is, deprotonation and protonation take place in a sequential manner. The deprotonation rate of L-Ala is approximately 16 times faster than that of D-Ala. The protonation step, however, appears to favor L-amino acid production, which prevents a much higher predominance of the D form in the imine. Receptor 1 and the predominantly D-form amino acid can be recovered from the imine by simple extraction under acidic conditions. Hence, 1 is a useful auxiliary to produce D-amino acids of industrial interest by the conversion of naturally occurring L-amino acids or relatively easily obtainable racemic amino acids.

  16. Quantification of amino acids and peptides in an ionic liquid based aqueous two-phase system by LC-MS analysis.

    Science.gov (United States)

    Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo

    2018-04-25

    Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.

  17. C9/12 Ribbon-Like Structures in Hybrid Peptides Alternating α- and Thiazole-Based γ-Amino Acids.

    Science.gov (United States)

    Bonnel, Clément; Legrand, Baptiste; Simon, Matthieu; Martinez, Jean; Bantignies, Jean-Louis; Kang, Young Kee; Wenger, Emmanuel; Hoh, Francois; Masurier, Nicolas; Maillard, Ludovic T

    2017-12-11

    According to their restricted conformational freedom, heterocyclic γ-amino acids are usually considered to be related to Z-vinylogous γ-amino acids. In this context, oligomers alternating α-amino acids and thiazole-based γ-amino acids (ATCs) were expected to fold into a canonical 12-helical shape as described for α/γ-hybrid peptides composed of cis-α/β-unsaturated γ-amino acids. However, through a combination of X-ray crystallography, NMR spectroscopy, FTIR experiments, and DFT calculations, it was determined that the folding behavior of ATC-containing hybrid peptides is much more complex. The homochiral α/(S)-ATC sequences were unable to adopt a stable conformation, whereas the heterochiral α/(R)-ATC peptides displayed novel ribbon structures stabilized by unusual C 9/12 -bifurcated hydrogen bonds. These ribbon structures could be considered as a succession of pre-organized γ/α dipeptides and may provide the basis for designing original α-helix mimics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization.

    Science.gov (United States)

    Lemloh, Marie-Louise; Altintoprak, Klara; Wege, Christina; Weiss, Ingrid M; Rothenstein, Dirk

    2017-01-28

    Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO₂ mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals.

  19. Creating diversity by site-selective peptide modification: a customizable unit affords amino acids with high optical purity.

    Science.gov (United States)

    Romero-Estudillo, Ivan; Boto, Alicia

    2013-11-15

    The development of peptide libraries by site-selective modification of a few parent peptides would save valuable time and materials in discovery processes, but still is a difficult synthetic challenge. Herein natural hydroxyproline is introduced as a "convertible" unit for the production of a variety of optically pure amino acids, including expensive N-alkyl amino acids, and to achieve the mild, efficient, and site-selective modification of peptides.

  20. Cyclic Sulfamidate Enabled Syntheses of Amino Acids, Peptides, Carbohydrates, and Natural Products

    Science.gov (United States)

    This article reviews the emergence of cyclic sulfamidates as versatile intermediatesfor the synthesis of unnatural amino acids, chalcogen peptides, modified sugars, drugs and drug candidates, and important natural products.

  1. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology.

    Science.gov (United States)

    Sasabe, Jumpei; Suzuki, Masataka

    2018-05-22

    Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.

  2. Structural analysis and taste evaluation of γ-glutamyl peptides comprising sulfur-containing amino acids.

    Science.gov (United States)

    Amino, Yusuke; Wakabayashi, Hidehiko; Akashi, Satoko; Ishiwatari, Yutaka

    2018-03-01

    The structures, flavor-modifying effects, and CaSR activities of γ-glutamyl peptides comprising sulfur-containing amino acids were investigated. The chemical structures, including the linkage mode of the N-terminal glutamic acid, of γ-L-glutamyl-S-(2-propenyl)-L-cysteine (γ-L-glutamyl-S-allyl-L-cysteine) and its sulfoxide isolated from garlic were established by comparing their NMR spectra with those of authentic peptides prepared using chemical methods. Mass spectrometric analysis also enabled determination of the linkage modes in the glutamyl dipeptides by their characteristic fragmentation. In sensory evaluation, these peptides exhibited flavor-modifying effects (continuity) in umami solutions less pronounced but similar to that of glutathione. Furthermore, the peptides exhibited intrinsic flavor due to the sulfur-containing structure, which may be partially responsible for their flavor-modifying effects. In CaSR assays, γ-L-glutamyl-S-methyl-L-cysteinylglycine was most active, which indicates that the presence of a medium-sized aliphatic substituent at the second amino acid residue in γ-glutamyl peptides enhances CaSR activity.

  3. Poly(amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Proks, Vladimír; Karabiyik, Ö.; Calikoglu Koyuncu, A. C.; Köse, G. T.; Rypáček, František; Studenovská, Hana

    2017-01-01

    Roč. 11, č. 3 (2017), s. 831-842 ISSN 1932-6254 R&D Projects: GA ČR GAP108/12/1629; GA ČR GAP108/12/1538 Grant - others:AV ČR, TUBITAK(CZ) 111M031 Institutional support: RVO:61389013 Keywords : poly(amino acid) * fibrous scaffolds * adhesion peptide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.989, year: 2016

  4. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity.

    Science.gov (United States)

    Du, Siqi; Wang, Yadi; Weatherly, Choyce A; Holden, Kylie; Armstrong, Daniel W

    2018-05-01

    D-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some D-amino acids are metabolized by D-amino acid oxidase (DAO), while D-Asp and D-Glu are metabolized by D-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO +/+ ), mutant mice lacking DAO activity (ddY/DAO -/- ), and the heterozygous mice (ddY/DAO +/- ) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for L-amino acid levels among the three strains except for L-Trp which was markedly elevated in the DAO +/- and DAO -/- mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of L-amino acids were L-Glu, L-Asp, and L-Gln in all the three strains. The lowest L-amino acid level was L-Cys in ddY/DAO +/- and ddY/DAO -/- mice, while L-Trp showed the lowest level in ddY/DAO +/+ mice. The highest concentration of D-amino acid was found to be D-Ser, which also had the highest % D value (~ 25%). D-Glu had the lowest % D value (~ 0.01%) in all the three strains. Significant differences of D-Leu, D-Ala, D-Ser, D-Arg, and D-Ile were observed in ddY/DAO +/- and ddY/DAO -/- mice compared to ddY/DAO +/+ mice. This work provides the most complete baseline analysis of L- and D-amino acids in the brains of ddY/DAO +/+ , ddY/DAO +/- , and ddY/DAO -/- mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

  5. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models.

    Science.gov (United States)

    Kwon, Ae Jeong; Moon, Ja Young; Kim, Won Kyong; Kim, Suk; Hur, Jin

    2016-11-01

    Brucella abortus cells were lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36). Next, the protection efficacy of the lysed fragment as a vaccine candidate was evaluated. Group A mice were immunized with sterile PBS, group B mice were intraperitoneally (ip) immunized with 3 × 10 8 colony-forming units (CFUs) of B. abortus strain RB51, group C mice were immunized ip with 3 × 10 8 cells of the B. abortus vaccine candidate, and group D mice were orally immunized with 3 × 10 9 cells of the B. abortus vaccine candidate. Brucella lipopolysaccharide (LPS)-specific serum IgG titers were considerably higher in groups C and D than in group A. The levels of interleukin (IL)-4, IL-10, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) were significantly higher in groups B-D than in group A. After an ip challenge with B. abortus 544, only group C mice showed a significant level of protection as compared to group A. Overall, these results show that ip immunization with a vaccine candidate lysed by GI24 can effectively protect mice from systemic infection with virulent B. abortus.

  6. Engineering an ATP-dependent D-Ala:D-Ala ligase for synthesizing amino acid amides from amino acids.

    Science.gov (United States)

    Miki, Yuta; Okazaki, Seiji; Asano, Yasuhisa

    2017-05-01

    We successfully engineered a new enzyme that catalyzes the formation of D-Ala amide (D-AlaNH 2 ) from D-Ala by modifying ATP-dependent D-Ala:D-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of D-Ala-D-Ala from two molecules of D-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second D-Ala of D-Ala-D-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for D-AlaNH 2 production. The S293E variant, which was selected as the best enzyme for D-AlaNH 2 production, exhibited an optimal activity at pH 9.0 and 40 °C for D-AlaNH 2 production. The apparent K m values of this variant for D-Ala and NH 3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of D-AlaNH 2 from 10 and 50 mM D-Ala and 3 M NH 4 Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.

  7. Assays of D-Amino Acid Oxidase Activity

    Directory of Open Access Journals (Sweden)

    Elena Rosini

    2018-01-01

    Full Text Available D-amino acid oxidase (DAAO is a well-known flavoenzyme that catalyzes the oxidative FAD-dependent deamination of D-amino acids. As a result of the absolute stereoselectivity and broad substrate specificity, microbial DAAOs have been employed as industrial biocatalysts in the production of semi-synthetic cephalosporins and enantiomerically pure amino acids. Moreover, in mammals, DAAO is present in specific brain areas and degrades D-serine, an endogenous coagonist of the N-methyl-D-aspartate receptors (NMDARs. Dysregulation of D-serine metabolism due to an altered DAAO functionality is related to pathological NMDARs dysfunctions such as in amyotrophic lateral sclerosis and schizophrenia. In this protocol paper, we describe a variety of direct assays based on the determination of molecular oxygen consumption, reduction of alternative electron acceptors, or α-keto acid production, of coupled assays to detect the hydrogen peroxide or the ammonium production, and an indirect assay of the α-keto acid production based on a chemical derivatization. These analytical assays allow the determination of DAAO activity both on recombinant enzyme preparations, in cells, and in tissue samples.

  8. Identification of 11-amino acid peptides that disrupt Notch-mediated processes in Drosophila

    Directory of Open Access Journals (Sweden)

    Yeh Hsiao-Fong

    2011-06-01

    Full Text Available Abstract Background The conserved Notch signaling pathway regulates cell fate decisions and maintains stem cells in multicellular organisms. Up-regulation of Notch signaling is observed in several types of cancer and is causally involved in proliferation and survival of cancer cells. Thus, it is of great interest to look for anti-Notch reagents for therapeutic purposes. In model animal Drosophila, Notch signaling restricts selection of sensory organ precursors (SOPs during external sensory (ES organ development. To look for novel genes that can suppress Notch signaling, we performed a gain-of-function modifier screen to look for genes that enhance the phenotype of ectopic ES organs induced by overexpression of phyllopod, a gene required for SOP specification. Results From the gain-of-function screen, we discovered that overexpression of polished rice/tarsal-less (pri/tal increases the numbers of ES organs as well as SOPs. pri/tal is a polycistronic gene that contains four short open reading frames encoding three 11-amino acid and one 32-amino acid peptides. Ectopic expression of the 11 amino-acid peptides recapitulates the pri/tal misexpression phenotype in ectopic ES organ formation. In situ hybridization experiment reveals that pri/tal mRNA is expressed in the SOPs of the chemosensory organs and the stretch-sensing chordotonal organs. In Drosophila wing development, the Notch signaling pathway mediates the formation of the dorsal-ventral (DV compartmental boundary and the restriction of the vein width from the primordial veins, the proveins. We also found that pri/tal mRNA is expressed in the DV boundary and the longitudinal proveins, and overexpression of Pri/Tal peptides disrupts the DV boundary formation and helps to expand the width of the wing vein. Genetic analyses further show that a Notch loss-of-function allele strongly enhances these two phenotypes. Cut and E(splmβ are target genes of the Notch pathway in DV boundary formation and

  9. Reaction of hypochlorite with amino acids and peptides : EPR evidence for rapid rearrangement and fragmentation of nitrogen-centred radicals

    International Nuclear Information System (INIS)

    Hawkins, C.L.; Davies, M.J.

    1998-01-01

    Various amino acid side chains have been shown to be particularly susceptible to attack and modification by hypochlorite (HOCl). It is known that tyrosine is readily chlorinated by HOCl to give 3-chlorotyrosine and this product has been employed as a marker of HOCl-mediated damage to proteins. Cysteine and methionine react rapidly with HOCl to give oxy acids and cystine (from cysteine) and sulphoxides (from methionine). Lysine and amino acids which lack the above functional groups also react with HOCl via the free amino group which results in the generation of unstable chloramine intermediates; subsequent decomposition of these species gives NH 3 , CO 2 and aldehydes. While the products of reaction of HOCl with amino acids and peptides are reasonably well characterised, the mechanism(s) by which these products arise is less well understood. Electron paramagnetic resonance (EPR) spectroscopy with spin trapping and UV/visible spectroscopy has been employed to examine the reaction of HOCl with amino acids and some small peptides. Reaction of HOCl with N-acetyl amino acids or small peptides gives radicals predominantly at α-carbon sites via reaction at N-terminal free amino groups or amide (peptide) bonds. It is proposed that these carbon-centred radicals are produced as a result of the rearrangement of initial nitrogen-centred radicals formed on cleavage of the N-CI bond of the chloramine/chloramide species by a 1,2-shift reaction

  10. Side Chain Cyclized Aromatic Amino Acids

    DEFF Research Database (Denmark)

    Van der Poorten, Olivier; Knuhtsen, Astrid; Sejer Pedersen, Daniel

    2016-01-01

    Constraining the conformation of flexible peptides is a proven strategy to increase potency, selectivity, and metabolic stability. The focus has mostly been on constraining the backbone dihedral angles; however, the correct orientation of the amino acid side chains (χ-space) that constitute...... the peptide pharmacophore is equally important. Control of χ-space utilizes conformationally constrained amino acids that favor, disfavor, or exclude the gauche (-), the gauche (+), or the trans conformation. In this review we focus on cyclic aromatic amino acids in which the side chain is connected...... to the peptide backbone to provide control of χ(1)- and χ(2)-space. The manifold applications for cyclized analogues of the aromatic amino acids Phe, Tyr, Trp, and His within peptide medicinal chemistry are showcased herein with examples of enzyme inhibitors and ligands for G protein-coupled receptors....

  11. Characterization of GdFFD, a d-Amino Acid-containing Neuropeptide That Functions as an Extrinsic Modulator of the Aplysia Feeding Circuit*

    Science.gov (United States)

    Bai, Lu; Livnat, Itamar; Romanova, Elena V.; Alexeeva, Vera; Yau, Peter M.; Vilim, Ferdinand S.; Weiss, Klaudiusz R.; Jing, Jian; Sweedler, Jonathan V.

    2013-01-01

    During eukaryotic translation, peptides/proteins are created using l-amino acids. However, a d-amino acid-containing peptide (DAACP) can be produced through post-translational modification via an isomerase enzyme. General approaches to identify novel DAACPs and investigate their function, particularly in specific neural circuits, are lacking. This is primarily due to the difficulty in characterizing this modification and due to the limited information on neural circuits in most species. We describe a multipronged approach to overcome these limitations using the sea slug Aplysia californica. Based on bioinformatics and homology to known DAACPs in the land snail Achatina fulica, we targeted two predicted peptides in Aplysia, GFFD, similar to achatin-I (GdFAD versus GFAD, where dF stands for d-phenylalanine), and YAEFLa, identical to fulyal (YdAEFLa versus YAEFLa), using stereoselective analytical methods, i.e. MALDI MS fragmentation analysis and LC-MS/MS. Although YAEFLa in Aplysia was detected only in an all l-form, we found that both GFFD and GdFFD were present in the Aplysia CNS. In situ hybridization and immunolabeling of GFFD/GdFFD-positive neurons and fibers suggested that GFFD/GdFFD might act as an extrinsic modulator of the feeding circuit. Consistent with this hypothesis, we found that GdFFD induced robust activity in the feeding circuit and elicited egestive motor patterns. In contrast, the peptide consisting of all l-amino acids, GFFD, was not bioactive. Our data indicate that the modification of an l-amino acid-containing neuropeptide to a DAACP is essential for peptide bioactivity in a motor circuit, and thus it provides a functional significance to this modification. PMID:24078634

  12. Emerging Role of D-Amino Acid Metabolism in the Innate Defense

    Directory of Open Access Journals (Sweden)

    Jumpei Sasabe

    2018-05-01

    Full Text Available Mammalian innate and adaptive immune systems use the pattern recognition receptors, such as toll-like receptors, to detect conserved bacterial and viral components. Bacteria synthesize diverse D-amino acids while eukaryotes and archaea generally produce two D-amino acids, raising the possibility that many of bacterial D-amino acids are bacteria-specific metabolites. Although D-amino acids have not been identified to bind to any known pattern recognition receptors, D-amino acids are enantioselectively recognized by some other receptors and enzymes including a flavoenzyme D-amino acid oxidase (DAO in mammals. At host–microbe interfaces in the neutrophils and intestinal mucosa, DAO catalyzes oxidation of bacterial D-amino acids, such as D-alanine, and generates H2O2, which is linked to antimicrobial activity. Intestinal DAO also modifies the composition of microbiota through modulation of growth for some bacteria that are dependent on host nutrition. Furthermore, regulation and recognition of D-amino acids in mammals have additional meanings at various host–microbe interfaces; D-phenylalanine and D-tryptophan regulate chemotaxis of neutrophils through a G-coupled protein receptor, D-serine has a bacteriostatic role in the urinary tract, D-phenylalanine and D-leucine inhibit innate immunity through the sweet taste receptor in the upper airway, and D-tryptophan modulates immune tolerance in the lower airway. This mini-review highlights recent evidence supporting the hypothesis that D-amino acids are utilized as inter-kingdom communication at host–microbe interface to modulate bacterial colonization and host defense.

  13. Postprandial fate of amino acids: adaptation to molecular forms

    NARCIS (Netherlands)

    Nolles, J.A.

    2006-01-01

    During the postprandial phase dietary proteins are digested to peptides and amino acids and absorbed. Once absorbed the peptides are further hydrolyzed to amino acids and transported to the tissues. These amino acids are largely incorporated into body proteins. Not all amino acids are, however,

  14. Uptake and conversion of D-amino acids in Arabidopsis thaliana.

    Science.gov (United States)

    Gördes, Dirk; Kolukisaoglu, Üner; Thurow, Kerstin

    2011-02-01

    The D-enantiomers of proteinogenic amino acids fulfill essential functions in bacteria, fungi and animals. Just in the plant kingdom, the metabolism and role of D-amino acids (D-AAs) still remains unclear, although plants have to cope with significant amounts of these compounds from microbial decay in the rhizosphere. To fill this gap of knowledge, we tested the inhibitory effects of D-AAs on plant growth and established a method to quantitate 16 out of 19 proteinogenic amino acids and their D-enantiomers in plant tissue extracts. Therefore, the amino acids in the extracts were derivatized with Marfey's reagent and separated by HPLC-MS. We used two ecotypes (Col-0 and C24) and a mutant (lht1) of the model plant Arabidopsis thaliana to determine the influence and fate of exogenously applied D-AAs. All of them were found in high concentrations in the plant extracts after application, even in lht1, which points to additional transporters facilitating the import of D-AAs. The addition of particular amino acids (D-Trp, D-Phe, D-Met and D-His) led to the accumulation of the corresponding L-amino acid. In almost all cases, the application of a D-AA resulted in the accumulation of D-Ala and D-Glu. The presented results indicate that soil borne D-AAs can actively be taken up and metabolized via central metabolic routes.

  15. Photochemical addition of amino acids and peptides to homopolyribonucleotides of the major DNA bases

    International Nuclear Information System (INIS)

    Shetlar, M.D.; Hom, K.; Carbone, J.; Moy, D.; Steady, E.; Watanabe, M.

    1984-01-01

    The photochemical quantum yields for addition of glycine and the L-amino acids commonly occurring in proteins to polyadenylic acid, polycytidylic acid, polyguanylic acid and polyribothymidylic acid have been determined in deoxygenated phosphate buffer using a fluorescamine assay technique. Polyadenylic acid was reactive with eleven of the twenty amino acids tested, with phenylalanine, tyrosine, glutamine, lysine and asparagine having the highest quantum yields. Polyguanylic acid reacted with sixteen amino acids; phenylalanine, arginine, cysteine, tyrosine, and lysine displayed the largest quantum yields. Polycytidylic acid showed reactivity with fifteen amino acids with lysine, phenylalanine, cysteine, tyrosine and arginine having the greatest quantum yields. Polyribothymidylic acid, reactive with fifteen of nineteen amino acids surveyed, showed the highest quantum yields for cysteine, phenylalanine, tyrosine, lysine and asparagine. None of the polynucleotides were reactive with aspartic acid or glutamic acid. The quantum yields for photoaddition of eighteen dipeptides of the form gycyl X (X being an amino acid), and of L-alanyl-L-tryptophan, L-seryl-L-seryl-L-serine, L-threonyl-L-threonyl-L-threonine, L-cystine-bis-glycine, and Nsup(α)-acetyllysine to polyadenylic acid, polycytidylic acid and polyguanylic acid were measured. All were found to add photochemically to each of these polymers. Polyribothymidylic acid, tested with eleven peptides and with Nsup(α)-acetyllysine, was found to be reactive with all. (author)

  16. Peptide Nucleic Acids Having Amino Acid Side Chains

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting...

  17. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by D-amino acids.

    Science.gov (United States)

    Kawakami, Ryushi; Ohmori, Taketo; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2015-08-01

    To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.

  18. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling

    Science.gov (United States)

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, Jongone; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-06-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single-molecule protein sequencing is a critical step in the search for protein biomarkers. Here, we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules, then measuring the electron tunnelling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic `fingerprints' associated with each binding motif. With this recognition tunnelling technique, we are able to identify D and L enantiomers, a methylated amino acid, isobaric isomers and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore.

  19. Investigating the inclusion properties of aromatic amino acids complexing beta-cyclodextrins in model peptides.

    Science.gov (United States)

    Caso, Jolanda Valentina; Russo, Luigi; Palmieri, Maddalena; Malgieri, Gaetano; Galdiero, Stefania; Falanga, Annarita; Isernia, Carla; Iacovino, Rosa

    2015-10-01

    Cyclodextrins are commonly used as complexing agents in biological, pharmaceutical, and industrial applications since they have an effect on protein thermal and proteolytic stability, refolding yields, solubility, and taste masking. β-cyclodextrins (β-CD), because of their cavity size are a perfectly suited complexing agent for many common guest moieties. In the case of peptide-cyclodextrin and protein-cyclodextrin host-guest complexes the aromatic amino acids are reported to be the principal responsible of the interaction. For these reasons, we have investigated the inclusion properties of nine designed tripeptides, obtained permuting the position of two L-alanines (Ala, A) with that of one L-tryptophan (Trp, W), L-phenylalanine (Phe, F), or L-tyrosine (Tyr, Y), respectively. Interestingly, the position of the aromatic side-chain in the sequence appears to modulate the β-CD:peptide binding constants, determined via UV-Vis and NMR spectroscopy, which in turn assumes values higher than those reported for the single amino acid. The tripeptides containing a tyrosine showed the highest binding constants, with the central position in the Ac-AYA-NH2 peptide becoming the most favorite for the interaction. A combined NMR and Molecular Docking approach permitted to build detailed complex models, highlighting the stabilizing interactions of the neighboring amino acids backbone atoms with the upper rim of the β-CD.

  20. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    Science.gov (United States)

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  1. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    Science.gov (United States)

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  2. G-CSF receptor-binding cyclic peptides designed with artificial amino-acid linkers

    International Nuclear Information System (INIS)

    Shibata, Kenji; Maruyama-Takahashi, Kumiko; Yamasaki, Motoo; Hirayama, Noriaki

    2006-01-01

    Designing small molecules that mimic the receptor-binding local surface structure of large proteins such as cytokines or growth factors is fascinating and challenging. In this study, we designed cyclic peptides that reproduce the receptor-binding loop structures of G-CSF. We found it is important to select a suitable linker to join two or more discontinuous sequences and both termini of the peptide corresponding to the receptor-binding loop. Structural simulations based on the crystallographic structure of KW-2228, a stable and potent analog of human G-CSF, led us to choose 4-aminobenzoic acid (Abz) as a part of the linker. A combination of 4-Abz with β-alanine or glycine, and disulfide bridges between cysteins or homocysteins, gave a structure suitable for receptor binding. In this structure, the side-chains of several amino acids important for the interactions with the receptor are protruding from one side of the peptide ring. This artificial peptide showed G-CSF antagonistic activity in a cell proliferation assay

  3. Mass spectrometric differentiation of linear peptides composed of L-amino acids from isomers containing one D-amino acid residue.

    Science.gov (United States)

    Serafin, Scott V; Maranan, Rhonda; Zhang, Kangling; Morton, Thomas Hellman

    2005-09-01

    MS/MS of electrosprayed ions is shown to have the capacity to discriminate between peptides that differ by configuration about their alpha-carbons. It is not necessary for the peptides to possess tertiary structures that are affected by stereochemistry, since five epimers of the pentapeptide, H2N-Gly-Leu-Ser-Phe-Ala-OH (GLSFA) all display different collisionally activated dissociation (CAD) patterns of their protonated parent ions. The figure of merit, r, is a ratio of ratios of fragment ion abundances between stereoisomers, where r = 1 corresponds to no stereochemical effect. Values of r as high as 3.8 are seen for diastereomer pairs. Stereochemical effects are also seen for the diprotonated dodecapeptide H2N-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-OH (LVFFAEDVGSNK), a tryptic fragment from the amyloid beta-protein. Triply charged complexes of the protonated dodecapeptide with cobalt(II) ions undergo CAD at lower collision energies than do doubly protonated LVFFAEDVGSNK ions. Statistically significant (p < 0.01) differences between the all-L-dodecapeptide and the ones containing a d-serine or a D-aspartic acid are observed.

  4. D-amino acids inhibit initial bacterial adhesion: thermodynamic evidence.

    Science.gov (United States)

    Xing, Su-Fang; Sun, Xue-Fei; Taylor, Alicia A; Walker, Sharon L; Wang, Yi-Fu; Wang, Shu-Guang

    2015-04-01

    Bacterial biofilms are structured communities of cells enclosed in a self-produced hydrated polymeric matrix that can adhere to inert or living surfaces. D-Amino acids were previously identified as self-produced compounds that mediate biofilm disassembly by causing the release of the protein component of the polymeric matrix. However, whether exogenous D-amino acids could inhibit initial bacterial adhesion is still unknown. Here, the effect of the exogenous amino acid D-tyrosine on initial bacterial adhesion was determined by combined use of chemical analysis, force spectroscopic measurement, and theoretical predictions. The surface thermodynamic theory demonstrated that the total interaction energy increased with more D-tyrosine, and the contribution of Lewis acid-base interactions relative to the change in the total interaction energy was much greater than the overall nonspecific interactions. Finally, atomic force microscopy analysis implied that the hydrogen bond numbers and adhesion forces decreased with the increase in D-tyrosine concentrations. D-Tyrosine contributed to the repulsive nature of the cell and ultimately led to the inhibition of bacterial adhesion. This study provides a new way to regulate biofilm formation by manipulating the contents of D-amino acids in natural or engineered systems. © 2014 Wiley Periodicals, Inc.

  5. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  6. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  7. OK, thanks! A new mutualism between Chlamydomonas and methylobacteria facilitates growth on amino acids and peptides.

    Science.gov (United States)

    Calatrava, Victoria; Hom, Erik F Y; Llamas, Ángel; Fernández, Emilio; Galván, Aurora

    2018-04-01

    Nitrogen is a key nutrient for land plants and phytoplankton in terrestrial and aquatic ecosystems. The model alga Chlamydomonas reinhardtii can grow efficiently on several inorganic nitrogen sources (e.g. ammonium, nitrate, nitrite) as well as many amino acids. In this study, we show that Chlamydomonas is unable to use proline, hydroxyproline and peptides that contain these amino acids. However, we discovered that algal growth on these substrates is supported in association with Methylobacterium spp., and that a mutualistic carbon-nitrogen metabolic exchange between Chlamydomonas and Methylobacterium spp. is established. Specifically, the mineralization of these amino acids and peptides by Methylobacterium spp. produces ammonium that can be assimilated by Chlamydomonas, and CO2 photosynthetically fixed by Chlamydomonas yields glycerol that can be assimilated by Methylobacterium. As Chlamydomonas is an algal ancestor to land plants and Methylobacterium is a plant growth-promoting bacterium, this new model of mutualism may facilitate insights into the ecology and evolution of plant-bacterial interactions and design principles of synthetic ecology.

  8. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs

  9. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Souers, P.C.; Coronado, P.R.; Peng, C.T.; Hua, R.L.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially useful agents for labeling peptides and proteins

  10. Radiation-induced reductive modifications of sulfur-containing amino acids within peptides and proteins.

    Science.gov (United States)

    Chatgilialoglu, Chryssostomos; Ferreri, Carla; Torreggiani, Armida; Salzano, Anna Maria; Renzone, Giovanni; Scaloni, Andrea

    2011-10-19

    The complex scenario of radical stress reactions affecting peptides/proteins can be better elucidated through the design of biomimetic studies simulating the consequences of the different free radicals attacking amino acids. In this context, ionizing radiations allowed to examine the specific damages caused by H-atoms and electrons coupled with protons, thus establishing the molecular basis of reductive radical stress. This is an innovative concept that complements the well-known oxidative stress also in view of a complete understanding of the global consequences of radical species reactivities on living systems. This review summarizes the knowledge of the chemical changes present in sulfur-containing amino acids occurring in polypeptides under reductive radical conditions, in particular the transformation of Met and Cys residues into α-amino butyric acid and alanine, respectively. Reductive radical stress causing a desulfurization process, is therefore coupled with the formation of S-centered radicals, which in turn can diffuse apart and become responsible of the damage transfer from proteins to lipids. These reductive modifications assayed in different peptide/protein sequences constitute an integration of the molecular inventories that up to now take into account only oxidative transformations. They can be useful to achieve an integrated vision of the free radical reactivities in a multifunctional system and, overall, for wider applications in the redox proteomics field. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Post-translational amino acid racemization in the frog skin peptide deltorphin I in the secretion granules of cutaneous serous glands.

    Science.gov (United States)

    Auvynet, Constance; Seddiki, Nabila; Dunia, Irene; Nicolas, Pierre; Amiche, Mohamed; Lacombe, Claire

    2006-01-01

    The dermal glands of the South American hylid frog Phyllomedusa bicolor synthesize and expel huge amounts of cationic, alpha-helical, 24- to 33-residue antimicrobial peptides, the dermaseptins B. These glands also produce a wide array of peptides that are similar to mammalian hormones and neuropeptides, including a heptapeptide opioid containing a D-amino acid, deltorphin I (Tyr-DAla-Phe-Asp-Val-Val-Gly NH2). Its biological activity is due to the racemization of L-Ala2 to D-Ala. The dermaseptins B and deltorphins are all derived from a single family of precursor polypeptides that have an N-terminal preprosequence that is remarkably well conserved, although the progenitor sequences giving rise to mature opioid or antimicrobial peptides are markedly different. Monoclonal and polyclonal antibodies were used to examine the cellular and ultrastructural distributions of deltorphin I and dermaseptin B in the serous glands by immunofluoresence confocal microscopy and immunogold-electron microscopy. Preprodeltorphin I and preprodermaseptins B are sorted into the regulated pathway of secretion, where they are processed to give the mature products. Deltorphin I, [l-Ala2]-deltorphin I and dermaseptin B are all stored together in secretion granules which accumulate in the cytoplasm of all serous glands. We conclude that the L- to D-amino acid isomerization of the deltorphin I occurs in the secretory granules as a post-translational event. Thus the specificity of isomerization depends on the presence of structural and/or conformational determinants in the peptide N-terminus surrounding the isomerization site.

  12. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine.

    Science.gov (United States)

    Weiss, Ingrid M; Muth, Christina; Drumm, Robert; Kirchner, Helmut O K

    2018-01-01

    The pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products. Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H 2 O, some NH 3 and no CO 2 . Cysteine produces CO 2 and little else. The reactions are described by polynomials, AA→ a NH 3 + b H 2 O+ c CO 2 + d H 2 S+ e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds. Eight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C.

  13. Preferential hydrophobic interactions are responsible for a preference of D-amino acids in the aminoacylation of 5'-AMP with hydrophobic amino acids

    Science.gov (United States)

    Lacey, J. C. Jr; Wickramasinghe, N. S.; Sabatini, R. S.

    1992-01-01

    We have studied the chemistry of aminoacyl AMP to model reactions at the 3' terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5'-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The beta-branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the gamma-branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with adenine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.

  14. Gustatory sensation of (L)- and (D)-amino acids in humans.

    Science.gov (United States)

    Kawai, Misako; Sekine-Hayakawa, Yuki; Okiyama, Atsushi; Ninomiya, Yuzo

    2012-12-01

    Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to D-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and L-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, L-serine had mainly sweet and minor umami taste, and D-serine was sweet. We further applied Stevens' psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).

  15. Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum.

    Science.gov (United States)

    Gabler, M; Fischer, L

    1999-08-01

    The fungus Fusarium oxysporum produced a D-amino acid oxidase (EC 1. 4.3.3) in a medium containing glucose as the carbon and energy source and ammonium sulfate as the nitrogen source. The specific D-amino acid oxidase activity was increased up to 12.5-fold with various D-amino acids or their corresponding derivatives as inducers. The best inducers were D-alanine (2.7 microkat/g of dry biomass) and D-3-aminobutyric acid (2.6 microkat/g of dry biomass). The addition of zinc ions was necessary to permit the induction of peroxisomal D-amino acid oxidase. Bioreactor cultivations were performed on a 50-liter scale, yielding a volumetric D-amino acid oxidase activity of 17 microkat liter(-1) with D-alanine as an inducer. Under oxygen limitation, the volumetric activity was increased threefold to 54 microkat liter(-1) (3,240 U liter(-1)).

  16. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    DEFF Research Database (Denmark)

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo

    2017-01-01

    and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation....... The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots...

  17. Development of SI-traceable C-peptide certified reference material NMIJ CRM 6901-a using isotope-dilution mass spectrometry-based amino acid analyses.

    Science.gov (United States)

    Kinumi, Tomoya; Goto, Mari; Eyama, Sakae; Kato, Megumi; Kasama, Takeshi; Takatsu, Akiko

    2012-07-01

    A certified reference material (CRM) is a higher-order calibration material used to enable a traceable analysis. This paper describes the development of a C-peptide CRM (NMIJ CRM 6901-a) by the National Metrology Institute of Japan using two independent methods for amino acid analysis based on isotope-dilution mass spectrometry. C-peptide is a 31-mer peptide that is utilized for the evaluation of β-cell function in the pancreas in clinical testing. This CRM is a lyophilized synthetic peptide having the human C-peptide sequence, and contains deamidated and pyroglutamylated forms of C-peptide. By adding water (1.00 ± 0.01) g into the vial containing the CRM, the C-peptide solution in 10 mM phosphate buffer saline (pH 6.6) is reconstituted. We assigned two certified values that represent the concentrations of total C-peptide (mixture of C-peptide, deamidated C-peptide, and pyroglutamylated C-peptide) and C-peptide. The certified concentration of total C-peptide was determined by two amino acid analyses using pre-column derivatization liquid chromatography-mass spectrometry and hydrophilic chromatography-mass spectrometry following acid hydrolysis. The certified concentration of C-peptide was determined by multiplying the concentration of total C-peptide by the ratio of the relative area of C-peptide to that of the total C-peptide measured by liquid chromatography. The certified value of C-peptide (80.7 ± 5.0) mg/L represents the concentration of the specific entity of C-peptide; on the other hand, the certified value of total C-peptide, (81.7 ± 5.1) mg/L can be used for analyses that does not differentiate deamidated and pyroglutamylated C-peptide from C-peptide itself, such as amino acid analyses and immunochemical assays.

  18. D:L-AMINO Acids and the Turnover of Microbial Biomass

    Science.gov (United States)

    Lomstein, B. A.; Braun, S.; Mhatre, S. S.; Jørgensen, B. B.

    2015-12-01

    Decades of ocean drilling have demonstrated wide spread microbial life in deep sub-seafloor sediment, and surprisingly high microbial cell numbers. Despite the ubiquity of life in the deep biosphere, the large community sizes and the low energy fluxes in the vast buried ecosystem are still poorly understood. It is not know whether organisms of the deep biosphere are specifically adapted to extremely low energy fluxes or whether most of the observed cells are in a maintenance state. Recently we developed and applied a new culture independent approach - the D:L-amino acid model - to quantify the turnover times of living microbial biomass, microbial necromass and mean metabolic rates. This approach is based on the built-in molecular clock in amino acids that very slowly undergo chemical racemization until they reach an even mixture of L- and D- forms, unless microorganisms spend energy to keep them in the L-form that dominates in living organisms. The approach combines sensitive analyses of amino acids, the unique bacterial endospore marker (dipicolinic acid) with racemization dynamics of stereo-isomeric amino acids. Based on a heating experiment, we recently reported kinetic parameters for racemization of aspartic acid, glutamic acid, serine and alanine in bulk sediment from Aarhus Bay, Denmark. The obtained racemization rate constants were faster than the racemization rate constants of free amino acids, which we have previously applied in Holocene sediment from Aarhus Bay and in up to 10 mio yr old sediment from ODP Leg 201. Another important input parameter for the D:L-amino acid model is the cellular carbon content. It has recently been suggested that the cellular carbon content most likely is lower than previously thought. In recognition of these new findings, previously published data based on the D:L-amino acid model were recalculated and will be presented together with new data from an Arctic Holocene setting with constant sub-zero temperatures.

  19. Evaluation of Ga-DOTA-(D-Asp)n as bone imaging agents: D-aspartic acid peptides as carriers to bone

    OpenAIRE

    Ogawa, Kazuma; Ishizaki, Atsushi; Takai, Kenichiro; Kitamura, Yoji; Makino, Akira; Kozaka, Takashi; Kiyono, Yasushi; Shiba, Kazuhiro; Odani, Akira

    2017-01-01

    67Ga-DOTA-(L-Asp)11 and 67Ga-DOTA-(L-Asp)14, which have been developed as bone imaging agents, showed a high accumulation in bone and a rapid blood clearance in mice. However, peptides composed of D-amino acids are more stable in vivo than those composed of their L-equivalents. In this study, 67Ga-DOTA-(D-Asp)n (n = 2, 5, 8, 11, or 14) were synthesized using the Fmoc-based solid-phase methodology and evaluated. In hydroxyapatite binding assay, binding of 67Ga-DOTA-(D-Asp)n tended to increase ...

  20. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    Science.gov (United States)

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  1. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  2. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    Science.gov (United States)

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters

    Science.gov (United States)

    Pantoja, Silvio; Rossel, Pamela; Castro, Rodrigo; Cuevas, L. Antonio; Daneri, Giovanni; Córdova, Candy

    2009-07-01

    We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L -1 h -1 in the top 20 m, 8-28 nmol peptide L -1 h -1 between 100 and 300 m (O 2-depleted zone), and 14-19 nmol peptide L -1 h -1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9-26, 3-17, and 6 nmol L -1 h -1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O 2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.

  4. Amino acid catabolism by Lactobacillus helveticus in cheese

    DEFF Research Database (Denmark)

    Kananen, Soila Kaarina

    Amino acid catabolism is the final step in the conversion of caseins to flavour compounds and a part of a complex combination of biochemical pathways in cheese flavour formation. Lactobacillus helveticus is a thermophilic lactic acid bacterium that is used in cheese manufacture as a primary starter...... culture or as an adjunct culture. It has shown high proteolytic activities in conversion of caseins to peptides and further to amino acids and flavour compounds. Better understanding of the enzyme activity properties and the influence of different properties on final cheese flavour is favourable...... for developing new cheese products with enhanced flavour. The aim of this Ph.D. study was to investigate the importance of strain variation of Lb. helveticus in relation flavour formation in cheese related to amino acid catabolism. Aspects of using Lb. helveticus as starter as well as adjunct culture in cheese...

  5. Synthesis, photophysical properties of triazolyl-donor/acceptor chromophores decorated unnatural amino acids: Incorporation of a pair into Leu-enkephalin peptide and application of triazolylperylene amino acid in sensing BSA.

    Science.gov (United States)

    Bag, Subhendu Sekhar; Jana, Subhashis; Pradhan, Manoj Kumar

    2016-08-15

    The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV-visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO-LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor-acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor-acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Studies on radiolysis of amino acids, 1

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1977-01-01

    In order to elucidate the radiolysis of amino acid, peptide, protein and enzyme, the radiolytic mechanisms of neutral amino acids (glycine, L-alanine, L-valine, L-leucine, L-isoleucine, L-serine, and L-threonine) and acidic amino acids (L-aspartic acid, L-glutamic acid and DL-amino-n-adipic acid) were studied in the presence of air or in the atmosphere nitrogen. An aqueous solution of 1 mM. of each amino acid was sealed in a glass ampoule under air or nitrogen. Irradiation of amino acid solutions was carried out with γ-rays of 60 Co at doses of 4.4-2,640x10 3 rads. The amino acids and the radiolytic products formed were determined by ion-exchange chromatography. From the results of determining amino acids and the radiolytic products formed and their G-values, the radiolytic mechanisms of the amino acids were discussed. (auth.)

  7. Characterization of d-succinylase from Cupriavidus sp. P4-10-C and its application in d-amino acid synthesis.

    Science.gov (United States)

    Sumida, Yosuke; Iwai, Sachio; Nishiya, Yoshiaki; Kumagai, Shinya; Yamada, Toshihide; Azuma, Masayuki

    2018-03-01

    d-Amino acids are important building blocks for various compounds, such as pharmaceuticals and agrochemicals. A more cost-effective enzymatic method for d-amino acid production is needed in the industry. We improved a one-pot enzymatic method for d-amino acid production by the dynamic kinetic resolution of N-succinyl amino acids using two enzymes: d-succinylase (DSA) from Cupriavidus sp. P4-10-C, which hydrolyzes N-succinyl-d-amino acids enantioselectively to their corresponding d-amino acid, and N-succinyl amino acid racemase (NSAR, EC.4.2.1.113) from Geobacillus stearothermophilus NCA1503. In this study, DSA and NSAR were purified and their properties were investigated. The optimum temperature of DSA was 50°C and it was stable up to 55°C. The optimum pH of DSA and NSAR was around 7.5. In d-phenylalanine production, the optical purity of product was improved to 91.6% ee from the examination about enzyme concentration. Moreover, 100 mM N-succinyl-dl-tryptophan was converted to d-tryptophan at 81.8% yield with 94.7% ee. This enzymatic method could be useful for the industrial production of various d-amino acids. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized

  9. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    International Nuclear Information System (INIS)

    Garrison, W.M.

    1979-03-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the α,α'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The α,α'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and pathogenic toxins. All of the available data strongly suggest that the α,α'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized

  10. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W. M.

    1981-12-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides, and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and bacterial products. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  11. Interaction study of amino acids and the peptide aspartame with lanthanide (III) ions

    International Nuclear Information System (INIS)

    Carubelli, C.R.

