WorldWideScience

Sample records for d-2 receptor blockade

  1. Systemic blockade of D2-like dopamine receptors facilitates extinction of conditioned fear in mice

    OpenAIRE

    Ponnusamy, Ravikumar; Nissim, Helen A.; Barad, Mark

    2005-01-01

    Extinction of conditioned fear in animals is the explicit model of behavior therapy for human anxiety disorders, including panic disorder, obsessive-compulsive disorder, and post-traumatic stress disorder. Based on previous data indicating that fear extinction in rats is blocked by quinpirole, an agonist of dopamine D2 receptors, we hypothesized that blockade of D2 receptors might facilitate extinction in mice, while agonists should block extinction, as they do in rats. One day after fear con...

  2. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics.

    Science.gov (United States)

    Tonini, M; Cipollina, L; Poluzzi, E; Crema, F; Corazza, G R; De Ponti, F

    2004-02-15

    Antidopaminergic gastrointestinal prokinetics (bromopride, clebopride, domperidone, levosulpiride and metoclopramide) have been exploited clinically for the management of motor disorders of the upper gastrointestinal tract, including functional dyspepsia, gastric stasis of various origins and emesis. The prokinetic effect of these drugs is mediated through the blockade of enteric (neuronal and muscular) inhibitory D2 receptors. The pharmacological profiles of the marketed compounds differ in terms of their molecular structure, affinity at D2 receptors, ability to interact with other receptor systems [5-hydroxytryptamine-3 (5-HT3) and 5-HT4 receptors for metoclopramide; 5-HT4 receptors for levosulpiride) and ability to permeate the blood-brain barrier (compared with the other compounds, domperidone does not easily cross the barrier). It has been suggested that the serotonergic (5-HT4) component of some antidopaminergic prokinetics may enhance their therapeutic efficacy in gastrointestinal disorders, such as functional dyspepsia and diabetic gastroparesis. The antagonism of central D2 receptors may lead to both therapeutic (e.g. anti-emetic effect due to D2 receptor blockade in the area postrema) and adverse (including hyperprolactinaemia and extrapyramidal dystonic reactions) effects. As the pituitary (as well as the area postrema) is outside the blood-brain barrier, hyperprolactinaemia is a side-effect occurring with all antidopaminergic prokinetics, although to different extents. Extrapyramidal reactions are most commonly observed with compounds crossing the blood-brain barrier, although with some differences amongst the various agents. Prokinetics with a high dissociation constant compared with that of dopamine at the D2 receptor (i.e. compounds that bind loosely to D2 receptors in the nigrostriatal pathway) elicit fewer extrapyramidal signs and symptoms. A knowledge of central and peripheral D2 receptor pharmacology can help the clinician to choose between the

  3. Blockade of serotonin 5-HT2A receptors potentiates dopamine D2 activation-induced disruption of pup retrieval on an elevated plus maze, but has no effect on D2 blockade-induced one.

    Science.gov (United States)

    Nie, Lina; Di, Tianqi; Li, Yu; Cheng, Peng; Li, Ming; Gao, Jun

    2018-06-23

    Appetitive aspect of rat maternal behavior, such as pup retrieval, is motivationally driven and sensitive to dopamine disturbances. Activation or blockade of dopamine D 2 receptors causes a similar disruption of pup retrieval, which may also reflect an increase in maternal anxiety and/or a disruption of executive function. Recent work indicates that serotonin 5-HT 2A receptors also play an important role in rat maternal behavior. Given the well-known modulation of 5-HT 2A on the mesolimbic and mesocortical dopamine functions, the present study examined the extent to which blockade of 5-HT 2A receptors on dopamine D 2 -mediated maternal effects using a pup retrieval on the elevated plus maze (EPM) test. Sprague-Dawley postpartum female rats were acutely injected with quinpirole (a D 2 agonist, 0.10 and 0.25 mg/kg, sc), or haloperidol (a D 2 antagonist, 0.1 or 0.2 mg/kg, sc), in combination of MDL100907 (a 5-HT 2A receptor antagonist, 1.0 mg/kg, sc, 30 min before quinpirole or haloperidol injection) or saline and tested at 30, 90 and 240 min after quinpirole or haloperidol injection on postpartum days 3 and 7. Quinpirole and haloperidol decreased the number of pup retrieved (an index of maternal motivation) and sequential retrieval score (an index of executive function), prolonged the pup retrieval latencies, reduced the percentage of time spent on the open arms (an index of maternal anxiety), and decreased the distance travelled on the maze in a dose-dependent and time-dependent fashion. MDL100907 treatment by itself had no effect on pup retrieval, but it exacerbated the quinpirole-induced disruption of pup retrieval, but had no effect on the haloperidol-induced one. These findings suggest a complex interactive effect between 5-HT 2A and D 2 receptors on one or several maternal processes (maternal motivation, anxiety and executive function), and support the idea that one molecular mechanism by which 5-HT 2A receptors mediate maternal behavior is through

  4. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers.

    Science.gov (United States)

    Khodadadi, M; Zendehdel, M; Baghbanzadeh, A; Babapour, V

    2017-10-01

    1. Endocannabinoids (ECBs) and their receptors play a regulatory function on several physiological processes such as feed-intake behaviour, mainly in the brain. This study was carried out in order to investigate the effects of the dopaminergic D1 and D2 receptors on CB1/CB2 ECB receptor-induced hyperphagia in 3-h feed-deprived neonatal layer chickens. 2. A total of 8 experiments were designed to explore the interplay of these two modulatory systems on feed intake in neonatal chickens. In Experiment 1, chickens were intracerebroventricular (ICV) injected with control solution, l-DOPA (levo-dihydroxyphenylalanine as precursor of dopamine; 125 nmol), 2-AG (2-arachidonoylglycerol as CB 1 receptor agonist; 2 µg) and co-administration of l-DOPA (125 nmol) plus 2-AG (2 µg). Experiments 2-4 were similar to Experiment 1 except birds were injected with either 6-OHDA (6-hydroxydopamine as dopamine synthesis inhibitor; 150 nmol), SCH23390 (D1 receptor antagonist; 5 nmol) and AMI-193 (D2 receptor antagonist; 5 nmol) instead of l-DOPA, respectively. Additionally, Experiments 5-8 followed the previous ones using the same dose of l-DOPA, 6-OHDA and dopamine antagonists except that birds were injected with CB65 (CB2 receptor agonist; 5 µg) instead of 2-AG. Coadministrations were at the same dose for each experiment. Cumulative feed intakes were measured until 120 min after each injection. 3. ICV administration of 6-OHDA and AMI-193 significantly attenuated 2-AG-induced hyperphagia. Interestingly, the hyperphagic effect of CB65 was significantly attenuated by administration of l-DOPA, whereas the administration of 6-OHDA and AMI-193 together amplified the hyperphagic effect of CB65. 4. It was concluded that cannabinoid-induced feeding behaviour is probably modulated by dopamine receptors in neonatal layer-type chickens. It seems that their interaction may be mediated by the D2-dopamine receptor.

  5. Frontal fasciculi and psychotic symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of selective dopamine D2/3 receptor blockade

    DEFF Research Database (Denmark)

    Ebdrup, Bjørn H; Raghava, Jayachandra M; Nielsen, Mette Ødegaard

    2016-01-01

    /3 receptor blockade would restore white matter. METHODS: Between December 2008 and July 2011, antipsychotic-naive patients with first-episode schizophrenia and matched healthy controls underwent baseline examination with 3 T MRI diffusion tensor imaging and clinical assessments. We assessed group differences...... with first-episode schizophrenia and 38 controls in our analysis, and 28 individuals in each group completed the study. At baseline, whole brain TBSS analyses revealed lower FA in patients in the right anterior thalamic radiation (ATR), right cingulum, right inferior longitudinal fasciculus and right...

  6. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Science.gov (United States)

    Yang, Chen; Ge, Shun-Nan; Zhang, Jia-Rui; Chen, Lei; Yan, Zhi-Qiang; Heng, Li-Jun; Zhao, Tian-Zhi; Li, Wei-Xin; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2013-01-01

    High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  7. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    Directory of Open Access Journals (Sweden)

    Chen Yang

    Full Text Available High-voltage spindles (HVSs have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1 in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  8. Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

    Science.gov (United States)

    Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi

    2013-01-01

    Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801

  9. Blockade of MK-801-induced heat shock protein 72/73 in rat brain by antipsychotic and monoaminergic agents targeting D2, 5-HT1A, 5-HT2A and α1-adrenergic receptors.

    Science.gov (United States)

    Romón, Tamara; Planas, Anna M; Adell, Albert

    2014-02-01

    Noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists can produce positive and negative symptomatology as well as impairment of cognitive function that closely resemble those present in schizophrenia. In rats, these drugs induce a behavioral syndrome (characterized by hyperlocomotion and stereotypies), an enhanced glutamatergic transmission in the medial prefrontal cortex, and damage to retrosplenial cortical neurons in adult rats, which was measured as the induction of the stress protein 72/73 kDa heat shock protein (Hsp72/73). In the present work, we have examined the existence of possible differences among different antipsychotic drugs in their capacity to block immunolabeling of Hsp72/73 in the retrosplenial cortex of the rat induced by the potent NMDA receptor antagonist, MK- 801. In addition, the effects of selective monoaminergic agents were also studied to delineate the particular receptors responsible for the actions of antipsychotic drugs. Pretreatment with clozapine, chlorpromazine, olanzapine, ziprasidone--and to a lesser extent haloperidol-reduced the formation of Hsp72/73 protein in the rat retrosplenial cortex after the administration of MK-801. In addition, antagonism at dopamine D2 (raclopride), 5-HT2 (M100907) and α1- adrenoceptors (prazosin) as well as agonism at 5-HT1A receptors (BAY x 3702) also diminished the MK-801-induced number of cells labeled with Hsp72/73. Each of these effects may contribute to antipsychotic action. The results suggest that the efficacy of atypical antipsychotic drugs in the clinic may result from a combined effect on 5-HT2, 5-HT1A and α1-adrenergic receptors added to the classical dopamine D2 receptor antagonism.

  10. On the clinical impact of cerebral dopamine D2 receptor scintigraphy

    International Nuclear Information System (INIS)

    Larisch, R.; Klimke, A.

    1998-01-01

    The present review describes findings and clinical indications for the dopamine D 2 receptor scintigraphy. Methods for the examination of D 2 receptors are positron emission tomography (PET) using 11 C- or 18 F-labelled butyrophenones or benzamides or single photon emission tomography (SPECT) using 123 I-iodobenzamide (IBZM) respectively. The most important indication in neurology is the differential diagnosis of Parkinsonism: Patients with early Parkinson's disease show an increased D 2 receptor binding (D 2 -RB) compared to control subjects. However, patients suffering from Steele-Richardson-Olszewski-Syndrome or Multiple System Atrophy show a decreased D 2 -RB and are generally non-responsive to treatment. Postsynaptic blockade of D 2 receptors results in a drug induced Parkinsonian syndrome, which can be diagnosed by D 2 scintigraphy. Further possible indications occur in psychiatry: The assessment of receptor occupancy is useful in schizophrenic patients treated with neuroleptics. Additionally, D 2 receptor scintigraphy might help to clarify the differential diagnosis between neuroleptic malignant syndrome and lethal catatonia. The method might be useful for supervising neurobiochemical changes in drug dependency and during withdrawal. Assessment of dopamine D 2 receptor binding can simplify the choice of therapy in depressive disorder: Patients showing a low D 2 binding are likely to improve following an antidepressive drug treatment whereas sleep deprivation is promising in patients with high D 2 binding. (orig.) [de

  11. The Roles of Dopamine D2 Receptor in the Social Hierarchy of Rodents and Primates

    OpenAIRE

    Yamaguchi, Yoshie; Lee, Young-A.; Kato, Akemi; Jas, Emanuel; Goto, Yukiori

    2017-01-01

    Dopamine (DA) plays significant roles in regulation of social behavior. In social groups of humans and other animals, social hierarchy exists, which is determined by several behavioral characteristics such as aggression and impulsivity as well as social affiliations. In this study, we investigated the effects of pharmacological blockade of DA D2 receptor on social hierarchy of Japanese macaque and mouse social groups. We found acute administration of the D2 antagonist, sulpiride, in socially ...

  12. Frontal D2/3 Receptor Availability in Schizophrenia Patients Before and After Their First Antipsychotic Treatment

    DEFF Research Database (Denmark)

    Nørbak-Emig, Henrik; Ebdrup, Bjørn H; Fagerlund, Birgitte

    2016-01-01

    the relation between frontal D2/3 receptor availability and treatment effect on positive symptoms. METHODS: Twenty-five antipsychotic-naïve first-episode schizophrenia patients were examined with the Positive and Negative Syndrome Scale, tested with the cognitive test battery Cambridge Neuropsychological Test......BACKGROUND: We have previously reported associations between frontal D2/3 receptor binding potential positive symptoms and cognitive deficits in antipsychotic-naïve schizophrenia patients. Here, we examined the effect of dopamine D2/3 receptor blockade on cognition. Additionally, we explored.......56, P=.003; D2/3 receptor binding potential right frontal cortex rho = 0.48, P=.016). CONCLUSIONS: Our data support the hypothesis of a negative influence of D2/3 receptor blockade on specific cognitive functions in schizophrenia. This is highly clinically relevant given the well-established association...

  13. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs

    International Nuclear Information System (INIS)

    Farde, L.; Wiesel, F.A.; Halldin, C.; Sedvall, G.

    1988-01-01

    Using positron emission tomography and the carbon 11-labeled ligand raclopride, central D2-dopamine receptor occupancy in the putamen was determined in psychiatric patients treated with clinical doses of psychoactive drugs. Receptor occupancy in drug-treated patients was defined as the percent reduction of specific carbon 11-raclopride binding in relation to the expected binding in the absence of drug treatment. Clinical treatment of schizophrenic patients with 11 chemically distinct antipsychotic drugs (including both classic and atypical neuroleptics such as clozapine) resulted in a 65% to 85% occupancy of D2-dopamine receptors. In a depressed patient treated with the tricyclic antidepressant nortriptyline, no occupancy was found. The time course for receptor occupancy and drug levels was followed after withdrawal of sulpiride or haloperidol. D2-dopamine receptor occupancy remained above 65% for many hours despite a substantial reduction of serum drug concentrations. In a sulpiride-treated patient, the dosage was reduced in four steps over a nine-week period and a curvilinear relationship was demonstrated between central D2-dopamine receptor occupancy and serum drug concentrations. The results demonstrate that clinical doses of all the currently used classes of antipsychotic drugs cause a substantial blockade of central D2-dopamine receptors in humans. This effect appears to be selective for the antipsychotics, since it was not induced by the antidepressant nortriptyline

  14. A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.

    Science.gov (United States)

    Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the

  15. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  16. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle.

    Science.gov (United States)

    Greba, Q; Gifkins, A; Kokkinidis, L

    2001-04-27

    Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.

  17. Photoaffinity ligand for dopamine D2 receptors: azidoclebopride

    International Nuclear Information System (INIS)

    Niznik, H.B.; Guan, J.H.; Neumeyer, J.L.; Seeman, P.

    1985-01-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [ 3 H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol

  18. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    Science.gov (United States)

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  19. Behavioral control by striatal adenosine A2A -dopamine D2 receptor heteromers.

    Science.gov (United States)

    Taura, J; Valle-León, M; Sahlholm, K; Watanabe, M; Van Craenenbroeck, K; Fernández-Dueñas, V; Ferré, S; Ciruela, F

    2018-04-01

    G protein-coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A 2A receptors (A 2A R) and dopamine D 2 receptors (D 2 R) predominantly form A 2A R-D 2 R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A 2A R and D 2 R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain-related differences, a new D 2 R-deficient mouse with the same genetic background (CD-1) than the A 2A R knock-out mouse was generated. Locomotor activity, pre-pulse inhibition (PPI) and drug-induced catalepsy were then evaluated in wild-type, A 2A R and D 2 R knock-out mice, with and without the concomitant administration of either the D 2 R agonist sumanirole or the A 2A R antagonist SCH442416. SCH442416-mediated locomotor effects were demonstrated to be dependent on D 2 R signaling. Similarly, a significant dependence on A 2A R signaling was observed for PPI and for haloperidol-induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A 2A R-D 2 R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.

    Science.gov (United States)

    Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric

    2016-05-01

    Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.

  1. Predicting treatment response from dopamine D2/3 receptor bnding potential? - A study in antipsychotic-naïve patients with schizophrenia

    DEFF Research Database (Denmark)

    Wulff, Sanne; Pinborg, Lars Hageman; Svarer, Claus

    of antipsychotic compounds on the positive symptoms. Furthermore, blockade of striatal dopamine D2 receptors have in studies shown to associate negatively with subjective well-being. Our main aim was to explore a possible predictive value of striatal dopamine D2/3 receptor binding potential (BPp) for treatment...... of 29 antipsychotic-naïve patients with schizophrenia and 26 matched healthy controls, SPECT with [123l]-IBZM was used to examine the BPP of striatal dopamine D2/3 receptors. The participants were examined at baseline and after 6 weeks of treatment with a selective D2/3 receptor antagonist, amisulpride....... Results: We found a significant inverse correlation between the striatal BPp at baseline and improvement of positive symptoms (p=0.046; R squared = 0.152) after six weeks of treatment with amisulpride. There was no association between the blockade of the D2/3 receptors and improvement of positive symptoms...

  2. Reduced striatal D2 receptor binding in myoclonus-dystonia

    International Nuclear Information System (INIS)

    Beukers, R.J.; Weisscher, N.; Tijssen, M.A.J.; Booij, J.; Zijlstra, F.; Amelsvoort, T.A.M.J. van

    2009-01-01

    To study striatal dopamine D 2 receptor availability in DYT11 mutation carriers of the autosomal dominantly inherited disorder myoclonus-dystonia (M-D). Fifteen DYT11 mutation carriers (11 clinically affected) and 15 age- and sex-matched controls were studied using 123 I-IBZM SPECT. Specific striatal binding ratios were calculated using standard templates for striatum and occipital areas. Multivariate analysis with corrections for ageing and smoking showed significantly lower specific striatal to occipital IBZM uptake ratios (SORs) both in the left and right striatum in clinically affected patients and also in all DYT11 mutation carriers compared to control subjects. Our findings are consistent with the theory of reduced dopamine D 2 receptor (D2R) availability in dystonia, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out. (orig.)

  3. The Roles of Dopamine D2 Receptor in the Social Hierarchy of Rodents and Primates.

    Science.gov (United States)

    Yamaguchi, Yoshie; Lee, Young-A; Kato, Akemi; Jas, Emanuel; Goto, Yukiori

    2017-02-24

    Dopamine (DA) plays significant roles in regulation of social behavior. In social groups of humans and other animals, social hierarchy exists, which is determined by several behavioral characteristics such as aggression and impulsivity as well as social affiliations. In this study, we investigated the effects of pharmacological blockade of DA D2 receptor on social hierarchy of Japanese macaque and mouse social groups. We found acute administration of the D2 antagonist, sulpiride, in socially housed Japanese macaques attenuated social dominance when the drug was given to high social class macaques. A similar attenuation of social dominance was observed in high social class mice with D2 antagonist administration. In contrast, D2 antagonist administration in low social class macaque resulted in more stable social hierarchy of the group, whereas such effect was not observed in mouse social group. These results suggest that D2 receptor signaling may play important roles in establishment and maintenance of social hierarchy in social groups of several species of animals.

  4. Frontal D2/3 Receptor Availability in Schizophrenia Patients Before and After Their First Antipsychotic Treatment: Relation to Cognitive Functions and Psychopathology.

    Science.gov (United States)

    Nørbak-Emig, Henrik; Ebdrup, Bjørn H; Fagerlund, Birgitte; Svarer, Claus; Rasmussen, Hans; Friberg, Lars; Allerup, Peter N; Rostrup, Egill; Pinborg, Lars H; Glenthøj, Birte Y

    2016-05-01

    We have previously reported associations between frontal D2/3 receptor binding potential positive symptoms and cognitive deficits in antipsychotic-naïve schizophrenia patients. Here, we examined the effect of dopamine D2/3 receptor blockade on cognition. Additionally, we explored the relation between frontal D2/3 receptor availability and treatment effect on positive symptoms. Twenty-five antipsychotic-naïve first-episode schizophrenia patients were examined with the Positive and Negative Syndrome Scale, tested with the cognitive test battery Cambridge Neuropsychological Test Automated Battery, scanned with single-photon emission computerized tomography using the dopamine D2/3 receptor ligand [(123)I]epidepride, and scanned with MRI. After 3 months of treatment with either risperidone (n=13) or zuclopenthixol (n=9), 22 patients were reexamined. Blockade of extrastriatal dopamine D2/3 receptors was correlated with decreased attentional focus (r = -0.615, P=.003) and planning time (r = -0.436, P=.048). Moreover, baseline frontal dopamine D2/3 binding potential and positive symptom reduction correlated positively (D2/3 receptor binding potential left frontal cortex rho = 0.56, P=.003; D2/3 receptor binding potential right frontal cortex rho = 0.48, P=.016). Our data support the hypothesis of a negative influence of D2/3 receptor blockade on specific cognitive functions in schizophrenia. This is highly clinically relevant given the well-established association between severity of cognitive disturbances and a poor functional outcome in schizophrenia. Additionally, the findings support associations between frontal D2/3 receptor binding potential at baseline and the effect of antipsychotic treatment on positive symptoms. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  5. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists.

    Science.gov (United States)

    Worden, Lila T; Shahriari, Mona; Farrar, Andrew M; Sink, Kelly S; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D

    2009-04-01

    Brain dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired DA transmission reallocate their behavior away from food-seeking behaviors that have high response requirements, and instead select less effortful alternatives. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related choice behavior, emerging evidence demonstrates a role for adenosine A(2A) receptors. Adenosine A(2A) receptor antagonism has been shown to reverse the effects of DA antagonism. The present experiments were conducted to determine if this effect was dependent upon the subtype of DA receptor that was antagonized to produce the changes in effort-related choice. The adenosine A(2A) receptor antagonist MSX-3 (0.5-2.0 mg/kg IP) was assessed for its ability to reverse the effects of the D1 family antagonist SCH39166 (ecopipam; 0.2 mg/kg IP) and the D2 family antagonist eticlopride (0.08 mg/kg IP), using a concurrent lever pressing/chow feeding procedure. MSX-3 produced a substantial dose-related reversal of the effects of eticlopride on lever pressing and chow intake. At the highest dose of MSX-3, there was a complete reversal of the effects of eticlopride on lever pressing. In contrast, MSX-3 produced only a minimal attenuation of the effects of SCH39166, as measured by regression and effect size analyses. The greater ability of MSX-3 to reverse the effects of D2 vs. D1 blockade may be related to the colocalization of D2 and adenosine A(2A) receptors on the same population of striatal neurons.

  6. Hyperactivity induced by stimulation of separate dopamine D-1 and D-2 receptors in rats with bilateral 6-OHDA lesions.

    Science.gov (United States)

    Arnt, J

    1985-08-26

    The effects of DA agonists and antagonists with different dopamine (DA) D-1 and D-2 receptor selectivity have been studied in rats with bilateral 6-OHDA lesions. The D-1 agonist SK & F 38393, the D-2 agonist pergolide and the mixed agonist apomorphine all induced marked hyperactivity in lesioned rats in doses which were without stimulant effect in sham-operated animals. The hyperactivity induced by SK & F 38393 was blocked by the DA D-1 antagonist SCH 23390, but unaffected by the D-2 antagonists spiroperidol or clebopride. Pergolide-induced hyperactivity showed the reverse selectivity. The mixed D-1/D-2 antagonists, cis(Z)-flupentixol and cis(Z)-clopenthixol, however blocked the effect of both agonists. Apomorphine-induced hyperactivity was neither blocked by selective D-1 nor D-2 antagonists, but was dose-dependently inhibited by cis(Z)-flupentixol and cis(Z)-clopenthixol. Potent blockade was also obtained by combined treatment with SCH 23390 and spiroperidol, indicating the need of blocking both D-1 and D-2 receptors simultaneously. The results indicate that D-1 and D-2 receptor function can be independently manipulated in denervated rats and they confirm similar results obtained in rats with unilateral 6-OHDA lesions using circling behaviour.

  7. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  8. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    Directory of Open Access Journals (Sweden)

    Casie Lindsly

    Full Text Available Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs. We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  9. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism

    International Nuclear Information System (INIS)

    Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J.

    1991-01-01

    The allelic association of the human D2 dopamine receptor gene with the binding characteristics of the D2 dopamine receptor was determined in 66 brains of alcoholic and non-alcoholic subjects. In a blinded experiment, DNA from the cerebral cortex was treated with the restriction endonuclease Taql and probed with a 1.5-kilobase (kb) digest of a clone (lambda hD2G1) of the human D2 dopamine receptor gene. The binding characteristics (Kd [binding affinity] and Bmax [number of binding sites]) of the D2 dopamine receptor were determined in the caudate nuclei of these brains using tritiated spiperone as the ligand. The adjusted Kd was significantly lower in alcoholic than in nonalcoholic subjects. In subjects with the A1 allele, in whom a high association with alcoholism was found, the Bmax was significantly reduced compared with the Bmax of subjects with the A2 allele. Moreover, a progressively reduced Bmax was found in subjects with A2/A2, A1/A2, and A1/A1 alleles, with subjects with A2/A2 having the highest mean values, and subjects with A1/A1, the lowest. The polymorphic pattern of the D2 dopamine receptor gene and its differential expression of receptors suggests the involvement of the dopaminergic system in conferring susceptibility to at least one subtype of severe alcoholism

  10. The signaling pathway of dopamine D2 receptor (D2R) activation using normal mode analysis (NMA) and the construction of pharmacophore models for D2R ligands.

    Science.gov (United States)

    Salmas, Ramin Ekhteiari; Stein, Matthias; Yurtsever, Mine; Seeman, Philip; Erol, Ismail; Mestanoglu, Mert; Durdagi, Serdar

    2017-07-01

    G-protein-coupled receptors (GPCRs) are targets of more than 30% of marketed drugs. Investigation on the GPCRs may shed light on upcoming drug design studies. In the present study, we performed a combination of receptor- and ligand-based analysis targeting the dopamine D2 receptor (D2R). The signaling pathway of D2R activation and the construction of universal pharmacophore models for D2R ligands were also studied. The key amino acids, which contributed to the regular activation of the D2R, were in detail investigated by means of normal mode analysis (NMA). A derived cross-correlation matrix provided us an understanding of the degree of pair residue correlations. Although negative correlations were not observed in the case of the inactive D2R state, a high degree of correlation appeared between the residues in the active state. NMA results showed that the cytoplasmic side of the TM5 plays a significant role in promoting of residue-residue correlations in the active state of D2R. Tracing motions of the amino acids Arg219, Arg220, Val223, Asn224, Lys226, and Ser228 in the position of the TM5 are found to be critical in signal transduction. Complementing the receptor-based modeling, ligand-based modeling was also performed using known D2R ligands. The top-scored pharmacophore models were found as 5-sited (AADPR.671, AADRR.1398, AAPRR.3900, and ADHRR.2864) hypotheses from PHASE modeling from a pool consisting of more than 100 initial candidates. The constructed models using 38 D2R ligands (in the training set) were validated with 15 additional test set compounds. The resulting model correctly predicted the pIC 50 values of an additional test set compounds as true unknowns.

  11. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  12. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor.

    Science.gov (United States)

    Takeda, K; Taniyama, K; Kuno, T; Sano, I; Ishikawa, T; Ohmura, I; Tanaka, C

    1991-05-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10(-8) M to 10(-5) M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: 1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. 2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.

  13. Clebopride enhances contractility of the guinea pig stomach by blocking peripheral D2 dopamine receptor and alpha-2 adrenoceptor

    International Nuclear Information System (INIS)

    Takeda, K.; Taniyama, K.; Kuno, T.; Sano, I.; Ishikawa, T.; Ohmura, I.; Tanaka, C.

    1991-01-01

    The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10 - 8 M to 10 - 5 M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: (1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. (2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility

  14. Effects of activation and blockade of dopamine receptors on the extinction of a passive avoidance reaction in mice with a depressive-like state.

    Science.gov (United States)

    Dubrovina, N I; Zinov'eva, D V

    2010-01-01

    Learning and extinction of a conditioned passive avoidance reaction resulting from neuropharmacological actions on dopamine D(1) and D(2) receptors were demonstrated to be specific in intact mice and in mice with a depressive-like state. Learning was degraded only after administration of the D(2) receptor antagonist sulpiride and was independent of the initial functional state of the mice. In intact mice, activation of D(2) receptors with quinpirole led to a deficit of extinction, consisting of a reduction in the ability to acquire new inhibitory learning in conditions associated with the disappearance of the expected punishment. In mice with the "behavioral despair" reaction, characterized by delayed extinction, activation of D(1) receptors with SKF38393 normalized this process, while the D(2) agonist was ineffective. A positive effect consisting of accelerated extinction of the memory of fear of the dark ("dangerous") sector of the experimental chamber was also seen on blockade of both types of dopamine receptor.

  15. SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice

    NARCIS (Netherlands)

    Jongen, C.; De Bruin, K.; Beekman, F.J.; Booij, J.

    2008-01-01

    Purpose: The dopamine D2 receptor (D2R) is important in the mediation of addiction. [123I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [123I]IBZM

  16. Assessment of dopamine receptor blockade by neuroleptic drugs in the living human brain

    International Nuclear Information System (INIS)

    Wong, D.F.; Wagner, H.N. Jr.; Coyle, J.

    1985-01-01

    Positron emission tomography (PET) makes it possible to attempt to relate directly the antipsychotic effect of neuroleptic drugs and their blocking effect on dopamine receptors (D2) in vivo. The authors have examined the ability of haloperidol (HAL) and molindone (MOL) to block the binding of C-11 n-methylspiperone (NMSP) in 6 normal subjects. A dose of 0.05 mg/kg of HAL resulted in a 68% drop in the slope of the caudate/cerebellum (Ca/Cb) vs. time. This slope is related to the rate of specific binding of NMSP to the receptor. A dose response was seen with both drugs. With increasing doses of HAL from .05 to 0.082 mg/kg, CA/Cb vs. time slope fell from .235 to .156/min. (N=4), progressively. Similarly with increasing doses of MOL of .16-.44 mg/kg slopes decreased from .0335 to .0155/min. (N=4). Similar degrees of post injection Ca/Cb ratio were produced with quantities of MOL and HAL administered in the oral dose ratio of doses 3-5:1 times greater than HAL. This is also the dose ratio at which we found similar dopamine receptor blockade by PET in vivo. A question that arises is why the in vitro affinity of HAL for D2 is 30 times greater than that of MOL in the human brain. The results raise the possibility that MOL metabolites are not only active in blocking D2 but indeed may possibly be more potent than MOL itself. It also helps confirm the site of action of MOL and its in vivo metabolites

  17. Sigma1 and dopamine D2 receptor occupancy in the mouse brain after a single administration of haloperidol and two dopamine D2-like receptor ligands

    International Nuclear Information System (INIS)

    Ishiwata, Kiichi; Kawamura, Kazunori; Kobayashi, Tadayuki; Matsuno, Kiyoshi

    2003-01-01

    We investigated sigma 1 and dopamine D 2 receptor occupancy in mouse brain after a single injection of haloperidol, nemonapride, or spiperone using [ 11 C]SA4503 and [ 11 C]raclopride, respectively. Co-injection of the three compounds significantly blocked the uptake of each radioligand. Six hours later, only haloperidol blocked [ 11 C]SA4503 uptake, while all three reduced [ 11 C]raclopride uptake. Sigma 1 receptor occupancy by haloperidol was reduced to 19% at day 2 when D 2 receptor occupancy disappeared. [ 11 C]SA4503 would be applicable to the investigation of sigma 1 receptor occupancy of antispychotic drugs using PET

  18. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    Science.gov (United States)

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  19. A2A-D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes.

    Science.gov (United States)

    Cervetto, Chiara; Venturini, Arianna; Passalacqua, Mario; Guidolin, Diego; Genedani, Susanna; Fuxe, Kjell; Borroto-Esquela, Dasiel O; Cortelli, Pietro; Woods, Amina; Maura, Guido; Marcoli, Manuela; Agnati, Luigi F

    2017-01-01

    Evidence for striatal A2A-D2 heterodimers has led to a new perspective on molecular mechanisms involved in schizophrenia and Parkinson's disease. Despite the increasing recognition of astrocytes' participation in neuropsychiatric disease vulnerability, involvement of striatal astrocytes in A2A and D2 receptor signal transmission has never been explored. Here, we investigated the presence of D2 and A2A receptors in isolated astrocyte processes prepared from adult rat striatum by confocal imaging; the effects of receptor activation were measured on the 4-aminopyridine-evoked release of glutamate from the processes. Confocal analysis showed that A2A and D2 receptors were co-expressed on the same astrocyte processes. Evidence for A2A-D2 receptor-receptor interactions was obtained by measuring the release of the gliotransmitter glutamate: D2 receptors inhibited the glutamate release, while activation of A2A receptors, per se ineffective, abolished the effect of D2 receptor activation. The synthetic D2 peptide VLRRRRKRVN corresponding to the receptor region involved in electrostatic interaction underlying A2A-D2 heteromerization abolished the ability of the A2A receptor to antagonize the D2 receptor-mediated effect. Together, the findings are consistent with heteromerization of native striatal astrocytic A2A-D2 receptors that via allosteric receptor-receptor interactions could play a role in the control of striatal glutamatergic transmission. These new findings suggest possible new pathogenic mechanisms and/or therapeutic approaches to neuropsychiatric disorders. © 2016 International Society for Neurochemistry.

  20. Dopamine D2L receptor-interacting proteins regulate dopaminergic signaling

    Directory of Open Access Journals (Sweden)

    Norifumi Shioda

    2017-10-01

    Full Text Available Dopamine receptor family proteins include seven transmembrane and trimeric GTP-binding protein-coupled receptors (GPCRs. Among them, the dopamine D2 receptor (D2R is most extensively studied. All clinically used antipsychotic drugs serve as D2R antagonists in the mesolimbic dopamine system, and their ability to block D2R signaling is positively correlated with antipsychotic efficiency. Human genetic studies also show a significant association of DRD2 polymorphisms with disorders including schizophrenia and Parkinson's disease. D2R exists as two alternatively spliced isoforms, the long isoform (D2LR and the short isoform (D2SR, which differ in a 29-amino acid (AA insert in the third cytoplasmic loop. Importantly, previous reports demonstrate functional diversity between the two isoforms in humans. In this review, we focus on binding proteins that specifically interact with the D2LR 29AA insert. We discuss how D2R activities are mediated not only by heterotrimeric G proteins but by D2LR-interacting proteins, which in part regulate diverse D2R activities. Keywords: Dopamine D2L receptor, Antipsychotic drugs, DRD2 polymorphisms, Alternatively spliced isoforms, D2LR-interacting proteins

  1. Regulation of dopamine D2 receptors in a novel cell line (SUP1)

    International Nuclear Information System (INIS)

    Ivins, K.J.; Luedtke, R.R.; Artymyshyn, R.P.; Molinoff, P.B.

    1991-01-01

    A prolactin-secreting cell line, SUP1, has been established from rat pituitary tumor 7315a. In radioligand binding experiments, the D2 receptor antagonist (S)-(-)-3- 125 I iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2- pyrrolidinyl)methyl]benzamide ( 125 I IBZM) labeled a single class of sites in homogenates of SUP1 cells (Kd = 0.6 nM; Bmax = 45 fmol/mg of protein). The sites displayed a pharmacological profile consistent with that of D2 receptors. Inhibition of the binding of 125 I IBZM by dopamine was sensitive to GTP, suggesting that D2 receptors in SUP1 cells are coupled to guanine nucleotide-binding protein(s). In the presence of isobutylmethylxanthine, dopamine decreased the level of cAMP accumulation in SUP1 cells. Dopamine also inhibited prolactin secretion from SUP1 cells. Both the inhibition of cAMP accumulation and the inhibition of prolactin secretion were blocked by D2 receptor antagonists, suggesting that these effects of dopamine were mediated by an interaction with D2 receptors. The regulation of D2 receptors in SUP1 cells by D2 receptor agonists was investigated. Exposure of SUP1 cells to dopamine or to the D2 receptor agonist N-propylnorapomorphine led to increased expression of D2 receptors, with no change in the affinity of the receptors for 125 I IBZM. An increase in the density of D2 receptors in SUP1 cells was evident within 7 hr of exposure to dopamine. Spiroperidol, a D2 receptor antagonist, blocked the effect of dopamine on receptor density. These results suggest that exposure of D2 receptors in SUP1 cells to agonists leads to an up-regulation of D2 receptors. Dopamine retained the ability to inhibit cAMP accumulation in SUP1 cells exposed to dopamine for 24 hr, suggesting that D2 receptors in SUP1 cells are not desensitized by prolonged exposure to agonist

  2. Dopamine D2 receptor occupancy by olanzapine or risperidone in young patients with schizophrenia

    NARCIS (Netherlands)

    Lavalaye, J.; Linszen, D. H.; Booij, J.; Reneman, L.; Gersons, B. P.; van Royen, E. A.

    1999-01-01

    A crucial characteristic of antipsychotic medication is the occupancy of the dopamine (DA) D2 receptor. We assessed striatal DA D2 receptor occupancy by olanzapine and risperidone in 36 young patients [31 males, 5 females; mean age 21.1 years (16-28)] with first episode schizophrenia, using

  3. Functional coupling between heterologously expressed dopamine D(2) receptors and KCNQ channels

    DEFF Research Database (Denmark)

    Ljungstrom, Trine; Grunnet, Morten; Jensen, Bo Skaaning

    2003-01-01

    protein of the G(alphai/o) subtype. Cells of the human neuroblastoma line SH-SY5Y were co-transfected transiently with KCNQ4 and D(2L) receptors. Stimulation of D(2L) receptors increased the KCNQ4 current ( n=6) as determined in whole-cell patch-clamp recordings. The specificity of the dopaminergic...

  4. Modulatory Effects of Dopamine D2 Receptors on Spreading Depression in Rat Somatosensory Neocortex

    Directory of Open Access Journals (Sweden)

    Anna Maria Haarmann

    2014-11-01

    Full Text Available Introduction: Spreading depression (SD is a propagating wave of depolarization followed by depression of the neuroglial activities and can modulate extracellular dopamine concentrations in the neocortex. It has been shown that the dopaminergic system plays a role in migraine. SD has been suggested as a critical phenomenon in the pathophysiology of migraine. The aim of this study was to investigate the effect of dopamine D2 receptors on the characteristic features of SD in rat neocortical tissues. Methods: The effect of dopamine D2 receptor agonist quinpirole and D2 receptor antagonist sulpiride was tested on different characteristic features (amplitude, duration and velocity of KCl-induced SD in somatosensory neocortical slices of adult rats. The effect of above-mentioned substances on production of long-term potentiation (LTP in the neocortex was also evaluated. Results: The present data revealed a dose-dependent suppression of the amplitude and duration of SD in the presence of the dopamine D2 receptor antagonist sulpiride in the neocortex. D2 dopamine receptor agonist quinpirole dose-dependently enhanced the amplitude and duration of the neocortical SD. Furthermore, application of D2 receptor antagonist significantly suppressed induction of LTP. Discussion: These results indicate that D2 receptors modulate the initiation of SD in the neocortex. This finding refers to the potential role of D2 receptor antagonist in treatment of migraine pain.

  5. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    Science.gov (United States)

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  7. Each individual isoform of the dopamine D2 receptor protects from lactotroph hyperplasia.

    Science.gov (United States)

    Radl, Daniela; De Mei, Claudia; Chen, Eric; Lee, Hyuna; Borrelli, Emiliana

    2013-06-01

    Dopamine acting through D2 receptors (D2Rs) controls lactotroph proliferation and prolactin (PRL) levels. Ablation of this receptor in mice results in lactotroph hyperplasia and prolactinomas in aged females. Alternative splicing of the Drd2 gene generates 2 independent isoforms, a long (D2L) and a short (D2S) isoform, which are present in all D2R-expressing cells. Here, we addressed the role of D2L and D2S on lactotroph physiology through the generation and analysis of D2S-null mice and their comparison with D2L-null animals. These mice represent a valuable tool with which to investigate dopamine-dependent isoform-specific signaling in the pituitary gland. We sought to assess the existence of a more prominent role of D2L or D2S in controlling PRL expression and lactotroph hyperplasia. Importantly, we found that D2L and D2S are specifically linked to independent transduction pathways in the pituitary. D2L-mediated signaling inhibits the AKT/protein kinase B kinase activity whereas D2S, in contrast, is required for the activation of the ERK 1/2 pathway. Under normal conditions, presence of only 1 of the 2 D2R isoforms in vivo prevents hyperprolactinemia, formation of lactotroph's hyperplasia, and tumorigenesis that is observed when both isoforms are deleted as in D2R-/- mice. However, the protective function of the single D2R isoforms is overridden when single isoform-knockout mice are challenged by chronic estrogen treatments as they show increased PRL production and lactotroph hyperplasia. Our study indicates that signaling from each of the D2R isoforms is sufficient to maintain lactotroph homeostasis in physiologic conditions; however, signaling from both is necessary in conditions simulating pathologic states.

  8. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    Science.gov (United States)

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D 2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D 2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D 2 receptor. D 2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D 2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D 2 receptors. D 2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  9. The Dopamine D2 Receptor Gene in Lamprey, Its Expression in the Striatum and Cellular Effects of D2 Receptor Activation

    Science.gov (United States)

    Robertson, Brita; Huerta-Ocampo, Icnelia; Ericsson, Jesper; Stephenson-Jones, Marcus; Pérez-Fernández, Juan; Bolam, J. Paul; Diaz-Heijtz, Rochellys; Grillner, Sten

    2012-01-01

    All basal ganglia subnuclei have recently been identified in lampreys, the phylogenetically oldest group of vertebrates. Furthermore, the interconnectivity of these nuclei is similar to mammals and tyrosine hydroxylase-positive (dopaminergic) fibers have been detected within the input layer, the striatum. Striatal processing is critically dependent on the interplay with the dopamine system, and we explore here whether D2 receptors are expressed in the lamprey striatum and their potential role. We have identified a cDNA encoding the dopamine D2 receptor from the lamprey brain and the deduced protein sequence showed close phylogenetic relationship with other vertebrate D2 receptors, and an almost 100% identity within the transmembrane domains containing the amino acids essential for dopamine binding. There was a strong and distinct expression of D2 receptor mRNA in a subpopulation of striatal neurons, and in the same region tyrosine hydroxylase-immunoreactive synaptic terminals were identified at the ultrastructural level. The synaptic incidence of tyrosine hydroxylase-immunoreactive boutons was highest in a region ventrolateral to the compact layer of striatal neurons, a region where most striatal dendrites arborise. Application of a D2 receptor agonist modulates striatal neurons by causing a reduced spike discharge and a diminished post-inhibitory rebound. We conclude that the D2 receptor gene had already evolved in the earliest group of vertebrates, cyclostomes, when they diverged from the main vertebrate line of evolution (560 mya), and that it is expressed in striatum where it exerts similar cellular effects to that in other vertebrates. These results together with our previous published data (Stephenson-Jones et al. 2011, 2012) further emphasize the high degree of conservation of the basal ganglia, also with regard to the indirect loop, and its role as a basic mechanism for action selection in all vertebrates. PMID:22563388

  10. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.

    Science.gov (United States)

    Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter

    2017-10-01

    The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Extrastriatal dopamine D-2/3 receptors and cortical grey matter volumes in antipsychotic-naive schizophrenia patients before and after initial antipsychotic treatment

    DEFF Research Database (Denmark)

    Nørbak-Emig, Henrik; Pinborg, Lars H.; Raghava, Jayachandra M.

    2017-01-01

    OBJECTIVES: Long-term dopamine D2/3 receptor blockade, common to all antipsychotics, may underlie progressive brain volume changes observed in patients with chronic schizophrenia. In the present study, we examined associations between cortical volume changes and extrastriatal dopamine D2/3 recept...... binding potentials (BPND) in first-episode schizophrenia patents at baseline and after antipsychotic treatment. METHODS: Twenty-two initially antipsychotic-naïve patients underwent magnetic resonance imaging (MRI), [(123)I]epidepride single-photon emission computerised tomography (SPECT......), and psychopathology assessments before and after 3 months of treatment with either risperidone (N = 13) or zuclopenthixol (N = 9). Twenty healthy controls matched on age, gender and parental socioeconomic status underwent baseline MRI and SPECT. RESULTS: Neither extrastriatal D2/3 receptor BPND at baseline, nor...

  12. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    Science.gov (United States)

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions.

    Science.gov (United States)

    Salmas, Ramin Ekhteiari; Yurtsever, Mine; Stein, Matthias; Durdagi, Serdar

    2015-05-01

    Homology model structures of the dopamine D2 receptor (D2R) were generated starting from the active and inactive states of β2-adrenergic crystal structure templates. To the best of our knowledge, the active conformation of D2R was modeled for the first time in this study. The homology models are built and refined using MODELLER and ROSETTA programs. Top-ranked models have been validated with ligand docking simulations and in silico Alanine-scanning mutagenesis studies. The derived extra-cellular loop region of the protein models is directed toward the binding site cavity which is often involved in ligand binding. The binding sites of protein models were refined using induced fit docking to enable the side-chain refinement during ligand docking simulations. The derived models were then tested using molecular modeling techniques on several marketed drugs for schizophrenia. Alanine-scanning mutagenesis and molecular docking studies gave similar results for marketed drugs tested. We believe that these new D2 receptor models will be very useful for a better understanding of the mechanisms of action of drugs to be targeted to the binding sites of D2Rs and they will contribute significantly to drug design studies involving G-protein-coupled receptors in the future.

  14. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    International Nuclear Information System (INIS)

    Memo, M.; Battaini, F.; Spano, P.F.; Trabucchi, M.

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D 1 receptors, associated with adenylyl cyclase activity, and D 2 receptor, uncoupled to a cyclic APM generating system. In order to understand the role of D 1 and D 2 receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D 1 receptors, and sulpiride, a selective antagonist to D 2 receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D 2 receptors. In fact under these conditions 3 H-(-)-sulpiride binding, which is a marker of D 2 receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D 2 receptors. Moreover, sulpiride does not induce supersensitivity of the D 1 receptors, characterized by 3 H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by 3 H-spiroperidol and 3 H-(-)-sulpiride binding. These findings suggest that D 1 and D 2 receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements. (author)

  15. Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory.

    Science.gov (United States)

    Naef, M; Müller, U; Linssen, A; Clark, L; Robbins, T W; Eisenegger, C

    2017-04-25

    Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.

  16. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Science.gov (United States)

    Radl, Daniela Betiana; Ferraris, Jimena; Boti, Valeria; Seilicovich, Adriana; Sarkar, Dipak Kumar; Pisera, Daniel

    2011-03-25

    Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  17. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

    Directory of Open Access Journals (Sweden)

    Daniela Betiana Radl

    Full Text Available Dopamine, through D2 receptor (D2R, is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L and short (D2S, are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850. SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.

  18. Antihypertensive effect of etamicastat in dopamine D2 receptor-deficient mice.

    Science.gov (United States)

    Armando, Ines; Asico, Laureano D; Wang, Xiaoyan; Jones, John E; Serrão, Maria Paula; Cuevas, Santiago; Grandy, David K; Soares-da-Silva, Patricio; Jose, Pedro A

    2018-04-13

    Abnormalities of the D 2 R gene (DRD2) play a role in the pathogenesis of human essential hypertension; variants of the DRD2 have been reported to be associated with hypertension. Disruption of Drd2 (D 2 -/- ) in mice increases blood pressure. The hypertension of D 2 -/- mice has been related, in part, to increased sympathetic activity, renal oxidative stress, and renal endothelin B receptor (ETBR) expression. We tested in D 2 -/- mice the effect of etamicastat, a reversible peripheral inhibitor of dopamine-β-hydroxylase that reduces the biosynthesis of norepinephrine from dopamine and decreases sympathetic nerve activity. Blood pressure was measured in anesthetized D 2 -/- mice treated with etamicastat by gavage, (10 mg/kg), conscious D 2 -/- mice, and D 2 +/+ littermates, and mice with the D 2 R selectively silenced in the kidney, treated with etamicastat in the drinking water (10 mg/kg per day). Tissue and urinary catecholamines and renal expression of selected G protein-coupled receptors, enzymes related to the production of reactive oxygen species, and sodium transporters were also measured. Etamicastat decreased blood pressure both in anesthetized and conscious D 2 -/- mice and mice with renal-selective silencing of D 2 R to levels similar or close to those measured in D 2 +/+ littermates. Etamicastat decreased cardiac and renal norepinephrine and increased cardiac and urinary dopamine levels in D 2 -/- mice. It also normalized the increased renal protein expressions of ETBR, NADPH oxidase isoenzymes, and urinary 8-isoprostane, as well as renal NHE3 and NCC, and increased the renal expression of D 1 R but not D 5 R in D 2 -/- mice. In conclusion, etamicastat is effective in normalizing the increased blood pressure and some of the abnormal renal biochemical alterations of D 2 -/- mice.

  19. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    Science.gov (United States)

    Eisenstein, Sarah A; Gredysa, Danuta M; Antenor-Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M; Black, Kevin J; Perlmutter, Joel S; Moerlein, Stephen M; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass indexmonetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.

  20. Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.

    Science.gov (United States)

    Perez, Stephanie M; Lodge, Daniel J

    2012-11-01

    Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.

  1. Spatial Frequency Selectivity Is Impaired in Dopamine D2 Receptor Knockout Mice

    Science.gov (United States)

    Souza, Bruno Oliveira Ferreira; Abou Rjeili, Mira; Quintana, Clémentine; Beaulieu, Jean M.; Casanova, Christian

    2018-01-01

    Dopamine is a neurotransmitter implicated in several brain functions, including vision. In the present study, we investigated the impacts of the lack of D2 dopamine receptors on the structure and function of the primary visual cortex (V1) of D2-KO mice using optical imaging of intrinsic signals. Retinotopic maps were generated in order to measure anatomo-functional parameters such as V1 shape, cortical magnification factor, scatter, and ocular dominance. Contrast sensitivity and spatial frequency selectivity (SF) functions were computed from responses to drifting gratings. When compared to control mice, none of the parameters of the retinotopic maps were affected by D2 receptor loss of function. While the contrast sensitivity function of D2-KO mice did not differ from their wild-type counterparts, SF selectivity function was significantly affected as the optimal SF and the high cut-off frequency (p D2-KO than in WT mice. These findings show that the lack of function of D2 dopamine receptors had no influence on cortical structure whereas it had a significant impact on the spatial frequency selectivity and high cut-off. Taken together, our results suggest that D2 receptors play a specific role on the processing of spatial features in early visual cortex while they do not seem to participate in its development. PMID:29379422

  2. Phasic dopamine release drives rapid activation of striatal D2-receptors

    Science.gov (United States)

    Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P

    2014-01-01

    Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218

  3. Purification and characterization of the recombinant human dopamine D2S receptor from Pichia pastoris

    NARCIS (Netherlands)

    de Jong, Lutea; Grünewald, S; Franke, J.P.; Uges, Donald; Bischoff, Rainer

    The human dopamine D2S receptor was expressed in the methylotrophic yeast Pichia pastoris, where the receptor with a molecular mass of approximately 40 kDa exhibited specific and saturable binding properties. The dopamine antagonist [H-3]spiperone showed an average dissociation constant K-d of 0.6

  4. Guanine nucleotide regulatory protein co-purifies with the D2-dopamine receptor

    International Nuclear Information System (INIS)

    Senogles, S.E.; Caron, M.G.

    1986-01-01

    The D 2 -dopamine receptor from bovine anterior pituitary was purified ∼1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with 3 H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D 2 receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 μM NPA. 35 S-GTPγS binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D 2 -dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D 2 -dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes

  5. Progressive supranuclear palsy dopamine D2 receptor tomoscintigraphy to detect L-dopamine efficiency. Paralysies supra-nucleaires progressives. Quantification des recepteurs dopaminergiques D2 par tomoscintigraphie

    Energy Technology Data Exchange (ETDEWEB)

    Tranquart, F; Henry Le Bras, F; Toffol, B de; Autret, A; Guilloteau, D; Baulieu, J L [Hopital Bretonneau, 37 - Tours (France)

    1994-09-01

    Progressive supranuclear palsy (PSP) may sometimes be misdiagnosed as Parkinson's disease in its early stages, hence an early positive diagnosis of PSP based on dopamine D2 receptor density could be extremely valuable. In the present case report, the absence of dopamine D2 receptors was clearly demonstrated in the striatum using [sup 123]I-iodobenzamide (IBZM) tomoscintigraphy. This illustrates the potential use of IBZM tomoscintigraphy to identify Parkinson-like's disease presenting with decreased dopamine D2 receptor density; and hence to predict L-Dopa effectiveness. Further studies are needed to evaluate the value of IBZM tomoscintigraphy in the different Parkinson's like diseases. (authors). 11 refs., 2 figs.

  6. In vivo measurement of haloperidol affinity to dopamine D2/D3 receptors by [123I]IBZM and single photon emission computed tomography

    DEFF Research Database (Denmark)

    Videbaek, C; Toska, K; Friberg, L

    2001-01-01

    This study examines the feasibility of a steady-state bolus-integration method with the dopamine D2/D3 receptor single photon emission computer tomography (SPECT) tracer, [123I]IBZM, for determination of in vivo affinity of haloperidol. The nonspecific binding of [123I]IBZM was examined in the rat...... brain by infusion of haloperidol to plasma levels approximately 100 times the Kd level in man. In humans, Kd for haloperidol binding was measured in four healthy volunteers that were examined twice: once with partial dopamine D2/D3 receptor blockade obtained by a scheduled infusion of unlabeled...... haloperidol (0.7 mg total dosage), and once in an unblocked state. Blood sampling and SPECT were performed intermittently during 6 hours after intravenous [123I]IBZM bolus injection. Plasma [123I]IBZM was determined by octane extraction. Plasma haloperidol was determined by a radioimmunoassay, and plasma...

  7. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation

    Science.gov (United States)

    Soares-Cunha, Carina; Coimbra, Barbara; David-Pereira, Ana; Borges, Sonia; Pinto, Luisa; Costa, Patricio; Sousa, Nuno; Rodrigues, Ana J.

    2016-01-01

    Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated. PMID:27337658

  8. Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.

    Science.gov (United States)

    Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H

    2016-04-01

    To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.

  9. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina

    Science.gov (United States)

    Tian, Ning; Xu, Hong-ping; Wang, Ping

    2014-01-01

    Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815

  10. Cloning of the cDNA and gene for a human D2 dopamine receptor

    International Nuclear Information System (INIS)

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O.; Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C.

    1989-01-01

    A clone encoding a human D 2 dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D 2 receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed

  11. The dopamine D2 receptor can directly recruit and activate GRK2 without G protein activation.

    Science.gov (United States)

    Pack, Thomas F; Orlen, Margo I; Ray, Caroline; Peterson, Sean M; Caron, Marc G

    2018-04-20

    The dopamine D2 receptor (D2R) is a G protein-coupled receptor (GPCR) that is critical for many central nervous system functions. The D2R carries out these functions by signaling through two transducers: G proteins and β-arrestins (βarrs). Selectively engaging either the G protein or βarr pathway may be a way to improve drugs targeting GPCRs. The current model of GPCR signal transduction posits a chain of events where G protein activation ultimately leads to βarr recruitment. GPCR kinases (GRKs), which are regulated by G proteins and whose kinase action facilitates βarr recruitment, bridge these pathways. Therefore, βarr recruitment appears to be intimately tied to G protein activation via GRKs. Here we sought to understand how GRK2 action at the D2R would be disrupted when G protein activation is eliminated and the effect of this on βarr recruitment. We used two recently developed biased D2R mutants that can preferentially interact either with G proteins or βarrs as well as a βarr-biased D2R ligand, UNC9994. With these functionally selective tools, we investigated the mechanism whereby the βarr-preferring D2R achieves βarr pathway activation in the complete absence of G protein activation. We describe how direct, G protein-independent recruitment of GRK2 drives interactions at the βarr-preferring D2R and also contributes to βarr recruitment at the WT D2R. Additionally, we found an additive interaction between the βarr-preferring D2R mutant and UNC9994. These results reveal that the D2R can directly recruit GRK2 without G protein activation and that this mechanism may have relevance to achieving βarr-biased signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The brain cytoplasmic RNA BC1 regulates dopamine D-2 receptor-mediated transmission in the striatum

    OpenAIRE

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-01-01

    Dopamine D-2 receptor (D2DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D-2 receptors in this brain area are essentially obscure. We have studied the physiological responses of the D2DR stimulations in mice...