    1990-01-01

    The interactions between the Nd(III) ion with the amino acids L-aspartic acid, L-glutamic acid and L-histidine and the peptide aspartame in aqueous solution were studied. The study was conducted by means of electronic spectroscopy with the Judd-Ofelt formalism for transition intensity parameters calculations. Several coordination compounds involving Nd(III), Eu(III), and Tb(III) and the ligands L-histidine and aspartame were synthesized and characterized in the solid state. Mixed compounds involving Eu(III) and Tb(III) with the same ligands were synthesized and characterized also. The characterization were achieved by chemical analysis, melting points, vibrational spectroscopy (IR) and powder X-ray diffractometry. (author)

  12. Ammonia production by human faecal bacteria, and the enumeration, isolation and characterization of bacteria capable of growth on peptides and amino acids

    Directory of Open Access Journals (Sweden)

    Richardson Anthony J

    2013-01-01

    Full Text Available Abstract Background The products of protein breakdown in the human colon are considered to be detrimental to gut health. Amino acid catabolism leads to the formation of sulfides, phenolic compounds and amines, which are inflammatory and/or precursors to the formation of carcinogens, including N-nitroso compounds. The aim of this study was to investigate the kinetics of protein breakdown and the bacterial species involved. Results Casein, pancreatic casein hydrolysate (mainly short-chain peptides or amino acids were incubated in vitro with suspensions of faecal bacteria from 3 omnivorous and 3 vegetarian human donors. Results from the two donor groups were similar. Ammonia production was highest from peptides, followed by casein and amino acids, which were similar. The amino acids metabolized most extensively were Asp, Ser, Lys and Glu. Monensin inhibited the rate of ammonia production from amino acids by 60% (P = 0.001, indicating the involvement of Gram-positive bacteria. Enrichment cultures were carried out to investigate if, by analogy with the rumen, there was a significant population of asaccharolytic, obligately amino acid-fermenting bacteria (‘hyper-ammonia-producing’ bacteria; HAP in the colon. Numbers of bacteria capable of growth on peptides or amino acids alone averaged 3.5% of the total viable count, somewhat higher than the rumen. None of these were HAP, however. The species enriched included Clostridium spp., one of which was C. perfringens, Enterococcus, Shigella and Escherichia coli. Conclusions Protein fermentation by human faecal bacteria in the absence of sugars not only leads to the formation of hazardous metabolic products, but also to the possible proliferation of harmful bacteria. The kinetics of protein metabolism were similar to the rumen, but HAP bacteria were not found.

  13. d-Amino acids in molecular evolution in space - Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light.

    Science.gov (United States)

    Sugahara, Haruna; Meinert, Cornelia; Nahon, Laurent; Jones, Nykola C; Hoffmann, Søren V; Hamase, Kenji; Takano, Yoshinori; Meierhenrich, Uwe J

    2018-07-01

    Living organisms on the Earth almost exclusively use l-amino acids for the molecular architecture of proteins. The biological occurrence of d-amino acids is rare, although their functions in various organisms are being gradually understood. A possible explanation for the origin of biomolecular homochirality is the delivery of enantioenriched molecules via extraterrestrial bodies, such as asteroids and comets on early Earth. For the asymmetric formation of amino acids and their precursor molecules in interstellar environments, the interaction with circularly polarized photons is considered to have played a potential role in causing chiral asymmetry. In this review, we summarize recent progress in the investigation of chirality transfer from chiral photons to amino acids involving the two major processes of asymmetric photolysis and asymmetric synthesis. We will discuss analytical data on cometary and meteoritic amino acids and their potential impact delivery to the early Earth. The ongoing and future ambitious space missions, Hayabusa2, OSIRIS-REx, ExoMars 2020, and MMX, are scheduled to provide new insights into the chirality of extraterrestrial organic molecules and their potential relation to the terrestrial homochirality. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors

    Science.gov (United States)

    Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping

    2011-07-01

    should be a high hydrophobic and low electronic amino acid (such as Ala, Gly, Val, and Leu); the center amino acid would be an amino acid that possesses high hydrogen bond property (such as base amino acid Arg, Lys, and His). The structural characteristics of antioxidative peptide be found in this paper may contribute to the further research of antioxidative mechanism.

  15. Enzyme active site mimics based on TriAzaCyclophane (TAC)-scaffolded peptides and amino acid residues

    NARCIS (Netherlands)

    Albada, H.B.

    2009-01-01

    This thesis describes the scope and limitations of the application of TriAzaCyclophane (TAC)-scaffolded peptides or amino acid residues as enzyme active site mimics, as ligands in asymmetric catalysis and as hydrolysis catalysts attached to vancomycin. For the mimicry of functional group enzymes, of

  16. Solid-phase route to Fmoc-protected cationic amino acid building blocks

    DEFF Research Database (Denmark)

    Clausen, Jacob Dahlqvist; Linderoth, Lars; Nielsen, Hanne Mørck

    2012-01-01

    Diamino acids are commonly found in bioactive compounds, yet only few are commercially available as building blocks for solid-phase peptide synthesis. In the present work a convenient, inexpensive route to multiple-charged amino acid building blocks with varying degree of hydrophobicity...... was developed. A versatile solid-phase protocol leading to selectively protected amino alcohol intermediates was followed by oxidation to yield the desired di- or polycationic amino acid building blocks in gram-scale amounts. The synthetic sequence comprises loading of (S)-1-(p-nosyl)aziridine-2-methanol onto...... of simple neutral amino acids as well as analogs displaying high bulkiness or polycationic side chains was prepared. Two building blocks were incorporated into peptide sequences using microwave-assisted solid-phase peptide synthesis confirming their general utility....

  17. The multifaceted role of amino acids in chemical evolution

    Science.gov (United States)

    Strasdeit, Henry; Fox, Stefan; Dalai, Punam

    We present an overview of recent ideas about α-amino acids on the Hadean / early Archean Earth and Noachian Mars. Pertinent simulation experiments are discussed. Electrical dis-charges in early Earth's bulk, probably non-reducing atmosphere [1, 2] and in volcanic ash-gas clouds [3] are likely to have synthesized amino acids abiotically. In principle, this may have been followed by the synthesis of peptides. Different kinds of laboratory simulations have, however, revealed severe difficulties with the condensation process under presumed prebiotic conditions. It therefore appears that peptides on the early Earth were mainly di-, tri-and tetramers and slightly longer only in the case of glycine homopeptides. But even such short peptides may have shown primitive catalytic activity after complexation of metal ions to form proto-metalloenzymes. L-enantiomeric excesses (L-ee) of meteoritic amino acids were possibly involved in the origin of biohomochirality [4, 5]. This idea also faces some problems, mainly dilution of the amino acids on Earth and a resulting low overall L-ee. However, as yet unknown reactions might exist that are highly enantioselective even under such unfavorable conditions, perhaps by a combination of autocatalysis and inhibition (compare the Soai reaction). Primor-dial volcanic islands are prebiotically interesting locations. At their hot coasts, solid sea salt probably embedded amino acids [6]. Our laboratory experiments showed that further heating of the salt crusts, simulating the vicinity of lava streams, produced pyrroles among other prod-ucts. Pyrroles are building blocks of biomolecules such as bilins, chlorophylls and heme. Thus, an abiotic route from amino acids to the first photoreceptor and electron-transfer molecules might have existed. There is no reason to assume that the chemical evolutionary processes described above were singular events restricted to Earth and Mars. In fact, they might take place even today on terrestrial exoplanets

  18. Post-translational Introduction of D-Alanine into Ribosomally Synthesized Peptides by the Dehydroalanine Reductase NpnJ.

    Science.gov (United States)

    Yang, Xiao; van der Donk, Wilfred A

    2015-10-07

    Ribosomally synthesized peptides are generally limited to L-amino acid building blocks. Given the advantageous properties of peptides containing D-amino acids such as stabilization of certain turns and against proteolytic degradation, methods to introduce D-stereocenters are valuable. Here we report the first in vitro reconstitution and characterization of a dehydrogenase that carries out the asymmetric reduction of dehydroalanine. NpnJA reduces dehydroalanine to D-Ala using NAPDH as cosubstrate. The enzyme displays high substrate tolerance allowing introduction of D-Ala into a range of non-native substrates. In addition to the in vitro reactions, we describe five examples of using Escherichia coli as biosynthetic host for D-alanine introduction into ribosomal peptides. A deuterium-label-based coupled-enzyme assay was used to rapidly determine the stereochemistry of the newly installed alanine.

  19. Peptide design using alpha,beta-dehydro amino acids: from beta-turns to helical hairpins.

    Science.gov (United States)

    Mathur, Puniti; Ramakumar, S; Chauhan, V S

    2004-01-01

    Incorporation of alpha,beta-dehydrophenylalanine (DeltaPhe) residue in peptides induces folded conformations: beta-turns in short peptides and 3(10)-helices in larger ones. A few exceptions-namely, alpha-helix or flat beta-bend ribbon structures-have also been reported in a few cases. The most favorable conformation of DeltaPhe residues are (phi,psi) approximately (-60 degrees, -30 degrees ), (-60 degrees, 150 degrees ), (80 degrees, 0 degrees ) or their enantiomers. DeltaPhe is an achiral and planar residue. These features have been exploited in designing DeltaPhe zippers and helix-turn-helix motifs. DeltaPhe can be incorporated in both right and left-handed helices. In fact, consecutive occurrence of three or more DeltaPhe amino acids induce left-handed screw sense in peptides containing L-amino acids. Weak interactions involving the DeltaPhe residue play an important role in molecular association. The C--H.O==C hydrogen bond between the DeltaPhe side-chain and backbone carboxyl moiety, pi-pi stacking interactions between DeltaPhe side chains belonging to enantiomeric helices have shown to stabilize folding. The unusual capability of a DeltaPhe ring to form the hub of multicentered interactions namely, a donor in aromatic C--H.pi and C--H.O==C and an acceptor in a CH(3).pi interaction suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  20. Aqueous Microwave-Assisted Solid-Phase Synthesis Using Boc-Amino Acid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yoshinobu Fukumori

    2013-07-01

    Full Text Available We have previously developed water-based microwave (MW-assisted peptide synthesis using Fmoc-amino acid nanopaticles. It is an organic solvent-free, environmentally friendly method for peptide synthesis. Here we describe water-based MW-assisted solid-phase synthesis using Boc-amino acid nanoparticles. The microwave irradiation allowed rapid solid-phase reaction of nanoparticle reactants on the resin in water. We also demonstrated the syntheses of Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu-OH, and difficult sequence model peptide, Val-Ala-Val-Ala-Gly-OH, using our water-based MW-assisted protocol with Boc-amino acid nanoparticles.

  1. Thermal behavior of potato starch and water-vaporization behavior of its paste controlled with amino acid and peptide-rich food materials.

    Science.gov (United States)

    Sakauchi, Satoshi; Hattori, Makoto; Yoshida, Tadashi; Yagishita, Takahiro; Ito, Koichi; Akemitsu, Shin-Ichi; Takahashi, Koji

    2010-03-01

    The particular effect of 4 kinds of amino acid and peptide-rich food material (APRM) containing different charged amino acid contents on the gelatinization and retrogradation behavior of potato starch granules and on the water-vaporization behavior was analyzed by differential scanning calorimetry, rapid viscoanalysis, x-ray diffractometry, thermal gravimetry-differential thermal analysis, and pulsed NMR. APRM with a high-charged amino acid content produced unique gelatinization and retrogradation behavior in terms of an elevated gelatinization temperature, reduced viscosity, higher setback, and lower retrograded starch melting enthalpy. The recovered x-ray diffraction intensity decreased with increasing charged amino acid content. APRM with high-charged amino acid content could provide an improved paste having easy vaporization of external water in the swollen starch granules due to the reduced swelling.

  2. Synthesis and conformational analysis of hybrid α/β-dipeptides incorporating S-glycosyl-β(2,2)-amino acids.

    Science.gov (United States)

    García-González, Iván; Mata, Lara; Corzana, Francisco; Jiménez-Osés, Gonzalo; Avenoza, Alberto; Busto, Jesús H; Peregrina, Jesús M

    2015-01-12

    We synthesized and carried out the conformational analysis of several hybrid dipeptides consisting of an α-amino acid attached to a quaternary glyco-β-amino acid. In particular, we combined a S-glycosylated β(2,2)-amino acid and two different types of α-amino acid, namely, aliphatic (alanine) and aromatic (phenylalanine and tryptophan) in the sequence of hybrid α/β-dipeptides. The key step in the synthesis involved the ring-opening reaction of a chiral cyclic sulfamidate, inserted in the peptidic sequence, with a sulfur-containing nucleophile by using 1-thio-β-D-glucopyranose derivatives. This reaction of glycosylation occurred with inversion of configuration at the quaternary center. The conformational behavior in aqueous solution of the peptide backbone and the glycosidic linkage for all synthesized hybrid glycopeptides was analyzed by using a protocol that combined NMR experiments and molecular dynamics with time-averaged restraints (MD-tar). Interestingly, the presence of the sulfur heteroatom at the quaternary center of the β-amino acid induced θ torsional angles close to 180° (anti). Notably, this value changed to 60° (gauche) when the peptidic sequence displayed aromatic α-amino acids due to the presence of CH-π interactions between the phenyl or indole ring and the methyl groups of the β-amino acid unit. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation of Ga-DOTA-(D-Asp)n as bone imaging agents: D-aspartic acid peptides as carriers to bone.

    Science.gov (United States)

    Ogawa, Kazuma; Ishizaki, Atsushi; Takai, Kenichiro; Kitamura, Yoji; Makino, Akira; Kozaka, Takashi; Kiyono, Yasushi; Shiba, Kazuhiro; Odani, Akira

    2017-10-25

    67 Ga-DOTA-(L-Asp) 11 and 67 Ga-DOTA-(L-Asp) 14 , which have been developed as bone imaging agents, showed a high accumulation in bone and a rapid blood clearance in mice. However, peptides composed of D-amino acids are more stable in vivo than those composed of their L-equivalents. In this study, 67 Ga-DOTA-(D-Asp) n (n = 2, 5, 8, 11, or 14) were synthesized using the Fmoc-based solid-phase methodology and evaluated. In hydroxyapatite binding assay, binding of 67 Ga-DOTA-(D-Asp) n tended to increase with increasing length of the amino acid chain. 67 Ga-DOTA-(D-Asp) 11 and 67 Ga-DOTA-(D-Asp) 14 caused a high accumulation of radioactivity in the bones of the mice. However, the results for 67 Ga-DOTA-(D-Asp) n and 67 Ga-DOTA-(L-Asp) n were comparable. In urine analyses, the proportion of intact complex after injection of 67 Ga-DOTA-(D-Asp) 14 was significantly higher than that of 67 Ga-DOTA-(L-Asp) 14 . Although 67 Ga-DOTA-(D-Asp) 14 was more stable than 67 Ga-DOTA-(L-Asp) 14 , the properties of 67 Ga-DOTA-(D-Asp) n and 67 Ga-DOTA-(L-Asp) n as bone imaging agents may be comparable.

  4. Mirrors in the PDB: left-handed alpha-turns guide design with D-amino acids.

    Science.gov (United States)

    Annavarapu, Srinivas; Nanda, Vikas

    2009-09-22

    Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Propensities for amino acids to occur in contiguous alpha(L) helices correlate with published thermodynamic scales for incorporation of D-amino acids into alpha(R) helices. Two backbone rules for terminating a left-handed helix are found: an alpha(R) conformation is disfavored at the amino terminus, and a beta(R) conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to alpha(L) helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. By examining left-handed alpha-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed alpha-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.

  5. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    Science.gov (United States)

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  6. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV.

    Science.gov (United States)

    Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P

    2003-01-01

    Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.

  7. Mirrors in the PDB: left-handed α-turns guide design with D-amino acids

    Directory of Open Access Journals (Sweden)

    Nanda Vikas

    2009-09-01

    Full Text Available Abstract Background Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Results Propensities for amino acids to occur in contiguous αL helices correlate with published thermodynamic scales for incorporation of D-amino acids into αR helices. Two backbone rules for terminating a left-handed helix are found: an αR conformation is disfavored at the amino terminus, and a βR conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to αL helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. Conclusion By examining left-handed α-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed α-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.

  8. Production of hydrophobic amino acids from biobased resources

    NARCIS (Netherlands)

    Widyarani, W.; Sari, Yessie W.; Ratnaningsih, Enny; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Protein hydrolysis enables production of peptides and free amino acids that are suitable for usage in food and feed or can be used as precursors for bulk chemicals. Several essential amino acids for food and feed have hydrophobic side chains; this property may also be exploited for subsequent

  9. Production of α-keto acids Part I. Immobilized cells ofTrigonopsis variabilis containing D-amino acid oxidase.

    Science.gov (United States)

    Brodelius, P; Nilsson, K; Mosbach, K

    1981-12-01

    Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca(2+)-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a " trickle-bed " reactor.

  10. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport.

    Science.gov (United States)

    Lee, Jennifer; Koehler, Jacqueline; Yusta, Bernardo; Bahrami, Jasmine; Matthews, Dianne; Rafii, Mahroukh; Pencharz, Paul B; Drucker, Daniel J

    2017-03-01

    Glucagon-like peptide-2 (GLP-2) is co-secreted with GLP-1 from gut endocrine cells, and both peptides act as growth factors to expand the surface area of the mucosal epithelium. Notably, GLP-2 also enhances glucose and lipid transport in enterocytes; however, its actions on control of amino acid (AA) transport remain unclear. Here we examined the mechanisms linking gain and loss of GLP-2 receptor (GLP-2R) signaling to control of intestinal amino acid absorption in mice. Absorption, transport, and clearance of essential AAs, specifically lysine, were measured in vivo by Liquid Chromatography triple quadrupole Mass Spectrometry (LC-MS/MS) and ex vivo with Ussing chambers using intestinal preparations from Glp2 r +/+ and Glp2r - / - mice. Immunoblotting determined jejunal levels of protein components of signaling pathways (PI3K-AKT, and mTORC1-pS6-p4E-BP1) following administration of GLP-2, protein gavage, and rapamycin to fasted Glp2 r +/+ and Glp2r - / - mice. Expression of AA transporters from full thickness jejunum and 4F2hc from brush border membrane vesicles (BBMVs) was measured by real-time PCR and immunoblotting, respectively. Acute administration of GLP-2 increased basal AA absorption in vivo and augmented basal lysine transport ex vivo . GLP-2-stimulated lysine transport was attenuated by co-incubation with wortmannin, rapamycin, or tetrodotoxin ex vivo . Phosphorylation of mTORC1 effector proteins S6 and 4E-BP1 was significantly increased in wild-type mice in response to GLP-2 alone, or when co-administered with protein gavage, and abolished following oral gavage of rapamycin. In contrast, activation of GLP-1R signaling did not enhance S6 phosphorylation. Disruption of GLP-2 action in Glp2r -/- mice reduced lysine transport ex vivo and attenuated the phosphorylation of S6 and 4E-BP1 in response to oral protein. Moreover, the expression of cationic AA transporter slc7a9 in response to refeeding, and the abundance of 4F2hc in BBMVs following protein

  11. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  12. Helleborus purpurascens—Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds

    Directory of Open Access Journals (Sweden)

    Adina-Elena Segneanu

    2015-12-01

    Full Text Available There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy and chromatographic techniques (RP-HPLC and GC-MS. The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  13. Helleborus purpurascens-Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds.

    Science.gov (United States)

    Segneanu, Adina-Elena; Grozescu, Ioan; Cziple, Florentina; Berki, Daniel; Damian, Daniel; Niculite, Cristina Mariana; Florea, Alexandru; Leabu, Mircea

    2015-12-11

    There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  14. Absorption of proteins and amino acids

    International Nuclear Information System (INIS)

    Jeejeebhoy, K.N.

    1976-01-01

    Although the absorption of proteins and amino acids is an important issue in nutrition, its measurement is not common because of the methodological difficulties. Complications are attributable in particular to the magnitude of endogenous protein secretion and to the diversity of absorption mechanisms for amino acids either as individual units or as peptides. Methods for studying absorption include balance techniques, tolerance tests, tracer techniques using proteins or amino acids labelled with 131 I, 3 H, or 15 N, intestinal perfusion studies, and others; they must be selected according to the nature of the information sought. Improvements over the current methods would be useful. (author)

  15. Absolute quantitation of proteins by Acid hydrolysis combined with amino Acid detection by mass spectrometry

    DEFF Research Database (Denmark)

    Mirgorodskaya, Olga A; Körner, Roman; Kozmin, Yuri P

    2012-01-01

    Amino acid analysis is among the most accurate methods for absolute quantification of proteins and peptides. Here, we combine acid hydrolysis with the addition of isotopically labeled standard amino acids and analysis by mass spectrometry for accurate and sensitive protein quantitation...

  16. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    Science.gov (United States)

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg 2+ ) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu 2+ ) are therefore not beneficial places for peptide bond formation on the primitive

  17. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Almonacid, Hannia; Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  18. Statistically significant dependence of the Xaa-Pro peptide bond conformation on secondary structure and amino acid sequence

    Directory of Open Access Journals (Sweden)

    Leitner Dietmar

    2005-04-01

    Full Text Available Abstract Background A reliable prediction of the Xaa-Pro peptide bond conformation would be a useful tool for many protein structure calculation methods. We have analyzed the Protein Data Bank and show that the combined use of sequential and structural information has a predictive value for the assessment of the cis versus trans peptide bond conformation of Xaa-Pro within proteins. For the analysis of the data sets different statistical methods such as the calculation of the Chou-Fasman parameters and occurrence matrices were used. Furthermore we analyzed the relationship between the relative solvent accessibility and the relative occurrence of prolines in the cis and in the trans conformation. Results One of the main results of the statistical investigations is the ranking of the secondary structure and sequence information with respect to the prediction of the Xaa-Pro peptide bond conformation. We observed a significant impact of secondary structure information on the occurrence of the Xaa-Pro peptide bond conformation, while the sequence information of amino acids neighboring proline is of little predictive value for the conformation of this bond. Conclusion In this work, we present an extensive analysis of the occurrence of the cis and trans proline conformation in proteins. Based on the data set, we derived patterns and rules for a possible prediction of the proline conformation. Upon adoption of the Chou-Fasman parameters, we are able to derive statistically relevant correlations between the secondary structure of amino acid fragments and the Xaa-Pro peptide bond conformation.

  19. Fungal Peptaibiotics: Assessing Potential Meteoritic Amino Acid Contamination

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Bruckner, H.

    2010-01-01

    The presence of non-protein alpha-dialkyl-amino acids such as alpha-aminoisobutyric acid (alpha-A1B) and isovaline (Iva), which are relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids, however, the discovery of alpha-AIB in peptides producers by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the alpha-AIB observed in some meteorites. The alpha-AIB-containing peptides produced by these fungi are dubbed peptaibiotics. We measured the molecular distribution and stable carbon and nitrogen isotopic ratios for amino acids found in the total hydrolysates of four biologically synthesized peptaibiotics. We compared these aneasurenetts with those from the CM2 carbonaceous chondrite Murchison and from three Antarctic CR2 carbonaceous chondrites in order to understand the peptaibiotics as a potential source of meteoritic contamination.

  20. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    International Nuclear Information System (INIS)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.; Fletcher, P.; O’Donnell, V.; Holinka, L.G.; Carey, L.B.; Lu, X.; Nieva, J.L.; Borca, M.V.

    2014-01-01

    E2, along with E rns and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, 818 CPIGWTGVIEC 828 , containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP 818 CPIGWTGVIEC 828 indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion

  1. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Sainz, I.J. [Plum Island Animal Disease Center, ARS, USDA (United States); Largo, E. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Gladue, D.P.; Fletcher, P. [Plum Island Animal Disease Center, ARS, USDA (United States); O’Donnell, V. [Plum Island Animal Disease Center, ARS, USDA (United States); Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Holinka, L.G. [Plum Island Animal Disease Center, ARS, USDA (United States); Carey, L.B. [Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), E-08003 Barcelona (Spain); Lu, X. [Plum Island Animal Disease Center, DHS, Greenport, NY 11944 (United States); Nieva, J.L. [Biophysics Unit (CSIC-UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao (Spain); Borca, M.V., E-mail: manuel.borca@ars.usda.gov [Plum Island Animal Disease Center, ARS, USDA (United States)

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  2. Radiation chemistry of amino acids, peptides and proteins in relation to the radiation sterilization of high-protein foods. [106 references

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W.M.

    1979-03-01

    An important source of information on the question of whether or not toxic or other deleterious substances are formed in the radiation sterilization of foods is the chemical study of reaction products and reaction mechanisms in the radiolysis of individual food components. The present evaluation of the radiation chemistry of amino acids, peptides and proteins outlines the various radiation-induced processes which lead to amino acid degradation and to the synthesis of amino acid derivatives of higher molecular weight. Among the latter are the ..cap alpha..,..cap alpha..'-diamino dicarboxylic acids which are formed as major products in the radiolysis of peptides both in aqueous solution and in the solid state. The ..cap alpha..,..cap alpha..'-diamino acids are of particular interest as irradiation products because they represent a class of compounds not normally encountered in plant and animal protein sources. Such compounds have, however, been isolated from certain types of bacteria and pathogenic toxins. All of the available data strongly suggest that the ..cap alpha..,..cap alpha..'-diamino acids are produced in significant yield in the radiation sterilization of high protein foods. The importance of initiating extensive chemical and biological studies of initiating extensive chemical and biological studies of these and of other high molecular weight products in irradiated food is emphasized.

  3. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles

    Directory of Open Access Journals (Sweden)

    Fukumori Yoshinobu

    2011-08-01

    Full Text Available Abstract Due to the vast importance of peptides in biological processes, there is an escalating need for synthetic peptides to be used in a wide variety of applications. However, the consumption of organic solvent is extremely large in chemical peptide syntheses because of the multiple condensation steps in organic solvents. That is, the current synthesis method is not environmentally friendly. From the viewpoint of green sustainable chemistry, we focused on developing an organic solvent-free synthetic method using water, an environmentally friendly solvent. Here we described in-water synthesis technology using water-dispersible protected amino acids.

  4. Production of carrier-peptide conjugates using chemically reactive unnatural amino acids

    Science.gov (United States)

    Young, Travis; Schultz, Peter G

    2013-12-17

    Provided are methods of making carrier polypeptide that include incorporating a first unnatural amino acid into a carrier polypeptide variant, incorporating a second unnatural amino acid into a target polypeptide variant, and reacting the first and second unnatural amino acids to produce the conjugate. Conjugates produced using the provided methods are also provided. In addition, orthogonal translation systems in methylotrophic yeast and methods of using these systems to produce carrier and target polypeptide variants comprising unnatural amino acids are provided.

  5. Effects of Rice Bran, Flax Seed, and Sunflower Seed on Growth Performance, Carcass Characteristics, Fatty Acid Composition, Free Amino Acid and Peptide Contents, and Sensory Evaluations of Native Korean Cattle (Hanwoo

    Directory of Open Access Journals (Sweden)

    Chang Bon Choi

    2016-02-01

    Full Text Available This study was conducted to evaluate the effect of dietary supplementation with rice bran, flax seed, or sunflower seed to finishing native Korean cattle (Hanwoo on growth performances, carcass characteristics, fatty acid composition, free amino acid and peptide contents, and sensory evaluations of Longissimus muscle (LM. A total of 39 Hanwoo steers (average age of 22.2 mo and average body weight (BW of 552.2 kg were randomly divided into Control, rice bran (RB, flax seed (FS, or Sunflower seed (SS groups. The steers were group fed for 273 d until they reached an average age of 31.2 mo. Final BW was 768.2, 785.8, 786.2, and 789.0 kg, and average daily gain was 0.79, 0.85, 0.82, and 0.84 kg for the Control, RS, FS, and SS groups, respectively (p>0.05. Fat thickness of the FS group (19.8 mm was greater (p0.05 scores for flavor, umami, and overall palatability in sensory evaluations. In conclusion, supplementation of flax seed to diets of finishing Hanwoo steers improved sensory evaluations which might have been caused by increases in flavor related amino acids such as methionine, glutamic acid and α-AAA and peptides, anserine and carnosine, and their complex reactions.

  6. Activation of a peroxisomal Pichia pastoris d-amino acid oxidase, which uses d-alanine as a preferred substrate, depends on pyruvate carboxylase

    NARCIS (Netherlands)

    Klompmaker, Sandra H.; Kilic, Aysun; Baerends, Richard J.; Veenhuis, Marten; van der Klei, Ida J.; Goffeau, André

    d-Amino acid oxidase (DAO) is an important flavo-enzyme that catalyzes the oxidative deamination of d-amino acids into the corresponding alpha-keto acid, ammonia and H(2)O(2). We identified two amino acid oxidases in the methylotrophic yeast Pichia pastoris: Dao1p, which preferentially uses

  7. Bioactive dietary peptides and amino acids in inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Hua; Hu, Chien-An A; Kovacs-Nolan, Jennifer; Mine, Yoshinori

    2015-10-01

    Inflammatory bowel disease (IBD), most commonly ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammation of the gastrointestinal tract. Patients affected with IBD experience symptoms including abdominal pain, persistent diarrhea, rectal bleeding, and weight loss. There is no cure for IBD; thus treatments typically focus on preventing complications, inducing and maintaining remission, and improving quality of life. During IBD, dysregulation of the intestinal immune system leads to increased production of pro-inflammatory cytokines, such as TNF-α and IL-6, and recruitment of activated immune cells to the intestine, causing tissue damage and perpetuating the inflammatory response. Recent biological therapies targeting specific inflammatory cytokines or pathways, in particular TNF-α, have shown promise, but not all patients respond to treatment, and some individuals become intolerant to treatment over time. Dietary peptides and amino acids (AAs) have been shown to modulate intestinal immune functions and influence inflammatory responses, and may be useful as alternative or ancillary treatments in IBD. This review focuses on dietary interventions for IBD treatment, in particular the role of dietary peptides and AAs in reducing inflammation, oxidative stress, and apoptosis in the gut, as well as recent advances in the cellular mechanisms responsible for their anti-inflammatory activity.

  8. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  9. Effects of the substitution of amino acid residues, through chemical synthesis, on the conformation and activity of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Regina C. Adão

    2012-06-01

    Full Text Available Antimicrobial peptides make up an assorted group of molecules which contain from 12 to 50 amino acid residues and which may be produced by microorganisms, plants and animals. From the discovery that these biomolecules are lethal to bacteria, inhibiting the pathogenic organism’s growth, and are also related to innate and adapted defense mechanisms, the investigation of such molecules came to be an emergent research field, in which more than 1800 antimicrobial peptides have so far been discovered throughout the last three decades. These molecules are potential representatives of a new generation of antibiotic agents and the main motivation for such use is their activity against a wide variety of pathogens, including Gram-positive and Gram-negative bacteria as well as fungi and viruses. An important class of comprising some of these peptides may be found in anurans, from which it has been isolated, a considerable number of antimicrobial peptides with diverse sequences and structures, including linear and dimeric ones. In this work monomeric chains (CH1 e CH2 of the heterodimeric antimicrobial peptide distinctin (isolated in 1999 from Phyllomedusa distincta anurans, as well as its mutated monomers (CH1-S and CH2-S and the heterodimer itself were synthesized. The distinctin is the peptide with two chains of different sequences (Table 1 bound each other by disulfide bond from the cystein residues constituting the heterodimer. To investigate the effects on the biological activity by amino acids substitution at normal distinctin CH1 and CH2 chains, both were synthesized as well as their similar chains (CH1-S and CH2-S in which the cystein (Fig.1 a residues of each chain were changed by serin residues (Fig. 1 b. The new chains were named mutants. The synthesis was carried out in solid phase, using Fmoc strategy. The heterodimer distinctin was obtained from CH1 and CH2 chains coupling through cystein residues air oxidation. The results from HPLC

  10. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.

    Science.gov (United States)

    Lee, Hye-Eun; Ahn, Hyo-Yong; Mun, Jungho; Lee, Yoon Young; Kim, Minkyung; Cho, Nam Heon; Chang, Kiseok; Kim, Wook Sung; Rho, Junsuk; Nam, Ki Tae

    2018-04-01

    Understanding chirality, or handedness, in molecules is important because of the enantioselectivity that is observed in many biochemical reactions 1 , and because of the recent development of chiral metamaterials with exceptional light-manipulating capabilities, such as polarization control 2-4 , a negative refractive index 5 and chiral sensing 6 . Chiral nanostructures have been produced using nanofabrication techniques such as lithography 7 and molecular self-assembly 8-11 , but large-scale and simple fabrication methods for three-dimensional chiral structures remain a challenge. In this regard, chirality transfer represents a simpler and more efficient method for controlling chiral morphology 12-18 . Although a few studies 18,19 have described the transfer of molecular chirality into micrometre-sized helical ceramic crystals, this technique has yet to be implemented for metal nanoparticles with sizes of hundreds of nanometres. Here we develop a strategy for synthesizing chiral gold nanoparticles that involves using amino acids and peptides to control the optical activity, handedness and chiral plasmonic resonance of the nanoparticles. The key requirement for achieving such chiral structures is the formation of high-Miller-index surfaces ({hkl}, h ≠ k ≠ l ≠ 0) that are intrinsically chiral, owing to the presence of 'kink' sites 20-22 in the nanoparticles during growth. The presence of chiral components at the inorganic surface of the nanoparticles and in the amino acids and peptides results in enantioselective interactions at the interface between these elements; these interactions lead to asymmetric evolution of the nanoparticles and the formation of helicoid morphologies that consist of highly twisted chiral elements. The gold nanoparticles that we grow display strong chiral plasmonic optical activity (a dis-symmetry factor of 0.2), even when dispersed randomly in solution; this observation is supported by theoretical calculations and direct

  11. A direct method for the synthesis of orthogonally protected furyl- and thienyl- amino acids.

    Science.gov (United States)

    Hudson, Alex S; Caron, Laurent; Colgin, Neil; Cobb, Steven L

    2015-04-01

    The synthesis of unnatural amino acids plays a key part in expanding the potential application of peptide-based drugs and in the total synthesis of peptide natural products. Herein, we report a direct method for the synthesis of orthogonally protected 5-membered heteroaromatic amino acids.

  12. New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems

    Science.gov (United States)

    Aliashkevich, Alena; Alvarez, Laura; Cava, Felipe

    2018-01-01

    In the environment bacteria share their habitat with a great diversity of organisms, from microbes to humans, animals and plants. In these complex communities, the production of extracellular effectors is a common strategy to control the biodiversity by interfering with the growth and/or viability of nearby microbes. One of such effectors relies on the production and release of extracellular D-amino acids which regulate diverse cellular processes such as cell wall biogenesis, biofilm integrity, and spore germination. Non-canonical D-amino acids are mainly produced by broad spectrum racemases (Bsr). Bsr’s promiscuity allows it to generate high concentrations of D-amino acids in environments with variable compositions of L-amino acids. However, it was not clear until recent whether these molecules exhibit divergent functions. Here we review the distinctive biological roles of D-amino acids, their mechanisms of action and their modulatory properties of the biodiversity of complex eco-systems. PMID:29681896

  13. Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides.

    Science.gov (United States)

    Asandei, Alina; Rossini, Aldo E; Chinappi, Mauro; Park, Yoonkyung; Luchian, Tudor

    2017-12-19

    Nanopore probing of biological polymers has the potential to achieve single-molecule sequencing at low cost, high throughput, portability, and minimal sample preparation and apparatus. In this article, we explore the possibility of discrimination between neutral amino acid residues from the primary structure of 30 amino acids long, engineered peptides, through the analysis of single-molecule ionic current fluctuations accompanying their slowed-down translocation across the wild type α-hemolysin (α-HL) nanopore, and molecular dynamics simulations. We found that the transient presence inside the α-HL of alanine or tryptophan residues from the primary sequence of engineered peptides results in distinct features of the ionic current fluctuation pattern associated with the peptide reversibly blocking the nanopore. We propose that α-HL sensitivity to the molecular exclusion at the most constricted region mediates ionic current blockade events correlated with the volumes that are occluded by at least three alanine or tryptophan residues, and provides the specificity needed to discriminate between groups of neutral amino acids. Further, we find that the pattern of current fluctuations depends on the orientation of the threaded amino acid residues, suggestive of a conformational anisotropy of the ensemble of conformations of the peptide on the restricted nanopore region, related to its relative axial orientation inside the nanopore.

  14. Partial amino acid sequence of the branched chain amino acid aminotransferase (TmB) of E. coli JA199 pDU11

    International Nuclear Information System (INIS)

    Feild, M.J.; Armstrong, F.B.

    1987-01-01

    E. coli JA199 pDU11 harbors a multicopy plasmid containing the ilv GEDAY gene cluster of S. typhimurium. TmB, gene product of ilv E, was purified, crystallized, and subjected to Edman degradation using a gas phase sequencer. The intact protein yielded an amino terminal 31 residue sequence. Both carboxymethylated apoenzyme and [ 3 H]-NaBH-reduced holoenzyme were then subjected to digestion by trypsin. The digests were fractionated using reversed phase HPLC, and the peptides isolated were sequenced. The borohydride-treated holoenzyme was used to isolate the cofactor-binding peptide. The peptide is 27 residues long and a comparison with known sequences of other aminotransferases revealed limited homology. Peptides accounting for 211 of 288 predicted residues have been sequenced, including 9 residues of the carboxyl terminus. Comparison of peptides with the inferred amino acid sequence of the E. coli K-12 enzyme has helped determine the sequence of the amino terminal 59 residues; only two differences between the sequences are noted in this region

  15. D-amino acid oxidase activator gene (DAOA) variation affects cerebrospinal fluid homovanillic acid concentrations in healthy Caucasians

    DEFF Research Database (Denmark)

    Andreou, Dimitrios; Saetre, Peter; Werge, Thomas

    2012-01-01

    The D-amino acid oxidase activator (DAOA) protein regulates the function of D-amino oxidase (DAO), an enzyme that catalyzes the oxidative deamination of D-3,4-dihydroxyphenylalanine (D-DOPA) and D-serine. D-DOPA is converted to L-3,4-DOPA, a precursor of dopamine, whereas D-serine participates...... in glutamatergic transmission. We hypothesized that DAOA polymorphisms are associated with dopamine, serotonin and noradrenaline turnover in the human brain. Four single-nucleotide polymorphisms, previously reported to be associated with schizophrenia, were genotyped. Cerebrospinal fluid (CSF) samples were drawn...... by lumbar puncture, and the concentrations of the major dopamine metabolite homovanillic acid (HVA), the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) and the major noradrenaline metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) were measured. Two of the investigated polymorphisms, rs...

  16. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis.

    Science.gov (United States)

    Shin, Byung-Sik; Katoh, Takayuki; Gutierrez, Erik; Kim, Joo-Ran; Suga, Hiroaki; Dever, Thomas E

    2017-08-21

    Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  17. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    Science.gov (United States)

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  18. Promising approaches to optimize the biological properties of the antimicrobial peptide esculentin-1a(1-21)NH2: Amino acids substitution and conjugation to nanoparticles

    Science.gov (United States)

    Casciaro, Bruno; Cappiello, Floriana; Cacciafesta, Mauro; Mangoni, Maria Luisa

    2017-04-01

    Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding biological properties which make them a viable alternative for the development of future antibiotic drugs. However, for this purpose, some limitations must be overcome: (i) the poor biostability due to enzymatic degradation; (ii) the cytotoxicity at concentrations slightly higher than the therapeutic dosages; and (iii) the inefficient delivery to the target site at effective concentrations. Recently, a derivative of the frog skin esculentin-1a, named esculentin-1a(1-21)NH2, [Esc(1-21): GIFSKLAGKKIKNLLISGLKG-NH2] has been found to have a potent activity against the Gram-negative bacterium Pseudomonas aeruginosa, a slightly weaker activity against Gram-positive bacteria and interesting immunomodulatory properties. With the aim to optimize the antimicrobial features of Esc(1-21) and to circumvent the limitations described above, two different approaches were followed: (i) substitutions by non-coded amino acids, i.e. α-aminoisobutyric acid or D-amino acids; and (ii) peptide conjugation to gold nanoparticles. In this mini-review, we summarized the structural and functional properties of the resulting Esc(1-21)-derived compounds. Overall, our data may assist researchers in the rational design and optimization of AMPs for the development of future drugs to fight the worldwide problem of antibiotic resistance.

  19. Promising Approaches to Optimize the Biological Properties of the Antimicrobial Peptide Esculentin-1a(1-21)NH2: Amino Acids Substitution and Conjugation to Nanoparticles.

    Science.gov (United States)

    Casciaro, Bruno; Cappiello, Floriana; Cacciafesta, Mauro; Mangoni, Maria Luisa

    2017-01-01

    Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding biological properties which make them a viable alternative for the development of future antibiotic drugs. However, for this purpose, some limitations must be overcome: (i) the poor biostability due to enzymatic degradation; (ii) the cytotoxicity at concentrations slightly higher than the therapeutic dosages; and (iii) the inefficient delivery to the target site at effective concentrations. Recently, a derivative of the frog skin AMP esculentin-1a, named esculentin-1a(1-21)NH 2 , [Esc(1-21): GIFSKLAGKKIKNLLISGLKG-NH 2 ] has been found to have a potent activity against the Gram-negative bacterium Pseudomonas aeruginosa ; a slightly weaker activity against Gram-positive bacteria and interesting immunomodulatory properties. With the aim to optimize the antimicrobial features of Esc(1-21) and to circumvent the limitations described above, two different approaches were followed: (i) substitutions by non-coded amino acids, i.e., α-aminoisobutyric acid or d-amino acids; and (ii) peptide conjugation to gold nanoparticles. In this mini-review, we summarized the structural and functional properties of the resulting Esc(1-21)-derived compounds. Overall, our data may assist researchers in the rational design and optimization of AMPs for the development of future drugs to fight the worldwide problem of antibiotic resistance.

  20. Conformational properties of 1,4- and 1,5-substituted 1,2,3-triazole amino acids – building units for peptidic foldamers

    KAUST Repository

    Kann, Nina; Johansson, Johan R.; Beke-Somfai, Tamá s

    2015-01-01

    © The Royal Society of Chemistry 2015. Peptidic foldamers have recently emerged as a novel class of artificial oligomers with properties and structural diversity similar to that of natural peptides, but possessing additional interesting features granting them great potential for applications in fields from nanotechnology to pharmaceuticals. Among these, foldamers containing 1,4- and 1,5-substitued triazole amino acids are easily prepared via the Cu- and Ru-catalyzed click reactions and may offer increased side chain variation, but their structural capabilities have not yet been widely explored. We here describe a systematic analysis of the conformational space of the two most important basic units, the 1,4-substitued (4Tzl) and the 1,5-substitued (5Tzl) 1,2,3-triazole amino acids, using quantum chemical calculations and NMR spectroscopy. Possible conformations of the two triazoles were scanned and their potential minima were located using several theoretical approaches (B3LYP/6-311++G(2d,2p), ωB97X-D/6-311++G(2d,2p), M06-2X/6-311++G(2d,2p) and MP2/6-311++G(2d,2p)) in different solvents. BOC-protected versions of 4Tzl and 5Tzl were also prepared via one step transformations and analyzed by 2D NOESY NMR. Theoretical results show 9 conformers for 5Tzl derivatives with relative energies lying close to each other, which may lead to a great structural diversity. NMR analysis also indicates that conformers preferring turn, helix and zig-zag secondary structures may coexist in solution. In contrast, 4Tzl has a much lower number of conformers, only 4, and these lack strong intraresidual interactions. This is again supported by NMR suggesting the presence of both extended and bent conformers. The structural information provided on these building units could be employed in future design of triazole foldamers. This journal is

  1. Radiation chemistry of amino acids and peptides in aqueous solutions

    International Nuclear Information System (INIS)

    Simic, M.G.

    1978-01-01

    Radiation chemistry relevant to radiation preservation of high protein foods is reviewed. Some conclusions concerning the chemistry of irradiated amino acids, peptides, and proteins have been derived from product analysis of γ-irradiated solutions while the main mechanistic considerations result from the chemistry and kinetics of free radical intermediates observed by pulse radiolysis. The precursors of chemistry in not too concentrated solutions ( - , OH, and H. Their reactivity with molecules and their preference for characteristic groups within the molecule are discussed. The reviewed reactions of the model systems are accountable for a variety of radiolytic products found in irradiated foods. From detailed understanding of radiation chemistry in aqueous and frozen systems formation of many classes of compounds can be predicted or entirely eliminated in order to corroborate and extend the conclusions reached from the animal feeding experiments concerning the formation of toxic, mutagenic, and carcinogenic compounds and/or reduction of the nutritional value of foods

  2. The development of orally administrable gemcitabine prodrugs with D-enantiomer amino acids: enhanced membrane permeability and enzymatic stability.