  13. Effects of sigma(1) receptor ligand MS-377 on D(2) antagonists-induced behaviors.

    Science.gov (United States)

    Karasawa, Jun-ichi; Takahashi, Shinji; Takagi, Kaori; Horikomi, Kazutoshi

    2002-10-01

    (R)-(+)-1-(4-Chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377) is a novel antipsychotic agent with selective and high affinity for sigma(1) receptor. The present study was carried out to clarify the interaction of MS-377 with dopamine D(2) receptor antagonists (D(2) antagonists) in concurrent administration, and then the involvement of sigma receptors in the interaction. The effects of MS-377 on haloperidol- or sultopride-induced inhibition of apomorphine-induced climbing behavior and catalepsy were investigated in mice and rats, respectively. In addition, the effects of (+)-SKF-10,047 and SA4503, both of which are sigma receptor agonists, and WAY-100,635, which is a 5-HT(1A) receptor antagonist, on the interaction due to the concurrent use were also investigated. MS-377 potentiated the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior in a dose-dependent manner. In contrast, MS-377 did not affect the catalepsy induction by these drugs. The potentiation of the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior by MS-377 was not inhibited by WAY-100,635, but was inhibited by (+)-SKF-10,047 and SA4503. These findings showed that MS-377 potentiates the efficacy of D(2) antagonists, but it does not deteriorate the adverse effect. Moreover, sigma(1) receptors are involved in this potentiation of the efficacy of D(2) antagonists by MS-377.

  14. Dopamine D2 receptors in striatal output neurons enable the psychomotor effects of cocaine.

    Science.gov (United States)

    Kharkwal, Geetika; Radl, Daniela; Lewis, Robert; Borrelli, Emiliana

    2016-10-11

    The psychomotor effects of cocaine are mediated by dopamine (DA) through stimulation of striatal circuits. Gabaergic striatal medium spiny neurons (MSNs) are the only output of this pivotal structure in the control of movements. The majority of MSNs express either the DA D1 or D2 receptors (D1R, D2R). Studies have shown that the motor effect of cocaine depends on the DA-mediated stimulation of D1R-expressing MSNs (dMSNs), which is mirrored at the cellular level by stimulation of signaling pathways leading to phosphorylation of ERKs and induction of c-fos Nevertheless, activation of dMSNs by cocaine is necessary but not sufficient, and D2R signaling is required for the behavioral and cellular effects of cocaine. Indeed, cocaine motor effects and activation of signaling in dMSNs are blunted in mice with the constitutive knockout of D2R (D2RKO). Using mouse lines with a cell-specific knockout of D2R either in MSNs (MSN-D2RKO) or in dopaminergic neurons (DA-D2RKO), we show that D2R signaling in MSNs is required and permissive for the motor stimulant effects of cocaine and the activation of signaling in dMSNs. MSN-D2RKO mice show the same phenotype as constitutive D2RKO mice both at the behavioral and cellular levels. Importantly, activation of signaling in dMSNs by cocaine is rescued by intrastriatal injection of the GABA antagonist, bicuculline. These results are in support of intrastriatal connections of D2R + -MSNs (iMSNs) with dMSNs and indicate that D2R signaling in MSNs is critical for the function of intrastriatal circuits.

  15. Dopamine D2-Like Receptors and Behavioral Economics of Food Reinforcement

    Science.gov (United States)

    Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L

    2016-01-01

    Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food. PMID:26205210

  16. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    Science.gov (United States)

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available The aim of the present study was to evaluate the cardiovascular effects of the novel bradykinin B1 receptor antagonist BI-113823 following myocardial infarction (MI and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin II type 1 (AT1 receptor antagonist after MI in rats.Sprague Dawley rats were subjected to permanent occlusion of the left descending coronary artery. Cardiovascular function was determined at 7 days post MI. Treatment with either B1 receptor antagonist (BI-113823 or AT1 receptor antagonist (irbesartan alone or in combination improved post-MI cardiac function as evidenced by attenuation of elevated left ventricular end diastolic pressure (LVEDP; greater first derivative of left ventricular pressure (± dp/dt max, left ventricle ejection fraction, fractional shorting, and better wall motion; as we as reductions in post-MI up-regulation of matrix metalloproteinases 2 (MMP-2 and collagen III. In addition, the cardiac up-regulation of B1 receptor and AT1 receptor mRNA were markedly reduced in animals treated with BI 113823, although bradykinin B2 receptor and angiotensin 1 converting enzyme (ACE1 mRNA expression were not significantly affected by B1 receptor blockade.The present study demonstrates that treatment with the novel B1 receptor antagonist, BI-113823 improves post-MI cardiac function and does not influence the cardiovascular effects of AT1 receptor antagonist following MI.

  18. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer.

    Science.gov (United States)

    Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent

    2015-07-07

    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.

  19. The role of the prostaglandin D2 receptor, DP, in eosinophil trafficking

    DEFF Research Database (Denmark)

    Schratl, Petra; Royer, Julia F; Kostenis, Evi

    2007-01-01

    of DP has remained unclear. We report in this study that, in addition to CRTH2, the DP receptor plays an important role in eosinophil trafficking. First, we investigated the release of eosinophils from bone marrow using the in situ perfused guinea pig hind limb preparation. PGD2 induced the rapid......Prostaglandin (PG) D2 is a major mast cell product that acts via two receptors, the D-type prostanoid (DP) and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) receptors. Whereas CRTH2 mediates the chemotaxis of eosinophils, basophils, and Th2 lymphocytes, the role...

  20. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease.

    Science.gov (United States)

    Kelsen, Silvia; Hall, John E; Chade, Alejandro R

    2011-07-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.

  1. Receptors involved in the modulation of guinea pig urinary bladder motility by prostaglandin D2

    Science.gov (United States)

    Guan, Na N; Svennersten, Karl; de Verdier, Petra J; Wiklund, N Peter; Gustafsson, Lars E

    2015-01-01

    Background and Purpose We have described a urothelium-dependent release of PGD2-like activity which had inhibitory effects on the motility of guinea pig urinary bladder. Here, we have pharmacologically characterized the receptors involved and localized the sites of PGD2 formation and of its receptors. Experimental Approach In the presence of selective DP and TP receptor antagonists alone or combined, PGD2 was applied to urothelium-denuded diclofenac-treated urinary bladder strips mounted in organ baths. Antibodies against PGD2 synthase and DP1 receptors were used with Western blots and for histochemistry. Key Results PGD2 inhibited nerve stimulation -induced contractions in strips of guinea pig urinary bladder with estimated pIC50 of 7.55 ± 0.15 (n = 13), an effect blocked by the DP1 receptor antagonist BW-A868C. After blockade of DP1 receptors, PGD2 enhanced the contractions, an effect abolished by the TP receptor antagonist SQ-29548. Histochemistry revealed strong immunoreactivity for PGD synthase in the urothelium/suburothelium with strongest reaction in the suburothelium. Immunoreactive DP1 receptors were found in the smooth muscle of the bladder wall with a dominant localization to smooth muscle membranes. Conclusions and Implications In guinea pig urinary bladder, the main effect of PGD2 is an inhibitory action via DP1 receptors localized to the smooth muscle, but an excitatory effect via TP receptors can also be evoked. The urothelium with its suburothelium might signal to the smooth muscle which is rich in PGD2 receptors of the DP1 type. The results are important for our understanding of regulation of bladder motility. PMID:25917171

  2. Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer

    Science.gov (United States)

    Ferré, Sergi; Bonaventura, Jordi; Tomasi, Dardo; Navarro, Gemma; Moreno, Estefanía; Cortés, Antonio; Lluís, Carme; Casadó, Vicent; Volkow, Nora D.

    2017-01-01

    The structure constituted by a G protein coupled receptor (GPCR) homodimer and a G protein provides a main functional unit and oligomeric entities can be viewed as multiples of dimers. For GPCR heteromers, experimental evidence supports a tetrameric structure, comprised of two different homodimers, each able to signal with its preferred G protein. GPCR homomers and heteromers can act as the conduit of allosteric interactions between orthosteric ligands. The well-known agonist/agonist allosteric interaction in the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer, by which A2AR agonists decrease the affinity of D2R agonists, gave the first rationale for the use of A2AR antagonists in Parkinson’s disease. We review new pharmacological findings that can be explained in the frame of a tetrameric structure of the A2AR-D2R heteromer: first, ligand-independent allosteric modulations by the D2R that result in changes of the binding properties of A2AR ligands; second, differential modulation of the intrinsic efficacy of D2R ligands for G protein-dependent and independent signaling; third, the canonical antagonistic Gs-Gi interaction within the frame of the heteromer; and fourth, the ability of A2AR antagonists, including caffeine, to also exert the same allosteric modulations of D2R ligands than A2AR agonists, while A2AR agonists and antagonists counteract each other’s effects. These findings can have important clinical implications when evaluating the use of A2AR antagonists. They also call for the need of monitoring caffeine intake when evaluating the effect of D2R ligands, when used as therapeutic agents in neuropsychiatric disorders or as probes in imaging studies. PMID:26051403

  3. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    Directory of Open Access Journals (Sweden)

    Sarah A Eisenstein

    Full Text Available Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30 and non-obese (n = 20; body mass index<30 adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methylbenperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting. Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting. In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding

  4. Striatal dopamine D2/3 receptor availability in treatment resistant depression.

    Directory of Open Access Journals (Sweden)

    Bart P de Kwaasteniet

    Full Text Available Several studies demonstrated improvement of depressive symptoms in treatment resistant depression (TRD after administering dopamine agonists which suggest abnormal dopaminergic neurotransmission in TRD. However, the role of dopaminergic signaling through measurement of striatal dopamine D(2/3 receptor (D2/3R binding has not been investigated in TRD subjects. We used [(123I]IBZM single photon emission computed tomography (SPECT to investigate striatal D2/3R binding in TRD. We included 6 severe TRD patients, 11 severe TRD patients on antipsychotics (TRD AP group and 15 matched healthy controls. Results showed no significant difference (p = 0.75 in striatal D2/3R availability was found between TRD patients and healthy controls. In the TRD AP group D2/3R availability was significantly decreased (reflecting occupancy of D2/3Rs by antipsychotics relative to TRD patients and healthy controls (p<0.001 but there were no differences in clinical symptoms between TRD AP and TRD patients. This preliminary study therefore does not provide evidence for large differences in D2/3 availability in severe TRD patients and suggests this TRD subgroup is not characterized by altered dopaminergic transmission. Atypical antipsychotics appear to have no clinical benefit in severe TRD patients who remain depressed, despite their strong occupancy of D2/3Rs.

  5. The importance of the adenosine A(2A) receptor-dopamine D(2) receptor interaction in drug addiction.

    Science.gov (United States)

    Filip, M; Zaniewska, M; Frankowska, M; Wydra, K; Fuxe, K

    2012-01-01

    Drug addiction is a serious brain disorder with somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Illegal (e.g., psychostimulants, opioids, cannabinoids) and legal (alcohol, nicotine) drugs of abuse create a complex behavioral pattern composed of drug intake, withdrawal, seeking and relapse. One of the hallmarks of drugs that are abused by humans is that they have different mechanisms of action to increase dopamine (DA) neurotransmission within the mesolimbic circuitry of the brain and indirectly activate DA receptors. Among the DA receptors, D(2) receptors are linked to drug abuse and addiction because their function has been proven to be correlated with drug reinforcement and relapses. The recognition that D(2) receptors exist not only as homomers but also can form heteromers, such as with the adenosine (A)(2A) receptor, that are pharmacologically and functionally distinct from their constituent receptors, has significantly expanded the range of potential drug targets and provided new avenues for drug design in the search for novel drug addiction therapies. The aim of this review is to bring current focus on A(2A) receptors, their physiology and pharmacology in the central nervous system, and to discuss the therapeutic relevance of these receptors to drug addiction. We concentrate on the contribution of A(2A) receptors to the effects of different classes of drugs of abuse examined in preclinical behavioral experiments carried out with pharmacological and genetic tools. The consequences of chronic drug treatment on A(2A) receptor-assigned functions in preclinical studies are also presented. Finally, the neurochemical mechanism of the interaction between A(2A) receptors and drugs of abuse in the context of the heteromeric A(2A)-D(2) receptor complex is discussed. Taken together, a significant amount of experimental analyses provide evidence that targeting A(2A) receptors may offer innovative translational strategies

  6. Fear memory in a neurodevelopmental model of schizophrenia based on the postnatal blockade of NMDA receptors.

    Science.gov (United States)

    Latusz, Joachim; Radaszkiewicz, Aleksandra; Bator, Ewelina; Wędzony, Krzysztof; Maćkowiak, Marzena

    2017-02-01

    Epidemiological data have indicated that memory impairment is observed during adolescence in groups at high risk for schizophrenia and might precede the appearance of schizophrenia symptoms in adulthood. In the present study, we used a neurodevelopmental model of schizophrenia based on the postnatal blockade of N-methyl-d-aspartate (NMDA) receptors in rats to investigate fear memory in adolescence and adulthood. The rats were treated with increasing doses of CGP 37849 (CGP), a competitive antagonist of the NMDA receptor (1.25mg/kg on days 1, 3, 6, 9; 2.5mg/kg on days 12, 15, 18 and 5mg/kg on day 21). Fear memory was analysed in delay and trace fear conditioning. Sensorimotor gating deficit, which is another cognitive symptom of schizophrenia, was also determined in adolescent and adult CGP-treated rats. Postnatal CGP administration disrupted cue- and context-dependent fear memory in adolescent rats in both delay and trace conditioning. In contrast, CGP administration evoked impairment only in cue-dependent fear memory in rats exposed to trace but not delay fear conditioning. The postnatal blockade of NMDA receptors induced sensorimotor gating deficits in adult rats but not in adolescent rats. The postnatal blockade of NMDA receptors induced fear memory impairment in adolescent rats before the onset of neurobehavioral deficits associated with schizophrenia. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  7. Endothelin B receptor blockade attenuates pulmonary vasodilation in oxygen-ventilated fetal lambs.

    Science.gov (United States)

    Ivy, D Dunbar; Lee, Dong-Seok; Rairigh, Robyn L; Parker, Thomas A; Abman, Steven H

    2004-01-01

    Endothelin-1 (ET-1) contributes to the regulation of pulmonary vascular tone in the normal ovine fetus and in models of perinatal pulmonary hypertension. In the fetal lamb lung, the effects of ET-1 depend on the balance of at least two endothelin receptor subtypes: ETA and ETB. ETA receptors are located on smooth muscle cells and mediate vasoconstriction and smooth muscle proliferation. Stimulation of endothelial ETB receptors causes vasodilation through release of nitric oxide and also functions to remove ET-1 from the circulation. However, whether activation of ETB receptors contributes to the fall in pulmonary vascular tone at birth is unknown. To determine the role of acute ETB receptor blockade in pulmonary vasodilation in response to birth-related stimuli, we studied the hemodynamic effects of selective ETB receptor blockade with BQ-788 during mechanical ventilation with low (<10%) and high FiO2 (100%) in near-term fetal sheep. Intrapulmonary infusion of BQ-788 did not change left pulmonary artery (LPA) blood flow and pulmonary vascular resistance (PVR) at baseline. In comparison with controls, BQ-788 treatment attenuated the rise in LPA flow with low and high FiO2 ventilation (p <0.001 vs. control for each FiO2 concentration). PVR progressively decreased during mechanical ventilation with low and high FiO2 in both groups, but PVR remained higher after BQ-788 treatment throughout the study period (p <0.001). We conclude that selective ETB receptor blockade attenuates pulmonary vasodilation at birth. We speculate that ETB receptor stimulation contributes to pulmonary vasodilation at birth in the ovine fetus.

  8. Comparative studies of D2 receptors and brain perfusion in hemi-parkinsonism rats

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    2000-01-01

    The relationship between dopamine D 2 receptors and brain perfusion in hemi-parkinsonism rats was studied. Hemi-parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra (SN) and ventral tegmental area (VTA), apomorphine (Apo) which could induced the successful model rat rotates toward the intact side was used to select the rats, 125 I-IBZM ex-vivo autoradiography analysis and 99m Tc-HM-PAO regional cerebral biodistribution were used to evaluate D 2 receptors and cerebral blood flow. The HPLC-ECD were used to measure striatum DA and its metabolites content. The lesioned side striatum DA and its metabolites HVA DOPAC reduced significantly than that of the intact side and pseudo-operated group, striatum/cerebellum 125 I-IBZM uptake ratio was 8.04 +- 0.71 in lesioned side of hemi-parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (p 0.05). These results indicated that in the 6-OH-DA lesioned side DA content decreased significantly and an up-regulation of striatum D 2 receptor binding sites was induced in hemi-parkinsonism rats, which showed good correlation with rotation behavior induced by Apo. Comparing with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-parkinsonism

  9. Comparative studies of D2 receptors and cerebral blood flow in hemi-Parkinsonism rats

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    2000-01-01

    Objective: To study the relationship between dopamine D 2 receptors and cerebral blood flow in hemi-Parkinsonism rats. Methods: Hemi-Parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat to rotate toward the intact side was used to select the rat models, 125 I-IBZM in vivo autoradiography and 99 Tc m -HMPAO regional cerebral biodistribution analysis were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD was used to measure striatum DA and its metabolite content . Results: the lesioned side striatum DA and its metabolites homovanillic acid (HVA) 3,4-dihyroxy-phenylacetic acid (DOPAC) reduced significantly than that of the intact side and pseudo-operated group, striatum/cerebellum 125 I-IBZM uptake ratio was 8.04 +- 0.71 in lesioned side of hemi-Parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (P 0.05). Conclusions: the 6-OH-DA lesioned side DA content decreased significantly and thus induced a compensative up-regulation of striatum D 2 receptor binding sites in hemi-Parkinsonism rats, which show good correlation with rotation behavior induced by Apo. Comparing with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-Parkinsonism

  10. Reduced striatal dopamine D2/3 receptor availability in Body Dysmorphic Disorder.

    Science.gov (United States)

    Vulink, Nienke C; Planting, Robin S; Figee, Martijn; Booij, Jan; Denys, Damiaan

    2016-02-01

    Though the dopaminergic system is implicated in Obsessive Compulsive and Related Disorders (OCRD), the dopaminergic system has never been investigated in-vivo in Body Dysmorphic Disorder (BDD). In line with consistent findings of reduced striatal dopamine D2/3 receptor availability in Obsessive Compulsive Disorder (OCD), we hypothesized that the dopamine D2/3 receptor availability in the striatum will be lower in patients with BDD in comparison to healthy subjects. Striatal dopamine D2/3 receptor Binding Potential (BPND) was examined in 12 drug-free BDD patients and 12 control subjects pairwise matched by age, sex, and handedness using [(123)I]iodobenzamide Single Photon Emission Computed Tomography (SPECT; bolus/constant infusion technique). Regions of interest were the caudate nucleus and the putamen. BPND was calculated as the ratio of specific striatal to binding in the occipital cortex (representing nonspecific binding). Compared to controls, dopamine D2/3 receptor BPND was significantly lower in BDD, both in the putamen (p=0.017) and caudate nucleus (p=0.022). This study provides the first evidence of a disturbed dopaminergic system in BDD patients. Although previously BDD was classified as a separate disorder (somatoform disorder), our findings give pathophysiological support for the recent reclassification of BDD to the OCRD in DSM-5. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  11. Association between a promoter dopamine D2 receptor gene variant and the personality trait detachment.

    Science.gov (United States)

    Jönsson, Erik G; Cichon, Sven; Gustavsson, J Petter; Grünhage, Frank; Forslund, Kaj; Mattila-Evenden, Marja; Rylander, Gunnar; Asberg, Marie; Farde, Lars; Propping, Peter; Nöthen, Markus M

    2003-04-01

    Personality traits have shown considerable heritable components. Striatal dopamine D(2) receptor density, as determined by positron-emission tomography, has been associated with detached personality, as assessed by the Karolinska Scales of Personality. A putative functional promoter polymorphism in the dopamine D(2) receptor gene (DRD2), -141C ins/del, has been associated with dopamine D(2) receptor density. In this study healthy subjects (n = 235) who filled in at least one of several personality questionnaires (Karolinska Scales of Personality, Swedish Universities Scales of Personality, Health-relevant Five-factor Personality Inventory, and Temperament and Character Inventory) were analyzed with regard to the DRD2 -141C ins/del variant. There was an association (p =.001) between the DRD2 -141C ins/del variant and Karolinska Scales of Personality Detachment scale, indicating higher scores in subjects with the -141C del variant. There were also associations between the DRD2 -141C ins/del variant and a number of Karolinska Scales of Personality and Swedish Universities Scales of Personality Neuroticism-related scales, but of these only Swedish Universities Scales of Personality Lack of Assertiveness scale (p =.001) survived correction for multiple testing. These results add further support for the involvement of dopamine D(2) receptor in certain personality traits. The results should be treated with caution until replicated.

  12. Presence of dopamine D-2 receptors in human tumoral cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Sokoloff, P.; Riou, J.F.; Martres, M.P.; Schwartz, J.C. (Centre Paul Broca, Paris (France))

    1989-07-31

    ({sup 125}I) Iodosulpride binding was examined on eight human cell lines derived from lung, breast and digestive tract carcinomas, neuroblastomas and leukemia. Specific binding was detected in five of these cell lines. In the richest cell line N417, derived from small cell lung carcinoma, ({sup 125}I) iodosulpride bound with a high affinity (Kd = 1.3 nM) to an apparently homogeneous population of binding site (Bmax = 1,606 sites per cell). These sites displayed a typical D-2 specificity, established with several dopaminergic agonists and antagonists selective of either D-1 or D-2 receptor subtypes. In addition, dopamine, apomorphine and RU 24926 distinguished high- and low-affinity sites, suggesting that the binding sites are associated with a G-protein. The biological significance and the possible diagnostic implication of the presence of D-2 receptors on these cell lines are discussed.

  13. Occupancy of dopamine D-2 receptors by antipsychotic drugs is related to nicotine addiction in young patients with schizophrenia

    NARCIS (Netherlands)

    de Haan, Lieuwe; Booij, Jan; Lavalaye, Jules; van Amelsvoort, Therese; Linszen, Don

    2006-01-01

    Rationale: Occupancy of dopamine D-2 receptors by antipsychotic drugs depends on the individual availability of D-2 receptors and on the dose and type of antipsychotic medication. It has been suggested that a low availability of these receptors may increase the risk for addictive behavior.

  14. Functional responses of pre- and postsynaptic dopamine D2 receptors in rat brain striatum

    OpenAIRE

    Ma, Guofen

    2014-01-01

    El sistema dopaminèrgic has estat molt estudiat en els darrers anys, principalment degut a la seva implicació en diverses patologies com la malaltia de Parkinson, la esquizofrènia o la síndrome de Tourette, així com també en l'abús de drogues. S'han descrit cinc subtipus de receptors per la dopamina (DA), tots els quals pertanyen a la família de receptors acoblats a proteïnes G (GPCRs). D'aquests cinc subtipus, els receptors D2 son la diana principal dels antipsicòtics (antagonistes) i també ...

  15. Involvement of dopamine D2 receptors in addictive-like behaviour for acetaldehyde.

    Directory of Open Access Journals (Sweden)

    Anna Brancato

    Full Text Available Acetaldehyde, the first metabolite of ethanol, is active in the central nervous system, where it exerts motivational properties. Acetaldehyde is able to induce drinking behaviour in operant-conflict paradigms that resemble the core features of the addictive phenotype: drug-intake acquisition and maintenance, drug-seeking, relapse and drug use despite negative consequences. Since acetaldehyde directly stimulates dopamine neuronal firing in the mesolimbic system, the aim of this study was the investigation of dopamine D2-receptors' role in the onset of the operant drinking behaviour for acetaldehyde in different functional stages, by the administration of two different D2-receptor agonists, quinpirole and ropinirole. Our results show that acetaldehyde was able to induce and maintain a drug-taking behaviour, displaying an escalation during training, and a reinstatement behaviour after 1-week forced abstinence. Acetaldehyde operant drinking behaviour involved D2-receptor signalling: in particular, quinpirole administration at 0.03 mg/kg, induced a significant decrease in the number of lever presses both in extinction and in relapse. Ropinirole, administered at 0.03 mg/kg during extinction, did not produce any modification but, when administered during abstinence, induced a strong decrease in acetaldehyde intake in the following relapse session. Taken together, our data suggest that acetaldehyde exerts its own motivational properties, involving the dopaminergic transmission: indeed, activation of pre-synaptic D2-receptors by quinpirole, during extinction and relapse, negatively affects operant behaviour for acetaldehyde, likely decreasing acetaldehyde-induced dopamine release. The activation of post-synaptic D2-receptors by ropinirole, during abstinence, decreases the motivation to the consecutive reinstatement of acetaldehyde drinking behaviour, likely counteracting the reduction in the dopaminergic tone typical of withdrawal. These data further

  16. Involvement of dopamine D2 receptors in addictive-like behaviour for acetaldehyde.

    Science.gov (United States)

    Brancato, Anna; Plescia, Fulvio; Marino, Rosa Anna Maria; Maniaci, Giuseppe; Navarra, Michele; Cannizzaro, Carla

    2014-01-01

    Acetaldehyde, the first metabolite of ethanol, is active in the central nervous system, where it exerts motivational properties. Acetaldehyde is able to induce drinking behaviour in operant-conflict paradigms that resemble the core features of the addictive phenotype: drug-intake acquisition and maintenance, drug-seeking, relapse and drug use despite negative consequences. Since acetaldehyde directly stimulates dopamine neuronal firing in the mesolimbic system, the aim of this study was the investigation of dopamine D2-receptors' role in the onset of the operant drinking behaviour for acetaldehyde in different functional stages, by the administration of two different D2-receptor agonists, quinpirole and ropinirole. Our results show that acetaldehyde was able to induce and maintain a drug-taking behaviour, displaying an escalation during training, and a reinstatement behaviour after 1-week forced abstinence. Acetaldehyde operant drinking behaviour involved D2-receptor signalling: in particular, quinpirole administration at 0.03 mg/kg, induced a significant decrease in the number of lever presses both in extinction and in relapse. Ropinirole, administered at 0.03 mg/kg during extinction, did not produce any modification but, when administered during abstinence, induced a strong decrease in acetaldehyde intake in the following relapse session. Taken together, our data suggest that acetaldehyde exerts its own motivational properties, involving the dopaminergic transmission: indeed, activation of pre-synaptic D2-receptors by quinpirole, during extinction and relapse, negatively affects operant behaviour for acetaldehyde, likely decreasing acetaldehyde-induced dopamine release. The activation of post-synaptic D2-receptors by ropinirole, during abstinence, decreases the motivation to the consecutive reinstatement of acetaldehyde drinking behaviour, likely counteracting the reduction in the dopaminergic tone typical of withdrawal. These data further strengthen the evidence

  17. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    Science.gov (United States)

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  18. Effect of {beta}{sub 1} adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, M.; Czernin, J.; Sun, K. [Univ. of California, Los Angeles, CA (United States)] [and others

    1997-03-01

    The {beta}{sub 1} receptor blockade reduces cardiac work and may thereby lower myocardial blood flow (MBF) at rest. The effect of {beta}{sub 1} receptor blockade on hyperemic MBF is unknown. To evaluate the effect of selective {beta}{sub 1} receptor blockade on MBF at rest and during dipyridamole induced hyperemia, 10 healthy volunteers (8 men, 2 women, mean age 24 {+-} 5 yr) were studied using {sup 13}N-ammonia PET (two-compartment model) under control conditions and again during metoprolol (50 mg orally 12 hr and 1 hr before the study). The resting rate pressure product (6628 {+-} 504 versus 5225 {+-} 807) and heart rate (63 {+-} 6-54 {plus_minus} 5 bpm) declined during metoprolol (p < 0.05). Similarly, heart rate and rate pressure product declined from the baseline dipyridamole study to dipyridamole plus metoprolol (p < 0.05). Resting MBF declined in proportion to cardiac work by approximately 20% from 0.61 {+-} 0.09-0.51 {+-} 0.10 ml/g/min (p < 0.05). In contrast, hyperemic MBF increased when metoprolol was added to dipyridamole (1.86 {plus_minus} 0.27 {+-} 0.45 ml/g/min; p<0.05). The decrease in resting MBF together with the increase in hyperemic MBF resulted in a significant increase in the myocardial flow reserve during metoprolol (3.14 {+-} 0.80-4.61 {+-} 0.68; p<0.01). The {beta}{sub 1} receptor blockade increases coronary vasodilatory capacity and myocardial flow reserve. However, the mechanisms accounting for this finding remain uncertain. 32 refs., 2 figs., 2 tabs.

  19. Interactions of ligands with active and inactive conformations of the dopamine D2 receptor.

    Science.gov (United States)

    Malmberg, A; Mohell, N; Backlund Höök, B; Johansson, A M; Hacksell, U; Nordvall, G

    1998-04-10

    The affinities of 19 pharmacologically diverse dopamine D2 receptor ligands were determined for the active and inactive conformations of cloned human dopamine D2 receptors expressed in Ltk cells. The agonist [3H]quinpirole was used to selectively label the guanine nucleotide-binding protein-coupled, active receptor conformation. The antagonist [3H]raclopride, in the presence of the non-hydrolysable GTP-analogue Gpp(NH)p and sodium ions and in the absence of magnesium ions, was used to label the free inactive receptor conformation. The intrinsic activities of the ligands were determined in a forskolin-stimulated cyclic AMP assay using the same cells. An excellent correlation was shown between the affinity ratios (KR/KRG) of the ligands for the two receptor conformations and their intrinsic activity (r=0.96). The ligands included eight structurally related and enantiopure 2-aminotetralin derivatives; the enantiomers of 5-hydroxy-2-(dipropylamino)tetralin, 5-methoxy-2-(dipropylamino)tetralin, 5-fluoro-2-(dipropylamino)tetralin and 2-(dipropylamino)tetralin. The (S)-enantiomers behaved as full agonists in the cyclic AMP assay and displayed a large KR/KRG ratio. The (R)-enantiomers were classified as partial agonists and had lower ratios. The structure-affinity relationships of these compounds at the active and the inactive receptor conformations were analysed separately, and used in conjunction with a homology based receptor model of the dopamine D2 receptor. This led to proposed binding modes for agonists, antagonists and partial agonists in the 2-aminotetralin series. The concepts used in this study should be of value in the design of ligands with predetermined affinity and intrinsic activity.

  20. Prevention of atherosclerosis by specific AT1-receptor blockade with candesartan cilexetil

    Directory of Open Access Journals (Sweden)

    Vasilios Papademetriou

    2001-03-01

    Full Text Available Several studies indicate that blockade of the renin-angiotensin-aldosterone system (RAAS can prevent atherosclerosis and vascular events, but the precise mechanisms involved are still unclear. In this study, we investigated the effect of the AT 1-receptor blocker, candesartan, in the prevention of atherosclerosis in Watanabe heritable hyperlipidaemic (WHHL rabbits and also the effect of AT1-receptor blockade in the uptake of oxidised LDL by macrophage cell cultures. In the first set of experiments, 12 WHHL rabbits were randomly assigned to three groups: placebo, atenolol 5 mg/kg daily or candesartan 2 mg/kg daily for six months. Compared with controls and atenolol-treated rabbits, candesartan treatment resulted in a significant 50—60% reduction of atherosclerotic plaque formation and a 66% reduction in cholesterol accumulation in the thoracic aorta.Studies in macrophage cultures indicated that candesartan prevented uptake of oxidised LDL-(oxLDL-cholesterol by cultured macrophages. Candesartan inhibited the uptake of oxLDL in a dose-dependent manner, reaching a maximum inhibition of 70% at concentrations of 5.6 µg/ml. Further studies in other animal models and well-designed trials in humans are warranted to further explore the role of AT1-receptor blockade in the prevention of atherosclerosis.

  1. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    OpenAIRE

    Gutiérrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition memory using attenuation of neophobia as an index. In addition, learned taste aversion in both short- and long-term memory tests was exclusively impa...

  2. Novel 5-HT6 receptor antagonists/D2 receptor partial agonists targeting behavioral and psychological symptoms of dementia.

    Science.gov (United States)

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2015-03-06

    We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Blockade of group II metabotropic glutamate receptors produces hyper-locomotion in cocaine pre-exposed rats by interactions with dopamine receptors.

    Science.gov (United States)

    Yoon, Hyung Shin; Jang, Ju Kyong; Kim, Jeong-Hoon

    2008-09-01

    It was previously reported that blockade of group II metabotropic glutamate receptors (mGluRs) produces hyper-locomotion in rats previously exposed to amphetamine, indicating that group II mGluRs are well positioned to modulate the expression of behavioral sensitization by amphetamine. The present study further examined the locomotor activating effects of specific blockade of these receptors after cocaine pre-exposures. First, rats were pre-exposed to seven daily injections of cocaine (15mg/kg, IP). When challenged the next day with an injection of either saline or the group II mGluR antagonist LY341495 (0.5, 1.0 or 2.5mg/kg, IP), they produced hyper-locomotor activity, measured by infrared beam interruptions, to LY341495 compared to saline in a dose-dependent manner. Second, rats were pre-exposed to either saline or seven daily injections of cocaine (15mg/kg, IP). Three weeks later, when they were challenged with an injection of either saline or LY341495 (1.0mg/kg, IP), only rats pre-exposed to cocaine produced hyper-locomotor activity to LY341495 compared to saline. These effects, however, were not present when dopamine D1 (SCH23390; 5 or 10microg/kg), but not D2 (eticlopride; 10 or 50microg/kg), receptor antagonist was pre-injected, indicating that this cocaine-induced hyper-locomotor activity to LY341495 may be mediated in dopamine D1 receptor-dependent manner. These results suggest that group II mGluRs may be adapted to interact with dopaminergic neuronal signaling in mediating the sensitized locomotor activity produced by repeated cocaine pre-exposures.

  4. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB₁ receptor blockade.

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-03-19

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors.

  5. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade

    Science.gov (United States)

    Bellocchio, Luigi; Soria-Gómez, Edgar; Quarta, Carmelo; Metna-Laurent, Mathilde; Cardinal, Pierre; Binder, Elke; Cannich, Astrid; Delamarre, Anna; Häring, Martin; Martín-Fontecha, Mar; Vega, David; Leste-Lasserre, Thierry; Bartsch, Dusan; Monory, Krisztina; Lutz, Beat; Chaouloff, Francis; Pagotto, Uberto; Guzman, Manuel; Cota, Daniela; Marsicano, Giovanni

    2013-01-01

    Complex interactions between periphery and the brain regulate food intake in mammals. Cannabinoid type-1 (CB1) receptor antagonists are potent hypophagic agents, but the sites where this acute action is exerted and the underlying mechanisms are not fully elucidated. To dissect the mechanisms underlying the hypophagic effect of CB1 receptor blockade, we combined the acute injection of the CB1 receptor antagonist rimonabant with the use of conditional CB1-knockout mice, as well as with pharmacological modulation of different central and peripheral circuits. Fasting/refeeding experiments revealed that CB1 receptor signaling in many specific brain neurons is dispensable for the acute hypophagic effects of rimonabant. CB1 receptor antagonist-induced hypophagia was fully abolished by peripheral blockade of β-adrenergic transmission, suggesting that this effect is mediated by increased activity of the sympathetic nervous system. Consistently, we found that rimonabant increases gastrointestinal metabolism via increased peripheral β-adrenergic receptor signaling in peripheral organs, including the gastrointestinal tract. Blockade of both visceral afferents and glutamatergic transmission in the nucleus tractus solitarii abolished rimonabant-induced hypophagia. Importantly, these mechanisms were specifically triggered by lipid-deprivation, revealing a nutrient-specific component acutely regulated by CB1 receptor blockade. Finally, peripheral blockade of sympathetic neurotransmission also blunted central effects of CB1 receptor blockade, such as fear responses and anxiety-like behaviors. These data demonstrate that, independently of their site of origin, important effects of CB1 receptor blockade are expressed via activation of peripheral sympathetic activity. Thus, CB1 receptors modulate bidirectional circuits between the periphery and the brain to regulate feeding and other behaviors. PMID:23487769

  6. Chronic exposure to dopamine agonists affects the integrity of striatal D2 receptors in Parkinson's patients

    Directory of Open Access Journals (Sweden)

    Marios Politis

    2017-01-01

    Full Text Available We aimed to investigate the integrity and clinical relevance of striatal dopamine receptor type-2 (D2R availability in Parkinson's disease (PD patients. We studied 68 PD patients, spanning from early to advanced disease stages, and 12 healthy controls. All participants received one [11C]raclopride PET scan in an OFF medication condition for quantification of striatal D2R availability in vivo. Parametric images of [11C]raclopride non-displaceable binding potential were generated from the dynamic [11C]raclopride scans using implementation of the simplified reference tissue model with cerebellum as the reference tissue. PET data were interrogated for correlations with clinical data related to disease burden and dopaminergic treatment. PD patients showed a mean 16.7% decrease in caudate D2R and a mean 3.5% increase in putaminal D2R availability compared to healthy controls. Lower caudate [11C]raclopride BPND correlated with longer PD duration. PD patients on dopamine agonist treatment had 9.2% reduced D2R availability in the caudate and 12.8% in the putamen compared to PD patients who never received treatment with dopamine agonists. Higher amounts of lifetime dopamine agonist therapy correlated with reduced D2Rs availability in both caudate and putamen. No associations between striatal D2R availability and levodopa treatment and dyskinesias were found. In advancing PD the caudate and putamen D2R availability are differentially affected. Chronic exposure to treatment with dopamine agonists, but no levodopa, suppresses striatal D2R availability, which may have relevance to output signaling to frontal lobes and the occurrence of executive deficits, but not dyskinesias.

  7. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia.

    Science.gov (United States)

    Bertolino, Alessandro; Fazio, Leonardo; Caforio, Grazia; Blasi, Giuseppe; Rampino, Antonio; Romano, Raffaella; Di Giorgio, Annabella; Taurisano, Paolo; Papp, Audrey; Pinsonneault, Julia; Wang, Danxin; Nardini, Marcello; Popolizio, Teresa; Sadee, Wolfgang

    2009-02-01

    Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case-control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.

  8. Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors.

    Science.gov (United States)

    Fraser, Kurt M; Haight, Joshua L; Gardner, Eliot L; Flagel, Shelly B

    2016-05-15

    Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired with food reward, rats were classified as sign- or goal-trackers based on the resultant conditioned response. We examined the effects of D2/D3 agonists, 7-OH-DPAT (0.01-0.32mg/kg) or pramipexole (0.032-0.32mg/kg), the D2/D3 antagonist raclopride (0.1mg/kg), and the selective D3 antagonist, SB-277011A (6 or 24mg/kg), on the expression of sign- and goal-tracking conditioned responses. The lever-cue acquired predictive value and elicited a conditioned response for sign- and goal-trackers, but only for sign-trackers did it also acquire incentive value. Following administration of either 7-OH-DPAT, pramipexole, or raclopride, the performance of the previously acquired conditioned response was attenuated for both sign- and goal-trackers. For sign-trackers, the D2/D3 agonist, 7-OH-DPAT, also attenuated the conditioned reinforcing properties of the lever-cue. The selective D3 antagonist did not affect either conditioned response. Alterations in D2/D3 receptor signaling, but not D3 signaling alone, transiently attenuate a previously acquired Pavlovian conditioned response, regardless of whether the response is a result of incentive motivational processes. These findings suggest activity at the dopamine D2 receptor is critical for a reward cue to maintain either its incentive or predictive qualities. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Examining the Role of Dopamine D2 and D3 Receptors in Pavlovian Conditioned Approach Behaviors

    Science.gov (United States)

    Fraser, Kurt M.; Haight, Joshua L.; Gardner, Eliot L.; Flagel, Shelly B.

    2016-01-01

    Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired with food reward, rats were classified as sign- or goal-trackers based on the resultant conditioned response. We examined the effects of D2/D3 agonists, 7-OH-DPAT (0.01–0.32 mg/kg) or pramipexole (0.032–0.32 mg/kg), the D2/D3 antagonist raclopride (0.1 mg/kg), and the selective D3 antagonist, SB-277011A (6 or 24 mg/kg), on the expression of sign- and goal-tracking conditioned responses. The lever-cue acquired predictive value and elicited a conditioned response for sign- and goal-trackers, but only for sign-trackers did it also acquire incentive value. Following administration of either 7-OH-DPAT, pramipexole, or raclopride, the performance of the previously acquired conditioned response was attenuated for both sign- and goal-trackers. For sign-trackers, the D2/D3 agonist, 7-OH-DPAT, also attenuated the conditioned reinforcing properties of the lever-cue. The selective D3 antagonist did not affect either conditioned response. Alterations in D2/D3 receptor signaling, but not D3 signaling alone, transiently attenuate a previously acquired Pavlovian conditioned response, regardless of whether the response is a result of incentive motivational processes. These findings suggest activity at the dopamine D2 receptor is critical for a reward cue to maintain either its incentive or predictive qualities. PMID:26909847

  10. Multivariate cluster analysis of dynamic iodine-123 iodobenzamide SPET dopamine D2receptor images in schizophrenia

    International Nuclear Information System (INIS)

    Acton, P.D.; Pilowsky, L.S.; Costa, D.C.; Ell, P.J.

    1997-01-01

    This paper describes the application of a multivariate statistical technique to investigate striatal dopamine D 2 receptor concentrations measured by iodine-123 iodobenzamide ( 123 I-IBZM) single-photon emission tomography (SPET). This technique enables the automatic segmentation of dynamic nuclear medicine images based on the underlying time-activity curves present in the data. Once the time-activity curves have been extracted, each pixel can be mapped back on to the underlying distribution, considerably reducing image noise. Cluster analysis has been verified using computer simulations and phantom studies. The technique has been applied to SPET images of dopamine D 2 receptors in a total of 20 healthy and 20 schizophrenic volunteers (22 male, 18 female), using the ligand 123 I-IBZM. Following automatic image segmentation, the concentration of striatal dopamine D 2 receptors shows a significant left-sided asymmetry in male schizophrenics compared with male controls. The mean left-minus-right laterality index for controls is -1.52 (95% CI -3.72-0.66) and for patients 4.04 (95% CI 1.07-7.01). Analysis of variance shows a case-by-sex-by-side interaction, with F=10.01, P=0.005. We can now demonstrate that the previously observed male sex-specific D 2 receptor asymmetry in schizophrenia, which had failed to attain statistical significance, is valid. Cluster analysis of dynamic nuclear medicine studies provides a powerful tool for automatic segmentation and noise reduction of the images, removing much of the subjectivity inherent in region-of-interest analysis. The observed striatal D 2 asymmetry could reflect long hypothesized disruptions in dopamine-rich cortico-striatal-limbic circuits in schizophrenic males. (orig.). With 4 figs., 2 tabs

  11. Involvement of dopamine D1/D2 receptors on harmane-induced amnesia in the step-down passive avoidance test.

    Science.gov (United States)

    Nasehi, Mohammad; Piri, Morteza; Nouri, Maryam; Farzin, Davood; Nayer-Nouri, Touraj; Zarrindast, Mohammad Reza

    2010-05-25

    Ingestion of harmane and other alkaloids derived from plant Peganum harmala has been shown to elicit profound behavioural and toxic effects in humans, including hallucinations, excitation, feelings of elation, and euphoria. These alkaloids in the high doses can cause a toxic syndrome characterized by tremors and convulsions. Harmane has also been shown to act on a variety of receptor systems in the mammalian brain, including those for serotonin, dopamine and benzodiazepines. In animals, it has been reported to affect short and long term memory. In the present study, effects of dopamine D1 and D2 receptor antagonists on the harmane (HA)-induced amnesia and exploratory behaviors were examined in mice. One-trial step-down and hole-board paradigms were used for the assessment of memory retention and exploratory behaviors in adult male NMRI mice respectively. Intraperitoneal (i.p.) administration of HA (5 and 10 mg/kg) immediately after training decreased memory consolidation, while had no effect on anxiety-like behavior. Memory retrieval was not altered by 15- or 30 min pre-testing administration of the D1 (SCH23390, 0.025, 0.05 and 0.1 mg/kg) or D2 (sulpiride 12.5, 25 and 50 mg/kg) receptor antagonists, respectively. In contrast, SCH23390 (0.05 and 0.1 mg/kg) or sulpiride (25 and 50 mg/kg) pre-test administration fully reversed HA-induced impairment of memory consolidation. Finally, neither D1 nor D2 receptor blockade affected exploratory behaviors in the hole-board paradigm. Altogether, these findings strongly suggest an involvement of D1 and D2 receptors modulation in the HA-induced impairment of memory consolidation. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Exploration of N-arylpiperazine Binding Sites of D2 Dopaminergic Receptor.

    Science.gov (United States)

    Soskic, Vukic; Sukalovic, Vladimir; Kostic-Rajacic, Sladjana

    2015-01-01

    The crystal structures of the D3 dopamine receptor and several other G-protein coupled receptors (GPCRs) were published in recent times. Those 3D structures are used by us and other scientists as a template for the homology modeling and ligand docking analysis of related GPCRs. Our main scientific interest lies in the field of pharmacologically active N-arylpiperazines that exhibit antipsychotic and/or antidepressant properties, and as such are dopaminergic and serotonergic receptor ligands. In this short review article we are presenting synthesis and biological data on the new N-arylpipereazine as well our results on molecular modeling of the interactions of those N-arylpiperazines with the model of D2 dopamine receptors. To obtain that model the crystal structure of the D3 dopamine receptor was used. Our results show that the N-arylpiperazines binding site consists of two pockets: one is the orthosteric binding site where the N-arylpiperazine part of the ligand is docked and the second is a non-canonical accessory binding site for N-arylpipereazine that is formed by a second extracellular loop (ecl2) of the receptor. Until now, the structure of this receptor region was unresolved in crystal structure analyses of the D3 dopamine receptor. To get a more complete picture of the ligand - receptor interaction, DFT quantum mechanical calculations on N-arylpiperazine were performed and the obtained models were used to examine those interactions.

  13. Cocaine modulates allosteric D2-σ1 receptor-receptor interactions on dopamine and glutamate nerve terminals from rat striatum.

    Science.gov (United States)

    Beggiato, Sarah; Borelli, Andrea Celeste; Borroto-Escuela, Dasiel; Corbucci, Ilaria; Tomasini, Maria Cristina; Marti, Matteo; Antonelli, Tiziana; Tanganelli, Sergio; Fuxe, Kjell; Ferraro, Luca

    2017-12-01

    The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D 2 -σ 1 heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ 1 receptors (σ 1 Rs) in the cocaine-provoked amplification of D 2 receptor (D 2 R)-induced reduction of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D 2 -likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. The σ 1 R antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K + -evoked [ 3 H]-DA, but not glutamate, release. Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects. In cotransfected σ 1 R and D 2L R HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus D 2L R singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D 2L singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal. These results led us to hypothesize the existence of functional D 2 -σ 1 R complexes on the rat striatal DA and glutamate nerve terminals and functional D 2 -σ 1 R-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated D 2 R signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Clagett-Dame, M.; McKelvy, J.F. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-10-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-(125I)iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide.

  15. N-linked oligosaccharides are responsible for rat striatal dopamine D2 receptor heterogeneity

    International Nuclear Information System (INIS)

    Clagett-Dame, M.; McKelvy, J.F.

    1989-01-01

    The glycoprotein nature of the binding subunit of the dopamine D2 receptor in rat striatum has been examined by photoaffinity labeling receptor preparations with N-(p-azido-m-[125I]iodophenethyl)spiperone followed by treatment of crude membrane receptor or receptor fractions isolated from sodium dodecyl sulfate (SDS) polyacrylamide gels with endo- and exoglycosidases. The major photoaffinity labeled protein migrates as a heterogeneous species on 10% SDS polyacrylamide gels and ranges from 130,000 to 75,000 relative molecular mass (Mr). This heterogeneity can be explained by glycosylation of the receptor by complex-type N-linked oligosaccharides. Three fractions of labeled receptor were isolated from SDS polyacrylamide gels over a range of 130,000 to 75,000 Mr; after digestion with peptide-N4-[N-acetyl-beta-glucosaminyl] asparagine amidase, all fractions yielded a single peptide approximately 40,000 Mr. Treatment of photoaffinity labeled membranes with alpha-mannosidase was without effect. The dopamine D2 receptor appears to contain substantial amounts of sialic acid as treatment of photoaffinity labeled membranes with neuraminidase increased the receptor mobility on SDS polyacrylamide gels to a species of 50,000-54,000 Mr. Treatment of the receptor with neuraminidase followed by endo-alpha-N-acetylgalactosaminidase did not change the electrophoretic migration pattern from that seen after neuraminidase treatment alone, suggesting that the binding peptide contains no serine- or threonine-linked oligosaccharides. A smaller binding peptide of approximately 31,000 Mr is also apparent in crude photoaffinity labeled membranes. This material also contains N-linked oligosaccharide

  16. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans.

    Science.gov (United States)

    Weber, S C; Beck-Schimmer, B; Kajdi, M-E; Müller, D; Tobler, P N; Quednow, B B

    2016-07-05

    Increased responding to drug-associated stimuli (cue reactivity) and an inability to tolerate delayed gratification (reward impulsivity) have been implicated in the development and maintenance of drug addiction. Whereas data from animal studies suggest that both the dopamine and opioid system are involved in these two reward-related processes, their role in humans is less clear. Moreover, dopaminergic and opioidergic drugs have not been directly compared with regard to these functions, even though a deeper understanding of the underlying mechanisms might inform the development of specific treatments for elevated cue reactivity and reward impulsivity. In a randomized, double-blind, between-subject design we administered the selective dopamine D2/D3 receptor antagonist amisulpride (400 mg, n=41), the unspecific opioid receptor antagonist naltrexone (50 mg, n=40) or placebo (n=40) to healthy humans and measured cue-induced responding with a Pavlovian-instrumental transfer task and reward impulsivity with a delay discounting task. Mood was assessed using a visual analogue scale. Compared with placebo, amisulpride significantly suppressed cue-induced responding and reward impulsivity. The effects of naltrexone were similar, although less pronounced. Both amisulpride and naltrexone decreased average mood ratings compared with placebo. Our results demonstrate that a selective blockade of dopamine D2/D3 receptors reduces cue-induced responding and reward impulsivity in healthy humans. Antagonizing μ-opioid receptors has similar effects for cue-induced responding and to a lesser extent for reward impulsivity.

  17. Multigenerational effects of adolescent morphine exposure on dopamine D2 receptor function.

    Science.gov (United States)

    Byrnes, John J; Johnson, Nicole L; Carini, Lindsay M; Byrnes, Elizabeth M

    2013-05-01

    The use and misuse of prescription opiates in adolescent populations, and in particular, adolescent female populations, has increased dramatically in the past two decades. Given the significant role that opioids play in neuroendocrine function, exposure to opiates during this critical developmental period could have significant consequences for the female, as well as her offspring. In the current set of studies, we utilized the female rat to model the transgenerational impact of adolescent opiate exposure. We examined locomotor sensitization in response to the dopamine D2/D3 receptor agonist quinpirole in the adult male progeny (F1 and F2 generations) of females exposed to morphine during adolescence. All females were drug-free for at least 3 weeks prior to conception, eliminating the possibility of direct fetal exposure to morphine. Both F1 and F2 progeny of morphine-exposed females demonstrated attenuated locomotor sensitization following repeated quinpirole administration. These behavioral effects were coupled with increased quinpirole-induced corticosterone secretion and upregulated kappa opioid receptor and dopamine D2 receptor (D2R) gene expression within the nucleus accumbens. These results suggest significant modifications in response to repeated D2R activation in the progeny of females exposed to opiates during adolescence. Given the significant role that the D2R plays in psychopathology, adolescent opiate exposure could shift the vulnerability of future offspring to psychological disorders, including addiction. Moreover, that effects are also observed in the F2 generation suggests that adolescent opiate exposure can trigger transgenerational epigenetic modifications impacting systems critical for motivated behavior.

  18. Radioiodination of central nerves system dopamine D2 receptor imaging agent. IBZM preparation and preclinical study

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong; Hu Mingyang; Pan Shangren; Wang Bocheng

    1996-01-01

    To study preparation of central nerves system dopamine D2 imaging agent 131 I-IBZM and its preclinical investigation, peracetic acid was used as the oxidant for preparing radioiodinated 125 I-IBZM and 131 I-IBZM, D2 binding properties of IBZM were examined by in vitro binding saturation analysis, rat whole body and regional brain biodistribution, rat brain autoradiography and rabbit SPECT static imaging, etc. The results are: 1. The radiolabelling yields of 125 I-IBZM and 131 I-IBZM were 84.18% +- 3.06% and 78.50% +- 3.47%. The radiochemical purity were over 95% after being isolated by HPLC; and were over 90% after being isolated by organic extraction. 2. Scatchard plot of D2 receptor saturation binding analysis showed: K d = 0.53 +- 0.06 nmol/L, B max = 466.45 +- 45.88 fmol/mg protein. 3. The rat brain autoradiography and analysis showed that there was high 125 I-IBZM uptake in striatal area 2 hr after injection, the striatal/cerebellum ratio was 6.22 +- 0.48; the high 125 -IBZM uptake can be blocked by haloperidol--a special dopamine D2 receptor antagonist. 4. 131 I-IBZM rat biodistribution and rabbit SPECT planar imaging showed good initial brain uptake and retention, the initial uptake of rat brain was 1.893 +- 0.147% ID/g at 2 min and 1.044 +- 0.135% ID/g at 60 min. The results showed that the radioiodinated IBZM had high affinity, saturation and specificity to rat's and rabbit's central nerves system dopamine D2 receptors

  19. Radioiodination of central nerves system dopamine D2 receptor imaging agent. IBZM preparation and preclinical study

    Energy Technology Data Exchange (ETDEWEB)

    Yansong, Lin; Xiangtong, Lin; Mingyang, Hu; Shangren, Pan; Bocheng, Wang [Huashan Hospital of Shanghai Medical Univ., Shanghai (China)

    1996-11-01

    To study preparation of central nerves system dopamine D2 imaging agent {sup 131}I-IBZM and its preclinical investigation, peracetic acid was used as the oxidant for preparing radioiodinated {sup 125}I-IBZM and {sup 131}I-IBZM, D2 binding properties of IBZM were examined by in vitro binding saturation analysis, rat whole body and regional brain biodistribution, rat brain autoradiography and rabbit SPECT static imaging, etc. The results are: 1. The radiolabelling yields of {sup 125}I-IBZM and {sup 131}I-IBZM were 84.18% +- 3.06% and 78.50% +- 3.47%. The radiochemical purity were over 95% after being isolated by HPLC; and were over 90% after being isolated by organic extraction. 2. Scatchard plot of D2 receptor saturation binding analysis showed: K{sub d} = 0.53 +- 0.06 nmol/L, B{sub max} = 466.45 +- 45.88 fmol/mg protein. 3. The rat brain autoradiography and analysis showed that there was high {sup 125}I-IBZM uptake in striatal area 2 hr after injection, the striatal/cerebellum ratio was 6.22 +- 0.48; the high {sup 125}-IBZM uptake can be blocked by haloperidol--a special dopamine D2 receptor antagonist. 4. {sup 131}I-IBZM rat biodistribution and rabbit SPECT planar imaging showed good initial brain uptake and retention, the initial uptake of rat brain was 1.893 +- 0.147% ID/g at 2 min and 1.044 +- 0.135% ID/g at 60 min. The results showed that the radioiodinated IBZM had high affinity, saturation and specificity to rat`s and rabbit`s central nerves system dopamine D2 receptors.