    Science.gov (United States)

    Tsume, Yasuhiro; Incecayir, Tuba; Song, Xueqin; Hilfinger, John M; Amidon, Gordon L

    2014-04-01

    Gemcitabine prodrugs with D- and L-configuration amino acids were synthesized and their chemical stability in buffers, resistance to glycosidic bond metabolism, enzymatic activation, permeability in Caco-2 cells and mouse intestinal membrane, anti-proliferation activity in cancer cell were determined and compared to that of parent drug, gemcitabine. Prodrugs containing D-configuration amino acids were enzymatically more stable than ones with L-configuration amino acids. The activation of all gemcitabine prodrugs was 1.3-17.6-fold faster in cancer cell homogenate than their hydrolysis in buffer, suggesting enzymatic action. The enzymatic activation of amino acid monoester prodrugs containing D-configuration amino acids in cell homogenates was 2.2-10.9-fold slower than one of amino acid monoester prodrugs with L-configuration amino acids. All prodrugs exhibited enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase compared to parent gemcitabine. Gemcitabine prodrugs showed superior the effective permeability in mouse jejunum to gemcitabine. More importantly, the high plasma concentration of d-amino acid gemcitabine prodrugs was observed more than one of L-amino acid gemcitabine prodrugs. In general, the 5'-mono-amino acid monoester gemcitabine prodrugs exhibited higher permeability and uptake than their parent drug, gemcitabine. Cell proliferation assays in AsPC-1 pancreatic ductal cell line indicated that gemcitabine prodrugs were more potent than their parent drug, gemcitabine. The transport and enzymatic profiles of 5'-D-valyl-gemcitabine and 5'-D-phenylalanyl-gemcitabine suggest their potential for increased oral uptake and delayed enzymatic bioconversion as well as enhanced uptake and cytotoxic activity in cancer cells, would facilitate the development of oral dosage form for anti-cancer agents and, hence, improve the quality of life for the cancer patients. Copyright © 2014. Published by Elsevier B.V.

  3. Comparison of the amino acid and peptide composition and postprandial response of beef, hydrolyzed chicken, and whey protein nutritional preparations

    Directory of Open Access Journals (Sweden)

    Christopher J. Detzel

    2016-10-01

    Full Text Available Background: Increasing dietary protein intake synergistically improves the effect of exercise to stimulate muscle protein synthesis. The purpose of this study was to evaluate the plasma amino acid response of two novel protein nutritional preparations, beef protein isolate (BeefISO™ and hydrolyzed chicken protein isolate (MyoCHX™. Methods: The postprandial plasma amino acid response over 3 hours was monitored in young adults (n=6 following consumption of 23 grams of WPC, BeefISO™, or MyoCHX™. Amino acid compositional analysis and molecular weight distributions of each protein were performed by HPLC. Statistical analyses were performed using one-way or two-way ANOVA where appropriate and corrected for multiple comparisons to account for the cross-over design. Results: Compositional evaluations revealed similar levels of essential and branched-chain amino acids for WPC and MyoCHX™. While the results of this study predictably demonstrated plasma amino acids levels increased following consumption of the different proteins, the kinetics of the postprandial response was unique to each protein source. WPC and MyoCHX™ were rapidly absorbed with maximum plasma amino acid concentrations observed at 30 and 15 min, respectively. The slightly faster absorption of MyoCHX™ was associated with the increased peptide content of MyoCHX™ (greater than 76% of protein is <2kDa. BeefISO™ exhibited sustained release characteristics as evidenced by increased post prandial amino acid concentrations after 3 hours. Conclusions: The protein preparations studied each had different amino acid profiles and absorption kinetics. WPC and MyoCHX™ contained a higher essential amino acid content and were rapidly absorbed with plasma amino acid concentrations peaking within 30 minutes following consumption. BeefISO™ contained a higher proportion of conditionally essential amino acids that steadily increased in plasma over 3 hours, indicating a sustained release

  4. Peptide (Lys-Leu) and amino acids (Lys and Leu) supplementations improve physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation.

    Science.gov (United States)

    Yang, Huirong; Zong, Xuyan; Cui, Chun; Mu, Lixia; Zhao, Haifeng

    2017-12-22

    Lys and Leu were generally considered as the key amino acids for brewer's yeast during beer brewing. In the present study, peptide Lys-Leu and a free amino acid (FAA) mixture of Lys and Leu (Lys + Leu) were supplemented in 24 °P wort to examine their effects on physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation. Results showed that although both peptide Lys-Leu and their FAA mixture supplementations could increase the growth and viability, intracellular trehalose and glycerol content, wort fermentability, and ethanol content for brewer's yeast during VHG wort fermentation, and peptide was better than their FAA mixture at promoting growth and fermentation for brewer's yeast when the same dose was kept. Moreover, peptide Lys-Leu supplementation significantly increased the assimilation of Asp, but decreased the assimilation of Gly, Ala, Val, (Cys)2, Ile, Leu, Tyr, Phe, Lys, Arg, and Pro. However, the FAA mixture supplementation only promoted the assimilation of Lys and Leu, while reduced the absorption of total amino acids to a greater extent. Thus, the peptide Lys-Leu was more effective than their FAA mixture on the improvement of physiological activity, fermentation performance, and nitrogen metabolism of brewer's yeast during VHG wort fermentation. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  5. Evaluation of single amino acid chelate derivatives and regioselective radiolabelling of a cyclic peptide for the urokinase plasminogen activator receptor

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrea F.; Lemon, Jennifer A. [McMaster Institute for Applied Radiation Sciences, McMaster University, ON, L8S 4M1 (Canada); Czorny, Shannon K. [McMaster Institute for Applied Radiation Sciences, McMaster University, ON, L8S 4M1 (Canada); Juravinski Cancer Centre, Hamilton, ON, L8V 5C2 (Canada); Singh, Gurmit [Juravinski Cancer Centre, Hamilton, ON, L8V 5C2 (Canada); Valliant, John F. [Department of Chemistry, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4M1 (Canada)], E-mail: valliant@mcmaster.ca

    2009-11-15

    Introduction: The aim of this work was to investigate the relative radiolabelling kinetics and affinity of a series of ligands for the [{sup 99m}Tc(CO){sub 3}]{sup +} core, both in the absence and in the presence of competing donors. This information was used to select a suitable ligand for radiolabelling complex peptide-based targeting vectors in high yield under mild conditions. Methods: A series of {alpha}-N-Fmoc-protected lysine derivatives bearing two heterocyclic donor groups at the {epsilon}-amine (, 2-pyridyl; , quinolyl; , 6-methoxy-2-pyridyl; 1d, 2-thiazolyl; 1e, N-methylimidazolyl; , 3-pyridyl) were synthesized and labelled with {sup 99m}Tc. A resin-capture purification strategy for the separation of residual ligand from the radiolabelled product was also developed. The binding affinities of targeted peptides 4, 5a and 5b for uPAR were determined using flow cytometry. Results: Variable temperature radiolabelling reactions using - and [{sup 99m}Tc(CO){sub 3}]{sup +} revealed optimal kinetics and good selectivity for compounds and 1d; in the case of , 1d, and 1e, the labelling can be conducted at ambient temperature. The utility of this class of ligands was further demonstrated by the radiolabelling of a cyclic peptide that is known to target the serine protease receptor uPAR; essentially quantitative incorporation of {sup 99m}Tc occurred exclusively at the SAAC site, despite the presence of a His residue, and without disruption of the disulfide bond. Conclusion: A series of single amino acid chelate (SAAC) ligands have been evaluated for their ability to incorporate {sup 99m}Tc into peptides. The lead agent to emerge from this work is the thiazole SAAC derivative 1d which has demonstrated the ability to regioselectively label the widest range of peptides.

  6. Enantiomer-specific selection of amino acids.

    Science.gov (United States)

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-12-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.

  7. Plasma free amino acid kinetics in rainbow trout (Oncorhynchus mykiss) using a bolus injection of 15N-labeled amino acids.

    Science.gov (United States)

    Robinson, Jacob William; Yanke, Dan; Mirza, Jeff; Ballantyne, James Stuart

    2011-02-01

    To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of (15)N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R(d)), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R(d) values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R(d) values ranged from 0.9 μmol 100 g(-1) h(-1) (lysine) to 22.1 μmol 100 g(-1) h(-1) (threonine) with most values falling between 2 and 6 μmol 100 g(-1) h(-1). There was a significant correlation between R(d) and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.

  8. Incorporating TiO2 nanotubes with a peptide of D-amino K122-4 (D) for enhanced mechanical and photocatalytic properties

    Science.gov (United States)

    Guo, L. Q.; Hu, Y. W.; Yu, B.; Davis, E.; Irvin, R.; Yan, X. G.; Li, D. Y.

    2016-02-01

    Titanium dioxide (TiO2) nanotubes are promising for a wide variety of potential applications in energy, biomedical and environmental sectors. However, their low mechanical strength and wide band gap limit their widespread technological use. This article reports our recent efforts to increase the mechanical strength of TiO2 nanotubes with lowered band gap by immobilizing a peptide of D-amino K122-4 (D) onto the nanotubes. Topographies and chemical compositions of the peptide-coated and uncoated TiO2 nanotubular arrays were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). Properties of the peptide-coated and uncoated TiO2 nanotubular arrays, including hardness, elastic modulus, electron work function and photocurrent, were evaluated using micromechanical probe, Kelvin Probe and electrochemical system. Effect of the peptide on surface conductivity was also investigated through current mapping and I-V curve analysis with conductive atomic force microscopy. It is demonstrated that the peptide coating simultaneously enhances the mechanical strength, photocatalytic and electrical properties of TiO2 nanotubes.

  9. Polymerization of amino acids containing nucleotide bases

    Science.gov (United States)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  10. Non-natural and photo-reactive amino acids as biochemical probes of immune function.

    Directory of Open Access Journals (Sweden)

    Marta Gómez-Nuñez

    Full Text Available Wilms tumor protein (WT1 is a transcription factor selectively overexpressed in leukemias and cancers; clinical trials are underway that use altered WT1 peptide sequences as vaccines. Here we report a strategy to study peptide-MHC interactions by incorporating non-natural and photo-reactive amino acids into the sequence of WT1 peptides. Thirteen WT1 peptides sequences were synthesized with chemically modified amino acids (via fluorination and photo-reactive group additions at MHC and T cell receptor binding positions. Certain new non-natural peptide analogs could stabilize MHC class I molecules better than the native sequences and were also able to elicit specific T-cell responses and sometimes cytotoxicity to leukemia cells. Two photo-reactive peptides, also modified with a biotin handle for pull-down studies, formed covalent interactions with MHC molecules on live cells and provided kinetic data showing the rapid clearance of the peptide-MHC complex. Despite "infinite affinity" provided by the covalent peptide bonding to the MHC, immunogenicity was not enhanced by these peptides because the peptide presentation on the surface was dominated by catabolism of the complex and only a small percentage of peptide molecules covalently bound to the MHC molecules. This study shows that non-natural amino acids can be successfully incorporated into T cell epitopes to provide novel immunological, biochemical and kinetic information.

  11. Introducing AAA-MS, a rapid and sensitive method for amino acid analysis using isotope dilution and high-resolution mass spectrometry.

    Science.gov (United States)

    Louwagie, Mathilde; Kieffer-Jaquinod, Sylvie; Dupierris, Véronique; Couté, Yohann; Bruley, Christophe; Garin, Jérôme; Dupuis, Alain; Jaquinod, Michel; Brun, Virginie

    2012-07-06

    Accurate quantification of pure peptides and proteins is essential for biotechnology, clinical chemistry, proteomics, and systems biology. The reference method to quantify peptides and proteins is amino acid analysis (AAA). This consists of an acidic hydrolysis followed by chromatographic separation and spectrophotometric detection of amino acids. Although widely used, this method displays some limitations, in particular the need for large amounts of starting material. Driven by the need to quantify isotope-dilution standards used for absolute quantitative proteomics, particularly stable isotope-labeled (SIL) peptides and PSAQ proteins, we developed a new AAA assay (AAA-MS). This method requires neither derivatization nor chromatographic separation of amino acids. It is based on rapid microwave-assisted acidic hydrolysis followed by high-resolution mass spectrometry analysis of amino acids. Quantification is performed by comparing MS signals from labeled amino acids (SIL peptide- and PSAQ-derived) with those of unlabeled amino acids originating from co-hydrolyzed NIST standard reference materials. For both SIL peptides and PSAQ standards, AAA-MS quantification results were consistent with classical AAA measurements. Compared to AAA assay, AAA-MS was much faster and was 100-fold more sensitive for peptide and protein quantification. Finally, thanks to the development of a labeled protein standard, we also extended AAA-MS analysis to the quantification of unlabeled proteins.

  12. Thermal properties of some small peptides (N-acetyl-amino acid-N′-methylamides) with non-polar side groups

    International Nuclear Information System (INIS)

    Badea, Elena; Della Gatta, Giuseppe; Pałecz, Bartłomiej

    2014-01-01

    Highlights: • T fus and Δ fus H m of methylamides of N-acetyl substituted non-polar amino acids were measured. • T fus and Δ fus H m increased as a function of the molar mass of the alkyl side chains. • DL racemates showed T fus of about 40 °C lower than those of the corresponding pure L enantiomers. • Ideal solubility of solids at T = 298.15 K was estimated based on their T fus and Δ fus S m . - Abstract: Temperatures and molar enthalpies of fusion of a series of uncharged small peptides, namely the methylamides of N-acetyl substituted glycine, α-amino-butyric acid, alanine, valine, norvaline, leucine, isoleucine, norleucine, and proline, were measured by differential scanning calorimetry (d.s.c.), and molar entropies of fusion were derived. Both L- and DL-compunds were taken into account for the chiral molecules. No solid-to-solid transitions were detected from room temperature to fusion except for N-acetyl-N′-methyl alaninamide. Comparisons were made with the values for the N-acetyl amides of the corresponding amino acids previously reported. Both L enantiomers and DL racemates of α-aminobutyric acid, alanine, valine and isoleucine methylamides displayed temperatures of fusion sharply increasing as a function of molar mass, whereas much lower values, in countertendency with their molar mass increase, were found for proline and leucine methylamides. The racemic DL crystals showed temperatures of fusion of about 40 °C lower than those of the corresponding pure L enantiomers, except for proline and leucine derivatives. The enthalpies and entropies of fusion also varied as a function of molar mass following a similar trend with that of temperatures of fusion, except for alanine derivatives which showed lower values than expected. The values of ideal solubility of solids at T = 298.15 K were estimated based on their temperatures and molar entropies of fusion. Results were discussed with reference to the packing patterns based on hydrogen bonding and

  13. The Origin of Amino Acids in Lunar Regolith Samples

    Science.gov (United States)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  14. Molecular characterization of amino acid deletion in VP1 (1D) protein and novel amino acid substitutions in 3D polymerase protein of foot and mouth disease virus subtype A/Iran87.

    Science.gov (United States)

    Esmaelizad, Majid; Jelokhani-Niaraki, Saber; Hashemnejad, Khadije; Kamalzadeh, Morteza; Lotfi, Mohsen

    2011-12-01

    The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3D(pol)) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3D(pol) coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp(26)→Glu substitution in a beta sheet located within a small groove of the 3D(pol) protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment.

  15. Amino acid racemisation dating

    International Nuclear Information System (INIS)

    Murray-Wallace, C.V.

    1999-01-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject

  16. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    Science.gov (United States)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  17. Laboratory generated artifacts in plasma amino acid quantitation

    Directory of Open Access Journals (Sweden)

    Ananth Nanjunda Rao

    2002-10-01

    Full Text Available The pace of physicians? involvement in amino acid metabolism has been enormous in the last five decades. With further development of technology to identify and quantitate upto picomoles of amino acids, their metabolites and related peptides, diagnosis and effective medical intervention in cases of inherited metabolic disorders have been well within the reach of the clinician. Automatic amino acid analyzers have become an essential part of major medical and research centers around the world. The technology has come indeed as a boon to physicians who in particular deal with inherited defects of amino acid metabolism. However, the technology comes with the risk of major deviations from the actual results when a few minor variations are not looked into. Trivial variations in basic steps of obtaining the sample, the choice of anticoagulant, hemolysis etc. can cause significant variations in the resulting values, particularly while dealing with inherited defects of amino acid metabolism and their treatment/management. Effects of such factors are revisited here for the benefit of the modern day laboratory personnel.

  18. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity.

    Science.gov (United States)

    Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie

    2003-12-01

    Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.

  19. The cytochemical demonstration of catalase and D-amino acid oxidase in the microbodies of teleost kidney cells

    NARCIS (Netherlands)

    Veenhuis, M.; Wendelaar Bonga, S.D.

    1977-01-01

    The distribution of catalase and D-amino acid oxidase, marker enzymes for peroxisomes, was determined cytochemically in the kidney tubules of an euryhaline teleost, the three-spined stickleback. Catalase activity was localized with the diaminobenzidine technique. The presence of D-amino acid oxidase

  20. Development of an UPLC-MS/MS method for simultaneous quantitation of 11 d-amino acids in different regions of rat brain: Application to a study on the associations of d-amino acid concentration changes and Alzheimer's disease.

    Science.gov (United States)

    Li, Zhe; Xing, Yuping; Guo, Xingjie; Cui, Yan

    2017-07-15

    There are significant differences in d-amino acid concentrations between healthy people and Alzheimer's disease patients. In order to investigate the potential correlation between d-amino acids and Alzheimer's disease, a simple and sensitive ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed. The method was applied to simultaneous determination of 11 d-amino acids in different regions of rat brain. Rat brain homogenates were firstly pretreated with protein precipitation procedure and then derivatized with (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester [(S)-NIFE]. Baseline separation of the derivatives was achieved on an ACQUITY UPLC BEH C 18 column (2.1 mm×50mm, 1.7μm). The mobile phase consisted of acetonitrile and water (containing 8mM ammonium hydrogen carbonate) and the flow rate was 0.6mLmin -1 . The derived analytes were sensitively detected by multiple reaction monitoring in the positive ion mode. The lower limits of quantitation ranged from 0.06 to 10ngmL -1 with excellent linearity (r≥0.9909). The intra- and inter-day RSD were in the range of 3.6-12% and 5.7-12%, respectively. The recovery rate was 82.5%-95.3%. With this UPLC-MS/MS method, the 11 d-amino acids in hippocampus, cerebral cortex, olfactory bulb and cerebellum from Alzheimer's disease rats and age-matched controls could be simultaneously determined. Compared with the normal controls, the concentrations of d-serine, d-alanine, d-leucine, and d-proline in hippocampus and cerebral cortex of Alzheimer's disease rat brain were significantly decreased, while no differences in olfactory bulb and cerebellum of all the d-amino acids were observed. The different amounts and distribution of d-amino acids in brain between the two groups, which regulated by particular pathological changes of Alzheimer's disease, would give new insights into further study in neuropathogenesis and provide novel therapeutic targets of Alzheimer

  1. Complete amino acid sequence of bovine colostrum low-Mr cysteine proteinase inhibitor.

    Science.gov (United States)

    Hirado, M; Tsunasawa, S; Sakiyama, F; Niinobe, M; Fujii, S

    1985-07-01

    The complete amino acid sequence of bovine colostrum cysteine proteinase inhibitor was determined by sequencing native inhibitor and peptides obtained by cyanogen bromide degradation, Achromobacter lysylendopeptidase digestion and partial acid hydrolysis of reduced and S-carboxymethylated protein. Achromobacter peptidase digestion was successfully used to isolate two disulfide-containing peptides. The inhibitor consists of 112 amino acids with an Mr of 12787. Two disulfide bonds were established between Cys 66 and Cys 77 and between Cys 90 and Cys 110. A high degree of homology in the sequence was found between the colostrum inhibitor and human gamma-trace, human salivary acidic protein and chicken egg-white cystatin.

  2. Effects of amino acids on melanoma targeting and clearance properties of Tc-99m-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone peptides.

    Science.gov (United States)

    Flook, Adam M; Yang, Jianquan; Miao, Yubin

    2013-11-14

    The purpose of this study was to examine the effects of amino acids on melanoma targeting and clearance properties of new (99m)Tc-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-Lys-(Arg(11))CCMSH {c[Arg-Ser-Asp-DTyr-Asp]-Lys-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RNleD-Lys-(Arg(11))CCMSH, RPheD-Lys-(Arg(11))CCMSH, and RdPheD-Lys-(Arg(11))CCMSH peptides were synthesized and evaluated for their melanocortin-1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of (99m)Tc-RSD-Lys-(Arg(11))CCMSH, (99m)Tc-RFD-Lys-(Arg(11))CCMSH, and (99m)Tc-RfD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The substitution of Gly with Ser, Phe, and dPhe increased the MC1 receptor binding affinities of the peptides, whereas the substitution of Gly with Nle decreased the MC1 receptor binding affinity of the peptide. (99m)Tc-RSD-Lys-(Arg(11))CCMSH exhibited the highest melanoma uptake (18.01 ± 4.22% ID/g) and the lowest kidney and liver uptake among these (99m)Tc-peptides. The B16/F1 melanoma lesions could be clearly visualized by SPECT/CT using (99m)Tc-RSD-Lys-(Arg(11))CCMSH as an imaging probe. It is desirable to reduce the renal uptake of (99m)Tc-RSD-Lys-(Arg(11))CCMSH to facilitate its potential therapeutic application.

  3. Effects of the Amino Acid Linkers on the Melanoma-Targeting and Pharmacokinetic Properties of Indium-111-labeled Lactam Bridge-Cyclized α-MSH Peptides

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-01-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma targeting and pharmacokinetic properties of novel 111In-labeled lactam bridge-cyclized DOTA-[X]-CycMSHhex {1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2, X=GlyGlyNle, GlyGluNle or NleGlyGlu} peptides. Methods Three novel DOTA-GGNle-CycMSHhex, DOTA-GENle-CycMSHhex and DOTA-NleGE-CycMSHhex peptides were designed and synthesized. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma targeting and pharmacokinetic properties of 111In-DOTA-GGNle-CycMSHhex and 111In-DOTA-GENle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. Results DOTA-GGNle-CycMSHhex and DOTA-GENle-CycMSHhex displayed 2.1 and 11.5 nM MC1 receptor binding affinities, whereas DOTA-NleGE-CycMSHhex showed 873.4 nM MC1 receptor binding affinity. The introduction of the -GlyGly- linker maintained high melanoma uptake while decreased the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex. The tumor uptake values of 111In-DOTA-GGNle-CycMSHhex were 19.05 ± 5.04 and 18.6 ± 3.56 % injected dose/gram (%ID/g) at 2 and 4 h post-injection. 111In-DOTA-GGNle-CycMSHhex exhibited 28, 32 and 42% less renal uptake values than 111In-DOTA-Nle-CycMSHhex we reported previously, and 61, 65 and 68% less liver uptake values than 111In-DOTA-Nle-CycMSHhex at 2, 4 and 24 h post-injection, respectively. Conclusion The amino acid linkers exhibited the profound effects on the melanoma targeting and pharmacokinetic properties of the 111In-labeled lactam bridge-cyclized α-MSH peptides. Introduction of the -GlyGly- linker maintained high melanoma uptake while reducing the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex, highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide for melanoma treatment when labeled with a therapeutic

  4. D-serine in health and disease

    NARCIS (Netherlands)

    Fuchs, S.A.

    2010-01-01

    Amino acids are among the most important molecules for living beings, since they are used to build peptides and proteins. Depending on their spatial positioning, amino acids can occur as D- or L-amino acids. This determines the function of peptides and proteins in the human body. It was long thought

  5. Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets.

    Science.gov (United States)

    Nixon, Sophie L; Cockell, Charles S

    2015-03-01

    The delivery of extraterrestrial organics to early Earth provided a potentially important source of carbon and energy for microbial life. Optically active organic compounds of extraterrestrial origin exist in racemic form, yet life on Earth has almost exclusively selected for L- over D-enantiomers of amino acids. Although D-enantiomers of proteinogenic amino acids are known to inhibit aerobic microorganisms, the role of concentrated nonproteinogenic meteoritic D-amino acids on anaerobic metabolisms relevant to early Earth and other anoxic planets such as Mars is unknown. Here, we test the inhibitory effect of D-enantiomers of two nonproteinogenic amino acids common to carbonaceous chondrites, norvaline and α-aminobutyric acid, on microbial iron reduction. Three pure strains (Geobacter bemidjiensis, Geobacter metallireducens, Geopsychrobacter electrodiphilus) and an iron-reducing enrichment culture were grown in the presence of 10 mM D-enantiomers of both amino acids. Further tests were conducted to assess the inhibitory effect of these D-amino acids at 1 and 0.1 mM. The presence of 10 mM D-norvaline and D-α-aminobutyric acid inhibited microbial iron reduction by all pure strains and the enrichment. G. bemidjiensis was not inhibited by either amino acid at 0.1 mM, but D-α-aminobutyric acid still inhibited at 1 mM. Calculations using published meteorite accumulation rates to the martian surface indicate D-α-aminobutyric acid may have reached inhibitory concentrations in little over 1000 years during peak infall. These data show that, on a young anoxic planet, the use of one enantiomer over another may render the nonbiological enantiomer an environmental toxin. Processes that generate racemic amino acids in the environment, such as meteoritic infall or impact synthesis, would have been toxic processes and could have been a selection pressure for the evolution of early racemases.

  6. Role of sialic acid in synaptosomal transport of amino acid transmitters

    International Nuclear Information System (INIS)

    Zaleska, M.M.; Erecinska, M.

    1987-01-01

    Active, high-affinity, sodium-dependent uptake of [ 14 C]-aminobutyric acid and of the acidic amino acid D-[ 3 H]-aspartate was inhibited by pretreatment of synaptosomes with neuraminidase from Vibrio cholerae. Inhibition was of a noncompetitive type and was related to the amount of sialic acid released. The maximum accumulation ratios of both amino acids (intracellular [amino acid]/extracellular [amino acid]) remained largely unaltered. Treatment with neuraminidase affected neither the synaptosomal energy levels nor the concentration of internal potassium. It is suggested that the γ-aminobutyric acid and acidic amino acid transporters are glycosylated and that sialic acid is involved in the operation of the carrier proteins directly and not through modification of driving forces responsible for amino acid uptake

  7. Prediction of Molar Extinction Coefficients of Proteins and Peptides Using UV Absorption of the Constituent Amino Acids at 214 nm To Enable Quantitative Reverse Phase High-Performance Liquid Chromatography-Mass Spectrometry Analysis

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Gruppen, H.

    2007-01-01

    The molar extinction coefficients of 20 amino acids and the peptide bond were measured at 214 nm in the presence of acetonitrile and formic acid to enable quantitative comparison of peptides eluting from reversed-phase high-performance liquid chromatography, once identified with mass spectrometry

  8. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    NARCIS (Netherlands)

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed

  9. Ab initio computational study of reaction mechanism of peptide bond formation on HF/6-31G(d,p) level

    Science.gov (United States)

    Siahaan, P.; Lalita, M. N. T.; Cahyono, B.; Laksitorini, M. D.; Hildayani, S. Z.

    2017-02-01

    Peptide plays an important role in modulation of various cell functions. Therefore, formation reaction of the peptide is important for chemical reactions. One way to probe the reaction of peptide synthesis is a computational method. The purpose of this research is to determine the reaction mechanism for peptide bond formation on Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine by ab initio computational approach. The calculations were carried out by theory and basis set HF/6-31G(d,p) for four mechanisms (path 1 to 4) that proposed in this research. The results show that the highest of the rate determining step between reactant and transition state (TS) for path 1, 2, 3, and 4 are 163.06 kJ.mol-1, 1868 kJ.mol-1, 5685 kJ.mol-1, and 1837 kJ.mol-1. The calculation shows that the most preferred reaction of Ac-PV-NH2 and Ac-VP-NH2 synthesis from amino acid proline and valine are on the path 1 (initiated with the termination of H+ in proline amino acid) that produce Ac-PV-NH2.

  10. Mitigation of membrane biofouling by d-amino acids: Effect of bacterial cell-wall property and d-amino acid type.

    Science.gov (United States)

    Wang, Si-Yu; Sun, Xue-Fei; Gao, Wen-Jing; Wang, Yi-Fu; Jiang, Bei-Bei; Afzal, Muhammad Zaheer; Song, Chao; Wang, Shu-Guang

    2018-04-01

    Development of novel approaches for biofouling mitigation is of crucial importance for membrane-based technologies. d-amino acids (d-AAs) have been proposed as a potential strategy to mitigate biofouling. However, the effect of bacterial cell-wall properties and d-AAs type on biofouling mitigation remains unclear. This study assesses the effect of d-AAs type on membrane biofouling control, towards Gram positive (G+) and Gram negative (G-) bacteria. Three kinds of d-AAs were found to inhibit both G+ and G- bacterial attachment in short-term attachment and dead-end filtration experiments. The existence of d-AAs reduces extracellular polysaccharides and proteins on the membrane, which may decrease membrane biofouling. Cross-flow filtration tests further indicated that d-AAs could effectively reduce membrane biofouling. The permeate flux recovery post chemical cleaning, improved for both P. aeruginosa and B. subtilis treated with d-AAs. The results obtained from this study enable better understanding of the role of d-AAs species on bacterial adhesion and biofilm formation. This may provide a new way to regulate biofilm formation by manipulating the species of d-AAs membrane systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The adsorption of amino acids and cations onto goethite: a prebiotic chemistry experiment.

    Science.gov (United States)

    Farias, Ana Paula S F; Carneiro, Cristine E A; de Batista Fonseca, Inês C; Zaia, Cássia T B V; Zaia, Dimas A M

    2016-06-01

    Few prebiotic chemistry experiments have assessed the adsorption of biomolecules by iron oxide-hydroxides. The present work investigated the effects of cations in artificial seawaters on the adsorption of Gly, α-Ala and β-Ala onto goethite, and vice versa. Goethite served to concentrate K and Mg cations from solution; these effects could have played important roles in peptide nucleoside formation. Goethite showed low adsorption of Gly and α-Ala. On the other hand, β-Ala (a non-protein amino acid) was highly adsorbed by goethite. Because Gly and α-Ala are the most common amino acids in living beings, and iron oxide-hydroxides are widespread on Earth, additional iron oxides should be studied. Increased ionic strength in artificial seawaters decreased the adsorption of amino acids by goethite. Because Na was highly abundant in the artificial seawater, it showed the highest effect on amino acid adsorption. β-Ala increased the adsorption of K and Ca by goethite, this effect could have been important for peptide synthesis.

  12. Identification of a D-amino acid decapeptide HIV-1 entry inhibitor

    International Nuclear Information System (INIS)

    Boggiano, Cesar; Jiang Shibo; Lu Hong; Zhao Qian; Liu Shuwen; Binley, James; Blondelle, Sylvie E.

    2006-01-01

    Entry of human immunodeficiency virus type 1 (HIV-1) virion into host cells involves three major steps, each being a potential target for the development of entry inhibitors: gp120 binding to CD4, gp120-CD4 complex interacting with a coreceptor, and gp41 refolding to form a six-helix bundle. Using a D-amino acid decapeptide combinatorial library, we identified peptide DC13 as having potent HIV-1 fusion inhibitory activity, and effectively inhibiting infection by several laboratory-adapted and primary HIV-1 strains. While DC13 did not block binding of gp120 to CD4, nor disrupt the gp41 six-helix bundle formation, it effectively blocked the binding of an anti-CXCR4 monoclonal antibody and chemokine SDF-1α to CXCR4-expressing cells. However, because R5-using primary viruses were also neutralized, the antiviral activity of DC13 implies additional mode(s) of action. These results suggest that DC13 is a useful HIV-1 coreceptor antagonist for CXCR4 and, due to its biostability and simplicity, may be of value for developing a new class of HIV-1 entry inhibitors

  13. Sungsanpin, a lasso peptide from a deep-sea streptomycete.

    Science.gov (United States)

    Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2013-05-24

    Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.

  14. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids.

    Science.gov (United States)

    Cao, Zanxia; Bian, Yunqiang; Hu, Guodong; Zhao, Liling; Kong, Zhenzhen; Yang, Yuedong; Wang, Jihua; Zhou, Yaoqi

    2018-03-16

    Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC) membrane (consists of 256 lipids) by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5-0.6) between our results and previous experimental or computational studies. The free energy profiles indicated that (1) polar amino acids have larger free energy barriers than nonpolar amino acids; (2) negatively charged amino acids are the most difficult to enter into the membrane; and (3) conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.

  15. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids

    Directory of Open Access Journals (Sweden)

    Zanxia Cao

    2018-03-01

    Full Text Available Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC membrane (consists of 256 lipids by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5–0.6 between our results and previous experimental or computational studies. The free energy profiles indicated that (1 polar amino acids have larger free energy barriers than nonpolar amino acids; (2 negatively charged amino acids are the most difficult to enter into the membrane; and (3 conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.

  16. Amino acids in root exudates of Ambrosia artemisiifolia

    Czech Academy of Sciences Publication Activity Database

    Hohnová, Barbora; Moravcová, Dana; Figala, J.; Lvončík, S.; Lojková, Lea; Formánek, P.

    2015-01-01

    Roč. 47, AUG (2015), s. 1691-1691 ISSN 0939-4451. [International Congress on Amino Acids, Peptides and Proteins /14./. 03.08.2015-07.08.2015, Vienna] Institutional support: RVO:68081715 Keywords : PHWE * GC-MS * SDS-PAGE Subject RIV: CB - Analytical Chemistry, Separation

  17. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    Science.gov (United States)

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have

  18. Reactivity of glycyl-amino acids toward hydroxyl radical in neutral aqueous solutions

    International Nuclear Information System (INIS)

    Masuda, Takahiro; Iwashita, Naomi; Shinohara, Hiroyuki; Kondo, Masaharu

    1978-01-01

    Rate constants for reactions of hydroxyl radicals with several glycyl-amino acids were determined by a competition method using p-nitrosodimethylailine as a reference compound. For glycyl-aliphatic amino acids, the enhancement of reactivity was observed as compared with the corresponding free amino acids. The reactivity was explained qualitatively in terms of partial reactivities assigned to each C-H bond of the dipeptides. For glycyl-aromatic amino acids, the rate constants were found to be almost equal to those of the corresponding free amino acids. The reactivity of a protein toward hydroxyl radical was well understood by summation of the rate constants, corrected by steric factors, of amino acid residues located on surface of the protein. The enhanced reactivity of the aliphatic peptides was interpreted in terms of the difference in interaction energy between NH 2 - and NH 3 + -forms of an aliphatic amino acid, which was calculated for the system including glycine and hydroxyl radical according to CNDO/2 method. (auth.)

  19. Synthesis of a Hoechst 32258 Analogue Amino Acid Building Block for Direct Incorporation of a Fluorescent High-Affinity DNA Binding Motif into Peptides

    DEFF Research Database (Denmark)

    Harrit, Niels; Behrens, Carsten; Nielsen, P. E.

    2001-01-01

    The synthesis of a new versatile "Hoechst 33258-like" Boc-protected amino acid building block for peptide synthesis is described. It is demonstrated that this new ligand is an effective mimic of Hoechst 33258 in terms of DNA affinity and sequence specificity. Furthermore, this minor groove binder...

  20. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    Science.gov (United States)

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  1. A new highly selective metabotropic excitatory amino acid agonist: 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Sløk, F A; Skjaerbaek, N

    1996-01-01

    The homologous series of acidic amino acids, ranging from aspartic acid (1) to 2-aminosuberic acid (5), and the corresponding series of 3-isoxazolol bioisosteres of these amino acids, ranging from (RS)-2-amino-2-(3-hydroxy-5-methylisoxazol-4-yl)acetic acid (AMAA, 6) to (RS)-2-amino-6-(3-hydroxy-5......-methylisoxazol-4-yl)hexanoic acid (10), were tested as ligands for metabotropic excitatory amino acid receptors (mGlu1 alpha, mGlu2, mGlu4a, and mGlu6). Whereas AMAA (6) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propinoic acid (AMPA, 7) are potent and highly selective agonists at N......-methyl-D-aspartic acid (NMDA) and AMPA receptors, respectively, the higher homologue of AMPA (7), (RS)-2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid (homo-AMPA, 8), is inactive at ionotropic excitatory amino acid receptors. Homo-AMPA (8), which is a 3-isoxazolol bioisostere of 2-aminoadipic acid (3), was...

  2. A nine-country study of the protein content and amino acid composition of mature human milk

    Directory of Open Access Journals (Sweden)

    Ping Feng

    2016-08-01

    Full Text Available Background: Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective: Evaluate the protein and amino acid composition of mature (≥30 days human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design: Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results: Mean total protein from individual countries (standard deviation [SD] ranged from 1,133 (125.5 to 1,366 (341.4 mg/dL; the mean across all countries (SD was 1,192 (200.9 mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions: Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support

  3. Branched-Chain Amino Acids Are the Primary Limiting Amino Acids in the Diets of Endurance-Trained Men after a Bout of Prolonged Exercise.

    Science.gov (United States)

    Kato, Hiroyuki; Suzuki, Katsuya; Bannai, Makoto; Moore, Daniel R

    2018-05-09

    The indicator amino acid oxidation (IAAO) method estimates the protein intake required to maximize whole-body protein synthesis and identify the daily protein requirement in a variety of populations. However, it is unclear whether the greater requirements for endurance athletes previously determined by the IAAO reflect an increased demand for all or only some amino acids. The aim of this study was to determine the primary rate-limiting amino acids in endurance-trained athletes after prolonged exercise, by measuring the oxidation of ingested [1-13C]phenylalanine in response to variable amino acid intake. Five endurance-trained men (means ± SDs: age, 26 ± 7 y; body weight, 66.9 ± 9.5 kg; maximal oxygen consumption, 63.3 ± 4.3 mL · kg-1 · min-1) performed 5 trials that involved 2 d of controlled diet (1.4 g protein · kg-1 · d-1) and running (10 km on day 1 and 5 km on day 2) prior to performing an acute bout of endurance exercise (20-km treadmill run) on day 3. During recovery on day 3, participants consumed test diets as 8 isocaloric hourly meals providing sufficient energy and carbohydrate but a variable amino acid intake. The test diets, consumed in random order, were deficient (BASE: 0.8 g · kg-1 · d-1) and sufficient (SUF; 1.75 g · kg-1 · d-1) amino acid diets modeled after egg protein, and BASE supplemented with branched-chain amino acids (BCAA diet; 1.03 g · kg-1 · d-1), essential amino acids (EAA diet; 1.23 g · kg-1 · d-1), or nonessential amino acids (NEAA diet; 1.75 g · kg-1 · d-1). Whole-body phenylalanine flux (Q), 13CO2 excretion (F13CO2), and phenylalanine oxidation (OX) were determined according to standard IAAO methodology. There was no effect of amino acid intake on Q (P = 0.43). F13CO2 was significantly (all P amino acids in the greater daily protein requirement of endurance trained men. This trial was registered at clinicaltrial.gov as NCT02628249.

  4. Effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-MSH peptides.

    Science.gov (United States)

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-04-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of (111)In-labeled lactam bridge-cyclized DOTA-[X]-CycMSH(hex) {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH(2); X = GGNle, GENle, or NleGE; GG = -Gly-Gly- and GE = -Gly-Glu-} peptides. Three novel peptides (DOTA-GGNle-CycMSH(hex), DOTA-GENle-CycMSH(hex), and DOTA-NleGE-CycMSH(hex)) were designed and synthesized. The melanocortin-1 (MC1) receptor-binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma-targeting and pharmacokinetic properties of (111)In-DOTA-GGNle-CycMSH(hex) and (111)In-DOTA-GENle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. DOTA-GGNle-CycMSH(hex) and DOTA-GENle-CycMSH(hex) displayed 2.1 and 11.5 nM MC1 receptor-binding affinities, whereas DOTA-NleGE-CycMSH(hex) showed 873.4 nM MC1 receptor-binding affinity. The introduction of the -GG- linker maintained high melanoma uptake while decreasing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex). The tumor uptake of (111)In-DOTA-GGNle-CycMSH(hex) was 19.05 ± 5.04 and 18.6 ± 3.56 percentage injected dose per gram at 2 and 4 h after injection, respectively. (111)In-DOTA-GGNle-CycMSH(hex) exhibited 28%, 32%, and 42% less kidney uptake than (111)In-DOTA-Nle-CycMSH(hex) we reported previously, and 61%, 65%, and 68% less liver uptake than (111)In-DOTA-Nle-CycMSH(hex) at 2, 4, and 24 h after injection, respectively. The amino acid linkers exhibited profound effects on the melanoma-targeting and pharmacokinetic properties of the (111)In-labeled lactam bridge-cyclized α-melanocyte-stimulating hormone peptides. Introduction of the -GG- linker maintained high melanoma uptake while reducing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex), highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide

  5. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 7

    International Nuclear Information System (INIS)

    Gruhn, K.

    1988-01-01

    In a 15 N labelling experiment 12 colostomized laying hens received 15 N-labelled wheat with 14.37 atom-% 15 N excess ( 15 N') over 4 days. 3 hens each were butchered after 12 h, 36 h, 60 h and 108 h after the last 15 N' application. The gastrointestinal tract was divided into 3 parts (esophagus with crop and gizzard as well as glandular stomach, small intestine, large intestine). These parts and the pancreas were hydrolyzed with 6 N HCl and the individual basic as well as the sum of acid and neutral amino acids were determined in the hydrolyzed fractions. In addition, the amino acids and peptides were determined in the TCA soluble N fraction. The atom-% 15 N' was determined in the individual amino acid and peptide fractions. The labelling of the basic amino acids in the individual tract segments was lower than in the acid and neutral amino acids. In comparison to the peptides, a higher atom-% 15 N' could be determined in the free amino acids. (author)

  6. The Formation of Pyrroline and Tetrahydropyridine Rings in Amino Acids Catalyzed by Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix

    2014-06-10

    The dehydrogenase PylD catalyzes the ultimate step of the pyrrolysine pathway by converting the isopeptide L-lysine-Nε-3R-methyl-D-ornithine to the 22nd proteinogenic amino acid. In this study, we demonstrate how PylD can be harnessed to oxidize various isopeptides to novel amino acids by combining chemical synthesis with enzyme kinetics and X-ray crystallography. The data enable a detailed description of the PylD reaction trajectory for the biosynthesis of pyrroline and tetrahydropyridine rings as constituents of pyrrolysine analogues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A hybrid non-ribosomal peptide/polyketide synthetase containing fatty-acyl ligase (FAAL synthesizes the β-amino fatty acid lipopeptides puwainaphycins in the Cyanobacterium Cylindrospermum alatosporum.

    Directory of Open Access Journals (Sweden)

    Jan Mareš

    Full Text Available A putative operon encoding the biosynthetic pathway for the cytotoxic cyanobacterial lipopeptides puwainphycins was identified in Cylindrospermum alatosporum. Bioinformatics analysis enabled sequential prediction of puwainaphycin biosynthesis; this process is initiated by the activation of a fatty acid residue via fatty acyl-AMP ligase and continued by a multidomain non-ribosomal peptide synthetase/polyketide synthetase. High-resolution mass spectrometry and nuclear magnetic resonance spectroscopy measurements proved the production of puwainaphycin F/G congeners differing in FA chain length formed by either 3-amino-2-hydroxy-4-methyl dodecanoic acid (4-methyl-Ahdoa or 3-amino-2-hydroxy-4-methyl tetradecanoic acid (4-methyl-Ahtea. Because only one puwainaphycin operon was recovered in the genome, we suggest that the fatty acyl-AMP ligase and one of the amino acid adenylation domains (Asn/Gln show extended substrate specificity. Our results provide the first insight into the biosynthesis of frequently occurring β-amino fatty acid lipopeptides in cyanobacteria, which may facilitate analytical assessment and development of monitoring tools for cytotoxic cyanobacterial lipopeptides.

  8. Enhanced detection of amino acids in hydrophilic interaction chromatography electrospray tandem mass spectrometry with carboxylic acids as mobile phase additives.