  20. Synthesis and 131I labelling of epidepride as a dopamine D2 receptor imaging agent

    International Nuclear Information System (INIS)

    Yang Min; Hu Mingyang; Pei Zhuguo; Wang Bocheng; Zhou Xingqin

    2001-01-01

    S-(-)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-5-iodo-2, 3-dimethoxybenzamide (Epidepride) and its iodine labeling precursor S-(-)-N-[(1-Ethyl-2-pyrrolidinyl)methyl]-5-tributyltin-2, 3-dimethoxybenzamide are synthesized from 3-methoxy salicylic acid. The labeling precursor is labeled with 131 I by hydrogen peroxide method, and 131 I-epidepride is gained, its radiolabelling yield (RLY) and the radiochemical purity (RCP) are all over 95%. The RCP of 131 I-epidepride is over 90% under 4 degree C after 15 days. 131 I-epidepride has high affinity to dopamine D 2 receptor. The striatal uptake can be blocked completely by spiperone. The striatum and cerebellum uptake ratio can reach 237 at 320 min in rats. The results show that 131 I-epidepride may be used as a dopamine D 2 receptor imaging agent for SPECT

  1. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia.

    Science.gov (United States)

    Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A; Quik, Maryka

    2016-12-01

    Tardive dyskinesia (TD) is a drug-induced movement disorder that arises with antipsychotics. These drugs are the mainstay of treatment for schizophrenia and bipolar disorder, and are also prescribed for major depression, autism, attention deficit hyperactivity, obsessive compulsive and post-traumatic stress disorder. There is thus a need for therapies to reduce TD. The present studies and our previous work show that nicotine administration decreases haloperidol-induced vacuous chewing movements (VCMs) in rodent TD models, suggesting a role for the nicotinic cholinergic system. Extensive studies also show that D2 dopamine receptors are critical to TD. However, the precise involvement of striatal cholinergic interneurons and D2 medium spiny neurons (MSNs) in TD is uncertain. To elucidate their role, we used optogenetics with a focus on the striatum because of its close links to TD. Optical stimulation of striatal cholinergic interneurons using cholineacetyltransferase (ChAT)-Cre mice expressing channelrhodopsin2-eYFP decreased haloperidol-induced VCMs (~50%), with no effect in control-eYFP mice. Activation of striatal D2 MSNs using Adora2a-Cre mice expressing channelrhodopsin2-eYFP also diminished antipsychotic-induced VCMs, with no change in control-eYFP mice. In both ChAT-Cre and Adora2a-Cre mice, stimulation or mecamylamine alone similarly decreased VCMs with no further decline with combined treatment, suggesting nAChRs are involved. Striatal D2 MSN activation in haloperidol-treated Adora2a-Cre mice increased c-Fos + D2 MSNs and decreased c-Fos + non-D2 MSNs, suggesting a role for c-Fos. These studies provide the first evidence that optogenetic stimulation of striatal cholinergic interneurons and GABAergic MSNs modulates VCMs, and thus possibly TD. Moreover, they suggest nicotinic receptor drugs may reduce antipsychotic-induced TD. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Link between D1 and D2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain

    International Nuclear Information System (INIS)

    Seeman, P.; Niznik, H.B.; Guan, H.C.; Booth, G.; Ulpian, C.

    1989-01-01

    Dopamine receptor types D 1 and D 2 can oppose enhance each other's actions for electrical, biochemical, and psychomotor effects. The authors report a D 1 -D 2 interaction in homogenized tissue as revealed by ligand binding. D 2 agonists lowered the binding of [ 3 H]raclopride to D 2 receptors in striatal and anterior pituitary tissues. Pretreating the tissue with the D 1 -selective antagonist SCH 23390 prevented the agonist-induced decrease in [ 3 H]raclopride binding to D 2 sites in the striatum but not in the anterior pituitary, which has no D 1 receptors. Conversely, a dopamine-induced reduction in the binding of [ 3 H]SCH 23390 to D 1 receptors could be prevented by the D 2 -selective antagonist eticlopride. Receptor photolabeling experiments confirmed both these D 1 -D 2 interactions. The blocking effect by SCH 23390 was similar to that produced by a nonhydrolyzable guanine nucleotide analogue, and SCH 23390 reduced the number of agonist-labeled D 2 receptors in the high-affinity state. Thus, the D 1 -D 2 link may be mediated by guanine nucleotide-binding protein components. The link may underlie D 1 -D 2 interactions influencing behavior, since the link was missing in over half the postmortem striata from patients with schizophrenia and Huntington disease (both diseases that show some hyperdopamine signs) but was present in human control, Alzheimer, and Parkinson striata

  3. Examining the Role of Dopamine D2 and D3 Receptors in Pavlovian Conditioned Approach Behaviors

    OpenAIRE

    Fraser, Kurt M.; Haight, Joshua L.; Gardner, Eliot L.; Flagel, Shelly B.

    2016-01-01

    Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired wi...

  4. Comparative studies of D2 receptors and cerebral blood flow in hemi-parkinsonism rats

    International Nuclear Information System (INIS)

    Lin, Y.; Lin, X.

    2000-01-01

    To study the relationship between dopamine (DA) D 2 receptors and cerebral blood flow in hemiparkinsonism rats. Hemi-parkinsonism rats were made by stereotaxic 6-hydroxy dopamine (6-OH-DA) lesions in substantia nigra and ventral tegmental area, apomorphine (Apo) which could induce the successful model rat rotates toward the intact side was used to screen that rats, 125 I-IBZM in vivo autoradiography and 99m Tc-HM-PAO regional brain biodistribution were used to study D 2 receptors and cerebral blood flow. The HPLC-ECD were used to measure the concentration of DA and it metabolites homovanillic acid (HVA), 3,4-dehydroxyphenyl acetic acid (DOPAC) in bilateral striatum (ST). The lesioned side ST DA and its metabolites HVA DOPAC reduced significantly than that of the intact side and pseudo-operated control group, ST/cerebellum (CB) 125 I-IBZM uptake ratio was 8.04 ±0.71 in lesioned side of hemi-parkinsonism rats, significantly increased compared with the intact side and the pseudo-operated group (p 99m Tc 30.1±4.53% enhancement as compared to the intact side, and also show good correlation with 30 min Apo induced rotation numbers (r=0.98), the regional cerebral blood flow study didn't show significant difference between bilateral brain cortex area (p>0.05). The DA content decreased significantly and induced an up-regulation of ST D 2 receptor binding sites in 6-OH-DA lesioned side in hemi-parkinsonism rats, the increased percentage of lesioned-intact side ST/CB 125 I-IBZM uptake ratio showed good correlation with rotation behavior induced by Apo. Compare with cerebral blood flow, D 2 receptor reflected by IBZM seems to be more specific and earlier to detect the cerebral functional impairment in experimental hemi-parkinsonism

  5. Exploration of central dopamine transporter and D2 receptor in morphine abstinent rats

    International Nuclear Information System (INIS)

    Lin Yansong; Wang Bocheng; Wang Shizhen; Ding Shiyu; Chen Zhengping; Zhang Manda

    2006-01-01

    The experiment was designed to investigate the variation of DAT and D2 receptor in morphine administered and 1,2,3 day abstinent rats. Morphine exposure was induced by repeated morphine (i.p.) treatment for 8 days. Conditioned place preference test was conducted to evaluate the drug seeking behaviour and morphine dependence of rats with morphine exposure. Biodistribution of the imaging agents 125 I-β-CIT and 125 I-IBZM was used to evaluate the central DAT and D2 receptor during morphine exposure and 1,2,3 day's abstinence. Results reveal the following facts. (1) The morphine abstinent rats showed diarrhea and body-shake 1 day after morphine withdrawal. (2) For morphine group, 125 I-β-CIT %ID/g in ST and NAC was higher than that of the 1,2,3 day's abstinent rats and control (P 0.05). (3) 125 I-IBZM %ID/g in ST, NAC and HIP in morphine rats were lower than those of the abstinent and control rats (P 125 I-IBZM %ID/g in ST and NAC gradually increased with the abstinent days. While in ST the %ID/g among the abstinent rats was all lower than that of the control rats, in NAC the %ID/g was still lower in 1 day's abstinent rats (P 0.05), indicating the reduction of hyper-activated DAT and the increase of down-regulatory D2 receptor induced by morphine during morphine withdrawal. Our results confirmed that the dopamine system, especially DAT and D2 receptor in mesolimbic and meso-striatum pathway, has been implicated in morphine treatment. The rewarding properties of morphine and the somatic expression of morphine abstinence were related to changes in mesolimbic and meso-striatum dopaminergic activity. (authors)

  6. Selective cognitive impairments associated with NMDA receptor blockade in humans.

    Science.gov (United States)

    Rowland, Laura M; Astur, Robert S; Jung, Rex E; Bustillo, Juan R; Lauriello, John; Yeo, Ronald A

    2005-03-01

    Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) may be involved in the pathophysiology of schizophrenia. NMDAR antagonists like ketamine induce schizophrenia-like features in humans. In rodent studies, NMDAR antagonism impairs learning by disrupting long-term potentiation (LTP) in the hippocampus. This study investigated the effects of ketamine on spatial learning (acquisition) vs retrieval in a virtual Morris water task in humans. Verbal fluency, working memory, and learning and memory of verbal information were also assessed. Healthy human subjects participated in this double-blinded, placebo-controlled study. On two separate occasions, ketamine/placebo was administered and cognitive tasks were assessed in association with behavioral ratings. Ketamine impaired learning of spatial and verbal information but retrieval of information learned prior to drug administration was preserved. Schizophrenia-like symptoms were significantly related to spatial and verbal learning performance. Ketamine did not significantly impair attention, verbal fluency, or verbal working memory task performance. Spatial working memory was slightly impaired. In conclusion, these results provide evidence for ketamine's differential impairment of verbal and spatial learning vs retrieval. By using the Morris water task, which is hippocampal-dependent, this study helps bridge the gap between nonhuman animal and human NMDAR antagonism research. Impaired cognition is a core feature of schizophrenia. A better understanding of NMDA antagonism, its physiological and cognitive consequences, may provide improved models of psychosis and cognitive therapeutics.

  7. Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Hansen, Kasper B; Naur, Peter

    2016-01-01

    -term depression. Here, we investigate the pharmacology of the orthosteric binding site in GluD2 by examining the activity of analogs of D-Ser and GluN1 glycine site competitive antagonists at GluD2 receptors containing the lurcher mutation (GluD2(LC)), which promotes spontaneous channel activation. We identify...

  8. Emotion dysregulation and amygdala dopamine D2-type receptor availability in methamphetamine users.

    Science.gov (United States)

    Okita, Kyoji; Ghahremani, Dara G; Payer, Doris E; Robertson, Chelsea L; Dean, Andy C; Mandelkern, Mark A; London, Edythe D

    2016-04-01

    Individuals who use methamphetamine chronically exhibit emotional and dopaminergic neurochemical deficits. Although the amygdala has an important role in emotion processing and receives dopaminergic innervation, little is known about how dopamine transmission in this region contributes to emotion regulation. This investigation aimed to evaluate emotion regulation in subjects who met DSM-IV criteria for methamphetamine dependence, and to test for a relationship between self-reports of difficulty in emotion regulation and D2-type dopamine receptor availability in the amygdala. Ninety-four methamphetamine-using and 102 healthy-control subjects completed the Difficulties in Emotion Regulation Scale (DERS); 33 of those who used methamphetamine completed the Addiction Severity Index (ASI). A subset of 27 methamphetamine-group and 20 control-group subjects completed positron emission tomography with [(18)F]fallypride to assay amygdala D2-type dopamine receptor availability, measured as binding potential (BPND). The methamphetamine group scored higher than the control group on the DERS total score (pmethamphetamine group. The DERS total score was positively correlated with amygdala BPND in both groups and the combined group of participants (combined: r=0.331, p=0.02), and the groups did not differ in this relationship. These findings highlight problems with emotion regulation linked to methamphetamine use, possibly contributing to personal and interpersonal behavioral problems. They also suggest that D2-type dopamine receptors in the amygdala contribute to emotion regulation in both healthy and methamphetamine-using subjects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Simultaneous Multiple MS Binding Assays Addressing D1 and D2 Dopamine Receptors.

    Science.gov (United States)

    Schuller, Marion; Höfner, Georg; Wanner, Klaus T

    2017-10-09

    MS Binding Assays are a label-free alternative to radioligand binding assays. They provide basically the same capabilities as the latter, but use a non-labeled reporter ligand instead of a radioligand. In contrast to radioligand binding assays, MS Binding Assays offer-owing to the selectivity of mass spectrometric detection-the opportunity to monitor the binding of different reporter ligands at different targets simultaneously. The present study shows a proof of concept for this strategy as exemplified for MS Binding Assays selectively addressing D 1 and D 2 dopamine receptors in a single binding experiment. A highly sensitive, rapid and robust LC-ESI-MS/MS quantification method capable of quantifying both SCH23390 and raclopride, selectively addressing D 1 and D 2 receptors, respectively, was established and validated for this purpose. Based thereon, simultaneous saturation and competition experiments with SCH23390 and raclopride in the presence of both D 1 and D 2 receptors were performed and analyzed by LC-MS/MS within a single chromatographic cycle. The present study thus demonstrates the feasibility of this strategy and the high versatility of MS Binding Assays that appears to surpass that common for conventional radioligand binding assays. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. NMDA receptor blockade in the prelimbic cortex activates the mesolimbic system and dopamine-dependent opiate reward signaling.

    Science.gov (United States)

    Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R

    2014-12-01

    N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.

  11. Age dependence of the rapid antidepressant and synaptic effects of acute NMDA receptor blockade

    Directory of Open Access Journals (Sweden)

    Elena eNosyreva

    2014-12-01

    Full Text Available Ketamine is a NMDA receptor antagonist that produces rapid antidepressant responses in individuals with major depressive disorder. The antidepressant action of ketamine has been linked to blocking NMDA receptor activation at rest, which inhibits eukaryotic elongation factor2 kinase leading to desuppression of protein synthesis and synaptic potentiation in the CA1 region of the hippocampus. Here, we investigated ketamine mediated antidepressant response and the resulting synaptic potentiation in juvenile animals. We found that ketamine did not produce an antidepressant response in juvenile animals in the novelty suppressed feeding or the forced swim test. In addition ketamine application failed to trigger synaptic potentiation in hippocampal slices obtained from juvenile animals, unlike its action in slices from older animals (6-9 weeks old. The inability of ketamine to trigger an antidepressant response or subsequent synaptic plasticity processes suggests a developmental component to ketamine mediated antidepressant efficacy. We also show that the NMDAR antagonist AP5 triggers synaptic potentiation in mature hippocampus similar to the action of ketamine, demonstrating that global competitive blockade of NMDA receptors is sufficient to trigger this effect. These findings suggest that global blockade of NMDA receptors in developmentally mature hippocampal synapses are required for the antidepressant efficacy of ketamine.

  12. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  13. Synthesis of the possible receptor Ligand [125I]-spiperone for D2-dopamine receptor and in-vivo biodistribution

    International Nuclear Information System (INIS)

    Amin, A.M.; Shoukry, M.; Abd EL-Bary, A.

    2009-01-01

    The spiperone is a selective D2-dopamine receptor antagonist radioiodination of spiperone is of interest for dopamine (DA) receptor studies both in vivo and in vitro. The labeling of spiperone with iodine-125 was extremely done in a neutral ph 7, using chloramine-T as oxidizing agent via heating the reaction mixture at 70 C (degree) for 10 - 15 minutes producing radiochemical yield of 97 %. In vivo biodistribution studies showed that the initial brain uptake correlated fairly well with the brain uptake index and that the kinetics of the radioactivity specifically bound to the striatum were strongly influenced by the dopamine receptor binding affinity of the compound. The brain uptake of 125 I-Spiperone was high and equal to 3.5, 3.25,2.75 and 1.7 % per gram tissue at 5, 30, 60 and 120 minutes post injection, respectively. 125 I-Spiperone binds with high affinity to dopamine receptors in vivo. Specific binding is about 65% of the total binding as is displaced stereo-specifically by clozapine. 125 I-spiperone may prove to be a useful ligand in studies examining D2-dopamine receptors. Furthermore iodinated spiperone may be useful in radioreceptor assays of neuroleptic drug levels and, in a 123 I-labeled form, for imaging of dopamine receptors, in vivo, using single photon tomography.

  14. Dopamine D2-receptor SPECT with [123I]-iodobenzamide in the diagnosis of Parkinson's syndrome

    International Nuclear Information System (INIS)

    Reiche, W.; Grundmann, M.; Huber, G.

    1995-01-01

    The purpose of this study was to determine the value of the [ 123 I]IBZM D 2 -receptor SPECT in the differential diagnosis of PS. A total of 38 patients (20 females, 18 males; age 61 ± 13.3 years), with typical extrapyramidal symptoms were investigated. Twenty suffered from idiopathic and 11 from secondary PS. Seven patients in whom a neurological disease could be excluded, served as controls. SPECT data were acquired 90 min after i.v. injection of 185-200 MBq [ 123 I]IBZM. After reconstruction with a Butterworth filter (cutoff frequency 0.5) and attenuation correction (coefficient 0.12 cm -1 ) we quantify the IBZM basal ganglia uptake as ratio to the frontal D 2 -receptor-free cortex (BG/FC). The patients with idiopathic PS (IPS) and the controls revealed high and specific IBZM uptake in the basal ganglia compared to the adjacent frontal brain tissue (IPS: BG/FC = 1,44 ± 0,10; controls: BG/FC = 1.48 ± 0.10). A significant decreased striatal IBZM uptake is found in cases with secondary PS (BG/FC = 1.25 ± 0.10, t-test compared to controls and IPS). The patient group with IPS can be subdivided into patients without L-dopatherapy (BG/FC = 1.49 ± 0.07), patients with longstanding L-dopa-therapy demonstrating significantly decreased striatal IBZM uptake (BG/FC = 1.31 ± 0.04, t-test compared to controls and other IPS), which correlates pathophysiological with a reduction of free D 2 receptors, and patients with de novo PS showing a slight increased striatal IBZM uptake (BG/FC = 1.56 ± 0.05), which represents D 2 -receptor stimulation. [ 123 I]IBZM-SPECT is a sensitive and non-invasive test for striatal D 2 -receptor density and activity which permits relatively clear discrimination between idiopathic and secondary PS and yields important information for differential therapy. (orig.) [de

  15. [123I]Iodobenzamide binding to the rat dopamine D2 receptor in competition with haloperidol and endogenous dopamine - an in vivo imaging study with a dedicated small animal SPECT

    International Nuclear Information System (INIS)

    Nikolaus, Susanne; Larisch, Rolf; Wirrwar, Andreas; Jamdjeu-Noune, Marlyse; Antke, Christina; Beu, Markus; Mueller, Hans-Wilhelm; Schramm, Nils

    2005-01-01

    This study assessed [ 123 I]iodobenzamide binding to the rat dopamine D 2 receptor in competition with haloperidol and endogenous dopamine using a high-resolution small animal SPECT. Subsequent to baseline quantifications of D 2 receptor binding, imaging studies were performed on the same animals after pre-treatment with haloperidol and methylphenidate, which block D 2 receptors and dopamine transporters, respectively. Striatal baseline equilibrium ratios (V 3 '' ) of [ 123 I]iodobenzamide binding were 1.42±0.31 (mean±SD). After pre-treatment with haloperidol and methylphenidate, V 3 '' values decreased to 0.54±0.46 (p 123 I]iodobenzamide binding induced by pre-treatment with haloperidol reflects D 2 receptor blockade, whereas the decrease in receptor binding induced by pre-treatment with methylphenidate can be interpreted in terms of competition between [ 123 I]IBZM and endogenous dopamine. Findings show that multiple in vivo measurements of [ 123 I]iodobenzamide binding to D 2 receptors in competition with exogenous and endogenous ligands are feasible in the same animal. This may be of future relevance for the in vivo evaluation of novel radioligands as well as for studying the interrelations between pre- and/or postsynaptic radioligand binding and different levels of endogenous dopamine. (orig.)

  16. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI

    DEFF Research Database (Denmark)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian

    2013-01-01

    This study employed simultaneous neuroimaging with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to demonstrate the relationship between changes in receptor occupancy measured by PET and changes in brain activity inferred by fMRI. By administering the D2/D3...... dopamine receptor antagonist [(11)C]raclopride at varying specific activities to anesthetized nonhuman primates, we mapped associations between changes in receptor occupancy and hemodynamics [cerebral blood volume (CBV)] in the domains of space, time, and dose. Mass doses of raclopride above tracer levels...... caused increases in CBV and reductions in binding potential that were localized to the dopamine-rich striatum. Moreover, similar temporal profiles were observed for specific binding estimates and changes in CBV. Injection of graded raclopride mass doses revealed a monotonic coupling between neurovascular...

  17. Intestinal tumor suppression in ApcMin/+ mice by prostaglandin D2 receptor PTGDR

    International Nuclear Information System (INIS)

    Tippin, Brigette L; Kwong, Alan M; Inadomi, Michael J; Lee, Oliver J; Park, Jae Man; Materi, Alicia M; Buslon, Virgilio S; Lin, Amy M; Kudo, Lili C; Karsten, Stanislav L; French, Samuel W; Narumiya, Shuh; Urade, Yoshihiro; Salido, Eduardo; Lin, Henry J

    2014-01-01

    Our earlier work showed that knockout of hematopoietic prostaglandin D synthase (HPGDS, an enzyme that produces prostaglandin D 2 ) caused more adenomas in Apc Min/+ mice. Conversely, highly expressed transgenic HPGDS allowed fewer tumors. Prostaglandin D 2 (PGD 2 ) binds to the prostaglandin D 2 receptor known as PTGDR (or DP1). PGD 2 metabolites bind to peroxisome proliferator-activated receptor γ (PPARG). We hypothesized that Ptgdr or Pparg knockouts may raise numbers of tumors, if these receptors take part in tumor suppression by PGD 2 . To assess, we produced Apc Min/+ mice with and without Ptgdr knockouts (147 mice). In separate experiments, we produced Apc Min/+ mice expressing transgenic lipocalin-type prostaglandin D synthase (PTGDS), with and without heterozygous Pparg knockouts (104 mice). Homozygous Ptgdr knockouts raised total numbers of tumors by 30–40% at 6 and 14 weeks. Colon tumors were not affected. Heterozygous Pparg knockouts alone did not affect tumor numbers in Apc Min/+ mice. As mentioned above, our Pparg knockout assessment also included mice with highly expressed PTGDS transgenes. Apc Min/+ mice with transgenic PTGDS had fewer large adenomas (63% of control) and lower levels of v-myc avian myelocytomatosis viral oncogene homolog (MYC) mRNA in the colon. Heterozygous Pparg knockouts appeared to blunt the tumor-suppressing effect of transgenic PTGDS. However, tumor suppression by PGD 2 was more clearly mediated by receptor PTGDR in our experiments. The suppression mechanism did not appear to involve changes in microvessel density or slower proliferation of tumor cells. The data support a role for PGD 2 signals acting through PTGDR in suppression of intestinal tumors

  18. Toll-like receptor 3 blockade in rhinovirus-induced experimental asthma exacerbations

    DEFF Research Database (Denmark)

    Silkoff, Philip E; Flavin, Susan; Gordon, Robert

    2017-01-01

    BACKGROUND: Human rhinoviruses (HRVs) commonly precipitate asthma exacerbations. Toll-like receptor 3, an innate pattern recognition receptor, is triggered by HRV, driving inflammation that can worsen asthma. OBJECTIVE: We sought to evaluate an inhibitory mAb to Toll-like receptor 3, CNTO3157......, respectively, and were then inoculated with HRV-16 within 72 hours. All subjects were monitored for respiratory symptoms, lung function, and nasal viral load. The primary end point was maximal decrease in FEV1 during 10 days after inoculation. RESULTS: In asthmatic patients (n = 63) CNTO3157 provided......: In summary, CNTO3157 was ineffective in attenuating the effect of HRV-16 challenge on lung function, asthma control, and symptoms in asthmatic patients but suppressed cold symptoms in healthy subjects. Other approaches, including blockade of multiple pathways or antiviral agents, need to be sought...

  19. Dopamine inhibits reproduction in female zebrafish (Danio rerio) via three pituitary D2 receptor subtypes.

    Science.gov (United States)

    Fontaine, Romain; Affaticati, Pierre; Yamamoto, Kei; Jolly, Cécile; Bureau, Charlotte; Baloche, Sylvie; Gonnet, Françoise; Vernier, Philippe; Dufour, Sylvie; Pasqualini, Catherine

    2013-02-01

    In many teleosts, the stimulatory control of gonadotrope axis by GnRH is opposed by an inhibitory control by dopamine (DA). The functional importance of this inhibitory pathway differs widely from one teleostean species to another. The zebrafish (Danio rerio) is a teleost fish that has become increasingly popular as an experimental vertebrate model. However, the role of DA in the neuroendocrine control of its reproduction has never been studied. Here the authors evaluated in sexually regressed female zebrafish the effects of in vivo treatments with a DA D2 receptor (D2-R) antagonist domperidone, or a GnRH agonist, alone and in combination, on the pituitary level of FSHβ and LHβ transcripts, the gonadosomatic index, and the ovarian histology. Only the double treatment with GnRH agonist and domperidone could induce an increase in the expression of LHβ, in the gonadosomatic index, and a stimulation of ovarian vitellogenesis, indicating that removal of dopaminergic inhibition is required for the stimulatory action of GnRH and reactivation of ovarian function to occur. Using double immunofluorescent staining on pituitary, the authors showed in this species the innervation of LH cells by tyrosine-hydroxylase immunoreactive fibers. Finally, using in situ hybridization and immunofluorescence, the authors showed that the three subtypes of zebrafish DA D2-R (D2a, D2b, and D2c) were expressed in LH-producing cells, suggesting that they all may be involved in mediating this inhibition. These results show for the first time that, in zebrafish, DA has a direct and potent inhibitory action capable of opposing the stimulatory effect of GnRH in the neuroendocrine control of reproduction.

  20. SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice

    International Nuclear Information System (INIS)

    Jongen, Cynthia; Bruin, Kora de; Booij, Jan; Beekman, Freek

    2008-01-01

    The dopamine D 2 receptor (D2R) is important in the mediation of addiction. [ 123 I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [ 123 I]IBZM has not been used in mice SPECT studies. This study evaluates the use of [ 123 I]IBZM for measuring D2R availability in mice. Pharmacokinetics of [ 123 I]IBZM in mice were studied with pinhole SPECT imaging after intravenous (i.v.) injection of [ 123 I]IBZM (20, 40, and 70 MBq). In addition, the ability to measure the release of endogenous dopamine after amphetamine administration with [ 123 I]IBZM SPECT was investigated. Thirdly, i.v. administration, the standard route of administration, and intraperitoneal (i.p.) administration of [ 123 I]IBZM were compared. Specific binding of [ 123 I]IBZM within the mouse striatum could be clearly visualized with SPECT. Peak specific striatal binding ratios were reached around 90 min post-injection. After amphetamine administration, the specific binding ratios of [ 123 I]IBZM decreased significantly (-27.2%; n=6; p=0.046). Intravenous administration of [ 123 I]IBZM led to significantly higher specific binding than i.p. administration of the same dose. However, we found that i.v. administration of a dose of 70 MBq [ 123 I]IBZM might result in acute ethanol intoxication because ethanol is used as a preparative aid for the routine production of [ 123 I]IBZM. Imaging of D2R availability and endogenous dopamine release in mice is feasible using [ 123 I]IBZM single pinhole SPECT. Using commercially produced [ 123 I]IBZM, a dose of 40 MBq injected i.v. can be recommended. (orig.)

  1. Endothelin receptor a blockade is an ineffective treatment for adriamycin nephropathy.

    Directory of Open Access Journals (Sweden)

    Roderick J Tan

    Full Text Available Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA and endothelin receptor B (ETB. Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p. or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p., atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios. Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.

  2. N-fluoroalkylated and N-alkylated analogues of the dopaminergic D-2 receptor antagonist raclopride

    International Nuclear Information System (INIS)

    Lannoye, G.S.; Moerlein, S.M.; Parkinson, D.; Welch, M.J.

    1990-01-01

    A series of raclopride [(S)-2-[(3,5-dichloro-6-methoxy-2- hydroxybenzamido)methyl]-1-ethylpyrrolidine] derivatives bearing pyrrolidino N-fluoroalkyl or -alkyl substituents were synthesized and evaluated as potential dopaminergic receptor-based positron tomography radiopharmaceuticals. Radiosynthetic procedures for producing the corresponding N-[18F]fluoroalkylated analogues of raclopride from 18F- (beta+, t1/2 = 110 min) in high specific activity were also developed. In vitro binding assays using competitive displacement of [3H]spiperone from primate caudate tissue indicated that the N-alkylated analogues of raclopride had Ki values of 5-40 nM, whereas the corresponding values for analogous N-fluoroalkylated derivatives ranged from 90-160 nM. The relatively low D-2 binding affinity of these fluorinated salicylamides was corroborated by in vivo tissue biodistribution results in rodents. On the basis of structure-binding correlations, the impact of intramolecular hydrogen bonding, ligand basicity, and steric bulk on the affinity of the benzamides for D-2 receptor binding are discussed. Strategies are presented for the development of alternative fluorinated salicylamides that are both receptor active and metabolically stable

  3. Therapeutic window of dopamine D2/3 receptor occupancy to treat psychosis in Alzheimer's disease.

    Science.gov (United States)

    Reeves, Suzanne; McLachlan, Emma; Bertrand, Julie; Antonio, Fabrizia D; Brownings, Stuart; Nair, Akshay; Greaves, Suki; Smith, Alan; Taylor, David; Dunn, Joel; Marsden, Paul; Kessler, Robert; Howard, Robert

    2017-04-01

    See Caravaggio and Graff-Guerrero (doi:10.1093/awx023) for a scientific commentary on this article.Antipsychotic drugs, originally developed to treat schizophrenia, are used to treat psychosis, agitation and aggression in Alzheimer's disease. In the absence of dopamine D2/3 receptor occupancy data to inform antipsychotic prescribing for psychosis in Alzheimer's disease, the mechanisms underpinning antipsychotic efficacy and side effects are poorly understood. This study used a population approach to investigate the relationship between amisulpride blood concentration and central D2/3 occupancy in older people with Alzheimer's disease by combining: (i) pharmacokinetic data (280 venous samples) from a phase I single (50 mg) dose study in healthy older people (n = 20, 65-79 years); (ii) pharmacokinetic, 18F-fallypride D2/3 receptor imaging and clinical outcome data on patients with Alzheimer's disease who were prescribed amisulpride (25-75 mg daily) to treat psychosis as part of an open study (n = 28; 69-92 years; 41 blood samples, five pretreatment scans, 19 post-treatment scans); and (iii) 18F-fallypride imaging of an antipsychotic free Alzheimer's disease control group (n = 10, 78-92 years), to provide additional pretreatment data. Non-linear mixed effects modelling was used to describe pharmacokinetic-occupancy curves in caudate, putamen and thalamus. Model outputs were used to estimate threshold steady state blood concentration and occupancy required to elicit a clinically relevant response (>25% reduction in scores on delusions, hallucinations and agitation domains of the Neuropsychiatric Inventory) and extrapyramidal side effects (Simpson Angus Scale scores > 3). Average steady state blood levels were low (71 ± 30 ng/ml), and associated with high D2/3 occupancies (65 ± 8%, caudate; 67 ± 11%, thalamus; 52 ± 11%, putamen). Antipsychotic clinical response occurred at a threshold concentration of 20 ng/ml and D2/3 occupancies of 43% (caudate), 25% (putamen), 43

  4. The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum.

    Science.gov (United States)

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-08-15

    Dopamine D(2) receptor (D(2)DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D(2) receptors in this brain area are essentially obscure. We have studied the physiological responses of the D(2)DR stimulations in mice lacking the brain cytoplasmic RNA BC1, a small noncoding dendritically localized RNA that is supposed to play a role in mRNA translation. We show that the efficiency of D(2)-mediated transmission regulating striatal GABA synapses is under the control of BC1 RNA, through a negative influence on D(2) receptor protein level affecting the functional pool of receptors. Ablation of the BC1 gene did not result in widespread dysregulation of synaptic transmission, because the sensitivity of cannabinoid CB(1) receptors was intact in the striatum of BC1 knock-out (KO) mice despite D(2) and CB(1) receptors mediated similar electrophysiological actions. Interestingly, the fragile X mental retardation protein FMRP, one of the multiple BC1 partners, is not involved in the BC1 effects on the D(2)-mediated transmission. Because D(2)DR mRNA is apparently equally translated in the BC1-KO and wild-type mice, whereas the protein level is higher in BC1-KO mice, we suggest that BC1 RNA controls D(2)DR indirectly, probably regulating translation of molecules involved in D(2)DR turnover and/or stability.

  5. Effects of Blocking D2/D3 Receptors on Mismatch Negativity and P3a Amplitude of Initially Antipsychotic Naïve, First Episode Schizophrenia Patients

    DEFF Research Database (Denmark)

    Düring, Signe; Glenthøj, Birte Yding; Oranje, Bob

    2016-01-01

    BACKGROUND: Reduced mismatch negativity and P3a amplitude have been suggested to be among the core deficits in schizophrenia since the late 1970s. Blockade of dopamine D2 receptors play an important role in the treatment of schizophrenia. In addition, there is some evidence indicating that deficits...... reduced P3a amplitude compared with healthy controls, but no differences in mismatch negativity. Although the treatment with amisulpride significantly improved the patients' psychopathological (PANSS) and functional (GAF) scores, it did not influence their mismatch negativity amplitude, while also...... clinically and functionally, it had no effect on either mismatch negativity or P3a amplitude. This suggests that even though there is a dopaminergic involvement in global functioning and symptomatology in schizophrenia, there is no such involvement in these particular measures of early information processing....

  6. Occupancy of pramipexole (Sifrol at cerebral dopamine D2/3 receptors in Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Angela Deutschländer

    2016-01-01

    Full Text Available Whereas positron emission tomography (PET with the antagonist ligand [18F]fallypride reveals the composite of dopamine D2 and D3 receptors in brain, treatment of Parkinson's disease (PD patients with the D3-prefering agonist pramipexole should result in preferential occupancy in the nucleus accumbens, where the D3-subtype is most abundant. To test this prediction we obtained pairs of [18F]fallypride PET recordings in a group of nine PD patients, first in a condition of treatment as usual with pramipexole (ON-Sifrol; 3 × 0.7 mg p.d., and again at a later date, after withholding pramipexole 48–72 h (OFF-Sifrol; in that condition the serum pramipexole concentration had declined by 90% and prolactin levels had increased four-fold, in conjunction with a small but significant worsening of PD motor symptoms. Exploratory comparison with historical control material showed 14% higher dopamine D2/3 availability in the more-affected putamen of patients OFF medication. On-Sifrol there was significant (p ˂ 0.01 occupancy at [18F]fallypride binding sites in globus pallidus (8% thalamus (9% and substantia nigra (19%, as well as marginally significant occupancy in frontal and temporal cortex of patients. Contrary to expectation, comparison of ON- and OFF-Sifrol results did not reveal any discernible occupancy in nucleus accumbens, or elsewhere in the extended striatum; present methods should be sensitive to a 10% change in dopamine D2/3 receptor availability in striatum; the significant findings elsewhere in the basal ganglia and in cerebral cortex are consistent with a predominance of D3 receptors in those structures, especially in substantia nigra, and imply that therapeutic effects of pramipexole may be obtained at sites outside the extended striatum.

  7. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  8. Exploration of central dopamine D2 receptors by autoradiography, pathology and functional behaviour observation in rat model with experimental parkinsonism

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    1996-01-01

    The rat model with experimental parkinsonism mimic the course of human parkinsonism were made by cerebral-stereotaxic techniques. 125 I-IBZM was used to evaluate the D 2 receptors distribution by autoradiographic analysis of coronal brain section. In 6 parkinsonism model rats, on the lesioned side the striatum/frontal cortex ratio was 5.32 +- 0.37, it was significantly (P 125 I-IBZM as the ligand of D 2 receptor can well reflect the distribution and changes of D 2 receptors, and also as the theoretical basis for the clinical imaging diagnosis

  9. Linearized method: A new approach for kinetic analysis of central dopamine D2 receptor specific binding

    International Nuclear Information System (INIS)

    Watabe, Hiroshi; Hatazawa, Jun; Ishiwata, Kiichi; Ido, Tatsuo; Itoh, Masatoshi; Iwata, Ren; Nakamura, Takashi; Takahashi, Toshihiro; Hatano, Kentaro

    1995-01-01

    The authors proposed a new method (Linearized method) to analyze neuroleptic ligand-receptor specific binding in a human brain using positron emission tomography (PET). They derived the linear equation to solve four rate constants, k 3 , k 4 , k 5 , k 6 from PET data. This method does not demand radioactivity curve in plasma as an input function to brain, and can do fast calculations in order to determine rate constants. They also tested Nonlinearized method including nonlinear equations which is conventional analysis using plasma radioactivity corrected for ligand metabolites as an input function. The authors applied these methods to evaluate dopamine D 2 receptor specific binding of [ 11 C] YM-09151-2. The value of B max /K d = k 3 k 4 obtained by Linearized method was 5.72 ± 3.1 which was consistent with the value of 5.78 ± 3.4 obtained by Nonlinearized method

  10. Ventral striatal D2/3 receptor availability is associated with impulsive choice behavior as well aslimbic corticostriatal connectivity.

    Science.gov (United States)

    Barlow, Rebecca L; Gorges, Martin; Wearn, Alfie; Niessen, Heiko G; Kassubek, Jan; Dalley, Jeffrey W; Pekcec, Anton

    2018-03-15

    Low dopamine D2/3 receptor availability in the nucleus accumbens (NAcb) shell is associated with highly-impulsive behavior in rats, as measured by premature responses in a cued attentional task. However, it is unclear whether dopamine D2/3 receptor availability in the NAcb is equally linked to intolerance for delayed rewards, a related form of impulsivity. We investigated the relationship between D2/3 receptor availability in the NAcb and impulsivity in a delay-discounting task (DDT) where animals must choose between immediate small-magnitude rewards and delayed larger-magnitude rewards. Corticostriatal D2/3 receptor availability was measured in rats stratified for high-, and low-impulsivity using in-vivo [18F]fallypride positron emission tomography (PET) and ex-vivo [3H]raclopride autoradiography. Resting-state functional connectivity in limbic corticostriatal networks was also assessed using fMRI. DDT impulsivity was inversely related to D2/3 receptor availability in the NAcb core but not the dorsal striatum with higher D2/3 binding in the NAcb shell of high-impulsive rats compared with low-impulsive rats. D2/3 receptor availability was associated with stronger connectivity between the cingulate cortex and hippocampus of high versus low impulsive rats. We conclude that DDT impulsivity is associated with low D2/3 receptor binding in the NAcb core. Thus two related forms of waiting impulsivity - premature responding and delay intolerance in a delay-of-reward task - implicate an involvement of D2/3 receptor availability in the NAcb shell and core, respectively. This dissociation may be causal or consequential to enhanced functional connectivity of limbic brain circuitry and hold relevance for attention-deficit/hyperactivity disorder, drug addiction and other psychiatric disorders.

  11. Alteration of CNS dopamine transporter and D2 receptor in aged and scopolamine induced amnestic rats

    International Nuclear Information System (INIS)

    Lin Yansong; Ding Shiyu; Chen Zhengping; Zhou Xiang; Fang Ping; Wang Bocheng; Zhang Manda

    2002-01-01

    Objective: To evaluate the effect of aging and scopolamine (Sco) induced amnesia on central dopamine transporter (DAT), D 2 receptor in rats. Methods: The 3 month old amnestic rat models were made by peritoneal injection of the muscarinic receptor antagonist Sco (5 mg/kg) for 10 d. Passive avoidance task was carried out to evaluate the recent learning and memory of rats. The biodistribution of 125 I-2-β-carbomethoxy-3-β(4-iodophenyl)-tropan ( 125 I-β-CIT) and 125 I-s-3-iodo-N-(1-ethyl-2-pyrolidinyl) methyl-2-hydroxy-6-methoxybenzamide (IBZM) in the brain was used to evaluate the DAT and D 2 receptor. Results: During 10 d passive avoidance task testing, no difference was found for the first day among 3 month control, 26 month old and Sco group rats, on the 10th day the entry number of aged and Sco group rats was (1.33 +- 0.82)/10 min, (3.00 +- 0.63)/10 min, respectively, higher than that of the control rats (t was 5.682 and 6.372, respectively, P 125 I-β-CIT binding were found in the striatum (ST), hippocampus (HIP) and frontal cortex (FC) of the aged and Sco group rats (t was 4.151, 5.416, 4.871, 6.922, 7.331 and 3.990, respectively, P 125 I-IBZM binding in ST was found in both Sco and old rats (t was 6.021 and 3.227, respectively, P 2 receptor, was found in ST, HIP and cortex of the aged and Sco group suggesting a gradual degeneration of dopaminergic neurons in aged rats. The decreased levels of 125 I-β-CIT and 125 I-IBZM binding in cortex area might be responsible for the amnesia in he Sco group through the dopaminergic pathway of midbrain-frontal cortex

  12. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects.

    Science.gov (United States)

    Robertson, Chelsea L; Ishibashi, Kenji; Mandelkern, Mark A; Brown, Amira K; Ghahremani, Dara G; Sabb, Fred; Bilder, Robert; Cannon, Tyrone; Borg, Jacqueline; London, Edythe D

    2015-04-15

    Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. Copyright © 2015 the authors 0270-6474/15/355990-08$15.00/0.

  13. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats.

    Science.gov (United States)

    Johnson, Paul M; Kenny, Paul J

    2010-05-01

    We found that development of obesity was coupled with emergence of a progressively worsening deficit in neural reward responses. Similar changes in reward homeostasis induced by cocaine or heroin are considered to be crucial in triggering the transition from casual to compulsive drug-taking. Accordingly, we detected compulsive-like feeding behavior in obese but not lean rats, measured as palatable food consumption that was resistant to disruption by an aversive conditioned stimulus. Striatal dopamine D2 receptors (D2Rs) were downregulated in obese rats, as has been reported in humans addicted to drugs. Moreover, lentivirus-mediated knockdown of striatal D2Rs rapidly accelerated the development of addiction-like reward deficits and the onset of compulsive-like food seeking in rats with extended access to palatable high-fat food. These data demonstrate that overconsumption of palatable food triggers addiction-like neuroadaptive responses in brain reward circuits and drives the development of compulsive eating. Common hedonic mechanisms may therefore underlie obesity and drug addiction.

  14. Registration of dynamic dopamine D2receptor images using principal component analysis

    International Nuclear Information System (INIS)

    Acton, P.D.; Ell, P.J.; Pilowsky, L.S.; Brammer, M.J.; Suckling, J.

    1997-01-01

    This paper describes a novel technique for registering a dynamic sequence of single-photon emission tomography (SPET) dopamine D 2 receptor images, using principal component analysis (PCA). Conventional methods for registering images, such as count difference and correlation coefficient algorithms, fail to take into account the dynamic nature of the data, resulting in large systematic errors when registering time-varying images. However, by using principal component analysis to extract the temporal structure of the image sequence, misregistration can be quantified by examining the distribution of eigenvalues. The registration procedures were tested using a computer-generated dynamic phantom derived from a high-resolution magnetic resonance image of a realistic brain phantom. Each method was also applied to clinical SPET images of dopamine D 2 receptors, using the ligands iodine-123 iodobenzamide and iodine-123 epidepride, to investigate the influence of misregistration on kinetic modelling parameters and the binding potential. The PCA technique gave highly significant (P 123 I-epidepride scans. The PCA method produced data of much greater quality for subsequent kinetic modelling, with an improvement of nearly 50% in the χ 2 of the fit to the compartmental model, and provided superior quality registration of particularly difficult dynamic sequences. (orig.)

  15. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    Science.gov (United States)

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  16. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Science.gov (United States)

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Blockade of NMDA receptors blocks the acquisition of cocaine conditioned approach in rats.

    Science.gov (United States)

    Galaj, Ewa; Seepersad, Neal; Dakmak, Zena; Ranaldi, Robert

    2018-01-05

    Conditioned stimuli (CSs) exert motivational effects on both adaptive and pathological reward-related behaviors, including drug taking and seeking. We developed a paradigm that allows us to investigate the neuropharmacology by which previously neutral stimuli acquire the capacity to function as CSs and elicit (intravenous) cocaine conditioned approach and used this paradigm to test the role of NMDA receptor stimulation in the acquisition of cocaine conditioned approach. Rats were injected systemically with the NMDA receptor antagonist, MK-801, before the start of 4 consecutive conditioning sessions, each of which consisted of 20 randomly presented light/tone (CS) presentations paired with cocaine infusion contingent upon nose pokes. Rats later were subjected to a CS-only test. To test the role of NMDA receptor stimulation in the already established conditioned approach, rats were injected with MK-801 prior to the CS-only test that occurred after 18 CS-cocaine conditioning sessions. Blockade of NMDA receptors significantly impaired the acquisition of cocaine-conditioned approach as indicated by the emission of significantly fewer nose pokes and significantly longer latencies to nose poke during CS presentations. When MK-801 treatment was applied after the acquisition of conditioned approach responding it had no effect on these measures. These results suggest that NMDA receptor stimulation plays an important role in the acquisition of reward-related conditioned responses driven by intravenous cocaine-associated CSs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dual Mechanism of Interleukin-3 Receptor Blockade by an Anti-Cancer Antibody

    Directory of Open Access Journals (Sweden)

    Sophie E. Broughton

    2014-07-01

    Full Text Available Interleukin-3 (IL-3 is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD, a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF, IL-5, and IL-13 receptors, adopting unique “open” and classical “closed” conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling. Significantly, whereas “open-like” IL3Rα mutants can simultaneously bind IL-3 and CSL362, CSL362 still prevents the assembly of a higher-order IL-3 receptor-signaling complex. The discovery of open forms of cytokine receptors provides the framework for development of potent antibodies that can achieve a “double hit” cytokine receptor blockade.

  19. Imaging of dopamine transporters and D2 receptors in patients with Parkinson's disease and multiple system atrophy

    DEFF Research Database (Denmark)

    Knudsen, G M; Karlsborg, M; Thomsen, G

    2004-01-01

    asymmetry than MSA patients. Striatal D2 binding did not differ significantly between patients and healthy controls but the ratio between caudate DAT and D2 binding was significantly higher in patients with IPD than in those with MSA, even when disease severity was taken into account. CONCLUSION: Patients...... diagnostic information, since the ratio between DAT and D2 receptor binding is significantly higher in IPD than in MSA...

  20. A preliminary PET evaluation of the new dopamine D2 receptor agonist [11C]MNPA in cynomolgus monkey

    International Nuclear Information System (INIS)

    Finnema, Sjoerd J.; Seneca, Nicholas; Farde, Lars; Shchukin, Evgeny; Sovago, Judit; Gulyas, Balazs; Wikstroem, Hakan V.; Innis, Robert B.; Neumeyer, John L.; Halldin, Christer

    2005-01-01

    This study describes the preliminary positron emission tomography (PET) evaluation of a dopamine D 2 -like receptor agonist (R)-2- 11 CH 3 O-N-n-propylnorapomorphine ([ 11 C]MNPA), as a potential new radioligand for in vivo imaging of the high-affinity state of the dopamine D 2 receptor (D 2 R). MNPA is a selective D 2 -like receptor agonist with a high affinity (K i =0.17 nM). [ 11 C]MNPA was successfully synthesized by direct O-methylation of (R)-2-hydroxy-NPA using [ 11 C]methyl iodide and was evaluated in cynomolgus monkeys. This study included baseline PET experiments and a pretreatment study using unlabeled raclopride (1 mg/kg). High uptake of radioactivity was seen in regions known to contain high D 2 R, with a maximum striatum-to-cerebellum ratio of 2.23±0.21 at 78 min and a maximum thalamus-to-cerebellum ratio of 1.37±0.06 at 72 min. The pretreatment study demonstrated high specific binding to D 2 R by reducing the striatum-to-cerebellum ratio to 1.26 at 78 min. This preliminary study indicates that the dopamine agonist [ 11 C]MNPA has potential as an agonist radioligand for the D 2 -like receptor and has potential for examination of the high-affinity state of the D 2 R in human subjects and patients with neuropsychiatric disorders

  1. Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Schrøder, T.J.

    2014-01-01

    By introducing distal substituents on a tetracyclic scaffold resembling the ergoline structure, two series of analogues were achieved exhibiting subnanomolar receptor binding affinities for the dopamine D2 and serotonin 5-HT6 receptor subtype, respectively. While the 5-HT6 ligands were antagonists......, the D2 ligands displayed intrinsic activities ranging from full agonism to partial agonism with low intrinsic activity. These structures could potentially be interesting for treatment of neurological diseases such as schizophrenia, Parkinson’s disease, and cognitive deficits....

  2. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  3. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  4. Pituitary and brain D2 receptor density measured in vitro and in vivo in EEDQ treated male rats

    International Nuclear Information System (INIS)

    Ekman, A.; Eriksson, E.

    1991-01-01

    The effect of the alkylating compound N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) on dopamine D2 receptor density in rat pituitary and brain was measured using in vitro and in vivo radioligand binding techniques. In the in vitro radioligand binding experiments EEDQ was found to reduce the density (B max ) of [ 3 H]-spiperone binding sites in the striatum by 86% while in the pituitary the corresponding decrease was only 37%. The affinity (K D ) of the remaining striatal and pituitary D2 receptors was not different in EEDQ treated animals as compared to controls. When D2 receptor density was measured in vivo the effect of EEDQ was less pronounced. Thus, in rats given EEDQ the specific binding of either of the two D2 ligands [ 3 H]-raclopride or [ 3 H]-spiperone in striatum and in the limbic forebrain was reduced by 45-62%; moreover, no significant decrease in pituitary D2 receptor density was observed. The data are discussed in relation to the finding that the same dose of EEDQ that failed to influence pituitary D2 receptor density as measured in vivo effectively antagonizes the prolactin decreasing effect of the partial D2 agonist (-)-3-(3-hydroxyphenyl)-N-n-propyl-piperidine [(-)-3-PPP

  5. Working memory span capacity improved by a D2 but not D1 receptor family agonist.

    Science.gov (United States)

    Tarantino, Isadore S; Sharp, Richard F; Geyer, Mark A; Meves, Jessica M; Young, Jared W

    2011-06-01

    Patients with schizophrenia exhibit poor working memory (WM). Although several subcomponents of WM can be measured, evidence suggests the primary subcomponent affected in schizophrenia is span capacity (WMC). Indeed, the NIMH-funded MATRICS initiative recommended assaying the WMC when assessing the efficacy of a putative therapeutic for FDA approval. Although dopamine D1 receptor agonists improve delay-dependent memory in animals, evidence for improvements in WMC due to dopamine D1 receptor activation is limited. In contrast, the dopamine D2-family agonist bromocriptine improves WMC in humans. The radial arm maze (RAM) can be used to assess WMC, although complications due to ceiling effects or strategy confounds have limited its use. We describe a 12-arm RAM protocol designed to assess whether the dopamine D1-family agonist SKF 38393 (0, 1, 3, and 10 mg/kg) or bromocriptine (0, 1, 3, and 10 mg/kg) could improve WMC in C57BL/6N mice (n=12) in cross-over designs. WMC increased and strategy usage decreased with training. The dopamine D1 agonist SKF 38393 had no effect on WMC or long-term memory. Bromocriptine decreased WMC errors, without affecting long-term memory, consistent with human studies. These data confirm that WMC can be measured in mice and reveal drug effects that are consistent with reported effects in humans. Future research is warranted to identify the subtype of the D2-family of receptors responsible for the observed improvement in WMC. Finally, this RAM procedure may prove useful in developing animal models of deficient WMC to further assess putative treatments for the cognitive deficits in schizophrenia. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Alpha1-adrenergic receptor blockade in the VTA modulates fear memories and stress responses.

    Science.gov (United States)

    Solecki, Wojciech B; Szklarczyk, Klaudia; Klasa, Adam; Pradel, Kamil; Dobrzański, Grzegorz; Przewłocki, Ryszard

    2017-08-01

    Activity of the ventral tegmental area (VTA) and its terminals has been implicated in the Pavlovian associative learning of both stressful and rewarding stimuli. However, the role of the VTA noradrenergic signaling in fear responses remains unclear. We aimed to examine how alpha 1 -adrenergic receptor (α 1 -AR) signaling in the VTA affects conditioned fear. The role of α 1 -AR was assessed using the micro-infusions into the VTA of the selective antagonists (0.1-1µg/0.5µl prazosin and 1µg/0.5µl terazosin) in acquisition and expression of fear memory. In addition, we performed control experiments with α 1 -AR blockade in the mammillary bodies (MB) - a brain region with α 1 -AR expression adjacent to the VTA. Intra-VTA but not intra-MB α 1 -AR blockade prevented formation and retrieval of fear memories. Importantly, local administration of α 1 -AR antagonists did not influence footshock sensitivity, locomotion or anxiety-like behaviors. Similarly, α 1 -AR blockade in the VTA had no effects on negative affect measured as number of 22kHz ultrasonic vocalizations during fear conditioning training. We propose that noradrenergic signaling in the VTA via α 1 -AR regulates formation and retrieval of fear memories but not other behavioral responses to stressful environmental stimuli. It enhances the encoding of environmental stimuli by the VTA to form and retrieve conditioned fear memories and to predict future behavioral outcomes. Our results provide novel insight into the role of the VTA α 1 -AR signaling in the regulation of stress responsiveness and fear memory. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  7. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    Science.gov (United States)

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Grandy David K

    2004-04-01

    Full Text Available Abstract Background Dopamine modulation of neuronal signaling in the frontal cortex, midbrain, and striatum is essential for processing and integrating diverse external sensory stimuli and attaching salience to environmental cues that signal causal relationships, thereby guiding goal-directed, adaptable behaviors. At the cellular level, dopamine signaling is mediated through D1-like or D2-like receptors. Although a role for D1-like receptors in a variety of goal-directed behaviors has been identified, an explicit involvement of D2 receptors has not been clearly established. To determine whether dopamine D2 receptor-mediated signaling contributes to associative and reversal learning, we compared C57Bl/6J mice that completely lack functional dopamine D2 receptors to wild-type mice with respect to their ability to attach appropriate salience to external stimuli (stimulus discrimination and disengage from inappropriate behavioral strategies when reinforcement contingencies change (e.g. reversal learning. Results Mildly food-deprived female wild-type and dopamine D2 receptor deficient mice rapidly learned to retrieve and consume visible food reinforcers from a small plastic dish. Furthermore, both genotypes readily learned to dig through the same dish filled with sterile sand in order to locate a buried food pellet. However, the dopamine D2 receptor deficient mice required significantly more trials than wild-type mice to discriminate between two dishes, each filled with a different scented sand, and to associate one of the two odors with the presence of a reinforcer (food. In addition, the dopamine D2 receptor deficient mice repeatedly fail to alter their response patterns during reversal trials where the reinforcement rules were inverted. Conclusions Inbred C57Bl/6J mice that develop in the complete absence of functional dopamine D2 receptors are capable of olfaction but display an impaired ability to acquire odor-driven reinforcement contingencies

  9. 5HT2A receptor blockade in dorsomedial striatum reduces repetitive behaviors in BTBR mice.