    Science.gov (United States)

    Yin, Dengyang; Hu, Xunxiu; Liu, Dantong; Du, Wencheng; Wang, Haibo; Guo, Mengzhe; Tang, Daoquan

    2017-06-01

    Liquid chromatography coupled with mass spectrometry technique has been widely used in the analysis of biological targets such as amino acids, peptides, and proteins. In this work, eight common single carboxylic acids or diacids, which contain different pKa have been investigated as the additives to the analysis of amino acids. As the results, carboxylic acid additive can improve the signal intensity of acidity amino acids such as Asp and Glu and the chromatographic separation of basic amino acids such as Arg, His, and Lys. In particular, the diacids have better performance than single acids. The proposed mechanism is that the diacid has hydrogen bond interaction with amino acids to reduce their polarity/amphiprotic characteristics. Besides, oxalic acid has been found having better enhancement than phthalic acid by overall consideration. Therefore, we successfully quantified the 15 amino acids in Sepia bulk pharmaceutical chemical by using oxalic acid as the additive.

  9. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity.

    Science.gov (United States)

    Kim, Eun Young; Rajasekaran, Ganesan; Shin, Song Yub

    2017-08-18

    KR-12-a5 is a 12-meric α-helical antimicrobial peptide (AMP) with dual antimicrobial and anti-inflammatory activities designed from human cathelicidin LL-37. We designed and synthesized a series of d-amino acid-substituted analogs of KR-12-a5 with the aim of developing novel α-helical AMPs that possess higher cell selectivity than KR-12-a5, while maintaining the anti-inflammatory activity. d-amino acid incorporation into KR-12-a5 induced a significant improvement in the cell selectivity by 2.6- to 13.6-fold as compared to KR-12-a5, while maintaining the anti-inflammatory activity. Among the three analogs, KR-12-a5 (6- D L) with d-amino acid in the polar-nonpolar interface (Leu 6 ) showed the highest cell selectivity (therapeutic index: 61.2). Similar to LL-37, KR-12-a5 and its analogs significantly inhibited the expression and secretion of NO, TNF-α, IL-6 and MCP-1 from LPS-stimulated RAW264.7 cells. KR-12-a5 and its analogs showed a more potent antimicrobial activity against antibiotic-resistant bacteria, including clinically isolated MRSA, MDRPA, and VREF than LL-37 and melittin. Furthermore, compared to LL-37, KR-12-a5 and its analogs showed greater synergistic effects with conventional antibiotics, such as chloramphenicol, ciprofloxacin, and oxacillin against MDRPA; KR-12-a5 and its analogs had a FICI range between 0.25 and 0.5, and LL-37 had a range between 0.75 and 1.5. KR-12-a5 and its analogs were found to be more effective anti-biofilm agents against MDRPA than LL-37. In addition, KR-12-a5 and its analogs maintained antimicrobial activity in physiological salts and human serum. SYTOX Green uptake and membrane depolarization studies revealed that KR-12-a5 and its analogs kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Taken together, our results suggest that KR-12-a5 and its analogs can be developed further as novel antimicrobial/anti-inflammatory agents to treat antibiotic-resistant infections. Copyright

  10. Process technology for the application of d-amino acid oxidases in pharmaceutical intermediate manufacturing

    DEFF Research Database (Denmark)

    Tindal, Stuart; Carr, Reuben; Archer, Ian V. J.

    2011-01-01

    Recent advances in biocatalysis have seen increased interest in the use of D-amino acid oxidase to synthesize optically pure amino acids. However, the creation of a genuine oxidase based platform technology will require suitable process technology as well as an understanding of the challenges...... and opportunities of a wider portfolio of synthetic targets. In this article we address some of the recent progress in process technology to enable the future development of a generic platform technology....

  11. Effects of Local Delivery of d-amino Acids from Biofilm-dispersive Scaffolds on Infection in Contaminated Rat Segmental Defects

    Science.gov (United States)

    2013-07-05

    2655e61. [26] Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science 2010;328:627e9. [27...Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm devel

  12. Atomic Force Microscopy and MD Simulations Reveal Pore-Like Structures of All-D-Enantiomer of Alzheimer’s β-Amyloid Peptide: Relevance to the Ion Channel Mechanism of AD Pathology

    Science.gov (United States)

    Connelly, Laura; Arce, Fernando Teran; Jang, Hyunbum; Capone, Ricardo; Kotler, Samuel A.; Ramachandran, Srinivasan; Kagan, Bruce L.; Nussinov, Ruth; Lal, Ratnesh

    2012-01-01

    Alzheimer’s disease (AD) is a protein misfolding disease characterized by a build-up of β-amyloid (Aβ) peptide as senile plaques, uncontrolled neurodegeneration, and memory loss. AD pathology is linked to the destabilization of cellular ionic homeostasis and involves Aβ peptide-plasma membrane interactions. In principle, there are two possible ways through which disturbance of the ionic homeostasis can take place: directly, where the Aβ peptide either inserts into the membrane and creates ion-conductive pores or destabilizes the membrane organization; or, indirectly, where the Aβ peptide interacts with existing cell membrane receptors. To distinguish between these two possible types of Aβ-membrane interactions, we took advantage of the biochemical tenet that ligand-receptor interactions are stereospecific; L-amino acid peptides, but not their D-counterparts, bind to cell membrane receptors. However, with respect to the ion channel-mediated mechanism, like L-amino acids, D-amino acid peptides will also form ion channel-like structures. Using atomic force microscopy (AFM) we imaged the structures of both D- and L-enantiomers of the full length Aβ1-42 when reconstituted in lipid bilayers. AFM imaging shows that both L- and D-Aβ isomers form similar channel-like structures. Molecular dynamics (MD) simulations support the AFM imaged 3D structures. Earlier we have shown that D-Aβ1-42 channels conduct ions similarly to their L-counter parts. Taken together, our results support the direct mechanism of Aβ ion channel-mediated destabilization of ionic homeostasis rather than the indirect mechanism through Aβ interaction with membrane receptors. PMID:22217000

  13. The Hydrophobic Region of the DmsA Twin-Arginine Leader Peptide Determines Specificity with Chaperone DmsD

    OpenAIRE

    Winstone, Tara M. L.; Tran, Vy A.; Turner, Raymond J.

    2013-01-01

    The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine leader peptide of DmsA. In this study, isothermal titration calorimetry was used to investigate the the...

  14. Membrane fractionation of herring marinade for separation and recovery of fats, proteins, amino acids, salt, acetic acid and water

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Lizarazu, Juncal Martin; Razi Parjikolaei, Behnaz

    2015-01-01

    In the production of marinated herring, nearly one ton of acidic saline marinade is produced per 1.5 tons herring fillet. This spent marinade contains highly valuable compounds such as proteins and amino acids. Membranes are suited to recover these substances. In this work, six membrane stages...... containing sugars, amino acids and smaller peptides and a NF permeate containing salt and acetic acid ready for reuse. 42% of the spent marinade is recovered to substitute fresh water and chemicals. The Waste water amount is reduced 62.5%. Proteins are concentrated 30 times, while amino acids and smaller...

  15. 37 CFR 1.822 - Symbols and format to be used for nucleotide and/or amino acid sequence data.

    Science.gov (United States)

    2010-07-01

    ... mature protein, with the number 1. When presented, the amino acids preceding the mature protein, e.g... acids. (1) The amino acids in a protein or peptide sequence shall be listed using the three-letter... data. (a) The symbols and format to be used for nucleotide and/or amino acid sequence data shall...

  16. Peptide nucleic acids and their potential applications in biotechnology

    DEFF Research Database (Denmark)

    Buchardt, O.; Egholm, M.; Berg, R.H.

    1993-01-01

    Peptide nucleic acids (PNAs) are novel DNA mimics in which the sugar-phosphate backbone has been replaced with a backbone based on amino acids1-3. PNAs exhibit sequence-specific binding to DNA and RNA with higher affinities and specificities than unmodified DNA. They,are resistant to nuclease...

  17. Solvent polarity controls the helical conformation of short peptides rich in Calpha-tetrasubstituted amino acids.

    Science.gov (United States)

    Bellanda, Massimo; Mammi, Stefano; Geremia, Silvano; Demitri, Nicola; Randaccio, Lucio; Broxterman, Quirinus B; Kaptein, Bernard; Pengo, Paolo; Pasquato, Lucia; Scrimin, Paolo

    2007-01-01

    The two peptides, rich in C(alpha)-tetrasubstituted amino acids, Ac-[Aib-L-(alphaMe)Val-Aib](2)-L-His-NH(2) (1) and Ac-[Aib-L-(alphaMe)Val-Aib](2)-O-tBu (2 a) are prevalently helical. They present the unique property of changing their conformation from the alpha- to the 3(10)-helix as a function of the polarity of the solvent: alpha in more polar solvents, 3(10) in less polar ones. Conclusive evidence of this reversible change of conformation is reported on the basis of the circular dichroism (CD) spectra and a detailed two-dimensional NMR analysis in two solvents (trifluoroethanol and methanol) refined with molecular dynamics calculations. The X-ray diffractometric analysis of the crystals of both peptides reveals that they assume a prevalent 3(10)-helix conformation in the solid state. This conformation is practically superimposable on that obtained from the NMR analysis of 1 in methanol. The NMR results further validate the reported CD signature of the 3(10)-helix and the use of the CD technique for its assessment.

  18. Antioxidant activity of yoghurt peptides: Part 2 – Characterisationof peptide fractions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Baron, Caroline; Nielsen, Nina Skall

    2010-01-01

    the peptides identified contained at least one proline residue. Some of the identified peptides included the hydrophobic amino acid residues Val or Leu at the N-terminus and Pro, His or Tyr in the amino acid sequence, which is characteristic of antioxidant peptides. In addition, the yoghurt contained...

  19. Amino acid chirality breaking by N-phosphorylation

    International Nuclear Information System (INIS)

    Zhao Yufen; Yan Qingjin.

    1995-01-01

    The chirality breaking of amino acid is a focus issue in the origin of life. For chemists, there are some interesting chemical approaches to solve the symmetry breaking problem. Our previous experiments indicated that when amino acids were phosphorylated, there were many bio-mimic reactions happened. In this paper, it was found that there had significant difference between the N-phosphoryl L- and D- amino acids such as serine and threonine. The optical rotation tracing experiments of the racemic N-phosphoamino acids also showed the similar results. The chirality breaking of amino acids by N-phosphorylation was a novel phenomena. (author). 3 refs, 1 fig. Abstract only

  20. Comparison of the endogenous ileal and faecal amino acid excretion in the dog (Canis familiaris) and the rat (Rattus rattus) determined under protein-free feeding and peptide alimentation.

    Science.gov (United States)

    Hendriks, W H; Sritharan, K; Hodgkinson, S M

    2002-10-01

    The aim of the study was to determine and compare the endogenous ileal excretions of nitrogen and amino acids under protein-free and peptide alimentation by the dog and rat. Two diets were prepared, one that was devoid of protein and the other containing 23% enzyme hydrolysed casein. Chromic oxide was included in the diets as an indigestible marker. A total of 10 mixed breed dogs were fed hourly either a protein-free or enzymatically hydrolysed casein diet for a total of 10 days. A faecal sample was obtained from each dog on day 9 while digesta was obtained from the terminal 20 cm of the ileum directly after euthanasia on day 10. A total of 12 8-week-old Sprague-Dawley rats received the same diets as the dogs. A faecal sample from each rat was obtained on day 7 while ileal digesta samples were obtained on day 8. The endogenous ileal excretions of most amino acids were greater in the dogs and rats that received the enzymatically hydrolysed casein diet compared with those receiving the protein free diet. Whereas the pattern of endogenous amino acid excretion was similar in the rats and dogs, the dogs excreted a significantly greater amount of nitrogen (1.91 vs. 2.27 and 1.63 vs. 4.12 g/kg dry matter intake for the protein-free and peptide alimentation method, respectively) and all amino acids except for glycine, isoleucine and leucine. Endogenous ileal amino acid excretions are higher in dogs compared to omnivorous animals such as rats and pigs but similar to the carnivorous cat.

  1. Acid-base titration of melanocortin peptides: evidence of Trp rotational conformers interconversion.

    Science.gov (United States)

    Fernandez, Roberto M; Vieira, Renata F F; Nakaie, Clóvis R; Lamy, M Teresa; Ito, Amando S

    2005-01-01

    Tryptophantime-resolved fluorescence was used to monitor acid-base titration properties of alpha-melanocyte stimulating hormone (alpha-MSH) and the biologically more potent analog [Nle4, D-Phe7]alpha -MSH (NDP-MSH), labeled or not with the paramagnetic amino acid probe 2,2,6,6-tetramthylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Global analysis of fluorescence decay profiles measured in the pH range between 2.0 and 11.0 showed that, for each peptide, the data could be well fitted to three lifetimes whose values remained constant. The less populated short lifetime component changed little with pH and was ascribed to Trp g+ chi1 rotamer, in which electron transfer deactivation predominates over fluorescence. The long and intermediate lifetime preexponential factors interconverted along that pH interval and the result was interpreted as due to interconversion between Trp g- and trans chi1 rotamers, driven by conformational changes promoted by modifications in the ionization state of side-chain residues. The differences in the extent of interconversion in alpha-MSH and NDP-MSH are indicative of structural differences between the peptides, while titration curves suggest structural similarities between each peptide and its Toac-labeled species, in aqueous solution. Though less sensitive than fluorescence, the Toac electron spin resonance (ESR) isotropic hyperfine splitting parameter can also monitor the titration of side-chain residues located relatively far from the probe. Copyright (c) 2005 Wiley Periodicals, Inc.

  2. Amino acid substitutions in the melanoma antigen recognized by T cell 1 peptide modulate cytokine responses in melanoma-specific T cells

    DEFF Research Database (Denmark)

    Nielsen, M B; Kirkin, A F; Loftus, D

    2000-01-01

    enhances the production of mRNA for interleukin (IL)-5, IL-10, IL-13, IL-15, and interferon-gamma and significantly enhances release of IL-13 and IL-10 from anti-MART-1 cytotoxic T cells. Another heteroclitic peptide, 1L, with an A to L substitution in MART-1(27-35), also enhances the tyrosine...... phosphorylation response in anti-MART-1 cytotoxic CD8+ T cells. Yet, 1L does not enhance the production of T helper cell type 2-like cytokines (IL-10 and IL-13). Together these data show that minor amino acid modifications of immunodominant melanoma peptides profoundly influence the cytokine response in melanoma...

  3. Hydrogen isotope analysis of amino acids and whole cells reflects biosynthetic processing of nutrient- and water-derived hydrogen

    Science.gov (United States)

    Griffin, P.; Newsome, S.; Steele, A.; Fogel, M. L.

    2011-12-01

    Hydrogen (H) isotopes serve as sensitive tracers of biochemical processes that can be exploited to answer critical questions in biogeochemistry, ecology, and microbiology. Despite this apparent utility, relatively little is known about the specific mechanisms of H isotope fractionation involved in biosynthesis. In order to understand how organisms incorporate hydrogen from their chemical milieu into biomass, we have cultured the model bacterium E. coli MG1655 in a variety of media composed of deuterium-labeled nutrients and waters. Isotopic analysis of bulk cell mass reveals that the H fractionation between media water and cell material varies as a function of the nutrient source, with commonly used organic food sources (glucose and tryptone) leading to far smaller fractionation signals than non-standard ones (such as formamide, adenine, and urea). In addition, we have completed compound specific isotope analysis of amino acids using combined GC-IRMS. Amino acids harvested from E. coli cultured on glucose in water of varied D/H composition posses an extraordinary range of isotopic compositions (400-600 %). Furthermore, these amino acids follow a systematic distribution of D/H where proline is always heaviest and glycine is always lightest. However, when the short-chain peptide tryptone is used in place of glucose, only the non-essential amino acids reflect media water D/H values, suggesting the direct incorporation of some media-borne amino acids into cellular protein. These observations provide a foundation for understanding the cellular routing of hydrogen obtained from food and water sources and indicate that D/H analysis can serve as a powerful probe of biological function.

  4. Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly-His-Arg-Pro-amide.

    Science.gov (United States)

    Everse, S J; Spraggon, G; Veerapandian, L; Doolittle, R F

    1999-03-09

    The structure of fragment double-D from human fibrin has been solved in the presence and absence of the peptide ligands that simulate the two knobs exposed by the removal of fibrinopeptides A and B, respectively. All told, six crystal structures have been determined, three of which are reported here for the first time: namely, fragments D and double-D with the peptide GHRPam alone and double-D in the absence of any peptide ligand. Comparison of the structures has revealed a series of conformational changes that are brought about by the various knob-hole interactions. Of greatest interest is a moveable "flap" of two negatively charged amino acids (Glubeta397 and Aspbeta398) whose side chains are pinned back to the coiled coil with a calcium atom bridge until GHRPam occupies the beta-chain pocket. Additionally, in the absence of the peptide ligand GPRPam, GHRPam binds to the gamma-chain pocket, a new calcium-binding site being formed concomitantly.

  5. The amino acid sequence of snapping turtle (Chelydra serpentina) ribonuclease

    NARCIS (Netherlands)

    Beintema, Jacob; Broos, Jaap; Meulenberg, Janneke; Schüller, Cornelis

    1985-01-01

    Snapping turtle (Chelydra serpentina) ribonuclease was isolated from pancreatic tissue. Turtle ribonuclease binds much more weakly to the affinity chromatography matrix used than mammalian ribonucleases. The amino acid sequence was determined from overlapping peptides obtained from three different

  6. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydratio...

  7. Anatomical and pharmacological characterization of excitatory amino acid receptors

    International Nuclear Information System (INIS)

    Monaghan, D.T.

    1985-01-01

    The majority of the excitatory neurotransmission in the vertebrate Central Nervous System is thought to be mediated by acidic amino acid neurotransmitters. However, relatively little is known about the excitatory amino acid receptors and their distribution within the CNS. By analyzing radioligand binding to purified synaptic plasma membranes and to thin tissue sections processed for autoradiography, multiple distinct binding sites were found. These binding sites exhibited the pharmacological properties indicative of the excitatory amino acid receptors, which had been identified by electrophysiological techniques. Specifically, L-[ 3 H]-glutamate and D-[ 3 H]-amino-5-phosphonopentanoate appear to label N-methyl-D-aspartate receptors, L-[ 3 H]-glutamate and [ 3 H]-kainic acid appear to label kainic acid receptors, and L-[ 3 H]-glutamate and [ 3 H]-amino-3-hydroxy-5-methyl-4-isoxazolepropionate appear to label quisqualate receptors. Together, these results confirm the three receptor scheme proposed for excitatory amino acid neurotransmission. These results also show that these transmitter-receptor systems are differentially distributed in the brain, and that the total distribution is consistent with that found by other markers for excitatory amino acid-using neurons

  8. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  9. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Das, Priyadip; Duanias-Assaf, Tal; Reches, Meital

    2017-03-06

    The interactions between proteins or peptides and inorganic materials lead to several interesting processes. For example, combining proteins with minerals leads to the formation of composite materials with unique properties. In addition, the undesirable process of biofouling is initiated by the adsorption of biomolecules, mainly proteins, on surfaces. This organic layer is an adhesion layer for bacteria and allows them to interact with the surface. Understanding the fundamental forces that govern the interactions at the organic-inorganic interface is therefore important for many areas of research and could lead to the design of new materials for optical, mechanical and biomedical applications. This paper demonstrates a single-molecule force spectroscopy technique that utilizes an AFM to measure the adhesion force between either peptides or amino acids and well-defined inorganic surfaces. This technique involves a protocol for attaching the biomolecule to the AFM tip through a covalent flexible linker and single-molecule force spectroscopy measurements by atomic force microscope. In addition, an analysis of these measurements is included.

  10. Oxidation of protein tyrosine or methionine residues: From the amino acid to the peptide

    Energy Technology Data Exchange (ETDEWEB)

    Berges, J [Universite Pierre et Marie Curie, UMR 7616, Laboratoire de Chimie Theorique, 75005 Paris (France); Trouillas, P [EA 4021 Faculte de Pharmacie, 2 Rue du Dr. Marcland, 87025 Limoges Cedex (France); Houee-Levin, C, E-mail: jb@lct.jussieu.fr, E-mail: patrick.trouillas@unilim.fr, E-mail: chantal.houee@u-psud.fr [Universite Paris Sud, UMR 8000, Laboratoire de Chimie Physique, 91405 Orsay (France) (France)

    2011-01-01

    Methionine and tyrosine are competing targets of oxidizing free radicals in peptides or proteins. The first step is the addition of OH radicals either on the sulphur atom of methionine, followed by OH{sup -} elimination, or on the aromatic cycle of tyrosine. The next step can be stabilization of methionine radical cation by a two centre-three electron bond, or intramolecular electron transfer from tyrosine to the methionine radical cation. In this latter case a tyrosine radical is formed, which appears deprotonated. In a first step we have compared the stability of the OH radical adducts on Methionine or on Tyrosine. In agreement with experimental results, the thermodynamical data indicate that the OH adduct on Tyrosine and the radical cation are more stable than those on methionine. In a second step we have investigated the stabilization of the radical cations of Methionine by formation of intramolecular S:X two-center three-electron bond (X=S, N, O). Finally we have compared the spin densities on separated amino acids to that in a radical pentapeptide, methionine enkephalin. One observes a delocalisation of the orbital of the odd electron on the sulfur atom of Met and on the cycle of Tyr. The peptidic chain is also concerned.

  11. Oxidation of protein tyrosine or methionine residues: From the amino acid to the peptide

    International Nuclear Information System (INIS)

    Berges, J; Trouillas, P; Houee-Levin, C

    2011-01-01

    Methionine and tyrosine are competing targets of oxidizing free radicals in peptides or proteins. The first step is the addition of OH radicals either on the sulphur atom of methionine, followed by OH - elimination, or on the aromatic cycle of tyrosine. The next step can be stabilization of methionine radical cation by a two centre-three electron bond, or intramolecular electron transfer from tyrosine to the methionine radical cation. In this latter case a tyrosine radical is formed, which appears deprotonated. In a first step we have compared the stability of the OH radical adducts on Methionine or on Tyrosine. In agreement with experimental results, the thermodynamical data indicate that the OH adduct on Tyrosine and the radical cation are more stable than those on methionine. In a second step we have investigated the stabilization of the radical cations of Methionine by formation of intramolecular S:X two-center three-electron bond (X=S, N, O). Finally we have compared the spin densities on separated amino acids to that in a radical pentapeptide, methionine enkephalin. One observes a delocalisation of the orbital of the odd electron on the sulfur atom of Met and on the cycle of Tyr. The peptidic chain is also concerned.

  12. Amino Acid Enantiomeric Ratios in Biogeochemistry: Complications and Opportunities

    Science.gov (United States)

    McDonald, G. D.; Sun, H. J.; Tsapin, A. I.

    2003-12-01

    Amino acid enantiomeric ratios have been used for many years as an indicator of the process of racemization, and thus as a method to determine the age of biological samples such as bones, shells, and teeth. Dating biological samples by this method relies on an accurate knowledge of the environmental temperatures the sample has experienced, and the racemization kinetic parameters in the sample matrix. In some environments, where an independent dating method such as radiocarbon is available, the observed amino acid D/L ratios are found to be either higher or lower than those expected due to racemization alone. The observed D/L ratios in these cases can be clues to biogeochemical processes operating in addition to, or in place of, chemical racemization. In Siberian permafrost (Brinton et al. 2002, Astrobiology 2, 77) we have found D/L ratios lower than expected, which we have interpreted as evidence for low-level D-amino acid metabolism and recycling in microorganisms previously thought to be metabolically dormant. In microbially-colonized Antarctic Dry Valley sandstones (McDonald and Sun 2002, Eos Trans. AGU 83, Fall Meet. Suppl., Abstract B11A-0720) we have found D/L ratios higher than can be accounted for by racemization alone, most likely due to the accumulation of D-amino-acid-containing peptidoglycan material from multiple bacterial generations. D/L profiles in polar ices and in ice-covered lakes (Tsapin et al. 2002, Astrobiology 2, 632) can be used to indicate the sources and histories of water or ice samples. Multiple biological and biogeochemical processes may complicate the interpretation of amino acid enantiomeric excesses in both terrestrial and extraterrestrial samples; however, amino acid racemization remains a useful tool in biogeochemistry and astrobiology. With a good knowledge of the environmental history of samples, amino acid D/L profiles can be used as a window into processes such as molecular repair and biomass turnover that are difficult to

  13. A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey.

    Science.gov (United States)

    Liu, Enuo; Zheng, Huajun; Hao, Pei; Konno, Tomonobu; Yu, Yao; Kume, Hisae; Oda, Munehiro; Ji, Zai-Si

    2012-12-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038) is a bacterium that is used as a starter for dairy products by Meiji Co., Ltd of Japan. Culturing L. bulgaricus 2038 with whey as the sole nitrogen source results in a shorter lag phase than other milk proteins under the same conditions (carbon source, minerals, and vitamins). Microarray results of gene expression revealed characteristics of amino acid anabolism with whey as the nitrogen source and established a model of proteolysis and amino acid biosynthesis for L. bulgaricus. Whey peptides and free amino acids are readily metabolized, enabling rapid entry into the logarithmic growth phase. The oligopeptide transport system is the primary pathway for obtaining amino acids. Amino acid biosynthesis maintains the balance between amino acids required for cell growth and the amount obtained from environment. The interconversion of amino acids is also important for L. bulgaricus 2038 growth.

  14. Quantitative amino acid profiling and stable isotopically labeled amino acid tracer enrichment used for in vivo human systemic and tissue kinetics measurements

    DEFF Research Database (Denmark)

    Bornø, Andreas; van Hall, Gerrit

    2014-01-01

    An important area within clinical functional metabolomics is in vivo amino acid metabolism and protein turnover measurements for which accurate amino acid concentrations and stable isotopically labeled amino acid enrichments are mandatory not the least when tissue metabolomics is determined....... The present study describes a new sensitive liquid chromatography tandem mass-spectrometry method quantifying 20 amino acids and their tracer(s) ([ring-(13)C6]/D5Phenylalanine) in human plasma and skeletal muscle specimens. Before analysis amino acids were extracted and purified via deprotonization....../ion exchange, derivatized using a phenylisothiocyanate reagent and each amino acid was quantitated with its own stable isotopically labeled internal standard (uniformly labeled-(13)C/(15)N). The method was validated according to general recommendations for chromatographic analytical methods. The calibration...

  15. The amino acid sequences and activities of synergistic hemolysins from Staphylococcus cohnii.

    Science.gov (United States)

    Mak, Pawel; Maszewska, Agnieszka; Rozalska, Malgorzata

    2008-10-01

    Staphylococcus cohnii ssp. cohnii and S. cohnii ssp. urealyticus are a coagulase-negative staphylococci considered for a long time as unable to cause infections. This situation changed recently and pathogenic strains of these bacteria were isolated from hospital environments, patients and medical staff. Most of the isolated strains were resistant to many antibiotics. The present work describes isolation and characterization of several synergistic peptide hemolysins produced by these bacteria and acting as virulence factors responsible for hemolytic and cytotoxic activities. Amino acid sequences of respective hemolysins from S. cohnii ssp. cohnii (named as H1C, H2C and H3C) and S. cohnii ssp. urealyticus (H1U, H2U and H3U) were identical. Peptides H1 and H3 possessed significant amino acid homology to three synergistic hemolysins secreted by Staphylococcus lugdunensis and to putative antibacterial peptide produced by Staphylococcus saprophyticus ssp. saprophyticus. On the other hand, hemolysin H2 had a unique sequence. All isolated peptides lysed red cells from different mammalian species and exerted a cytotoxic effect on human fibroblasts.

  16. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  17. Reducing Renal Uptake of {sup 177}Lu Labeled CCK Derivative using Basic Amino Acids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soyoung; Lim, Jaecheong; Joh, Eunha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Radiolabeled peptides have been designed to target the relative receptors overespressed in tumor cells, such as integrin αvβ3, gastrin-releasing peptide receptor (GRPR), melanocortin-1 receptor (MC1-R), glucagon-like peptide-a receptor (GLP-1R), and cholecystokinin (CCK) receptor. Most of these peptides are eliminated from the body via the kidney and are partly reabsorbed in the proximal tubular cells. However, the high renal uptake of the radiolabeled peptides may lead to renal toxicity. In this study we investigated various amino acid solutions to reduce the renal uptake of {sup 177}Lu-DOTA-CCK derivative. Renal uptake of {sup 177}Lu-DOTA-CCK derivative is effectively reduced by the administration of positively charged amino acids. The administration of 12 mg of L-lysine was as effective in reducing the renal uptake as 6 mg of lysine and 6 mg of arginine combinations. Further studies will be performed to identify the most potent inhibitor of renal reuptake of radiolabeled peptides and minimize the chance of unwanted side effects.

  18. Specific labeling of the thyroxine binding site in thyroxine-binding globulin: determination of the amino acid composition of a labeled peptide fragment isolated from a proteolytic digest of the derivatized protein.

    Science.gov (United States)

    Tabachnick, M; Perret, V

    1987-08-01

    [125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.

  19. Construction of tunable peptide nucleic acid junctions.

    Science.gov (United States)

    Duan, Tanghui; He, Liu; Tokura, Yu; Liu, Xin; Wu, Yuzhou; Shi, Zhengshuang

    2018-03-15

    We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.

  20. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  1. Procedures of amino acid sequencing of peptides in natural proteins collection of knowledge and intelligence for construction of reliable chemical inference system

    OpenAIRE

    Kudo, Yoshihiro; Kanaya, Shigehiko

    1994-01-01

    In order to establish a reliable chemical inference system on amino acid sequencing of natural peptides, as various kinds of relevant knowledge and intelligence as possible are collected. Topics are on didemnins, dolastatin 3, TL-119 and/or A-3302-B, mycosubtilin, patellamide A, duramycin (and cinnamycin), bottoromycin A 2, A19009, galantin I, vancomycin, stenothricin, calf speleen profilin, neocarzinostatin, pancreatic spasmolytic polypeptide, cerebratulus toxin B-IV, RNAase U 2, ferredoxin ...

  2. Study of the peptide length and amino acid specific substitution in the antigenic activity of the chimeric synthetic peptides, containing the p19 core and gp46 envelope proteins of the HTLV-I virus.

    Science.gov (United States)

    Marin, Milenen Hernández; Rodríguez-Tanty, Chryslaine; Higginson-Clarke, David; Bocalandro, Yadaris Márquez; Peña, Lilliam Pozo

    2005-10-28

    Four chimeric synthetic peptides (Q5, Q6, Q7(multiply sign in circle), and Q8(multiply sign in circle)), incorporating immunodominant epitopes of the core p19 (105-124 a.a.) and envelope gp46 proteins (175-205 a.a.), of HTLV-I were obtained. Also, two gp46 monomeric peptides M4 and M5(multiply sign in circle) (Ser at position 192) were synthesized. The analysis of the influence of the peptide lengths and the proline to serine substitution on the chimeric and monomeric peptides' antigenicity, with regard to the chimeric peptides Q1, Q2, Q3(multiply sign in circle), and Q4(multiply sign in circle), reported previously, for HTLV-I was carried out. The peptides' antigenicity was evaluated in an ultramicroenzyme-linked immunosorbent assay (UMELISA) using sera of HTLV-I/II. The peptides' antigenicity was affected appreciably by the change of the peptide length and amino acid substitutions into the immunodominant sequence of gp46 peptide.

  3. Hydrogen/deuterium exchange of cross-linkable alpha-amino acid derivatives in deuterated triflic acid

    OpenAIRE

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Masuda, Katsuyoshi; Sakihama, Yasuko; Hashidoko, Yasuyuki; Hatanaka, Yasumaru; Hashimoto, Makoto

    2014-01-01

    In this paper we report here a hydrogen/deuterium exchange (H/D exchange) of cross-linkable alpha-amino acid derivatives with deuterated trifluoromethanesulfonic acid (TfOD). H/D exchange with TfOD was easily applied to o-catechol containing phenylalanine (DOPA) within an hour. A partial H/D exchange was observed for trifluoromethyldiazirinyl (TFMD) phenylalanine derivatives. N-Acetyl-protected natural aromatic alpha-amino acids (Tyr and Trp) were more effective in H/D exchange than unprotect...

  4. Synthesis and Characterization of a Gd-DOTA-D-Permeation Peptide for Magnetic Resonance Relaxation Enhancement of Intracellular Targets

    Directory of Open Access Journals (Sweden)

    Andrew M. Prantner

    2003-10-01

    Full Text Available Many MR contrast agents have been developed and proven effective for extracellular nontargeted applications, but exploitation of intracellular MR contrast agents has been elusive due to the permeability barrier of the plasma membrane. Peptide transduction domains can circumvent this permeability barrier and deliver cargo molecules to the cell interior. Based upon enhanced cellular uptake of permeation peptides with D-amino acid residues, an all-D Tat basic domain peptide was conjugated to DOTA and chelated to gadolinium. Gd-DOTA-D-Tat peptide in serum at room temperature showed a relaxivity of 7.94 ± 0.11 mM−1 sec−1 at 4.7 T. The peptide complex displayed no significant binding to serum proteins, was efficiently internalized by human Jurkat leukemia cells resulting in intracellular T1 relaxation enhancement, and in preliminary T1-weighted MRI experiments, significantly enhanced liver, kidney, and mesenteric signals.

  5. δ-Peptides from RuAAC-Derived 1,5-Disubstituted Triazole Units

    KAUST Repository

    Johansson, Johan R.

    2014-02-14

    Non-natural peptides with structures and functions similar to natural peptides have emerged lately in biomedical as well as nanotechnological contexts. They are interesting for pharmaceutical applications since they can adopt structures with new targeting potentials and because they are generally not prone to degradation by proteases. We report here a new set of peptidomimetics derived from δ-peptides, consisting of n units of a 1,5-disubstituted 1,2,3-triazole amino acid (5Tzl). The monomer was prepared using ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) chemistry using [RuCl2Cp]x as the catalyst, allowing for simpler purification and resulting in excellent yields. This achiral monomer was used to prepare peptide oligomers that are water soluble independent of peptide chain length. Conformational analysis and structural investigations of the oligomers were performed by 2D NOESY NMR experiments, and by quantum chemical calculations using the ωB97X-D functional. These data indicate that several conformations may co-exist with slight energetic differences. Together with their increased hydrophilicity, this feature of homo-5Tzl may prove essential for mimicking natural peptides composed of α-amino acids, where the various secondary structures are achieved by side chain effects and not by the rigidity of the peptide backbone. The improved synthetic method allows for facile variation of the 5Tzl amino acid side chains, further increasing the versatility of these compounds. A new set of non-natural peptides composed of 1,5-disubstituted 1,2,3-triazole amino acids is presented. These peptides benefit from: a) modular synthesis of the monomers, allowing variation of the side chains; b) increased solubility of the oligomers in water, irrespective of peptide length; c) flexibility of the backbone allowing these foldamers to adopt several conformations. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparative analysis of amino acids and amino-acid derivatives in protein crystallization

    International Nuclear Information System (INIS)

    Ito, Len; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2010-01-01

    New types of aggregation suppressors, such as amino acids and their derivatives, were focused on as fourth-component additives. Data were obtained that indicated that the additives promote protein crystallization. Optimal conditions for protein crystallization are difficult to determine because proteins tend to aggregate in saturated solutions. This study comprehensively evaluates amino acids and amino-acid derivatives as additives for crystallization. This fourth component of the solution increases the probability of crystallization of hen egg-white lysozyme in various precipitants owing to a decrease in aggregation. These results suggest that the addition of certain types of amino acids and amino-acid derivatives, such as Arg, Lys and esterified and amidated amino acids, is a simple method of improving the success rate of protein crystallization

  7. Geochemistry of amino acids in shells of the clam Saxidomus

    Science.gov (United States)

    Kvenvolden, K.A.; Blunt, D.J.; McMenamin, M.A.; Straham, S.E.

    1980-01-01

    Concentrations of amino acids and their corresponding d l enantiomeric ratios have been measured in shells of the bivalve mollusk Saxidomus from eleven localities, ranging in age from modern to probably more than 500,000 yr, along the Pacific coast of North America. Natural logarithms of amino acid concentrations correlate well with d l ratios, and the relationship provides a possible guide to the selection of fossils for use in amino acid dating. The relative order of the extents of racemization of amino acids at any given time appears to change with increasing sample age. Application of the amino acid dating method to shells from Whidbey Island, Washington, yields an age of about 80,000 yr, in contrast to the previously determined radiocarbon age of 36,000 yr which was measured on some shell carbonate and considered a minimum age. The amino acid age is compatible with the geologic record in the area. ?? 1980.

  8. Induction of DNA damage by oxidised amino acids and proteins

    DEFF Research Database (Denmark)

    Luxford, Catherine; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    Exposure of amino acids, peptides and proteins to radicals in the presence of O2 generates hydroperoxides in a dose-dependent manner. These hydroperoxides are stable in the absence of exogenous catalysts (e.g. heat, light, redox-active transition metal ions), but decompose rapidly in the presence...

  9. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva.

    Science.gov (United States)

    Schlesinger, D H; Hay, D I

    1977-03-10

    The complete amino acid sequence of human salivary statherin, a peptide which strongly inhibits precipitation from supersaturated calcium phosphate solutions, and therefore stabilizes supersaturated saliva, has been determined. The NH2-terminal half of this Mr=5380 (43 amino acids) polypeptide was determined by automated Edman degradations (liquid phase) on native statherin. The peptide was digested separately with trypsin, chymotrypsin, and Staphylococcus aureus protease, and the resulting peptides were purified by gel filtration. Manual Edman degradations on purified peptide fragments yielded peptides that completed the amino acid sequence through the penultimate COOH-terminal residue. These analyses, together with carboxypeptidase digestion of native statherin and of peptide fragments of statherin, established the complete sequence of the molecule. The 2 serine residues (positions 2 and 3) in statherin were identified as phosphoserine. The amino acid sequence of human salivary statherin is striking in a number of ways. The NH2-terminal one-third is highly polar and includes three polar dipeptides: H2PO3-Ser-Ser-H2PO3-Arg-Arg-, and Glu-Glu-. The COOH-terminal two-thirds of the molecule is hydrophobic, containing several repeating dipeptides: four of -Gn-Pro-, three of -Tyr-Gln-, two of -Gly-Tyr-, two of-Gln-Tyr-, and two of the tetrapeptide sequence -Pro-Tyr-Gln-Pro-. Unusual cleavage sites in the statherin sequence obtained with chymotrypsin and S. aureus protease were also noted.

  10. Formation of Flavor Compounds by Amino Acid Catabolism in Cheese (Turkish with English Abstract

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Biochemical reactions which contribute flavor formation occur in result of proteolysis during cheese ripening. Casein as the main protein of cheese has a significant effect on the flavor and textural properties of cheeses via its degradation to small peptides and free amino acids by various factors like coagulant enzymes. Specific flavors of cheeses occur as a result of amino acid catabolism by starter and non-starter bacteria. Some flavor compounds are formed by enzymatic transformations as well as by non-enzymatic, chemical changes in cheese. In this paper, formation of flavor compounds by amino acid catabolism during cheese ripening reviewed.

  11. Amino acid catabolism and generation of volatiles by lactic acid bacteria

    OpenAIRE

    Tavaria, F. K.; Dahl, S.; Carballo, F. J.; Malcata, F. X.

    2002-01-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180- d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts...

  12. Fiscal 1994 report on results of R and D on innovative technology for producing advanced biomaterial. Technology of fixation and utilization of carbon dioxide using peptides; 1994 nendo senshin bio zairyo no sosei kako gijutsu no kenkyu kaihatsu seika hokokusho. Pepuchido oyo nisanka tanso koteika yuko riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    R and D of a material was conducted that has a function of fixation of carbon dioxide for example, by synthesizing non-natural amino acids required for the manifestation of the function, incorporating the amino acids into new bio-functional peptides to be synthesized, and fixing the peptides on a substrate. Activities were carried out in three areas, which were (1) innovative technologies for producing functional molecules: R and D concerning structural and functional design of peptides, conformational control technique, preparation of peptides with photoelectric conversion function, peptide synthesis using enzyme, and method of incorporating non-natural amino acids into peptides, (2) R and D on materialization technologies of functional molecules: formation of film onto a substrate, pattern forming technique, substrate modification technique, peptide binding reagent or linker, and development of technologies for creation of biomaterials having molecular recognition function and their stabilization. and (3) comprehensive investigation and adjustment (operation of information exchange conference and adjustment of the progress). In (2), an examination was made on the effect of polymerization on functions, for example, by fixing molecular recognition peptides in monomers and polymers on a catalyst support. (NEDO)

  13. Abiotic racemization kinetics of amino acids in marine sediments

    DEFF Research Database (Denmark)

    Steen, Andrew; Jørgensen, Bo Barker; Lomstein, Bente Aagaard

    2013-01-01

    Enantiomeric ratios of amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic racemize abiotically. Based on a heating experiment, we report Arrhenius parameters...... between different amino acids or depths. These results can be used in conjunction with measurements of sediment age to predict the ratio of D:L amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial...

  14. Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Alhedabi, Taleb [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Department of Chemistry, College of Science, University of Thi-qar, Thi-qar (Iraq); Cattey, Hélène [Institut ICMUB - CNRS 6302, Université de Bourgogne Franche-Comté, UFR Sciences et Techniques Mirande, 9 Avenue Alain Savary, 21000 Dijon (France); Roussel, Christophe [Ecole Polytechnique Fédérale de Lausanne, Section of Chemistry and Chemical Engineering, Station 6, CH-1015 Lausanne (Switzerland); Blondeau-Patissier, Virginie [Institut FEMTO-ST, UMR CNRS 6174, Department Time-Frequency, 26, Chemin de l' épitaphe, 25030 Besançon Cedex (France); Gharbi, Tijani [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Herlem, Guillaume, E-mail: guillaume.herlem@univ-fcomte.fr [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France)

    2017-01-01

    The anodic oxidation of polar amino acids (L-serine, L-threonine, L-asparagine, and L-glutamine) in aqueous electrolyte on smooth platinum electrode was carried out by cyclic voltammetry coupled to electrochemical quartz crystal microbalance (EQCM). pH (zwitterion, acidic and alkaline) effects on their electrochemical behavior were examined. The maximum current values are measured for zwitterion species. In addition, the current increases with increasing of concentration and scan rate, and decreases with increasing pH. The resulting passivation was studied by spectroscopic analysis such as attenuated total reflection FT infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and mass spectroscopy (MALDI-TOF). From thin film coatings observed on the electrode surface, peptide bonds are found, and are in favor of electropolymerization of these polar amino acids into poly-L-amino acids in an irreversible way. Scanning electronic microscopy was also used to study the morphology of these electrodeposited L-amino acids. The electrodeposited poly-L-amino acids on Pt electrode were tested as bioinspired transducer for pH sensing purposes. - Highlights: • Anodic oxidation of polar amino acids with uncharged R group on platinum electrode. • Polypeptide bonds revealed by ATR-IR and XPS spectroscopies. • The film growth depends on the chemistry of the polar amino acid.

  15. T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides

    Science.gov (United States)

    Tian, Feifei; Zhou, Peng; Li, Zhiliang

    2007-03-01

    In this paper, a new topological descriptor T-scale is derived from principal component analysis (PCA) on the collected 67 kinds of structural and topological variables of 135 amino acids. Applying T-scale to three peptide panels as 58 angiotensin-converting enzyme (ACE) inhibitors, 20 thromboplastin inhibitors (TI) and 28 bovine lactoferricin-(17-31)-pentadecapeptides (LFB), the resulting QSAR models, constructed by partial least squares (PLS), are all superior to reference reports, with correlative coefficient r2 and cross-validated q2 of 0.845, 0.786; 0.996, 0.782 (0.988, 0.961); 0.760, 0.627, respectively.

  16. Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation.

    Science.gov (United States)

    Kuru, Erkin; Lambert, Carey; Rittichier, Jonathan; Till, Rob; Ducret, Adrien; Derouaux, Adeline; Gray, Joe; Biboy, Jacob; Vollmer, Waldemar; VanNieuwenhze, Michael; Brun, Yves V; Sockett, R Elizabeth

    2017-12-01

    Modification of essential bacterial peptidoglycan (PG)-containing cell walls can lead to antibiotic resistance; for example, β-lactam resistance by L,D-transpeptidase activities. Predatory Bdellovibrio bacteriovorus are naturally antibacterial and combat infections by traversing, modifying and finally destroying walls of Gram-negative prey bacteria, modifying their own PG as they grow inside prey. Historically, these multi-enzymatic processes on two similar PG walls have proved challenging to elucidate. Here, with a PG-labelling approach utilizing timed pulses of multiple fluorescent D-amino acids, we illuminate dynamic changes that predator and prey walls go through during the different phases of bacteria:bacteria invasion. We show formation of a reinforced circular port-hole in the prey wall, L,D-transpeptidase Bd -mediated D-amino acid modifications strengthening prey PG during Bdellovibrio invasion, and a zonal mode of predator elongation. This process is followed by unconventional, multi-point and synchronous septation of the intracellular Bdellovibrio, accommodating odd- and even-numbered progeny formation by non-binary division.

  17. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active...... related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein...... sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally...

  18. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes.

    Science.gov (United States)

    Kondo, Jiro; Westhof, Eric

    2011-10-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.

  19. Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide–protein complexes

    Science.gov (United States)

    Kondo, Jiro; Westhof, Eric

    2011-01-01

    Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431

  20. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.

    Science.gov (United States)

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.

  1. Indirect fluorescence detection of native amino acids in capillary zone electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhr, W.G.; Yeung, E.S.

    1988-09-01

    Amino acids are but one of several important classes of small chemical compounds in biological chemistry that have an inherent lack of analytically useful physical properties. Amino acids, peptides, fatty acids, sugars, many mono-, di-, and tricarboxylic acids, and phosphorylated intermediates in glycolysis and metabolism show little, if any, UV or visible absorption, fluorescence, or electrochemical activity. As the emphasis of biochemical research shifts to smaller samples where, for example, picomolar quantities of amino acids are analyzed in gas phase protein sequencing or in microliter samples of the extracellular fluid of the mammalian brain, the analytical problem becomes even more challenging due to the small volume of sample available for analysis. In this work, laser-induced fluorescence spectroscopy is performed on-column to detect the bands separated with capillary zone electrophoresis (CZE). CZE is an instrumental form of zone electrophoresis where chemical species are separated purely on the basis of their electrophoretic mobility, since no supporting gel is utilized. Both anions and cations can be separated in the same run because of the large electroosmotic flow generated in small diameter capillaries. This technique has already been used successfully in the rapid, efficient separation of dansyl-amino acids.

  2. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.

  3. A sensitive and simple ultra-high-performance-liquid chromatography-tandem mass spectrometry based method for the quantification of D-amino acids in body fluids

    NARCIS (Netherlands)

    Visser, Wouter F; Verhoeven-Duif, Nanda M; Ophoff, Roel; Bakker, Steven; Klomp, Leo W; Berger, Ruud; de Koning, Tom J

    2011-01-01

    D-Amino acids are increasingly being recognized as important signaling molecules in mammals, including humans. D-Serine and D-aspartate are believed to act as signaling molecules in the central nervous system. Interestingly, several other D-amino acids also occur in human plasma, but very little is

  4. Photoaffinity labeling of human serum vitamin D binding protein and chemical cleavage of the labeled protein: Identification of an 11.5-kDa peptide containing the putative 25-hydroxyvitamin D3 binding site

    International Nuclear Information System (INIS)

    Ray, R.; Holick, M.F.; Bouillon, R.; Baelen, H.V.

    1991-01-01

    In this paper, the authors describe photoaffinity labeling and related studies of human serum vitamin D binding protein (hDBP) with 25-hydroxyvitamin D 3 3β-3'-[N-(4-azido-2-nitrophenyl)amino]propyl ether (25-ANE) and its radiolabeled counterpart, i.e., 25-hydroxyvitamin D 3 3β-3'-[N-(4-azido-2-nitro-[3,5- 3 H]phenyl)amino]propyl ether ( 3 H-25-ANE). They have carried out studies to demonstrate that (1) 25-ANE competes with 25-OH-D 3 for the binding site of the latter in hDBP and (2) 3 H-25-ANE is capable of covalently labeling the hDBP molecule when exposed ot UV light. Treatment of a sample of purified hDBP, labeled with 3 H-25-ANE, with BNPS-skatole produced two Coomassie Blue stained peptide fragments, and the majority of the radioactivity was assoicated with the smaller of the two peptide fragments (16.5 kDa). On the other hand, cleavage of the labeled protein with cyanogen bromide produced a peptide (11.5 kDa) containing most of the covalently attached radioactivity. Considering the primary amino acid structure of hDBP, this peptide fragment (11.5 kDa) represents the N-terminus through residue 108 of the intact protein. Thus, the results tentatively identify this segment of the protein containing the binding pocket for 25-OH-D 3

  5. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  6. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.

    Science.gov (United States)

    Ramón, F; Castillón, M; De La Mata, I; Acebal, C

    1998-01-01

    The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524

  7. Murine protein H is comprised of 20 repeating units, 61 amino acids in length

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Tack, B F

    1986-01-01

    A cDNA library constructed from size-selected (greater than 28 S) poly(A)+ RNA isolated from the livers of C57B10. WR mice was screened by using a 249-base-pair (bp) cDNA fragment encoding 83 amino acid residues of human protein H as a probe. Of 120,000 transformants screened, 30 hybridized......, 448 bp of 3'-untranslated sequence, and a polyadenylylated tail of undetermined length. Murine pre-protein H was deduced to consist of an 18-amino acid signal peptide and 1216 residues of H-protein sequence. Murine H was composed of 20 repetitive units, each about 61 amino acid residues in length...

  8. Dynamics of the amino acid and protein metabolism of laying hens after the application of 15N-labelled wheat protein. 10

    International Nuclear Information System (INIS)

    Gruhn, K.; Hennig, A.

    1989-01-01

    Over a period of 4 days 12 colostomized laying hens daily received 36 g coarse wheat meal containing 14.37 atom-% 15 N excess ( 15 N') together with a conventional ration. After the homogenisation of each oviduct N and 15 N' were determined. After the precipitation with TCA the 15 N' of the amino acids was analysed in both the precipitate and the supernatant. In addition, the free amino acids and the peptides were determined in the TCA soluble fraction. The atom-% 15 N' in the total N and in the non-basic amino acid N showed a parallel decrease; it diminshed from 1.75 atom-% 15 N' to 0.64. Of the three basic amino acids, lysine shows the lowest labelling at all four measuring points. The quotas of non-basic amino acid 14 N and 15 N' in the total 14 N and 15 N' of the oviduct are the same and amount to 53%. In contrast to this, the quota of the 14 N of the basic amino acids in the total 14 N of the oviduct only amounts to 21.6% and that of 15 N' only to 15.4%. The average atom-% 15 N' of the free amino acids 12 h after the last 15 N application is 1.54 and is considerably above that of the peptides with 1.15 atom-% 15 N'. 36 h after the last 15 N application the ascertained value of 1.25 is identical in both fractions. The labelling of the free amino acids decreases more quickly than that of the peptides the more time has passed after the last 15 N application. (author)

  9. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    Science.gov (United States)

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  10. D-Amino Acids Enhance the Activity of Antimicrobials against Biofilms of Clinical Wound Isolates of Staphylococcus aureus and Pseudomonas aeruginosa

    Science.gov (United States)

    2014-05-19

    Clardy J, Kolter R, Losick R. 2010. D-Amino acids trigger biofilm disassembly. Science 328:627– 629. http: //dx.doi.org/10.1126/science.1188628. 28...Leiman SA, May JM, Lebar MD, Kahne D, Kolter R, Losick R. 2013. D-Amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering...with protein synthesis. J. Bacteriol. 195:5391–5395. http://dx .doi.org/10.1128/JB.00975-13. 29. Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R

  11. Fiscal 1993 report on results of R and D on innovative technology for producing advanced biomaterial. Peptide applied carbon dioxide fixation/effective utilization technology (First volume); 1993 nendo senshin bio zairyo no sosei kako gijutsu no kenkyu kaihatsu seika hokokusho. 1. Peptide oyo nisanka tanso koteika yuko riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Technology is being developed for preparing functional materials by synthesizing new functional peptides in which non-natural amino acid needed for the functional manifestation is introduced, and by modifying the surface of a base plate such as silica glass by using such peptides. Activities were conducted in the three areas of (1) creation of functional molecules, (2) materialization technology, and (3) comprehensive investigation and research; the activities were carried out independently and parallelly in the first two areas. In (1), design technique for the structures and functions of peptides was developed, as were conformational control technique, synthesis of peptides having optical/electronic functions, peptide synthesis by an enzyme method, and R and D on introduction of non-natural amino acid into peptides; in (2), element technologies were developed such as substrate forming technique (pattern forming and thin film forming technology), substrate modification technique, development of reagent for binding peptide onto a substrate, and R and D on creation of biomaterials having molecular recognition function and its stabilization technique. In (3), progress control in promoting themes and a meeting for exchanging information were conducted, while survey on related element technologies was systematically and comprehensively carried out. (NEDO)

  12. Preferential Treatment: Interaction Between Amino Acids and Minerals

    Science.gov (United States)

    Crapster-Pregont, E. J.; Cleaves, H. J.; Hazen, R. M.

    2008-12-01

    Amino acids are the building blocks of proteins and are important for some models of the origin of life. Polymerization of amino acids from dilute solution is unlikely without a scaffold or catalyst. The surfaces of early Earth minerals are the most likely candidates for this role. The surface adsorption behavior of 12 amino acids (L-alanine, L-serine, L-aspartic acid, L-proline, L- phenylalanine, L-valine, L-arginine, d-amino valeric acid, glycine, L-lysine, L-isoleucine, and B-alanine) on 21 minerals (quartz, calcite, enstatite, illite, olivine, pyrrhotite, pyrite, alkali basalt, albite, analcime, chlorite, barite, hydroxyl apatite, hematite, magnetite, aluminum hydroxide, kaolin, silica gel, corundum, rutile, and montmorillonite) was determined via batch adsorption experiments. Absorption was determined for concentrations between 10-4M and 10-6M in the presence of 0.1M NaCl, and between pH values of 3 and 9 at 25 degrees C. The equilibrated solutions were centrifuged, filtered, derivatized using a fluorescent amino group tag (dansyl-chloride) and analyzed by HPLC. Adsorption was standardized using BET surface area measurements for each mineral to give the number of mols of each amino acid adsorbed per square meter for each mineral. The results indicate an enormous difference in the adsorption of amino acids between minerals, along with major differences in the adsorption of individual amino acids on the same mineral surface. There is also a change in the absorbance of amino acids as the pH changes. Many previous studies of amino acid concentration and catalysis by minerals have used clay minerals because of their high surface areas, however, this data suggests that the surfaces of minerals such as calcite, quartz and pyrite have even higher affinities for amino acids. The results suggest mineral surfaces that could be optimal locations for the polymerization of molecules linked to the origin of life.

  13. pK(a) Values of Titrable Amino Acids at the Water/Membrane Interface.

    Science.gov (United States)

    Teixeira, Vitor H; Vila-Viçosa, Diogo; Reis, Pedro B P S; Machuqueiro, Miguel

    2016-03-08

    Peptides and proteins protonation equilibrium is strongly influenced by its surrounding media. Remarkably, until now, there have been no quantitative and systematic studies reporting the pK(a) shifts in the common titrable amino acids upon lipid membrane insertion. Here, we applied our recently developed CpHMD-L method to calculate the pK(a) values of titrable amino acid residues incorporated in Ala-based pentapeptides at the water/membrane interface. We observed that membrane insertion leads to desolvation and a clear stabilization of the neutral forms, and we quantified the increases/decreases of the pK(a) values in the anionic/cationic residues along the membrane normal. This work highlights the importance of properly modeling the protonation equilibrium in peptides and proteins interacting with membranes using molecular dynamics simulations.

  14. The Synthesis of cis- and trans-Fused Bicyclic Sugar Amino Acids

    NARCIS (Netherlands)

    Risseeuw, Martijn D.P.; Grotenbreg, Gijsbert M.; Witte, Martin D.; Tuin, Adriaan W.; Leeuwenburgh, Michiel A.; Marel, Gijsbert A. van der; Overkleeft, Herman S.; Overhand, Mark

    2006-01-01

    Four isomeric bicyclic sugar amino acids (SAAs) were prepared from an α-acetylenic-C-glucoside by employing a Petasis olefination and a ring-closing metathesis (RCM) as key steps. The applicability of the resulting SAAs in solid-phase peptide synthesis was demonstrated by the synthesis of a

  15. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    Science.gov (United States)

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  16. Amino acid catabolism and generation of volatiles by lactic acid bacteria.

    Science.gov (United States)

    Tavaria, F K; Dahl, S; Carballo, F J; Malcata, F X

    2002-10-01

    Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.

  17. Regional amino acid transport into brain during diabetes: Effect of plasma amino acids

    International Nuclear Information System (INIS)

    Mans, A.M.; DeJoseph, M.R.; Davis, D.W.; Hawkins, R.A.

    1987-01-01

    Transport of phenylalanine and lysine into the brain was measured in 4-wk streptozotocin-diabetic rats to assess the effect on the neutral and basic amino acid transport systems at the blood-brain barrier. Amino acid concentrations in plasma and brain were also measured. Regional permeability-times-surface area (PS) products and influx were determined using a continuous infusion method and quantitative autoradiography. The PS of phenylalanine was decreased by an average of 40% throughout the entire brain. Influx was depressed by 35%. The PS of lysine was increased by an average of 44%, but the influx was decreased by 27%. Several plasma neutral amino acids (branched chain) were increased, whereas all basic amino acids were decreased. Brain tryptophan, phenylalanine, tyrosine, methionine, and lysine contents were markedly decreased. The transport changes were almost entirely accounted for by the alterations in the concentrations of the plasma amino acids that compete for the neutral and basic amino acid carriers. The reduced influx could be responsible for the low brain content of some essential amino acids, with possibly deleterious consequences for brain functions

  18. Predicting HLA class I non-permissive amino acid residues substitutions.

    Directory of Open Access Journals (Sweden)

    T Andrew Binkowski

    Full Text Available Prediction of peptide binding to human leukocyte antigen (HLA molecules is essential to a wide range of clinical entities from vaccine design to stem cell transplant compatibility. Here we present a new structure-based methodology that applies robust computational tools to model peptide-HLA (p-HLA binding interactions. The method leverages the structural conservation observed in p-HLA complexes to significantly reduce the search space and calculate the system's binding free energy. This approach is benchmarked against existing p-HLA complexes and the prediction performance is measured against a library of experimentally validated peptides. The effect on binding activity across a large set of high-affinity peptides is used to investigate amino acid mismatches reported as high-risk factors in hematopoietic stem cell transplantation.

  19. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    International Nuclear Information System (INIS)

    Ito, Len; Kobayashi, Toyoaki; Shiraki, Kentaro; Yamaguchi, Hiroshi

    2008-01-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins

  20. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Len, E-mail: len@ksc.kwansei.ac.jp; Kobayashi, Toyoaki [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Shiraki, Kentaro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamaguchi, Hiroshi [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2008-05-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins.

  1. Recommended ingestion of indispensable amino acids to young men . A study using stable isotopes, plasmatic amino acids and nitrogen balance

    International Nuclear Information System (INIS)

    Marchini, J.S.

    1992-01-01

    It has been previously stated that the minimum physiological recommendations for the indispensable amino acids in health adults, as proposed by FAO/WHO/UNU in 1985, are far too low, except for the methionine. An amino acid stable isotopic kinetic study was conducted to seek further experimental support to this hypothesis. Twenty healthy young men received an l-amino acid based diet, supplying 140 mg N.kg -1 .d -1 , patterned on egg protein for 1 week, then for 3 weeks either i) a pattern based on current international recommendations (FAO diet, n=7), ii) a the tentative Laboratory of Human Nutrition of the Massachusetts Institute of Technology, new amino acid recommendation pattern (MIT diet, n=7) or iii) again the egg hen pattern (EGG diet, n=6). All subjects were again studied for one final, consecutive week of the egg diet. At the end of the initial week, at the first and third week with the three experimental diets,and after three days following the return of the egg diet, an 8 h primed continuous intravenous infusion with l- 13 C-leucine was conducted (3 h, fast, 5 h fed - while subjects received hourly meals supplying the equivalent of 5/12 total daily intake). Estimation of leucine balance were carried out with measurements plasma free amino acids changes. Daily nitrogen balances were obtained through the study. Interpretation of plasma amino acids profile, and changes of leucine kinetics balances, indicated that the FAO diet was not able to maintain amino acids homeostasis whereas the MIT and the egg diets sustained body amino acids equilibrium with a positive amino acid balance. nitrogen balances tended to be more negative with the FAO diet but failed to show statistically significant differences among the three diets. The finding point out that it would be prudent to use the new, tentative recommended amino acid pattern (MIT diet 0 as the minimum physiological amino acid needs of healthy human adults (author)

  2. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  3. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  4. Amino acids and proteins

    NARCIS (Netherlands)

    van Goudoever, Johannes B.; Vlaardingerbroek, Hester; van den Akker, Chris H.; de Groof, Femke; van der Schoor, Sophie R. D.

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional

  5. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity.

    Science.gov (United States)

    Almahboub, Sarah A; Narancic, Tanja; Devocelle, Marc; Kenny, Shane T; Palmer-Brown, William; Murphy, Cormac; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2018-01-01

    Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.

  6. PPII propensity of multiple-guest amino acids in a proline-rich environment.

    Science.gov (United States)

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-07-07

    There has been considerable debate about the intrinsic PPII propensity of amino acid residues in denatured polypeptides. Experimentally, this scale is based on the behavior of guest amino acid residues placed in the middle of proline-based hosts. We have used classical molecular dynamics simulations combined with replica-exchange methods to carry out a comprehensive analysis of the conformational equilibria of proline-based host oligopeptides with multiple guest amino acids including alanine, glutamine, valine, and asparagine. The tracked structural characteristics include the secondary structural motifs based on the Ramachandran angles and the cis/trans isomerization of the prolyl bonds. In agreement with our recent study of single amino acid guests, we did not observe an intrinsic PPII propensity in any of the guest amino acids in a multiple-guest setting. Instead, the experimental results can be explained in terms of (i) the steric restrictions imposed on the C-terminal guest amino acid that is immediately followed by a proline residue and (ii) an increase in the trans content of the prolyl bonds due to the presence of guest residues. In terms of the latter, we found that the more guests added to the system, the larger the increase in the trans content of the prolyl bonds, which results in an effective increase in the PPII content of the peptide.

  7. Studies on Aculeines: Synthetic Strategy to the Fully Protected Protoaculeine B, the N-Terminal Amino Acid of Aculeine B.

    Science.gov (United States)

    Shiozaki, Hiroki; Miyahara, Masayoshi; Otsuka, Kazunori; Miyako, Kei; Honda, Akito; Takasaki, Yuichi; Takamizawa, Satoshi; Tukada, Hideyuki; Ishikawa, Yuichi; Sakai, Ryuichi; Oikawa, Masato

    2018-05-23

    A synthetic strategy for accessing protoaculeine B (1), the N-terminal amino acid of the highly modified peptide toxin aculeine, was developed via the synthesis of the fully protected natural homologue of 1 with a 12-mer poly(propanediamine). The synthesis of mono(propanediamine) analog 2, as well as core amino acid 3, was demonstrated by this strategy. New amino acid 3 induced convulsions in mice; however, compound 2 showed no such activity.

  8. 2-d and 1-d Nanomaterials Construction through Peptide Computational Design and Solution Assembly

    Science.gov (United States)

    Pochan, Darrin

    Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic/H-bonding/hydrophobic interactions to define hierarchical material structure and consequent properties. Importantly, while biomimicry has been a successful strategy for the design of new peptide molecules for intermolecular assembly, computational tools have been developed to de novo design peptide molecules required for construction of pre-determined, desired nanostructures and materials. A new system comprised of coiled coil bundle motifs theoretically designed to assemble into designed, one and two-dimensional nanostructures will be introduced. The strategy provides the opportunity for arbitrary nanostructure formation, i.e. structures not observed in nature, with peptide molecules. Importantly, the desired nanostructure was chosen first while the peptides needed for coiled coil formation and subsequent nanomaterial formation were determined computationally. Different interbundle, two-dimensional nanostructures are stabilized by differences in amino acid composition exposed on the exterior of the coiled coil bundles. Computation was able to determine molecules required for different interbundle symmetries within two-dimensional sheets stabilized by subtle differences in amino acid composition of the inherent peptides. Finally, polymers were also created through covalent interactions between bundles that allowed formation of architectures spanning flexible network forming chains to ultra-stiff polymers, all with the same building block peptides. The success of the computational design strategy is manifested in the nanomaterial results as characterized by electron microscopy, scattering methods, and biophysical techniques. Support

  9. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.

    Science.gov (United States)

    Chalamaiah, M; Dinesh Kumar, B; Hemalatha, R; Jyothirmayi, T

    2012-12-15

    The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2-20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides). Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    Science.gov (United States)

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P properties of 7S, 11S, and APP peptides independent of fatty acid chain length. Acylation decreased water binding capacity although oil binding capacity of acylated tofu whey ultra filtered fraction (UFTW acids had shown significant higher surface hydrophobicity as in contrast with acylated UFTW acids can further affect functional properties of soy proteins. © 2012 Institute of Food Technologists®

  11. Dependence of the metabolic fecal amino acids on the amino acid content of the feed. 1

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Voelker, T.; Reichel, K.

    1981-01-01

    The amount of metabolic fecal amino acids (MFAA) in dependence on the amino acid intake was determined for graded maize rations in 15 N-labelled rats and the part of labelled endogenous amino acids in feces was calculated by the isotope dilution method. The excretion of amino acids and MFAA in feces are described as functions of the amino acid intake for 17 amino acids and calculated regressively. For all 17 amino acids investigated, there was a more or less steep increase of MFAA according to an increasing amino acid intake. In contrast to N-free feeding, the MFAA increase to the 2- to 4.5-fold value in feeding with pure maize (16.5% crude protein). The thesis of the constancy of the excretion of MFAA can consequently be no longer maintained. The true digestibility according to the conventional method is, on an average of all amino acids, 7.3 units below ascertained according to the 15 N method. The limiting amino acids lysine and threonine revealed the greatest difference. Tryptophane as first limiting amino acid could not be determined. The true digestibility of nearly all amino acids ascertained for maize by the isotope method is above 90%. (author)

  12. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    DEFF Research Database (Denmark)

    Lomstein, Bente Aagaard; Jørgensen, Bo Barker; Schubert, Carsten J.

    2006-01-01

    The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (D- and L-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions,: at ~23°S off Antofagasta and at ~36°S off Concepcion. The contribution of amino acids to total organic...... carbon (%TAAC: 7-14%) and total nitrogen (%TAAN: 23-38%) in surface sediments decreased with increasing water depth (from 126 to 1350 m) indicating that organic matter becomes increasingly decomposed in surface sediments at greater water depth. Changes in the ratio between the protein amino acid...... aspartate and its non-protein degradation product β-alanine confirmed this observation. Furthermore, estimates of THAA mineralization showed that sedimentary amino acid reactivity decreased with both increasing water depth as well as progressive degradation status of the organic matter that was incorporated...

  13. Cyclic Hexapeptide Dimers, Antatollamides A and B, from the Ascidian Didemnum molle. A Tryptophan-Derived Auxiliary for l- and d-Amino Acid Assignments.

    Science.gov (United States)

    Salib, Mariam N; Molinski, Tadeusz F

    2017-10-06

    Two dimerized cyclic hexapeptides, antatollamides A (1) and B (2), were isolated from the colonial ascidian Didemnum molle collected in Pohnpei. The amino acid compositions and sequences were determined by interpretation of MS and 1D and 2D NMR data. Raney Ni reduction of antatollamide A cleaved the dimer to the corresponding monomeric cyclic hexapeptide with replacement of Cys by Ala. The amino acid configuration of 1 was established, after total hydrolysis, by derivatization with a new chiral reagent, (5-fluoro-2,4-dinitrophenyl)-N α -l-tryptophanamide (FDTA), prepared from l-Trp, followed by LCMS analysis; all amino acids were found to be l-configured except for d-Ala.

  14. RevTrans: multiple alignment of coding DNA from aligned amino acid sequences

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Pedersen, Anders Gorm

    2003-01-01

    The simple fact that proteins are built from 20 amino acids while DNA only contains four different bases, means that the 'signal-to-noise ratio' in protein sequence alignments is much better than in alignments of DNA. Besides this information-theoretical advantage, protein alignments also benefit...... proteins. It is therefore preferable to align coding DNA at the amino acid level and it is for this purpose we have constructed the program RevTrans. RevTrans constructs a multiple DNA alignment by: (i) translating the DNA; (ii) aligning the resulting peptide sequences; and (iii) building a multiple DNA...

  15. Isotopic evidence for extraterrestrial non- racemic amino acids in the Murchison meteorite

    Science.gov (United States)

    Engel, M. H.; Macko, S. A.

    1997-09-01

    Many amino acids contain an asymmetric centre, occurring as laevorotatory, L, or dextrorotatory, D, compounds. It is generally assumed that abiotic synthesis of amino acids on the early Earth resulted in racemic mixtures (L- and D-enantiomers in equal abundance). But the origin of life required, owing to conformational constraints, the almost exclusive selection of either L- or D-enantiomers, and the question of why living systems on the Earth consist of L-enantiomers rather than D-enantiomers is unresolved. A substantial fraction of the organic compounds on the early Earth may have been derived from comet and meteorite impacts. It has been reported previously that amino acids in the Murchison meteorite exhibit an excess of L-enantiomers, raising the possibility that a similar excess was present in the initial inventory of organic compounds on the Earth. The stable carbon isotope compositions of individual amino acids in Murchison support an extraterrestrial origin-rather than a terrestrial overprint of biological amino acids-although reservations have persisted (see, for example, ref. 9). Here we show that individual amino-acid enantiomers from Murchison are enriched in 15N relative to their terrestrial counterparts, so confirming an extraterrestrial source for an L-enantiomer excess in the Solar System that may predate the origin of life on the Earth.

  16. Transport of acidic amino acids by human jejunal brush-border membrane vesicles

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Harig, J.M.; Adams, M.B.; Ramaswamy, K.

    1987-01-01

    This study characterizes the transport of radiolabeled acidic amino acids into brush-border membrane vesicles prepared from human jejunum. The uptakes of L-glutamic, L-aspartic, and D-aspartic acids were stimulated by a Na + gradient. Concentrative uptake (resulting in an overshoot phenomenon) of these dicarboxylic amino acids occurred when there was an outward K + gradient. In addition, increasing K + gradients resulted in enhanced uptake of L-glutamic acid. This K + requirement is somewhat specific as Rb + and Cs + could enhance uptake to a limited extent, whereas Li + and choline + showed no enhancement. The presence of a K + gradient did not affect the affinity of the carrier system for L-glutamic acid but it did increase the V/sub max/. The presence of extravesicular anions having differing membrane permeabilities did not altar L-glutamic acid uptake indicating an absence of an effect of membrane potential on the transport process. Finally, the human transport system for L-glutamic acid appears to be specific for acidic amino acids as demonstrated by inhibition studies. The studies demonstrate a transport system in human jejunum specific for acidic amino acids that is energized by an inward Na + gradient and an outward K + gradient

  17. Adsorption of various types of amino acids on the graphene and boron-nitride nano-sheet, a DFT-D3 study

    International Nuclear Information System (INIS)

    Zhiani, Rahele

    2017-01-01

    Graphical abstract: Dispersion interactions have key role on the adsorption of different amino acids on the graphene and BN-nanosheet surfaces. - Highlights: • The Arginine amino acid makes the most stable complexes with Gra and BN nano sheet. • Dispersion interactions have key role on the amino acid adsorption. • BN nano sheet makes more stable complexes with amino acids compare to the Gra. • Water as a solvent has important effect on these interactions. - Abstract: The binding properties of the adsorption of five different classes of amino acids, namely, alanine (Ala), arginine (Arg), asparagine (Asn), histidine (His) and cysteine (Cys) on the surface of the graphene (Gra) and the born-nitride (BN) nano-sheet structures were studied from molecular viewpoint using quantum mechanics methods. Density functional theory (DFT) and DFT-D3 calculations were carried out to investigate the electronic properties and the dispersion interaction of the amino acid/adsorbent complexes. Several parameters affecting the interactions between the amino acids and the adsorbent surfaces such as solvent effect, adsorption energy and separation distance were investigated. Findings show that Arg forms the most stable complexes with the graphene and the BN nano-sheet compare to the other amino acids used in this study. The observed frequency results which were related to the band gap energies were consistent with the above statement. Results exhibit that adsorption of the amino acids on the surface of the BN nano-sheet and the graphene accompanied with the release of the energy. Calculations show that there are no bonded interactions between the amino acids and adsorbent surfaces. The polarity of the BN nano-sheet provides the more affinity towards the amino acids. These results were proved by the quantum chemistry studies.

  18. Adsorption of various types of amino acids on the graphene and boron-nitride nano-sheet, a DFT-D3 study

    Energy Technology Data Exchange (ETDEWEB)

    Zhiani, Rahele, E-mail: r_zhiani2006@yahoo.com

    2017-07-01

    Graphical abstract: Dispersion interactions have key role on the adsorption of different amino acids on the graphene and BN-nanosheet surfaces. - Highlights: • The Arginine amino acid makes the most stable complexes with Gra and BN nano sheet. • Dispersion interactions have key role on the amino acid adsorption. • BN nano sheet makes more stable complexes with amino acids compare to the Gra. • Water as a solvent has important effect on these interactions. - Abstract: The binding properties of the adsorption of five different classes of amino acids, namely, alanine (Ala), arginine (Arg), asparagine (Asn), histidine (His) and cysteine (Cys) on the surface of the graphene (Gra) and the born-nitride (BN) nano-sheet structures were studied from molecular viewpoint using quantum mechanics methods. Density functional theory (DFT) and DFT-D3 calculations were carried out to investigate the electronic properties and the dispersion interaction of the amino acid/adsorbent complexes. Several parameters affecting the interactions between the amino acids and the adsorbent surfaces such as solvent effect, adsorption energy and separation distance were investigated. Findings show that Arg forms the most stable complexes with the graphene and the BN nano-sheet compare to the other amino acids used in this study. The observed frequency results which were related to the band gap energies were consistent with the above statement. Results exhibit that adsorption of the amino acids on the surface of the BN nano-sheet and the graphene accompanied with the release of the energy. Calculations show that there are no bonded interactions between the amino acids and adsorbent surfaces. The polarity of the BN nano-sheet provides the more affinity towards the amino acids. These results were proved by the quantum chemistry studies.

  19. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    Energy Technology Data Exchange (ETDEWEB)

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F. [Federal Univ. of Parana, Curitiba (Brazil)

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venom LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.

  20. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    Science.gov (United States)

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation.

  1. Treatment of Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... of amino acids. Babies with TYR I may need vitamin D, a vitamin that can help babies who ... Rickets is a condition in which too little vitamin D causes a child’s bones to be ... condition, he may need to take certain medicines. For example: Babies with ...

  2. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage[OA

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.

    2006-01-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  3. Amino Acid Interaction (INTAA) web server.

    Science.gov (United States)

    Galgonek, Jakub; Vymetal, Jirí; Jakubec, David; Vondrášek, Jirí

    2017-07-03

    Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Cephalopod vision involves dicarboxylic amino acids: D-aspartate, L-aspartate and L-glutamate.

    Science.gov (United States)

    D'Aniello, Salvatore; Spinelli, Patrizia; Ferrandino, Gabriele; Peterson, Kevin; Tsesarskia, Mara; Fisher, George; D'Aniello, Antimo

    2005-03-01

    In the present study, we report the finding of high concentrations of D-Asp (D-aspartate) in the retina of the cephalopods Sepia officinalis, Loligo vulgaris and Octopus vulgaris. D-Asp increases in concentration in the retina and optic lobes as the animal develops. In neonatal S. officinalis, the concentration of D-Asp in the retina is 1.8+/-0.2 micromol/g of tissue, and in the optic lobes it is 5.5+/-0.4 micromol/g of tissue. In adult animals, D-Asp is found at a concentration of 3.5+/-0.4 micromol/g in retina and 16.2+/-1.5 micromol/g in optic lobes (1.9-fold increased in the retina, and 2.9-fold increased in the optic lobes). In the retina and optic lobes of S. officinalis, the concentration of D-Asp, L-Asp (L-aspartate) and L-Glu (L-glutamate) is significantly influenced by the light/dark environment. In adult animals left in the dark, these three amino acids fall significantly in concentration in both retina (approx. 25% less) and optic lobes (approx. 20% less) compared with the control animals (animals left in a diurnal/nocturnal physiological cycle). The reduction in concentration is in all cases statistically significant (P=0.01-0.05). Experiments conducted in S. officinalis by using D-[2,3-3H]Asp have shown that D-Asp is synthesized in the optic lobes and is then transported actively into the retina. D-aspartate racemase, an enzyme which converts L-Asp into D-Asp, is also present in these tissues, and it is significantly decreased in concentration in animals left for 5 days in the dark compared with control animals. Our hypothesis is that the dicarboxylic amino acids, D-Asp, L-Asp and L-Glu, play important roles in vision.

  5. Stereoselective assembly of amino acid-based metal-biomolecule nanofibers.

    Science.gov (United States)

    Wu, Hong; Tian, Chunyong; Zhang, Yufei; Yang, Chen; Zhang, Songping; Jiang, Zhongyi

    2015-04-14

    A series of amino acid-based metal-biomolecule nanofibers are fabricated through a coordination-directed assembly process. The chirality and carbon chain length of the amino acids exert a pronounced influence on the assembly process. This study may be extended to design diverse kinds of 1-D metal-biomolecule frameworks (MBioFs).

  6. Studies on radiolysis of amino acids, (4)

    International Nuclear Information System (INIS)

    Oku, Tadatake

    1978-01-01

    In order to elucidate the effect of adding methionine on the loss of amino acid by γ-irradiation in amino acid mixture, because methionine is one of the most radio-sensitive in amino acids, the remaining amino acids in γ-irradiated aqueous solution of amino acid mixture were studied by determining the total amount of each remaining amino acid. The mixture of 18 amino acids which contains methionine and that of 17 amino acids without methionine were used. Amino acids and the irradiation products were determined with an automatic amino acid analyzer. The total amount of remaining amino acids in the irradiated solution of 18 amino acid mixture was more than that of 17 amino acid mixture. The order of the total amount of each remaining amino acid by low-dose irradiation was Gly>Ala>Asp>Glu>Val>Ser, Pro>Ile, Leu>Thr>Lys>Tyr>Arg>His>Phe>Try>Cys>Met. In case of the comparison of amino acids of same kinds, the total remaining amount of each amino acid in amino acid mixture was more than that of individually irradiated amino acid. The total remaining amounts of glycine, alanine and aspartic acid in irradiated 17 amino acid mixture resulted in slight increase. Ninhydrin positive products formed from 18 amino acid mixture irradiated with 2.640 x 10 3 rad were ammonia, methionine sulfoxide and DOPA of 1.34, 0.001 and 0.25 μmoles/ml of the irradiated solution, respectively. (Kobake, H.)

  7. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species.

    Science.gov (United States)

    Liu, Yanbin; Koh, Chong Mei John; Ngoh, Si Te; Ji, Lianghui

    2015-10-26

    Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90 % efficiency. We characterized the upstream DNA sequence of a D-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2 kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108 bp intron 1 was included in the reporter construct. We identified a conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (∆dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named P DAO1-in1m1 , showed very similar luciferase activity to the wild-type promoter upon induction with D-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. The intron 1-containing DAO1 promoters coupled with a DAO1 null

  8. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    Science.gov (United States)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  9. Synthesis of mutual azo prodrugs of anti-inflammatory agents and peptides facilitated by α-aminoisobutyric acid.

    Science.gov (United States)

    Kennedy, David A; Vembu, Nagarajan; Fronczek, Frank R; Devocelle, Marc

    2011-12-02

    Reported is the synthesis of azo mutual prodrugs of the nonsteroidal anti-inflammatory agents (NSAIDs) 4-aminophenylacetic acid (4-APAA) or 5-aminosalicylic acid (5-ASA) with peptides, including an antibiotic peptide temporin analogue modified at the amino terminal by an α-aminoisobutyric acid (Aib) residue. These prodrugs are designed for colonic delivery of two agents to treat infection and inflammation by the bacterial pathogen Clostridium difficile . © 2011 American Chemical Society

  10. Development of a Novel Tetravalent Synthetic Peptide That Binds to Phosphatidic Acid.

    Directory of Open Access Journals (Sweden)

    Rina Ogawa

    Full Text Available We employed a multivalent peptide-library screening technique to identify a peptide motif that binds to phosphatidic acid (PA, but not to other phospholipids such as phosphatidylcholine (PC, phosphatidylethanolamine (PE, and phosphatidylserine (PS. A tetravalent peptide with the sequence motif of MARWHRHHH, designated as PAB-TP (phosphatidic acid-binding tetravalent peptide, was shown to bind as low as 1 mol% of PA in the bilayer membrane composed of PC and cholesterol. Kinetic analysis of the interaction between PAB-TP and the membranes containing 10 mol% of PA showed that PAB-TP associated with PA with a low dissociation constant of KD = 38 ± 5 nM. Coexistence of cholesterol or PE with PA in the membrane enhanced the PAB-TP binding to PA by increasing the ionization of the phosphomonoester head group as well as by changing the microenvironment of PA molecules in the membrane. Amino acid replacement analysis demonstrated that the tryptophan residue at position 4 of PAB-TP was involved in the interaction with PA. Furthermore, a series of amino acid substitutions at positions 5 to 9 of PAB-TP revealed the involvement of consecutive histidine and arginine residues in recognition of the phosphomonoester head group of PA. Our results demonstrate that the recognition of PA by PAB-TP is achieved by a combination of hydrophobic, electrostatic and hydrogen-bond interactions, and that the tetravalent structure of PAB-TP contributes to the high affinity binding to PA in the membrane. The novel PA-binding tetravalent peptide PAB-TP will provide insight into the molecular mechanism underlying the recognition of PA by PA-binding proteins that are involved in various cellular events.

  11. The Formation of Pyrroline and Tetrahydropyridine Rings in Amino Acids Catalyzed by Pyrrolysine Synthase (PylD)

    KAUST Repository

    Quitterer, Felix; Beck, Philipp; Bacher, Adelbert; Groll, Michael

    2014-01-01

    various isopeptides to novel amino acids by combining chemical synthesis with enzyme kinetics and X-ray crystallography. The data enable a detailed description of the PylD reaction trajectory for the biosynthesis of pyrroline and tetrahydropyridine rings

  12. Bio-inspired CO2 reduction by a rhenium tricarbonyl bipyridine-based catalyst appended to amino acids and peptidic platforms: incorporating proton relays and hydrogen-bonding functional groups.

    Science.gov (United States)

    Chabolla, S A; Machan, C W; Yin, J; Dellamary, E A; Sahu, S; Gianneschi, N C; Gilson, M K; Tezcan, F A; Kubiak, C P

    2017-06-02

    Herein, we report a new approach to bio-inspired catalyst design. The molecular catalyst employed in these studies is based on the robust and selective Re(bpy)(CO) 3 Cl-type (bpy = 2,2'-bipyridine) homogeneous catalysts, which have been extensively studied for their ability to reduce CO 2 electrochemically or photochemically in the presence of a photosensitizer. These catalysts can be highly active photocatalysts in their own right. In this work, the bipyridine ligand was modified with amino acids and synthetic peptides. These results build on earlier findings wherein the bipyridine ligand was functionalized with amide groups to promote dimer formation and CO 2 reduction by an alternate bimolecular mechanism at lower overpotential (ca. 250 mV) than the more commonly observed unimolecular process. The bio-inspired catalysts were designed to allow for the incorporation of proton relays to support reduction of CO 2 to CO and H 2 O. The coupling of amino acids tyrosine and phenylalanine led to the formation of two structurally similar Re catalyst/peptide catalysts for comparison of proton transport during catalysis. This article reports the synthesis and characterization of novel catalyst/peptide hybrids by molecular dynamics (MD simulations of structural dynamics), NMR studies of solution phase structures, and electrochemical studies to measure the activities of new bio-inspired catalysts in the reduction of CO 2.

  13. A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma

    DEFF Research Database (Denmark)

    Havelund, Jesper F; Wojdyla, Katarzyna; Davies, Michael J

    2017-01-01

    Protein carbonylation is an irreversible protein oxidation correlated with oxidative stress, various diseases and ageing. Here we describe a peptide-centric approach for identification and characterisation of up to 14 different types of carbonylated amino acids in proteins. The modified residues...... in vitro metal ion-catalysed oxidation. Furthermore, we assigned 133 carbonylated sites in 36 proteins in native human plasma protein samples. The optimised workflow enabled detection of 10 hitherto undetected types of carbonylated amino acids in proteins: aldehyde and ketone modifications of leucine...

  14. Synthesis, physicochemical and biological properties of poly-α-amino acids - the simplest of protein models

    International Nuclear Information System (INIS)

    Katchalski-Katzir, Ephraim

    1996-01-01

    During the 1950s, linear and multichain poly-α-amino acids were synthesized by polymerization of the corresponding N-carboxy-amino acid anhydrides in solution in the presence of suitable catalysts. The resulting homo- and heteropolymers have since been widely employed as simple protein models. Under appropriate conditions, poly-α-amino acids, in the solid state and in solution, were found to acquire conformations of an α-helix and β-parallel and antiparallel pleased sheets, or to exist as random coils. Their use in experimental and theoretical investigations of helix-coil transitions helped to shed new light on the mechanisms involved in protein denaturation. Poly-α-amino acids played an important role in the deciphering of the genetic code. In addition, analysis of the antigenicity of poly-α-amino acids led to the clucidation of the factors determining the antigenicity of proteins and peptides. Interest in the biological and physicochemical characteristics of poly-α-amino acids was recently renewed because of the reported novel finding that some copolymers of amino acids are effective as drugs in multiple sclerosis, and that glutamine repeats and reiteration of other amino acids occur in inherited neurodegenerative diseases. The presence of repeating sequences of amino acids in proteins, and of nucleotides in DNA, raises many interesting questions about their respective roles in determining protein structure and function, and gene performance and regulation. (author). 35 refs, 3 figs, 2 tabs

  15. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry

    Science.gov (United States)

    Carter, Charles W.; Wolfenden, Richard

    2016-01-01

    abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  16. Effects of branched-chain amino acids supplementation on both plasma amino acids concentration and muscle energetics changes resulting from muscle damage: A randomized placebo controlled trial.

    Science.gov (United States)

    Fouré, Alexandre; Nosaka, Kazunori; Gastaldi, Marguerite; Mattei, Jean-Pierre; Boudinet, Hélène; Guye, Maxime; Vilmen, Christophe; Le Fur, Yann; Bendahan, David; Gondin, Julien

    2016-02-01

    Branched-chain amino acids promote muscle-protein synthesis, reduce protein oxidation and have positive effects on mitochondrial biogenesis and reactive oxygen species scavenging. The purpose of the study was to determine the potential benefits of branched-chain amino acids supplementation on changes in force capacities, plasma amino acids concentration and muscle metabolic alterations after exercise-induced muscle damage. (31)P magnetic resonance spectroscopy and biochemical analyses were used to follow the changes after such damage. Twenty six young healthy men were randomly assigned to supplemented branched-chain amino acids or placebo group. Knee extensors maximal voluntary isometric force was assessed before and on four days following exercise-induced muscle damage. Concentrations in phosphocreatine [PCr], inorganic phosphate [Pi] and pH were measured during a standardized rest-exercise-recovery protocol before, two (D2) and four (D4) days after exercise-induced muscle damage. No significant difference between groups was found for changes in maximal voluntary isometric force (-24% at D2 and -21% at D4). Plasma alanine concentration significantly increased immediately after exercise-induced muscle damage (+25%) in both groups while concentrations in glycine, histidine, phenylalanine and tyrosine decreased. No difference between groups was found in the increased resting [Pi] (+42% at D2 and +34% at D4), decreased resting pH (-0.04 at D2 and -0.03 at D4) and the slower PCr recovery rate (-18% at D2 and -24% at D4). The damaged muscle was not able to get benefits out of the increased plasma branched-chain amino acids availability to attenuate changes in indirect markers of muscle damage and muscle metabolic alterations following exercise-induced muscle damage. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  17. Wet, Carbonaceous Asteroids: Altering Minerals, Changing Amino Acids

    Science.gov (United States)

    Taylor, G. J.