    Science.gov (United States)

    Amodeo, D A; Rivera, E; Cook, E H; Sweeney, J A; Ragozzino, M E

    2017-03-01

    Restricted and repetitive behaviors are a defining feature of autism, which can be expressed as a cognitive flexibility deficit or stereotyped, motor behaviors. There is limited knowledge about the underlying neuropathophysiology contributing to these behaviors. Previous findings suggest that central 5HT 2A receptor activity is altered in autism, while recent work indicates that systemic 5HT 2A receptor antagonist treatment reduces repetitive behaviors in an idiopathic model of autism. 5HT 2A receptors are expressed in the orbitofrontal cortex and striatum. These two regions have been shown to be altered in autism. The present study investigated whether 5HT 2A receptor blockade in the dorsomedial striatum or orbitofrontal cortex in the BTBR mouse strain, an idiopathic model of autism, affects the phenotype related to restricted and repetitive behaviors. Microinfusion of the 5HT 2A receptor antagonist, M100907 into the dorsomedial striatum alleviated a reversal learning impairment and attenuated grooming behavior. M100907 infusion into the orbitofrontal cortex increased perseveration during reversal learning and potentiated grooming. These findings suggest that increased 5HT 2A receptor activity in the dorsomedial striatum may contribute to behavioral inflexibility and stereotyped behaviors in the BTBR mouse. 5HT 2A receptor signaling in the orbitofrontal cortex may be critical for inhibiting a previously learned response during reversal learning and expression of stereotyped behavior. The present results suggest which brain areas exhibit abnormalities underlying repetitive behaviors in an idiopathic mouse model of autism, as well as which brain areas systemic treatment with M100907 may principally act on in BTBR mice to attenuate repetitive behaviors. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  10. Blockade of alcohol's amnestic activity in humans by an alpha5 subtype benzodiazepine receptor inverse agonist.

    Science.gov (United States)

    Nutt, David J; Besson, Marie; Wilson, Susan J; Dawson, Gerard R; Lingford-Hughes, Anne R

    2007-12-01

    Alcohol produces many subjective and objective effects in man including pleasure, sedation, anxiolysis, plus impaired eye movements and memory. In human volunteers we have used a newly available GABA-A/benzodiazepine receptor inverse agonist that is selective for the alpha5 subtype (a5IA) to evaluate the role of this subtype in mediating these effects of alcohol on the brain. After pre-treatment with a5IA, we found almost complete blockade of the marked impairment caused by alcohol (mean breath concentration 150mg/100ml) of word list learning and partial but non-significant reversal of subjective sedation without effects on other measures such as intoxication, liking, and slowing of eye movements. This action was not due to alterations in alcohol kinetics and so provides the first proof of concept that selectively decreasing GABA-A receptor function at a specific receptor subtype can offset some actions of alcohol in humans. It also supports growing evidence for a key role of the alpha5 subtype in memory. Inverse agonists at other GABA-A receptor subtypes may prove able to reverse other actions of alcohol, and so offer a new approach to understanding the actions of alcohol in the human brain and in the treatment of alcohol related disorders in humans.

  11. Effects of Mineralocorticoid Receptors Blockade on FearMemory Reconsolidation in Rats

    Directory of Open Access Journals (Sweden)

    Abbas Ali Vafaei

    2011-08-01

    Full Text Available Reconsolidation memory is defined as a process in which the retrieval of a previously consolidated memory returns to a labile state which is then subject to stabilization. Previous studies have shown that mineralocorticoid receptors (MRs modulate distinct phases of learning and memory, which display a high concentration and distinct distribution in the hippocampus. Moreover, we found no studies that examined the role of hippocampal MRs in fear memory reconsolidation. Here, we investigated the effect of MRs blockade on fear memory reconsolidation in rats. Additionally, to test whether blockade of protein synthesis would disrupt fear memory reconsolidation in our paradigm, we tested the effect of cycloheximide, an inhibitor of protein synthesis after memory reactivation. Results indicated that systemic as well as intra-hippocampal administrations of the MR antagonist spironolactone immediately following memory reactivation did not affect on post-retrieval long-term memory. Cycloheximide given after the reactivation treatment produced a strong impairment that persisted over test sessions. These findings indicate that MRs are not required for reconsolidation of fear-based memory.

  12. Alpha 2-adrenergic receptor turnover in adipose tissue and kidney: irreversible blockade of alpha 2-adrenergic receptors by benextramine

    International Nuclear Information System (INIS)

    Taouis, M.; Berlan, M.; Lafontan, M.

    1987-01-01

    The recovery of post- and extrasynaptic alpha 2-adrenergic receptor-binding sites was studied in vivo in male golden hamsters after treatment with an irreversible alpha-adrenoceptor antagonist benextramine, a tetramine disulfide that possesses a high affinity for alpha 2-binding sites. The kidney alpha 2-adrenergic receptor number was measured with [ 3 H]yohimbine, whereas [ 3 H]clonidine was used for fat cell and brain membrane alpha 2-binding site identification. Benextramine treatment of fat cell, kidney, and brain membranes reduced or completely suppressed, in an irreversible manner, [ 3 H] clonidine and [ 3 H]yohimbine binding without modifying adenosine (A1-receptor) and beta-adrenergic receptor sites. This irreversible binding was also found 1 and 2 hr after intraperitoneal administration of benextramine to the hamsters. Although it bound irreversibly to peripheral and central alpha 2-adrenergic receptors on isolated membranes, benextramine was unable to cross the blood-brain barrier of the hamster at the concentrations used (10-20 mg/kg). After the irreversible blockade, alpha 2-binding sites reappeared in kidney and adipose tissue following a monoexponential time course. Recovery of binding sites was more rapid in kidney than in adipose tissue; the half-lives of the receptor were 31 and 46 hr, respectively in the tissues. The rates of receptor production were 1.5 and 1.8 fmol/mg of protein/hr in kidney and adipose tissue. Reappearance of alpha 2-binding sites was associated with a rapid recovery of function (antilipolytic potencies of alpha 2-agonists) in fat cells inasmuch as occupancy of 15% of [ 3 H]clonidine-binding sites was sufficient to promote 40% inhibition of lipolysis. Benextramine is a useful tool to estimate turnover of alpha 2-adrenergic receptors under normal and pathological situations

  13. Dopamine D2 Receptor-Mediated Regulation of Pancreatic β Cell Mass

    Directory of Open Access Journals (Sweden)

    Daisuke Sakano

    2016-07-01

    Full Text Available Understanding the molecular mechanisms that regulate β cell mass and proliferation is important for the treatment of diabetes. Here, we identified domperidone (DPD, a dopamine D2 receptor (DRD2 antagonist that enhances β cell mass. Over time, islet β cell loss occurs in dissociation cultures, and this was inhibited by DPD. DPD increased proliferation and decreased apoptosis of β cells through increasing intracellular cAMP. DPD prevented β cell dedifferentiation, which together highly contributed to the increased β cell mass. DRD2 knockdown phenocopied the effects of domperidone and increased the number of β cells. Drd2 overexpression sensitized the dopamine responsiveness of β cells and increased apoptosis. Further analysis revealed that the adenosine agonist 5′-N-ethylcarboxamidoadenosine, a previously identified promoter of β cell proliferation, acted with DPD to increase the number of β cells. In humans, dopamine also modulates β cell mass through DRD2 and exerts an inhibitory effect on adenosine signaling.

  14. Upregulation of Cannabinoid Type 1 Receptors in Dopamine D2 Receptor Knockout Mice Is Reversed by Chronic Forced Ethanol Consumption

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Gopez, V.; Delis, F.; Michaelides, M.; Grand, D.K.; Wang, G.-J.; Kunos, G.; Volkow, N.D.

    2011-01-01

    The anatomical proximity of the cannabinoid type 1 (CNR1/CB1R) and the dopamine D2 receptors (DRD2), their ability to form CB1R-DRD2 heteromers, their opposing roles in locomotion, and their involvement in ethanol's reinforcing and addictive properties prompted us to study the levels and distribution of CB1R after chronic ethanol intake, in the presence and absence of DRD2. We monitored the drinking patterns and locomotor activity of Drd2+/+ and Drd2-/- mice consuming either water or a 20% (v/v) ethanol solution (forced ethanol intake) for 6 months and used the selective CB1 receptor antagonist [{sup 3}H]SR141716A to quantify CB1R levels in different brain regions with in vitro receptor autoradiography. We found that the lack of DRD2 leads to a marked upregulation (approximately 2-fold increase) of CB1R in the cerebral cortex, the caudate-putamen, and the nucleus accumbens, which was reversed by chronic ethanol intake. The results suggest that DRD2-mediated dopaminergic neurotransmission and chronic ethanol intake exert an inhibitory effect on cannabinoid receptor expression in cortical and striatal regions implicated in the reinforcing and addictive properties of ethanol.

  15. Pharmacological differences between the D-2 autoreceptor and the D-1 dopamine receptor in rabbit retina

    International Nuclear Information System (INIS)

    Dubocovich, M.L.; Weiner, N.

    1985-01-01

    The effect of dopamine receptor agonists and antagonists was studied on the calcium-dependent release of [ 3 H]dopamine elicited by field stimulation at 3 Hz for a duration of 1 min (20 mA, 2 msec) from the rabbit retina in vitro and on adenylate cyclase activity in homogenates of rabbit retina. The relative order of potency of dopamine receptor agonists to inhibit the stimulation-evoked [ 3 H]dopamine release was pergolide greater than bromocriptine greater than apomorphine greater than LY 141865 greater than N,N-di-n-propyldopamine greater than or equal to dopamine. The relative order of potencies of dopamine receptor antagonists to increase [ 3 H]dopamine release was: S-sulpiride greater than or equal to domperidone greater than or equal to spiroperidol greater than metoclopramide greater than fluphenazine greater than or equal to R-sulpiride. alpha-Flupenthixol (0.01-1 microM) and (+)-butaclamol (0.01-1 microM) did not increase [ 3 H]dopamine overflow when added alone, but they antagonized the concentration-dependent inhibitory effect of apomorphine (0.1-10 microM). These results suggest that the dopamine inhibitory autoreceptor involved in the modulation of dopamine release from the rabbit retina possesses the pharmacological characteristics of a D-2 dopamine receptor. Maximal stimulation by 30 microM dopamine resulted in a 3-fold increase in adenylate cyclase activity with half-maximal stimulation occurring at a concentration of 2.46 microM. Apomorphine and pergolide elicited a partial stimulation of adenylate cyclase activity. However, at low concentrations both compounds were more potent than dopamine

  16. Decreased striatal D2 receptor density associated with severe behavioral abnormality in Alzheimer's disease

    International Nuclear Information System (INIS)

    Tanaka, Yasuhiro; Meguro, Kenichi; Yamaguchi, Satoshi

    2003-01-01

    Since patients manifesting behavioral and psychological symptoms of dementia (BPSD) are a burden for their families and caregivers, the underlying neurobiological mechanism of this condition should be clarified. Using positron emission tomography (PET), we previously reported that wandering behavior in dementia was associated with a disturbed dopaminergic neuron system. We herein investigated the relationship between the severity of BPSD and the striatal D 2 receptor density in Alzheimer's disease (AD). Ten patients with probable AD as per the National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and the AD and Related Disorders Association (ADRDA) criteria and five normal subjects were examined with PET. The tracer used was [ 11 C]raclopride (D 2 antagonist). The uptake of [ 11 C]raclopride was calculated as the estimation of binding potential (BP) of the striatum to the cerebellum. The AD patients were institutionalized in multiple nursing homes, and their BPSD were evaluated by the Behavioral Pathology in AD Frequency Weighted Severity Scale (BEHAVE-AD-FW) scale (Reisberg). There was a significant inverse Spearman's correlation between BEHAVE-AD-FW score and the BP, especially between the score of the behavioral domain and the BP values. The BP was found to be lower in severer BPSD patients. Patients with AD who manifest severe BPSD may have some dysfunction of striatal dopamine metabolism compared with those without BPSD. (author)

  17. [18F]fallypride characterization of striatal and extrastriatal D2/3 receptors in Parkinson's disease.

    Science.gov (United States)

    Stark, Adam J; Smith, Christopher T; Petersen, Kalen J; Trujillo, Paula; van Wouwe, Nelleke C; Donahue, Manus J; Kessler, Robert M; Deutch, Ariel Y; Zald, David H; Claassen, Daniel O

    2018-01-01

    Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D 2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D 2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D 2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [ 18 F]fallypride, a high affinity D 2/3 receptor ligand, to measure striatal and extrastriatal D 2/3 nondisplaceable binding potential (BP ND ). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BP ND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D 2/3 receptors, where reduced BP ND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D 2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D 2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.

  18. Normotensive sodium loading in normal man: Regulation of renin secretion during beta-receptor blockade

    DEFF Research Database (Denmark)

    Mølstrøm, Simon; Larsen, Nils Heden; Simonsen, Jane Angel

    2008-01-01

    and renal excretion during slow saline loading at constant plasma sodium con-centration (Na-loading: 12 micromol Na(+) kg(-1) min(-1) for 4 h). Normal subjects were studied on low-sodium intake with and without beta1-adrenergic blockade by metoprolol. Metoprolol per se reduced RAAS activity as expected. Na......Saline administration may change renin system (RAAS) activity and sodium excretion at constant mean arterial pressure (MAP). We hypothesized that such responses are elicited mainly by renal sympathetic nerve activity by beta1-receptors (beta1-RSNA), and tested the hypothesis by studying RAAS......-loading decreased plasma renin (PRC) by 1/3, AngII by 1/2, and aldosterone (pAldo) by 2/3, (all psodium excretion increased indistinguishably with and without metoprolol (16+/-2 to 71...

  19. Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy

    DEFF Research Database (Denmark)

    Andersen, S; Tarnow, L; Rossing, P

    2000-01-01

    BACKGROUND: Angiotensin I-converting enzyme (ACE) inhibitors reduce angiotensin II formation and induce bradykinin accumulation. Animal studies suggest that bradykinin may play a role for the effects of ACE inhibition on blood pressure and kidney function. Therefore, we compared the renal and hem...... inhibition is primarily caused by interference in the renin-angiotensin system. Our study suggest that losartan represents a valuable new drug in the treatment of hypertension and proteinuria in type 1 diabetic patients with diabetic nephropathy....... and hemodynamic effects of specific intervention in the renin-angiotensin system by blockade of the angiotensin II subtype-1 receptor to the effect of ACE inhibition. METHODS: A randomized, double-blind, cross-over trial was performed in 16 type 1 diabetic patients (10 men), age 42 +/- 2 years (mean +/- SEM...

  20. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Science.gov (United States)

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  1. Striatal Dopamine D2/D3 Receptor Availability Is Associated with Executive Function in Healthy Controls but Not Methamphetamine Users.

    Directory of Open Access Journals (Sweden)

    Michael E Ballard

    Full Text Available Dopamine D2/D3 receptor availability in the striatum has been linked with executive function in healthy individuals, and is below control levels among drug addicts, possibly contributing to diminished executive function in the latter group. This study tested for an association of striatal D2/D3 receptor availability with a measure of executive function among research participants who met DSM-IV criteria for methamphetamine dependence.Methamphetamine users and non-user controls (n = 18 per group completed the Wisconsin Card Sorting Test and positron emission tomography with [18F]fallypride.The methamphetamine users displayed significantly lower striatal D2/D3 receptor availability on average than controls after controlling for age and education (p = 0.008, but they did not register greater proportions of either perseverative or non-perseverative errors when controlling for education (both ps ≥ 0.622. The proportion of non-perseverative, but not perseverative, errors was negatively correlated with striatal D2/D3 receptor availability among controls (r = -0.588, p = 0.010, but not methamphetamine users (r = 0.281, p = 0.258, and the group-wise interaction was significant (p = 0.030.These results suggest that cognitive flexibility, as measured by perseverative errors on the Wisconsin Card Sorting Test, is not determined by signaling through striatal D2/D3 receptors in healthy controls, and that in stimulant abusers, who have lower D2/D3 receptor availability, compensation can effectively maintain other executive functions, which are associated with D2/D3 receptor signaling in controls.

  2. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    International Nuclear Information System (INIS)

    Lin, Xinchun; Bernloehr, Christian; Hildebrandt, Tobias; Stadler, Florian J.; Doods, Henri; Wu, Dongmei

    2016-01-01

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.

  3. Kinin B1 receptor blockade and ACE inhibition attenuate cardiac postinfarction remodeling and heart failure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xinchun [Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140 (United States); Bernloehr, Christian; Hildebrandt, Tobias [Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach (Germany); Stadler, Florian J., E-mail: fjstadler@szu.edu.cn [Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Shenzhen 518060 (China); Doods, Henri [Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach (Germany); Wu, Dongmei, E-mail: dongmeiwu@bellsouth.net [Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140 (United States); Department of BIN Convergence Technology, Chonbuk National University (Korea, Republic of)

    2016-08-15

    Introduction: The aim of the present study was to evaluate the effects of the novel kinin B1 receptor antagonist BI113823 on postinfarction cardiac remodeling and heart failure, and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin 1 converting enzyme (ACE) inhibitor in rats. Methods and results: Sprague Dawley rats were subjected to permanent occlusion of the left coronary artery. Cardiovascular function was determined at 6 weeks postinfarction. Treatment with either B1 receptor antagonist (BI113823) or an ACE inhibitor (lisinopril) alone or in combination significantly reduced the heart weight-to-body weight and lung weight-to-body weight ratios, and improved postinfarction cardiac function as evidenced by greater cardiac output, the maximum rate of left ventricular pressure rise (± dP/dtmax), left ventricle ejection fraction, fractional shorting, better wall motion, and attenuation of elevated left ventricular end diastolic pressure (LVEDP). Furthermore, all three treatment groups exhibited significant reduction in cardiac interstitial fibrosis, collagen deposition, CD68 positive macrophages, neutrophils, and proinflammatory cytokine production (TNF-α and IL-1β), compared to vehicle controls. Conclusion: The present study shows that treatment with the novel kinin B1 receptor antagonist, BI113823, reduces postinfarction cardiac remodeling and heart failure, and does not influence the cardiovascular effects of the ACE inhibitor. - Highlights: • We examined the role of kinin B1 receptors in the development of heart failure. • Kinin B1 receptor blockade attenuates post-infarction cardiac remodeling. • Kinin B1 receptor blockade improves dysfunction, and prevented heart failure. • B1 receptor blockade does not affect the cardio-protection of an ACE inhibitor.

  4. Muscle-type nicotinic receptor blockade by diethylamine, the hydrophilic moiety of lidocaine

    Directory of Open Access Journals (Sweden)

    Armando eAlberola-Die

    2016-02-01

    Full Text Available Lidocaine bears in its structure both an aromatic ring and a terminal amine, which can be protonated at physiological pH, linked by an amide group. Since lidocaine causes multiple inhibitory actions on nicotinic acetylcholine receptors (nAChRs, this work was aimed to determine the inhibitory effects of diethylamine (DEA, a small molecule resembling the hydrophilic moiety of lidocaine, on Torpedo marmorata nAChRs microtransplanted to Xenopus oocytes. Similarly to lidocaine, DEA reversibly blocked acetylcholine-elicited currents (IACh in a dose-dependent manner (IC50 close to 70 μM, but unlike lidocaine, DEA did not affect IACh desensitization. IACh inhibition by DEA was more pronounced at negative potentials, suggesting an open-channel blockade of nAChRs, although roughly 30% inhibition persisted at positive potentials, indicating additional binding sites outside the pore. DEA block of nAChRs in the resting state (closed channel was confirmed by the enhanced IACh inhibition when pre-applying DEA before its co-application with ACh, as compared with solely DEA and ACh co-application. Virtual docking assays provide a plausible explanation to the experimental observations in terms of the involvement of different sets of drug binding sites. So, at the nAChR transmembrane (TM domain, DEA and lidocaine shared binding sites within the channel pore, giving support to their open-channel blockade; besides, lidocaine, but not DEA, interacted with residues at cavities among the M1, M2, M3 and M4 segments of each subunit and also at intersubunit crevices. At the extracellular (EC domain, DEA and lidocaine binding sites were broadly distributed, which aids to explain the closed channel blockade observed. Interestingly, some DEA clusters were located at the α-γ interphase of the EC domain, in a cavity near the orthosteric binding site pocket; by contrast, lidocaine contacted with all α-subunit loops conforming the ACh binding site, both in α-γ and

  5. BLOCKADE OF PGE2, PGD2 RECEPTORS CONFERS PROTECTION AGAINST PREPATENT SCHISTOSOMIASIS MANSONI IN MICE.

    Science.gov (United States)

    Abdel-Ghany, Rasha; Rabia, Ibrahim; El-Ahwany, Eman; Saber, Sameh; Gamal, Rasha; Nagy, Faten; Mahmoud, Olaa; Hamad, Rabab Salem; Barakat, Walled

    2015-12-01

    Schistosomiasis is a chronic disease with considerable social impact. Despite the availability of affordable chemotherapy, drug treatment has not significantly reduced the overall number of disease cases. Among other mechanisms, the parasite produces PGE2 and PGD2 to evade host immune defenses. To investigate the role of PGE2 and PGD2 in schistosomiasis, we evaluated the effects of L-161,982, Ah6809 (PGE2 receptor antagonists alone of combined with each other) and MK-0524 (PGD2 receptor antagonist) during prepatent Schistosoma mansoni infection. Drugs were administered intraperitoneally an hour before and 24 hours after infection of C57BL/6 mice with 100 Schistosoma mansoni cercariae. L-161,982, Ah6809, their combination and MK-0524 caused partial protection against pre-patent S. mansoni infection which was mediated by biasing the immune response towards Th1 phenotype. These results showed that blockade of PGE2 and PGD2 receptors confers partial protection against pre-patent S. mansoni infection in mice and that they may be useful as adjunctive therapy to current anti-schistosomal drugs or vaccines.

  6. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.

    Science.gov (United States)

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-05-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.

  7. Normotensive sodium loading in conscious dogs: Regulation of renin secretion during beta receptor blockade

    DEFF Research Database (Denmark)

    Bie, Peter; Mølstrøm, Simon; Wamberg, Søren

    2009-01-01

    Cl (20 micromol/kg/min for 180 min, NaLoad) during regular or low-sodium diet (0.03 mmol/kg/d, LowNa) with and without metoprolol (2 mg/kg plus 0.9 mg/kg/h). Vasopressin V2 receptors were blocked by Otsuka compound OPC31260 to facilitate clearance measurements. Body fluid volume was maintained by servo-controlled...... that in this setting, renin secretion and renin-dependent sodium excretion are controlled by via the renal nerves and therefore eliminated or reduced by blocking the action of norepinephrine on the juxtaglomerular cells with the beta1-receptor antagonist metoprolol. This was tested in conscious dogs by infusion of Na...... irrespective of diet. In conclusion, PRC depended on dietary sodium and beta1-adrenergic control as expected; however, the acute sodium-driven decrease in PRC at constant MAP and GFR was unaffected by beta1-receptor blockade demonstrating that renin may be regulated without changes in MAP, GFR, or beta1...

  8. Nigrostriatal and Mesolimbic D2/3 Receptor Expression in Parkinson's Disease Patients with Compulsive Reward-Driven Behaviors.

    Science.gov (United States)

    Stark, Adam J; Smith, Christopher T; Lin, Ya-Chen; Petersen, Kalen J; Trujillo, Paula; van Wouwe, Nelleke C; Kang, Hakmook; Donahue, Manus J; Kessler, Robert M; Zald, David H; Claassen, Daniel O

    2018-03-28

    The nigrostriatal and mesocorticolimbic dopamine networks regulate reward-driven behavior. Regional alterations to mesolimbic dopamine D 2/3 receptor expression are described in drug-seeking and addiction disorders. Parkinson's disease (PD) patients are frequently prescribed D 2 -like dopamine agonist (DAgonist) therapy for motor symptoms, yet a proportion develop clinically significant behavioral addictions characterized by impulsive and compulsive behaviors (ICBs). Until now, changes in D 2/3 receptor binding in both striatal and extrastriatal regions have not been concurrently quantified in this population. We identified 35 human PD patients (both male and female) receiving DAgonist therapy, with ( n = 17) and without ( n = 18) ICBs, matched for age, disease duration, disease severity, and dose of dopamine therapy. In the off-dopamine state, all completed PET imaging with [ 18 F]fallypride, a high affinity D 2 -like receptor ligand that can measure striatal and extrastriatal D 2/3 nondisplaceable binding potential (BP ND ). Striatal differences between ICB+/ICB- patients localized to the ventral striatum and putamen, where ICB+ subjects had reduced BP ND In this group, self-reported severity of ICB symptoms positively correlated with midbrain D 2/3 receptor BP ND Group differences in regional D 2/3 BP ND relationships were also notable: ICB+ (but not ICB-) patients expressed positive correlations between midbrain and caudate, putamen, globus pallidus, and amygdala BP ND s. These findings support the hypothesis that compulsive behaviors in PD are associated with reduced ventral and dorsal striatal D 2/3 expression, similar to changes in comparable behavioral disorders. The data also suggest that relatively preserved ventral midbrain dopaminergic projections throughout nigrostriatal and mesolimbic networks are characteristic of ICB+ patients, and may account for differential DAgonist therapeutic response. SIGNIFICANCE STATEMENT The biologic determinants of

  9. Effect of scopolamine on central DAT and D2 receptor in morphine dependent rats

    International Nuclear Information System (INIS)

    Lin Yansong; Wang Shizhen; Ding Shiyu; Chen Zhenping; Zhou Xiang; Fang Ping; Wang Bocheng

    2004-01-01

    Objective: To investigate the effect of scopolamine (Sco) on central dopamine transporter (DAT) and D 2 receptor in morphine (Mor) dependent rats. Methods: Chronic Mor exposure was induced by repeated Mor (20 mg·kg -1 ·d -1 , i.p.) treatment for 8 d. Conditioned place preference test was used to evaluate the drug seeking behavior. Biodistribution of the imaging agents 125 I-2β-carbomethoxy-3β-(4-iodophenyl) tropane (β-CIT) and 125 I-3-iodo-2-hydroxy-6-methoxy-N-[(1-ethyl-2-pyrrolidinyl)methyl] benzamide (IBZM) were used to evaluate the central DAT and D 2 receptor during chronic Mor exposure. Results: For the Mor plus pretreating with Sco (Mor+Sco) rats, the time for the rats entering C2 from C1 was (1.72 ± 0.69) min in the first day, with little difference from the control and Mor group (P>0.05), and (1.12 ± 0.33) min for the 8th day, still longer than that of the Mor group (t=5.171, P 125 I-β- CIT %ID/g in striatum (ST) and nucleus accumbens (NAC) for Mor + Sco group were 3.307 ± 0.189 and 1.577 ± 0.401 respectively, higher than those of the control group (2.431 ± 0.104, 1.441 ± 0.043, t was 4.151 and 5.416 respectively, P 125 I-IBZM %ID/g in ST, NAC, hippocampus (HIP) and frontal cortex (FC) for Mor + Sco group were 0.589 ± 0.081, 0.683 ± 0.046, 0.175 ± 0.039 and 0.257 ± 0.034 lower than that of the control rats (0.735 ± 0.096, 0.709 ± 0.098, 0.281 ± 0.038, 0.289 ± 0.020, t was 7.841, 6.170, 5.446 and 4.337 respectively, P 2 receptor induced by Mor to some extent

  10. Exploring personality traits related to dopamine D2/3 receptor availability in striatal subregions of humans.

    Science.gov (United States)

    Caravaggio, Fernando; Fervaha, Gagan; Chung, Jun Ku; Gerretsen, Philip; Nakajima, Shinichiro; Plitman, Eric; Iwata, Yusuke; Wilson, Alan; Graff-Guerrero, Ariel

    2016-04-01

    While several studies have examined how particular personality traits are related to dopamine D2/3 receptor (D2/3R) availability in the striatum of humans, few studies have reported how multiple traits measured in the same persons are differentially related to D2/3R availability in different striatal sub-regions. We examined how personality traits measured with the Karolinska Scales of Personality are related to striatal D2/3R availability measured with [(11)C]-raclopride in 30 healthy humans. Based on previous the literature, five personality traits were hypothesized to be most likely related to D2/3R availability: impulsiveness, monotony avoidance, detachment, social desirability, and socialization. We found self-reported impulsiveness was negatively correlated with D2/3R availability in the ventral striatum and globus pallidus. After controlling for age and gender, monotony avoidance was also negatively correlated with D2/3R availability in the ventral striatum and globus pallidus. Socialization was positively correlated with D2/3R availability in the ventral striatum and putamen. After controlling for age and gender, the relationship between socialization and D2/3R availability in these regions survived correction for multiple comparisons (p-threshold=.003). Thus, within the same persons, different personality traits are differentially related to in vivo D2/3R availability in different striatal sub-regions. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  11. Striatal dopamine D2/3 receptor-mediated neurotransmission in major depression: Implications for anhedonia, anxiety and treatment response.

    Science.gov (United States)

    Peciña, Marta; Sikora, Magdalena; Avery, Erich T; Heffernan, Joseph; Peciña, Susana; Mickey, Brian J; Zubieta, Jon-Kar

    2017-10-01

    Dopamine (DA) neurotransmission within the brain's reward circuit has been implicated in the pathophysiology of depression and in both, cognitive and pharmacological mechanisms of treatment response. Still, a direct relationship between measures of DA neurotransmission and reward-related deficits in patients with depression has not been demonstrated. To gain insight into the symptom-specific alterations in the DA system in patients with depression, we used positron emission tomography (PET) and the D 2/3 receptor-selective radiotracer [ 11 C]raclopride in twenty-three non-smoking un-medicated Major Depressive Disorder (MDD) patients and sixteen healthy controls (HC). We investigated the relationship between D 2/3 receptor availability and baseline measures of depression severity, anxiety, anhedonia, and cognitive and pharmacological mechanisms of treatment response. We found that, compared to controls, patients with depression showed greater D 2/3 receptor availability in several striatal regions, including the bilateral ventral pallidum/nucleus accumbens (vPAL/NAc), and the right ventral caudate and putamen. In the depressed sample, D 2/3 receptor availability in the caudal portion of the ventral striatum (NAc/vPAL) correlated with higher anxiety symptoms, whereas D 2/3 receptor availability in the rostral area of the ventral striatum correlated negatively with the severity of motivational anhedonia. Finally, MDD non-remitters showed greater baseline anxiety, greater D 2/3 availability in the NAc/vPAL, and greater placebo-induced DA release in the bilateral NAc. Our results demonstrate abnormally high D 2/3 receptor availability in the ventral striatum of patients with MDD, which seem to be associated with comorbid anxiety symptoms and lack of response to antidepressants. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  12. PET evaluation of the relationship between D2 receptor binding and glucose metabolism in patients with parkinsonism

    International Nuclear Information System (INIS)

    Nakagawa, Makoto; Kuwabara, Yasuo; Taniwaki, Takayuki; Koga, Hirofumi; Kaneko, Koichiro; Hayashi, Kazutaka; Kira, Jun-ichi; Honda, Hiroshi; Sasaki, Masayuki

    2005-01-01

    The objective of this study was to clarify the relationship between D 2 receptor binding and the cerebral metabolic rate for glucose (CMRGlu) in patients with parkinsonism, we simultaneously measured both of these factors, and then compared the results. The subjects consisted of 24 patients: 9 with Parkinson's disease (PD), 3 with Juvenile Parkinson's disease (JPD), 9 with multiple system atrophy (MSA), and 3 with progressive supranuclear palsy (PSP). The striatal D 2 receptor binding was measured by the C-11 raclopride transient equilibrium method. CMRGlu was investigated by the F-18 fluorodeoxyglucose autoradiographic method. The D 2 receptor binding in both the caudate nucleus and putamen showed a positive correlation with the CMRGlu in the PD-JPD group, but the two parameters demonstrated no correlation in the MSA-PSP group. The left/right (L/R) ratio of D 2 receptor binding in the putamen showed a positive correlation with that of CMRGlu in the MSA-PSP group, while the two demonstrated no correlation in the PD-JPD group. Our PET study showed striatal D 2 receptor binding and the CMRGlu to be closely related in patients with parkinsonism, even though the results obtained using the L/R ratios tended to differ substantially from those obtained using absolute values. The reason for this difference is not clear, but this finding may reflect the pathophysiology of these disease entities. (author)

  13. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  14. Dopamine D2 receptor radiotracers [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Patrick N. [Institute of Medical Science, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada)], E-mail: patrick.mccormick@camhpet.ca; Kapur, Shitij [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); PET Center, Center for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada); Seeman, Philip [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); Wilson, Alan A. [Department of Psychiatry, University of Toronto, Toronto, Ontario, M5S 1A8 (Canada); PET Center, Center for Addiction and Mental Health, Toronto, Ontario, M5T 1R8 (Canada)

    2008-01-15

    Introduction: In vitro, the dopamine D2 receptor exists in two states, with high and low affinity for agonists. The high-affinity state is the physiologically active state thought to be involved in dopaminergic illnesses such as schizophrenia. The positron emission tomography radiotracer [{sup 11}C](+)-PHNO ([{sup 11}C](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4] oxazin-9-o l), being a D2 agonist, should selectively label the high-affinity state at tracer dose and therefore be more susceptible to competition by agonist as compared to the antagonist [{sup 3}H]raclopride, which binds to both affinity states. Methods: We tested this prediction using ex vivo dual-radiotracer experiments in conscious rats. D2 antagonists (haloperidol or clozapine), a partial agonist (aripiprazole), a full agonist [(-)-NPA] or the dopamine-releasing drug amphetamine (AMPH) were administered to rats prior to an intravenous coinjection of [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride. Rats were sacrificed 60 min after radiotracer injection. Striatum, cerebellum and plasma samples were counted for {sup 11}C and {sup 3}H. The specific binding ratio {l_brace}SBR, i.e., [%ID/g (striatum)-%ID/g (cerebellum)]/(%ID/g (cerebellum){r_brace} was used as the outcome measure. Results: In response to D2 antagonists, partial agonist or full agonist, [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride SBRs responded indistinguishably in terms of both ED{sub 50} and Hill slope (e.g., (-)-NPA ED{sub 50} values are 0.027 and 0.023 mg/kg for [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride, respectively). In response to AMPH challenge, [{sup 11}C](+)-PHNO and [{sup 3}H]raclopride SBRs were inhibited to the same degree. Conclusions: We have shown that the SBRs of [{sup 11}C](+)-PHNO- and [{sup 3}H]raclopride do not differ in their response to agonist challenge. These results do not support predictions of the in vivo binding behavior of a D2 agonist radiotracer and cast some doubt on the in vivo

  15. Dopamine D2 receptor radiotracers [11C](+)-PHNO and [3H]raclopride are indistinguishably inhibited by D2 agonists and antagonists ex vivo

    International Nuclear Information System (INIS)

    McCormick, Patrick N.; Kapur, Shitij; Seeman, Philip; Wilson, Alan A.

    2008-01-01

    Introduction: In vitro, the dopamine D2 receptor exists in two states, with high and low affinity for agonists. The high-affinity state is the physiologically active state thought to be involved in dopaminergic illnesses such as schizophrenia. The positron emission tomography radiotracer [ 11 C](+)-PHNO ([ 11 C](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4] oxazin-9-o l), being a D2 agonist, should selectively label the high-affinity state at tracer dose and therefore be more susceptible to competition by agonist as compared to the antagonist [ 3 H]raclopride, which binds to both affinity states. Methods: We tested this prediction using ex vivo dual-radiotracer experiments in conscious rats. D2 antagonists (haloperidol or clozapine), a partial agonist (aripiprazole), a full agonist [(-)-NPA] or the dopamine-releasing drug amphetamine (AMPH) were administered to rats prior to an intravenous coinjection of [ 11 C](+)-PHNO and [ 3 H]raclopride. Rats were sacrificed 60 min after radiotracer injection. Striatum, cerebellum and plasma samples were counted for 11 C and 3 H. The specific binding ratio {SBR, i.e., [%ID/g (striatum)-%ID/g (cerebellum)]/(%ID/g (cerebellum)} was used as the outcome measure. Results: In response to D2 antagonists, partial agonist or full agonist, [ 11 C](+)-PHNO and [ 3 H]raclopride SBRs responded indistinguishably in terms of both ED 50 and Hill slope (e.g., (-)-NPA ED 50 values are 0.027 and 0.023 mg/kg for [ 11 C](+)-PHNO and [ 3 H]raclopride, respectively). In response to AMPH challenge, [ 11 C](+)-PHNO and [ 3 H]raclopride SBRs were inhibited to the same degree. Conclusions: We have shown that the SBRs of [ 11 C](+)-PHNO- and [ 3 H]raclopride do not differ in their response to agonist challenge. These results do not support predictions of the in vivo binding behavior of a D2 agonist radiotracer and cast some doubt on the in vivo applicability of the D2 two-state model, as described by in vitro binding experiments

  16. D1- and D2-like dopamine receptors within the nucleus accumbens contribute to stress-induced analgesia in formalin-related pain behaviours in rats.

    Science.gov (United States)

    Faramarzi, G; Zendehdel, M; Haghparast, A

    2016-10-01

    Stressful experiences can produce analgesia, termed stress-induced analgesia (SIA). Meanwhile, it has been widely established that the mesolimbic dopamine pathway and nucleus accumbens (NAc) have a profound role in pain modulation. In this study, we examined the role of accumbal dopamine receptors in antinociception caused by forced swim stress (FSS) in order to understand more about the function of these receptors within the NAc in FSS-induced analgesia. Stereotaxic surgery was unilaterally performed on adult male Wistar rats weighing 230-250 g (some on the left and some on the right side of the midline). Two supergroups were microinjected into the NAc with a D1-like dopamine receptor antagonist, SCH-23390, at doses of 0.25, 1 and 4 μg/0.5 μl saline per rat or Sulpiride as a D2-like dopamine receptor antagonist at the same doses [0.25, 1 and 4 μg/0.5 μl dimethyl sulfoxide (DMSO) per rat]; while their controls just received intra-accumbal saline or DMSO at 0.5 μl, respectively. The formalin test was performed after rats were subjected to FSS (6 min, 25 ± 1 °C) to assess pain-related behaviours. The results demonstrated that intra-accumbal infusions of SCH-23390 and Sulpiride dose-dependently reduced FSS-induced antinociception in both phases of the formalin test. However, the percentage decrease in area under the curve (AUC) values calculated for treatment groups compared to formalin-control group was more significant in the late phase than the early phase. Our findings suggest that D1- and D2-like dopamine receptors in the NAc are involved in stress-induced antinociceptive behaviours in the formalin test as an animal model of persistent inflammatory pain. Forced swim stress (FSS) induces the antinociception in both phases of formalin test. Blockade of accumbal dopamine receptors attenuate the antinociception induced by FSS. Stress-induced analgesia is dose-dependently reduced by dopamine receptor antagonists in both phases, although it is more

  17. EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2

    DEFF Research Database (Denmark)

    Van Laere, Koen; Varrone, Andrea; Booij, Jan

    2010-01-01

    receptor SPECT or PET studies, and to achieve a high quality standard of dopamine D2 receptor imaging, which will increase the impact of this technique in neurological practice.The present document is an update of the first guidelines for SPECT using D2 receptor ligands labelled with (123)I [1......The guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The aims of the guidelines are to assist nuclear medicine practitioners in making recommendations, performing, interpreting and reporting the results of clinical dopamine D2......] and was guided by the views of the Society of Nuclear Medicine Brain Imaging Council [2], and the individual experience of experts in European countries. The guidelines intend to present information specifically adapted to European practice. The information provided should be taken in the context of local...

  18. Characterisation of the interaction of the C-terminus of the dopamine D2 receptor with neuronal calcium sensor-1.

    Directory of Open Access Journals (Sweden)

    Lu-Yun Lian

    Full Text Available NCS-1 is a member of the neuronal calcium sensor (NCS family of EF-hand Ca(2+ binding proteins which has been implicated in several physiological functions including regulation of neurotransmitter release, membrane traffic, voltage gated Ca(2+ channels, neuronal development, synaptic plasticity, and learning. NCS-1 binds to the dopamine D2 receptor, potentially affecting its internalisation and controlling dopamine D2 receptor surface expression. The D2 receptor binds NCS-1 via a short 16-residue cytoplasmic C-terminal tail. We have used NMR and fluorescence spectroscopy to characterise the interactions between the NCS-1/Ca(2+ and D2 peptide. The data show that NCS-1 binds D2 peptide with a K(d of ∼14.3 µM and stoichiometry of peptide binding to NCS-1 of 2:1. NMR chemical shift mapping confirms that D2 peptide binds to the large, solvent-exposed hydrophobic groove, on one face of the NCS-1 molecule, with residues affected by the presence of the peptide spanning both the N and C-terminal portions of the protein. The NMR and mutagenesis data further show that movement of the C-terminal helix 11 of NCS-1 to fully expose the hydrophobic groove is important for D2 peptide binding. Molecular docking using restraints derived from the NMR chemical shift data, together with the experimentally-derived stoichiometry, produced a model of the complex between NCS-1 and the dopamine receptor, in which two molecules of the receptor are able to simultaneously bind to the NCS-1 monomer.

  19. The effect of opioid receptor blockade on the neural processing of thermal stimuli.

    Directory of Open Access Journals (Sweden)

    Eszter D Schoell

    Full Text Available The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone.

  20. Role of dopamine receptor and muscarinic acetylcholine receptor blockade in the antiapomorphine action of neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    Zharkovskii, A.M.; Langel, Yu.L.; Chereshka, K.S.; Zharkovskaya, T.A.

    1987-08-01

    The authors analyze the role of dopamine and muscarinic acetylcholine receptor blocking components in the antistereotypic action of neuroleptics with different chemical structure. To determine dopamine-blocking activity in vitro, binding of /sup 3/H-spiperone with membranes of the rat striatum was measured. To study the blocking action of the substances on muscarinic acetylcholine receptors, binding of /sup 3/H-quinuclidinyl benzylate with brain membranes was chosen.

  1. Dopamine D2 receptors in the cerebral cortex: Distribution and pharmacological characterization with [3H]raclopride

    International Nuclear Information System (INIS)

    Lidow, M.S.; Goldman-Rakic, P.S.; Rakic, P.; Innis, R.B.

    1989-01-01

    An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D 1 receptors in the cortex have been well documented. Comparable information on cortical D 2 sites is lacking. The authors report here the results of binding studied in the cortex and neostriatum of rat and monkey using the D 2 selective antagonist [ 3 H]raclopride. In both structures [ 3 H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D 2 receptors. D 2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study established the presence and widespread distribution of dopamine D 2 receptors in the cortex

  2. Association of the dopamine D2 receptor rs1800497 polymorphism and eating behavior in Chilean children.

    Science.gov (United States)

    Obregón, Ana M; Valladares, Macarena; Goldfield, Gary

    2017-03-01

    Studies have established a strong genetic component in eating behavior. The TaqI A1 polymorphism (rs1800497) has previously been associated with obesity and eating behavior. Additionally, this polymorphism has been associated with diminished dopamine D2 receptor (DRD2) density, higher body mass, and food reinforcement. The aim of this study was to evaluate the association between the DRD2 rs1800497 polymorphism and eating behavior in Chilean children. This was a cross-sectional study in which we selected 258 children (44% girls, 56% boys; ages 8-14 y) with a wide variation in body mass index. Anthropometric measurements were performed by standard procedures. Eating behavior was assessed using the Eating in Absence of Hunger Questionnaire (EAHQ), Child Eating Behavior Questionnaire, and the Food Reinforcement Value Questionnaire. Genotype of the rs1800497 was determined by polymerase chain reaction-restriction fragment length polymorphism. Association of the TaqI A1 variant (T allele) with eating behavior was assessed using nonparametric tests. Compared with normal-weight children, the obese group demonstrated higher scores on the External Eating and Fatigue/Boredom subscales of the EAHQ. Higher scores were assessed in Food Responsiveness, Emotional Overeating, Enjoyment to Food and Desire to Drink subscales (P Food subscale in boys. The TaqI A1 polymorphism may be a risk factor for eating behavior traits that may predispose children to greater energy intake and obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Striatal dopamine D2/3 receptor regulation by stress inoculation in squirrel monkeys

    Directory of Open Access Journals (Sweden)

    Alex G. Lee

    2016-06-01

    Full Text Available Intermittent mildly stressful situations provide opportunities to learn, practice, and improve coping in a process called stress inoculation. Stress inoculation also enhances cognitive control and response inhibition of impulsive motivated behavior. Cognitive control and motivation have been linked to striatal dopamine D2 and/or D3 receptors (DRD2/3 in rodents, monkeys, and humans. Here, we study squirrel monkeys randomized early in life to stress inoculation with or without maternal companionship and a no-stress control treatment condition. Striatal DRD2/3 availability in adulthood was measured in vivo by [11C]raclopride binding using positron emission tomography (PET. DRD2/3 availability was greater in caudate and putamen compared to ventral striatum as reported in PET studies of humans and other non-human primates. DRD2/3 availability in ventral striatum was also consistently greater in stress inoculated squirrel monkeys compared to no-stress controls. Squirrel monkeys exposed to stress inoculation in the presence of their mother did not differ from squirrel monkeys exposed to stress inoculation without maternal companionship. Similar effects in different social contexts extend the generality of our findings and together suggest that stress inoculation increases striatal DRD2/3 availability as a correlate of cognitive control in squirrel monkeys.

  4. D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride

    International Nuclear Information System (INIS)

    Farde, L.; Wiesel, F.A.; Stone-Elander, S.; Halldin, C.; Nordstroem, A.L.H.; Hall, H.; Sedvall, G.

    1990-01-01

    Several groups have reported increased densities of D2 dopamine receptors in the basal ganglia of schizophrenic brains postmortem. The significance of this finding has been questioned, since an upregulation of receptor number may be a neuronal response to neuroleptic drug treatment. We have used positron emission tomography and [ 11 C]raclopride to examine central D2 dopamine receptor binding in 20 healthy subjects and 18 newly admitted, young, neuroleptic-naive patients with schizophrenia. An in vivo saturation procedure was applied for quantitative determination of D2 dopamine receptor density (Bmax) and affinity (Kd). When the two groups were compared, no significant difference in Bmax or Kd values was found in the putamen or the caudate nucleus. The hypothesis of generally elevated central D2 dopamine receptor densities in schizophrenia was thus not supported by the present findings. In the patients but not in the healthy controls, significantly higher densities were found in the left than in the right putamen but not in the caudate nucleus

  5. D-2 dopamine receptor activation reduces free [3H]arachidonate release induced by hypophysiotropic peptides in anterior pituitary cells

    International Nuclear Information System (INIS)

    Canonico, P.L.

    1989-01-01

    Dopamine reduces the stimulation of intracellular [ 3 H]arachidonate release produced by the two PRL-stimulating peptides angiotensin-II and TRH. This effect is concentration dependent and is mediated by stimulation of D-2 dopamine receptors. D-2 receptor agonists (bromocriptine, dihydroergocryptine, and dihydroergocristine) inhibit the release of fatty acid induced by angiotensin-II with a potency that parallels their ability to inhibit PRL release in vitro. Conversely, the selective D-2 receptor antagonist L-sulpiride completely prevents dopamine's effect, whereas SCH 23390 (a D-1 receptor antagonist) is ineffective. The inhibitory action of dopamine does not seem to be consequent to an action on the adenylate cyclase-cAMP system, as 8-bromo-cAMP (1 mM) does not affect either basal or dopamine-inhibited [ 3 H]arachidonate release. However, a 24-h pertussis toxin pretreatment significantly reduces the action of dopamine on fatty acid release. Collectively, these results suggest that D-2 dopamine receptor-mediated inhibition of intracellular [ 3 H]arachidonate release requires the action of a GTP-binding protein, but is not a consequence of an inhibitory action on cAMP levels

  6. No evidence for association of dopamine D2 receptor variant (Ser311/Cys311) with major psychosis

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Tsukasa; Macciardi, F.M.; Badri, F. [Clarke Institute of Psychiatry, Ontario (Canada)] [and others

    1996-07-26

    We investigated a variant of the dopamine D2 receptor gene (Ser311/Cys311 substitution) in Caucasian patients with schizophrenia (n = 273), delusional disorder (n = 62), bipolar I affective disorder (n = 63), and controls (n = 255). No evidence for association between the receptor variant and any of the diseases was found, even when patients with younger age-of-onset (<25 years) were compared with controls. Futhermore, in a subgroup of schizophrenia patients whom we assessed for negative symptoms, those with the Cys allele did not differ from the remainder of the group. Also, the bipolar affective disorder patients with psychotic features did not show evidence for association with the receptor variant. Thus, our results do not provide evidence for an association between this D2 receptor variant and schizophrenia, or delusional disorder, or bipolar affective disorder. 11 refs., 1 tab.

  7. Effect of Exercise Training on Striatal Dopamine D2/D3 Receptors in Methamphetamine Users during Behavioral Treatment.

    Science.gov (United States)

    Robertson, Chelsea L; Ishibashi, Kenji; Chudzynski, Joy; Mooney, Larissa J; Rawson, Richard A; Dolezal, Brett A; Cooper, Christopher B; Brown, Amira K; Mandelkern, Mark A; London, Edythe D

    2016-05-01

    Methamphetamine use disorder is associated with striatal dopaminergic deficits that have been linked to poor treatment outcomes, identifying these deficits as an important therapeutic target. Exercise attenuates methamphetamine-induced neurochemical damage in the rat brain, and a preliminary observation suggests that exercise increases striatal D2/D3 receptor availability (measured as nondisplaceable binding potential (BPND)) in patients with Parkinson's disease. The goal of this study was to evaluate whether adding an exercise training program to an inpatient behavioral intervention for methamphetamine use disorder reverses deficits in striatal D2/D3 receptors. Participants were adult men and women who met DSM-IV criteria for methamphetamine dependence and were enrolled in a residential facility, where they maintained abstinence from illicit drugs of abuse and received behavioral therapy for their addiction. They were randomized to a group that received 1 h supervised exercise training (n=10) or one that received equal-time health education training (n=9), 3 days/week for 8 weeks. They came to an academic research center for positron emission tomography (PET) using [(18)F]fallypride to determine the effects of the 8-week interventions on striatal D2/D3 receptor BPND. At baseline, striatal D2/D3 BPND did not differ between groups. However, after 8 weeks, participants in the exercise group displayed a significant increase in striatal D2/D3 BPND, whereas those in the education group did not. There were no changes in D2/D3 BPND in extrastriatal regions in either group. These findings suggest that structured exercise training can ameliorate striatal D2/D3 receptor deficits in methamphetamine users, and warrants further evaluation as an adjunctive treatment for stimulant dependence.

  8. Reversal of propranolol blockade of adrenergic receptors and related toxicity with drugs that increase cyclic AMP.

    Science.gov (United States)

    Whitehurst, V E; Vick, J A; Alleva, F R; Zhang, J; Joseph, X; Balazs, T

    1999-09-01

    An overdose of propranolol, a widely used nonselective beta-adrenergic receptor blocking agent, can result in hypotension and bradycardia leading to irreversible shock and death. In addition, the blockade of adrenergic receptors can lead to alterations in neurotransmitter receptors resulting in the interruption of the activity of other second messengers and the ultimate cellular responses. In the present experiment, three agents, aminophylline, amrinone, and forskolin were tested in an attempt to reverse the potential lethal effects of a propranolol overdose in dogs. Twenty-two anesthetized beagle dogs were given a 10-min infusion of propranolol at a dose of 1 mg/kg/min. Six of the dogs, treated only with intravenous saline, served as controls. Within 15-30 min all six control dogs exhibited profound hypotension and severe bradycardia that led to cardiogenic shock and death. Seven dogs were treated with intravenous aminophylline 20 mg/kg 5 min after the end of the propranolol infusion. Within 10-15 min heart rate and systemic arterial blood pressure returned to near control levels, and all seven dogs survived. Intravenous amrinone (2-3 mg/kg) given to five dogs, and forskolin (1-2 mg/kg) given to four dogs, also increased heart rate and systemic arterial blood pressure but the recovery of these parameters was appreciably slower than that seen with aminophylline. All of these animals also survived with no apparent adverse effects. Histopathologic evaluation of the hearts of the dogs treated with aminophylline showed less damage (vacuolization, inflammation, hemorrhage) than the hearts from animals given propranolol alone. Results of this study showed that these three drugs, all of which increase cyclic AMP, are capable of reversing the otherwise lethal effects of a propranolol overdose in dogs.

  9. Blockade of cannabinoid CB receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ramos, J.A.; Fernández-Ruiz, J.

    2002-01-01

    -induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB receptor function. In contrast, blockade of CB, but not CB, receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest...... receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB/CB receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB and SR144528 for CB) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA...... a critical involvement of CB receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo....

  10. Low Dopamine D2 Receptor Increases Vulnerability to Obesity Via Reduced Physical Activity, Not Increased Appetitive Motivation.

    Science.gov (United States)

    Beeler, Jeff A; Faust, Rudolf P; Turkson, Susie; Ye, Honggang; Zhuang, Xiaoxi

    2016-06-01

    The dopamine D2 receptor (D2R) has received much attention in obesity studies. Data indicate that D2R is reduced in obesity and that the TaqA1 D2R variant may be more prevalent among obese persons. It is often suggested that reduced D2R generates a reward deficiency and altered appetitive motivation that induces compulsive eating and contributes to obesity. Although dopamine is known to regulate physical activity, it is often neglected in these studies, leaving open the question of whether reduced D2R contributes to obesity through alterations in energy expenditure and activity. We generated a D2R knockdown (KD) mouse line and assessed both energy expenditure and appetitive motivation under conditions of diet-induced obesity. The KD mice did not gain more weight or show increased appetitive motivation compared with wild-type mice in a standard environment; however, in an enriched environment with voluntary exercise opportunities, KD mice exhibited dramatically lower activity and became more obese than wild-type mice, obtaining no protective benefit from exercise opportunities. These data suggest the primary contribution of altered D2R signaling to obesity lies in altered energy expenditure rather than the induction of compulsive overeating. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. LOW DOPAMINE D2 RECEPTOR INCREASES VULNERABILITY TO OBESITY VIA REDUCED PHYSICAL ACTIVITY NOT INCREASED APPETITIVE MOTIVATION

    Science.gov (United States)

    Beeler, Jeff A.; Faust, Rudolf P.; Turkson, Susie; Ye, Honggang; Zhuang, Xiaoxi

    2015-01-01

    Background The dopamine D2 receptor (D2R) has received much attention in obesity studies. Data indicate that D2R is reduced in obesity and that the TaqA1 D2R variant may be more prevalent among obese persons. It is often suggested that reduced D2R generates a “reward deficiency” and altered appetitive motivation that induces compulsive eating and contributes to obesity. Although dopamine is known to regulate physical activity, it is often neglected in these studies, leaving open the question of whether reduced D2R contributes to obesity through alterations in energy expenditure and activity. Methods We generated a D2R knockdown (KD) mouse line and assessed both energy expenditure and appetitive motivation under conditions of diet-induced obesity. Results The KD mice did not gain more weight or show increased appetitive motivation compared to wild-type (WT) in a standard environment; however, in an enriched environment with voluntary exercise opportunities, KD mice exhibited dramatically lower activity and became more obese than WT, obtaining no protective benefit from exercise opportunities. Conclusions These data suggest the primary contribution of altered D2R signaling to obesity lies in altered energy expenditure rather than the induction of compulsive overeating. PMID:26281715

  12. Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine.

    Directory of Open Access Journals (Sweden)

    Dawn Thompson

    Full Text Available BACKGROUND: Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R availability in the brain. Such a decrease consequently alters the ratio of D1R:D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified. METHODS AND FINDINGS: ETHICS STATEMENT: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT and G protein coupled receptor associated sorting protein-1 (GASP-1 knock out (KO mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine. CONCLUSIONS: Together, our data suggests that changes in the ratio of the D1:D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.

  13. Infralimbic dopamine D2 receptors mediate glucocorticoid-induced facilitation of auditory fear memory extinction in rats.

    Science.gov (United States)

    Dadkhah, Masoumeh; Abdullahi, Payman Raise; Rashidy-Pour, Ali; Sameni, Hamid Reza; Vafaei, Abbas Ali

    2018-03-01

    The infralimbic (IL) cortex of the medial prefrontal cortex plays an important role in the extinction of fear memory. Also, it has been showed that both brain glucocorticoid and dopamine receptors are involved in many processes such as fear extinction that drive learning and memory; however, the interaction of these receptors in the IL cortex remains unclear. We examined a putative interaction between the effects of glucocorticoid and dopamine receptors stimulation in the IL cortex on fear memory extinction in an auditory fear conditioning paradigm in male rats. Corticosterone (the endogenous glucocorticoid receptor ligand), or RU38486 (the synthetic glucocorticoid receptor antagonist) microinfusion into the IL cortex 10 min before test 1 attenuated auditory fear expression at tests 1-3, suggesting as an enhancement of fear extinction. The effect of corticosterone, but not RU38486 was counteracted by the dopamine D2 receptor antagonist sulpiride pre-treatment administered into the IL (at a dose that failed to alter freezing behavior on its own). In contrast, intra-IL infusion of the dopamine D1 receptor antagonist SCH23390 pre-treatment failed to alter freezing behavior. These findings provide evidence for the involvement of the IL cortex D2 receptors in CORT-induced facilitation of fear memory extinction. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  15. A case of Cotard syndrome: (123)I-IBZM SPECT imaging of striatal D(2) receptor binding.

    Science.gov (United States)

    De Risio, Sergio; De Rossi, Giuseppe; Sarchiapone, Marco; Camardese, Giovanni; Carli, Vladimir; Cuomo, Chiara; Satta, Maria Antonietta; Di Giuda, Daniela

    2004-01-15

    A case of 'dèlire de nègation' that suddenly appeared in a 43-year-old male is presented. No alteration in regional cerebral blood, as measured by (99m)Tc-HMPAO-SPECT, was found, but (123)I-IBZM-SPECT analysis showed reduced striatal D(2) receptor binding that further decreased after treatment.

  16. Modification of dopamine D2 receptor activity by pergolide in Parkinson's disease : An in vivo study by PET

    NARCIS (Netherlands)

    Linazasoro, G; Obeso, JA; Gomez, JC; Martinez, M; Antonini, A; Leenders, KL

    1999-01-01

    It is well known that chronic administration of pergolide and other dopamine agonists may induce a downregulation of dopamine D2 receptors in the rat model of Parkinson's disease (PD). To our knowledge, this effect has not been demonstrated in vivo in patients with PD. At present, the status of

  17. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    Science.gov (United States)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  18. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    Science.gov (United States)

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor

    Science.gov (United States)

    Stamateris, Rachel E.; Sharma, Rohit B.; Kong, Yahui; Ebrahimpour, Pantea; Panday, Deepika; Ranganath, Pavana; Zou, Baobo; Levitt, Helena; Parambil, Nisha Abraham; O’Donnell, Christopher P.; García-Ocaña, Adolfo

    2016-01-01

    An important goal in diabetes research is to understand the processes that trigger endogenous β-cell proliferation. Hyperglycemia induces β-cell replication, but the mechanism remains debated. A prime candidate is insulin, which acts locally through the insulin receptor. Having previously developed an in vivo mouse hyperglycemia model, we tested whether glucose induces β-cell proliferation through insulin signaling. By using mice lacking insulin signaling intermediate insulin receptor substrate 2 (IRS2), we confirmed that hyperglycemia-induced β-cell proliferation requires IRS2 both in vivo and ex vivo. Of note, insulin receptor activation was not required for glucose-induced proliferation, and insulin itself was not sufficient to drive replication. Glucose and insulin caused similar acute signaling in mouse islets, but chronic signaling differed markedly, with mammalian target of rapamycin (MTOR) and extracellular signal–related kinase (ERK) activation by glucose and AKT activation by insulin. MTOR but not ERK activation was required for glucose-induced proliferation. Cyclin D2 was necessary for glucose-induced β-cell proliferation. Cyclin D2 expression was reduced when either IRS2 or MTOR signaling was lost, and restoring cyclin D2 expression rescued the proliferation defect. Human islets shared many of these regulatory pathways. Taken together, these results support a model in which IRS2, MTOR, and cyclin D2, but not the insulin receptor, mediate glucose-induced proliferation. PMID:26740601

  20. The dopamine D2 receptor gene, perceived parental support, and adolescent loneliness : longitudinal evidence for gene-environment interactions

    NARCIS (Netherlands)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods:

  1. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure

    Science.gov (United States)

    Konkalmatt, Prasad R.; Asico, Laureano D.; Zhang, Yanrong; Yang, Yu; Drachenberg, Cinthia; Zheng, Xiaoxu; Han, Fei; Jose, Pedro A.; Armando, Ines

    2016-01-01

    Dopamine D2 receptor (DRD2) deficiency increases renal inflammation and blood pressure in mice. We show here that long-term renal-selective silencing of Drd2 using siRNA increases renal expression of proinflammatory and profibrotic factors and blood pressure in mice. To determine the effects of renal-selective rescue of Drd2 expression in mice, the renal expression of DRD2 was first silenced using siRNA and 14 days later rescued by retrograde renal infusion of adeno-associated virus (AAV) vector with DRD2. Renal Drd2 siRNA treatment decreased the renal expression of DRD2 protein by 55%, and DRD2 AAV treatment increased the renal expression of DRD2 protein by 7.5- to 10-fold. Renal-selective DRD2 rescue reduced the expression of proinflammatory factors and kidney injury, preserved renal function, and normalized systolic and diastolic blood pressure. These results demonstrate that the deleterious effects of renal-selective Drd2 silencing on renal function and blood pressure were rescued by renal-selective overexpression of DRD2. Moreover, the deleterious effects of 45-minute bilateral ischemia/reperfusion on renal function and blood pressure in mice were ameliorated by a renal-selective increase in DRD2 expression by the retrograde ureteral infusion of DRD2 AAV immediately after the induction of ischemia/reperfusion injury. Thus, 14 days after ischemia/reperfusion injury, the renal expression of profibrotic factors, serum creatinine, and blood pressure were lower in mice infused with DRD2 AAV than in those infused with control AAV. These results indicate an important role of renal DRD2 in limiting renal injury and preserving normal renal function and blood pressure. PMID:27358912

  2. Chronic mild stress increases alcohol intake in mice with low dopamine D2 receptor levels.

    Science.gov (United States)

    Delis, Foteini; Thanos, Panayotis K; Rombola, Christina; Rosko, Lauren; Grandy, David; Wang, Gene-Jack; Volkow, Nora D

    2013-02-01

    Alcohol use disorders emerge from a complex interaction between environmental and genetic factors. Stress and dopamine D2 receptor levels (DRD2) have been shown to play a central role in alcoholism. To better understand the interactions between DRD2 and stress in ethanol intake behavior, we subjected Drd2 wild-type (+/+), heterozygous (+/-), and knockout (-/-) mice to 4 weeks of chronic mild stress (CMS) and to an ethanol two-bottle choice during CMS weeks 2-4. Prior to and at the end of the experiment, the animals were tested in the forced swim and open field tests. We measured ethanol intake and preference, immobility in the force swim test, and activity in the open field. We show that under no CMS, Drd2+/- and Drd2-/- mice had lower ethanol intake and preference compared with Drd2+/+. Exposure to CMS decreased ethanol intake and preference in Drd2+/+ and increased them in Drd2+/- and Drd2-/- mice. At baseline, Drd2+/- and Drd2-/- mice had significantly lower activity in the open field than Drd2+/+, whereas no genotype differences were observed in the forced swim test. Exposure to CMS increased immobility during the forced swim test in Drd2+/- mice, but not in Drd2+/+ or Drd2-/- mice, and ethanol intake reversed this behavior. No changes were observed in open field test measures. These findings suggest that in the presence of a stressful environment, low DRD2 levels are associated with increased ethanol intake and preference and that under this condition, increased ethanol consumption could be used as a strategy to alleviate negative mood. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  3. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

    Science.gov (United States)

    Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M

    2017-04-25

    Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.

  4. PCA3 Silencing Sensitizes Prostate Cancer Cells to Enzalutamide-mediated Androgen Receptor Blockade.

    Science.gov (United States)

    Özgür, Emre; Celik, Ayca Iribas; Darendeliler, Emin; Gezer, Ugur

    2017-07-01

    Prostate cancer (PCa) is an androgen-dependent disease. Novel anti-androgens (i.e. enzalutamide) have recently been developed for the treatment of patients with metastatic castration-resistant prostate cancer (CRPC). Evidence is accumulating that prostate cancer antigen 3 (PCA3) is involved in androgen receptor (AR) signaling. Here, in combination with enzalutamide-mediated AR blockade, we investigated the effect of PCA3 targeting on the viability of PCa cells. In hormone-sensitive LNCaP cells, AR-overexpressing LNCaP-AR + cells and VCaP cells (representing CRPC), PCA3 was silenced using siRNA oligonucleotides. Gene expression and cell viability was assessed in PCA3-silenced and/or AR-blocked cells. PCA3 targeting reduced the expression of AR-related genes (i.e. prostate-specific antigen (PSA) and prostate-specific transcript 1 (non-protein coding) (PCGEM1)) and potentiated the effect of enzalutamide. Proliferation of PCa cells was suppressed upon PCA3 silencing with a greater effect in LNCaP-AR + cells. Furthermore, PCA3 silencing sensitized PCa cells to enzalutamide-induced loss of cell growth. PCA3, as a therapeutic target in PCa, might be used to potentiate AR antagonists. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. N-Methyl-d-Aspartate (NMDA Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection

    Directory of Open Access Journals (Sweden)

    Vivian V. Costa

    2017-04-01

    Full Text Available Zika virus (ZIKV infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801, agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.

  6. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy.

    Science.gov (United States)

    Akalu, Yemsratch T; Rothlin, Carla V; Ghosh, Sourav

    2017-03-01

    Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. C5a receptor (CD88) blockade protects against MPO-ANCA GN.

    Science.gov (United States)

    Xiao, Hong; Dairaghi, Daniel J; Powers, Jay P; Ertl, Linda S; Baumgart, Trageen; Wang, Yu; Seitz, Lisa C; Penfold, Mark E T; Gan, Lin; Hu, Peiqi; Lu, Bao; Gerard, Norma P; Gerard, Craig; Schall, Thomas J; Jaen, Juan C; Falk, Ronald J; Jennette, J Charles

    2014-02-01

    Necrotizing and crescentic GN (NCGN) with a paucity of glomerular immunoglobulin deposits is associated with ANCA. The most common ANCA target antigens are myeloperoxidase (MPO) and proteinase 3. In a manner that requires activation of the alternative complement pathway, passive transfer of antibodies to mouse MPO (anti-MPO) induces a mouse model of ANCA NCGN that closely mimics human disease. Here, we confirm the importance of C5aR/CD88 in the mediation of anti-MPO-induced NCGN and report that C6 is not required. We further demonstrate that deficiency of C5a-like receptor (C5L2) has the reverse effect of C5aR/CD88 deficiency and results in more severe disease, indicating that C5aR/CD88 engagement enhances inflammation and C5L2 engagement suppresses inflammation. Oral administration of CCX168, a small molecule antagonist of human C5aR/CD88, ameliorated anti-MPO-induced NCGN in mice expressing human C5aR/CD88. These observations suggest that blockade of C5aR/CD88 might have therapeutic benefit in patients with ANCA-associated vasculitis and GN.

  8. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer.

    Science.gov (United States)

    Roh, Ju-Won; Huang, Jie; Hu, Wei; Yang, XiaoYun; Jennings, Nicholas B; Sehgal, Vasudha; Sohn, Bo Hwa; Han, Hee Dong; Lee, Sun Joo; Thanapprapasr, Duangmani; Bottsford-Miller, Justin; Zand, Behrouz; Dalton, Heather J; Previs, Rebecca A; Davis, Ashley N; Matsuo, Koji; Lee, Ju-Seog; Ram, Prahlad; Coleman, Robert L; Sood, Anil K

    2014-05-15

    Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer. ©2014 American Association for Cancer Research.

  9. Testosterone receptor blockade after trauma-hemorrhage improves cardiac and hepatic functions in males.

    Science.gov (United States)

    Remmers, D E; Wang, P; Cioffi, W G; Bland, K I; Chaudry, I H

    1997-12-01

    Although studies have shown that testosterone receptor blockade with flutamide after hemorrhage restores the depressed immune function, it remains unknown whether administration of flutamide following trauma and hemorrhage and resuscitation has any salutary effects on the depressed cardiovascular and hepatocellular functions. To study this, male rats underwent a laparotomy (representing trauma) and were then bled and maintained at a mean arterial pressure (MAP) of 40 mmHg until the animals could not maintain this pressure. Ringer lactate was given to maintain a MAP of 40 mmHg until 40% of the maximal shed blood volume was returned in the form of Ringer lactate. The rats were then resuscitated with four times the shed blood volume in the form of Ringer lactate over 60 min. Flutamide (25 mg/kg) or an equal volume of the vehicle propanediol was injected subcutaneously 15 min before the end of resuscitation. Various in vivo heart performance parameters (e.g., maximal rate of the pressure increase or decrease), cardiac output, and hepatocellular function (i.e., the maximum velocity and the overall efficiency of indocyanine green clearance) were determined at 20 h after resuscitation. Additionally, hepatic microvascular blood flow (HMBF) was determined using a laser Doppler flowmeter. The results indicate that left ventricular performance, cardiac output, HMBF, and hepatocellular function decreased significantly at 20 h after the completion of trauma, hemorrhage, and resuscitation. Administration of the testosterone receptor blocker flutamide, however, significantly improved cardiac performance, HMBF, and hepatocellular function. Thus flutamide appears to be a novel and useful adjunct for improving cardiovascular and hepatocellular functions in males following trauma and hemorrhagic shock.

  10. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang; Katritch, Vsevolod; Han, Gye Won; Hanson, Michael A.; Shi, Lei; Newman, Amy Hauck; Javitch, Jonathan A.; Cherezov, Vadim; Stevens, Raymond C. (Cornell); (Scripps); (NIDA); (Columbia); (UCSD); (Receptos)

    2010-11-30

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.

  11. Predicting treatment response in Schizophrenia: the role of stratal and frontal dopamine D2/D3 receptor binding potential

    DEFF Research Database (Denmark)

    Wulff, Sanne; Nørbak-Emig, Henrik; Nielsen, Mette Ødegaard

    2014-01-01

    Background One of the best validated findings in schizophrenia is an association between increased presynaptic striatal dopaminergic activity and psychotic symptoms. We have previously reported an association between positive symptoms and dopamine D2 receptor binding potentials (BPs) in frontal...... cortex in antipsychotic-naïve first-episode male schizophrenia patients(1). Preclinical studies suggest an inverse relationship between frontal and striatal dopamine activity. This activity can indirectly be expressed by the BP of dopamine receptors using Single Photon Emission Computed Tomography (SPECT......) where low striatal BP is believed to reflect high dopamine availability. We aim to assess the association between D2 receptor BPs in antipsychotic-naïve first-episode schizophrenia patients and their response to the first treatment with an antipsychotic compound. We hypothesise that patients with low...

  12. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis

    Directory of Open Access Journals (Sweden)

    Willis Cynthia R

    2012-10-01

    Full Text Available Abstract Background Interleukin-7 (IL-7 acts primarily on T cells to promote their differentiation, survival, and homeostasis. Under disease conditions, IL-7 mediates inflammation through several mechanisms and cell types. In humans, IL-7 and its receptor (IL-7R are increased in diseases characterized by inflammation such as atherosclerosis, rheumatoid arthritis, psoriasis, multiple sclerosis, and inflammatory bowel disease. In mice, overexpression of IL-7 results in chronic colitis, and T-cell adoptive transfer studies suggest that memory T cells expressing high amounts of IL-7R drive colitis and are maintained and expanded with IL-7. The studies presented here were undertaken to better understand the contribution of IL-7R in inflammatory bowel disease in which colitis was induced with a bacterial trigger rather than with adoptive transfer. Methods We examined the contribution of IL-7R on inflammation and disease development in two models of experimental colitis: Helicobacter bilis (Hb-induced colitis in immune-sufficient Mdr1a−/− mice and in T- and B-cell-deficient Rag2−/− mice. We used pharmacological blockade of IL-7R to understand the mechanisms involved in IL-7R-mediated inflammatory bowel disease by analyzing immune cell profiles, circulating and colon proteins, and colon gene expression. Results Treatment of mice with an anti-IL-7R antibody was effective in reducing colitis in Hb-infected Mdr1a−/− mice by reducing T-cell numbers as well as T-cell function. Down regulation of the innate immune response was also detected in Hb-infected Mdr1a−/− mice treated with an anti-IL-7R antibody. In Rag2−/− mice where colitis was triggered by Hb-infection, treatment with an anti-IL-7R antibody controlled innate inflammatory responses by reducing macrophage and dendritic cell numbers and their activity. Conclusions Results from our studies showed that inhibition of IL-7R successfully ameliorated inflammation and disease development

  13. Control of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors.

    Science.gov (United States)

    Ibañez-Sandoval, Osvaldo; Hernández, Adán; Florán, Benjamin; Galarraga, Elvira; Tapia, Dagoberto; Valdiosera, Rene; Erlij, David; Aceves, Jorge; Bargas, José

    2006-03-01

    The effects of activating dopaminergic D1 and D2 class receptors of the subthalamic projections that innervate the pars reticulata of the subtantia nigra (SNr) were explored in slices of the rat brain using the whole cell patch-clamp technique. Excitatory postsynaptic currents (EPSCs) that could be blocked by 6-cyano-7-nitroquinoxalene-2,3-dione and D-(-)-2-amino-5-phosphonopentanoic acid were evoked onto reticulata GABAergic projection neurons by local field stimulation inside the subthalamic nucleus in the presence of bicuculline. Bath application of (RS)-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrochloride (SKF-38393), a dopaminergic D1-class receptor agonist, increased evoked EPSCs by approximately 30% whereas the D2-class receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo(3,4-g)quinoline (quinpirole), reduced EPSCs by approximately 25%. These apparently opposing actions were blocked by the specific D1- and D2-class receptor antagonists: R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepinehydrochloride (SCH 23390) and S-(-)-5-amino-sulfonyl-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride), respectively. Both effects were accompanied by changes in the paired-pulse ratio, indicative of a presynaptic site of action. The presynaptic location of dopamine receptors at the subthalamonigral projections was confirmed by mean-variance analysis. The effects of both SKF-38393 and quinpirole could be observed on terminals contacting the same postsynaptic neuron. Sulpiride and SCH 23390 enhanced and reduced the evoked EPSC, respectively, suggesting a constitutive receptor activation probably arising from endogenous dopamine. These data suggest that dopamine presynaptically modulates the subthalamic projection that targets GABAergic neurons of the SNr. Implications of this modulation for basal ganglia function are discussed.

  14. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    Science.gov (United States)

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  15. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles.

    Science.gov (United States)

    Stone, Audrey J; Copp, Steven W; Kim, Joyce S; Kaufman, Marc P

    2015-12-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles combined receptor blockade is required to attenuate the exercise pressor reflex. We first compared the reflex before and after injecting either PPADS (10 mg/kg), a P2X receptor antagonist, APETx2 (100 μg/kg), an activating acid-sensing ion channel 3 (ASIC) channel antagonist, or L161982 (2 μg/kg), an EP4 receptor antagonist, into the arterial supply of the hindlimb of decerebrated rats. We then examined the effects of combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the exercise pressor reflex using the same doses, intra-arterial route, and time course of antagonist injections as those used for individual blockade. We found that neither PPADS (n = 5), APETx2 (n = 6), nor L161982 (n = 6) attenuated the reflex. In contrast, combined blockade of these receptors (n = 7) attenuated the peak (↓27%, P reflex. Combined blockade injected intravenously had no effect on the reflex. We conclude that combined blockade of P2X receptors, ASIC3 channels, and EP4 receptors on the endings of thin fiber muscle afferents is required to attenuate the exercise pressor reflex in rats with freely perfused hindlimbs. Copyright © 2015 the American Physiological Society.

  16. Elevated Dopamine D2/3 Receptor Availability in Obese Individuals: A PET Imaging Study with [11C](+)PHNO.

    Science.gov (United States)

    Gaiser, Edward C; Gallezot, Jean-Dominique; Worhunsky, Patrick D; Jastreboff, Ania M; Pittman, Brian; Kantrovitz, Lauren; Angarita, Gustavo A; Cosgrove, Kelly P; Potenza, Marc N; Malison, Robert T; Carson, Richard E; Matuskey, David

    2016-12-01

    Most prior work with positron emission tomography (PET) dopamine subtype 2/3 receptor (D 2/3 R) non-selective antagonist tracers suggests that obese (OB) individuals exhibit lower D 2/3 Rs when compared with normal weight (NW) individuals. A D 3 -preferring D 2/3 R agonist tracer, [ 11 C](+)PHNO, has demonstrated that body mass index (BMI) was positively associated with D 2/3 R availability within striatal reward regions. To date, OB individuals have not been studied with [ 11 C](+)PHNO. We assessed D 2/3 R availability in striatal and extrastriatal reward regions in 14 OB and 14 age- and gender-matched NW individuals with [ 11 C](+)PHNO PET utilizing a high-resolution research tomograph. Additionally, in regions where group D 2/3 R differences were observed, secondary analyses of 42 individuals that constituted an overweight cohort was done to study the linear association between BMI and D 2/3 R availability in those respective regions. A group-by-brain region interaction effect (F 7, 182 =2.08, p=0.047) was observed. Post hoc analyses revealed that OB individuals exhibited higher tracer binding in D 3 -rich regions: the substantia nigra/ventral tegmental area (SN/VTA) (+20%; p=0.02), ventral striatum (VST) (+14%; p<0.01), and pallidum (+11%; p=0.02). BMI was also positively associated with D 2/3 R availability in the SN/VTA (r=0.34, p=0.03), VST (r=0.36, p=0.02), and pallidum (r=0.30, p=0.05) across all subjects. These data suggest that individuals who are obese have higher D 2/3 R availability in brain reward regions densely populated with D 3 Rs, potentially identifying a novel pharmacologic target for the treatment of obesity.

  17. (-)-N-[(11)C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D(2) receptors.

    Science.gov (United States)

    Hwang, D R; Kegeles, L S; Laruelle, M

    2000-08-01

    Imaging neuroreceptors with radiolabeled agonists might provide valuable information on the in vivo agonist affinity states of receptors of interest. We report here the radiosynthesis, biodistribution in rodents, and imaging studies in baboons of [(11)C]-labeled (-)-N-propyl-norapomorphine [(-)-NPA]. (-)-[(11)C]NPA was prepared by reacting norapomorphine with [(11)C]propionyl chloride and a lithium aluminum hydride reduction. [(11)C]Propionyl chloride was prepared by reacting [(11)C]CO(2) with ethylmagnesium bromide, followed by reacting with phthaloyl chloride. The radiochemical yield of (-)-[(11)C]NPA was 2.5% at end of synthesis (EOS), and the synthesis time was 60 min. The specific activity was 1700+/-1900 mCi/micromol ( N=7; ranged 110-5200 mCi/micromol at EOS). Rodent biodistribution studies showed high uptake of [(11)C](-)-NPA in D(2) receptor-rich areas, and the striatum/cerebellum ratios were 1.7, 3.4, and 4.4 at 5 min, 30 min, and 60 min postinjection, respectively. Pretreating the animals with haloperidol (1 mg/kg) decreased the striatum/cerebellum ratio at 30 min postinjection to 1.3. (-)-[(11)C]NPA was also evaluated via baboon positron emission tomography (PET) studies. Under control conditions ( N=4), rapid uptake of the tracer was observed and the striatum/cerebellum ratio reached 2.86+/-0.15 at 45 min postinjection. Following haloperidol pretreatment (0.2 mg/kg IV), the striatum/cerebellum ratio was 1.29 at 45 min postinjection. The result demonstrated the existence of specific binding of this new tracer to the D(2) receptor. To our knowledge, the current finding of a striatum/cerebellum ratio of 2.8 in baboon was the highest reported with a radiolabeled D(2) agonist. (-)-[(11)C]NPA is a promising new D(2) agonist PET tracer for probing D(2) receptors in vivo using PET.

  18. VEGF receptor blockade markedly reduces retinal microglia/macrophage infiltration into laser-induced CNV.

    Directory of Open Access Journals (Sweden)

    Hu Huang

    Full Text Available Although blocking VEGF has a positive effect in wet age-related macular degeneration (AMD, the effect of blocking its receptors remains unclear. This was an investigation of the effect of VEGF receptor (VEGFR 1 and/or 2 blockade on retinal microglia/macrophage infiltration in laser-induced choroidal neovascularization (CNV, a model of wet AMD. CNV lesions were isolated by laser capture microdissection at 3, 7, and 14 days after laser and analyzed by RT-PCR and immunofluorescence staining for mRNA and protein expression, respectively. Neutralizing antibodies for VEGFR1 or R2 and the microglia inhibitor minocycline were injected intraperitoneally (IP. Anti-CD11b, CD45 and Iba1 antibodies were used to confirm the cell identity of retinal microglia/macrophage, in the RPE/choroidal flat mounts or retinal cross sections. CD11b(+, CD45(+ or Iba1(+ cells were counted. mRNA of VEGFR1 and its three ligands, PlGF, VEGF-A (VEGF and VEGF-B, were expressed at all stages, but VEGFR2 were detected only in the late stage. PlGF and VEGF proteins were expressed at 3 and 7 days after laser. Anti-VEGFR1 (MF1 delivered IP 3 days after laser inhibited infiltration of leukocyte populations, largely retinal microglia/macrophage to CNV, while anti-VEGFR2 (DC101 had no effect. At 14 days after laser, both MF1 and DC101 antibodies markedly inhibited retinal microglia/macrophage infiltration into CNV. Therefore, VEGFR1 and R2 play differential roles in the pathogenesis of CNV: VEGFR1 plays a dominant role at 3 days after laser; but both receptors play pivotal roles at 14 days after laser. In vivo imaging demonstrated accumulation of GFP-expressing microglia into CNV in both CX3CR1(gfp/gfp and CX3CR1(gfp/+ mice. Minocycline treatment caused a significant increase in lectin(+ cells in the sub-retinal space anterior to CNV and a decrease in dextran-perfused neovessels compared to controls. Targeting the chemoattractant molecules that regulate trafficking of retinal microglia

  19. Dopamine D2 receptor gene polymorphisms and externalizing behaviors in children and adolescents.

    Science.gov (United States)

    Della Torre, Osmar Henrique; Paes, Lúcia Arisaka; Henriques, Taciane Barbosa; de Mello, Maricilda Palandi; Celeri, Eloisa Helena Rubello Valler; Dalgalarrondo, Paulo; Guerra-Júnior, Gil; Santos-Júnior, Amilton Dos

    2018-05-02

    Dopamine is involved in several cerebral physiological processes, and single nucleotide polymorphisms (SNP) in the dopamine D2 receptor gene (DRD2) have been associated with numerous neurological and mental disorders, including those involving alterations in cognitive and emotional processes. The aim of this study was to evaluate the association between the SNPs c.957C > T (rs6277) and c.-585A > G (rs1799978) in the DRD2 gene and behavioral characteristics of children and adolescents based on an inventory of the Child Behavior Checklist (CBCL). Children and adolescents between 8 and 20 years old who were clinically followed-up were genotyped for the SNPs c.957C > T and c.-585A > G, and related to data of the CBCL/6-18 scale assessment performed with the help of caregivers. The chi-squared test was used to assess the differences in the frequencies of the C and T alleles in the polymorphism c.957C > T and of the A and G alleles in the polymorphism c.-585A > G with respect to the grouped CBCL scores at a significance level of 5%. Multiple logistic regression models were performed, to control whether sex and/or ethnicity could influence the results. Eighty-five patients were assessed overall, and the presence of the T allele (C/T and T/T) of DRD2 c.957C > T polymorphism was found to be significantly associated with the occurrence of defiant and oppositional problems and with attention and hyperactivity problems. There were no associations detected with polymorphism DRD2 c.-585A > G polymorphism. Both SNPs were in Hardy-Weinberg-equilibrium. Although the findings of this study are preliminary, due to its small number of participants, the presence of T allele (C/T, T/T) in c.957C > T SNP was associated with difficulty in impulse control, self-control of emotions, and conduct adjustment, which can contribute to improving the identification of mental and behavioral phenotypes associated with gene expression.

  20. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca2+]i Imaging

    International Nuclear Information System (INIS)

    Du, C.; Luo, Z.; Volkow, N.D.; Heintz, N.; Pan, Y.; Du, C.

    2011-01-01

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca 2+ ] i ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca 2+ ] i in D1R-expressing neurons (10.6 ± 3.2%) in striatum within 8.3 ± 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca 2+ ] i increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca 2+ ] i in D2R-expressing neurons (10.4 ± 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca 2+ ] i decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  1. [123I]Epidepride neuroimaging of dopamine D2/D3 receptor in chronic MK-801-induced rat schizophrenia model

    International Nuclear Information System (INIS)

    Huang, Yuan-Ruei; Shih, Jun-Ming; Chang, Kang-Wei; Huang, Chieh; Wu, Yu-Lung; Chen, Chia-Chieh

    2012-01-01

    Purpose: [ 123 I]Epidepride is a radio-tracer with very high affinity for dopamine D 2 /D 3 receptors in brain. The importance of alteration in dopamine D 2 /D 3 receptor binding condition has been wildly verified in schizophrenia. In the present study we set up a rat schizophrenia model by chronic injection of a non-competitive NMDA receptor antagonist, MK-801, to examine if [ 123 I]epidepride could be used to evaluate the alterations of dopamine D 2 /D 3 receptor binding condition in specific brain regions. Method: Rats were given repeated injection of MK-801 (dissolved in saline, 0.3 mg/kg) or saline for 1 month. Afterwards, total distance traveled (cm) and social interaction changes were recorded. Radiochemical purity of [ 123 I]epidepride was analyzed by Radio-Thin-Layer Chromatography (chloroform: methanol, 9:1, v/v) and [ 123 I]epidepride neuroimages were obtained by ex vivo autoradiography and small animal SPECT/CT. Data obtained were then analyzed to determine the changes of specific binding ratio. Result: Chronic MK-801 treatment for a month caused significantly increased local motor activity and induced an inhibition of social interaction. As shown in [ 123 I]epidepride ex vivo autoradiographs, MK-801 induced a decrease of specific binding ratio in the striatum (24.01%), hypothalamus (35.43%), midbrain (41.73%) and substantia nigra (37.93%). In addition, [ 123 I]epidepride small animal SPECT/CT neuroimaging was performed in the striatum and midbrain. There were statistically significant decreases in specific binding ratio in both the striatum (P 123 I]epidepride is a useful radio-tracer to reveal the alterations of dopamine D 2 /D 3 receptor binding in a rat schizophrenia model and is also helpful to evaluate therapeutic effects of schizophrenia in the future.

  2. Cocaine self-administration differentially affects allosteric A2A-D2 receptor-receptor interactions in the striatum. Relevance for cocaine use disorder.

    Science.gov (United States)

    Pintsuk, Julia; Borroto-Escuela, Dasiel O; Pomierny, Bartosz; Wydra, Karolina; Zaniewska, Magdalena; Filip, Malgorzata; Fuxe, Kjell

    2016-05-01

    In the current study behavioral and biochemical experiments were performed to study changes in the allosteric A2AR-D2R interactions in the ventral and dorsal striatum after cocaine self-administration versus corresponding yoked saline control. By using ex vivo [(3)H]-raclopride/quinpirole competition experiments, the effects of the A2AR agonist CGS 21680 (100 nM) on the KiH and KiL values of the D2-like receptor (D2-likeR) were determined. One major result was a significant reduction in the D2-likeR agonist high affinity state observed with CGS 21680 after cocaine self-administration in the ventral striatum compared with the yoked saline group. The results therefore support the hypothesis that A2AR agonists can at least in part counteract the motivational actions of cocaine. This action is mediated via the D2-likeR by targeting the A2AR protomer of A2AR-D2-like R heteroreceptor complexes in the ventral striatum, which leads to the reduction of D2-likeR protomer recognition through the allosteric receptor-receptor interaction. In contrast, in the dorsal striatum the CGS 21680-induced antagonistic modulation in the D2-likeR agonist high affinity state was abolished after cocaine self-administration versus the yoked saline group probably due to a local dysfunction/disruption of the A2AR-D2-like R heteroreceptor complexes. Such a change in the dorsal striatum in cocaine self-administration can contribute to the development of either locomotor sensitization, habit-forming learning and/or the compulsive drug seeking by enhanced D2-likeR protomer signaling. Potential differences in the composition and stoichiometry of the A2AR-D2R heteroreceptor complexes, including differential recruitment of sigma 1 receptor, in the ventral and dorsal striatum may explain the differential regional changes observed in the A2A-D2-likeR interactions after cocaine self-administration. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    Directory of Open Access Journals (Sweden)

    Högberg Thomas

    2007-02-01

    Full Text Available Abstract Background Mast cell-derived prostaglandin D2 (PGD2, may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2, a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist ramatroban, and compares the ability of ramatroban and TM30089 to inhibit asthma-like pathology. Methods Affinity for and antagonistic potency of TM30089 on many mouse receptors including thromboxane A2 receptor mTP, CRTH2 receptor, and selected anaphylatoxin and chemokines receptors were determined in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. Results TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other receptors including the related anaphylatoxin C3a and C5a receptors, selected chemokine receptors and the cyclooxygenase isoforms 1 and 2 which are all recognized players in allergic diseases. Furthermore, TM30089 and ramatroban, the latter used as a reference herein, similarly inhibited asthma pathology in vivo by reducing peribronchial eosinophilia and mucus cell hyperplasia. Conclusion This is the first report to demonstrate anti-allergic efficacy in vivo of a highly selective small molecule CRTH2 antagonist. Our data suggest that CRTH2 antagonism alone is effective in mouse allergic airway inflammation even to the extent that this mechanism can explain the efficacy of ramatroban.

  4. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    Science.gov (United States)

    ABSTRACT BODY:Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  5. Glucagon and plasma catecholamines during beta-receptor blockade in exercising man

    DEFF Research Database (Denmark)

    Galbo, H; Holst, Janett; Christensen, N J

    1976-01-01

    Seven men ran at 60% of individual maximal oxygen uptake to exhaustion during beta-adrenergic blockade with propranolol (P), during lipolytic blockade with nicotinic acid (N), or without drugs (C). The total work times (83 +/- 9 (P), 122 +/- 8 (N), 166 +/- 10 (C) min, mean and SE) differed signif...... determinants for the exercise-induced glucagon secretion in man. It is suggested that decreased glucose availability enhances the secretion of glucagon and epinephrine during prolonged exercise....

  6. Effect of Motor Impairment on Analgesic Efficacy of Dopamine D2/3 Receptors in a Rat Model of Neuropathy

    Directory of Open Access Journals (Sweden)

    Margarida Dourado

    2016-01-01

    Full Text Available Testing the clinical efficacy of drugs that also have important side effects on locomotion needs to be properly designed in order to avoid erroneous identification of positive effects when the evaluation depends on motor-related tests. One such example is the evaluation of analgesic role of drugs that act on dopaminergic receptors, since the pain perception tests used in animal models are based on motor responses that can also be compromised by the same substances. The apparent analgesic effect obtained by modulation of the dopaminergic system is still a highly disputed topic. There is a lack of acceptance of this effect in both preclinical and clinical settings, despite several studies showing that D2/3 agonists induce antinociception. Some authors raised the hypothesis that this antinociceptive effect is enhanced by dopamine-related changes in voluntary initiation of movement. However, the extent to which D2/3 modulation changes locomotion at analgesic effective doses is still an unresolved question. In the present work, we performed a detailed dose-dependent analysis of the changes that D2/3 systemic modulation have on voluntary locomotor activity and response to four separate tests of both thermal and mechanical pain sensitivity in adult rats. Using systemic administration of the dopamine D2/3 receptor agonist quinpirole, and of the D2/3 antagonist raclopride, we found that modulation of D2/3 receptors impairs locomotion and exploratory activity in a dose-dependent manner across the entire range of tested dosages. None of the drugs were able to consistently diminish either thermal or mechanical pain perception when administered at lower concentrations; on the other hand, the larger concentrations of raclopride (0.5–1.0 mg/kg strongly abolished pain responses, and also caused severe motor impairment. Our results show that administration of both agonists and antagonists of dopaminergic D2/3 receptors affects sensorimotor behaviors, with the

  7. 124I-Epidepride: A PET radiotracer for extended imaging of dopamine D2/D3 receptors

    International Nuclear Information System (INIS)

    Pandey, Suresh; Venugopal, Archana; Kant, Ritu; Coleman, Robert; Mukherjee, Jogeshwar

    2014-01-01

    Objectives: A new radiotracer, 124 I-epidepride, has been developed for the imaging of dopamine D2/3 receptors (D2/3Rs). 124 I-Epidepride (half-life of 124 I = 4.2 days) allows imaging over extended periods compared to 18 F-fallypride (half-life of 18 F = 0.076 days) and may maximize visualization of D2/3Rs in the brain and pancreas (allowing clearance from adjacent organs). D2/3Rs are also present in pancreatic islets where they co-localize with insulin to produce granules and may serve as a surrogate marker for imaging diabetes. Methods: 124 I-Epidepride was synthesized using N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-5-tributyltin-2, 3-dimethoxybenzamide and 124 I-iodide under no carrier added condition. Rats were used for in vitro and in vivo imaging. Brain slices were incubated with 124 I-epidepride (0.75 μCi/cc) and nonspecific binding measured with 10 μM haloperidol. Autoradiograms were analyzed by OptiQuant. 124 I-Epidepride (0.2 to 0.3 mCi, iv) was administered to rats and brain uptake at 3 hours, 24 hours, and 48 hours post injection was evaluated. Results: 124 I-Epidepride was obtained with 50% radiochemical yield and high radiochemical purity (> 95%). 124 I-Epidepride localized in the striatum with a striatum to cerebellum ratio of 10. Binding was displaced by dopamine and haloperidol. Brain slices demonstrated localization of 124 I-epidepride up until 48 hours in the striatum. However, the extent of binding was reduced significantly. Conclusions: 124 I-Epidepride is a new radiotracer suitable for extended imaging of dopamine D2/3 receptors and may have applications in imaging of receptors in the brain and monitoring pancreatic islet cell grafting

  8. Structure-Guided Screening for Functionally Selective D2 Dopamine Receptor Ligands from a Virtual Chemical Library.

    Science.gov (United States)

    Männel, Barbara; Jaiteh, Mariama; Zeifman, Alexey; Randakova, Alena; Möller, Dorothee; Hübner, Harald; Gmeiner, Peter; Carlsson, Jens

    2017-10-20

    Functionally selective ligands stabilize conformations of G protein-coupled receptors (GPCRs) that induce a preference for signaling via a subset of the intracellular pathways activated by the endogenous agonists. The possibility to fine-tune the functional activity of a receptor provides opportunities to develop drugs that selectively signal via pathways associated with a therapeutic effect and avoid those causing side effects. Animal studies have indicated that ligands displaying functional selectivity at the D 2 dopamine receptor (D 2 R) could be safer and more efficacious drugs against neuropsychiatric diseases. In this work, computational design of functionally selective D 2 R ligands was explored using structure-based virtual screening. Molecular docking of known functionally selective ligands to a D 2 R homology model indicated that such compounds were anchored by interactions with the orthosteric site and extended into a common secondary pocket. A tailored virtual library with close to 13 000 compounds bearing 2,3-dichlorophenylpiperazine, a privileged orthosteric scaffold, connected to diverse chemical moieties via a linker was docked to the D 2 R model. Eighteen top-ranked compounds that occupied both the orthosteric and allosteric site were synthesized, leading to the discovery of 16 partial agonists. A majority of the ligands had comparable maximum effects in the G protein and β-arrestin recruitment assays, but a subset displayed preference for a single pathway. In particular, compound 4 stimulated β-arrestin recruitment (EC 50 = 320 nM, E max = 16%) but had no detectable G protein signaling. The use of structure-based screening and virtual libraries to discover GPCR ligands with tailored functional properties will be discussed.

  9. (/sup 76/Br)Bromolisuride: a new tool for quantitative in vivo imaging of D-2 dopamine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Maziere, B; Loc' h, C; Stulzaft, O; Ottaviani, M; Comar, D; Maziere, M; Hantraye, P

    1986-08-15

    Bromolisuride, an ergoline derivative, was labeled with the positron emitter radionuclide, bromine 76. In vitro and in vivo binding and competition studies in rats demonstrated a high affinity (K/sub D/ = 0.3 nM) and a high specificity of this new radioligand for D-2 dopamine receptors. PET kinetic studies in baboons showed an accumulation of (/sup 76/Br)bromolisuride in the striatum which reached a maximum 30 min post-injection and which could be displaced by haloperidol. All these results indicated that this new ligand is certainly suitable for the non-invasive in vivo quantitative imaging of D-2 dopamine receptor sites in human brain. 20 refs.; 6 figs.; 1 table.

  10. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation

    DEFF Research Database (Denmark)

    Uller, Lena; Mathiesen, Jesper Mosolff; Alenmyr, Lisa

    2007-01-01

    BACKGROUND: Mast cell-derived prostaglandin D2 (PGD2), may contribute to eosinophilic inflammation and mucus production in allergic asthma. Chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a high affinity receptor for prostaglandin D2, mediates trafficking of TH2-cells......, mast cells, and eosinophils to inflammatory sites, and has recently attracted interest as target for treatment of allergic airway diseases. The present study involving mice explores the specificity of CRTH2 antagonism of TM30089, which is structurally closely related to the dual TP/CRTH2 antagonist...... in recombinant expression systems in vitro. In vivo effects of TM30089 and ramatroban on tissue eosinophilia and mucus cell histopathology were examined in a mouse asthma model. RESULTS: TM30089, displayed high selectivity for and antagonistic potency on mouse CRTH2 but lacked affinity to TP and many other...

  11. The anti-influenza drug oseltamivir evokes hypothermia in mice through dopamine D2 receptor activation via central actions

    Directory of Open Access Journals (Sweden)

    Akihiro Fukushima

    2018-01-01

    Full Text Available Oseltamivir has a hypothermic effect in mice when injected intraperitoneally (i.p. and intracerebroventricularly (i.c.v.. Here we show that the hypothermia evoked by i.c.v.-oseltamivir is inhibited by non-selective dopamine receptor antagonists (sulpiride and haloperidol and the D2-selective antagonist L-741,626, but not by D1/D5-selective and D3-selective antagonists (SCH-23390 and SB-277011-A, respectively. The hypothermic effect of i.p.-administered oseltamivir was not inhibited by sulpiride, haloperidol, L-741,626 and SCH-23390. In addition, neither sulpiride, haloperidol nor SCH-23390 blocked hypothermia evoked by i.c.v.-administered oseltamivir carboxylate (a hydrolyzed metabolite of oseltamivir. These results suggest that oseltamivir in the brain induces hypothermia through activation of dopamine D2 receptors.

  12. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    International Nuclear Information System (INIS)

    Gan, Lu; Xue, Jian-Xin; Li, Xin; Liu, De-Song; Ge, Yan; Ni, Pei-Yan; Deng, Lin; Lu, You; Jiang, Wei

    2011-01-01

    Highlights: → Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. → Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. → VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. → LPA-LPAR1/3 signaling regulated TGFβ1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. → LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGFβ1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1/3 signaling system is involved in the

  13. Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Lu [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Xue, Jian-Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu (China); Li, Xin [Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Liu, De-Song [Department of Pediatrics, Sichuan Provincial Hospital of Women and Children, Chengdu (China); Ge, Yan; Ni, Pei-Yan; Deng, Lin [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Lu, You, E-mail: radyoulu@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu (China); Jiang, Wei, E-mail: wcumsjw72@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu (China)

    2011-05-27

    Highlights: {yields} Lysophosphatidic acid (LPA) levels and its receptors LPAR1/3 transcripts were elevated during the development of radiation-induced lung fibrosis. {yields} Lung fibrosis was obviously alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. {yields} VPC12249 administration effectively inhibited radiation-induced fibroblast accumulation in vivo, and suppressed LPA-induced fibroblast proliferation in vitro. {yields} LPA-LPAR1/3 signaling regulated TGF{beta}1 and CTGF expressions in radiation-challenged lungs, but only influenced CTGF expression in cultured fibroblasts. {yields} LPA-LPAR1/3 signaling induced fibroblast proliferation through a CTGF-dependent pathway, rather than through TGF{beta}1 activation. -- Abstract: Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor {beta}1 (TGF{beta}1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTGF. Together, our data suggest that the LPA-LPAR1

  14. Dopamine D2 receptor function is compromised in the brain of the methionine sulfoxide reductase A knockout mouse

    OpenAIRE

    Oien, Derek B.; Ortiz, Andrea N.; Rittel, Alexander G.; Dobrowsky, Rick T.; Johnson, Michael A.; Levant, Beth; Fowler, Stephen C.; Moskovitz, Jackob

    2010-01-01

    Previous research suggests that brain oxidative stress and altered rodent locomotor behavior are linked. We observed bio-behavioral changes in methionine sulfoxide reductase A knockout mice associated with abnormal dopamine signaling. Compromised ability of these knockout mice to reduce methionine sulfoxide enhances accumulation of sulfoxides in proteins. We examined the dopamine D2-receptor function and expression, which has an atypical arrangement and quantity of methionine residues. Indeed...

  15. Dopamine D2 receptors and alpha1-adrenoceptors synergistically modulate locomotion and behavior of rats in a place avoidance task

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Petrásek, Tomáš; Valeš, Karel

    2008-01-01

    Roč. 189, č. 1 (2008), s. 139-144 ISSN 0166-4328 R&D Projects: GA ČR(CZ) GA309/07/0341; GA MZd(CZ) NR9178; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : D2 receptors * alpha1-adrenoceptors * behavior Subject RIV: FH - Neurology Impact factor: 3.171, year: 2008

  16. DRD2 genotype predicts prefrontal activity during working memory after stimulation of D2 receptors with bromocriptine.

    Science.gov (United States)

    Gelao, Barbara; Fazio, Leonardo; Selvaggi, Pierluigi; Di Giorgio, Annabella; Taurisano, Paolo; Quarto, Tiziana; Romano, Raffaella; Porcelli, Annamaria; Mancini, Marina; Masellis, Rita; Ursini, Gianluca; De Simeis, Giuseppe; Caforio, Grazia; Ferranti, Laura; Lo Bianco, Luciana; Rampino, Antonio; Todarello, Orlando; Popolizio, Teresa; Blasi, Giuseppe; Bertolino, Alessandro

    2014-06-01

    Pharmacological stimulation of D2 receptors modulates prefrontal neural activity associated with working memory (WM) processing. The T allele of a functional single-nucleotide polymorphism (SNP) within DRD2 (rs1076560 G > T) predicts reduced relative expression of the D2S receptor isoform and less efficient neural cortical responses during WM tasks. We used functional MRI to test the hypothesis that DRD2 rs1076560 genotype interacts with pharmacological stimulation of D2 receptors with bromocriptine on prefrontal responses during different loads of a spatial WM task (N-Back). Fifty-three healthy subjects (38 GG and 15 GT) underwent two 3-T functional MRI scans while performing the 1-, 2- and 3-Back versions of the N-Back WM task. Before the imaging sessions, either bromocriptine or placebo was administered to all subjects in a counterbalanced order. A factorial repeated-measures ANOVA within SPM8 (p < 0.05, family-wise error corrected) was used. On bromocriptine, GG subjects had reduced prefrontal activity at 3-Back together with a significant decrement in performance, compared with placebo. On the other hand, GT subjects had lower activity for the same level of performance at 1-Back but a trend for reduced behavioral performance in the face of unchanged activity at 2-Back. These results indicate that bromocriptine stimulation modulates prefrontal activity in terms of disengagement or of efficiency depending on DRD2 genotype and working memory load.

  17. In vitro and in vivo evaluation of [123I]IBZM: a potential CNS D-2 dopamine receptor imaging agent

    International Nuclear Information System (INIS)

    Kung, H.F.; Pan, S.; Kung, M.P.; Billings, J.; Kasliwal, R.; Reilley, J.; Alavi, A.

    1989-01-01

    In vitro binding characteristics of a CNS dopamine D-2 receptor imaging agent, (S)-N-[(1-ethyl-2-pyrrolidinyl)] methyl-2-hydroxy-3-iodo-6-methoxybenzamide [( 125 I]IBZM), was carried out in rats. Also brain images, as well as organ biodistribution were determined in a monkey following the administration of 123 I-labeled compound. The S-(-)-I[ 125 I]IBZM showed high specific dopamine D-2 receptor binding in rat striatum (Kd = 0.426 +/- 0.082 nM, Bmax = 480 +/- 22 fmol/mg of protein). Competition of various ligands for the IBZM binding displayed the following rank order of potency: spiperone greater than S(-)IBZM much greater than R(+)IBZM greater than or equal to S(-)BZM greater than dopamine greater than ketanserin greater than SCH-23390 much greater than propranolol, norepinephrine, serotonin. In vivo planar images of a monkey injected with [ 123 I]IBZM demonstrated a high concentration in basal ganglia of brain. The ratios of activity in the basal ganglia to cerebellum and the cortex to cerebellum in monkey brain were 4.93 and 1.44, respectively, at 120 min postinjection. These preliminary results indicate that [ 123 I]IBZM is a potentially promising imaging agent for the investigation of dopamine D-2 receptors in humans

  18. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in nonanesthetized rat

    NARCIS (Netherlands)

    Wong, Y.C.; Ilkova, T.I.; Wijk, van R.C.; Hartman, R.J.; Lange, de E.C.M.

    2018-01-01

    BACKGROUND: Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to

  19. Presynaptic Dopamine D2 Receptors Modulate [3H]GABA Release at StriatoPallidal Terminals via Activation of PLC → IP3 → Calcineurin and Inhibition of AC → cAMP → PKA Signaling Cascades.

    Science.gov (United States)

    Jijón-Lorenzo, Rafael; Caballero-Florán, Isaac Hiram; Recillas-Morales, Sergio; Cortés, Hernán; Avalos-Fuentes, José Arturo; Paz-Bermúdez, Francisco Javier; Erlij, David; Florán, Benjamín

    2018-02-21

    Striatal dopamine D2 receptors activate the PLC → IP3 → Calcineurin-signaling pathway to modulate the neural excitability of En+ Medium-sized Spiny GABAergic neurons (MSN) through the regulation of L-type Ca 2+ channels. Presynaptic dopaminergic D2 receptors modulate GABA release at striatopallidal terminals through L-type Ca 2+ channels as well, but their signaling pathway is still undetermined. Since D2 receptors are Gi/o-coupled and negatively modulate adenylyl cyclase (AC), we investigated whether presynaptic D2 receptors modulate GABA release through the same signaling cascade that controls excitability in the striatum or by the inhibition of AC and decreased PKA activity. Activation of D2 receptors stimulated formation of [ 3 H]IP 1 and decreased Forskolin-stimulated [ 3 H]cAMP accumulation in synaptosomes from rat Globus Pallidus. D2 receptor activation with Quinpirole in the presence of L 745,870 decreased, in a dose-dependent manner, K + -induced [ 3 H]GABA release in pallidal slices. The effect was prevented by the pharmacological blockade of Gi/o βγ subunit effects with Gallein, PLC with U 73122, IP3 receptor activation with 4-APB, Calcineurin with FK506. In addition, when release was stimulated with Forskolin to activate AC, D2 receptors also decreased K + -induced [ 3 H]GABA release, an effect occluded with the effect of the blockade of PKA with H89 or stimulation of release with the cAMP analog 8-Br-cAMP. These data indicate that D2 receptors modulate [ 3 H]GABA release at striatopallidal terminals by activating the PLC → IP3 → Calcineurin-signaling cascade, the same one that modulates excitability in soma. Additionally, D2 receptors inhibit release when AC is active. Both mechanisms appear to converge to regulate the activity of presynaptic L-type Ca 2+ channels. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Recruitment of beta-arrestin2 to the dopamine D2 receptor: insights into anti-psychotic and anti-parkinsonian drug receptor signaling

    DEFF Research Database (Denmark)

    Klewe, Ib V; Nielsen, Søren M; Tarpø, Louise

    2008-01-01

    , SNPA all acted as partial agonists with decreasing efficacy in the BRET assay. In contrast, a wide selection of typical and atypical anti-psychotics was incapable of stimulating beta-arrestin2 recruitment to the D2 receptor. Moreover, we observed that haloperidol, sertindole, olanzapine, clozapine...

  1. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells.

    Science.gov (United States)

    Luessen, Deborah J; Hinshaw, Tyler P; Sun, Haiguo; Howlett, Allyn C; Marrs, Glen; McCool, Brian A; Chen, Rong

    2016-11-01

    Dysregulated expression and function of dopamine D2 receptors (D2Rs) are implicated in drug addiction, Parkinson's disease and schizophrenia. In the current study, we examined whether D2Rs are modulated by regulator of G protein signaling 2 (RGS2), a member of the RGS family that regulates G protein signaling via acceleration of GTPase activity. Using neuroblastoma 2a (N2A) cells, we found that RGS2 was immunoprecipitated by aluminum fluoride-activated Gαi2 proteins. RGS2 siRNA knockdown enhanced membrane [(35)S] GTPγS binding to activated Gαi/o proteins, augmented inhibition of cAMP accumulation and increased ERK phosphorylation in the presence of a D2/D3R agonist quinpirole when compared to scrambled siRNA treatment. These data suggest that RGS2 is a negative modulator of D2R-mediated Gαi/o signaling. Moreover, RGS2 knockdown slightly increased constitutive D2R internalization and markedly abolished quinpirole-induced D2R internalization assessed by immunocytochemistry. RGS2 knockdown did not compromise agonist-induced β-arrestin membrane recruitment; however, it prevents β-arrestin dissociation from the membrane after prolonged quinpirole treatment during which time β-arrestin moved away from the membrane in control cells. Additionally, confocal microscopy analysis of β-arrestin post-endocytic fate revealed that quinpirole treatment caused β-arrestin to translocate to the early and the recycling endosome in a time-dependent manner in control cells whereas translocation of β-arrestin to these endosomes did not occur in RGS2 knockdown cells. The impaired β-arrestin translocation likely contributed to the abolishment of quinpirole-stimulated D2R internalization in RGS2 knockdown cells. Thus, RGS2 is integral for β-arrestin-mediated D2R internalization. The current study revealed a novel regulation of D2R signaling and internalization by RGS2 proteins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A novel insulinotropic mechanism of whole grain-derived γ-oryzanol via the suppression of local dopamine D2 receptor signalling in mouse islet.