    2011-04-01

    Many carbonaceous chondrites contain alteration products from water-rock interactions at low temperature and organic compounds. A fascinating fact known for decades is the presence in some of them of an assortment of organic compounds, including amino acids, sometimes called the building blocks of life. Murchison and other CM carbonaceous chondrites contain hundreds of amino acids. Early measurements indicated that the amino acids in carbonaceous chondrites had equal proportions of L- and D-structures, a situation called racemic. This was in sharp contrast to life on Earth, which heavily favors L- forms. However, beginning in 1997, John Cronin and Sandra Pizzarello (Arizona State University) found L- excesses in isovaline and several other amino acids in the Murchison carbonaceous chondrite. In 2009, Daniel Glavin and Jason Dworkin (Astrobiology Analytical Lab, Goddard Space Flight Center) reported the first independent confirmation of L-isovaline excesses in Murchison using a different analytical technique than employed by Cronin and Pizzarello. Inspired by this work, Daniel Glavin, Michael Callahan, Jason Dworkin, and Jamie Elsila (Astrobiology Analytical Lab, Goddard Space Flight Center), have done an extensive study of the abundance and symmetry of amino acids in carbonaceous chondrites that experienced a range of alteration by water in their parent asteroids. The results show that amino acids are more abundant in the less altered meteorites, implying that aqueous processing changes the mix of amino acids. They also confirmed the enrichment in L-structures of some amino acids, especially isovaline, confirming earlier work. The authors suggest that aqueously-altered planetesimals might have seeded the early Earth with nonracemic amino acids, perhaps explaining why life from microorganisms to people use only L- forms to make proteins. The initial imbalance caused by non-biologic processes in wet asteroids might have been amplified by life on Earth. Alternatively

  18. Comprehensive computational design of ordered peptide macrocycles

    Science.gov (United States)

    Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Shortridge, Matthew D.; Craven, Timothy W.; Pardo-Avila, Fátima; Rettie, Stephen A.; Kim, David E.; Silva, Daniel-Adriano; Ibrahim, Yehia M.; Webb, Ian K.; Cort, John R.; Adkins, Joshua N.; Varani, Gabriele; Baker, David

    2018-01-01

    Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with L-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L- and D-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods. PMID:29242347

  19. Purification and characterization of l,(l/d)-aminopeptidase from Guinea pig serum.

    Science.gov (United States)

    Krstanović, Marina; Brgles, Marija; Halassy, Beata; Frkanec, Ruza; Vrdoljak, Anto; Branović, Karmen; Tomasić, Jelka; Benedetti, Fabio

    2006-01-01

    Mammalian sera contain enzymes that catalyze the hydrolytic degradation of peptidoglycans and molecules of related structure and are relevant for the metabolism of peptidoglycans. We now report on a novel L,(L/D)-aminopeptidase found in human and mammalian sera. The enzyme hydrolyses the pentapeptide L-Ala-D-iso-Gln-meso-DAP(omegaNH(2))-D-Ala-D-Ala yielding the free L-alanine and the respective tetrapeptide (K(M) 18 mM). L,(L/D)-aminopeptidase from guinea pig serum was highly purified in four chromatographic steps, up to 700-fold. Molecular weight of the enzyme was estimated by HPLC to be approximately 175,000. The configuration of alanine obtained by hydrolysis of the pentapeptide was determined by oxidation with L-amino acid oxidase. The amino acids sequence in the respective tetrapeptide was deduced from the results of mass spectrometry. The novel L,(L/D)-aminopeptidase also hydrolyzed alanine-4-nitroanilide (K(M)=0.6 mM) and several peptides comprising L-amino acids. Peptides containing D-amino acid at the amino end and L-Asp-L-Asp were not the substrates for this enzyme. The purified enzyme also exhibited enkephalin degrading activity, hydrolyzing enkephalins comprising L,L- and L,D-peptide bonds. The enzyme was inhibited strongly by metal chelating agents, bestatin and amastatin.

  20. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli.

    Science.gov (United States)

    Bouhss, A; Mengin-Lecreulx, D; Blanot, D; van Heijenoort, J; Parquet, C

    1997-09-30

    The comparison of the amino acid sequences of 20 cytoplasmic peptidoglycan synthetases (MurC, MurD, MurE, MurF, and Mpl) from various bacterial organisms has allowed us to detect common invariants: seven amino acids and the ATP-binding consensus sequence GXXGKT/S all at the same position in the alignment. The Mur synthetases thus appeared as a well-defined class of closely functionally related proteins. The conservation of a constant backbone length between certain invariants suggested common structural motifs. Among the other enzymes catalyzing a peptide bond formation driven by ATP hydrolysis to ADP and Pi, only folylpoly-gamma-l-glutamate synthetases presented the same common conserved amino acid residues, except for the most N-terminal invariant D50. Site-directed mutageneses were carried out to replace the K130, E174, H199, N293, N296, R327, and D351 residues by alanine in the MurC protein from Escherichia coli taken as model. For this purpose, plasmid pAM1005 was used as template, MurC being highly overproduced in this genetic setting. Analysis of the Vmax values of the mutated proteins suggested that residues K130, E174, and D351 are essential for the catalytic process whereas residues H199, N293, N296, and R327 were not. Mutations K130A, H199A, N293A, N296A, and R327A led to important variations of the Km values for one or more substrates, thereby indicating that these residues are involved in the structure of the active site and suggesting that the binding order of the substrates could be ATP, UDP-MurNAc, and alanine. The various mutated murC plasmids were tested for their effects on the growth, cell morphology, and peptidoglycan cell content of a murC thermosensitive strain at 42 degrees C. The observed effects (complementation, altered morphology, and reduced peptidoglycan content) paralleled more or less the decreased values of the MurC activity of each mutant.

  1. Effect of sequence and stereochemistry reversal on p53 peptide mimicry.

    Directory of Open Access Journals (Sweden)

    Alessio Atzori

    Full Text Available Peptidomimetics effective in modulating protein-protein interactions and resistant to proteolysis have potential in therapeutic applications. An appealing yet underperforming peptidomimetic strategy is to employ D-amino acids and reversed sequences to mimic a lead peptide conformation, either separately or as the combined retro-inverso peptide. In this work, we examine the conformations of inverse, reverse and retro-inverso peptides of p53(15-29 using implicit solvent molecular dynamics simulation and circular dichroism spectroscopy. In order to obtain converged ensembles for the peptides, we find enhanced sampling is required via the replica exchange molecular dynamics method. From these replica exchange simulations, the D-peptide analogues of p53(15-29 result in a predominantly left-handed helical conformation. When the parent sequence is reversed sequence as either the L-peptide and D-peptide, these peptides display a greater helical propensity, feature reflected by NMR and CD studies in TFE/water solvent. The simulations also indicate that, while approximately similar orientations of the side-chains are possible by the peptide analogues, their ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids and side-chain orientation (for reversed sequences. A retro-inverso peptide is disadvantaged as a mimic in both aspects, and further chemical modification is required to enable this concept to be used fruitfully in peptidomimetic design. The replica exchange molecular simulation approach adopted here, with its ability to provide detailed conformational insights into modified peptides, has potential as a tool to guide structure-based design of new improved peptidomimetics.

  2. omega-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of beta-amino acids and amines.

    Science.gov (United States)

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-04-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.

  3. ω-Amino Acid:Pyruvate Transaminase from Alcaligenes denitrificans Y2k-2: a New Catalyst for Kinetic Resolution of β-Amino Acids and Amines

    Science.gov (United States)

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-01-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and Vmax for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and Vmax for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion. PMID:15066855

  4. Double-Stranded Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2001-01-01

    A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker.......A novel class of compounds, known as peptide nucleic acids, form double-stranded structures with one another and with ssDNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  5. Comparison of trapping profiles between d-peptides and glutathione in the identification of reactive metabolites

    Directory of Open Access Journals (Sweden)

    Jaana E. Laine

    2015-01-01

    Full Text Available Qualitative trapping profile of reactive metabolites arising from six structurally different compounds was tested with three different d-peptide isomers (Peptide 1, gly–tyr–pro–cys–pro–his-pro; Peptide 2, gly–tyr–pro–ala–pro–his–pro; Peptide 3, gly–tyr–arg–pro–cys–pro–his–lys–pro and glutathione (GSH using mouse and human liver microsomes as the biocatalyst. The test compounds were classified either as clinically “safe” (amlodipine, caffeine, ibuprofen, or clinically as “risky” (clozapine, nimesulide, ticlopidine; i.e., associated with severe clinical toxicity outcomes. Our working hypothesis was as follows: could the use of short different amino acid sequence containing d-peptides in adduct detection confer any add-on value to that obtained with GSH? All “risky” agents’ resulted in the formation of several GSH adducts in the incubation mixture and with at least one peptide adduct with both microsomal preparations. Amlodipine did not form any adducts with any of the trapping agents. No GSH and peptide 2 and 3 adducts were found with caffeine, but with peptide 1 one adduct with human liver microsomes was detected. Ibuprofen produced one Peptide 1-adduct with human and mouse liver microsomes but not with GSH. In conclusion, GSH still remains the gold trapping standard for reactive metabolites. However, targeted d-peptides could provide additional information about protein binding potential of electrophilic agents, but their clinical significance needs to be clarified using a wider spectrum of chemicals together with other safety estimates.

  6. The remarkable stability of chimeric, sialic acid-derived alpha/delta-peptides in human blood plasma.

    Science.gov (United States)

    Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn

    2010-05-01

    Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.

  7. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Directory of Open Access Journals (Sweden)

    Tor E. Kristensen

    2015-04-01

    Full Text Available Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA, many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  8. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Science.gov (United States)

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  9. Dependence of the metabolic fecal amino acids on the amino acid content of the feed. 2

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Voelker, T.; Reichel, K.

    1982-01-01

    In an experiment with 20 15 N-labelled growing rats the excretion of amino acids as well as of metabolic fecal amino acids were investigated after feeding of soybean oil meal as sole protein source. A low, yet statistically significant increase of the excretion of amino acids and metabolic fecal amino acids was ascertained in accordance with a growing quota of soybean oil meal in the ration. The true digestibility of amino acids ascertained according to conventional methods is above 90% and, under consideration of the increase of metabolic fecal amino acids, on the average increases by 3.5 digestibility units (1.4 to 6.2). (author)

  10. Ribosomal incorporation of backbone modified amino acids via an editing-deficient aminoacyl-tRNA synthetase.

    Science.gov (United States)

    Iqbal, Emil S; Dods, Kara K; Hartman, Matthew C T

    2018-02-14

    The ability to incorporate non-canonical amino acids (ncAA) using translation offers researchers the ability to extend the functionality of proteins and peptides for many applications including synthetic biology, biophysical and structural studies, and discovery of novel ligands. Here we describe the high promiscuity of an editing-deficient valine-tRNA synthetase (ValRS T222P). Using this enzyme, we demonstrate ribosomal translation of 11 ncAAs including those with novel side chains, α,α-disubstitutions, and cyclic β-amino acids.

  11. Deracemization of Racemic Amino Acids Using (R)- and (S)-Alanine Racemase Chiral Analogues as Chiral Converters

    International Nuclear Information System (INIS)

    Paik, Manjeong; Jeon, So Hee; Lee, Wonjae; Kang, Jong Seong; Kim, Kwan Mook

    2014-01-01

    Our findings show that both (R)- and (S)-ARCA can be practical chiral converters for L- and D-amino acids, respectively, in the deracemization of racemic amino acids. The overall stereoselectivities of both chiral converters are generally greater than 90%. In addition, we developed chiral and achiral HPLC methods for the analysis of stereoselectivity determination. This chromatographic method proved much more accurate and convenient at determining both enantiomer and diastereomer purity than did those previously reported. Deracemization is the stereoselective process of converting a racemate into either a pure enantiomer or a mixture in which one enantiomer is present in excess.1 Previous studies have shown that (S)-alanine racemase chiral analogue (ARCA) [(S)-2-hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde], developed as a chiral convertor compound that imitates the function of alanine racemase, plays an essential role in the stereoselective conversion of amino acid. Since (S)-ARCA showed a higher stability with D-amino acids than with L-amino acids, several L-amino acids were preferentially converted to D-amino acids via (S)-ARCA/D-amino acid imine diastereomer formation. For the deracemization process undertaken in this study, we utilized both (R)-ARCA and (S)-ARCA as chiral converters, which were expected to generate L- and D-amino acids, respectively, from the starting racemic mixtures

  12. Amino acid "little Big Bang": representing amino acid substitution matrices as dot products of Euclidian vectors.

    Science.gov (United States)

    Zimmermann, Karel; Gibrat, Jean-François

    2010-01-04

    Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  13. Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors

    Directory of Open Access Journals (Sweden)

    Zimmermann Karel

    2010-01-01

    Full Text Available Abstract Background Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. Results We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. Conclusions This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  14. Prebiotic Amino Acid Thioester Synthesis: Thiol-Dependent Amino Acid Synthesis from Formose substrates (Formaldehyde and Glycolaldehyde) and Ammonia

    Science.gov (United States)

    Weber, Arthur L.

    1998-01-01

    Formaldehyde and glycolaldehyde (substrates of the formose autocatalytic cycle) were shown to react with ammonia yielding alanine and homoserine under mild aqueous conditions in the presence of thiol catalysts. Since similar reactions carried out without ammonia yielded alpha-hydroxy acid thioesters, the thiol-dependent synthesis of alanine and homoserine is presumed to occur via amino acid thioesters-intermediates capable of forming peptides. A pH 5.2 solution of 20 mM formaldehyde, 20 mM glycolaldehyde, 20 mM ammonium chloride, 23 mM 3-mercaptopropionic acid, and 23 mM acetic acid that reacted for 35 days at 40 C yielded (based on initial formaldehyde) 1.8% alanine and 0.08% homoserine. In the absence of thiol catalyst, the synthesis of alanine and homoserine was negligible. Alanine synthesis required both formaldehyde and glycolaldehyde, but homoserine synthesis required only glycolaldehyde. At 25 days the efficiency of alanine synthesis calculated from the ratio of alanine synthesized to formaldehyde reacted was 2.1%, and the yield (based on initial formaldehyde) of triose and tetrose intermediates involved in alanine and homoserine synthesis was 0.3 and 2.1%, respectively. Alanine synthesis was also seen in similar reactions containing only 10 mM each of aldehyde substrates, ammonia, and thiol. The prebiotic significance of these reactions that use the formose reaction to generate sugar intermediates that are converted to reactive amino acid thioesters is discussed.

  15. New Insights into Amino Acid Preservation in the Early Oceans Using Modern Analytical Techniques

    Science.gov (United States)

    Parker, Eric T.; Brinton, Karen L.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.; Bada, Jeffrey L.

    2015-01-01

    Protein- and non-protein-amino acids likely occupied the oceans at the time of the origin and evolution of life. Primordial soup-, hydrothermal vent-, and meteoritic-processes likely contributed to this early chemical inventory. Prebiotic synthesis and carbonaceous meteorite studies suggest that non-protein amino acids were likely more abundant than their protein-counterparts. Amino acid preservation before abiotic and biotic destruction is key to biomarker availability in paleoenvironments and remains an important uncertainty. To constrain primitive amino acid lifetimes, a 1992 archived seawater/beach sand mixture was spiked with D,L-alanine, D,L-valine (Val), alpha-aminoisobutyric acid (alpha-AIB), D,L-isovaline (Iva), and glycine (Gly). Analysis by high performance liquid chromatography with fluorescence detection (HPLC-FD) showed that only D-Val and non-protein amino acids were abundant after 2250 days. The mixture was re-analyzed in 2012 using HPLC-FD and a triple quadrupole mass spectrometer (QqQ-MS). The analytical results 20 years after the inception of the experiment were strikingly similar to those after 2250 days. To confirm that viable microorganisms were still present, the mixture was re-spiked with Gly in 2012. Aliquots were collected immediately after spiking, and at 5- and 9-month intervals thereafter. Final HPLC-FD/QqQ-MS analyses were performed in 2014. The 2014 analyses revealed that only alpha-AIB, D,L-Iva, and D-Val remained abundant. The disappearance of Gly indicated that microorganisms still lived in the mixture and were capable of consuming protein amino acids. These findings demonstrate that non-protein amino acids are minimally impacted by biological degradation and thus have very long lifetimes under these conditions. Primitive non-protein amino acids from terrestrial synthesis, or meteorite in-fall, likely experienced great-er preservation than protein amino acids in paleo-oceanic environments. Such robust molecules may have reached a

  16. Manageable cytotoxicity of nanocapsules immobilizing D-amino acid oxidase via exogenous administration of nontoxic prodrug

    Science.gov (United States)

    Zhao, Yang; Zhu, Yingchun; Fu, Jingke

    2014-02-01

    D-Amino acid oxidase (DAO), which could catalyze generation of hydrogen peroxide with strong oxidbility and cytotoxicity, has become of interest as a biocatalyst for therapeutic treatments. Herein we report that amino-functional hollow mesoporous silica with large pore size (10.27 nm) and positively charged surface effectively immobilize DAO with negative charge. The adsorption, activity and stability of DAO are demonstrated to depend mainly on the amino-functionalization of surface. Significant cancer cell killing effect is observed when the cells are treated by the nanocapsules entrapping DAO together with D-alanine, showing distinct dose-dependency on concentration of the nanocapsules entrapping DAO or D-alanine. Nevertheless, the toxicity is completely neutralized by the addition of catalase, and anti-tumor effect is not observed when either the nanocapsules entrapping DAO or D-alanine is applied alone. The results indicate that cytotoxicity of the nanocapsules entrapping DAO could be managed by exogenous administration of nontoxic prodrug to tumor tissue, due to the stereoselectivity of DAO and the scarcity of its substrates in mammalian organisms. Thus, the method might be exploited as a potential treatment for cancer therapy.

  17. Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium.

    Science.gov (United States)

    Silva, Tânia; Moreira, Ana C; Nazmi, Kamran; Moniz, Tânia; Vale, Nuno; Rangel, Maria; Gomes, Paula; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2017-01-01

    Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17-30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17-30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17-30 did not localize to M. avium -harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17-30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis , M. leprae , M. avium , etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we

  18. cobaloxime by imidazoles and amino acids

    Indian Academy of Sciences (India)

    Unknown

    to replicate them in experimental model systems with ... Axial ligation kinetics was monitored .... A trans influence study in propyl (aquo)cobaloxime by imidazoles and amino acids. 307 .... unfilled π* anti-bonding orbitals through dπ–pπ back-.

  19. Poly(amino acid) functionalized maghemite and gold nanoparticles

    International Nuclear Information System (INIS)

    Perego, Davide; Manuel Domínguez-Vera, José; Gálvez, Natividad; Masciocchi, Norberto; Guagliardi, Antonietta

    2013-01-01

    Bimodal MRI/OI imaging probes are of great interest in nanomedicine. Although many organic polymers have been studied thoroughly for in vivo applications, reports on the use of poly(amino acid)s as coating polymers are scarce. In this paper, poly-(d-glutamic acid, d-lysine) (PGL) has been used for coating maghemite and gold nanoparticles. An advantage of this flexible and biocompatible polymer is that, once anchored to the nanoparticle surface, dangling lysine amino groups are available for the incorporation of new functionalities. As an example, Alexa Fluor derivatives have been attached to PGL-coated maghemite nanoparticles to obtain magnetic/fluorescent materials. These dual-property materials could be used as bimodal MRI/OI probes for in vivo imaging. (paper)

  20. Rigid Dipeptide Mimics: Synthesis of Enantiopure 5- and 7-Benzyl and 5,7-Dibenzyl Indolizidinone Amino Acids via Enolization and Alkylation of delta-Oxo alpha,omega-Di-[N-(9-(9-phenylfluorenyl))amino]azelate Esters.

    Science.gov (United States)

    Polyak, Felix; Lubell, William D.

    1998-08-21

    Azabicyclo[X.Y.0]alkane amino acids are tools for constructing mimics of peptide structure and templates for generating combinatorial libraries for drug discovery. Our methodology for synthesizing these conformationally rigid dipeptides has been elaborated such that alkyl groups can be appended onto the heterocycle to generate mimics of peptide backbone and side-chain structure. Inexpensive glutamic acid was employed as chiral educt in a Claisen condensation/ketone alkylation/reductive amination/lactam cyclization sequence that furnished alkyl-branched azabicyclo[4.3.0]alkane amino acid. Enantiopure 5-benzyl-, 7-benzyl-, and 5,7-dibenzylindolizidinone amino acids 2-4 were stereoselectively synthesized via efficient reaction sequences featuring the alkylation of di-tert-butyl alpha,omega-di-[N-(PhF)amino]azelate delta-ketone 5. A variety of alkyl halides were readily added to the enolate of ketone 5 to provide mono- and dialkylated ketones 6 and 7. Hydride additions to 6 and 7, methanesulfonations, and intramolecular S(N)2 displacements by the PhF amine gave 5-alkylprolines that were converted by lactam cyclizations into 7- and 5-benzyl-, as well as 5,7-dibenzyl-2-oxo-3-N-(BOC)amino-1-azabicyclo[4.3.0]nonane-9-carboxylate methyl esters 10, 11, and 14. Epimerization of the alkyl-branched stereocenter via an iminium-enaminium equilibrium proved effective for controlling diastereoselectivity in reductive aminations with 6 and 7 in order to furnish 5-alkylprolines that were similarly converted to 7- benzyl- and 5,7-dibenzylindolizidinone N-(BOC)amino esters 10 and 14. Ester hydrolysis with hydroxide ion and potassium trimethylsilanolate then gave enantiopure indolizidinone amino acids 2-4. Epimerization at C-9 of benzylindolizidinone amino esters was also used to provide alternative diastereomers of 10, 11, and 14. This practical methodology for introducing side-chain groups onto the heterocycle with regioselective and diastereoselective control is designed to enhance

  1. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  2. What peptides these deltorphins be.

    Science.gov (United States)

    Lazarus, L H; Bryant, S D; Cooper, P S; Salvadori, S

    1999-02-01

    The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.

  3. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  4. Decapeptides as effective agonists from L-amino acids biologically equivalent to the luteinizing hormone-releasing hormone

    International Nuclear Information System (INIS)

    Folkers, K.; Bowers, C.Y.; Tang, P.L.; Kubota, M.

    1986-01-01

    Apparently, no agonist has been found that is comparable in potency to the luteinizing hormone-releasing hormone (LHRH) for release of LH and follicle-stimulating hormone (FSH) without substitutions with unnatural or D forms of natural amino acids. Of 139 known agonist analogs of LHRH, two were active in the range of 65%. The four LHRHs known to occur in nature involve a total of six amino acids (Tyr, His, Leu, Trp, Arg, Gln) in positions 5, 7, and 8. There are 16 possible peptides with these six amino acids in positions 5, 7, and 8, of which 4 are the known LHRHs, and 2 more were synthesized. The authors have synthesized the 10 new peptides and assayed 11 in vivo and in vitro, and they found not only 1 but a total of 5 that have activity equivalent to or greater than that of LHRH for the release of LH and/or FSH under at least one assay condition. These five are as follows: [His 5 ,Trp 7 ,Gln 8 ]LHRH; [His 5 ,Trp 7 ,Leu 8 ]LHRH; [His 5 ,Trp 7 ]LHRH; [Trp 7 ]LHRH; [His 5 ]LHRH. These structures are a basis for the design of antagonists without Arg 8 toward avoiding histamine release. Complete inhibition of LH and FSH release in vivo may be induced by joint use of Arg 8 and Gln 8 or Leu 8 antagonists. These potent agonists, related to LHRH, may be therapeutically useful in disorders of reproduction, the central nervous system, and for the control of hormone-dependent carcinomas. Radioreceptor assays and radioimmunoassays were utilized

  5. Branched-Chain Amino Acids

    Directory of Open Access Journals (Sweden)

    Matteo Ghiringhelli

    2015-07-01

    Full Text Available Our study is focused on evaluation and use of the most effective and correct nutrients. In particular, our attention is directed to the role of certain amino acids in cachectic patients. During parenteral nutrition in humans, physician already associates in the PN-bags different formulations including amino acids, lipids and glucose solutions or essential amino acids solution alone or exclusively branched-chain amino acids (BCAA. Studies investigated the effects of dietary BCAA ingestion on different diseases and conditions such as obesity and metabolic disorders, liver disease, muscle atrophy, cancer, impaired immunity or injuries (surgery, trauma, burns, and sepsis. BCAAs have been shown to affect gene expression, protein metabolism, apoptosis and regeneration of hepatocytes, and insulin resistance. They have also been shown to inhibit the proliferation of liver cancer cells in vitro, and are essential for lymphocyte proliferation and dendritic cell maturation. Oral or parenteral administration of these three amino acids will allow us to evaluate the real efficacy of these compounds during a therapy to treat malnutrition in subjects unable to feed themselves.

  6. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  7. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  8. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  9. Structural and computational analysis of peptide recognition mechanism of class-C type penicillin binding protein, alkaline D-peptidase from Bacillus cereus DF4-B

    OpenAIRE

    Nakano, Shogo; Okazaki, Seiji; Ishitsubo, Erika; Kawahara, Nobuhiro; Komeda, Hidenobu; Tokiwa, Hiroaki; Asano, Yasuhisa

    2015-01-01

    Alkaline D-peptidase from Bacillus cereus DF4-B, called ADP, is a D-stereospecific endopeptidase reacting with oligopeptides containing D-phenylalanine (D-Phe) at N-terminal penultimate residue. ADP has attracted increasing attention because it is useful as a catalyst for synthesis of D-Phe oligopeptides or, with the help of substrate mimetics, L-amino acid peptides and proteins. Structure and functional analysis of ADP is expected to elucidate molecular mechanism of ADP. In this study, the c...

  10. Electronic coupling through natural amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Berstis, Laura; Beckham, Gregg T., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov; Crowley, Michael F., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov [National Renewable Energy Laboratory, National Bioenergy Center, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States)

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  11. PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles.

    Science.gov (United States)

    Luan, Hemi; Yang, Lin; Ji, Fenfen; Cai, Zongwei

    2017-03-15

    Alkyl chloroformate have been wildly used for the fast derivatization of metabolites with amino and/or carboxyl groups, coupling of powerful separation and detection systems, such as GC-MS, which allows the comprehensive analysis of non-amino organic acids and amino acids. The reagents involving n-alkyl chloroformate and n-alcohol are generally employed for providing symmetric labeling terminal alkyl chain with the same length. Here, we developed an asymmetric labeling strategy and positive chemical ionization gas chromatography-tandem mass spectrometry (PCI-GC-MS-MS) approach for determination of non-amino organic acids and amino acids, as well as the short chain fatty acids. Carboxylic and amino groups could be selectively labelled by propyl and ethyl groups, respectively. The specific neutral loss of C 3 H 8 O (60Da), C 3 H 5 O 2 (74Da) and C 4 H 8 O 2 (88Da) were useful in the selective identification for qualitative analysis of organic acids and amino acid derivatives. PCI-GC-MS-MS using multiple reaction monitoring (MRM) was applied for semi-quantification of typical non-amino organic acids and amino acids. This method exhibited a wide range of linear range, good regression coefficient (R 2 ) and repeatability. The relative standard deviation (RSD) of targeted metabolites showed excellent intra- and inter-day precision (chloroformate derivatization. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A compendium of cyclic sugar amino acids and their carbocyclic and heterocyclic nitrogen analogues.

    Science.gov (United States)

    Risseeuw, Martijn; Overhand, Mark; Fleet, George W J; Simone, Michela I

    2013-10-01

    This compendium focuses on functionalised sugar amino acids (SAAs) and their 3- to 6-membered nitrogen heterocyclic and carbocyclic analogues. The main benefit of using SAAs and their related nitrogen and carbon congeners in the production of peptidomimetics and glycomimetics is that their properties can be readily altered via modification of their ring size, chemical manipulation of their numerous functional groups and fine-tuning of the stereochemical arrangement of their ring substituents. These building blocks provide access to hydrophilic and hydrophobic peptide isosteres whose physical properties allow entry to a region of chemotherapeutic space which is still under-explored by medicinal chemists. These building blocks are also important in providing amino acids whose inherent conformational bias leads to predisposition to secondary structure upon oligomerisation in relatively short sequences. These foldamers, particularly those containing ω-amino acids, provide an additional opportunity to expand access to the control of structures by artificial peptides. The synthesis and biological evaluation of these building blocks in glycomimetics and peptidomimetics systems keep expanding the reach of the glycosciences to the medical sciences, provide a greater outlook onto the wide range of cellular functions of saccharides and their derivatives involved and greater insight into the nature of oligosaccharide and protein folding.

  13. Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower.

    Science.gov (United States)

    Jia, Ru; Li, Yingchao; Al-Mahamedh, Hussain H; Gu, Tingyue

    2017-01-01

    Different species of microbes form mixed-culture biofilms in cooling water systems. They cause microbiologically influenced corrosion (MIC) and biofouling, leading to increased operational and maintenance costs. In this work, two D-amino acid mixtures were found to enhance two non-oxidizing biocides [tetrakis hydroxymethyl phosphonium sulfate (THPS) and NALCO 7330 (isothiazoline derivatives)] and one oxidizing biocide [bleach (NaClO)] against a biofilm consortium from a water cooling tower in lab tests. Fifty ppm (w/w) of an equimass mixture of D-methionine, D-leucine, D-tyrosine, D-tryptophan, D-serine, D-threonine, D-phenylalanine, and D-valine (D8) enhanced 15 ppm THPS and 15 ppm NALCO 7330 with similar efficacies achieved by the 30 ppm THPS alone treatment and the 30 ppm NALCO 7330 alone treatment, respectively in the single-batch 3-h biofilm removal test. A sequential treatment method was used to enhance bleach because D-amino acids react with bleach. After a 4-h biofilm removal test, the sequential treatment of 5 ppm bleach followed by 50 ppm D8 achieved extra 1-log reduction in sessile cell counts of acid producing bacteria, sulfate reducing bacteria, and general heterotrophic bacteria compared with the 5 ppm bleach alone treatment. The 10 ppm bleach alone treatment showed a similar efficacy with the sequential treatment of 5 ppm bleach followed by 50 ppm D8. The efficacy of D8 was found better than that of D4 (an equimass mixture of D-methionine, D-leucine, D-tyrosine, and D-tryptophan) in the enhancement of the three individual biocides against the biofilm consortium.

  14. Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower

    Directory of Open Access Journals (Sweden)

    Ru Jia

    2017-08-01

    Full Text Available Different species of microbes form mixed-culture biofilms in cooling water systems. They cause microbiologically influenced corrosion (MIC and biofouling, leading to increased operational and maintenance costs. In this work, two D-amino acid mixtures were found to enhance two non-oxidizing biocides [tetrakis hydroxymethyl phosphonium sulfate (THPS and NALCO 7330 (isothiazoline derivatives] and one oxidizing biocide [bleach (NaClO] against a biofilm consortium from a water cooling tower in lab tests. Fifty ppm (w/w of an equimass mixture of D-methionine, D-leucine, D-tyrosine, D-tryptophan, D-serine, D-threonine, D-phenylalanine, and D-valine (D8 enhanced 15 ppm THPS and 15 ppm NALCO 7330 with similar efficacies achieved by the 30 ppm THPS alone treatment and the 30 ppm NALCO 7330 alone treatment, respectively in the single-batch 3-h biofilm removal test. A sequential treatment method was used to enhance bleach because D-amino acids react with bleach. After a 4-h biofilm removal test, the sequential treatment of 5 ppm bleach followed by 50 ppm D8 achieved extra 1-log reduction in sessile cell counts of acid producing bacteria, sulfate reducing bacteria, and general heterotrophic bacteria compared with the 5 ppm bleach alone treatment. The 10 ppm bleach alone treatment showed a similar efficacy with the sequential treatment of 5 ppm bleach followed by 50 ppm D8. The efficacy of D8 was found better than that of D4 (an equimass mixture of D-methionine, D-leucine, D-tyrosine, and D-tryptophan in the enhancement of the three individual biocides against the biofilm consortium.

  15. Hydroxyapatite-binding peptides for bone growth and inhibition

    Science.gov (United States)

    Bertozzi, Carolyn R [Berkeley, CA; Song, Jie [Shrewsbury, MA; Lee, Seung-Wuk [Walnut Creek, CA

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  16. Glutamic Acid – the Main Dietary Amino Acid – and Blood Pressure: The INTERMAP Study

    Science.gov (United States)

    Stamler, Jeremiah; Brown, Ian J; Daviglus, Martha L; Chan, Queenie; Kesteloot, Hugo; Ueshima, Hirotsugu; Zhao, Liancheng; Elliott, Paul

    2009-01-01

    Background Data are available indicating an independent inverse relationship of dietary vegetable protein to the blood pressure (BP) of individuals. Here we assess whether BP is associated with glutamic acid intake (the predominant dietary amino acid, especially in vegetable protein) and with each of four other amino acids higher relatively in vegetable than animal protein (proline, phenylalanine, serine, cystine). Methods and Results Cross-sectional epidemiological study; 4,680 persons ages 40–59 -- 17 random population samples in China, Japan, U.K., U.S.A.; BP measurement 8 times at 4 visits; dietary data (83 nutrients, 18 amino acids) from 4 standardized multi-pass 24-hour dietary recalls and 2 timed 24-hour urine collections. Dietary glutamic acid (percent of total protein intake) was inversely related to BP. Across multivariate regression models (Model 1 controlled for age, gender, sample, through Model 5 controlled for 16 non-nutrient and nutrient possible confounders) estimated average BP differences associated with glutamic acid intake higher by 4.72% total dietary protein (2 s.d.) were −1.5 to −3.0 mm Hg systolic and −1.0 to −1.6 mm Hg diastolic (Z-values −2.15 to −5.11). Results were similar for the glutamic acid-BP relationship with each other amino acid also in the model, e.g., with control for 15 variables plus proline, systolic/diastolic pressure differences −2.7/−2.0 (Z −2.51, −2.82). In these 2-amino acid models, higher intake (2 s.d.) of each other amino acid was associated with small BP differences and Z-values. Conclusions Dietary glutamic acid may have independent BP lowering effects, possibly contributing to the inverse relation of vegetable protein to BP. PMID:19581495

  17. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from...... of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...... beta-amino alcohols through a straightforward five step sequence. The key step of this synthesis is an original anionic 4-exo-tet ring closure that forms the azetidine ring upon an intramolecular Michael addition. This reaction was proven to be reversible and to lead to a thermodynamic distribution...

  18. Metabolic fate of lactoferricin-based antimicrobial peptides: effect of truncation and incorporation of amino acid analogs on the in vitro metabolic stability.

    Science.gov (United States)

    Svenson, Johan; Vergote, Valentijn; Karstad, Rasmus; Burvenich, Christian; Svendsen, John S; De Spiegeleer, Bart

    2010-03-01

    A series of promising truncated antibacterial tripeptides derived from lactoferricin has been prepared, and their in vitro metabolic stability in the main metabolic compartments, plasma, liver, kidney, stomach, duodenum, and brain, has been investigated for the first time. The potential stabilizing effect of truncation, C-terminal capping, and introduction of the bulky synthetic amino acid biphenylalanine is also investigated. The drug-like peptides displayed large differences in half-lives in the different matrixes ranging from 4.2 min in stomach and duodenum to 355.9 min in liver. Kinetic analysis of the metabolites revealed that several different degrading enzymes simultaneously target the different peptide bonds and that the outcome of the tested strategies to increase the stability is clearly enzyme-specific. Some of the metabolic enzymes even prefer the synthetic modifications incorporated over the natural counterparts. Collectively, it is shown that the necessary antibacterial pharmacophore generates compounds that are not only potent antibacterial peptides, but excellent substrates for the main degrading enzymes. All the amide bonds are thus rapidly targeted by different enzymes despite the short peptidic sequences of the tested compounds. Hence, our results illustrate that several structural changes are needed before these compounds can be considered for oral administration. Strategies to overcome such metabolic challenges are discussed.

  19. Role of a single amino acid substitution of VP3 H142D for increased acid resistance of foot-and-mouth disease virus serotype A.

    Science.gov (United States)

    Biswal, Jitendra K; Das, Biswajit; Sharma, Gaurav K; Khulape, Sagar A; Pattnaik, Bramhadev

    2016-04-01

    Foot-and-mouth disease virus (FMDV) particles lose infectivity due to their dissociation into pentamers at pH value below 6.5. After the uptake of FMDV by receptor-mediated endocytosis, the acid-dependent dissociation process is required for the release of FMDV genome inside endosomes. Nevertheless, dissociation of FMDV particles in mildly acidic conditions renders the inactivated FMD vaccine less effective. To improve the acid stability of inactivated FMD vaccine during the manufacturing process, a serotype A IND 40/2000 (in-use vaccine strain) mutant with increased resistance to acid inactivation was generated through reverse genetics approach. Based upon the earlier reports, the crucial amino acid residue, H142 of VP3 capsid protein was substituted separately to various amino acid residues Arg (R), Phe (F), Ala (A), and Asp (D) on the full-genome length cDNA clone. While the H142 → R or H142 → F or H142 → A substitutions resulted in non-infectious FMDV, H142 → D mutation on VP3 protein (H3142D) resulted in the generation of mutant virus with enhanced resistance to acid-induced inactivation. In addition, H3142D substitution did not alter the replication ability and antigenicity of mutant as compared to the parental virus. However, the virus competition experiments revealed that the H3142D substitution conferred a loss of fitness for the mutant virus. Results from this study demonstrate that the H3142D substitution is the molecular determinant of acid-resistant phenotype in FMDV serotype A.

  20. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide.

    Science.gov (United States)

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH 2 ). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD 3 CD in H 2 O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  1. Development of SAAP3D force field and the application to replica-exchange Monte Carlo simulation for chignolin and C-peptide

    Science.gov (United States)

    Iwaoka, Michio; Suzuki, Toshiki; Shoji, Yuya; Dedachi, Kenichi; Shimosato, Taku; Minezaki, Toshiya; Hojo, Hironobu; Onuki, Hiroyuki; Hirota, Hiroshi

    2017-12-01

    Single amino acid potential (SAAP) would be a prominent factor to determine peptide conformations. To prove this hypothesis, we previously developed SAAP force field for molecular simulation of polypeptides. In this study, the force field was renovated to SAAP3D force field by applying more accurate three-dimensional main-chain parameters, instead of the original two-dimensional ones, for the amino acids having a long side-chain. To demonstrate effectiveness of the SAAP3D force field, replica-exchange Monte Carlo (REMC) simulation was performed for two benchmark short peptides, chignolin (H-GYDPETGTWG-OH) and C-peptide (CHO-AETAAAKFLRAHA-NH2). For chignolin, REMC/SAAP3D simulation correctly produced native β-turn structures, whose minimal all-atom root-mean-square deviation value measured from the native NMR structure (except for H) was 1.2 Å, at 300 K in implicit water, along with misfolded β-hairpin structures with unpacked aromatic side chains of Tyr2 and Trp9. Similar results were obtained for chignolin analog [G1Y,G10Y], which folded more tightly to the native β-turn structure than chignolin did. For C-peptide, on the other hand, the α-helix content was larger than the β content on average, suggesting a significant helix-forming propensity. When the imidazole side chain of His12 was protonated (i.e., [His12Hip]), the α content became larger. These observations as well as the representative structures obtained by clustering analysis were in reasonable agreement not only with the structures of C-peptide that were determined in this study by NMR in 30% CD3CD in H2O at 298 K but also with the experimental and theoretical behaviors having been reported for protonated C-peptide. Thus, accuracy of the SAAP force field was improved by applying three-dimensional main-chain parameters, supporting prominent importance of SAAP for peptide conformations.

  2. Removal of cyanobacterial amino acids in water treatment by activated carbon adsorption

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Lenka; Kopecká, Ivana; Pivokonský, Martin; Pivokonská, Lenka; Janda, V.

    2017-01-01

    Roč. 173, č. 1 (2017), s. 330-338 ISSN 1383-5866 Institutional support: RVO:67985874 Keywords : amino acids * activated carbon * adsorption * algal organic matter * water treatment * coagulation * microcystis aeruginosa * peptides/proteins * permanganate pre-oxidation * water treatment Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.359, year: 2016

  3. Thermal and single frequency counter-current ultrasound pretreatments of sodium caseinate: enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution and antioxidant peptides.

    Science.gov (United States)

    Abdualrahman, Mohammed Adam Y; Ma, Haile; Zhou, Cunshan; Yagoub, Abu ElGasim A; Hu, Jiali; Yang, Xue

    2016-12-01

    Due to the disadvantages of traditional enzymolysis, pretreatments are crucial to enhance protein enzymolysis. Enzymolysis kinetics and thermodynamics, amino acids composition, molecular weight distribution, fluorescence spectroscopy and antioxidant activity of thermal (HT) and single frequency counter-current ultrasound (SCFU) pretreated sodium caseinate (NaCas) were studied. Enzymolysis of untreated NaCas (control) improved significantly (P < 0.05) by SFCU and followed by HT. Values of the Michaelis-Menten constant (K M ) of SFCU and HT were 0.0212 and 0.0250, respectively. HT and SFCU increased (P < 0.05) the reaction rate constant (k) by 38.64 and 90.91%, respectively at 298 K. k values decreased with increasing temperature. The initial activation energy (46.39 kJ mol -1 ) reduced (P < 0.05) by HT (39.66 kJ mol -1 ) and further by SFCU (33.42 kJ mol -1 ). SFCU-pretreated NaCas hydrolysates had the highest contents of hydrophobic, aromatic, positively and negatively charged amino acids. Medium-sized peptides (5000-1000 Da) are higher in SFCU (78.11%) than HT and the control. SFCU induced molecular unfolding of NaCas proteins. Accordingly, SFCU-pretreated NaCas hydrolysate exhibited the highest scavenging activity on DPPH and hydroxyl radicals, reducing power, and iron chelating ability. SFCU pretreatment would be a useful tool for production of bioactive peptides from NaCas hydrolysate. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Zhongchun Tong

    Full Text Available Free D-amino acids (D-AAs are one of the most striking features of the peptidoglycan composition in bacteria and play a key role in regulating and disassembling bacterial biofilms. Previous studies have indicated that the antimicrobial peptide nisin can inhibit the growth of the cariogenic bacteria Streptococcus mutans. The present study investigated the effect of free amino acids either alone or in combination with nisin on biofilm and on planktonic S. mutans bacteria. The results of the MIC and MBC analyses showed that D-cysteine (Cys, D- or L-aspartic acid (Asp, and D- or L-glutamic acid (Glu significantly improve the antibacterial activity of nisin against S. mutans and that the mixture of D-Cys, D-Asp, and D-Glu (3D-AAs and the mixture of L-Cys, L-Asp, and L-Glu (3L-AAs at a concentration of 40 mM can prevent S. mutans growth. Crystal violet staining showed that the D- or L-enantiomers of Cys, Asp, and Glu at a concentration of 40 mM can inhibit the formation of S. mutans biofilms, and their mixture generated a stronger inhibition than the components alone. Furthermore, the mixture of the three D-AAs or L-AAs may improve the antibacterial activity of nisin against S. mutans biofilms. This study underscores the potential of free amino acids for the enhancement of the antibacterial activity of nisin and the inhibition of the cariogenic bacteria S. mutans and biofilms.

  5. Effects of α-amino acids and small peptides on the rate of an SN1 acetal hydrolysis reaction in aqueous solution : The interplay of hydrophobic and hydrophilic solute hydration

    NARCIS (Netherlands)

    Streefland, L.; Blandamer, M.J; Engberts, J.B.F.N.