    Science.gov (United States)

    Kozuka, Chisayo; Sunagawa, Sumito; Ueda, Rei; Higa, Moritake; Ohshiro, Yuzuru; Tanaka, Hideaki; Shimizu-Okabe, Chigusa; Takayama, Chitoshi; Matsushita, Masayuki; Tsutsui, Masato; Ishiuchi, Shogo; Nakata, Masanori; Yada, Toshihiko; Miyazaki, Jun-Ichi; Oyadomari, Seiichi; Shimabukuro, Michio; Masuzaki, Hiroaki

    2015-07-03

    γ-Oryzanol, derived from unrefined rice, attenuated the preference for dietary fat in mice, by decreasing hypothalamic endoplasmic reticulum stress. However, no peripheral mechanisms, whereby γ-oryzanol could ameliorate glucose dyshomeostasis were explored. Dopamine D 2 receptor signalling locally attenuates insulin secretion in pancreatic islets, presumably via decreased levels of intracellular cAMP. We therefore hypothesized that γ-oryzanol would improve high-fat diet (HFD)-induced dysfunction of islets through the suppression of local D 2 receptor signalling. Glucose metabolism and regulation of molecules involved in D 2 receptor signalling in pancreatic islets were investigated in male C57BL/6J mice, fed HFD and treated with γ-oryzanol . In isolated murine islets and the beta cell line, MIN6 , the effects of γ-oryzanol on glucose-stimulated insulin secretion (GSIS) was analysed using siRNA for D 2 receptors and a variety of compounds which alter D 2 receptor signalling. In islets, γ-oryzanol enhanced GSIS via the activation of the cAMP/PKA pathway. Expression of molecules involved in D 2 receptor signalling was increased in islets from HFD-fed mice, which were reciprocally decreased by γ-oryzanol. Experiments with siRNA for D 2 receptors and D 2 receptor ligands in vitro suggest that γ-oryzanol suppressed D 2 receptor signalling and augmented GSIS. γ-Oryzanol exhibited unique anti-diabetic properties. The unexpected effects of γ-oryzanol on D 2 receptor signalling in islets may provide a novel; natural food-based, approach to anti-diabetic therapy. © 2015 The British Pharmacological Society.

  3. NMDA-receptor blockade by CPP impairs post-training consolidation of a rapidly acquired spatial representation in rat hippocampus.

    Science.gov (United States)

    McDonald, Robert J; Hong, Nancy S; Craig, Laura A; Holahan, Matthew R; Louis, Meira; Muller, Robert U

    2005-09-01

    Recent evidence suggests that N-methyl-D-aspartate (NMDA)-receptor mediated plasticity in hippocampus has a more subtle role in memory-based behaviours than originally thought. One idea is that NMDA-based plasticity is essential for the consolidation of post-training memory but not for the initial encoding or for short-term memory. To further test this idea we used a three-phase variant of the hidden goal water maze task. In the first phase, rats were pre-trained to an initial location. Next, intense, massed training was done in a 2-h interval to teach the rats to go to a new location after either an injection of the NMDA receptor antagonist (6)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) or of vehicle. Finally, under drug-free conditions 24 h after new location training, a competition test was done between the original and new locations. We find that N-methyl-D-aspartate (NMDA)-receptor blockade has little or no effect on new location training. In contrast, when tested 24 h later, the strength of the trace for the new location learned during NMDA-receptor blockade was much weaker compared with the trace for the new location learned after saline injection. Further experiments showed similar effects when NMDA-receptors were blocked immediately after the new location training, suggesting that this is a memory consolidation effect. Our results therefore reinforce the notion that hippocampal NMDA-receptors participate in post-training memory consolidation but are not essential for the processes necessary to learn or retain navigational information in the short term.

  4. Neurochemical Correlates of Accumbal Dopamine D2 and Amygdaloid 5-HT1B Receptor Densities on Observational Learning of Aggression

    Science.gov (United States)

    Suzuki, Hideo; Lucas, Louis R.

    2015-01-01

    Social learning theory postulates that individuals learn to engage in aggressive behavior through observing an aggressive social model. Prior studies have shown that repeatedly observing aggression, also called “chronic passive exposure to aggression,” changes accumbal dopamine D2 receptor (D2R) and amygdaloid 5-HT1B receptor (5-HT1BR) densities in observers. But, the association between these outcomes remains unknown. Thus, our study used a rat paradigm to comprehensively examine the linkage between aggression, D2R density in the nucleus accumbens core (AcbC) and shell (AcbSh), and 5-HT1BR density in the medial (MeA), basomedial (BMA), and basolateral (BLA) amygdala following chronic passive exposure to aggression. Male Sprague-Dawley rats (N = 72) were passively exposed to either aggression or non-aggression acutely (1 day) or chronically (23 days). When observer rats were exposed to aggression chronically, they showed increased aggressive behavior and reduced D2R density in the bilateral AcbSh. On the other hand, exposure to aggression, regardless of exposure length, increased 5-HT1BR density in the bilateral BLA. Finally, low D2R in the AcbSh significantly interacted with high 5-HT1BR density in the BLA in predicting high levels of aggression in observer rats. Our results advance our understanding of the neurobiological mechanisms for observational learning of aggression, highlighting that dopamine-serotonin interaction, or AcbSh-BLA interaction, may contribute to a risk factor for aggression in observers who chronically witness aggressive interactions. PMID:25650085

  5. Dopamine inhibition of anterior pituitary adenylate cyclase is mediated through the high-affinity state of the D2 receptor

    International Nuclear Information System (INIS)

    Borgundvaag, B.; George, S.R.

    1985-01-01

    The diterpinoid forskolin stimulated adenylate cyclase activity (measured by conversion of [ 3 H]-ATP to [ 3 H]-cAMP) in anterior pituitary from male and female rats. Inhibition of stimulated adenylate cyclase activity by potent dopaminergic agonists was demonstrable only in female anterior pituitary. The inhibition of adenylate cyclase activity displayed a typically dopaminergic rank order of agonist potencies and could be completely reversed by a specific dopamine receptor antagonist. The IC 50 values of dopamine agonist inhibition of adenylate cyclase activity correlated with equal molarity with the dissociation constant of the high-affinity dopamine agonist-detected receptor binding site and with the IC 50 values for inhibition of prolactin secretion. These findings support the hypothesis that it is the high-affinity form of the D 2 dopamine receptor in anterior pituitary which is responsible for mediating the dopaminergic function of attenuating adenylate cyclase activity. 12 references, 4 figures, 1 table

  6. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.

    Science.gov (United States)

    Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J

    2014-09-01

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  7. (-)-N-[11C]propyl-norapomorphine: a positron-labeled dopamine agonist for PET imaging of D2 receptors

    International Nuclear Information System (INIS)

    Hwang, Dah-Ren; Kegeles, Lawrence S.; Laruelle, Marc

    2000-01-01

    Imaging neuroreceptors with radiolabeled agonists might provide valuable information on the in vivo agonist affinity states of receptors of interest. We report here the radiosynthesis, biodistribution in rodents, and imaging studies in baboons of [ 11 C]-labeled (-)-N-propyl-norapomorphine [(-)-NPA]. (-)-[ 11 C]NPA was prepared by reacting norapomorphine with [ 11 C]propionyl chloride and a lithium aluminum hydride reduction. [ 11 C]Propionyl chloride was prepared by reacting [ 11 C]CO 2 with ethylmagnesium bromide, followed by reacting with phthaloyl chloride. The radiochemical yield of (-)-[ 11 C]NPA was 2.5% at end of synthesis (EOS), and the synthesis time was 60 min. The specific activity was 1700±1900 mCi/μmol ( N=7; ranged 110-5200 mCi/μmol at EOS). Rodent biodistribution studies showed high uptake of [ 11 C](-)-NPA in D 2 receptor-rich areas, and the striatum/cerebellum ratios were 1.7, 3.4, and 4.4 at 5 min, 30 min, and 60 min postinjection, respectively. Pretreating the animals with haloperidol (1 mg/kg) decreased the striatum/cerebellum ratio at 30 min postinjection to 1.3. (-)-[ 11 C]NPA was also evaluated via baboon positron emission tomography (PET) studies. Under control conditions ( N=4), rapid uptake of the tracer was observed and the striatum/cerebellum ratio reached 2.86±0.15 at 45 min postinjection. Following haloperidol pretreatment (0.2 mg/kg IV), the striatum/cerebellum ratio was 1.29 at 45 min postinjection. The result demonstrated the existence of specific binding of this new tracer to the D 2 receptor. To our knowledge, the current finding of a striatum/cerebellum ratio of 2.8 in baboon was the highest reported with a radiolabeled D 2 agonist. (-)-[ 11 C]NPA is a promising new D 2 agonist PET tracer for probing D 2 receptors in vivo using PET

  8. Correlation between dopamine receptor D2 expression and presence of abnormal involuntary movements in Wistar rats with hemiparkinsonism and dyskinesia.

    Science.gov (United States)

    Caro Aponte, P A; Otálora, C A; Guzmán, J C; Turner, L F; Alcázar, J P; Mayorga, E L

    2018-03-07

    Parkinson's disease (PD) is characterised by motor alterations, which are commonly treated with L-DOPA. However, long-term L-DOPA use may cause dyskinesia. Although the pathogenic mechanism of L-DOPA-induced dyskinesia is unclear, the condition has been associated with alterations in dopamine receptors, among which D2 receptors (D2R) have received little attention. This study aims to: (i)develop and standardise an experimental model of L-DOPA-induced dyskinesia in rats with hemiparkinsonism; and (ii)evaluate the correlation between D2R expression and presence of abnormal involuntary movements (AIM). We allocated 21 male Wistar rats into 3 groups: intact controls, lesioned rats (with neurotoxin 6-OHDA), and dyskinetic rats (injected with L-DOPA for 19 days). Sensorimotor impairment was assessed with behavioural tests. Dyskinetic rats gradually developed AIMs during the treatment period; front leg AIMs were more severe and locomotor AIMs less severe (Pde Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. The N-terminal region of the dopamine D2 receptor, a rhodopsin-like GPCR, regulates correct integration into the plasma membrane and endocytic routes

    Science.gov (United States)

    Cho, DI; Min, C; Jung, KS; Cheong, SY; Zheng, M; Cheong, SJ; Oak, MH; Cheong, JH; Lee, BK; Kim, KM

    2012-01-01

    BACKGROUND AND PURPOSE Functional roles of the N-terminal region of rhodopsin-like GPCR family remain unclear. Using dopamine D2 and D3 receptors as a model system, we probed the roles of the N-terminal region in the signalling, intracellular trafficking of receptor proteins, and explored the critical factors that determine the functionality of the N-terminal region. EXPERIMENTAL APPROACH The N-terminal region of the D2 receptor was gradually shortened or switched with that of the D3 receptor or a non-specific sequence (FLAG), or potential N-terminal glycosylation sites were mutated. Effects of these manipulations on surface expression, internalization, post-endocytic behaviours and signalling were determined. KEY RESULTS Shortening the N-terminal region of the D2 receptor enhanced receptor internalization and impaired surface expression and signalling; ligand binding, desensitization and down-regulation were not affected but their association with a particular microdomain, caveolae, was disrupted. Replacement of critical residues within the N-terminal region with the FLAG epitope failed to restore surface expression but partially restored the altered internalization and signalling. When the N-terminal regions were switched between D2 and D3 receptors, cell surface expression pattern of each receptor was switched. Mutations of potential N-terminal glycosylation sites inhibited surface expression but enhanced internalization of D2 receptors. CONCLUSIONS AND IMPLICATIONS Shortening of N-terminus or mutation of glycosylation sites located within the N-terminus enhanced receptor internalization but impaired the surface expression of D2 receptors. The N-terminal region of the D2 receptor, in a sequence-specific manner, controls the receptor's conformation and integration into the plasma membrane, which determine its subcellular localization, intracellular trafficking and signalling properties. PMID:22117524

  10. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Directory of Open Access Journals (Sweden)

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  11. Adenosine A2A receptors modulate the dopamine D2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex.

    Science.gov (United States)

    Real, Joana I; Simões, Ana Patrícia; Cunha, Rodrigo A; Ferreira, Samira G; Rial, Daniel

    2018-05-01

    Prefrontal cortex (PFC) circuits are modulated by dopamine acting on D 1 - and D 2 -like receptors, which are pharmacologically exploited to manage neuropsychiatric conditions. Adenosine A 2A receptors (A 2 A R) also control PFC-related responses and A 2 A R antagonists are potential anti-psychotic drugs. As tight antagonistic A 2 A R-D 2 R and synergistic A 2 A R-D 1 R interactions occur in other brain regions, we now investigated the crosstalk between A 2 A R and D 1 /D 2 R controlling synaptic transmission between layers II/III and V in mouse PFC coronal slices. Dopamine decreased synaptic transmission, a presynaptic effect based on the parallel increase in paired-pulse responses. Dopamine inhibition was prevented by the D 2 R-like antagonist sulpiride but not by the D 1 R antagonist SCH23390 and was mimicked by the D 2 R agonist sumanirole, but not by the agonists of either D 4 R (A-412997) or D 3 R (PD128907). Dopamine inhibition was prevented by the A 2 A R antagonist, SCH58261, and attenuated in A 2 A R knockout mice. Accordingly, triple-labelling immunocytochemistry experiments revealed the co-localization of A 2 A R and D 2 R immunoreactivity in glutamatergic (vGluT1-positive) nerve terminals of the PFC. This reported positive A 2 A R-D 2 R interaction controlling PFC synaptic transmission provides a mechanistic justification for the anti-psychotic potential of A 2 A R antagonists. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Imaging of D2 dopamine receptors of patients with Parkinson's disease using SPECT and 131I-IBZM

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Jian; Jiang Yuping; Lu Chuanzhen

    2001-01-01

    Objective: To evaluate the usefulness of SPECT with 131 I-IBZM in imaging of D 2 Dopamine receptors in patients with Parkinson's disease (PD). Methods: Six patients which early unmedicated PD, six patients with moderate or advanced PD treated with long-term oral L-Dopa and Four control subjects were investigated with SPECT using 131 I-IBZM as dopamine receptor ligand. The ratio of basal ganglia to occipital cortex (BG/OC) and ratio of basal ganglia to frontal cortex (BG/FC) were calculated as semiquantitative parameter of striatal D 2 dopamine receptor's function. Results: The SPECT images revealed high uptake of IBZM in the basal ganglia. In the early unmedicated PD group, the BG/PC and BG/FC rates were significantly higher in the striatum contralateral to the parkinsonism. In the moderate or advanced PD group, no significant differences were observed bilaterally, and the BG/OC and the BG/FC rates in this group was lower than those of the control. Conclusion: 131 I-IBZM with SPECT imaging is useful in evaluating patients with Parkinson's disease

  13. Comparative study of D2 receptors and content of DA in striatum before and after electro-acupuncture treatment

    International Nuclear Information System (INIS)

    Lin Yansong; Lin Xiangtong

    1999-01-01

    Objective: To evaluate the change of D 2 receptors and its relationship with DA content in experimental hemi-parkinsonism rats before and after electron-acupuncture treatment. Methods: 125 I-IBZM D 2 receptor cerebral autoradiographic analysis, HPLC-ECD DA and its metabolites, homovanillic acid (HVA), 3,4-di-hydroxyphenylacetic acid (DOPAC) content detection were used to study in striatum in before treatment, electro-acupuncture treatment and treatment control group. Results: 1) The DA, HVA and DOPAC level in striatum of lesioned side in electro-acupuncture group was increased comparing with the before treatment and treatment control group (P 125 I-IBZM uptake ratio was 8.04 +- 0.71, (29.34 +- 4.83)% more than that of the contralateral side, but no significant difference was observed as compared with that of the pretreatment group [(8.09 +- 0.52), P>0.05]; however it was much lower than that of the treatment control group (8.61 +- 0.63), P 2 receptors' up regulation in rats with experimental hemi-parkinsonism

  14. Electroacupuncture-Induced Neuroprotection against Cerebral Ischemia in Rats: Role of the Dopamine D2 Receptor

    Directory of Open Access Journals (Sweden)

    Ming-Shu Xu

    2013-01-01

    Full Text Available Background. Cerebral ischemia is known to produce brain damage and related behavioural deficits, including memory deficits and motor disorders. Evidence shows that EA significantly promotes recovery of neurological function and thus improves quality of life. Objective. Evidence exists for the involvement of catecholamines in human neuroplasticity. A better understanding of dopaminergic (DAergic modulation in this process will be important. Methods. A total of 72 adult male Sprague-Dawley (SD rats were divided into 6 groups: normal, model, EA, spiperone group, EA + spiperone group, and pergolide. The middle cerebral artery occlusion (MCAO model was used in all 6 groups except the normal group. A behavioural assessment was conducted at 1, 3, 5, and 7 days after MCAO. The percent of brain infarct area was also determined 7 days after MCAO. Tyrosine hydroxylase (TH and growth-associated protein 43 (GAP-43 fluorescence double labeling was performed in the striatum. Results. In this study, we found that EA at Fengchi (GB20 acupoints resulted in marked improvements based on a behavioural assessment. Both TTC staining and GAP-43 immunofluorescence labeling results showed that EA treatment reduced ischemia injury and promoted neuroplasticity compared with the model group. The D2R-selective agonist, pergolide, showed similar results, but these results were reversed by the D2R-selective antagonist, spiperone. We also found that there were more colocalization and expression of GAP-43 and TH in the EA and pergolide groups than those in the other groups. Conclusion. These results suggest that the neuroplasticity induced by EA was mediated by D2 autoreceptors in DAergic neurons.

  15. Involvement of Dopamine D1/D5 and D2 Receptors in Context-Dependent Extinction Learning and Memory Reinstatement.

    Science.gov (United States)

    André, Marion Agnès Emma; Manahan-Vaughan, Denise

    2015-01-01

    Dopamine contributes to the regulation of higher order information processing and executive control. It is important for memory consolidation processes, and for the adaptation of learned responses based on experience. In line with this, under aversive learning conditions, application of dopamine receptor antagonists prior to extinction result in enhanced memory reinstatement. Here, we investigated the contribution of the dopaminergic system to extinction and memory reinstatement (renewal) of an appetitive spatial learning task in rodents. Rats were trained for 3 days in a T-maze (context "A") to associate a goal arm with a food reward, despite low reward probability (acquisition phase). On day 4, extinction learning (unrewarded) occurred, that was reinforced by a context change ("B"). On day 5, re-exposure to the (unrewarded) "A" context took place (renewal of context "A", followed by extinction of context "A"). In control animals, significant extinction occurred on day 4, that was followed by an initial memory reinstatement (renewal) on day 5, that was, in turn, succeeded by extinction of renewal. Intracerebral treatment with a D1/D5-receptor antagonist prior to the extinction trials, elicited a potent enhancement of extinction in context "B". By contrast, a D1/D5-agonist impaired renewal in context "A". Extinction in the "A" context on day 5 was unaffected by the D1/D5-ligands. Treatment with a D2-receptor antagonist prior to extinction had no overall effect on extinction in context "B" or renewal in context "A", although extinction of the renewal effect was impaired on day 5, compared to controls. Taken together, these data suggest that dopamine acting on the D1/D5-receptor modulates both acquisition and consolidation of context-dependent extinction. By contrast, the D2-receptor may contribute to context-independent aspects of this kind of extinction learning.

  16. Involvement of dopamine D1/D5 and D2 receptors in context-dependent extinction learning and memory reinstatement

    Directory of Open Access Journals (Sweden)

    Marion Agnes Emma Andre

    2016-01-01

    Full Text Available Dopamine contributes to the regulation of higher order information processing and executive control. It is important for memory consolidation processes, and for the adaptation of learned responses based on experience. In line with this, under aversive learning conditions, application of dopamine receptor antagonists prior to extinction result in enhanced memory reinstatement. Here, we investigated the contribution of the dopaminergic system to extinction and memory reinstatement (renewal of an appetitive spatial learning task in rodents. Rats were trained for 3 days in a T-maze (context ‘A’ to associate a goal arm with a food reward, despite low reward probability (acquisition phase. On day 4, extinction learning (unrewarded occurred, that was reinforced by a context change (‘B’. On day 5, re-exposure to the (unrewarded ‘A’-context took place (renewal of context ‘A’, followed by extinction of context ‘A’. In control animals, significant extinction occurred on day 4, that was followed by an initial memory reinstatement (renewal on day 5, that was, in turn, succeeded by extinction of renewal. Intracerebral treatment with a D1/D5-receptor antagonist prior to the extinction trials, elicited a potent enhancement of extinction in context ‘B’. By contrast, a D1/D5-agonist impaired renewal in context ’A’. Extinction in the ‘A’ context on day 5 was unaffected by the D1/D5-ligands. Treatment with a D2-receptor antagonist prior to extinction had no overall effect on extinction in context ‘B or renewal in context ‘A’, although extinction of the renewal effect was impaired on day 5, compared to controls.Taken together, these data suggest that dopamine acting on the D1/D5-receptor modulates both acquisition and consolidation of context-dependent extinction. By contrast, the D2-receptor may contribute to context-independent aspects of this kind of extinction learning.

  17. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  18. Leptin receptor blockade reduces intrahepatic vascular resistance and portal pressure in an experimental model of rat liver cirrhosis.

    Science.gov (United States)

    Delgado, María Gabriela; Gracia-Sancho, Jordi; Marrone, Giusi; Rodríguez-Vilarrupla, Aina; Deulofeu, Ramon; Abraldes, Juan G; Bosch, Jaume; García-Pagán, Juan Carlos

    2013-10-01

    Increased hepatic vascular resistance mainly due to elevated vascular tone and to fibrosis is the primary factor in the development of portal hypertension in cirrhosis. Leptin, a hormone associated with reduction in nitric oxide bioavailability, vascular dysfunction, and liver fibrosis, is increased in patients with cirrhosis. We aimed at evaluating whether leptin influences the increased hepatic resistance in portal hypertension. CCl4-cirrhotic rats received the leptin receptor-blocker ObR antibody, or its vehicle, every other day for 1 wk. Hepatic and systemic hemodynamics were measured in both groups. Hepatic nitric oxide production and bioavailability, together with oxidative stress, nitrotyrosinated proteins, and liver fibrosis, were evaluated. In cirrhotic rats, leptin-receptor blockade significantly reduced portal pressure without modifying portal blood flow, suggesting a reduction in the intrahepatic resistance. Portal pressure reduction was associated with increased nitric oxide bioavailability and with decreased O2(-) levels and nitrotyrosinated proteins. No changes in systemic hemodynamics and liver fibrosis were observed. In conclusion, the present study shows that blockade of the leptin signaling pathway in cirrhosis significantly reduces portal pressure. This effect is probably due to a nitric oxide-mediated reduction in the hepatic vascular tone.

  19. Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.

    Science.gov (United States)

    Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B

    2016-04-01

    This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.

  20. Initial experience with SPECT examinations using [123I]IBZM as a D2-dopamine receptor antagonist in Parkinson's disease

    International Nuclear Information System (INIS)

    Cordes, M.; Henkes, H.; Hierholzer, J.; Eichstaedt, H.; Felix, R.; Laudahn, D.; Braeu, H.; Girke, W.; Kramp, W.

    1991-01-01

    [ 123 I]IBZM is a new radioactive labelled ligand which has a high affinity and specificity to D2-dopamine receptors. The in vivo kinetics of [ 123 I]IBZM were studied in patients with unilateral and bilateral accentuated idiopathic Parkinson's disease. The uptake in the basal ganglias and the imaging properties of this D2 receptor antagonist as a radiopharmaceutical for SPECT examinations had to be investigated. 5 patients, aged 42-66 years, (2m/3f) were examined. Each patient received 185 MBq [ 123 I]IBZM intravenously. Blood samples were taken 0-120 min post injection (p.i.) and time activity curves were plotted. Three SPECT examinations were performed (I: 30-50 min; II: 50-70 min; and III: 70-90 min p.i.). The count rates (counts/pixel) in the basal ganglias and the cerebellum were measured for each SPECT series on transverse slices using the region-of-interest technique. The time-activity curve of [ 123 I]IBZM shows a rapid decline in plasma during the first 10 min followed by a plateau until 120 min after injection. The SPECT examinations demonstrate the highest count rate in the basal ganglia during SPECT series III (i.e., 70-90 min p.i.). The side-to-side difference of the count rates were in the range of 3 percent in four patients, and 10 percent in one patient. The biokinetic data of [ 123 I]IBZM make this substance capable as a radiopharmaceutical for SPECT examinations. The basal ganglia are best visualized 70-90 min p.i., thus [ 123 I]IBZM seems to be a promising imaging agent for diseases of the D2-dopaminergic receptor system. (author). 7 refs.; 4 figs.; 4 tabs

  1. THE EFFECTS OF ACUTE AND CHRONIC STRESS ON ERYTHROCYTE DYNAMIC IN COMBINATION WITH ß–ADRENERGIC RECEPTORS BLOCKADE IN RATS

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2005-08-01

    Full Text Available : 3 consecutive days propranolol hydrochloride administration (5 mg/kg b.w., subcutaneous injections under acute and chronic stress conditions causes changes of peripheral erythrocyte distribution in rats. The effects of acute stress and its combination with ȕ-adrenergic receptor blockade on erythrocyte dynamic were more pregnant beside the effects of chronic stress and its combination with ȕ-adrenergic receptor blockade, respectively. ȕ-adrenergic mechanisms were shown to be involved in regulation of erythrocyte dynamic in acute and chronic stress response.

  2. The partial dopamine D2 receptor agonist aripiprazole is associated with weight gain in adolescent anorexia nervosa.

    Science.gov (United States)

    Frank, Guido K W; Shott, Megan E; Hagman, Jennifer O; Schiel, Marissa A; DeGuzman, Marisa C; Rossi, Brogan

    2017-04-01

    Finding medication to support treatment of anorexia nervosa has been difficult. Neuroscience-based approaches may help in this effort. Recent brain imaging studies in adults and adolescents with anorexia nervosa suggest that dopamine-related reward circuits are hypersensitive and could provide a treatment target. Here, we present a retrospective chart review of 106 adolescents with anorexia nervosa some of whom were treated with the dopamine D2 receptor partial agonist aripiprazole during treatment in a specialized eating disorder program. The results show that aripiprazole treatment was associated with greater increase in body mass index (BMI) during treatment. The use of dopamine receptor agonists may support treatment success in anorexia nervosa and should be further investigated. © 2017 Wiley Periodicals, Inc.

  3. Preparation of [123I]- and [125I]epidepride: a dopamine D-2 receptor antagonist radioligand

    International Nuclear Information System (INIS)

    Clanton, J.A.; Schmidt, D.E.; Ansari, M.S.; Manning, R.G.; Kessler, R.M.; Paulis, T. de; Vanderbilt Univ., Nashville, TN; Baldwin, R.M.

    1991-01-01

    (S)-(-)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-5-[ 123 I] iodo-2,3-dimethoxybenzamide (TDP 517) (proposed generic name, [ 123 I]epidepride) is the iodine-123 substituted analogue of isoremoxipride (FLB 457), both of which are very potent dopamine D-2 antagonists (epidepride K D 0.024 nM). [ 123 I] Epidepride was radioiodinated in 60-70% radiochemical yields in 35 min from the corresponding 5-(tributyltin) derivative using Na 123 I with a specific radioactivity of 3000 Ci/mmol, and oxidized in situ with chloramine-T. The aryltin precursor was prepared from non-labelled epidepride by palladium-catalyzed stannylation using bis(tri-n-butyltin) in triethylamine. Alternatively, using no carrier-added Na 125 I as the radioisotope, [ 125 I] epidepride at 2000 Ci/mmol specific radioactivity was prepared in 86% radiochemical yield and 99% radiochemical purity after purification by reverse phase HPLC in ethanolic phosphate buffer. (author)

  4. Experimental study of the role of blocking of 5-HT3 serotonin receptors and D2 dophamin receptors in the mechanism of early radiation vomiting in monkeys

    International Nuclear Information System (INIS)

    Martirosov, K.S.; Grigor'ev, Yu.G.; Zorin, V.V.; Andrianova, I.E.

    2000-01-01

    Specific activity of Latranum and Dimetphramidum is studied using experimental model of early radiation vomiting on 17 monkeys, mass 6-9 kg inherent on usual ration of vivarium. The experiments with M. fasciculata monkeys exposed to 137 Cs γ-radiation with a dose of 6.9 Gy showed that Latranum, a blocker of serotonin 5-HT 3 receptors, is a more efficient antimetric than Dimetphramidum, a D 2 dophamin lytic. This suggested by fewer animals with emetic reaction of by less severe vomiting in case they have any. The results agree well with a hypothesis that serotonin receptors are dominant in the chemoreceptor trigger zone of monkeys [ru

  5. Iterative reconstruction or filtered backprojection for semi-quantitative assessment of dopamine D2 receptor SPECT studies?

    International Nuclear Information System (INIS)

    Koch, Walter; Suessmair, Christine; Tatsch, Klaus; Poepperl, Gabriele

    2011-01-01

    In routine clinical practice striatal dopamine D 2 receptor binding is generally assessed using data reconstructed by filtered backprojection (FBP). The aim of this study was to investigate the use of an iterative reconstruction algorithm (ordered subset expectation maximization, OSEM) and to assess whether it may provide comparable or even better results than those obtained by standard FBP. In 56 patients with parkinsonian syndromes, single photon emission computed tomography (SPECT) scans were acquired 2 h after i.v. application of 185 MBq [ 123 I]iodobenzamide (IBZM) using a triple-head gamma camera (Siemens MS 3). The scans were reconstructed both by FBP and OSEM (3 iterations, 8 subsets) and filtered using a Butterworth filter. After attenuation correction the studies were automatically fitted to a mean template with a corresponding 3-D volume of interest (VOI) map covering striatum (S), caudate (C), putamen (P) and several reference VOIs using BRASS software. Visual assessment of the fitted studies suggests a better separation between C and P in studies reconstructed by OSEM than FBP. Unspecific background activity appears more homogeneous after iterative reconstruction. The correlation shows a good accordance of dopamine receptor binding using FBP and OSEM (intra-class correlation coefficients S: 0.87; C: 0.88; P: 0.84). Receiver-operating characteristic (ROC) analyses show comparable diagnostic power of OSEM and FBP in the differentiation between idiopathic parkinsonian syndrome (IPS) and non-IPS. Iterative reconstruction of IBZM SPECT studies for assessment of the D 2 receptors is feasible in routine clinical practice. Close correlations between FBP and OSEM data suggest that iteratively reconstructed IBZM studies allow reliable quantification of dopamine receptor binding even though a gain in diagnostic power could not be demonstrated. (orig.)

  6. The Role of Endogenous D2 Receptor Levels in Morphine Addiction: A Correlative Study of Morphine Place Conditioning and In Vivo [3H]-Raclopride Binding

    Energy Technology Data Exchange (ETDEWEB)

    Khan, N.; Gatley, S.

    2004-01-01

    Dopamine is a neurotransmitter that has a wide array of effects on an individual’s mental state. It is vital in the regulation of motor skills and in generating the effects of substance abuse. This study examined the dopamine D2 receptors found in the striatum of the brain. The impetus for investigating this receptor lies in the perception that it plays an influential role in drug addiction. It has been conjectured on the basis of human PET studies that possession of low levels of D2 receptors will heighten an individual’s susceptibility to drug addiction. However, an alternative explanation of low D2 receptor levels in drug dependent individuals is that these levels are a consequence of drug abuse. To understand this phenomenon, the present study employed the paradigm of conditioned place preference (CPP). In CPP, individuals of an out-bred mouse strain are observed to spend time in environments where they had previously been exposed to a drug that is abused by humans. The drug chosen for our studies was morphine because it has been previously shown to generate a robust place preference in mice and is a prototypic abused drug in humans. D2 receptor levels were quantified using an in vivo binding study involving [3H]raclopride, a radioactive compound that binds to D2 receptors. The results showed a significant place preference for morphine following the conditioning procedure. Additionally, data from the binding analysis agreed with previous studies that the striatum contains high levels of D2 receptors. However, there was no consistent relationship between the extent of morphine CPP and D2 receptor levels as revealed by [3H]-RAC binding. This finding does not support the hypothesis that low levels of D2 receptors predispose a mouse to easy morphine conditioning. Further experiments are required to determine the ability to generalize our findings to other species and other drugs of abuse.

  7. Paroxetine and Low-dose Risperidone Induce Serotonin 5-HT1A and Dopamine D2 Receptor Heteromerization in the Mouse Prefrontal Cortex.

    Science.gov (United States)

    Kolasa, Magdalena; Solich, Joanna; Faron-Górecka, Agata; Żurawek, Dariusz; Pabian, Paulina; Łukasiewicz, Sylwia; Kuśmider, Maciej; Szafran-Pilch, Kinga; Szlachta, Marta; Dziedzicka-Wasylewska, Marta

    2018-05-01

    Recently, it has been shown that serotonin 5-HT 1A receptor interacts with dopamine D2 receptor in vitro. However, the existence of 5-HT 1A -D2 heteromers in native tissue remains unexplored. In the present study, we investigated 5-HT 1A -D2 receptor heteromerization in mice treated acutely or chronically with paroxetine (10 mg/kg) or risperidone (0.05 mg/kg). Receptor heteromerization was visualized and quantified in the mouse brain by in situ proximity ligation assay (PLA). Additionally, we aimed to determine the cellular localization of 5-HT 1A -D2 receptor heteromers in mouse adult primary neuronal cells by immunofluorescent staining with markers for astrocytes (GFAP) and neurons (NeuN and MAP2). The results from the current study demonstrated that 5-HT 1A and D2 receptor co-localization and heteromerization occurred in the mouse prefrontal cortex. Counterstaining after PLA confirmed neuronal (pyramidal and GABAergic) as well as astrocytal localization of 5-HT 1A -D2 receptor heteromers. Chronic administration of paroxetine or risperidone increased the level of 5-HT 1A -D2 receptor heteromers in the prefrontal cortex. These changes were not accompanied by any changes in the expression of mRNAs (measured by in situ hybridization) or densities of 5-HT 1A and D2 receptors (quantified by receptor autoradiography with [3H]8-OH-DPAT and [3H]domperidone, respectively), what all indicated that paroxetine and risperidone facilitated 5-HT 1A -D2 heteromer formation independently of the receptor expression. In vitro homogenous time-resolved FRET (HTRF) study confirmed the ability of tested drugs to influence the human 5-HT 1A -D2 heteromer formation. The obtained data indicate that the increase in 5-HT 1A -D2 receptor heteromerization is a common molecular characteristic of paroxetine and low-dose risperidone treatment. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Central dopamine D2 receptors regulate growth-hormone-dependent body growth and pheromone signaling to conspecific males.

    Science.gov (United States)

    Noaín, Daniela; Pérez-Millán, M Inés; Bello, Estefanía P; Luque, Guillermina M; Casas Cordero, Rodrigo; Gelman, Diego M; Peper, Marcela; Tornadu, Isabel García; Low, Malcolm J; Becú-Villalobos, Damasia; Rubinstein, Marcelo

    2013-03-27

    Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Although the importance of the GH axis and central DA neurotransmission in social dominance and fitness is clearly appreciated, the two systems have always been studied unconnectedly. Here we conducted a cell-specific genetic dissection study in conditional mutant mice that selectively lack DA D2 receptors (D2R) from pituitary lactotropes (lacDrd2KO) or neurons (neuroDrd2KO). Whereas lacDrd2KO mice developed a normal GH axis, neuroDrd2KO mice displayed fewer somatotropes; reduced hypothalamic Ghrh expression, pituitary GH content, and serum IGF-I levels; and exhibited reduced body size and weight. As a consequence of a GH axis deficit, neuroDrd2KO adult males excreted low levels of major urinary proteins and their urine failed to promote aggression and territorial behavior in control male challengers, in contrast to the urine taken from control adult males. These findings reveal that central D2Rs mediate a neuroendocrine-exocrine cascade that controls the maturation of the GH axis and downstream signals that are critical for fitness, social dominance, and competition between adult males.

  9. Dopamine D2 Receptor Is Involved in Alleviation of Type II Collagen-Induced Arthritis in Mice.

    Science.gov (United States)

    Lu, Jian-Hua; Liu, Yi-Qian; Deng, Qiao-Wen; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-01-01

    Human and murine lymphocytes express dopamine (DA) D2-like receptors including DRD2, DRD3, and DRD4. However, their roles in rheumatoid arthritis (RA) are less clear. Here we showed that lymphocyte DRD2 activation alleviates both imbalance of T-helper (Th)17/T-regulatory (Treg) cells and inflamed symptoms in a mouse arthritis model of RA. Collagen-induced arthritis (CIA) was prepared by intradermal injection of chicken collagen type II (CII) in tail base of DBA/1 mice or Drd2 (-/-) C57BL/6 mice. D2-like receptor agonist quinpirole downregulated expression of proinflammatory Th17-related cytokines interleukin- (IL-) 17 and IL-22 but further upregulated expression of anti-inflammatory Treg-related cytokines transforming growth factor- (TGF-) β and IL-10 in lymphocytes in vitro and in ankle joints in vivo in CIA mice. Quinpirole intraperitoneal administration reduced both clinical arthritis score and serum anti-CII IgG level in CIA mice. However, Drd2 (-/-) CIA mice manifested more severe limb inflammation and higher serum anti-CII IgG level and further upregulated IL-17 and IL-22 expression and downregulated TGF-β and IL-10 expression than wild-type CIA mice. In contrast, Drd1 (-/-) CIA mice did not alter limb inflammation or anti-CII IgG level compared with wild-type CIA mice. These results suggest that DRD2 activation is involved in alleviation of CIA symptoms by amelioration of Th17/Treg imbalance.

  10. Positron emission tomography with (18F)methylspiperone demonstrates D2 dopamine receptor binding differences of clozapine and haloperidol

    International Nuclear Information System (INIS)

    Karbe, H.; Wienhard, K.; Huber, M.; Herholz, K.; Heiss, W.D.; Hamacher, K.; Coenen, H.H.; Stoecklin, G.; Loevenich, A.

    1991-01-01

    Four schizophrenic patients were investigated with dynamic positron emission tomography (PET) using ( 18 F)fluorodeoxyglucose (FDG) and ( 18 F)methylspiperone (MSP) as tracers. Two schizophrenics were on haloperidol therapy at the time of MSP PET. The other two schizophrenics were treated with clozapine, in one of them MSP PET was carried out twice with different daily doses (100 mg and 450mg respectively). Neuroleptic serum levels were measured in all patients. Results were compared with MSP PET of two drugfree male control subjects and with a previous fluoroethylspiperone (FESP) study of normals. Three hours after tracer injection specific binding of MSP was observed in the striatum in all cases. The striatum to cerebellum ratio was used to estimate the degree of neuroleptic-caused striatal D 2 dopamine receptor occupancy. In the haloperidol treated patients MSP binding was significantly decreased, whereas in the clozapine treated patients striatum to cerebellum ratio was normal. Even the increase of clozapine dose in the same patient had no influence on this ratio. Despite the smaller number of patients the study shows for the first time in humans that striatal MSP binding reflects the different D 2 dopamine receptor affinities of clozapine and haloperidol. (authors)

  11. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    Science.gov (United States)

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A randomized trial on mineralocorticoid receptor blockade in men: effects on stress responses, selective attention, and memory.

    Science.gov (United States)

    Cornelisse, Sandra; Joëls, Marian; Smeets, Tom

    2011-12-01

    Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be important in determining the threshold for activation of the hypothalamic-pituitary-adrenal (HPA) axis. We investigated the effects of MR blockade on HPA axis responses to stress and stress-induced changes in cognitive function. In a double-blind, placebo-controlled study, 64 healthy young men received 400 mg of the MR antagonist spironolactone or placebo. After 1.5 h, they were exposed to either a Trier Social Stress Test or a non-stressful control task. Responses to stress were evaluated by hormonal, subjective, and physiological measurements. Afterwards, selective attention, working memory, and long-term memory performance were assessed. Spironolactone increased basal salivary cortisol levels as well as cortisol levels in response to stress. Furthermore, spironolactone significantly impaired selective attention, but only in the control group. The stress group receiving spironolactone showed impaired working memory performance. By contrast, long-term memory was enhanced in this group. These data support a role of MRs in the regulation of the HPA axis under basal conditions as well as in response to stress. The increased availability of cortisol after spironolactone treatment implies enhanced GR activation, which, in combination with MR blockade, presumably resulted in a decreased MR/GR activation ratio. This condition influences both selective attention and performance in various memory tasks.

  13. Adenosine A2A receptor blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    Directory of Open Access Journals (Sweden)

    Ahmed M Fathalla

    2016-02-01

    Full Text Available Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson's disease (PD symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1,3-dipropylxanthine, two selective A2Aand A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h, rotenone(1.5 mg/kg/48 h, s.c., ZM241385 (3.3 mg/kg/day, i.p and 8-cyclopentyl-1,3-dipropylxanthine (5 mg/kg/day, i.p. After that, animals were subjected to behavioral (stride length and grid walking and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography. In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby high performance liquid chromatography. The effect of rotenone was partially preventedin the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 has led toan improvement improved of motor function and movement coordination (a partial increase of stride length and partial decrease in the number of foot slips and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2Areceptor blockade by ZM241385, but not A1receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients.. This may provide a more selective treatment strategy for PD patients.

  14. Striatal dopamine D2 receptor binding and dopamine release during cue-elicited craving in recently abstinent opiate-dependent males

    NARCIS (Netherlands)

    Zijlstra, Fleur; Booij, Jan; van den Brink, Wim; Franken, Ingmar H. A.

    2008-01-01

    Opiate addiction is a chronic disorder characterized by relapse behaviour, often preceded by craving and anhedonia. Chronic craving and anhedonia have been associated with low availability of dopamine D2 receptors (D2Rs) and cue-elicited craving has been linked with endogenous dopamine release. We

  15. Nucleus Accumbens Dopamine D2-Receptor Expressing Neurons Control Behavioral Flexibility in a Place Discrimination Task in the IntelliCage

    Science.gov (United States)

    Macpherson, Tom; Morita, Makiko; Wang, Yanyan; Sasaoka, Toshikuni; Sawa, Akira; Hikida, Takatoshi

    2016-01-01

    Considerable evidence has demonstrated a critical role for the nucleus accumbens (NAc) in the acquisition and flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs). Here we used the IntelliCage, an automated…

  16. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats

    Directory of Open Access Journals (Sweden)

    Ohtani N

    2016-10-01

    Full Text Available Norimasa Ohtani, Eiji Masaki Division of Dento-oral Anesthesiology, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan Background: Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats.Methods: Male Sprague-Dawley rats (250–300 g were anesthetized with sevoflurane and an intrathecal (IT catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole, or a D2-like receptor antagonist (sulpiride was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision.Results: Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect.Conclusion: A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold. Keywords: postoperative pain, descending pathway

  17. Safety and efficacy of the prostaglandin D2 receptor antagonist AMG 853 in asthmatic patients.

    Science.gov (United States)

    Busse, William W; Wenzel, Sally E; Meltzer, Eli O; Kerwin, Edward M; Liu, Mark C; Zhang, Nan; Chon, Yun; Budelsky, Alison L; Lin, Joseph; Lin, Shao-Lee

    2013-02-01

    The D-prostanoid receptor and the chemoattractant receptor homologous molecule expressed on T(H)2 cells (CRTH2) are implicated in asthma pathogenesis. AMG 853 is a potent, selective, orally bioavailable, small-molecule dual antagonist of human D-prostanoid and CRTH2. We sought to determine the efficacy and safety of AMG 853 compared with placebo in patients with inadequately controlled asthma. Adults with moderate-to-severe asthma were randomized to placebo; 5, 25, or 100 mg of oral AMG 853 twice daily; or 200 mg of AMG 853 once daily for 12 weeks. All patients continued their inhaled corticosteroids. Long-acting β-agonists were not allowed during the treatment period. Allowed concomitant medications included short-acting β-agonists and a systemic corticosteroid burst for asthma exacerbation. The primary end point was change in total Asthma Control Questionnaire score from baseline to week 12. Secondary and exploratory end points included FEV(1), symptom scores, rescue short-acting β-agonist use, and exacerbations. Among treated patients, no effect over placebo (n = 79) was observed in mean changes in Asthma Control Questionnaire scores at 12 weeks (placebo, -0.492; range for AMG 853 groups [n = 317], -0.444 to -0.555). No significant differences between the active and placebo groups were observed for secondary end points. The most commonly reported adverse events were asthma, upper respiratory tract infection, and headache; 9 patients experienced serious adverse events, all of which were deemed unrelated to study treatment by the investigator. AMG 853 as an add-on to inhaled corticosteroid therapy demonstrated no associated risks but was not effective at improving asthma symptoms or lung function in patients with inadequately controlled moderate-to-severe asthma. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  18. Repeated Blockade of NMDA Receptors during Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Jitao eLi

    2016-03-01

    Full Text Available Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg, a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV-, calbindin (CB- and calretinin (CR-positive neurons in mPFC were analyzed at either 24 hours or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease.

  19. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions.

    Science.gov (United States)

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P; Burgoyne, Robert D; Mayans, Olga; Derrick, Jeremy P; Lian, Lu-Yun

    2015-07-24

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later

    International Nuclear Information System (INIS)

    Asensio, S.; Goldstein, R.; Romero, M.J.; Romero, F.J.; Wong, C.T.; Alia-Klein, N.; Tomasi, D.; Wang, G.-J.; Telang, F.; Volkow, N.D.; Goldstein, R.Z.

    2010-01-01

    Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with ( 11 C)raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals.

  1. Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later

    Energy Technology Data Exchange (ETDEWEB)

    Asensio, S.; Goldstein, R.; Asensio, S.; Romero, M.J.; Romero, F.J.; Wong, C.T.; Alia-Klein, N.; Tomasi, D.; Wang, G.-J.; Telang, F..; Volkow, N.D.; Goldstein, R.Z.

    2010-05-01

    Low levels of dopamine (DA) D2 receptor availability at a resting baseline have been previously reported in drug addicted individuals and have been associated with reduced ventral and dorsal prefrontal metabolism. The reduction in DA D2 receptor availability along with the reduced ventral frontal metabolism is thought to underlie compromised sensitivity to nondrug reward, a core characteristic of drug addiction. We therefore hypothesized that variability in DA D2 receptor availability at baseline will covary with dynamic responses to monetary reward in addicted individuals. Striatal DA D2 receptor availability was measured with [{sup 11}C]raclopride and positron emission tomography and response to monetary reward was measured (an average of three years later) with functional magnetic resonance imaging in seven cocaine-addicted individuals. Results show that low DA D2 receptor availability in the dorsal striatum was associated with decreased thalamic response to monetary reward; while low availability in ventral striatum was associated with increased medial prefrontal (Brodmann Area 6/8/32) response to monetary reward. These preliminary results, that need to be replicated in larger sample sizes and validated with healthy controls, suggest that resting striatal DA D2 receptor availability predicts variability in functional responses to a nondrug reinforcer (money) in prefrontal cortex, implicated in behavioral monitoring, and in thalamus, implicated in conditioned responses and expectation, in cocaine-addicted individuals.

  2. Sulpiride and the role of dopaminergic receptor blockade in the antipsychotic activity of neuroleptics

    Energy Technology Data Exchange (ETDEWEB)

    Memo, M; Battaini, F; Spano, P F; Trabucchi, M [University of Brescia, (Italy). Dept. of Pharmacology

    1981-01-01

    It is now generally recognized that dopamine receptors excist in the CNS as different subtypes: D/sub 1/ receptors, associated with adenylyl cyclase activity, and D/sub 2/ receptor, uncoupled to a cyclic AMP generating system. In order to understand the role of D/sub 1/ and D/sub 2/ receptors in the antipsychotic action of neuroleptics, we have performed subchronic treatment with haloperidol, a drug which acts on D/sub 1/ receptors, and sulpiride, a selective antagonist to D/sub 2/ receptors. Long-term treatment with haloperidol does not induce significant supersensitivity of the D/sub 2/ receptors. In fact under these conditions /sup 3/H-(-)-sulpiride binding, which is a marker of D/sub 2/ receptor function, does not increase in rat striatum, while the long-term administration of sulpiride, itself produces supersensitivity of D/sub 2/ receptors. Moreover, sulpiride does not induce supersensitivity of the D/sub 1/ receptors, characterized by /sup 3/H-spiroperidol binding. These data suggest that both types of dopamine receptors may be involved in the clinical antipsychotic effects of neuroleptics. Unilateral leison of the nigrostriatal dopaminergic pathway produces an increase of striatal dopaminergic receptors, measured either by /sup 3/H-spiroperidol and /sup 3/H-(-)-sulpiride binding. These findings suggest that D/sub 1/ and D/sub 2/ receptors are present in postsynaptic membranes while it is still not known whether they exist in the same cellular elements.

  3. Effects of angiotensin II receptor blockade on cerebral, cardiovascular, counter-regulatory, and symptomatic responses during hypoglycaemia in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Færch, Louise H; Thorsteinsson, Birger; Tarnow, Lise

    2015-01-01

    INTRODUCTION: High spontaneous activity of the renin-angiotensin system (RAS) results in more pronounced cognitive impairment and more prolonged QTc interval during hypoglycaemia in type 1 diabetes. We tested whether angiotensin II receptor blockade improves cerebral and cardiovascular function d...

  4. Possible involvement of dopamine D-1 and D-2 receptors in diazepam-induced hyperphagia in rats.

    Science.gov (United States)

    Naruse, T; Amano, H; Koizumi, Y

    1991-01-01

    Possible involvement of dopamine receptors in diazepam-induced (1 mg/kg, subcutaneous (sc] hyperphagia was studied in nondeprived rats. Pretreatment with the selective D-1 antagonist, SCH23390 (0.03 mg/kg, sc) inhibited diazepam-induced hyperphagia. In addition, pretreatment with the preferential D-2 antagonists, haloperidol (0.1 to 0.3 mg/kg, sc) and clebopride (0.1 to 0.3 mg/kg, sc) inhibited diazepam-induced hyperphagia in a dose-dependent manner. Pretreatment with co-administration of SCH23390 (0.1 mg/kg, sc) and clebopride (0.03 mg/kg, sc) completely inhibited this hyperphagia. The selective D-2 antagonist, sulpiride (40 mg/kg, sc) and the peripheral D-2 antagonist, domperidone (10 mg/kg, sc) did not affect diazepam-induced hyperphagia. However, sulpiride (10 micrograms, icv) or domperidone (2 micrograms, icv) administered centrally inhibited this hyperphagia. The highest dose of haloperidol (0.3 mg/kg, sc) or clebopride (0.3 mg/kg, sc) and higher doses of SCH23390 (0.01 and 0.03 mg/kg, sc) or SCH23390/clebopride (0.01/0.03 and 0.01/0.1 mg/kg, sc) tended to decrease spontaneous feeding in non-deprived rats. In addition, the highest dose of haloperidol, clebopride or SCH23390/clebopride inhibited spontaneous feeding in deprived rats. Interestingly, diazepam-induced hyperphagia was inhibited significantly by doses of haloperidol (0.1 mg/kg, sc), clebopride (0.1 mg/kg, sc) and SCH23390/clebopride (0.003/0.03 and 0.003/0.1 mg/kg, sc) which did not affect spontaneous feeding in non-deprived or deprived rats. Pretreatment with alpha-methyl-p-tyrosine (40 mg/kg, IP x 2, 6 and 2 h prior to diazepam administration) failed to inhibit this hyperphagia. Furthermore, pretreatment with a large dose of haloperidol (5 mg/kg, sc, 4 days before diazepam administration) augmented the sub-hyperphagic effect to diazepam (0.5 mg/kg, sc). Thus, these findings suggest that hyperphagia to diazepam is mediated in part by both dopamine D-1 and D-2 receptors in non-deprived rats.

  5. Associations between dopamine D2 receptor gene polymorphisms and schizophrenia risk: a PRISMA compliant meta-analysis

    Directory of Open Access Journals (Sweden)

    He HR

    2016-12-01

    Full Text Available Hairong He,1 Huanhuan Wu,1,2 Lihong Yang,1 Fan Gao,1 Yajuan Fan,3 Junqin Feng,3 Xiancang Ma1,3 1Clinical Research Center, The First Affiliated Hospital of Xi’an Jiaotong University, 2College of Pharmacy, Xi’an Medical University, 3Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China Objective: To determine the relationships between dopamine D2 receptor gene polymorphisms and the risk of schizophrenia using meta-analysis.Method: The PubMed, Embase, and China National Knowledge Infrastructure databases were searched to identify relevant literature published up to February 2016. The allele contrast model was used. STATA software was used for statistical analysis, with odds ratios (ORs and 95% confidence intervals (CIs calculated to evaluate the associations between dopamine D2 receptor gene polymorphisms and the risk of schizophrenia. Meta-regression and publication bias, trim-and-fill, subgroup, sensitivity, cumulative, and fail-safe number analyses were also performed.Results: This meta-analysis included 81 studies. The rs1801028 and rs1799732 were associated with schizophrenia risk among Asians (P=0.04, OR =1.25, 95% CI =1.01–1.55; P<0.01, OR =0.76, 95% CI =0.63–0.92, respectively, while the rs6277 was associated with schizophrenia risk in Caucasians (P<0.01, OR=0.72, 95% CI =0.66–0.79. The rs1800497 was also associated with schizophrenia risk in population-based controls (P<0.01, OR =0.84, 95% CI =0.72–0.97. The rs6275, rs1079597, and rs1800498 were not associated with schizophrenia risk. In addition, meta-regression indicated that the controls may be sources of heterogeneity for the rs1801028 single-nucleotide polymorphism (SNP, while ethnicity may be sources of heterogeneity for the rs6277 SNP. Publication bias was significant for the rs1801028 SNP, and this result changed after the publication bias was adjusted using the trim-and-fill method

  6. Effect of cannabinoids CB1 receptors blockade on hemodynamic parameters and endothelial function at the immobilization stress in the experiment

    Directory of Open Access Journals (Sweden)

    S. V. Gavreliuk

    2017-12-01

    Full Text Available The aim of the study was to evaluate the response of hemodynamic parameters and changes in endothelial function in modeling of CB1 cannabinoid receptors blockade in chronic stress. Materials and мethods. The study was performed on four groups of hundred-day-old rats, which were examined by ultrasonic scanning during the ten-day period of the experiment. The first group consisted of intact animals; the second group – animals, which were exposed to immobilization stress; the third – animals which were given a solution of rimonabant hydrochloride at the rate of 10 mg×kg-1 of animal weight per day daily per os; the fourth group consisted of animals which daily received a solution of rimonabant hydrochloride at the rate of 10 mg×kg-1 of animal weight per day and were exposed to immobilization stress. The intraluminal vessel diameter, the intima-media complex thickness, endothelium-dependent and endothelium-independent dilation were quantified in the ultrasound examination. Quantitative characteristics of the blood flow were studied: peak systolic velocity, end diastolic velocity, resistive index and peak-systolic/end-diastolic ratio, and estimated mean blood flow velocity. Results. It has been found that the effect of chronic immobilization stress in 100-day-old male rats causes intima-media complex structure and thickness change, endothelial dysfunction and increase in the abdominal aorta intraluminal diameter. Hemodynamics changes are characterized by a decrease in the average blood flow velocity and an increase in the values of indices characterizing the vascular wall peripheral resistance. Prolonged blockade of cannabinoids CB1 receptors leads to endothelial dysfunction development, a decrease in the intraluminal diameter of the abdominal aorta and a decrease in the average blood flow velocity while vascular wall elastic properties maintaining. This affects the sensitivity of cardiovascular system to nitrogen oxide, which is manifested by

  7. Remodeling of intrinsic cardiac neurons: effects of β-adrenergic receptor blockade in guinea pig models of chronic heart disease.