    The effects of small amounts of anionic a-amino acids and several small peptides on the kinetics of the S(N)1 hydrolysis of 2-(4-nitrophenoxy)tetrahydropyran have been investigated at pH 11 and 40 degrees C. The rate-retarding effect at 1 molal of cosolute is plotted as ln (k(m=1)/k(m=0)) versus the

  6. In silico analysis of amino acid biosynthesis and proteolysis in Lactobacillus delbrueckii subsp. bulgaricus 2038 and the implications for bovine milk fermentation.

    Science.gov (United States)

    Zheng, Huajun; Liu, Enuo; Hao, Pei; Konno, Tomonobu; Oda, Munehiro; Ji, Zai-Si

    2012-08-01

    The amino acid biosynthesis pathway and proteolytic system of Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038), a mainstay of large-scale yogurt production, were modeled based on its genomic sequence. L. bulgaricus 2038 retains more potential for amino acid synthesis and a more powerful proteolytic system than other L. bulgaricus strains, but favors amino acid uptake over de novo synthesis. Free amino acids and peptides in bovine milk provide the main nitrogen sources; whey is more important than casein for L. bulgaricus during fermentation. Free amino acids are imported by amino acid permeases and by ABC-type transport systems whereas exogenous oligopeptides are imported by ABC-type proteins only. Histidine is neither synthesized nor imported singly, which might explain why L. bulgaricus cannot grow in synthetic media.

  7. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    Science.gov (United States)

    Klisch, Manfred; Häder, Donat-P.

    2008-01-01

    Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporine-like amino acids (MAAs). The latter form a group of water-soluble, low molecular-weight (generally < 400) compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences. PMID:18728764

  8. Mycosporine-Like Amino Acids and Marine Toxins - The Common and the Different

    Directory of Open Access Journals (Sweden)

    Donat P. Häder

    2008-05-01

    Full Text Available Marine microorganisms harbor a multitude of secondary metabolites. Among these are toxins of different chemical classes as well as the UV-protective mycosporinelike amino acids (MAAs. The latter form a group of water-soluble, low molecular-weight (generally < 400 compounds composed of either an aminocyclohexenone or an aminocyclohexenimine ring, carrying amino acid or amino alcohol substituents. So far there has been no report of toxicity in MAAs but nevertheless there are some features they have in common with marine toxins. Among the organisms producing MAAs are cyanobacteria, dinoflagellates and diatoms that also synthesize toxins. As in cyclic peptide toxins found in cyanobacteria, amino acids are the main building blocks of MAAs. Both, MAAs and some marine toxins are transferred to other organisms e.g. via the food chains, and chemical modifications can take place in secondary consumers. In contrast to algal toxins, the physiological role of MAAs is clearly the protection from harmful UV radiation by physical screening. However, other roles, e.g. as osmolytes and antioxidants, are also considered. In this paper the common characteristics of MAAs and marine toxins are discussed as well as the differences.

  9. Amino acid analogs for tumor imaging

    International Nuclear Information System (INIS)

    Goodman, M.M.; Shoup, T.

    1998-01-01

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [ 18 F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an α-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of α-aminoisobutyric acid

  10. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    International Nuclear Information System (INIS)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.; Cohen, G.H.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar. For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells

  11. The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase.

    OpenAIRE

    Haggarty, N W; Dunbar, B; Fothergill, L A

    1983-01-01

    The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase, comprising 239 residues, was determined. The sequence was deduced from the four cyanogen bromide fragments, and from the peptides derived from these fragments after digestion with a number of proteolytic enzymes. Comparison of this sequence with that of the yeast glycolytic enzyme, phosphoglycerate mutase, shows that these enzymes are 47% identical. Most, but not all, of the residues implicated as being important...

  12. Chiral separation of amino acids in biological fluids by micellar electrokinetic chromatography with laser-induced fluorescence detection.

    Science.gov (United States)

    Thorsén, G; Bergquist, J

    2000-08-18

    A method is presented for the chiral analysis of amino acids in biological fluids using micellar electrokinetic chromatography (MEKC) and laser-induced fluorescence (LIF). The amino acids are derivatized with the chiral reagent (+/-)-1-(9-anthryl)-2-propyl chloroformate (APOC) and separated using a mixed micellar separation system. No tedious pre-purification of samples is required. The excellent separation efficiency and good detection capabilities of the MEKC-LIF system are exemplified in the analysis of urine and cerebrospinal fluid. This is the first time MEKC has been reported for chiral analysis of amino acids in biological fluids. The amino acids D-alanine, D-glutamine, and D-aspartic acid have been observed in cerebrospinal fluid, and D-alanine and D-glutamic acid in urine. To the best of our knowledge no measurements of either D-alanine in cerebrospinal fluid or D-glutamic acid in urine have been presented in the literature before.

  13. Genetic variation in food choice behaviour of amino acid-deprived Drosophila.

    Science.gov (United States)

    Toshima, Naoko; Hara, Chieko; Scholz, Claus-Jürgen; Tanimura, Teiichi

    2014-10-01

    To understand homeostatic regulation in insects, we need to understand the mechanisms by which they respond to external stimuli to maintain the internal milieu. Our previous study showed that Drosophila melanogaster exhibit specific amino acid preferences. Here, we used the D.melanogaster Genetic Reference Panel (DGRP), which is comprised of multiple inbred lines derived from a natural population, to examine how amino acid preference changes depending on the internal nutritional state in different lines. We performed a two-choice preference test and observed genetic variations in the response to amino acid deprivation. For example, a high-responding line showed an enhanced preference for amino acids even after only 1day of deprivation and responded to a fairly low concentration of amino acids. Conversely, a low-responding line showed no increased preference for amino acids after deprivation. We compared the gene expression profiles between selected high- and the low-responding lines and performed SNP analyses. We found several groups of genes putatively involved in altering amino acid preference. These results will contribute to future studies designed to explore how the genetic architecture of an organism evolves to adapt to different nutritional environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Novel angiotensin-converting enzyme (ACE) inhibitory peptides derived from boneless chicken leg meat.

    Science.gov (United States)

    Terashima, Masaaki; Baba, Takako; Ikemoto, Narumi; Katayama, Midori; Morimoto, Tomoko; Matsumura, Saki

    2010-06-23

    Four peptides that inhibit angiotensin-converting enzyme (ACE) were separated from the hydorlysate of boneless chicken leg meat digested with artificial gastric juice (pepsin). Two peptides were identified as the peptides encrypted in myosin heavy chain. The peptide P1 (MNVKHWPWMK) corresponds to the amino acid sequence from amino acids 825 to 834 of myosin heavy chain, and the peptide P4 (VTVNPYKWLP) corresponds to the amino acid sequence from amino acids 125 to 135 of myosin heavy chain. They are novel ACE inhibitory peptides derived from chicken, and IC(50) values of P1 and P4 were determined as 228 and 5.5 microM, respectively. Although these values were much larger than 0.022 microM for captopril, a typical synthetic ACE inhibitor, they are comparable to IC(50) values reported for various ACE inhibitory peptides derived from foods. Because the peptide P4 has a relatively low IC(50) value, it is a good starting substance for designing food supplements for hypertensive patients.

  15. Recent Developments in Peptide-Based Nucleic Acid Delivery

    Directory of Open Access Journals (Sweden)

    Tobias Restle

    2008-07-01

    Full Text Available Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cellpenetrating peptides (CPPs. The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10-30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisenseoligonucleotides, which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls.

  16. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  17. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    Science.gov (United States)

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Identification of single amino acid substitutions (SAAS) in neuraminidase from influenza a virus (H1N1) via mass spectrometry analysis coupled with de novo peptide sequencing.

    Science.gov (United States)

    Peng, Qisheng; Wang, Zijian; Wu, Donglin; Li, Xiaoou; Liu, Xiaofeng; Sun, Wanchun; Liu, Ning

    2016-08-01

    Amino acid substitutions in the neuraminidase of the influenza virus are the main cause of the emergence of resistance to zanamivir or oseltamivir during seasonal influenza treatment; they are the result of non-synonymous mutations in the viral genome that can be successfully detected by polymer chain reaction (PCR)-based approaches. There is always an urgent need to detect variation in amino acid sequences directly at the protein level. Mass spectrometry coupled with de novo sequencing has been explored as an alternative and straightforward strategy for detecting amino acid substitutions, as well - this approach is the primary focus of the present study. Influenza virus (A/Puerto Rico/8/1934 H1N1) propagated in embryonated chicken eggs was purified by ultracentrifugation, followed by PNGase F treatment. The deglycosylated virion was lysed and separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The gel band corresponding to neuraminidase was picked up and subjected to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. LC-MS/MS analyses, coupled with manual de novo sequencing, allowed the determination of three amino acid substitutions: R346K, S349 N, and S370I/L, in the neuraminidase from the influenza virus (A/Puerto Rico/8/1934 H1N1), which were located in three mutated peptides of the neuraminidase: YGNGVWIGK, TKNHSSR, and PNGWTETDI/LK, respectively. We found that the amino acid substitutions in the proteins of RNA viruses (including influenza A virus) resulting from non-synonymous gene mutations can indeed be directly analyzed via mass spectrometry, and that manual interpretation of the MS/MS data may be beneficial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Utilization of acidic α-amino acids as acyl donors: an effective stereo-controllable synthesis of aryl-keto α-amino acids and their derivatives.

    Science.gov (United States)

    Wang, Lei; Murai, Yuta; Yoshida, Takuma; Okamoto, Masashi; Tachrim, Zetryana Puteri; Hashidoko, Yasuyuki; Hashimoto, Makoto

    2014-05-16

    Aryl-keto-containing α-amino acids are of great importance in organic chemistry and biochemistry. They are valuable intermediates for the construction of hydroxyl α-amino acids, nonproteinogenic α-amino acids, as well as other biofunctional components. Friedel-Crafts acylation is an effective method to prepare aryl-keto derivatives. In this review, we summarize the preparation of aryl-keto containing α-amino acids by Friedel-Crafts acylation using acidic α-amino acids as acyl-donors and Lewis acids or Brönsted acids as catalysts.

  20. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    acids in the coastal Arabian Sea sediments: whereas amino acids content of fulvic acids was lower than that of humic acids in the coastal sediments of Bay of Bengal. Slope sedimentary humic acids were relatively enriched in amino acids as compared...

  1. Synthesis and structure-activity studies on acidic amino acids and related diacids as NMDA receptor ligands

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1994-01-01

    The 3-isoxazolol amino acids (S)-2-amino-3-(3-hydroxy-5-methyl-4- isoxazolyl)propionic acid [(S)-AMPA, 2] and (R,S)-2-amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid (AMAA, 5a) (Figure 1) are potent and specific agonists at the AMPA and N-methyl-D-aspartic acid (NMDA) subtypes, respectively......, of (S)-glutamic acid (1) receptors. A number of amino acids and diacids structurally related to AMAA were synthesized and tested electrophysiologically and in receptor-binding assays. The hydroxymethyl analogue 7c of AMAA was an NMDA agonist approximately equipotent with AMAA in the [3H...... by molecular mechanics calculations. Compound 7a possesses extra steric bulk and shows significant restriction of conformational flexibility compared to AMAA and 7c, which may be determining factors for the observed differences in biological activity. Although the nitrogen atom of quinolinic acid (6) has very...

  2. Amino Acid Insertion Frequencies Arising from Photoproducts Generated Using Aliphatic Diazirines

    Science.gov (United States)

    Ziemianowicz, Daniel S.; Bomgarden, Ryan; Etienne, Chris; Schriemer, David C.

    2017-10-01

    Mapping proteins with chemical reagents and mass spectrometry can generate a measure of accessible surface area, which in turn can be used to support the modeling and refinement of protein structures. Photolytically generated carbenes are a promising class of reagent for this purpose. Substituent effects appear to influence surface mapping properties, allowing for a useful measure of design control. However, to use carbene labeling data in a quantitative manner for modeling activities, we require a better understanding of their inherent amino acid reactivity, so that incorporation data can be normalized. The current study presents an analysis of the amino acid insertion frequency of aliphatic carbenes generated by the photolysis of three different diazirines: 3,3'-azibutyl-1-ammonium, 3,3'-azibutan-1-ol, and 4,4'-azipentan-1-oate. Leveraging an improved photolysis system for single-shot labeling of sub-microliter frozen samples, we used EThCD to localize insertion products in a large population of labeled peptides. Counting statistics were drawn from data-dependent LC-MS2 experiments and used to estimate the frequencies of insertion as a function of amino acid. We observed labeling of all 20 amino acids over a remarkably narrow range of insertion frequencies. However, the nature of the substituent could influence relative insertion frequencies, within a general preference for larger polar amino acids. We confirm a large (6-fold) increase in labeling yield when carbenes were photogenerated in the solid phase (77 K) relative to the liquid phase (293 K), and we suggest that carbene labeling should always be conducted in the frozen state to avoid information loss in surface mapping experiments. [Figure not available: see fulltext.

  3. Raman database of amino acids solutions: A critical study of Extended Multiplicative Signal Correction

    KAUST Repository

    Candeloro, Patrizio

    2013-01-01

    The Raman spectra of biological materials always exhibit complex profiles, constituting several peaks and/or bands which arise due to the large variety of biomolecules. The extraction of quantitative information from these spectra is not a trivial task. While qualitative information can be retrieved from the changes in peaks frequencies or from the appearance/disappearance of some peaks, quantitative analysis requires an examination of peak intensities. Unfortunately in biological samples it is not easy to identify a reference peak for normalizing intensities, and this makes it very difficult to study the peak intensities. In the last decades a more refined mathematical tool, the extended multiplicative signal correction (EMSC), has been proposed for treating infrared spectra, which is also capable of providing quantitative information. From the mathematical and physical point of view, EMSC can also be applied to Raman spectra, as recently proposed. In this work the reliability of the EMSC procedure is tested by application to a well defined biological system: the 20 standard amino acids and their combination in peptides. The first step is the collection of a Raman database of these 20 amino acids, and subsequently EMSC processing is applied to retrieve quantitative information from amino acids mixtures and peptides. A critical review of the results is presented, showing that EMSC has to be carefully handled for complex biological systems. © 2013 The Royal Society of Chemistry.

  4. Comparative syntheses of peptide thioesters derived from mouse and human prion proteins

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Zawada, Zbigniew; Šafařík, Martin; Hlaváček, Jan

    2011-01-01

    Roč. 41, Suppl. 1 (2011), S78-S79 ISSN 0939-4451. [International Congress on Amino Acids, Peptides and Proteins /12./. 01.08.2011-05.08.2011, Beijing] R&D Projects: GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptide thioesters * ligation * prions * C-domain Subject RIV: CC - Organic Chemistry

  5. Laser-based optical activity detection of amino acids and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Reitsma, B.H.

    1987-01-01

    The optical activity detector (OAD) for HPLC is a selective detector for optically active substances including amino acids and proteins. This study illustrates the use of the OAD in three related areas. Section I illustrates the separation of four free amino acids using cation-exchange chromatography. Detection by coupling the OAD to a refractive index detector (RI) for proline and threonine and the OAD to an ultraviolet absorbance detector (UV) for tyrosine and phenylalanine allows the calculation of enantiomeric (D/L) ratios of these amino acids without physical separation. Specific rotations of these four amino acids are also reported. Section II illustrates the separation of 16 dansyl-L-amino acids by RP-HPLC with detection by OA/UV. Section III illustrates the RP-HPLC separation of conformers of soybean trypsin inhibitor. Detection by OA/UV provides insights from the chromatogram unavailable for UV absorbance detection alone. In addition, identification of impurities is simplified with OA/UV. Specific rotations of the separated protein fractions show no significant change accompanying change in conformation.

  6. Stable isotope N-phosphoryl amino acids labeling for quantitative profiling of amine-containing metabolites using liquid chromatography mass spectrometry.

    Science.gov (United States)

    Zhang, Shanshan; Shi, Jinwen; Shan, Changkai; Huang, Chengting; Wu, Yile; Ding, Rong; Xue, Yuhua; Liu, Wen; Zhou, Qiang; Zhao, Yufen; Xu, Pengxiang; Gao, Xiang

    2017-07-25

    Stable isotope chemical labeling liquid chromatography-mass spectrometry (LC-MS) is a powerful strategy for comprehensive metabolomics profiling, which can improve metabolites coverage and quantitative information for exploration of metabolic regulation in complex biological systems. In the current work, a novel stable isotope N-phosphoryl amino acids labeling strategy (SIPAL) has been successful developed for quantitative profiling of amine-containing metabolites in urine based on organic phosphorus chemistry. Two isotopic reagents, 16 O 2 - and 18 O 2 -N-diisopropyl phosphoryl l-alanine N-hydroxysuccinimide esters ( 16 O/ 18 O-DIPP-L-Ala-NHS), were firstly synthesized in high yields for labeling the amine-containing metabolites. The performance of SIPAL strategy was tested by analyzing standard samples including 20 l-amino acids, 10 d-amino acids and small peptides by using LC-MS. We observed highly efficient and selective labeling for SIPAL strategy within 15 min in a one-pot derivatization reaction under aqueous reaction conditions. The introduction of a neutral phosphate group at N-terminus can increase the proton affinity and overall hydrophobicity of targeted metabolites, leading to the better ionization efficiency in electrospray ionization processes and chromatographic separations of hydrophilic metabolites on reversed-phase column. Furthermore, the chiral metabolites, such as d-amino acids, could be converted to diastereomers after SIPAL and successfully separated on regular reversed-phase column. The chirality of labeled enantiomers can be determined by using different detection methods such as 31 P NMR, UV, and MS, demonstrating the potential application of SIPAL strategy. In addition, absolute quantification of chiral metabolites in biological samples can be easily achieved by using SIPAL strategy. For this purpose, urine samples collected from a healthy volunteer were analyzed by using LC-ESI-Orbitrap MS. Over 300 pairs of different amine

  7. SHORT COMMUNICATION DETERMINATION OF AMINO ACIDS ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    The purpose of this study was to assess the levels of free and total amino acid ... Gas chromatographic method with flame ionization detector (GC-FID) was ... Total amino acid analysis was done on acid hydrolysates of RJ samples by the ion-exchange ... The data of amino acids and protein content for all analyzed fresh and.

  8. Development and validation of a rapid, selective, and sensitive LC-MS/MS method for simultaneous determination of D- and L-amino acids in human serum: application to the study of hepatocellular carcinoma.

    Science.gov (United States)

    Han, Minlu; Xie, Mengyu; Han, Jun; Yuan, Daoyi; Yang, Tian; Xie, Ying

    2018-04-01

    A validated liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of D- and L-amino acids in human serum. Under the optimum conditions, except for DL-proline, L-glutamine, and D-lysine, the enantioseparation of the other 19 enantiomeric pairs of proteinogenic amino acids and nonchiral glycine was achieved with a CROWNPAK CR-I(+) chiral column within 13 min. The lower limits of quantitation for L-amino acids (including glycine) and D-amino acids were 5-56.25 μM and 0.625-500 nM, respectively, in human serum. The intraday precision and interday precision for all the analytes were less than 15%, and the accuracy ranged from -12.84% to 12.37% at three quality control levels. The proposed method, exhibiting high rapidity, enantioresolution, and sensitivity, was successfully applied to the quantification of D- and L-amino acid levels in serum from hepatocellular carcinoma patients and healthy individuals. The serum concentrations of L-arginine, L-isoleucine, L-aspartate, L-tryptophan, L-alanine, L-methionine, L-serine, glycine, L-valine, L-leucine, L-phenylalanine, L-threonine, D-isoleucine, D-alanine, D-glutamate, D-glutamine, D-methionine, and D-threonine were significantly reduced in the hepatocellular carcinoma patients compared with the healthy individuals (P hepatocellular carcinoma research. Graphical abstract Simultaneous determination of D- and L-amino acids in human serum from hepatocellular carcinoma patients and healthy individuals. AA amino acid, HCC hepatocellular carcinoma, LC liquid chromatography, MS/MS tandem mass spectrometry, NC normal control, TIC total ion chromatogram.

  9. Amino acid fermentation at the origin of the genetic code

    Science.gov (United States)

    2012-01-01

    into a proto-code that optimises the energetic yield. Monte Carlo simulations are performed to evaluate the establishment of these simple proto-codes, based on amino acid substitutions and codon swapping. In all cases, donor amino acids are assigned to anticodons composed of U+G, and have low redundancy (1-2 codons), whereas acceptor amino acids are assigned to the the remaining codons. These bioenergetic and structural constraints allow for a metabolic role for amino acids before their co-option as catalyst cofactors. Reviewers: this article was reviewed by Prof. William Martin, Prof. Eörs Szathmáry (nominated by Dr. Gáspár Jékely) and Dr. Ádám Kun (nominated by Dr. Sandor Pongor) PMID:22325238

  10. Amino acid fermentation at the origin of the genetic code

    Directory of Open Access Journals (Sweden)

    de Vladar Harold P

    2012-02-01

    act and refine the assignments into a proto-code that optimises the energetic yield. Monte Carlo simulations are performed to evaluate the establishment of these simple proto-codes, based on amino acid substitutions and codon swapping. In all cases, donor amino acids are assigned to anticodons composed of U+G, and have low redundancy (1-2 codons, whereas acceptor amino acids are assigned to the the remaining codons. These bioenergetic and structural constraints allow for a metabolic role for amino acids before their co-option as catalyst cofactors. Reviewers: this article was reviewed by Prof. William Martin, Prof. Eörs Szathmáry (nominated by Dr. Gáspár Jékely and Dr. Ádám Kun (nominated by Dr. Sandor Pongor

  11. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Fedorov, A; Xu, C; Brown, S; Fedorov, E; Babbitt, P; Almo, S; Raushel, F

    2009-01-01

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} = 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250

  12. Amino acid tolerance test using L-β-phenylalanine-125I

    International Nuclear Information System (INIS)

    Hafiez, A.A.; Megahed, Y.M.; Ismail, A.A.; Abdel-Wahab, M.F.; Khater, R.A.

    1978-01-01

    An amino acid tolerance test is described. L-β-phenylalanine- 125 I was used as representative of L-amino acids. The change in radioactivity of the blood after giving a test dose of tagged L-β-phenylalanine was also investigated. L-β-phenylalanine- 125 I tolerance curves were found to be irreproducible when the test dose was given without a carrier. The addition of 2.5 g untagged phenylalanine as a carrier to the test dose allowed a reproducible and precise type of tolerance curves. Metformin in a dose of 0.5 g t.d.s. for three days induced an inhibitory effect on amino acid absorption in normal persons. (author)

  13. Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse.

    Science.gov (United States)

    Bröer, Angelika; Juelich, Torsten; Vanslambrouck, Jessica M; Tietze, Nadine; Solomon, Peter S; Holst, Jeff; Bailey, Charles G; Rasko, John E J; Bröer, Stefan

    2011-07-29

    Amino acid uptake in the intestine and kidney is mediated by a variety of amino acid transporters. To understand the role of epithelial neutral amino acid uptake in whole body homeostasis, we analyzed mice lacking the apical broad-spectrum neutral (0) amino acid transporter B(0)AT1 (Slc6a19). A general neutral aminoaciduria was observed similar to human Hartnup disorder which is caused by mutations in SLC6A19. Na(+)-dependent uptake of neutral amino acids into the intestine and renal brush-border membrane vesicles was abolished. No compensatory increase of peptide transport or other neutral amino acid transporters was detected. Mice lacking B(0)AT1 showed a reduced body weight. When adapted to a standard 20% protein diet, B(0)AT1-deficient mice lost body weight rapidly on diets containing 6 or 40% protein. Secretion of insulin in response to food ingestion after fasting was blunted. In the intestine, amino acid signaling to the mammalian target of rapamycin (mTOR) pathway was reduced, whereas the GCN2/ATF4 stress response pathway was activated, indicating amino acid deprivation in epithelial cells. The results demonstrate that epithelial amino acid uptake is essential for optimal growth and body weight regulation.

  14. Urinary amino acid analysis: a comparison of iTRAQ-LC-MS/MS, GC-MS, and amino acid analyzer.

    Science.gov (United States)

    Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J

    2009-07-01

    Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of propyl chloroformate and iTRAQ derivatized amino acids, respectively, to conventional amino acid analysis. The GC-MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC-MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC-MS, and iTRAQ-LC-MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27+/-5.22, 21.18+/-10.94, and 18.34+/-14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39+/-5.35, 6.23+/-3.84, and 35.37+/-29.42. Both GC-MS and iTRAQ-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines.

  15. From amino acids polymers, antimicrobial peptides, and histones, to their possible role in the pathogenesis of septic shock: a historical perspective

    Directory of Open Access Journals (Sweden)

    Ginsburg I

    2017-02-01

    Full Text Available Isaac Ginsburg,1 Peter Vernon van Heerden,2 Erez Koren1 1Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, 2General Intensive Care Unit, Hadassah University Hospital, Jerusalem, Israel Abstract: This paper describes the evolution of our understanding of the biological role played by synthetic and natural antimicrobial cationic peptides and by the highly basic nuclear histones as modulators of infection, postinfectious sequelae, trauma, and coagulation phenomena. The authors discuss the effects of the synthetic polymers of basic poly α amino acids, poly l-lysine, and poly l-arginine on blood coagulation, fibrinolysis, bacterial killing, and blood vessels; the properties of natural and synthetic antimicrobial cationic peptides as potential replacements or adjuncts to antibiotics; polycations as opsonizing agents promoting endocytosis/phagocytosis; polycations and muramidases as activators of autolytic wall enzymes in bacteria, causing bacteriolysis and tissue damage; and polycations and nuclear histones as potential virulence factors and as markers of sepsis, septic shock, disseminated intravasclar coagulopathy, acute lung injury, pancreatitis, trauma, and other additional clinical disorders Keywords: histones, sepsis, septic shock

  16. Oxidative kinetics of amino acids by peroxydisulfate: Effect of dielectric constant

    International Nuclear Information System (INIS)

    Khalid, Mohammad A. A.

    2008-01-01

    The kinetics and mechanism of oxidation of alanine, asparagines, cysteine, glutamic acid, lysine, phenylalanine and serine by peroxydisulfate ion have been studied in aqueous acidic (sulfuric acid) medium at the temperature range 60-80C. The rate shows first order dependence on peroxydisulfate concentration and zero order dependence on amino acid concentration. The rate law observed is: -d [S2O82-] /dt = Kobs [S2O82-] [amino acid]0. An autocatalytic effect has been observed in amino acids oxidation due to formation of Schiff's base between the formed aldehyde and parent amino acid. A decrease in the dielectric constant of the medium-adding acetic acid (5-15% v/v) results in a decrease in the rate in all cases studied. Reactions were carried out at different temperature (60-80C) and the thermodynamics parameters have been calculated. The logarithm of the rate constant is linearly interrelated to the square root of the ionic strength. (author)

  17. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Viability and amino acid picture of paecilomyces violacea as affected by gamma radiation

    International Nuclear Information System (INIS)

    Nadia, M.A.; Salama, A.M.; EL-Zawahry, Y.A.; Abo-EL-Khair, I.A.

    1988-01-01

    The dose response curve of paecilomyces violacea was of the type a(simple exponential relationship) and the D 1 0 value was estimated as 0.5 kGy. Qualitative and quantitative variations in the amino acid pool of irradiated p.violacea revealed that seven extracellular amino acids were detected in the control medium namely, cystine, glycine, arginine, proline, valine leucine and cysteine, while, seventeen amino acids were detected in the mycelium of P. violacea (free and combined) under control condition. Nine amino acids in the free state could be detected at different irradiation doses but were completely missed from the amino pool under control condition. But, in the combined state (protein) only five amino acids were detected. The appearance of some amino acids only after irradiation, or their accumulation in amounts higher than control value was explained in the light of their probable role as radioprotectors

  19. Characterization of peptide-oligonucleotide heteroconjugates by mass spectrometry.

    OpenAIRE

    Jensen, O N; Kulkarni, S; Aldrich, J V; Barofsky, D F

    1996-01-01

    Two peptide-oligothymidylic acids, prepared by joining an 11 residue synthetic peptide containing one internal carboxyl group (Asp side chain) to amino-linker-5'pdT6 and amino-linker-5'pdT10 oligonucleotides, were analyzed by matrix-assisted laser desorption/ionization (MALDI) on a linear time-of-flight mass spectrometer and by electrospray ionization (ESI) on a triple-quadrupole system. These synthetic compounds model peptide-nucleic acid heteroconjugates encountered in antisense research an...

  20. Common Amino Acid Subsequences in a Universal Proteome—Relevance for Food Science

    Directory of Open Access Journals (Sweden)

    Piotr Minkiewicz

    2015-09-01

    Full Text Available A common subsequence is a fragment of the amino acid chain that occurs in more than one protein. Common subsequences may be an object of interest for food scientists as biologically active peptides, epitopes, and/or protein markers that are used in comparative proteomics. An individual bioactive fragment, in particular the shortest fragment containing two or three amino acid residues, may occur in many protein sequences. An individual linear epitope may also be present in multiple sequences of precursor proteins. Although recent recommendations for prediction of allergenicity and cross-reactivity include not only sequence identity, but also similarities in secondary and tertiary structures surrounding the common fragment, local sequence identity may be used to screen protein sequence databases for potential allergens in silico. The main weakness of the screening process is that it overlooks allergens and cross-reactivity cases without identical fragments corresponding to linear epitopes. A single peptide may also serve as a marker of a group of allergens that belong to the same family and, possibly, reveal cross-reactivity. This review article discusses the benefits for food scientists that follow from the common subsequences concept.

  1. Quantum-mechanical DFT calculation supported Raman spectroscopic study of some amino acids in bovine insulin.

    Science.gov (United States)

    Tah, Bidisha; Pal, Prabir; Roy, Sourav; Dutta, Debodyuti; Mishra, Sabyashachi; Ghosh, Manash; Talapatra, G B

    2014-08-14

    In this article Quantum mechanical (QM) calculations by Density Functional Theory (DFT) have been performed of all amino acids present in bovine insulin. Simulated Raman spectra of those amino acids are compared with their experimental spectra and the major bands are assigned. The results are in good agreement with experiment. We have also verified the DFT results with Quantum mechanical molecular mechanics (QM/MM) results for some amino acids. QM/MM results are very similar with the DFT results. Although the theoretical calculation of individual amino acids are feasible, but the calculated Raman spectrum of whole protein molecule is difficult or even quite impossible task, since it relies on lengthy and costly quantum-chemical computation. However, we have tried to simulate the Raman spectrum of whole protein by adding the proportionate contribution of the Raman spectra of each amino acid present in this protein. In DFT calculations, only the contributions of disulphide bonds between cysteines are included but the contribution of the peptide and hydrogen bonds have not been considered. We have recorded the Raman spectra of bovine insulin using micro-Raman set up. The experimental spectrum is found to be very similar with the resultant simulated Raman spectrum with some exceptions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...

  3. Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications

    Directory of Open Access Journals (Sweden)

    Charlotte A.E. Hauser

    2011-09-01

    Full Text Available In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures.

  4. Uptake of 3-[125I]iodo-α-methyl-L-tyrosine into colon cancer DLD-1 cells: characterization and inhibitory effect of natural amino acids and amino acid-like drugs

    International Nuclear Information System (INIS)

    Shikano, Naoto; Ogura, Masato; Okudaira, Hiroyuki; Nakajima, Syuichi; Kotani, Takashi; Kobayashi, Masato; Nakazawa, Shinya; Baba, Takeshi; Yamaguchi, Naoto; Kubota, Nobuo; Iwamura, Yukio; Kawai, Keiichi

    2010-01-01

    Introduction: We examined 3-[ 123 I]iodo-α-methyl-L-tyrosine ([ 123 I]IMT) uptake and inhibition by amino acids and amino acid-like drugs in the human DLD-1 colon cancer cell line, to discuss correlation between the inhibition effect and structure. Methods: Expression of relevant neutral amino acid transporters was examined by real-time PCR with DLD-1 cells. The time course of [ 125 I]IMT uptake, contributions of transport systems, concentration dependence and inhibition effects by amino acids and amino acid-like drugs (1 mM) on [ 125 I]IMT uptake were examined. Results: Expression of system L (4F2hc, LAT1 and LAT2), system A (ATA1, ATA2) and system ASC (ASCT1) was strongly detected; system L (LAT3, LAT4) and MCT8 were weakly detected; and B 0 AT was not detected. [ 125 I]IMT uptake in DLD-1 cells involved Na + -independent system L primarily and Na + -dependent system(s). Uptake of [ 125 I]IMT in Na + -free buffer followed Michaelis-Menten kinetics, with a K m of 78 μM and V max of 333 pmol/10 6 cells per minute. Neutral D- and L-amino acids with branched or aromatic large side chains inhibited [ 125 I]IMT uptake. Tyrosine analogues, tryptophan analogues, L-phenylalanine and p-halogeno-L-phenylalanines, and gamma amino acids [including 3,4-dihydroxy-L-phenylalanine (L-DOPA), DL-threo-β-(3,4-dihydroxyphenyl)serine (DOPS), 4-[bis(2-chloroethyl)amino]-L-phenylalanine and 1-(aminomethyl)-cyclohexaneacetic acid] strongly inhibited [ 125 I]IMT uptake, but L-tyrosine methyl ester and R(+)/S(-)-baclofen weakly inhibited uptake. The substrates of system ASC and A did not inhibit [ 125 I]IMT uptake except L-serine and D/L-cysteine. Conclusions: [ 125 I]IMT uptake in DLD-1 cells involves mostly LAT1 and its substrates' (including amino acid-like drugs derived from tyrosine, tryptophan and phenylalanine) affinity to transport via LAT1. Whether transport of gamma amino acid analogues is involved in LAT1 depends on the structure of the group corresponding to the amino acid

  5. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  6. Urinary Amino Acid Analysis: A Comparison of iTRAQ®-LC-MS/MS, GC-MS, and Amino Acid Analyzer

    Science.gov (United States)

    Kaspar, Hannelore; Dettmer, Katja; Chan, Queenie; Daniels, Scott; Nimkar, Subodh; Daviglus, Martha L.; Stamler, Jeremiah; Elliott, Paul; Oefner, Peter J.

    2009-01-01

    Urinary amino acid analysis is typically done by cation-exchange chromatography followed by post-column derivatization with ninhydrin and UV detection. This method lacks throughput and specificity. Two recently introduced stable isotope ratio mass spectrometric methods promise to overcome those shortcomings. Using two blinded sets of urine replicates and a certified amino acid standard, we compared the precision and accuracy of gas chromatography/mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) of propyl chloroformate and iTRAQ® derivatized amino acids, respectively, to conventional amino acid analysis. The GC-MS method builds on the direct derivatization of amino acids in diluted urine with propyl chloroformate, GC separation and mass spectrometric quantification of derivatives using stable isotope labeled standards. The LC-MS/MS method requires prior urinary protein precipitation followed by labeling of urinary and standard amino acids with iTRAQ® tags containing different cleavable reporter ions distinguishable by MS/MS fragmentation. Means and standard deviations of percent technical error (%TE) computed for 20 amino acids determined by amino acid analyzer, GC-MS, and iTRAQ®-LC-MS/MS analyses of 33 duplicate and triplicate urine specimens were 7.27±5.22, 21.18±10.94, and 18.34±14.67, respectively. Corresponding values for 13 amino acids determined in a second batch of 144 urine specimens measured in duplicate or triplicate were 8.39±5.35, 6.23±3.84, and 35.37±29.42. Both GC-MS and iTRAQ®-LC-MS/MS are suited for high-throughput amino acid analysis, with the former offering at present higher reproducibility and completely automated sample pretreatment, while the latter covers more amino acids and related amines. PMID:19481989

  7. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    Science.gov (United States)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  8. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation.

    Science.gov (United States)

    Etchebest, C; Benros, C; Bornot, A; Camproux, A-C; de Brevern, A G

    2007-11-01

    Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold.

  9. cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides.

    OpenAIRE

    Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G

    1990-01-01

    We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the pre...

  10. Purification and amino acid sequence of a bacteriocins produced by Lactobacillus salivarius K7 isolated from chicken intestine

    Directory of Open Access Journals (Sweden)

    Kenji Sonomoto

    2006-03-01

    Full Text Available A bacteriocin-producing strain, Lactobacillus K7, was isolated from a chicken intestine. The inhibitory activity was determined by spot-on-lawn technique. Identification of the strain was performed by morphological, biochemical (API 50 CH kit and molecular genetic (16S rDNA basis. Bacteriocin purification processes were carried out by amberlite adsorption, cation exchange and reverse-phase high perform- ance liquid chromatography. N-terminal amino acid sequences were performed by Edman degradation. Molecular mass was determined by electrospray-ionization (ESI mass spectrometry (MS. Lactobacillus K7 showed inhibitory activity against Lactobacillus sakei subsp. sakei JCM 1157T, Leuconostoc mesenteroides subsp. mesenteroides JCM 6124T and Bacillus coagulans JCM 2257T. This strain was identified as Lb. salivarius. The antimicrobial substance was destroyed by proteolytic enzymes, indicating its proteinaceous structure designated as a bacteriocin type. The purification of bacteriocin by amberlite adsorption, cation exchange, and reverse-phase chromatography resulted in only one single active peak, which was designated FK22. Molecular weight of this fraction was 4331.70 Da. By amino acid sequence, this peptide was homology to Abp 118 beta produced by Lb. salivarius UCC118. In addition, Lb. salivarius UCC118 produced 2-peptide bacteriocin, which was Abp 118 alpha and beta. Based on the partial amino acid sequences of Abp 118 beta, specific primers were designed from nucleotide sequences according to data from GenBank. The result showed that the deduced peptide was high homology to 2-peptide bacteriocin, Abp 118 alpha and beta.

  11. Metabolic rates of 15N-D- and 15N-L-phenylalanine in an amino acid mixture for parenteral feeding

    International Nuclear Information System (INIS)

    Wutzke, K.; Heine, W.; Drescher, U.

    1982-01-01

    15 N investigations on the metabolism of L- and D-phenylalanine under conditions of parenteral feeding with the aminoacid solution Infesol in 6 infants revealed a retention rate of 83.4 +- 3.4 per cent for the L-form and of 36.6 +- 5.2 per cent for the D-form. When the D-isomer was raised from 1:3 to 1:1 in relation to the L-Form, 32.6 per cent of the infused D-phenylalanine were still retained. After continuous 24-hour infusion of the tracers, the maximum of 15 N excretion in the urine was reached between the 24th and the 30th hour. But little incorporation of 15 N-nitrogen was found in the serum and erythrocytes because of the relatively long half-life period of these proteins. Changes in the composition of commercial DL-amino acid mixtures will only be possible after determining the utilization rates of all essential and non-essential D-amino acids being used in such mixtures. (author)

  12. Synthesis of some labelled non-proteinogenic amino acids

    International Nuclear Information System (INIS)

    Adrianens, P.; Vanderhaeghe, H.

    1987-01-01

    The literature on the synthesis of labeled non-proteinogenic amino acids contains approximately 300 papers, whereas syntheses of labeled proteinogenic amino acids are dealt with in some 800-1000 publications. However, most of the methods described in this paper for the synthesis of non-proteinogenic amino acids are also used for the preparation of the essential amino acids addition, the first category also contains β, γ...amino acids, seleno amino acids, N-methyl and α-methyl amino acids and sometimes have atoms or groups which are not present in the protein building blocks. Furthermore the latter group is more easily available so that methods for synthesis of non-proteinogenic amino acids are more needed

  13. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  14. Tetrahydrofuran Calpha-tetrasubstituted amino acids: two consecutive beta-turns in a crystalline linear tripeptide.

    Science.gov (United States)

    Maity, Prantik; Zabel, Manfred; König, Burkhard

    2007-10-12

    The synthesis of tetrahydrofuran Calpha-tetrasubstituted amino acids (TAAs) and their effect on the conformation in small peptides are reported. The synthesis starts from the protein amino acid methionine, which is protected at the C and N terminus and converted into the corresponding sulfonium salt by alkylation. Simple base treatment in the presence of an aryl aldehyde leads to the formation of tetrahydrofuran tetrasubstituted Calpha-amino acids in a highly diastereoselective (trans/cis ratio up to 97:3) reaction with moderate to good yields (35-78%) depending on the aldehyde used. Palladium-catalyzed coupling reactions allow a subsequent further functionalization of the TAA. The R,S,S-TAA-Ala dipeptide amide adopts a beta-turn type I conformation, whereas its S,R,S isomer does not. The R,S,S-Gly-TAA-Ala tripeptide amide shows in the solid state and in solution a conformation of two consecutive beta-turn type III structures, stabilized by i+3-->i intramolecular hydrogen bonds.

  15. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  16. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.

    Science.gov (United States)

    Taniguchi, Suguru; Watanabe, Noriko; Nose, Takeru; Maeda, Iori

    2016-01-01

    Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications. To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin (X(1)P(2)G(3)V(4)G(5)) was substituted by Trp or Tyr. Eventually, we acquired a novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  17. Amino acid composition of some Mexican foods.

    Science.gov (United States)

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  18. Present Global Situation of Amino Acids in Industry.

    Science.gov (United States)

    Tonouchi, Naoto; Ito, Hisao

    At present, amino acids are widely produced and utilized industrially. Initially, monosodium glutamate (MSG) was produced by extraction from a gluten hydrolysate. The amino acid industry started using the residual of the lysate. The discovery of the functions of amino acids has led to the expansion of their field of use. In addition to seasoning and other food use, amino acids are used in many fields such as animal nutrients, pharmaceuticals, and cosmetics. On the other hand, the invention of the glutamate fermentation process, followed by the development of fermentation methods for many other amino acids, is no less important. The supply of these amino acids at a low price is very essential for their industrial use. Most amino acids are now produced by fermentation. The consumption of many amino acids such as MSG or feed-use amino acids is still rapidly increasing.

  19. Site-specific antibodies distinguish single amino acid substitutions in position 57 in HLA-DQ beta-chain alleles associated with insulin-dependent diabetes

    DEFF Research Database (Denmark)

    Atar, D; Dyrberg, T; Michelsen, Birgitte

    1989-01-01

    The HLA-DQ beta-chain gene shows a close association with susceptibility or resistance to autoimmune insulin-dependent diabetes mellitus (IDDM) and it has been suggested that the amino acid in position 57 may be of pathogenetic importance. To study the expression of the IDDM associated HLA-DQ beta......-chain alleles, we immunized rabbits with 12 to 13 amino acid long peptides representing HLA-DQw7 and -DQw8 allelic sequences, differing only by one amino acid in position 57 being aspartic acid (Asp) and alanine (Ala), respectively. Immunoblot analysis of lymphoblastoid cells showed that several antisera...

  20. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles.

    Science.gov (United States)

    Ong, Zhan Yuin; Cheng, Junchi; Huang, Yuan; Xu, Kaijin; Ji, Zhongkang; Fan, Weimin; Yang, Yi Yan

    2014-01-01

    In the face of mounting global antibiotics resistance, the identification and development of membrane-active antimicrobial peptides (AMPs) as an alternative class of antimicrobial agent have gained significant attention. The physical perturbation and disruption of microbial membranes by the AMPs have been proposed to be an effective means to overcome conventional mechanisms of drug resistance. Recently, we have reported the design of a series of short synthetic β-sheet folding peptide amphiphiles comprised of recurring (X1Y1X2Y2)n-NH2 sequences where X: hydrophobic amino acids, Y: cationic amino acids and n: number of repeat units. In efforts to investigate the effects of key parameters including stereochemistry, chain length and sequence pattern on antimicrobial effects, systematic d-amino acid substitutions of the lead peptides (IRIK)2-NH2 (IK8-all L) and (IRVK)3-NH2 (IK12-all L) were performed. It was found that the corresponding D-enantiomers exhibited stronger antimicrobial activities with minimal or no change in hemolytic activities, hence translating very high selectivity indices of 407.0 and >9.8 for IK8-all D and IK12-all D respectively. IK8-all D was also demonstrated to be stable to degradation by broad spectrum proteases trypsin and proteinase K. The membrane disrupting bactericidal properties of IK8-all D effectively prevented drug resistance development and inhibited the growth of various clinically isolated MRSA, VRE, Acinetobacter baumanni, Pseudomonas aeruginosa, Cryptococcus. neoformans and Mycobacterium tuberculosis. Significant reduction in intracellular bacteria counts was also observed following treatment with IK8-all D in the Staphylococcus. aureus infected mouse macrophage cell line RAW264.7 (P < 0.01). These results suggest that the d-amino acids substituted β-sheet forming peptide IK8-all D with its enhanced antimicrobial activities and improved protease stability, is a promising therapeutic candidate with potential to combat

  1. Structure, synthesis, and molecular cloning of dermaseptins B, a family of skin peptide antibiotics.

    Science.gov (United States)

    Charpentier, S; Amiche, M; Mester, J; Vouille, V; Le Caer, J P; Nicolas, P; Delfour, A

    1998-06-12

    Analysis of antimicrobial activities that are present in the skin secretions of the South American frog Phyllomedusa bicolor revealed six polycationic (lysine-rich) and amphipathic alpha-helical peptides, 24-33 residues long, termed dermaseptins B1 to B6, respectively. Prepro-dermaseptins B all contain an almost identical signal peptide, which is followed by a conserved acidic propiece, a processing signal Lys-Arg, and a dermaseptin progenitor sequence. The 22-residue signal peptide plus the first 3 residues of the acidic propiece are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The 25-residue amino-terminal region of prepro-dermaseptins B shares 50% identity with the corresponding region of precursors for D-amino acid containing opioid peptides or for antimicrobial peptides originating from the skin of distantly related frog species. The remarkable similarity found between prepro-proteins that encode end products with strikingly different sequences, conformations, biological activities and modes of action suggests that the corresponding genes have evolved through dissemination of a conserved "secretory cassette" exon.

  2. Synthesis of L-2-amino-8-oxodecanoic acid: an amino acid component of apicidins

    OpenAIRE

    Linares de la Morena, María Lourdes; Agejas Chicharro, Francisco Javier; Alajarín Ferrández, Ramón; Vaquero López, Juan José; Álvarez-Builla Gómez, Julio

    2001-01-01

    The synthesis Of L-2-amino-8-oxodecanoic acid (Aoda) is described. This is a rare amino acid component of apicidins, a family of new cyclic tetrapeptides, inhibitors of histone deacetylase. Aoda was synthesised in seven steps from L-glutamic acid along with some derivatives. Universidad de Alcalá Fundación General de la Universidad de Alcalá FEDER

  3. Free amino acids in spider hemolymph.

    Science.gov (United States)

    Tillinghast, Edward K; Townley, Mark A

    2008-11-01

    We examined the free amino acid composition of hemolymph from representatives of five spider families with an interest in knowing if the amino acid profile in the hemolymph of orb-web-building spiders reflects the high demands for small organic compounds in the sticky droplets of their webs. In nearly all analyses, on both orb and non-orb builders, glutamine was the most abundant free amino acid. Glycine, taurine, proline, histidine, and alanine also tended to be well-represented in orb and non-orb builders. While indications of taxon-specific differences in amino acid composition were observed, it was not apparent that two presumptive precursors (glutamine, taurine) of orb web sticky droplet compounds were uniquely enriched in araneids (orb builders). However, total amino acid concentrations were invariably highest in the araneids and especially so in overwintering juveniles, even as several of the essential amino acids declined during this winter diapause. Comparing the data from this study with those from earlier studies revealed a number of discrepancies. The possible origins of these differences are discussed.

  4. carcass amino acid composition and utilization of dietary amino

    African Journals Online (AJOL)

    Maynard (1954), Fisher & Scott (1954), Forbes &. Rao (1959), Hartsook & Mitchell (1956). King (1963) showed that individual amino acids in the carcass could differ widely from the requirement by the anirnal for those particular amino acids used for purposes other than protein synthesis and subsequent retention. How-.

  5. Molecular architecture with carbohydrate functionalized β-peptides adopting 314-helical conformation

    Directory of Open Access Journals (Sweden)

    Nitin J. Pawar

    2014-04-01

    Full Text Available Carbohydrate recognition is essential in cellular interactions and biological processes. It is characterized by structural diversity, multivalency and cooperative effects. To evaluate carbohydrate interaction and recognition, the structurally defined attachment of sugar units to a rigid template is highly desired. β-Peptide helices offer conformationally stable templates for the linear presentation of sugar units in defined distances. The synthesis and β-peptide incorporation of sugar-β-amino acids are described providing the saccharide units as amino acid side chain. The respective sugar-β-amino acids are accessible by Michael addition of ammonia to sugar units derivatized as α,β-unsaturated esters. Three sugar units were incorporated in β-peptide oligomers varying the sugar (glucose, galactose, xylose and sugar protecting groups. The influence of sugar units and the configuration of sugar-β-amino acids on β-peptide secondary structure were investigated by CD spectroscopy.

  6. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  7. Atomic evidence that modification of H-bonds established with amino acids critical for host-cell binding induces sterile immunity against malaria

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Cifuentes, Gladys [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad del Rosario, Bogota (Colombia); Pirajan, Camilo; Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Vanegas, Magnolia [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Universidad del Rosario, Bogota (Colombia)

    2010-04-09

    Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.

  8. Atomic evidence that modification of H-bonds established with amino acids critical for host-cell binding induces sterile immunity against malaria

    International Nuclear Information System (INIS)

    Patarroyo, Manuel E.; Cifuentes, Gladys; Pirajan, Camilo; Moreno-Vranich, Armando; Vanegas, Magnolia

    2010-01-01

    Based on the 3D X-ray crystallographic structures of relevant proteins of the malaria parasite involved in invasion to host cells and 3D NMR structures of High Activity Binding Peptides (HABPs) and their respective analogues, it was found that HABPs are rendered into highly immunogenic and sterile immunity inducers in the Aotus experimental model by modifying those amino acids that establish H-bonds with other HABPs or binding to host's cells. This finding adds striking and novel physicochemical principles, at the atomic level, for a logical and rational vaccine development methodology against infectious disease, among them malaria.

  9. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  10. Excitatory amino acid receptors and disease.

    Science.gov (United States)

    Meldrum, B S

    1992-08-01

    Recent advances in the molecular biology of excitatory amino acid receptors are reviewed. Evidence that drugs blocking the excitatory action of glutamate at the N-methyl-D-aspartate (NMDA) and non-NMDA receptors may be of clinical use in epilepsy, Parkinson's disease, cerebral ischaemia and trauma, acquired immune deficiency syndrome (AIDS) encephalopathy and neuropathic pain is summarized.

  11. NMR structures of anti-HIV D-peptides derived from the N-terminus of viral chemokine vMIP-II

    International Nuclear Information System (INIS)

    Mori, Mayuko; Liu Dongxiang; Kumar, Santosh; Huang Ziwei

    2005-01-01

    The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-D-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-D-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1, respectively, have higher CXCR4 binding ability than their L-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-L-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that D- and L-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the D-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of D-peptide ligand binding to CXCR4

  12. Development of Peptide Antagonists of Chemokine Receptors Involved in Breast Cancer Metastasis

    National Research Council Canada - National Science Library

    Blondelle, Sylvie E

    2004-01-01

    .... This was accomplished by screening in a competitive assay synthetic combinatorial libraries (SCLs) made up of D-amino acid peptides for their ability to antagonize CXCR4 receptor function using HeLa cells and PBMC cells (used as standard...

  13. Development of Peptide Antagonists of Chemokine Receptors Involved in Breast Cancer Metastasis

    National Research Council Canada - National Science Library

    Blondelle, Sylvie E

    2005-01-01

    .... This was accomplished by screening in a competitive assay synthetic combinatorial libraries (SCLs) made up of D-amino acid peptides for their ability to antagonize CXCR4 receptor function using HeLa cells and PBMC cells (used as standard...

  14. Structural requirements for the interaction between class II MHC molecules and peptide antigens

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Appella, E

    1990-01-01

    of binding, it is possible to define certain structural features of peptides that are associated with the capacity to bind to a particular MHC specificity (IA(d) or IE(d)); 3) IA(d) and IE(d) molecules recognize different and independent structures on the antigen molecule; 4) only about 10% of the single...... IA(d) and IE(d) molecules and their peptide ligands, we found that some structural characteristics apply to both antigen-MHC interactions. In particular, we found: 1) each MHC molecule is capable of binding many unrelated peptides through the same peptide-binding site; 2) despite this permissiveness...... amino acid substitutions tested on two IA(d)- and IE(d)-binding peptides had significant effect on their MHC-binding capacities, while over 80% of these substitutions significantly impaired T cell recognition of the Ia-peptide complex; 5) based on the segregation between residues that are crucial for T...

  15. Amino acid substitutions in genetic variants of human serum albumin and in sequences inferred from molecular cloning

    International Nuclear Information System (INIS)

    Takahashi, N.; Takahashi, Y.; Blumberg, B.S.; Putnam, F.W.

    1987-01-01

    The structural changes in four genetic variants of human serum albumin were analyzed by tandem high-pressure liquid chromatography (HPLC) of the tryptic peptides, HPLC mapping and isoelectric focusing of the CNBr fragments, and amino acid sequence analysis of the purified peptides. Lysine-372 of normal (common) albumin A was changed to glutamic acid both in albumin Naskapi, a widespread polymorphic variant of North American Indians, and in albumin Mersin found in Eti Turks. The two variants also exhibited anomalous migration in NaDodSO 4 /PAGE, which is attributed to a conformational change. The identity of albumins Naskapi and Mersin may have originated through descent from a common mid-Asiatic founder of the two migrating ethnic groups, or it may represent identical but independent mutations of the albumin gene. In albumin Adana, from Eti Turks, the substitution site was not identified but was localized to the region from positions 447 through 548. The substitution of aspartic acid-550 by glycine was found in albumin Mexico-2 from four individuals of the Pima tribe. Although only single-point substitutions have been found in these and in certain other genetic variants of human albumin, five differences exist in the amino acid sequences inferred from cDNA sequences by workers in three other laboratories. However, our results on albumin A and on 14 different genetic variants accord with the amino acid sequence of albumin deduced from the genomic sequence. The apparent amino acid substitutions inferred from comparison of individual cDNA sequences probably reflect artifacts in cloning or in cDNA sequence analysis rather than polymorphism of the coding sections of the albumin gene

  16. A quantitative histochemical study of D-amino acid oxidase activity in rat liver in relationship with feeding conditions

    NARCIS (Netherlands)

    Patel, H. R.; Frederiks, W. M.; Marx, F.; Best, A. J.; van Noorden, C. J.

    1991-01-01

    The histochemical method for the demonstration of D-amino acid oxidase activity in rat liver, based on the use of cerium ions and the diaminobenzidine-cobalt-hydrogen peroxide procedure, was improved by the application of unfixed cryostat sections and a semipermeable membrane interposed between

  17. Optical Sensors for Detection of Amino Acids.

    Science.gov (United States)

    Pettiwala, Aafrin M; Singh, Prabhat K

    2017-11-06

    Amino acids are crucially involved in a myriad of biological processes. Any aberrant changes in physiological level of amino acids often manifest in common metabolic disorders, serious neurological conditions and cardiovascular diseases. Thus, devising methods for detection of trace amounts of amino acids becomes highly elemental to their efficient clinical diagnosis. Recently, the domain of developing optical sensors for detection of amino acids has witnessed significant activity which is the focus of the current review article. We undertook a detailed search of the peer-reviewed literature that primarily deals with optical sensors for amino acids and focuses on the use of different type of materials as a sensing platform. Ninety-five papers have been included in the review, majority of which deals with optical sensors. We attempt to systematically classify these contributions based on applications of various chemical and biological scaffolds such as polymers, supramolecular assemblies, nanoparticles, DNA, heparin etc. for the sensing of amino acids. This review identifies that supramolecular assemblies and nanomaterial continue to be commonly used materials to devise sensors for amino acids followed by surfactant assemblies. The broad implications of amino acids in human health and diagnosis have stirred a lot of interest to develop optimized optical detection systems for amino acids in recent years, using different materials based on chemical and biological scaffolds. We have also attempted to highlight the merits and demerits of some of the noteworthy sensor systems to instigate further efforts for constructing amino acids sensor based on unconventional concepts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Recurrent Neural Network Model for Constructive Peptide Design.

    Science.gov (United States)

    Müller, Alex T; Hiss, Jan A; Schneider, Gisbert

    2018-02-26

    We present a generative long short-term memory (LSTM) recurrent neural network (RNN) for combinatorial de novo peptide design. RNN models capture patterns in sequential data and generate new data instances from the learned context. Amino acid sequences represent a suitable input for these machine-learning models. Generative models trained on peptide sequences could therefore facilitate the design of bespoke peptide libraries. We trained RNNs with LSTM units on pattern recognition of helical antimicrobial peptides and used the resulting model for de novo sequence generation. Of these sequences, 82% were predicted to be active antimicrobial peptides compared to 65% of randomly sampled sequences with the same amino acid distribution as the training set. The generated sequences also lie closer to the training data than manually designed amphipathic helices. The results of this study showcase the ability of LSTM RNNs to construct new amino acid sequences within the applicability domain of the model and motivate their prospective application to peptide and protein design without the need for the exhaustive enumeration of sequence libraries.

  19. Antimicrobial peptides design by evolutionary multiobjective optimization.

    Directory of Open Access Journals (Sweden)

    Giuseppe Maccari

    Full Text Available Antimicrobial peptides (AMPs are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18 was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues.

  20. cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides.

    Science.gov (United States)

    Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G

    1990-06-01

    We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the precursors. These peptides were synthesized with a D-alanine in position 2 and their pharmacological properties were tested. Two of them, [Lys7]dermorphin-OH and [Trp4,Asn7]dermorphin-OH, were found to have roughly the same affinity and selectivity for mu-type opioid receptors as dermorphin.

  1. Searching for Extraterrestrial Amino Acids in a Contaminated Meteorite: Amino Acid Analyses of the Canakkale L6 Chondrite

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Glavin, D. P.; Dworkin, J. P.; Ornek, C. Y.; Esenoglu, H. H.; Unsalan, O.; Ozturk, B.

    2016-01-01

    Amino acids can serve as important markers of cosmochemistry, as their abundances and isomeric and isotopic compositions have been found to vary predictably with changes in parent body chemistry and alteration processes. Amino acids are also of astrobiological interest because they are essential for life on Earth. Analyses of a range of meteorites, including all groups of carbonaceous chondrites, along with H, R, and LL chondrites, ureilites, and a martian shergottite, have revealed that amino acids of plausible extraterrestrial origin can be formed in and persist after a wide range of parent body conditions. However, amino acid analyses of L6 chondrites to date have not provided evidence for indigenous amino acids. In the present study, we performed amino acid analysis on larger samples of a different L6 chondite, Canakkale, to determine whether or not trace levels of indigenous amino acids could be found. The Canakkale meteor was an observed fall in late July, 1964, near Canakkale, Turkey. The meteorite samples (1.36 and 1.09 g) analyzed in this study were allocated by C. Y. Ornek, along with a soil sample (1.5 g) collected near the Canakkale recovery site.

  2. Branched-chain amino acids for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Koretz, R L; Kjaergard, L L

    2003-01-01

    Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be caused by a decreased plasma ratio of branched-chain amino acids (BCAA) to aromatic amino acids. Treatment with BCAA may therefore have a beneficial effect on patients with hepatic encephalopathy....

  3. Sites that Can Produce Left-handed Amino Acids in the Supernova Neutrino Amino Acid Processing Model

    Science.gov (United States)

    Boyd, Richard N.; Famiano, Michael A.; Onaka, Takashi; Kajino, Toshitaka

    2018-03-01

    The Supernova Neutrino Amino Acid Processing model, which uses electron anti-neutrinos and the magnetic field from a source object such as a supernova to selectively destroy one amino acid chirality, is studied for possible sites that would produce meteoroids with partially left-handed amino acids. Several sites appear to provide the requisite magnetic field intensities and electron anti-neutrino fluxes. These results have obvious implications for the origin of life on Earth.

  4. Hydroquinone: O-glucosyltransferase from cultivated Rauvolfia cells: enrichment and partial amino acid sequences.

    Science.gov (United States)

    Arend, J; Warzecha, H; Stöckigt, J

    2000-01-01

    Plant cell suspension cultures of Rauvolfia are able to produce a high amount of arbutin by glucosylation of exogenously added hydroquinone. A four step purification procedure using anion exchange, hydrophobic interaction, hydroxyapatite-chromatography and chromatofocusing delivered in a yield of 0.5%, an approximately 390 fold enrichment of the involved glucosyltransferase. SDS-PAGE showed a M(r) for the enzyme of 52 kDa. Proteolysis of the pure enzyme with endoproteinase LysC revealed six peptide fragments with 9-23 amino acids which were sequenced. Sequence alignment of the six peptides showed high homologies to glycosyltransferases from other higher plants.

  5. Amino Acid Patterns around Disulfide Bonds

    Directory of Open Access Journals (Sweden)

    Brett Drury

    2010-11-01

    Full Text Available Disulfide bonds provide an inexhaustible source of information on molecular evolution and biological specificity. In this work, we described the amino acid composition around disulfide bonds in a set of disulfide-rich proteins using appropriate descriptors, based on ANOVA (for all twenty natural amino acids or classes of amino acids clustered according to their chemical similarities and Scheffé (for the disulfide-rich proteins superfamilies statistics. We found that weakly hydrophilic and aromatic amino acids are quite abundant in the regions around disulfide bonds, contrary to aliphatic and hydrophobic amino acids. The density distributions (as a function of the distance to the center of the disulfide bonds for all defined entities presented an overall unimodal behavior: the densities are null at short distances, have maxima at intermediate distances and decrease for long distances. In the end, the amino acid environment around the disulfide bonds was found to be different for different superfamilies, allowing the clustering of proteins in a biologically relevant way, suggesting that this type of chemical information might be used as a tool to assess the relationship between very divergent sets of disulfide-rich proteins.

  6. Branched-chain amino acid interactions with reference to amino acid requirements in adult men: Valine metabolism at different leucine intakes

    International Nuclear Information System (INIS)

    Pelletier, V.; Marks, L.; Wagner, D.A.; Hoerr, R.A.; Young, V.R.

    1991-01-01

    The authors explored whether the oxidation of valine and by implication the physiological requirement for this amino acid are affected by changes in leucine intake over a physiological range. Six young adult men received, in random order, four L-amino acid-based diets for 5 d supplying either 20 or 10 mg valine.kg body wt-1.d-1, each in combination with 80 or 40 mg leucine.kg-1.d-1. On day 6 subjects were studied with an 8-h continuous intravenous infusion of [1-13C]valine (and [2H3]leucine) to determine valine oxidation in the fasted state (first 3 h) and fed state (last 5 h). Valine oxidation in the fasted state was similar among all diets but was lower (P less than 0.05) in the fed state for the 10 vs 20 mg valine.kg-1.d-1 intake. Leucine intake did not affect valine oxidation. Mean daily valine balance approximated +1.3 mg.kg-1.d-1 for the 20-mg intake and -1.6 mg.kg-1.d-1 for the 10-mg intake. These findings support our previously suggested mean valine requirement estimate of approximately 20 mg.kg-1.d-1

  7. The effect of Eimeria maxima infection on the expression of amino acid and sugar transporters aminopeptidase, as well as the di- and tri-peptide transporter PepT1, is not solely due to decreased feed intake

    Science.gov (United States)

    Coccidiosis caused by Eimeria in poultry is endemic to poultry operations and results in decreased feed intake, diarrhea, and decreased weight gain. The goal was to determine the effect infection Eimeria maxima on the expression of genes that encode peptide and amino acid transporters (AATs), and al...

  8. Gut luminal endogenous protein: implications for the determination of ileal amino acid digestibility in humans.

    Science.gov (United States)

    Moughan, Paul J; Rutherfurd, Shane M

    2012-08-01

    The true ileal digestibility assay provides the most informative measure of digestibility to assess bioavailability of amino acids in foods for humans. To determine 'true' estimates of ileal amino acid digestibility, requires that endogenous amino acids present in digesta at the terminal ileum be quantified. The amounts of endogenous amino acids in ileal digesta can be determined after feeding an animal or human a protein-free diet (traditional approach) or by various methods after giving a protein-containing diet. When the protein-free method has been applied with adult human subjects an overall mean value (three separate studies) for endogenous ileal nitrogen flow of 800 mg N/d has been reported. This value is considerably lower than a comparable value obtained after feeding protein of 1852 mg N/d (mean of four separate studies), and thus endogenous ileal N and amino acids should be measured under conditions of protein alimentation. There is some confusion concerning the terminology used to define digestibility, with the term "true" digestibility having different adopted meanings. Here, true amino acid digestibility is defined as apparent amino acid digestibility corrected for the basal amino acid losses determined after giving either a protein-free or a protein-containing diet. Basal losses should be determined at a defined dry-matter and protein intake. The protein-free diet approach to determining endogenous amino acids is considered unphysiological and basal losses refer to ileal endogenous amino acid flows associated with digesta dry-matter flow, and not including "specific" effects of dietary factors such as non starch polysaccharides and anti nutritional factors. Arguments are advanced that the enzyme hydrolysed protein/ultra filtration method may be suitable for routine application with a cannulated pig model, to obtain physiologically-valid basal estimates of ileal endogenous amino acids to allow calculation of true ileal amino acid digestibility in the

  9. Synthesis and biological activity of amino acid conjugates of abscisic acid.

    Science.gov (United States)

    Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro

    2011-03-01

    We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Synthesis and Biological Activity of Novel Amino Acid-(N'-Benzoyl Hydrazide and Amino Acid-(N'-Nicotinoyl Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Sherine N. Khattab

    2005-09-01

    Full Text Available The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N`-benzoyl- and N- Boc-amino acid-(N`-nicotinoyl hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N`-benzoyl hydrazide hydrochloride salts (7a-7e and amino acid-(N`- nicotinoyl hydrazide hydrochloride salts (8a-8e. These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  11. Evaluation of methods to estimate the essential amino acids requirements of fish from the muscle amino acid profile

    Directory of Open Access Journals (Sweden)

    Álvaro José de Almeida Bicudo

    2014-03-01

    Full Text Available Many methods to estimate amino acid requirement based on amino acid profile of fish have been proposed. This study evaluates the methodology proposed by Meyer & Fracalossi (2005 and by Tacon (1989 to estimate amino acids requirement of fish, which do exempt knowledge on previous nutritional requirement of reference amino acid. Data on amino acid requirement of pacu, Piaractus mesopotamicus, were used to validate de accuracy of those methods. Meyer & Fracalossi's and Tacon's methodology estimated the lysine requirement of pacu, respectively, at 13 and 23% above requirement determined using dose-response method. The values estimated by both methods lie within the range of requirements determined for other omnivorous fish species, the Meyer & Fracalossi (2005 method showing better accuracy.

  12. Photoinduced electron transfer involving eosin-tryptophan conjugates. Long-lived radical pair states for systems incorporating aromatic amino acid side chains

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G. II; Farahat, C.W.; Oh, C. (Boston Univ., MA (United States))

    1994-07-14

    The electron-transfer photochemistry of the covalent derivatives of the dye eosin, in which the xanthene dye is covalently attached to the amino acid L-tryptophan via the thiohydantoin derivative, the tryptophan dipeptide, and an ethyl ester derivative, has been investigated. The singlet excited state of the dye is significantly quenched on attachment of the aromatic amino acid residue. Dye triplet states are also intercepted through intramolecular interaction of excited dye and amino acid pendants. Flash photolysis experiments verify that this interaction involves electron transfer from the indole side chains of tryptophan. Rate constants for electron transfer are discussed in terms of the distance relationships for the eosin chromophore and aromatic redox sites on peptide derivatives, the pathway for [sigma]-[pi] through-bond interaction between redox sites, and the multiplicity and state of protonation for electron-transfer intermediates. Selected electron-transfer photoreactions were studied under conditions of binding of the peptide derivatives in a high molecular weight, water-soluble, globular polymer, poly(vinyl-2-pyrrolidinone). 28 refs., 4 figs., 1 tab.

  13. Characterizing Peptide Neutral Losses Induced by Negative Electron-Transfer Dissociation (NETD)

    Science.gov (United States)

    Rumachik, Neil G.; McAlister, Graeme C.; Russell, Jason D.; Bailey, Derek J.; Wenger, Craig D.; Coon, Joshua J.

    2012-01-01

    We implemented negative electron-transfer dissociation (NETD) on a hybrid ion trap/Orbitrap mass spectrometer to conduct ion/ion reactions using peptide anions and radical reagent cations. In addition to sequence-informative ladders of a•- and x-type fragment ions, NETD generated intense neutral loss peaks corresponding to the entire or partial side-chain cleavage from amino acids constituting a given peptide. Thus, a critical step towards the characterization of this recently introduced fragmentation technique is a systematic study of synthetic peptides to identify common neutral losses and preferential fragmentation pathways. Examining 46 synthetic peptides with high mass accuracy and high resolution analysis permitted facile determination of the chemical composition of each neutral loss. We identified 19 unique neutral losses from 14 amino acids and three modified amino acids, and assessed the specificity and sensitivity of each neutral loss using a database of 1542 confidently identified peptides generated from NETD shotgun experiments employing high-pH separations and negative electrospray ionization. As residue-specific neutral losses indicate the presence of certain amino acids, we determined that many neutral losses have potential diagnostic utility. We envision this catalogue of neutral losses being incorporated into database search algorithms to improve peptide identification specificity and to further advance characterization of the acidic proteome. PMID:22290482

  14. Regulation of intestinal mucosal growth by amino acids.

    Science.gov (United States)

    Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Amino acids, especially glutamine (GLN) have been known for many years to stimulate the growth of small intestinal mucosa. Polyamines are also required for optimal mucosal growth, and the inhibition of ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, blocks growth. Certain amino acids, primarily asparagine (ASN) and GLN stimulate ODC activity in a solution of physiological salts. More importantly, their presence is also required before growth factors and hormones such as epidermal growth factor and insulin are able to increase ODC activity. ODC activity is inhibited by antizyme-1 (AZ) whose synthesis is stimulated by polyamines, thus, providing a negative feedback regulation of the enzyme. In the absence of amino acids mammalian target of rapamycin complex 1 (mTORC1) is inhibited, whereas, mTORC2 is stimulated leading to the inhibition of global protein synthesis but increasing the synthesis of AZ via a cap-independent mechanism. These data, therefore, explain why ASN or GLN is essential for the activation of ODC. Interestingly, in a number of papers, AZ has been shown to inhibit cell proliferation, stimulate apoptosis, or increase autophagy. Each of these activities results in decreased cellular growth. AZ binds to and accelerates the degradation of ODC and other proteins shown to regulate proliferation and cell death, such as Aurora-A, Cyclin D1, and Smad1. The correlation between the stimulation of ODC activity and the absence of AZ as influenced by amino acids is high. Not only do amino acids such as ASN and GLN stimulate ODC while inhibiting AZ synthesis, but also amino acids such as lysine, valine, and ornithine, which inhibit ODC activity, increase the synthesis of AZ. The question remaining to be answered is whether AZ inhibits growth directly or whether it acts by decreasing the availability of polyamines to the dividing cells. In either case, evidence strongly suggests that the regulation of AZ synthesis is the

  15. Conformational Interconversions of Amino Acid Derivatives

    Czech Academy of Sciences Publication Activity Database

    Kaminský, Jakub; Jensen, F.

    2016-01-01

    Roč. 12, č. 2 (2016), s. 694-705 ISSN 1549-9618 R&D Projects: GA ČR GA13-03978S; GA ČR(CZ) GA14-03564S; GA ČR(CZ) GA16-00270S Institutional support: RVO:61388963 Keywords : amino acids * force fields * transition states Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.245, year: 2016

  16. Discovery and History of Amino Acid Fermentation.

    Science.gov (United States)

    Hashimoto, Shin-Ichi

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  17. Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2).

    Science.gov (United States)

    Edwards, Noel; Anderson, Catriona M H; Gatfield, Kelly M; Jevons, Mark P; Ganapathy, Vadivel; Thwaites, David T

    2011-01-01

    The H(+)-coupled amino acid transporter PAT2 (SLC36A2) transports the amino acids proline, glycine, alanine and hydroxyproline. A physiological role played by PAT2 in amino acid reabsorption in the renal proximal tubule is demonstrated by mutations in SLC36A2 that lead to an iminoglycinuric phenotype (imino acid and glycine uria) in humans. A number of proline, GABA and tryptophan derivatives were examined to determine if they function either as transported substrates or non-transported inhibitors of PAT2. The compounds were investigated following heterologous expression of rat PAT2 in Xenopus laevis oocytes. PAT2 function was characterised by: radiotracer uptake and competition (cis-inhibition) studies; radiotracer efflux and trans-stimulation; and measurement of substrate-induced positive inward current by two-electrode voltage-clamp. In general, the proline derivatives appeared to be transported substrates and the relative ability to induce current flow was closely related to the inhibitory effects on PAT2-mediated l-[(3)H]proline uptake. In contrast, certain heterocyclic GABA derivatives (e.g. l-pipecolic acid) were translocated only slowly. Finally, the tryptophan derivatives inhibited PAT2 function but did not undergo transport. l-Proline uptake was inhibited by 5-hydroxy-l-tryptophan (IC(50) 1.6±0.4mM), α-methyl-d,l-tryptophan (3.5±1.5mM), l-tryptophan, 1-methyl-l-tryptophan and indole-3-propionic acid. Although neither 5-hydroxy-l-tryptophan nor α-methyl-d,l-tryptophan were able to elicit inward current in PAT2-expressing oocytes both reduced the current evoked by l-proline. 5-Hydroxy-l-tryptophan and α-methyl-d,l-tryptophan were unable to trans-stimulate l-proline efflux from PAT2-expressing oocytes, confirming that the two compounds act as non-transported blockers of PAT2. These two tryptophan derivatives should prove valuable experimental tools in future investigations of the physiological roles of PAT2. Copyright © 2010 Elsevier B.V. All rights

  18. Importance of Terminal Amino Acid Residues to the Transport of Oligopeptides across the Caco-2 Cell Monolayer.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Yu, Zhipeng; Ma, Sitong; Du, Zhiyang; Zhang, Ting; Liu, Jingbo

    2017-09-06

    The objective of this paper was to investigate the effects of terminal amino acids on the transport of oligopeptides across the Caco-2 cell monolayer. Ala-based tetra- and pentapeptides were designed, and the N- or C-terminal amino acid residues were replaced by different amino acids. The results showed that the oligopeptides had a wide range of transport permeability across the Caco-2 cell monolayer and could be divided into four categories: non-/poor permeability, low permeability, intermediate permeability, and good permeability. Tetrapeptides with N-terminal Leu, Pro, Ile, Cys, Met, and Val or C-terminal Val showed the highest permeability, with apparent permeability coefficient (P app ) values over 10 × 10 -6 cm/s (p transport of tetrapeptides. Pentapeptides with N- or C-terminal Tyr also showed high permeability levels, with P app values of about 10 × 10 -6 cm/s. The amino acids Glu, Asn, and Thr at the N terminus or Lys, Asp, and Arg at the C terminus were also beneficial for the transport of tetra- and pentapeptides, with P app values ranging from 1 × 10 -6 to 10 × 10 -6 cm/s. In addition, peptides with amino acids replaced at the N terminus generally showed higher permeability than those with amino acids replaced at the C terminus (p transport of oligopeptides across the Caco-2 cell monolayer.

  19. Amino acid sequence preferences to control cell-specific organization of endothelial cells, smooth muscle cells, and fibroblasts.

    Science.gov (United States)

    Kanie, Kei; Kato, Ryuji; Zhao, Yingzi; Narita, Yuji; Okochi, Mina; Honda, Hiroyuki

    2011-06-01

    Effective surface modification with biocompatible molecules is known to be effective in reducing the life-threatening risks related to artificial cardiovascular implants. In recent strategies in regenerative medicine, the enhancement and support of natural repair systems at the site of injury by designed biocompatible molecules have succeeded in rapid and effective injury repair. Therefore, such a strategy could also be effective for rapid endothelialization of cardiovascular implants to lower the risk of thrombosis and stenosis. To achieve this enhancement of the natural repair system, a biomimetic molecule that mimics proper cellular organization at the implant location is required. In spite of the fact that many reported peptides have cell-attracting properties on material surfaces, there have been few peptides that could control cell-specific adhesion. For the advanced cardiovascular implants, peptides that can mimic the natural mechanism that controls cell-specific organization have been strongly anticipated. To obtain such peptides, we hypothesized the cellular bias toward certain varieties of amino acids and examined the cell preference (in terms of adhesion, proliferation, and protein attraction) of varieties and of repeat length on SPOT peptide arrays. To investigate the role of specific peptides in controlling the organization of various cardiovascular-related cells, we compared endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts (FBs). A clear, cell-specific preference was found for amino acids (longer than 5-mer) using three types of cells, and the combinational effect of the physicochemical properties of the residues was analyzed to interpret the mechanism. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.

  20. Conservation of Three-Dimensional Helix-Loop-Helix Structure through the Vertebrate Lineage Reopens the Cold Case of Gonadotropin-Releasing Hormone-Associated Peptide.

    Science.gov (United States)

    Pérez Sirkin, Daniela I; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M; Vissio, Paula G; Dufour, Sylvie

    2017-01-01

    GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation.

  1. Conservation of Three-Dimensional Helix-Loop-Helix Structure through the Vertebrate Lineage Reopens the Cold Case of Gonadotropin-Releasing Hormone-Associated Peptide

    Directory of Open Access Journals (Sweden)

    Daniela I. Pérez Sirkin

    2017-08-01

    Full Text Available GnRH-associated peptide (GAP is the C-terminal portion of the gonadotropin-releasing hormone (GnRH preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH, despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation.

  2. Amino acid metabolism conflicts with protein diversity

    OpenAIRE

    Krick, Teresa; Shub, David A.; Verstraete, Nina; Ferreiro, Diego U.; Alonso, Leonardo G.; Shub, Michael; Sanchez, Ignacio E.

    2014-01-01

    The 20 protein-coding amino acids are found in proteomes with different relative abundances. The most abundant amino acid, leucine, is nearly an order of magnitude more prevalent than the least abundant amino acid, cysteine. Amino acid metabolic costs differ similarly, constraining their incorporation into proteins. On the other hand, a diverse set of protein sequences is necessary to build functional proteomes. Here, we present a simple model for a cost-diversity trade-off postulating that n...

  3. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  4. Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on plasma amino- and keto-acid concentrations and branched-chain keto-acid dehydrogenase activity.

    Science.gov (United States)

    Langer, S; Scislowski, P W; Brown, D S; Dewey, P; Fuller, M F

    2000-01-01

    The present experiment was designed to elucidate the mechanism of the methionine-sparing effect of excess branched-chain amino acids (BCAA) reported in the previous paper (Langer & Fuller, 2000). Twelve growing gilts (30-35 kg) were prepared with arterial catheters. After recovery, they received for 7 d a semipurified diet with a balanced amino acid pattern. On the 7th day blood samples were taken before (16 h postabsorptive) and after the morning meal (4 h postprandial). The animals were then divided into three groups and received for a further 7 d a methionine-limiting diet (80% of requirement) (1) without any amino acid excess; (2) with excess leucine (50% over requirement); or (3) with excesses of all three BCAA (leucine, isoleucine, valine, each 50% over the requirement). On the 7th day blood samples were taken as in the first period, after which the animals were killed and liver and muscle samples taken. Plasma amino acid and branched-chain keto acid (BCKA) concentrations in the blood and branched-chain keto-acid dehydrogenase (BCKDH; EC 1.2.4.4) activity in liver and muscle homogenates were determined. Compared with those on the balanced diet, pigs fed on methionine-limiting diets had significantly lower (P < 0.05) plasma methionine concentrations in the postprandial but not in the postabsorptive state. There was no effect of either leucine or a mixture of all three BCAA fed in excess on plasma methionine concentrations. Excess dietary leucine reduced (P < 0.05) the plasma concentrations of isoleucine and valine in both the postprandial and postabsorptive states. Plasma concentrations of the BCKA reflected the changes in the corresponding amino acids. Basal BCKDH activity in the liver and total BCKDH activity in the biceps femoris muscle were significantly (P < 0.05) increased by excesses of leucine or all BCAA.

  5. Extraterrestrial material analysis: loss of amino acids during liquid-phase acid hydrolysis

    Science.gov (United States)

    Buch, Arnaud; Brault, Amaury; Szopa, Cyril; Freissinet, Caroline

    2015-04-01

    Searching for building blocks of life in extraterrestrial material is a way to learn more about how life could have appeared on Earth. With this aim, liquid-phase acid hydrolysis has been used, since at least 1970 , in order to extract amino acids and other organic molecules from extraterrestrial materials (e.g. meteorites, lunar fines) or Earth analogues (e.g. Atacama desert soil). This procedure involves drastic conditions such as heating samples in 6N HCl for 24 h, either under inert atmosphere/vacuum, or air. Analysis of the hydrolyzed part of the sample should give its total (free plus bound) amino acid content. The present work deals with the influence of the 6N HCl hydrolysis on amino acid degradation. Our experiments have been performed on a standard solution of 17 amino acids. After liquid-phase acid hydrolysis (6N HCl) under argon atmosphere (24 h at 100°C), the liquid phase was evaporated and the dry residue was derivatized with N-Methyl-N-(t-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF), followed by gas chromatography-mass spectrometry analysis. After comparison with derivatized amino acids from the standard solution, a significant reduction of the chromatographic peak areas was observed for most of the amino acids after liquid-phase acid hydrolysis. Furthermore, the same loss pattern was observed when the amino acids were exposed to cold 6N HCl for a short amount of time. The least affected amino acid, i.e. glycine, was found to be 73,93% percent less abundant compared to the non-hydrolyzed standard, while the most affected, i.e. histidine, was not found in the chromatograms after hydrolysis. Our experiments thereby indicate that liquid-phase acid hydrolysis, even under inert atmosphere, leads to a partial or total loss of all of the 17 amino acids present in the standard solution, and that a quick cold contact with 6N HCl is sufficient to lead to a loss of amino acids. Therefore, in the literature, the reported increase

  6. Peptide-LNA oligonucleotide conjugates

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Hansen, Lykke Haastrup; Vester, Birte

    2013-01-01

    properties, peptides were introduced into oligonucleotides via a 2'-alkyne-2'-amino-LNA scaffold. Derivatives of methionine- and leucine-enkephalins were chosen as model peptides of mixed amino acid content, which were singly and doubly incorporated into LNA/DNA strands using highly efficient copper......(i)-catalyzed azide-alkyne cycloaddition (CuAAC) "click" chemistry. DNA/RNA target binding affinity and selectivity of the resulting POCs were improved in comparison to LNA/DNA mixmers and unmodified DNA controls. This clearly demonstrates that internal attachment of peptides to oligonucleotides can significantly...

  7. Sugar amino acids and related molecules

    Indian Academy of Sciences (India)

    Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl termini provide an excellent opportunity to organic chemists to create structural diversities akin to Nature's molecular arsenal. In recent years, sugar amino acids have been used extensively in the area of ...

  8. Chiral Symmetry Breaking in Peptide Systems During Formation of Life on Earth

    Science.gov (United States)

    Konstantinov, Konstantin K.; Konstantinova, Alisa F.

    2018-03-01

    Chiral symmetry breaking in complex chemical systems with a large number of amino acids and a large number of similar reactions was considered. It was shown that effective averaging over similar reaction channels may result in very weak effective enantioselectivity of forward reactions, which does not allow most of the known models to result in chiral symmetry breaking during formation of life on Earth. Models with simple and catalytic synthesis of a single amino acid, formation of peptides up to length five, and sedimentation of insoluble pair of substances were considered. It was shown that depending on the model and the values of the parameters, chiral symmetry breaking may occur in up to about 10% out of all possible unique insoluble pair combinations even in the absence of any catalytic synthesis and that minimum total number of amino acids in the pair is 5. If weak enantioselective forward catalytic synthesis of amino acids is present, then the number of possible variants, in which chiral symmetry breaking may occur, increases substantially. It was shown that that the most interesting catalysts have zero or one amino acid of "incorrect" chirality. If the parameters of the model are adjusted in such a way to result in an increase of concentration of longer peptides, then catalysts with two amino acids of incorrect chirality start to appear at peptides of length five. Models of chiral symmetry breaking in the presence of epimerization were considered for peptides up to length three. It was shown that the range of parameters in which chiral symmetry breaking could occur significantly shrinks in comparison to previously considered models with peptides up to length two. An experiment of chiral symmetry breaking was proposed. The experiment consists of a three-step cycle: reversible catalytic synthesis of amino acids, reversible synthesis of peptides, and irreversible sedimentation of insoluble substances.

  9. PH dependent adhesive peptides

    Science.gov (United States)

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  10. Peptoid-Peptide hybrid backbone architectures

    DEFF Research Database (Denmark)

    Olsen, Christian Adam

    2010-01-01

    Peptidomimetic oligomers and foldamers have received considerable attention for over a decade, with beta-peptides and the so-called peptoids (N-alkylglycine oligomers) representing prominent examples of such architectures. Lately, hybrid or mixed backbones consisting of both alpha- and beta......-amino acids (alpha/beta-peptides) have been investigated in some detail as well. The present Minireview is a survey of the literature concerning hybrid structures of alpha-amino acids and peptoids, including beta-peptoids (N-alkyl-beta-alanine oligomers), and is intended to give an overview of this area...

  11. Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information

    International Nuclear Information System (INIS)

    Fritzsching, K. J.; Yang, Y.; Schmidt-Rohr, K.; Hong Mei

    2013-01-01

    We introduce a Python-based program that utilizes the large database of 13 C and 15 N chemical shifts in the Biological Magnetic Resonance Bank to rapidly predict the amino acid type and secondary structure from correlated chemical shifts. The program, called PACSYlite Unified Query (PLUQ), is designed to help assign peaks obtained from 2D 13 C– 13 C, 15 N– 13 C, or 3D 15 N– 13 C– 13 C magic-angle-spinning correlation spectra. We show secondary-structure specific 2D 13 C– 13 C correlation maps of all twenty amino acids, constructed from a chemical shift database of 262,209 residues. The maps reveal interesting conformation-dependent chemical shift distributions and facilitate searching of correlation peaks during amino-acid type assignment. Based on these correlations, PLUQ outputs the most likely amino acid types and the associated secondary structures from inputs of experimental chemical shifts. We test the assignment accuracy using four high-quality protein structures. Based on only the Cα and Cβ chemical shifts, the highest-ranked PLUQ assignments were 40–60 % correct in both the amino-acid type and the secondary structure. For three input chemical shifts (CO–Cα–Cβ or N–Cα–Cβ), the first-ranked assignments were correct for 60 % of the residues, while within the top three predictions, the correct assignments were found for 80 % of the residues. PLUQ and the chemical shift maps are expected to be useful at the first stage of sequential assignment, for combination with automated sequential assignment programs, and for highly disordered proteins for which secondary structure analysis is the main goal of structure determination.

  12. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  13. The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase.

    Science.gov (United States)

    Haggarty, N W; Dunbar, B; Fothergill, L A

    1983-01-01

    The complete amino acid sequence of human erythrocyte diphosphoglycerate mutase, comprising 239 residues, was determined. The sequence was deduced from the four cyanogen bromide fragments, and from the peptides derived from these fragments after digestion with a number of proteolytic enzymes. Comparison of this sequence with that of the yeast glycolytic enzyme, phosphoglycerate mutase, shows that these enzymes are 47% identical. Most, but not all, of the residues implicated as being important for the activity of the glycolytic mutase are conserved in the erythrocyte diphosphoglycerate mutase. PMID:6313356

  14. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  15. Bacterial membrane activity of a-peptide/b-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik

    2011-01-01

    and subsequent killing is usually not tested. In this report, six α-peptide/β-peptoid chimeras were examined for the effect of amino acid/peptoid substitutions and chain length on the membrane perturbation and subsequent killing of food-borne and clinical bacterial isolates. RESULTS: All six AMP analogues...... acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time...... of onset and reduction in the number of viable cells. EDTA pre-treatment of S. marcescens and E. coli followed by treatment with chimeras resulted in pronounced killing indicating that disintegration of the Gram-negative outer membrane eliminated innate differences in susceptibility. Chimera chain length...