    Science.gov (United States)

    Hardwick, Jean C; Southerland, E Marie; Girasole, Allison E; Ryan, Shannon E; Negrotto, Sara; Ardell, Jeffrey L

    2012-11-01

    Chronic heart disease induces remodeling of cardiac tissue and associated neuronal components. Treatment of chronic heart disease often involves pharmacological blockade of adrenergic receptors. This study examined the specific changes in neuronal sensitivity of guinea pig intrinsic cardiac neurons to autonomic modulators in animals with chronic cardiac disease, in the presence or absence of adrenergic blockage. Myocardial infarction (MI) was produced by ligature of the coronary artery and associated vein on the dorsal surface of the heart. Pressure overload (PO) was induced by a banding of the descending dorsal aorta (∼20% constriction). Animals were allowed to recover for 2 wk and then implanted with an osmotic pump (Alzet) containing either timolol (2 mg·kg(-1)·day(-1)) or vehicle, for a total of 6-7 wk of drug treatment. At termination, intracellular recordings from individual neurons in whole mounts of the cardiac plexus were used to assess changes in physiological responses. Timolol treatment did not inhibit the increased sensitivity to norepinephrine seen in both MI and PO animals, but it did inhibit the stimulatory effects of angiotensin II on the norepinephrine-induced increases in neuronal excitability. Timolol treatment also inhibited the increase in synaptically evoked action potentials observed in PO animals with stimulation of fiber tract bundles. These results demonstrate that β-adrenergic blockade can inhibit specific aspects of remodeling within the intrinsic cardiac plexus. In addition, this effect was preferentially observed with active cardiac disease states, indicating that the β-receptors were more influential on remodeling during dynamic disease progression.

  8. Angiotensin receptor blockade improves cardiac mitochondrial activity in response to an acute glucose load in obese insulin resistant rats

    Directory of Open Access Journals (Sweden)

    Max Thorwald

    2018-04-01

    Full Text Available Hyperglycemia increases the risk of oxidant overproduction in the heart through activation of a multitude of pathways. Oxidation of mitochondrial enzymes may impair their function resulting in accumulation of intermediates and reverse electron transfer, contributing to mitochondrial dysfunction. Furthermore, the renin-angiotensin system (RAS becomes inappropriately activated during metabolic syndrome, increasing oxidant production. To combat excess oxidant production, the transcription factor, nuclear factor erythriod-2- related factor 2 (Nrf2, induces expression of many antioxidant genes. We hypothesized that angiotensin II receptor type 1 (AT1 blockade improves mitochondrial function in response to an acute glucose load via upregulation of Nrf2. To address this hypothesis, an oral glucose challenge was performed in three groups prior to dissection (n = 5–8 animals/group/time point of adult male rats: 1 Long Evans Tokushima Otsuka (LETO; lean strain-control, 2 insulin resistant, obese Otsuka Long Evans Tokushima Fatty (OLETF, and 3 OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 6 weeks. Hearts were collected at T0, T60, and T120 minutes post-glucose infusion. ARB increased Nrf2 binding 32% compared to OLETF at T60. Total superoxide dismutase (SOD and catalase (CAT activities were increased 45% and 66% respectively in ARB treated animals compared to OLETF. Mitochondrial enzyme activities of aconitase, complex I, and complex II increased by 135%, 33% and 66%, respectively in ARB compared to OLETF. These data demonstrate the protective effects of AT1 blockade on mitochondrial function during the manifestation of insulin resistance suggesting that the inappropriate activation of AT1 during insulin resistance may impair Nrf2 translocation and subsequent antioxidant activities and mitochondrial function. Keywords: Angiotensin II, Mitochondria, Cardiac, Antioxidant enzymes, TCA cycle

  9. Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuronal Activity.

    Science.gov (United States)

    Blume, Shannon R; Nam, Hannah; Luz, Sandra; Bangasser, Debra A; Bhatnagar, Seema

    2018-06-15

    Adolescence is a sensitive and critical period in brain development where psychiatric disorders such as anxiety, depression and post-traumatic stress disorder are more likely to emerge following a stressful life event. Females are two times more likely to suffer from psychiatric disorders than males. Patients with these disorders show alterations in orexins (also called hypocretins), important neuropeptides that regulate arousal, wakefulness and the hypothalamic-pituitary-adrenal axis activity. Little is known on the role of orexins in mediating arousal behaviors in male and female rats during adolescence or adulthood. Here, we examine the influence of orexin 1 receptor blockade by SB334867 in open-field behavior in male and female rats during early adolescence (PND 31-33) or adulthood (PND 75-77). Animals were injected with 0 (vehicle), 1, 10, or 30 mg/kg SB334867 (i.p.). Thirty minutes later, they were placed in an open field, and behavior and neuronal activity (c-Fos) were assessed. In adolescent males, SB334867 significantly increased immobility in the 10 mg/kg group compared to vehicle. However, this increase in immobility in adolescent males was not observed in adolescent females. In contrast to adolescent males, adult males in the 10 mg/kg dose group showed the opposite effect on immobility compared to vehicle. These results indicate that 10 mg/kg dose of SB334867 has opposing effects in adolescent and adult males, but few effects in adolescent and adult females. Differences in functional networks between limbic regions may underlie these effects of orexin receptor blockade that are sex- and age-dependent in rats. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-02-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of /sup 201/Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and /sup 201/Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of /sup 201/Tl uptake in non-occluded endocardium. Uptake of /sup 201/Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties.

  11. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    International Nuclear Information System (INIS)

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-01-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of 201 Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and 201 Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of 201 Tl uptake in non-occluded endocardium. Uptake of 201 Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties. (orig.) [de

  12. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    Science.gov (United States)

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  13. Effect of dopamine, dopamine D-1 and D-2 receptor modulation on ACTH and cortisol levels in normal men and women

    DEFF Research Database (Denmark)

    Boesgaard, S; Hagen, C; Andersen, A N

    1990-01-01

    The regulation of the hypothalamic-pituitary-adrenal axis by dopamine is not fully understood. Therefore, we have studied the effect of dopamine, metoclopramide, a D-2 receptor antagonist, and fenoldopam, a specific D-1 receptor agonist, on ACTH and cortisol levels in normal subjects. Normal women...

  14. Predictive performance of two PK-PD models of D2 receptor occupancy of the antipsychotics risperidone and paliperidone in rats

    NARCIS (Netherlands)

    Kozielska, Magdalena; Johnson, Martin; Pilla Reddy, Venkatesh; Vermeulen, An; de Greef, Rik; Li, Cheryl; Grimwood, Sarah; Liu, Jing; Groothuis, Genoveva; Danhof, Meindert; Proost, Johannes

    2010-01-01

    Objectives: The level of dopamine D2 receptor occupancy is predictive of efficacy and safety in schizophrenia. Population PK-PD modelling has been used to link observed plasma and brain concentrations to receptor occupancy. The objective of this study was to compare the predictive performance of two

  15. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    DEFF Research Database (Denmark)

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus

    2017-01-01

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D...

  16. Enhaced D2-type receptor activity facilitates the development of conditioned same-sex partner preference in male rats.

    Science.gov (United States)

    Cibrian-Llanderal, Tamara; Rosas-Aguilar, Viridiana; Triana-Del Rio, Rodrigo; Perez, Cesar A; Manzo, Jorge; Garcia, Luis I; Coria-Avila, Genaro A

    2012-08-01

    Animal models have shown that the neural bases of social attachment, sexual preference and pair bonds, depend on dopamine D2-type receptor and oxytocin activity. In addition, studies have demonstrated that cohabitation can shape partner preference via conditioning. Herein, we used rats to explore the development of learned same-sex partner preferences in adulthood as a result of cohabitation during enhanced D2 activity. Experimental Wistar males (N=20), received saline or the D2 agonist (quinpirole) and were allowed to cohabitate during 24 h, with a stimulus male partner that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days, for a total of three trials. Four days later they were drug-free tested for partner preference between the scented male partner and a sexually receptive female. Sexual partner preference was analyzed by measuring frequency and latency for appetitive and consummatory sexual behaviors, as well as non-contact erections. Social preference was also analyzed by measuring the frequency and latency of visits, body contacts and time spent together. Results indicated that only quinpirole-treated males displayed sexual and social preference for the scented male over the sexually receptive female. They spent more time together, displayed more body contacts, more female-like proceptive behaviors, and more non-contact erections. Accordingly, conditioned males appeared to be more sexually aroused and motivated by the known male than by a receptive female. We discuss the implications of this animal model on the formation of learned homosexual partner preferences. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Junk food diet-induced obesity increases D2 receptor autoinhibition in the ventral tegmental area and reduces ethanol drinking.

    Science.gov (United States)

    Cook, Jason B; Hendrickson, Linzy M; Garwood, Grant M; Toungate, Kelsey M; Nania, Christina V; Morikawa, Hitoshi

    2017-01-01

    Similar to drugs of abuse, the hedonic value of food is mediated, at least in part, by the mesostriatal dopamine (DA) system. Prolonged intake of either high calorie diets or drugs of abuse both lead to a blunting of the DA system. Most studies have focused on DAergic alterations in the striatum, but little is known about the effects of high calorie diets on ventral tegmental area (VTA) DA neurons. Since high calorie diets produce addictive-like DAergic adaptations, it is possible these diets may increase addiction susceptibility. However, high calorie diets consistently reduce psychostimulant intake and conditioned place preference in rodents. In contrast, high calorie diets can increase or decrease ethanol drinking, but it is not known how a junk food diet (cafeteria diet) affects ethanol drinking. In the current study, we administered a cafeteria diet consisting of bacon, potato chips, cheesecake, cookies, breakfast cereals, marshmallows, and chocolate candies to male Wistar rats for 3-4 weeks, producing an obese phenotype. Prior cafeteria diet feeding reduced homecage ethanol drinking over 2 weeks of testing, and transiently reduced sucrose and chow intake. Importantly, cafeteria diet had no effect on ethanol metabolism rate or blood ethanol concentrations following 2g/kg ethanol administration. In midbrain slices, we showed that cafeteria diet feeding enhances DA D2 receptor (D2R) autoinhibition in VTA DA neurons. These results show that junk food diet-induced obesity reduces ethanol drinking, and suggest that increased D2R autoinhibition in the VTA may contribute to deficits in DAergic signaling and reward hypofunction observed with obesity.

  18. Effects of the dopamine D2 allosteric modulator, PAOPA, on the expression of GRK2, arrestin-3, ERK1/2, and on receptor internalization.

    Directory of Open Access Journals (Sweden)

    Dipannita Basu

    Full Text Available The activity of G protein-coupled receptors (GPCRs is intricately regulated by a range of intracellular proteins, including G protein-coupled kinases (GRKs and arrestins. Understanding the effects of ligands on these signaling pathways could provide insights into disease pathophysiologies and treatment. The dopamine D2 receptor is a GPCR strongly implicated in the pathophysiology of a range of neurological and neuropsychiatric disorders, particularly schizophrenia. Previous studies from our lab have shown the preclinical efficacy of a novel allosteric drug, 3(R-[(2(S-pyrrolidinylcarbonylamino]-2-oxo-1-pyrrolidineacetamide (PAOPA, in attenuating schizophrenia-like behavioural abnormalities in rodent models of the disease. As an allosteric modulator, PAOPA binds to a site on the D2 receptor, which is distinct from the endogenous ligand-binding site, in order to modulate the binding of the D2 receptor ligand, dopamine. The exact signaling pathways affected by this allosteric modulator are currently unknown. The objectives of this study were to decipher the in vivo effects, in rats, of chronic PAOPA administration on D2 receptor regulatory and downstream molecules, including GRK2, arrestin-3 and extracellular receptor kinase (ERK 1/2. Additionally, an in vitro cellular model was also used to study PAOPA's effects on D2 receptor internalization. Results from western immunoblots showed that chronic PAOPA treatment increased the striatal expression of GRK2 by 41%, arrestin-3 by 34%, phospho-ERK1 by 51% and phospho-ERK2 by 36%. Results also showed that the addition of PAOPA to agonist treatment in cells increased D2 receptor internalization by 33%. This study provides the foundational evidence of putative signaling pathways, and changes in receptor localization, affected by treatment with PAOPA. It improves our understanding on the diverse mechanisms of action of allosteric modulators, while advancing PAOPA's development into a novel drug for the

  19. Comparison of intravenous and intraperitoneal [{sup 123}I]IBZM injection for dopamine D2 receptor imaging in mice

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philipp T. [Department of Neurology, University Hospital Aachen, 52074 Aachen (Germany); Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen (Germany)], E-mail: pmeyer@ukaachen.de; Salber, Dagmar [C. and O. Vogt Institute of Brain Research, University Hospital Duesseldorf, 40225 Duesseldorf (Germany); Schiefer, Johannes [Department of Neurology, University Hospital Aachen, 52074 Aachen (Germany); Cremer, Markus [Institute of Neurosciences and Biophysics - Medicine, Research Center Juelich, 52425 Juelich (Germany); Schaefer, Wolfgang M. [Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen (Germany); Kosinski, Christoph M. [Department of Neurology, University Hospital Aachen, 52074 Aachen (Germany); Langen, Karl-Josef [Institute of Neurosciences and Biophysics - Medicine, Research Center Juelich, 52425 Juelich (Germany)

    2008-07-15

    Introduction: Intraperitoneal (IP) injection represents an attractive alternative route of radiotracer administration for small animal imaging, e.g., for longitudinal studies in transgenic mouse models. We explored the cerebral kinetics of the reversible dopamine D2 receptor ligand [{sup 123}I]IBZM after IP injection in mice. Methods: Cerebral [{sup 123}I]IBZM kinetics were assessed by ex vivo autoradiography in mice sacrificed between 30 and 200 min after IP or intravenous (IV) injection. The striatum-to-cerebellum (S/C) uptake ratio at 140 min was evaluated in wild-type mice and R6/2 transgenic mice (a Huntington's disease model) in comparison with in vitro autoradiography using [{sup 3}H]raclopride. Results: [{sup 123}I]IBZM uptake was slower and lower after IP injection [maximum uptake in striatum 5.6% injected dose per gram (ID/g) at 60 min] than IV injection (10.5%ID/g at 30 min). Between 60 and 120 min, striatal (cerebellar) uptake after IP injection reached 63% (91%) of the uptake after IV injection. The S/C uptake ratio increased to 15.5 at 200 min after IP injection, which corresponds to 87% of the IV injection value (17.8). Consistent with in vitro [{sup 3}H]raclopride autoradiography, the S/C ratio given by ex vivo [{sup 123}I]IBZM autoradiography (140 min after IP injection) was significantly reduced in R6/2 mice. Conclusions: Although IP injection resulted in slower kinetics, relevant measures of dopamine D2 receptor availability were comparable. Thus, IP injection represents a promising route of tracer administration for small animal [{sup 123}I]IBZM SPECT. This should considerably simplify the implementation of longitudinal small animal neuroimaging studies, e.g., in transgenic mouse models.

  20. Disruptions in effort-based decision-making and consummatory behavior following antagonism of the dopamine D2 receptor.

    Science.gov (United States)

    Robles, Cindee F; Johnson, Alexander W

    2017-03-01

    Dopamine is known to influence motivational processes, however the precise role of this neurotransmitter remains a contentious issue. In the current study we sought to further characterize dopamine signaling in reward-based decision-making and consummatory behavior in mice, via lateral ventricle infusion of the dopamine D2 receptor antagonist eticlopride. In Experiment 1, we examined effort-based decision-making, in which mice had a choice between one lever, where a single response led to the delivery of a low value reward (2% sucrose); and a second lever, which led to a higher value reward (20% sucrose) that gradually required more effort to obtain. As the response schedule for the high value reward became more strict, low dose (4μg in 0.5μl) central infusions of eticlopride biased preference away from the high value reward, and toward the lever that led to the low value reward. Similarly, a higher dose of eticlopride (8μg in 0.5μl) also disrupted choice responding for the high value reward, however it did so by increasing omissions. In Experiment 2, we assessed the effects of eticlopride on consumption of 20% sucrose. The antagonist led to a dose-dependent reduction in intake, and through an analysis of licking microstructure, it was revealed that this in part reflected a reduction in the motivation to engage in consummatory behavior, rather than alterations in the evaluation of the reward. These results suggest that disruptions in D2 receptor signaling reduce the willingness to engage in effortful operant responding and consumption of a desirable outcome. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Dopamine D2 Receptor Is Involved in Alleviation of Type II Collagen-Induced Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Jian-Hua Lu

    2015-01-01

    Full Text Available Human and murine lymphocytes express dopamine (DA D2-like receptors including DRD2, DRD3, and DRD4. However, their roles in rheumatoid arthritis (RA are less clear. Here we showed that lymphocyte DRD2 activation alleviates both imbalance of T-helper (Th17/T-regulatory (Treg cells and inflamed symptoms in a mouse arthritis model of RA. Collagen-induced arthritis (CIA was prepared by intradermal injection of chicken collagen type II (CII in tail base of DBA/1 mice or Drd2−/− C57BL/6 mice. D2-like receptor agonist quinpirole downregulated expression of proinflammatory Th17-related cytokines interleukin- (IL- 17 and IL-22 but further upregulated expression of anti-inflammatory Treg-related cytokines transforming growth factor- (TGF- β and IL-10 in lymphocytes in vitro and in ankle joints in vivo in CIA mice. Quinpirole intraperitoneal administration reduced both clinical arthritis score and serum anti-CII IgG level in CIA mice. However, Drd2−/− CIA mice manifested more severe limb inflammation and higher serum anti-CII IgG level and further upregulated IL-17 and IL-22 expression and downregulated TGF-β and IL-10 expression than wild-type CIA mice. In contrast, Drd1−/− CIA mice did not alter limb inflammation or anti-CII IgG level compared with wild-type CIA mice. These results suggest that DRD2 activation is involved in alleviation of CIA symptoms by amelioration of Th17/Treg imbalance.

  2. Dopamine suppresses neuronal activity of Helisoma B5 neurons via a D2-like receptor, activating PLC and K channels.

    Science.gov (United States)

    Zhong, L R; Artinian, L; Rehder, V

    2013-01-03

    Dopamine (DA) plays fundamental roles as a neurotransmitter and neuromodulator in the central nervous system. How DA modulates the electrical excitability of individual neurons to elicit various behaviors is of great interest in many systems. The buccal ganglion of the freshwater pond snail Helisoma trivolvis contains the neuronal circuitry for feeding and DA is known to modulate the feeding motor program in Helisoma. The buccal neuron B5 participates in the control of gut contractile activity and is surrounded by dopaminergic processes, which are expected to release DA. In order to study whether DA modulates the electrical activity of individual B5 neurons, we performed experiments on physically isolated B5 neurons in culture and on B5 neurons within the buccal ganglion in situ. We report that DA application elicited a strong hyperpolarization in both conditions and turned the electrical activity from a spontaneously firing state to an electrically silent state. Using the cell culture system, we demonstrated that the strong hyperpolarization was inhibited by the D2 receptor antagonist sulpiride and the phospholipase C (PLC) inhibitor U73122, indicating that DA affected the membrane potential of B5 neurons through the activation of a D2-like receptor and PLC. Further studies revealed that the DA-induced hyperpolarization was inhibited by the K channel blockers 4-aminopyridine and tetraethylammonium, suggesting that K channels might serve as the ultimate target of DA signaling. Through its modulatory effect on the electrical activity of B5 neurons, the release of DA in vivo may contribute to a neuronal output that results in a variable feeding motor program. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. A dopamine receptor d2-type agonist attenuates the ability of stress to alter sleep in mice.

    Science.gov (United States)

    Jefferson, F; Ehlen, J C; Williams, N S; Montemarano, J J; Paul, K N

    2014-11-01

    Although sleep disruptions that accompany stress reduce quality of life and deteriorate health, the mechanisms through which stress alters sleep remain obscure. Psychological stress can alter sleep in a variety of ways, but it has been shown to be particularly influential on rapid eye movement (REM) sleep. Prolactin (PRL), a sexually dimorphic, stress-sensitive hormone whose basal levels are higher in females, has somnogenic effects on REM sleep. In the current study, we examined the relationship between PRL secretion and REM sleep after restraint stress to determine whether: 1) the ability of stress to increase REM sleep is PRL-dependent, and 2) fluctuating PRL levels underlie sex differences in sleep responses to stress. Because dopamine D2 receptors in the pituitary gland are the primary regulator of PRL secretion, D2 receptor agonist, 1-[(6-allylergolin-8β-yl)-carbonyl]-1-[3-(dimethylamino) propyl]-3-ethylurea (cabergoline), was used to attenuate PRL levels in mice before 1 hour of restraint stress. Mice were implanted with electroencephalographic/electromyographic recording electrodes and received an ip injection of either 0.3-mg/kg cabergoline or vehicle before a control procedure of 1 hour of sleep deprivation by gentle handling during the light phase. Six days after the control procedure, mice received cabergoline or vehicle 15 minutes before 1 hour of restraint stress. Cabergoline blocked the ability of restraint stress to increase REM sleep amount in males but did not alter REM sleep amount after stress in females even though it reduced basal REM sleep amount in female controls. These data provide evidence that the ability for restraint stress to increase REM sleep is dependent on PRL and that sex differences in REM sleep amount may be driven by PRL.

  4. Disruption of dopamine D1/D2 receptor complex is involved in the function of haloperidol in cardiac H9c2 cells.

    Science.gov (United States)

    Lencesova, L; Szadvari, I; Babula, P; Kubickova, J; Chovancova, B; Lopusna, K; Rezuchova, I; Novakova, Z; Krizanova, O; Novakova, M

    2017-12-15

    Haloperidol is an antipsychotic agent and acts as dopamine D2 receptor (D2R) antagonist, as a prototypical ligand of sigma1 receptors (Sig1R) and it increases expression of type 1 IP 3 receptors (IP 3 R1). However, precise mechanism of haloperidol action on cardiomyocytes through dopaminergic signaling was not described yet. This study investigated a role of dopamine receptors in haloperidol-induced increase in IP 3 R1 and Sig1R, and compared physiological effect of melperone and haloperidol on basic heart parameters in rats. We used differentiated NG-108 cells and H9c2 cells. Gene expression, Western blot and immunofluorescence were used to evaluate haloperidol-induced differences; proximity ligation assay (PLA) and immunoprecipitation to determine interactions of D1/D2 receptors. To evaluate cardiac parameters, Wistar albino male rats were used. We have shown that antagonism of D2R with either haloperidol or melperone results in upregulation of both, IP 3 R1 and Sig1R, which is associated with increased D2R, but reduced D1R expression. Immunofluorescence, immunoprecipitation and PLA support formation of heteromeric D1/D2 complexes in H9c2 cells. Treatment with haloperidol (but not melperone) caused decrease in systolic and diastolic blood pressure and significant increase in heart rate. Because D1R/D2R complexes can engage Gq-like signaling in other experimental systems, these results are consistent with the possibility that disruption of D1R/D2R complex in H9c2 cells might cause a decrease in IP 3 R1 activity, which in turn may account for the increase expression of IP 3 R and Sig1R. D2R is probably not responsible for changes in cardiac parameters, since melperone did not have any effect. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Expression analysis and specific blockade of the receptor for human thymic stromal lymphopoietin (TSLP) by novel antibodies to the human TSLPRα receptor chain.

    Science.gov (United States)

    Borowski, Andreas; Vetter, Tina; Kuepper, Michael; Wohlmann, Andreas; Krause, Sebastian; Lorenzen, Thomas; Virchow, Johann Christian; Luttmann, Werner; Friedrich, Karlheinz

    2013-02-01

    Thymic stromal lymphopoietin (TSLP) is an interleukin-7 (IL-7)-like cytokine with a pivotal role in development and maintenance of atopic diseases such as allergic asthma and atopic dermatitis. Moreover, recent studies show an involvement of TSLP in the progression of various cancers. TSLP signaling is mediated by the TSLP receptor (TSLPR), a heterodimeric type I cytokine receptor. It consists of the IL-7 receptor alpha chain (IL-7Rα), which is shared with the IL-7 receptor, and the TSLPRα chain as a specific subunit. Blocking signal release by TSLP without affecting IL-7 function is a potentially interesting option for the treatment of atopic diseases or certain tumors. By employing the extracellular domain of human TSLPRα chain (hTSLPRα(ex)) as an antigen, we generated a set of monoclonal antibodies. Several binders to native and/or denatured receptor protein were identified and characterized by cytometry and Western blot analysis. A screen based on a STAT3-driven reporter gene assay in murine pro-B cells expressing a functional hTSLPR yielded two hybridoma clones with specific antagonistic properties towards hTSLP, but not IL-7. Kinetic studies measuring blockade of hTSLP-dependent STAT phosphorylation in a TSLP-responsive cell line revealed an inhibitory constant in the nanomolar range. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. In the Blink of an Eye: Relating Positive-Feedback Sensitivity to Striatal Dopamine D2-Like Receptors through Blink Rate

    Science.gov (United States)

    Groman, Stephanie M.; James, Alex S.; Seu, Emanuele; Tran, Steven; Clark, Taylor A.; Harpster, Sandra N.; Crawford, Maverick; Burtner, Joanna Lee; Feiler, Karen; Roth, Robert H.; Elsworth, John D.; London, Edythe D.

    2014-01-01

    For >30 years, positron emission tomography (PET) has proven to be a powerful approach for measuring aspects of dopaminergic transmission in the living human brain; this technique has revealed important relationships between dopamine D2-like receptors and dimensions of normal behavior, such as human impulsivity, and psychopathology, particularly behavioral addictions. Nevertheless, PET is an indirect estimate that lacks cellular and functional resolution and, in some cases, is not entirely pharmacologically specific. To identify the relationships between PET estimates of D2-like receptor availability and direct in vitro measures of receptor number, affinity, and function, we conducted neuroimaging and behavioral and molecular pharmacological assessments in a group of adult male vervet monkeys. Data gathered from these studies indicate that variation in D2-like receptor PET measurements is related to reversal-learning performance and sensitivity to positive feedback and is associated with in vitro estimates of the density of functional dopamine D2-like receptors. Furthermore, we report that a simple behavioral measure, eyeblink rate, reveals novel and crucial links between neuroimaging assessments and in vitro measures of dopamine D2 receptors. PMID:25339755

  7. Ionotropic glutamate receptors (iGluRs of the delta family (GluD1 and GluD2 and synaptogenesis

    Directory of Open Access Journals (Sweden)

    Muhammad Zahid Khan

    2017-08-01

    Full Text Available Glutamate delta-1 (GluD1 and glutamate delta-2 (GluD2 form the delta family of ionotropic glutamate receptors (iGluRs and are distinct from other (iGluRs in that they do not exhibit typical agonist-induced ion channel currents. Recent studies have demonstrated a crucial role of the delta receptors in synapse formation by interacting with presynaptic proteins such as Neurexin1. This review presents current knowledge regarding the expression, structure and function of Glu delta receptors (GluD1, GluD2 in brain, focusing on synapse formation, function and dysfunction.

  8. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons

    Directory of Open Access Journals (Sweden)

    W. Romero-Fernandez

    2014-07-01

    Full Text Available Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly

  9. Measuring specific receptor binding of a PET radioligand in human brain without pharmacological blockade: The genomic plot.

    Science.gov (United States)

    Veronese, Mattia; Zanotti-Fregonara, Paolo; Rizzo, Gaia; Bertoldo, Alessandra; Innis, Robert B; Turkheimer, Federico E

    2016-04-15

    PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i

  10. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    Science.gov (United States)

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB 1 receptor (CB 1 R)-induced memory deficits through an adenosine A 1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A 2A receptors (A 2A Rs) affects long-term episodic memory deficits induced by a single injection of a selective CB 1 R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB 1 /CB 2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A 2A R blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A 2A Rs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB 1 Rs was assessed by using the CB 1 R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB 1 R-mediated memory disruption is prevented by antagonism of adenosine A 2A Rs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB 1 R drugs is desired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats.

    Science.gov (United States)

    Ohtani, Norimasa; Masaki, Eiji

    2016-01-01

    Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neuropathic pain, which is one component of postoperative pain. The purpose of this study was to investigate whether impairment of D2-like receptors in the descending dopaminergic pathway in the spinal cord is involved in the decreased postoperative nociceptive threshold in rats. Male Sprague-Dawley rats (250-300 g) were anesthetized with sevoflurane and an intrathecal (IT) catheter was implanted. Six days later, a plantar incision was made. On the following day, saline, a D2-like receptor agonist (quinpirole), or a D2-like receptor antagonist (sulpiride) was administered intrathecally. Thermal and mechanical nociceptive responses were assessed by exposure to infrared radiant heat and the von Frey filament test before and after plantar incision. Plantar incision decreased both thermal latency and the mechanical nociceptive threshold. IT administration of quinpirole inhibited the nociceptive responses induced by plantar incision, but sulpiride had no effect. A D2-like receptor agonist had antinociceptive effects on the hypersensitivity response triggered by a surgical incision, but a D2-like receptor antagonist had no effect on this response. These results suggest that impairment and/or modification of D2-like receptors in the descending dopaminergic pathway in the spinal cord is not involved in the postoperative decrease in nociceptive threshold.

  12. Effect of genetic and pharmacological blockade of GABA receptors on the 5-HT2C receptor function during stress.

    OpenAIRE

    Martin Cédric B P; Gassmann Martin; Chevarin Caroline; Hamon Michel; Rudolph Uwe; Bettler Bernhard; Lanfumey Laurence; Mongeau Raymond

    2014-01-01

    5-HT2C receptors play a role in psychoaffective disorders and often contribute to the antidepressant and anxiolytic effects of psychotropic drugs. During stress, activation of these receptors exerts a negative feedback on serotonin (5-HT) release, probably by increasing the activity of GABAergic interneurons. However, to date, the GABA receptor types that mediate the 5-HT2C receptor-induced feedback inhibition are still unknown. To address this question, we assessed the inhibition of 5-HT tur...

  13. Benzazepines: Structure-activity relationships between D1 receptor blockade and selected pharmacological effects

    International Nuclear Information System (INIS)

    Iorio, L.C.; Billiard, W.; Gold, E.H.

    1986-01-01

    This chapter describes the displacement of 3 H-23390 and 3 H-spiperone binding by dopamine agonists and antagonists. The authors undertook an evaluation of the ability of selected analogs of SCH 23390 to displace 3 H-SCH 23390 and 3 H-spiperone. Structure-activity relationships of SCH 23390 analogs: 7-position substituents, is shown. It is shown that, in general, benzazepines with a variety of substituents in the 7-position retain their selectivity for D 1 sites. Substituents at the 8-position and at the N-position are also discussed. The authors determine a correlation between displacement of 3 H-SCH 23390 and blockade of dopamine-sensitive adenylate cyclase (DSAC). These effects and inhibition of conditioned avoidance responsing (CAS) in rats was also studied. A detailed evaluation is presented of the effects of SCH 23390 and haloperidol in the Inclined Screen and CAR tests

  14. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    International Nuclear Information System (INIS)

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-01-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine [(R)-AHPIA] into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling

  15. Bradykinin receptor blockade restores the baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal failure rats.

    Science.gov (United States)

    Abdulla, M H; Duff, M; Swanton, H; Johns, E J

    2016-11-01

    This study investigated the effect of renal bradykinin B1 and B2 receptor blockade on the high- and low-pressure baroreceptor reflex regulation of renal sympathetic nerve activity (RSNA) in rats with cisplatin-induced renal failure. Cisplatin (5 mg/kg) or saline was given intraperitoneally 4 days prior to study. Following chloralose/urethane anaesthesia, rats were prepared for measurement of mean arterial pressure (MAP), heart rate and RSNA and received intrarenal infusions of either Lys-[des-Arg 9 , Leu 8 ]-bradykinin (LBK), a bradykinin B1 receptor blocker, or bradyzide (BZ), a bradykinin B2 receptor blocker. RSNA baroreflex gain curves and renal sympatho-inhibitory responses to volume expansion (VE) were obtained. In the control and renal failure groups, basal MAP (89 ± 3 vs. 80 ± 8 mmHg) and RSNA (2.0 ± 0.3 vs. 1.7 ± 0.6 μV.s) were similar but HR was lower in the latter group (331 ± 8 vs. 396 ± 9 beats/min). The baroreflex gain for RSNA in the renal failure rats was 39% (P renal failure rats. Intrarenal LBK infusion in the renal failure rats normalized the VE induced renal sympatho-inhibition whereas BZ only partially restored the response. These findings suggest that pro-inflammatory bradykinin acting at different receptors within the kidney generates afferent neural signals which impact differentially within the central nervous system on high- and low-pressure regulation of RSNA. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  16. Effect of acute aerobic exercise and histamine receptor blockade on arterial stiffness in African Americans and Caucasians.

    Science.gov (United States)

    Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo

    2017-02-01

    African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise

  17. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    Science.gov (United States)

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  18. Modulatory effects of L-DOPA on D2 dopamine receptors in rat striatum, measured using in vivo microdialysis and PET

    International Nuclear Information System (INIS)

    Opacka-Juffry, J.; Hume, S. P.; Ashworth, S.; Ahier, R. G.

    1997-01-01

    Putative modulatory effects of L-3,4-dihydroxyphenylalanine (L-DOPA) on D2 dopamine receptor function in the striatum of anaesthetized rats were investigated using both in vivo microdialysis and positron emission tomography (PET) with carbon-11 labelled raclopride as a selective D2 receptor ligand. A single dose of L-DOPA (20 or 100 mg/kg i.p.) resulted in an increase in [ 11 C]raclopride binding potential which was also observed in the presence of the central aromatic decarboxylase inhibitor NSD 1015, confirming that the effect was independent of dopamine. This L-DOPA evoked D2 receptor sensitization was abolished by a prior, long-term administration of L-DOPA in drinking water (5 weeks, 170 mg/kg/day). In the course of acute L-DOPA treatment (20 mg/kg), extracellular GABA levels were reduced by ∼20 % in the globus pallidus. It is likely that L-DOPA sensitising effect on striatal D2 receptors, as confirmed by PET, may implicate striato-pallidal neurones, hence a reduced GABA-ergic output in the projection area. Since the L-DOPA evoked striatal D2 receptor supersensitivity habituates during long-term treatment, the effects reported here may contribute to the fluctuations observed during chronic L-DOPA therapy in Parkinson's disease. (author)

  19. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat.

    Science.gov (United States)

    Wong, Yin Cheong; Ilkova, Trayana; van Wijk, Rob C; Hartman, Robin; de Lange, Elizabeth C M

    2018-01-01

    Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO 30%). For the first time a predictive model that could describe

  20. Striatal D2/3 Binding Potential Values in Drug-Naïve First-Episode Schizophrenia Patients Correlate With Treatment Outcome

    Science.gov (United States)

    Wulff, Sanne; Pinborg, Lars Hageman; Svarer, Claus; Jensen, Lars Thorbjørn; Nielsen, Mette Ødegaard; Allerup, Peter; Bak, Nikolaj; Rasmussen, Hans; Frandsen, Erik; Rostrup, Egill; Glenthøj, Birte Yding

    2015-01-01

    One of best validated findings in schizophrenia research is the association between blockade of dopamine D2 receptors and the effects of antipsychotics on positive psychotic symptoms. The aim of the present study was to examine correlations between baseline striatal D2/3 receptor binding potential (BPp) values and treatment outcome in a cohort of antipsychotic-naïve first-episode schizophrenia patients. Additionally, we wished to investigate associations between striatal dopamine D2/3 receptor blockade and alterations of negative symptoms as well as functioning and subjective well-being. Twenty-eight antipsychotic-naïve schizophrenia patients and 26 controls were included in the study. Single-photon emission computed tomography (SPECT) with [123I]iodobenzamide ([123I]-IBZM) was used to examine striatal D2/3 receptor BPp. Patients were examined before and after 6 weeks of treatment with the D2/3 receptor antagonist amisulpride. There was a significant negative correlation between striatal D2/3 receptor BPp at baseline and improvement of positive symptoms in the total group of patients. Comparing patients responding to treatment to nonresponders further showed significantly lower baseline BPp in the responders. At follow-up, the patients demonstrated a negative correlation between the blockade and functioning, whereas no associations between blockade and negative symptoms or subjective well-being were observed. The results show an association between striatal BPp of dopamine D2/3 receptors in antipsychotic-naïve first-episode patients with schizophrenia and treatment response. Patients with a low BPp have a better treatment response than patients with a high BPp. The results further suggest that functioning may decline at high levels of dopamine receptor blockade. PMID:25698711

  1. Basolateral amygdalar D2 receptor activation is required for the companions-exerted suppressive effect on the cocaine conditioning.

    Science.gov (United States)

    Tzeng, Wen-Yu; Cherng, Chian-Fang G; Yu, Lung; Wang, Ching-Yi

    2017-01-01

    The presence of companions renders decreases in cocaine-stimulated dopamine release in the nucleus accumbens and cocaine-induced conditioned place preference (CPP) magnitude. Limbic systems are widely believed to underlie the modulation of accumbal dopamine release and cocaine conditioning. Thus, this study aimed to assess whether intact basolateral nucleus of amygdala (BLA), dorsal hippocampus (DH), and dorsolateral striatum (DLS) is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Three cage mates, serving as companions, were arranged to house with the experimental mice in the cocaine conditioning compartment throughout the cocaine conditioning sessions. Approximately 1week before the conditioning procedure, intracranial ibotenic acid infusions were done in an attempt to cause excitotoxic lesions targeting bilateral BLA, DH and DLS. Albeit their BLA, DH, and DLS lesions, the lesioned mice exhibited comparable cocaine-induced CPP magnitudes compared to the intact and sham lesion controls. Bilateral BLA, but not DH or DLS, lesions abolished the companions-exerted suppressive effect on the cocaine-induced CPP. Intact mice receiving intra-BLA infusion of raclopride, a selective D2 antagonist, 30min prior to the cocaine conditioning did not exhibit the companions-exerted suppressive effect on the cocaine-induced CPP. Intra-BLA infusion of Sch23390, a selective D1 antagonist, did not affect the companions-exerted suppressive effect on the CPP. These results, taken together, prompt us to conclude that the intactness of BLA is required for the companions-exerted suppressive effect on the cocaine-induced CPP. Importantly, activation of D2 receptor in the BLA is required for such suppressive effect on the CPP. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Plasma homovanillic acid, plasma anti-D1 and -D2 dopamine-receptor activity, and negative symptoms in chronically mediated schizophrenia.

    Science.gov (United States)

    Suzuki, E; Kanba, S; Nibuya, M; Koshikawa, H; Nakaki, T; Yagi, G

    1992-02-15

    We have investigated the relationship between the concentration of homovanillic acid in human plasma (pHVA) and plasma anti-D1 and anti-D2 dopamine receptor activity in chronic schizophrenic patients whose neuroleptic dosage was changed. The change in pHVA level correlated with that in anti-D1, not anti-D2 activity, thus suggesting that the neuroleptic-induced changes in pHVA concentration may be associated with the blocking of D1- as well as D2- receptors. The change of scores on the Scale for the Assessment of Negative Symptoms did not significantly correlate with changes in anti-D1 or anti-D2 activity, but did so correlated with the change in pHVA level.

  3. p75NTR enhances PC12 cell tumor growth by a non-receptor mechanism involving downregulation of cyclin D2

    International Nuclear Information System (INIS)

    Fritz, Melinda D.; Mirnics, Zeljka K.; Nylander, Karen D.; Schor, Nina F.

    2006-01-01

    p75NTR is a member of the tumor necrosis superfamily of proteins which is variably associated with induction of apoptosis and proliferation. Cyclin D2 is one of the mediators of cellular progression through G1 phase of the cell cycle. The present study demonstrates the inverse relationship between expression of cyclin D2 and expression of p75NTR in PC12 cells. Induction of p75NTR expression in p75NTR-negative PC12 cells results in downregulation of cyclin D2; suppression of p75NTR expression with siRNA in native PC12 cells results in upregulation of cyclin D2. The effects of p75NTR on cyclin D2 expression are mimicked in p75NTR-negative cells by transfection with the intracellular domain of p75NTR. Cyclin-D2-positive PC12 cell cultures grow more slowly than cyclin-D2-negative cultures, and induction of expression of cyclin D2 slows the culture growth rate of cyclin-D2-negative cells. Finally, subcutaneous murine xenografts of cyclin-D2-negative, p75NTR-positive PC12 cells more frequently and more rapidly produce tumors than the analogous xenografts of cyclin-D2-positive, p75NTR-negative cells. These results suggest that p75NTR suppresses cyclin D2 expression in PC12 cells by a mechanism distinct from its function as a nerve growth factor receptor and that cyclin D2 expression decreases cell culture and xenografted tumor growth

  4. Blockade of human P2X7 receptor function with a monoclonal antibody.

    Science.gov (United States)

    Buell, G; Chessell, I P; Michel, A D; Collo, G; Salazzo, M; Herren, S; Gretener, D; Grahames, C; Kaur, R; Kosco-Vilbois, M H; Humphrey, P P

    1998-11-15

    A monoclonal antibody (MoAb) specific for the human P2X7 receptor was generated in mice. As assessed by flow cytometry, the MoAb labeled human blood-derived macrophage cells natively expressing P2X7 receptors and cells transfected with human P2X7 but not other P2X receptor types. The MoAb was used to immunoprecipitate the human P2X7 receptor protein, and in immunohistochemical studies on human lymphoid tissue, P2X7 receptor labeling was observed within discrete areas of the marginal zone of human tonsil sections. The antibody also acted as a selective antagonist of human P2X7 receptors in several functional studies. Thus, whole cell currents, elicited by the brief application of 2',3'-(4-benzoyl)-benzoyl-ATP in cells expressing human P2X7, were reduced in amplitude by the presence of the MoAb. Furthermore, preincubation of human monocytic THP-1 cells with the MoAb antagonized the ability of P2X7 agonists to induce the release of interleukin-1beta.

  5. Dopamine D2-receptor imaging with [sup 123]I-iodobenzamide SPECT in migraine patients abusing ergotamine: does ergotamine cross the blood brain barrier

    Energy Technology Data Exchange (ETDEWEB)

    Verhoeff, N.P.; Visser, W.H.; Ferrari, M.D.; Saxena, P.R.; Royen, E.A. van (Erasmus Univ., Rotterdam (Netherlands))

    1993-10-01

    Two migraine patients were studied by in vivo SPECT using the dopamine D2-receptor specific radioligand [sup 123]I-3-iodo-6-methoxybenzamide ([sup 123]I-IBZM) during ergotamine abuse and after withdrawal. Results were compared with 15 healthy controls. Striatum/cerebellum and striatum/occipital cortex ratios of count rate density were calculated as a semiquantitative measurement for striatal dopamine D2-receptor binding potential. No differences were found in striatal uptake of [sup 123]I-IBZM between healthy controls and the patients when on or off ergotamine. Preliminary evidence suggests that ergotamine may not occupy striatal dopamine D2-receptors to a large extent and thus may not cross the blood brain barrier in large quantities. 23 refs., 3 figs.

  6. [123I]epidepride binding to cerebellar dopamine D2/D3 receptors is displaceable: implications for the use of cerebellum as a reference region

    DEFF Research Database (Denmark)

    Pinborg, Lars H; Videbaek, Charlotte; Ziebell, Morten

    2007-01-01

    The low density of cerebellar dopamine D(2)/D(3) receptors provides the basis for using the cerebellum as a representation of free- and non-specifically bound radioligand in positron emission tomography (PET) and single photon emission computed tomography (SPECT) studies. With the development...... of ultra high-affinity dopamine D(2)/D(3) ligands like [(123)I]epidepride, [(18)F]fallypride, and [(11)C]FLB-457, quantification of extrastriatal low density receptor populations including the cerebellum is possible with important implications for calculation of binding parameters. [(123)I...... [(123)I]epidepride binding to dopamine D(2)/D(3) receptors in the cerebellum. Using the cerebellum as a representation of free and non-specifically bound radioligand and neglecting the specifically bound component may lead to results that erroneously imply that antipsychotic drugs bind to extrastriatal...

  7. Blockade of central vasopressin receptors reduces the cardiovascular response to acute stress in freely moving rats.

    Science.gov (United States)

    Stojicić, S; Milutinović-Smiljanić, S; Sarenac, O; Milosavljević, S; Paton, J F R; Murphy, D; Japundzić-Zigon, N

    2008-04-01

    To investigate the contribution of central vasopressin receptors to blood pressure (BP) and heart rate (HR) response to stress we injected non-peptide selective V(1a) (SR49059), V(1b) (SSR149415), V(2) (SR121463) receptor antagonists, diazepam or vehicle in the lateral cerebral ventricle of conscious freely moving rats stressed by blowing air on their heads for 2 min. Cardiovascular effects of stress were evaluated by analyzing maximum increase of BP and HR (MAX), latency of maximum response (LAT), integral under BP and HR curve (integral), duration of their recovery and spectral parameters of BP and HR indicative of increased sympathetic outflow (LF(BP) and LF/HF(HR)). Moreover, the increase of serum corticosterone was measured. Exposure to air-jet stress induced simultaneous increase in BP and HR followed by gradual decline during recovery while LF(BP) oscillation remained increased as well as serum corticosterone level. Rats pre-treated with vasopressin receptor antagonists were not sedated while diazepam induced sedation that persisted during exposure to stress. V(1a), V(1b) and V(2) receptor antagonists applied separately did not modify basal values of cardiovascular parameters but prevented the increase in integral(BP). In addition, V(1b) and V(2) receptor antagonists reduced BP(MAX) whereas V(1a), V(1b) antagonist and diazepam reduced HR(MAX) induced by exposure to air-jet stress. All drugs shortened the recovery period, prevented the increase of LF(BP) without affecting the increase in serum corticosterone levels. Results indicate that vasopressin receptors located within the central nervous system mediate, in part, the cardiovascular response to air-jet stress without affecting either the neuroendocrine component or inducing sedation. They support the view that the V(1b) receptor antagonist may be of potential therapeutic value in reducing arterial pressure induced by stress-related disorders.

  8. Up-Regulation of Endothelin Type A Receptor in Human and Rat Radiation Proctitis: Preclinical Therapeutic Approach With Endothelin Receptor Blockade

    International Nuclear Information System (INIS)

    Jullien, Nicolash; Blirando, Karl; Milliat, Fabien; Sabourin, Jean-Christophe; Benderitter, Marc; Francois, Agnes

    2009-01-01

    Purpose: Rectum radiation damage and fibrosis are often associated with radiation therapy of pelvic tumors. The endothelin (ET) system has been implicated in several fibrotic diseases but never studied in the context of gastrointestinal radiation damage. This study assessed modifications in ET type 1 (ET-1), ET type A receptor (ET A ), and ET type B receptor (ET B ) localization and/or expression in irradiated human rectal tissue and in a rat model of delayed colorectal injury. We also evaluated the therapeutic potential of long-term ET receptor blockade. Methods and Materials: Routine histological studies of sections of healthy and radiation-injured human rectum tissue were done; the sections were also immunostained for ET A and ET B receptors. The rat model involved the delivery of 27 Gy in a single dose to the colons and rectums of the animals. The ET-1/ET A /ET B expression and ET A /ET B localization were studied at 10 weeks postexposure. The abilities of bosentan and atrasentan to protect against delayed rectal injury were also investigated. Results: The immunolocalization of ET A and ET B in healthy human rectums was similar to that in rat rectums. However, strong ET A immunostaining was seen in the presence of human radiation proctitis, and increased ET A mRNA levels were seen in the rat following colorectal irradiation. Immunostaining for ET A was also strongly positive in rats in areas of radiation-induced mucosal ulceration, atypia, and fibroproliferation. However, neither bosentan nor atrasentan prevented radiation damage to the rectum when given long term. The only effect seen for atrasentan was an increased number of sclerotic vessel sections in injured tissues. Conclusions: As the result of the overexpression of ET A , radiation exposure deregulates the endothelin system through an 'ET A profile' in the human and rodent rectum. However, therapeutic interventions involving mixed or specific ET A receptor blockade do not prevent radiation damage

  9. Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail.

    Science.gov (United States)

    Kleitz-Nelson, H K; Cornil, C A; Balthazart, J; Ball, G F

    2010-07-01

    A key brain site in the control of male sexual behavior is the medial pre-optic area (mPOA) where dopamine stimulates both D1 and D2 receptor subtypes. Research completed to date in Japanese quail has only utilized systemic injections and therefore much is unknown about the specific role played by dopamine in the brain and mPOA in particular. The present study investigated the role of D1 and D2 receptors on male sexual behavior by examining how intracerebroventricular injections and microinjections into the mPOA of D1 and D2 agonists and antagonists influenced appetitive and consummatory aspects of sexual behavior in male quail. Experiments 1 and 2 investigated the effects of intracerebroventricular injections at three doses of D1 or D2 agonists and antagonists. The results indicated that D1 receptors facilitated consummatory male sexual behavior, whereas D2 receptors inhibited both appetitive and consummatory behaviors. Experiment 3 examined the effects of the same compounds specifically injected in the mPOA and showed that, in this region, both receptors stimulated male sexual behaviors. Together, these data indicated that the stimulatory action of dopamine in the mPOA may require a combined activation of D1 and D2 receptors. Finally, the regulation of male sexual behavior by centrally infused dopaminergic compounds in a species lacking an intromittent organ suggested that dopamine action on male sexual behavior does not simply reflect the modulation of genital reflexes due to general arousal, but relates to the central control of sexual motivation. Together, these data support the claim that dopamine specifically regulates male sexual behavior.

  10. Dissociation between cardiomyocyte function and remodeling with beta-adrenergic receptor blockade in isolated canine mitral regurgitation.

    Science.gov (United States)

    Pat, Betty; Killingsworth, Cheryl; Denney, Thomas; Zheng, Junying; Powell, Pamela; Tillson, Michael; Dillon, A Ray; Dell'Italia, Louis J

    2008-12-01

    The low-pressure volume overload of isolated mitral regurgitation (MR) is associated with increased adrenergic drive, left ventricular (LV) dilatation, and loss of interstitial collagen. We tested the hypothesis that beta1-adrenergic receptor blockade (beta1-RB) would attenuate LV remodeling after 4 mo of MR in the dog. beta1-RB did not attenuate collagen loss or the increase in LV mass in MR dogs. Using MRI and three-dimensional (3-D) analysis, there was a 70% increase in the LV end-diastolic (LVED) volume-to-LV mass ratio, a 23% decrease in LVED midwall circumferential curvature, and a >50% increase in LVED 3-D radius/wall thickness in MR dogs that was not attenuated by beta1-RB. However, beta1-RB caused a significant increase in LVED length from the base to apex compared with untreated MR dogs. This was associated with an increase in isolated cardiomyocyte length (171+/-5 microm, P<0.05) compared with normal (156+/-3 microm) and MR (165+/-4 microm) dogs. Isolated cardiomyocyte fractional shortening was significantly depressed in MR dogs compared with normal dogs (3.73+/-0.31 vs. 5.02+/-0.26%, P<0.05) and normalized with beta1-RB (4.73+/-0.48%). In addition, stimulation with the beta-adrenergic receptor agonist isoproterenol (25 nM) increased cardiomyocyte fractional shortening by 215% (P<0.05) in beta1-RB dogs compared with normal (56%) and MR (50%) dogs. In summary, beta1-RB improved LV cardiomyocyte function and beta-adrenergic receptor responsiveness despite further cell elongation. The failure to attenuate LV remodeling associated with MR could be due to a failure to improve ultrastructural changes in extracellular matrix organization.

  11. Combined blockade of angiotensin II and prorenin receptors ameliorates podocytic apoptosis induced by IgA-activated mesangial cells.

    Science.gov (United States)

    Leung, Joseph C K; Chan, Loretta Y Y; Saleem, M A; Mathieson, P W; Tang, Sydney C W; Lai, Kar Neng

    2015-07-01

    Glomerulo-podocytic communication plays an important role in the podocytic injury in IgA nephropathy (IgAN). In this study, we examine the role of podocytic angiotensin II receptor subtype 1 (AT1R) and prorenin receptor (PRR) in podocytic apoptosis in IgAN. Polymeric IgA (pIgA) was isolated from patients with IgAN and healthy controls. Conditioned media were prepared from growth arrested human mesangial cells (HMC) incubated with pIgA from patients with IgAN (IgA-HMC media) or healthy controls (Ctl-HMC media). A human podocyte cell line was used as a model to examine the regulation of the expression of AT1R, PRR, TNF-α and CTGF by IgA-HMC media. Podocytic nephrin expression, annexin V binding and caspase 3 activity were used as the functional readout of podocytic apoptosis. IgA-HMC media had no effect on AngII release by podocytes. IgA-HMC media significantly up-regulated the expression of AT1R and PRR, down-regulated nephrin expression and induced apoptosis in podocytes. Mono-blockade of AT1R, PRR, TNF-α or CTGF partially reduced podocytic apoptosis. IgA-HMC media activated NFκB, notch1 and HEY1 expression by podocytes and dual blockade of AT1R with PRR, or anti-TNF-α with anti-CTGF, effectively rescued the podocytic apoptosis induced by IgA-HMC media. Our data suggests that pIgA-activated HMC up-regulates the expression of AT1R and PRR expression by podocytes and the associated activation of NFκB and notch signalling pathways play an essential role in the podocytic apoptosis induced by glomerulo-podocytic communication in IgAN. Simultaneously targeting the AT1R and PRR could be a potential therapeutic option to reduce the podocytic injury in IgAN.

  12. The effect of purinergic P2 receptor blockade on skeletal muscle exercise hyperemia in miniature swine

    DEFF Research Database (Denmark)

    Mortensen, Stefan Peter; McAllister, R M; Yang, H T

    2014-01-01

    PURPOSE: ATP could play an important role in skeletal muscle blood flow regulation by inducing vasodilation via purinergic P2 receptors. This study investigated the role of P2 receptors in exercise hyperemia in miniature swine. METHODS: We measured regional blood flow with radiolabeled......-microsphere technique and systemic hemodynamics before and after arterial infusion of the P2 receptor antagonist reactive blue 2 during treadmill exercise (5.2 km/h, ~60 % VO2max) and arterial ATP infusion in female Yucatan miniature swine (~29 kg). RESULTS: Mean blood flow during exercise from the 16 sampled skeletal...... muscle tissues was 138 ± 18 mL/min/100 g (mean ± SEM), and it was reduced in 11 (~25 %) of the 16 sampled skeletal muscles after RB2 was infused. RB2 also lowered diaphragm blood flow and kidney blood flow, whereas lung tissue blood flow was increased (all P

  13. Determination of the cerebral dopamine-D2-receptor density by 123I-IBZM-SPECT in patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Hierholzer, J.; Cordes, M.; Barzen, G.; Keske, U.; Felix, R.; Schelosky, L.; Poewe, H.; Henkes, H.; Horowski, R.

    1992-01-01

    An alteration of the dopaminergic nigrostriatal system is believed to be the main pathogenetic factor of Parkinson's disease (PD). We report on our initial results on the determination of the post-synapticdopamine-D2-receptor binding of 123 I-IBZM in patients with PD. Drug-native patients showed a significantly higher IBZM binding in the basal ganglia as compared to patients on specific dopaminergic medication. We conclude that 123 I-IBZM-SPECT is an extremely usuful tool for the evaluation of the functional state of cerebraldopamine-D2-receptors. 'orig./DG) [de

  14. Association of Novelty Seeking Scores and Striatal Dopamine D2/D3 Receptor Availability of Healthy Volunteers: Single Photon Emission Computed Tomography With 123I-iodobenzamide

    Directory of Open Access Journals (Sweden)

    Hsiang Yu Huang

    2010-10-01

    Full Text Available It has been speculated that novelty seeking (NS behavior is related to the dopaminergic system. Fifty-two subjects completed the Tridimensional Personality Questionnaire and underwent single photon emission computed tomography with 123I-iodobenzamide. A marginally positive correlation was noted between NS and striatal dopamine D2/D3 receptor availability (r = 0.25, p =0.07. A positive association was noted between the NS scores and left striatal D2/D3 receptor availability (r= 0.29, p =0.04. The results suggest that a relationship might exist between NS score and dopaminergic activity.

  15. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Katharina; Gruner, Janina; Madeja, Michael; Musshoff, Ulrich [Universitaetsklinikum Muenster, Institut fuer Physiologie I, Muenster (Germany); Hartmann, Louise M.; Hirner, Alfred V. [Universitaet Duisburg-Essen, Institut fuer Umweltanalytik, Essen (Germany); Binding, Norbert [Universitaetsklinikum Muenster, Institut fuer Arbeitsmedizin, Muenster (Germany)

    2006-08-15

    Pentavalent and trivalent organoarsenic compounds belong to the major metabolites of inorganic arsenicals detected in humans. Recently, the question was raised whether the organic arsenicals represent metabolites of a detoxification process or methylated species with deleterious biological effects. In this study, the effects of trivalent arsenite (AsO{sub 3} {sup 3-}; iA{sup III}), the pentavalent organoarsenic compounds monomethylarsonic acid (CH{sub 3}AsO(OH){sub 2}; MMA{sup V}) and dimethylarsinic acid ((CH{sub 3}){sub 2}AsO(OH); DMA{sup V}) and the trivalent compounds monomethylarsonous acid (CH{sub 3}As(OH){sub 2}, MMA{sup III}) and dimethylarsinous acid ((CH{sub 3}){sub 2}As(OH); DMA{sup III}) were tested on glutamate receptors and on voltage-operated potassium and sodium channels heterologously expressed in Xenopus oocytes. Membrane currents of ion channels were measured by conventional two-electrode voltage-clamp techniques. The effects of arsenite were tested in concentrations of 1-1,000 {mu}mol/l and the organic arsenical compounds were tested in concentrations of 0.1-100 {mu}mol/l. We found no significant effects on voltage-operated ion channels; however, the arsenicals exert different effects on glutamate receptors. While MMA{sup V} and MMA{sup III} significantly enhanced ion currents through N-methyl-d-aspartate (NMDA) receptor ion channels with threshold concentrations <10 {mu}mol/l, DMA{sup V} and DMA{sup III} significantly reduced NMDA-receptor mediated responses with threshold concentrations <0.1 {mu}mol/l; iA{sup III} had no effects on glutamate receptors of the NMDA type. MMA{sup III} and DMA{sup V} significantly reduced ion currents through {alpha}-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-receptor ion channels with threshold concentrations <10 {mu}mol/l (MMA{sup III}) and <1 {mu}mol/l (DMA{sup V}). MMA{sup V} and iA{sup III} had no significant effects on glutamate receptors of the AMPA type. The effects of MMA{sup V}, MMA

  16. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Bruno, J P; Byrnes, E M; Johnson, B J

    1995-11-01

    The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.

  17. Accelerated habit formation following amphetamine exposure is reversed by D1, but enhanced by D2, receptor antagonists

    Directory of Open Access Journals (Sweden)

    Andrew John Dudley Nelson

    2013-05-01

    Full Text Available Repeated exposure to the psychostimulant amphetamine has been shown to disrupt goal-directed instrumental actions and promote the early and abnormal development of goal-insensitive habitual responding (Nelson and Killcross, 2006. To investigate the neuropharmacological specificity of this effect as well as restore goal-directed responding in animals with pre-training amphetamine exposure, animals were treated with the non-selective dopamine antagonist α-flupenthixol, the selective D1 antagonist SCH 23390 or the selective D2 antagonist eticlopride, prior to instrumental training (3 sessions. Subsequently, the reinforcer was paired with LiCL-induced gastric-malaise and animals were given a test of goal-sensitivity both in extinction and reacquisition. The effect of these dopaminergic antagonists on the sensitivity of lever press performance to outcome devaluation was assessed in animals with pre-training exposure to amphetamine (Experiments 1a-1c or in non-sensitized animals (Experiment 2. Both α-flupenthixol and SCH23390 reversed accelerated habit formation following amphetamine sensitization. However, eticlopride appeared to enhance this effect and render instrumental performance compulsive as these animals were unable to inhibit responding both in extinction and reacquisition, even though a consumption test confirmed they had acquired an aversion to the reinforcer. These findings demonstrate that amphetamine induced-disruption of goal-directed behaviour is mediated by activity at distinct dopamine receptor subtypes and may represent a putative model of the neurochemical processes involved in the loss of voluntary control over behaviour.

  18. Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells

    Institute of Scientific and Technical Information of China (English)

    Yamu Li; Ying Liu; Shu Li; Xiaobing Jiang; Guangwei Du; Yan Zhou; Wen Wang; Fangyu Wang; Qiushuang Wu; Wei Li; Xiaoling Zhong; Kuan Tian; Tao Zeng; Liang Gao

    2017-01-01

    Glioblastoma multiforme (GBM) is a highly invasive brain tumor with limited therapeutic means and poor prognosis.Recent studies indicate that glioma-initiating cells/glioma stem cells (GICs/GSCs) may be responsible for tumor initiation,infiltration,and recurrence.GlCs could aberrantly employ molecular machinery balancing self-renewal and differentiation of embryonic neural precursors.Here,we find that paired related homeobox 1 (PRRX1),a homeodomain transcription factor that was previously reported to control skeletal development,is expressed in cortical neural progenitors and is required for their self-renewal and proper differentiation.Further,PRRX1 is overrepresented in glioma samples and labels GlCs.Glioma cells and GlCs depleted with PRRX1 could not propagate in vitro or form tumors in the xenograft mouse model.The GIC self-renewal function regulated by PRRX1 is mediated by dopamine D2 receptor (DRD2).PRRX1 directly binds to the DRD2 promoter and transactivates its expression in GlCs.Blockage of the DRD2 signaling hampers GIC self-renewal,whereas its overexpression restores the propagating and tumorigenic potential of PRRX1-depleted GlCs.Finally,PRRX1 potentiates GlCs via DRD2-mediated extracellular signal-related kinase (ERK) and AKT activation.Thus,our study suggests that therapeutic targeting the PRRX1-DRD2-ERK/AKT axis in GlCs is a promising strategy for treating GBMs.

  19. [Knockdown of dopamine receptor D2 upregulates the expression of adiogenic genes in mouse primary mesencephalic neurons].

    Science.gov (United States)

    Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi

    2018-01-01

    Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.

  20. Blockade of AT1 receptors by losartan did not affect renin gene expression in kidney medulla

    Czech Academy of Sciences Publication Activity Database

    Tybitanclová, K.; Szabová, L.; Grima, M.; Ingert, C.; Železná, Blanka; Zórad, Š.

    2006-01-01

    Roč. 25, č. 1 (2006), s. 43-51 ISSN 0231-5882 Grant - others:VEGA(SK) 2/5090/25 Institutional research plan: CEZ:AV0Z50520514 Keywords : AT1 receptor * renin-angiotensin system * kidneys Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.771, year: 2006

  1. Angiotensin receptor blockade in acute stroke. The Scandinavian Candesartan Acute Stroke Trial

    DEFF Research Database (Denmark)

    Sandset, Else Charlotte; Murray, Gordon; Boysen, Gudrun

    2010-01-01

    BACKGROUND: Elevated blood pressure following acute stroke is common, and yet early antihypertensive treatment is controversial. ACCESS suggested a beneficial effect of the angiotensin receptor blocker candesartan in the acute phase of stroke, but these findings need to be confirmed in new, large...

  2. Levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain in conscious rats

    Directory of Open Access Journals (Sweden)

    Toshikatsu Okumura

    2016-02-01

    Subcutaneously (80 mg/rat or intracisternally (2.5 μg/rat administered levodopa significantly increased the threshold of colonic distension-induced AWR in conscious rats. The dose difference to induce the antinociceptive action suggests levodopa acts centrally to exert its antinociceptive action against colonic distension. While neither sulpiride, a D2 dopamine receptor antagonist, nor SCH23390, a D1 dopamine receptor antagonist by itself changed the threshold of colonic distension-induced AWR, the intracisternally injected levodopa-induced antinociceptive action was significantly blocked by pretreatment with subcutaneously administered sulpiride but not SCH23390. Treatment with intracisternal SB334867, an orexin 1 receptor antagonist, significantly blocked the subcutaneously administered levodopa-induced antinociceptive action. These results suggest that levodopa acts centrally to induce an antinociceptive action against colonic distension through activation of D2 dopamine receptors and the orexinergic system in the brain.

  3. Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A2A-Dopamine D2 Receptor Heterotetramers and Adenylyl Cyclase

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2018-04-01

    Full Text Available The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating “Go” responses upon exposure to reward-related stimuli and “NoGo” responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R and adenosine A2A receptors (A2AR, and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5. The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that

  4. Progesterone receptor blockade in human breast cancer cells decreases cell cycle progression through G2/M by repressing G2/M genes

    OpenAIRE

    Clare, Susan E.; Gupta, Akash; Choi, MiRan; Ranjan, Manish; Lee, Oukseub; Wang, Jun; Ivancic, David Z.; Kim, J. Julie; Khan, Seema A.

    2016-01-01

    Background The synthesis of specific, potent progesterone antagonists adds potential agents to the breast cancer prevention and treatment armamentarium. The identification of individuals who will benefit from these agents will be a critical factor for their clinical success. Methods We utilized telapristone acetate (TPA; CDB-4124) to understand the effects of progesterone receptor (PR) blockade on proliferation, apoptosis, promoter binding, cell cycle progression, and gene expression. We then...

  5. Combined, but not individual, blockade of ASIC3, P2X, and EP4 receptors attenuates the exercise pressor reflex in rats with freely perfused hindlimb muscles

    OpenAIRE

    Stone, Audrey J.; Copp, Steven W.; Kim, Joyce S.; Kaufman, Marc P.

    2015-01-01

    In healthy humans, tests of the hypothesis that lactic acid, PGE2, or ATP plays a role in evoking the exercise pressor reflex proved controversial. The findings in humans resembled ours in decerebrate rats that individual blockade of the receptors to lactic acid, PGE2, and ATP had only small effects on the exercise pressor reflex provided that the muscles were freely perfused. This similarity between humans and rats prompted us to test the hypothesis that in rats with freely perfused muscles ...

  6. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience.

    Science.gov (United States)

    Nutsch, Victoria L; Will, Ryan G; Robison, Christopher L; Martz, Julia R; Tobiansky, Daniel J; Dominguez, Juan M

    2016-01-01

    Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.

  7. Dopamine D2 receptor-mediated G-protein activation in rat striatum: functional autoradiography and influence of unilateral 6-hydroxydopamine lesions of the substantia nigra.

    Science.gov (United States)

    Newman-Tancredi, A; Cussac, D; Brocco, M; Rivet, J M; Chaput, C; Touzard, M; Pasteau, V; Millan, M J

    2001-11-30

    Unilateral 6-hydroxydopamine (6-OHDA) lesions of substantia nigra pars compacta (SNPC) neurons in rats induce behavioural hypersensitivity to dopaminergic agonists. However, the role of specific dopamine receptors is unclear, and potential alterations in their transduction mechanisms remain to be evaluated. The present study addressed these issues employing the dopaminergic agonist, quinelorane, which efficaciously stimulated G-protein activation (as assessed by [35S]GTPgammaS binding) at cloned hD2 (and hD3) receptors. At rat striatal membranes, dopamine stimulated [35S]GTPgammaS binding by 1.9-fold over basal, but its actions were only partially reversed by the selective D2/D3 receptor antagonist, raclopride, indicating the involvement of other receptor subtypes. In contrast, quinelorane-induced stimulation (48% of the effect of dopamine) was abolished by raclopride, and by the D2 receptor antagonist, L741,626. Further, novel antagonists selective for D3 and D4 receptors, S33084 and S18126, respectively, blocked the actions of quinelorane at concentrations corresponding to their affinities for D2 receptors. Quinelorane potently induced contralateral rotation in unilaterally 6-OHDA-lesioned rats, an effect abolished by raclopride and L741,626, but not by D3 and D4 receptor-selective doses of S33084 and S18126, respectively. In functional ([35S]GTPgammaS) autoradiography experiments, quinelorane stimulated G-protein activation in caudate putamen and, to a lesser extent, in nucleus accumbens and cingulate cortex of naive rats. In unilaterally SNPC-lesioned rats, quinelorane-induced G-protein activation in the caudate putamen on the non-lesioned side was similar to that seen in naive animals (approximately 50% stimulation), but significantly greater on the lesioned side (approximately 80%). This increase was both pharmacologically and regionally specific since it was reversed by raclopride, and was not observed in nucleus accumbens or cingulate cortex. In conclusion

  8. Exploration of dopamine transporter and D2 receptors in morphine dependent rats through 125I-β-CTT, 125I-IBZM cerebral autoradiography and the biodistribution study

    International Nuclear Information System (INIS)

    Lin Yansong; Fang Ping; Ding Shiyu; Chen Zhengping; Zhou Xiang; Hu Mingyang; Wang Bocheng; Zhang Manda; Wang Shizhen

    2001-01-01

    Objective: To explore the variation of cerebral dopamine (DA) transmitting system in morphine dependent (MD) rats using dopamine transporter (DAT) and D 2 receptors imaging agent. Methods: MD model rats were established by using a two-compartment (C1 and C2-morphine conditioned compartment) apparatus for assessing morphine conditioned place preferences in rats. 125 I-2β-carbomethoxy-3β-(4-iodophenyl) tropane ( 125 I-β-CIT) and 125 I-3-iodo-2-hydroxy-6-methoxy-N[(1-ethyl-2-pyrrolidinyl) methyl] benzamide ( 125 I-IBZM) cerebral DAT and D 2 receptor autoradiography and biodistribution study were used to evaluate the variation of DAT and D 2 receptors in morphine dependent rats. Results: The mean time of MD rats entering from C1 to C2 was (0.84 +- 0.50) min after 6 days' conditioned place preference training, shorter than that of the control group [(2.40 +- 1.10) min, P 125 I-β-CIT uptake ratio of striatum (ST)/cerebellum (CB) and nucleus acumens (NAC)/CB in MD group were 4.76 +- 0.92 and 2.72 +- 0.96, significantly lower than that of control group (5.92 +- 0.67 and 4.16 +- 0.56, P 125 I-IBZM uptake ratio in MD group were 4.11 +- 0.56 and 2.64 +- 0.25, lower than that in control group (5.43 +- 0.74 and 3.49 +- 0.65, P 125 I-β-CIT, 125 I-IBZM biodistribution study also showed that the DAT and D 2 binding sites were reduced in ST of MD group by (21.68 +- 11.11)% and (18.69 +- 9.97)% comparing to the controls, respectively. Conclusions: The DAT and D 2 receptors in both ST and NAC were all involved and reduced to some extent in morphine dependent model rats, the DAT and D 2 receptor imaging agent could reflect the variation of DAT and D 2 receptors, this would afford the theoretical basis for D 2 receptors and DAT imaging in study on preventing drug addiction and on its abstinence

  9. Amenorrhea secondary to a vismodegib-induced blockade of follicle-stimulating hormone-receptor activation.

    Science.gov (United States)

    Strasswimmer, John; Latimer, Benjamin; Ory, Steven

    2014-08-01

    To report a novel mechanism suggestive of early ovarian failure secondary to the anti-tumor hedgehog-pathway inhibitor vismodegib. Case report and literature review. Academic and private dermatology and fertility practices. A 34-year-old nulliparous woman with locally advanced basal cell carcinomas who became amenorrheic while receiving oral therapy with vismodegib. Physical examination and endocrine evaluation. Elevated follicle-stimulating hormone (FSH) and low estrogen in the setting of a normal anti-Müllerian hormone. FSH was elevated; estrogen was low. Preantral follicles were detected and anti-Müllerian hormone activity was normal. Menses resumed 5 weeks after cessation of therapy. Vismodegib, a first-in-class inhibitor of the hedgehog signaling pathway is indicated for advanced basal cell carcinoma and is associated with amenorrhea. The mechanism is unknown; it has some features of ovarian failure but preserves ovarian potential through blockading of FSH-receptor-dependent signal transduction. This effect appears to be rapidly reversible upon cessation of therapy. Vismodegib and related compounds may have potential for a role in intervention for gynecologic and endocrine disorders and in therapy for other issues involving FSH-dependent function. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Endocannabinoid receptor blockade increases vascular endothelial growth factor and inflammatory markers in obese women with polycystic ovary syndrome.

    Science.gov (United States)

    Sathyapalan, Thozhukat; Javed, Zeeshan; Kilpatrick, Eric S; Coady, Anne-Marie; Atkin, Stephen L

    2017-03-01

    Animal studies suggest that cannabinoid receptor-1 (CB-1) blockade reduces inflammation and neovascularization by decreasing vascular endothelial growth factor (VEGF) levels associated with a reduction in inflammatory markers, thereby potentially reducing cardiovascular risk. To determine the impact of CB1 antagonism by rimonabant on VEGF and inflammatory markers in obese PCOS women. Randomized, open-labelled parallel study. Endocrinology outpatient clinic in a referral centre. Twenty patients with PCOS (PCOS) and biochemical hyperandrogenaemia with a body mass index of ≥30 kg/m 2 were recruited. Patients were randomized to 1·5 g daily of metformin or 20 mg daily of rimonabant. Post hoc review to detect VEGF and pro-inflammatory cytokines TNF-α, IL-1β, IL-1ra, IL-2, IL6, IL-8, IL-10 and MCP-1 before and after 12 weeks of treatment. After 12 weeks of rimonabant treatment, there was a significant increase in VEGF (99·2 ± 17·6 vs 116·2 ± 15·8 pg/ml, P weight loss. © 2016 John Wiley & Sons Ltd.

  11. Expression of the dopaminergic D1 and D2 receptors in the anterior cingulate cortex in a model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ortega-Legaspi J Manuel

    2011-12-01

    Full Text Available Abstract Background The anterior cingulate cortex (ACC has been related to the affective component of pain. Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R receptor expression in the ACC (cg1 and cg2 in an animal model of neuropathic pain. The neuropathic group had noxious heat applied in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS was recorded for eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals. A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and protein levels were measured by Western Blot. Results The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R protein only decreased discretely. D1R protein was not found in either ACC region. Conclusions This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R mRNA and protein in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

  12. Muscarinic receptor blockade in ventral hippocampus and prelimbic cortex impairs memory for socially transmitted food preference.

    Science.gov (United States)

    Carballo-Márquez, Anna; Vale-Martínez, Anna; Guillazo-Blanch, Gemma; Martí-Nicolovius, Margarita

    2009-05-01

    Acetylcholine is involved in learning and memory and, particularly, in olfactory tasks, but reports on its specific role in consolidation processes are somewhat controversial. The present experiment sought to determine the effects of blocking muscarinic cholinergic receptors in the ventral hippocampus (vHPC) and the prelimbic cortex (PLC) on the consolidation of social transmission of food preference, an odor-guided relational task that depends on such brain areas. Adult male Wistar rats were bilaterally infused with scopolamine (20 microg/site) immediately after social training and showed impairment, relative to vehicle-injected controls, in the expression of the task measured 24 h after learning. Results indicated that scopolamine in the PLC completely abolished memory, suggesting that muscarinic transmission in this cortical region is crucial for consolidation of recent socially acquired information. Muscarinic receptors in the vHPC contribute in some way to task consolidation, as the rats injected with scopolamine in the vHPC showed significantly lower trained food preference than control rats, but higher than both chance level and that of the PLC-injected rats. Behavioral measures such as social interaction, motivation to eat, neophobia, or exploration did not differ between rats infused with scopolamine or vehicle. Such data suggest a possible differential role of muscarinic receptors in the PLC and the vHPC in the initial consolidation of a naturalistic form of nonspatial relational memory. Copyright 2008 Wiley-Liss, Inc.

  13. Pitting type of pretibial edema in a patient with silent thyroiditis successfully treated by angiotensin ii receptor blockade.

    Science.gov (United States)

    Kazama, Itsuro; Mori, Yoko; Baba, Asuka; Nakajima, Toshiyuki

    2014-01-01

    Female, 56 FINAL DIAGNOSIS: Thyroiditis - silent Symptoms: Palpitations • pretibial pitting edema • short of breath • sweating - Clinical Procedure: - Specialty: Endocrinology and Metabolic. Unknown etiology. Hyper- or hypothyroidism sometimes causes pretibial myxedema characterized by non-pitting infiltration of a proteinaceous ground substance. However, in those patients, the "pitting" type of pretibial edema as a result of increased sodium and fluid retention or vascular hyper-permeability rarely occurs, except in cases complicated by heart failures due to severe cardiomyopathy or pulmonary hypertension. A 56-year-old woman developed bilateral pretibial pitting edema, followed by occasional sweating, palpitations, and shortness of breath, which persisted for more than 2 months. The diagnosis of hyperthyroidism due to silent thyroiditis was supported by elevated levels of free thyroxine (T4) and triiodothyronine (T3), with a marked decrease in thyroid-stimulating hormone (TSH), and the negative results for TSH receptor antibodies with typical findings of destructive thyrotoxicosis. Despite her "pitting" type of pretibial edema, a chest radio-graph demonstrated the absence of cardiomyopathy or congestive heart failure. Oral administration of angiotensin II receptor blocker (ARB) was initiated for her systolic hypertension, with a relatively higher elevation of plasma renin activity compared to that of the aldosterone level. Although the symptoms characteristic to hyperthyroidism, such as increased sweating, palpitations and shortness of breath, slowly improved with a spontaneous resolution of the disease, ARB quickly resolved the pretibial pitting edema shortly after the administration.. In this case, increased activity of the renin-angiotensin-aldosterone system stimulated by thyroid hormone was likely responsible for the patient's pitting type of edema. The pharmacological blockade of the renin-angiotensin-aldosterone system was thought to be effective for

  14. The Conserved Arginine Cluster in the Insert of the Third Cytoplasmic Loop of the Long Form of the D2 Dopamine Receptor (D2L-R Acts as an Intracellular Retention Signal

    Directory of Open Access Journals (Sweden)

    Valentina Kubale

    2016-07-01

    Full Text Available This study examined whether the conserved arginine cluster present within the 29-amino acid insert of the long form of the D2 dopamine receptor (D2L-R confers its predominant intracellular localization. We hypothesized that the conserved arginine cluster (RRR located within the insert could act as an RXR-type endoplasmic reticulum (ER retention signal. Arginine residues (R within the cluster at positions 267, 268, and 269 were charge-reserved to glutamic acids (E, either individually or in clusters, thus generating single, double, and triple D2L-R mutants. Through analyses of cellular localization by confocal microscopy and enzyme-linked immunosorbent assay (ELISA, radioligand binding assay, bioluminescence resonance energy transfer (BRET2 β-arrestin 2 (βarr2 recruitment assay, and cAMP signaling, it was revealed that charge reversal of the R residues at all three positions within the motif impaired their colocalization with ER marker calnexin and led to significantly improved cell surface expression. Additionally, these data demonstrate that an R to glutamic acid (E substitution at position 2 within the RXR motif is not functionally permissible. Furthermore, all generated D2L-R mutants preserved their functional integrity regarding ligand binding, agonist-induced βarr2 recruitment and Gαi-mediated signaling. In summary, our results show that the conserved arginine cluster within the 29-amino acid insert of third cytoplasmic loop (IC3 of the D2L-R appears to be the ER retention signal.

  15. Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans.

    Science.gov (United States)

    Bertolino, Alessandro; Fazio, Leonardo; Di Giorgio, Annabella; Blasi, Giuseppe; Romano, Raffaella; Taurisano, Paolo; Caforio, Grazia; Sinibaldi, Lorenzo; Ursini, Gianluca; Popolizio, Teresa; Tirotta, Emanuele; Papp, Audrey; Dallapiccola, Bruno; Borrelli, Emiliana; Sadee, Wolfgang

    2009-01-28

    Dopamine modulation of neuronal activity during memory tasks identifies a nonlinear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D(2) receptors (encoded by DRD(2)) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D(2) proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD(2) polymorphism (rs1076560) causing reduced presynaptic D(2) receptor expression and the DAT 3'-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging (MRI) during memory tasks and structural MRI. Results indicated a significant DRD(2)/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD(2) allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a nonlinear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D(2) knock-out animals (D2R(-/-)) indicate that DAT and D(2) proteins interact in vivo. Together, our results demonstrate that the interaction between genetic variants in DRD(2) and DAT critically modulates the nonlinear relationship between dopamine and neuronal activity during memory processing.

  16. Sex-specific effects of naturally occurring variants in the dopamine receptor D2 locus on insulin secretion and Type 2 diabetes susceptibility

    NARCIS (Netherlands)

    Guigas, B.; Leeuw van Weenen, J.E. de; van Leeuwen, N.; Simonis-Bik, A.M.; Haeften, T.W. van; Nijpels, G.; Houwing-Duistermaat, J.J.; Beekman, M.; Deelen, J.; Havekes, L.M.; Penninx, B.W.J.H.; Vogelzangs, N.; Riet, E. van 't; Dehghan, A.; Hofman, A.; Witteman, J.C.; Uitterlinden, A.G.; Grarup, N.; Jørgensen, T.; Witte, D.R.; Lauritzen, T.; Hansen, T.; Pedersen, O.; Hottenga, J.; Romijn, J.A.; Diamant, M.; Kramer, M.H.H.; Heine, R.J.; Willemsen, G.; Dekker, J.M.; Eekhoff, E.M.; Pijl, H.; Geus, E.J. de; Slagboom, P.E.; Hart, L.M. 't

    2014-01-01

    Aims: Modulation of dopamine receptor D2 (DRD2) activity affects insulin secretion in both rodents and isolated pancreatic β-cells. We hypothesized that single nucleotide polymorphisms in the DRD2/ANKK1 locus may affect susceptibility to Type 2 diabetes in humans. Methods: Four potentially

  17. Interaction between dopamine D2 receptor genotype and parental rule-setting in adolescent alcohol use: evidence for a gene-parenting interaction.

    NARCIS (Netherlands)

    Zwaluw, C.S. van der; Engels, R.C.E.M.; Vermulst, A.A.; Franke, B.; Buitelaar, J.K.; Verkes, R.J.; Scholte, R.H.

    2010-01-01

    Association studies investigating the link between the dopamine D2 receptor gene (DRD2) and alcohol (mis)use have shown inconsistent results. This may be due to lack of attention for environmental factors. High levels of parental rule-setting are associated with lower levels of adolescent alcohol

  18. Long-term changes of striatal dopamine D-2 receptors in patients with Parkinson's disease : A study with positron emission tomography and [C-11]Raclopride

    NARCIS (Netherlands)

    Antonini, A; Schwarz, J; Oertel, WH; Pogarell, O; Leenders, KL

    We used [C-11]raclopride (RACLO) and positron emission tomography (PET) to study longitudinally striatal dopamine D-2 receptor binding in nine patients with Parkinson's disease (PD) at an early drug-naive stage and 3-5 years later, when motor fluctuations had appeared in seven of them. Patients were

  19. Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender

    DEFF Research Database (Denmark)

    Glenthoj, Birte Y; Mackeprang, Torben; Svarer, Claus

    2006-01-01

    BACKGROUND: The aim of the study was to examine extrastriatal dopamine D(2/3) receptor binding and psychopathology in schizophrenic patients, and to relate binding potential (BP) values to psychopathology. METHODS: Twenty-five drug-naive schizophrenic patients and 20 healthy controls were examined...

  20. Abundant immunohistochemical expression of dopamine D2 receptor and p53 protein in meningiomas: follow-up, relation to gender, age, tumor grade, and recurrence

    International Nuclear Information System (INIS)

    Trott, G.; Pereira-Lima, J.F.S.; Leães, C.G.S.; Ferreira, N.P.; Barbosa-Coutinho, L.M.; Oliveira, M.C.

    2015-01-01

    Meningiomas are common, usually benign tumors, with a high postoperative recurrence rate. However, the genesis and development of these tumors remain controversial. We aimed to investigate the presence and implications of a mutated p53 protein and dopamine D 2 receptor in a representative series of meningiomas and to correlate these findings with age, gender, tumor grade, and recurrence. Tumor tissue samples of 157 patients diagnosed with meningioma (37 males and 120 females, mean age 53.6±14.3 years) who underwent surgical resection between 2003 and 2012 at our institution were immunohistochemically evaluated for the presence of p53 protein and dopamine D 2 receptor and were followed-up to analyze tumor recurrence or regrowth. Tumors were classified as grades I (n=141, 89.8%), II (n=13, 8.3%), or grade III (n=3, 1.9%). Dopamine D 2 receptor and p53 protein expression were positive in 93.6% and 49.7% of the cases, respectively. Neither of the markers showed significant expression differences among different tumor grades or recurrence or regrowth statuses. Our findings highlight the potential role of p53 protein in meningioma development and/or progression. The high positivity of dopamine D 2 receptor observed in this study warrants further investigation of the therapeutic potential of dopamine agonists in the evolution of meningiomas

  1. Single photon emission tomography (SPET) imaging of dopamine D2 receptors in the course of dopamine replacement therapy in patients with nocturnal myoclonus syndrome (NMS)

    International Nuclear Information System (INIS)

    Staedt, J.; Stoppe, G.; Riemann, H.; Hajak, G.; Ruether, E.; Koegler, A.; Emrich, D.

    1995-01-01

    Single photon emission tomography (SPET) permits the in vivo measurements of regional cerebral radioactivity in the human brain following the administration of compounds labeled with photon-emitting isotopes. According to our SPET findings of a reduced binding of [ 123 I]labeled (S)-2-hydroxy-3-iodo-6-methoxy-([1-ethyl-2-pyrrolidinyl]methyl) benzamide (IBZM) (a highly selective CNS D 2 dopamine receptor ligand) to D 2 dopamine receptors in striatal structures in untreated patients with nocturnal myoclonus syndrome (NMS) it seemed to be of interest to investigate whether there are changes in D 2 receptor binding under dopamine replacement therapy or not. We studied the uptake and distribution of [ 123 I]IBZM before and in the course of dopamine replacement therapy in four patients with severe insomnia caused by nocturnal myoclonus syndrome (NMS). We found an increase of the IBZM binding to D 2 receptors in the course of treatment, which was associated with an improvement of sleep quality. Reasons for this are discussed. The [ 123 I]IBZM SPET technique in conclusion offers an interesting tool for in vivo investigations of functional changes in the dopaminergic neurotransmitter system in longitudinal studies. (author)

  2. [123I]epidepride binding to cerebellar dopamine D2/D3 receptors is displaceable: implications for the use of cerebellum as a reference region

    DEFF Research Database (Denmark)

    Pinborg, Lars H; Videbaek, Charlotte; Ziebell, Morten

    2007-01-01

    The low density of cerebellar dopamine D(2)/D(3) receptors provides the basis for using the cerebellum as a representation of free- and non-specifically bound radioligand in positron emission tomography (PET) and single photon emission computed tomography (SPECT) studies. With the development of ...

  3. Functional characterisation of eel dopamine D2 receptors and involvement in the direct inhibition of pituitary gonadotrophins

    DEFF Research Database (Denmark)

    Jolly, C.; Rousseau, K.; Prézeau, L.

    2016-01-01

    and antagonists, supporting subtle structure/activity differences. Furthermore, using eel pituitary cell primary cultures, the expression by gonadotroph cells of both native eel D2‐R paralogues was examined by in situ hybridisation of D2A‐R or D2B‐R transcripts, coupled with immunofluorescence of luteinising...... hormone (LH)β or follicle‐stimulating (FSH)β. LH and to a lesser extent, FSH cells expressed both D2‐R transcripts but with a clear predominance of D2B‐R. Notably, D2B‐R transcripts were detected for the majority of LH cells. Accordingly, using these cultures, we showed that DA potently inhibited basal...

  4. Validation of quantitative brain dopamine D2 receptor imaging with a conventional single-head SPET camera

    International Nuclear Information System (INIS)

    Nikkinen, P.; Liewendahl, K.; Savolainen, S.; Launes, J.

    1993-01-01

    Phantom measurements were performed with a conventional single-head single-photon emission tomography (SPET) camera in order to validate the relevance of the basal ganglia/frontal cortex iodine-123 iodobenzamide (IBZM) uptake ratios measured in patients. Inside a cylindrical phantom (diameter 22 cm), two cylinders with a diameter of 3.3 cm were inserted. The activity concentrations of the cylinders ranged from 6.0 to 22.6 kBq/ml and the cylinder/background activity ratios varied from 1.4 to 3.8. From reconstructed SPET images the cylinder/background activity ratios were calculated using three different regions of interest (ROIs). A linear relationship between the measured activity ratio and the true activity ratio was obtained. In patient studies, basal ganglia/frontal cortex IBZM uptake ratios determined from the reconstructed slices using attentuation correction prior to reconstruction were 1.30 ±0.03 in idiopathic Parkinson's disease (n = 9), 1,33 ±0.09 in infantile and juvenile neuronal ceroid lipofuscinosis (n = 7) and 1.34 ±0.05 in narcolepsy (n = 8). Patients with Huntington's disease had significantly lower ratios (1.09 ±0.04, n = 5). The corrected basal ganglia/frontal cortex ratios, determined using linear regression, were about 80 % higher. The use of dual-window scatter correction increased the measured ratios by about 10 %. Although comprehensive correction methods can further improve the resolution in SPET images, the resolution of the SPET system used by us (1.5 - 2 cm) will determine what is achievable in basal ganglia D2 receptor imaging. (orig.)

  5. Validation of quantitative brain dopamine D2 receptor imaging with a conventional single-head SPET camera

    Energy Technology Data Exchange (ETDEWEB)

    Nikkinen, P [Helsinki Univ. (Finland). Dept. of Clinical Chemistry; Liewendahl, K [Helsinki Univ. (Finland). Dept. of Clinical Chemistry; Savolainen, S [Helsinki Univ. (Finland). Dept. of Physics; Launes, J [Helsinki Univ. (Finland). Dept. of Neurology

    1993-08-01

    Phantom measurements were performed with a conventional single-head single-photon emission tomography (SPET) camera in order to validate the relevance of the basal ganglia/frontal cortex iodine-123 iodobenzamide (IBZM) uptake ratios measured in patients. Inside a cylindrical phantom (diameter 22 cm), two cylinders with a diameter of 3.3 cm were inserted. The activity concentrations of the cylinders ranged from 6.0 to 22.6 kBq/ml and the cylinder/background activity ratios varied from 1.4 to 3.8. From reconstructed SPET images the cylinder/background activity ratios were calculated using three different regions of interest (ROIs). A linear relationship between the measured activity ratio and the true activity ratio was obtained. In patient studies, basal ganglia/frontal cortex IBZM uptake ratios determined from the reconstructed slices using attentuation correction prior to reconstruction were 1.30 [+-]0.03 in idiopathic Parkinson's disease (n = 9), 1,33 [+-]0.09 in infantile and juvenile neuronal ceroid lipofuscinosis (n = 7) and 1.34 [+-]0.05 in narcolepsy (n = 8). Patients with Huntington's disease had significantly lower ratios (1.09 [+-]0.04, n = 5). The corrected basal ganglia/frontal cortex ratios, determined using linear regression, were about 80 % higher. The use of dual-window scatter correction increased the measured ratios by about 10 %. Although comprehensive correction methods can further improve the resolution in SPET images, the resolution of the SPET system used by us (1.5 - 2 cm) will determine what is achievable in basal ganglia D2 receptor imaging. (orig.)

  6. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    International Nuclear Information System (INIS)

    Kienast, Thorsten; Rapp, Michael; Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias; Wrase, Jana; Heinz, Andreas; Braus, Dieter F.; Smolka, Michael N.; Mann, Karl; Roesch, Frank; Cumming, Paul; Gruender, Gerhard; Bartenstein, Peter

    2008-01-01

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [ 18 F]DOPA for measurements of dopamine synthesis capacity and [ 18 F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [ 18 F]DOPA net influx constant K in app /[ 18 F]DMFP-binding potential (BP N D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  7. Ratio of dopamine synthesis capacity to D2 receptor availability in ventral striatum correlates with central processing of affective stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Kienast, Thorsten; Rapp, Michael [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Siessmeier, Thomas; Buchholz, Hans G.; Schreckenberger, Mathias [University of Mainz, Department of Nuclear Medicine, Mainz (Germany); Wrase, Jana; Heinz, Andreas [Charite Campus Mitte, Department of Psychiatry and Psychotherapy of the Charite University Medical Center, Berlin (Germany); Central Institute of Mental Health, Mannheim (Germany); Braus, Dieter F. [University of Hamburg, Neuroimage Nord, Department of Psychiatry, Hamburg (Germany); Smolka, Michael N.; Mann, Karl [Central Institute of Mental Health, Mannheim (Germany); Roesch, Frank [University of Mainz, Institute of Nuclear Chemistry, Mainz (Germany); Cumming, Paul [PET Center and Center for Functionally Integrative Neuroscience, Aarhus (Denmark); Gruender, Gerhard [Aachen University Medical Center, Department of Psychiatry of the RWTH, Mainz (Germany); Bartenstein, Peter [Ludwig-Maximilians-University, Department of Nuclear Medicine, Munich (Germany)

    2008-06-15

    Dopaminergic neurotransmission in the ventral striatum may interact with limbic processing of affective stimuli, whereas dorsal striatal dopaminergic neurotransmission can affect habitual processing of emotionally salient stimuli in the pre-frontal cortex. We investigated the dopaminergic neurotransmission in the ventral and dorsal striatum with respect to central processing of affective stimuli in healthy subjects. Subjects were investigated with positron emission tomography and [{sup 18}F]DOPA for measurements of dopamine synthesis capacity and [{sup 18}F]DMFP for estimation of dopamine D2 receptor binding potential. Functional magnetic resonance imaging was used to assess the blood-oxygen-level-dependent (BOLD) response to affective pictures, which was correlated with the ratio of [{sup 18}F]DOPA net influx constant K{sub in}{sup app} /[{sup 18}F]DMFP-binding potential (BP{sub N}D) in the ventral and dorsal striatum. The magnitude of the ratio in the ventral striatum was positively correlated with BOLD signal increases elicited by negative versus neutral pictures in the right medial frontal gyrus (BA10), right inferior parietal lobe and left post-central gyrus. In the dorsal striatum, the ratio was positively correlated with BOLD signal activation elicited by negative versus neutral stimuli in the left post-central gyrus. The BOLD signal elicited by positive versus neutral stimuli in the superior parietal gyrus was positively correlated with the dorsal and ventral striatal ratio. The correlations of the ratio in the ventral and dorsal striatum with processing of affective stimuli in the named cortical regions support the hypothesis that dopamine transmission in functional divisions of the striatum modulates processing of affective stimuli in specific cortical areas. (orig.)

  8. Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2.

    Directory of Open Access Journals (Sweden)

    Melissa L Perreault

    Full Text Available In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs coexpress D1 and D2 receptors (D1R and D2R along with the neuropeptides dynorphin (DYN and enkephalin (ENK. These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1-D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R-D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc, ventral tegmental area (VTA, caudate putamen and substantia nigra (SN. Additionally, activation of the D1R-D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.

  9. Diagnostic value of asymmetric striatal D2 receptor upregulation in Parkinson's disease: an [123I]IBZM and [123I]FP-CIT SPECT study

    International Nuclear Information System (INIS)

    Verstappen, C.C.P.; Bloem, B.R.; Haaxma, C.A.; Horstink, M.W.I.M.; Oyen, W.J.G.

    2007-01-01

    Striatal postsynaptic D 2 receptors in Parkinson's disease (PD) are thought to be upregulated in the first years of the disease, especially contralateral to the clinically most affected side. The aim of this study was to evaluate whether the highest striatal D 2 binding is found contralateral to the most affected side in PD, and whether this upregulation can be used as a diagnostic tool. Cross-sectional survey was undertaken of 81 patients with clinically asymmetric PD, without antiparkinsonian drugs and with a disease duration of ≤5 years and 26 age-matched controls. Striatal D 2 binding was assessed with [ 123 I]IBZM SPECT, and severity of the presynaptic dopaminergic lesion with [ 123 I]FP-CIT SPECT. The mean striato-occipital ratio of [ 123 I]IBZM binding was significantly higher in PD patients (1.56 ±0.09) than in controls (1.53 ±0.06). In PD patients, higher values were found contralateral to the clinically most affected side (1.57 ±0.09 vs 1.55 ±0.10 ipsilaterally), suggesting D 2 receptor upregulation, and the reverse was seen using [ 123 I]FP-CIT SPECT. However, on an individual basis only 56% of PD patients showed this upregulation. Our study confirms asymmetric D 2 receptor upregulation in PD. However, the sensitivity of contralateral higher striatal [ 123 I]IBZM binding is only 56%. Therefore, the presence of contralateral higher striatal IBZM binding has insufficient diagnostic accuracy for PD, and PD cannot be excluded in patients with parkinsonism and no contralateral upregulation of D 2 receptors, assessed with [ 123 I]IBZM SPECT. (orig.)

  10. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    Science.gov (United States)

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  11. Histamine 1 Receptor Blockade Enhances Eosinophil-Mediated Clearance of Adult Filarial Worms.

    Directory of Open Access Journals (Sweden)

    Ellen Mueller Fox

    Full Text Available Filariae are tissue-invasive nematodes that cause diseases such as elephantiasis and river blindness. The goal of this study was to characterize the role of histamine during Litomosoides sigmodontis infection of BALB/c mice, a murine model of filariasis. Time course studies demonstrated that while expression of histidine decarboxylase mRNA increases throughout 12 weeks of infection, serum levels of histamine exhibit two peaks-one 30 minutes after primary infection and one 8 weeks later. Interestingly, mice treated with fexofenadine, a histamine receptor 1 inhibitor, demonstrated significantly reduced worm burden in infected mice compared to untreated infected controls. Although fexofenadine-treated mice had decreased antigen-specific IgE levels as well as lower splenocyte IL-5 and IFNγ production, they exhibited a greater than fourfold rise in eosinophil numbers at the tissue site where adult L. sigmodontis worms reside. Fexofenadine-mediated clearance of L. sigmodontis worms was dependent on host eosinophils, as fexofenadine did not decrease worm burdens in eosinophil-deficient dblGATA mice. These findings suggest that histamine release induced by tissue invasive helminths may aid parasite survival by diminishing eosinophilic responses. Further, these results raise the possibility that combining H1 receptor inhibitors with current anthelmintics may improve treatment efficacy for filariae and other tissue-invasive helminths.

  12. Effect of adenosine1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus

    DEFF Research Database (Denmark)

    Weihprecht, H; Lorenz, J N; Schnermann, J

    1990-01-01

    Adenosine has been proposed to act within the juxtaglomerular apparatus (JGA) as a mediator of the inhibition of renin secretion produced by a high NaCl concentration at the macula densa. To test this hypothesis, we studied the effects of the adenosine1 (A1)-receptor blocker 8-cyclopentyl-1......,3-dipropylxanthine (CPX) on renin release from single isolated rabbit JGAs with macula densa perfused. The A1-receptor agonist, N6-cyclohexyladenosine (CHA), applied in the bathing solution at 10(-7) M, was found to inhibit renin secretion, an effect that was completely blocked by adding CPX (10(-5) M) to the bath....... Applied to the lumen, 10(-5) M CPX produced a modest stimulation of renin secretion rates suppressed by a high NaCl concentration at the macula densa (P less than 0.05). The effect of changing luminal NaCl concentration on renin secretion rate was examined in the presence of CPX (10(-7) and 10(-5) M...

  13. Differential effects of dopamine and opioid receptor blockade on motivated Coca-Cola drinking behavior and associated changes in brain, skin and muscle temperatures.

    Science.gov (United States)

    Kiyatkin, E A

    2010-05-05

    Although pharmacological blockade of both dopamine (DA) and opiate receptors has an inhibiting effect on appetitive motivated behaviors, it is still unclear which physiological mechanisms affected by these treatments underlie the behavioral deficit. To clarify this issue, we examined how pharmacological blockade of either DA (SCH23390+eticlopride at 0.2 mg/kg each) or opioid receptors (naloxone 1 mg/kg) affects motor activity and temperature fluctuations in the nucleus accumbens (NAcc), temporal muscle, and facial skin associated with motivated Coca-Cola drinking behavior in rats. In drug-free conditions, presentation of a cup containing 5 ml of Coca-Cola induced locomotor activation and rapid NAcc temperature increases, which both transiently decreased during drinking, and phasically increased again after the cup was emptied. Muscle temperatures followed this pattern, but increases were weaker and more delayed than those in the NAcc. Skin temperature rapidly dropped after cup presentation, remained at low levels during consumption, and slowly restored during post-consumption behavioral activation. By itself, DA receptor blockade induced robust decrease in spontaneous locomotion, moderate increases in brain and muscle temperatures, and a relative increase in skin temperatures, suggesting metabolic activation coupled with adynamia. Following this treatment (approximately 180 min), motor activation to cup presentation and Coca-Cola consumption were absent, but rats showed NAcc and muscle temperature increases following cup presentation comparable to control. Therefore, DA receptor blockade does not affect significantly central and peripheral autonomic responses to appetitive stimuli, but eliminates their behavior-activating effects, thus disrupting appetitive behavior and blocking consumption. Naloxone alone slightly decreased brain and muscle temperatures and increased skin temperatures, pointing at the enhanced heat loss and possible minor inhibition of basal

  14. The role of dopamine D2 receptors in the nucleus accumbens during taste-aversive learning and memory extinction after long-term sugar consumption.

    Science.gov (United States)

    Miranda, María Isabel; Rangel-Hernández, José Alejandro; Vera-Rivera, Gabriela; García-Medina, Nadia Edith; Soto-Alonso, Gerardo; Rodríguez-García, Gabriela; Núñez-Jaramillo, Luis

    2017-09-17

    The nucleus accumbens (NAcc) is a forebrain region that may significantly contribute to the integration of taste and visceral signals during food consumption. Changes in dopamine release in the NAcc have been observed during consumption of a sweet taste and during compulsive consumption of dietary sugars, suggesting that NAcc dopaminergic transmission is strongly correlated with taste familiarity and the hedonic value content. NAcc core and shell nuclei are differentially involved during and after sugar exposure and, particularly, previous evidence suggests that dopamine D2 receptors could be related with the strength of the latent inhibition (LI) of conditioned taste aversion (CTA), which depends on the length of the taste stimulus pre-exposure. Thus, the objective of this work was to evaluate, after long-term exposure to sugar, the function of dopaminergic D2 receptors in the NAcc core during taste memory retrieval preference test, and during CTA. Adult rats were exposed during 14days to 10% sugar solution as a single liquid ad libitum. NAcc core bilateral injections of D2 dopamine receptor antagonist, haloperidol (1μg/μL), were made before third preference test and CTA acquisition. We found that sugar was similarly preferred after 3 acute presentations or 14days of continued sugar consumption and that haloperidol did not disrupt this appetitive memory retrieval. Nevertheless, D2 receptors antagonism differentially affects aversive memory formation after acute or long-term sugar consumption. These results demonstrate that NAcc dopamine D2 receptors have a differential function during CTA depending on the degree of sugar familiarity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. ARF6 and GASP-1 are post-endocytic sorting proteins selectively involved in the intracellular trafficking of dopamine D2 receptors mediated by GRK and PKC in transfected cells

    Science.gov (United States)

    Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM

    2013-01-01

    Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996

  16. Effects of 5-HT5A receptor blockade on amnesia or forgetting.

    Science.gov (United States)

    Aparicio-Nava, L; Márquez-García, L A; Meneses, A

    2018-01-09

    Previously the effects (0.01-3.0 mg/kg) of post-training SB-699551 (a 5-HT 5A receptor antagonist) were reported in the associative learning task of autoshaping, showing that SB-699551 (0.1 mg/kg) decreased lever-press conditioned responses (CR) during short-term (STM; 1.5-h) or (3.0 mg/kg) long-term memory (LTM; 24-h); relative to the vehicle animals. Moreover, as pro-cognitive efficacy of SB-699551 was reported in the ketamine-model of schizophrenia. Hence, firstly aiming improving performance (conditioned response, CR), in this work autoshaping lever-press vs. nose-poke response was compared; secondly, new set of animals were randomly assigned to SB-699551 plus forgetting or amnesia protocols. Results show that the nose-poke operandum reduced inter-individual variance, increased CR and produced a progressive CR until 48-h. After one week of no training/testing sessions (i.e., interruption of 216 h), the forgetting was observed; i.e., the CR% of control-saline group significantly decreased. In contrast, SB-699551 at 0.3 and 3.0 mg/kg prevents forgetting. Additionally, as previously reported the non-competitive NMDA receptor antagonist dizocilpine (0.2 mg/kg) or the non-selective cholinergic antagonist scopolamine (0.3 mg/kg) decreased CR in STM. SB-699551 (0.3 mg/kg) alone also produced amnesia-like effect. Co-administration of SB-699551-dizocilpine or SB-699551-scopolamine reversed the SB-699551 induced-amnesic effects in LTM (24-h). Nose-poke seems to be a reliable operandum. The anti-amnesic and anti-forgetting mechanisms of amnesic SB-699551-dose remain unclear. The present findings are consistent with the notion that low doses of 5-HT 5A receptor antagonists might be useful for reversing memory deficits associated to forgetting and amnesia. Of course, further experiments are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Dopamine D2 receptor occupancy in normal humans treated with a novel antipsychotic drug YKP1358 measured by PET and [11c]raclopride

    International Nuclear Information System (INIS)

    Lee, J. S.; Kim, S. J.; Lee, K. J.; Kim, E.; Yu, K. S.; Jang, I. J.; Kwon, J. S.; Kang, W. J.; Jeong, J. M.; Lee, D. S.; Chung, J. K.; Lee, M. C.

    2005-01-01

    YKP1358 is a novel serotonin (5-HT 2A ) and dopamine (D 2 ) antagonist, and fitted the general profile of an atypical neuroleptic agent in preclinical studies. The time course of D 2 receptor occupancy in the brain of living human after a single oral dose of YKP1358 was measured using PET and related to the plasma drug levels. A single oral dose, dose escalation (100 mg, 200 mg, and 250 mg), open-label study was performed in 9 healthy male volunteers (3 per each dose) using the [ 11 C]raclopried PET. After the baseline scan, each subject was studied at 2, 5, and 10 hours after the single administration of YKP1358. Blood samples for evaluation of plasma concentration of YKP1358 were also taken at various time points (0-32 hours post-dose). Binding potential (BP) of [ 11 C]raclopride in the putamen was estimated with simplified reference tissue model and percent reduction of the BP was calculated to obtain the D 2 receptor occupancy. BP parametric image was generated using a pixel-wise Logan noninvasive plot. T max of plasma concentration-time profiles was 0.67 hours, and elimination half-life was 5.71, 7.46, and 8.58 hours in 100 mg, 200 mg, and 250 mg dosing groups, respectively. D 2 receptor occupancy of YKP1358 was 60 to 80% at 2 hours, 40 to 60% at 5 hours, and 20 to 50% at 10 hours. The relationship of plasma concentration and D 2 receptor occupancy of YKP1358 was well predicted by Emax model, and Emax was 100 %, EC50 was 8.9 (=1.1) ng/mI, and Hills coefficient was 0.525. PK profile of YKP1358 showed individual variation, but the D 2 receptor occupancy was less variable and well predicted by an Emax model. Since D 2 antagonists show therapeutic effects at 50 to 80% D 2 occupancy and the EC50 of YKP1358 is less than 10 ng/ml, doses of YKP1358 which maintain plasma concentrations above 10 ng/ml are expected to show therapeutic effects

  18. No significant effect of angiotensin II receptor blockade on intermediate cardiovascular end points in hemodialysis patients

    DEFF Research Database (Denmark)

    Peters, Christian Daugaard; Kjaergaard, Krista D; Jensen, Jens D

    2014-01-01

    Agents blocking the renin-angiotensin-aldosterone system are frequently used in patients with end-stage renal disease, but whether they exert beneficial cardiovascular effects is unclear. Here the long-term effects of the angiotensin II receptor blocker, irbesartan, were studied in hemodialysis......, and residual renal function. Brachial blood pressure decreased significantly in both groups, but there was no significant difference between placebo and irbesartan. Use of additional antihypertensive medication, ultrafiltration volume, and dialysis dosage were not different. Intermediate cardiovascular end...... points such as central aortic blood pressure, carotid-femoral pulse wave velocity, left ventricular mass index, N-terminal brain natriuretic prohormone, heart rate variability, and plasma catecholamines were not significantly affected by irbesartan treatment. Changes in systolic blood pressure during...

  19. Differential effect of NMDA and AMPA receptor blockade on protein synthesis in the rat infarct borderzone

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Frank, L

    1996-01-01

    treated with either saline, MK-801 (5 mg/kg i.p.) or NBQX (30 mg/kg i.p. x 3) were subjected to permanent MCAO. Regional CPSR and volumes of gray matter structures displaying normal CPSR were measured in coronal cryosections of the brain by quantitative autoradiography following an i.v. bolus injection....... Treatment with MK-801 significantly increased the volume of tissue with normal CPSR in the ischemic hemisphere compared to controls, whereas this was not seen with NBQX treatment. The results suggest that MK-801 and NBQX have different effects on peri-infarct protein synthesis after MCAO. Since both......We investigated whether the known neuroprotective effects of two selective glutamate receptor antagonists, the NMDA antagonist MK-801 and the AMPA antagonist NBQX, are reflected in the regional cerebral protein synthesis rates (CPSR) in rats with middle cerebral artery occlusion (MCAO). Rats...

  20. [¹¹C]-(+)-PHNO PET imaging of dopamine D(2/3) receptors in Parkinson's disease with impulse control disorders.

    Science.gov (United States)

    Payer, Doris E; Guttman, Mark; Kish, Stephen J; Tong, Junchao; Strafella, Antonio; Zack, Martin; Adams, John R; Rusjan, Pablo; Houle, Sylvain; Furukawa, Yoshiaki; Wilson, Alan A; Boileau, Isabelle

    2015-02-01

    Dopamine agonist medications with high affinity for the D3 dopamine receptor are commonly used to treat Parkinson's disease, and have been associated with pathological behaviors categorized under the umbrella of impulse control disorders (ICD). The aim of this study was to investigate whether ICD in Parkinson's patients are associated with greater D3 dopamine receptor availability. We used positron emission tomography (PET) radioligand imaging with the D3 dopamine receptor preferring agonist [¹¹C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO) in Parkinson's patients with (n = 11) and without (n = 21) ICD, and age-, sex-, and education-matched healthy control subjects (n = 18). Contrary to hypotheses, [¹¹C]-(+)-PHNO binding in D3 -rich brain areas was not elevated in Parkinson's patients with ICD compared with those without; instead, [¹¹C]-(+)-PHNO binding in ventral striatum was 20% lower (P = 0.011), correlating with two measures of ICD severity (r = -0.8 and -0.9), which may reflect higher dopamine tone in ventral striatum. In dorsal striatum, where [¹¹C]-(+)-PHNO binding is associated with D2 receptor levels, [¹¹C]-(+)-PHNO binding was elevated across patients compared with controls. We conclude that although D3 dopamine receptors have been linked to the occurrence of ICD in Parkinson's patients. Our findings do not support the hypothesis that D3 receptor levels are elevated in Parkinson's patients with ICD. We also did not find ICD-related abnormalities in D2 receptor levels. Our findings argue against the possibility that differences in D2/3 receptor levels can account for the development of ICD in PD; however, we cannot rule out that differences in dopamine levels (particularly in ventral striatum) may be involved. © 2015 International Parkinson and Movement Disorder Society.

  1. Role of D1- and D2-like dopaminergic receptors in the nucleus accumbens in modulation of formalin-induced orofacial pain: Involvement of lateral hypothalamus.

    Science.gov (United States)

    Shafiei, Iman; Vatankhah, Mahsaneh; Zarepour, Leila; Ezzatpanah, Somayeh; Haghparast, Abbas

    2018-05-01

    The role of dopaminergic system in modulation of formalin-induced orofacial nociception has been established. The present study aims to investigate the role of dopaminergic receptors in the nucleus accumbens (NAc) in modulation of nociceptive responses induced by formalin injection in the orofacial region. One hundred and six male Wistar rats were unilaterally implanted with two cannulae into the lateral hypothalamus (LH) and NAc. Intra-LH microinjection of carbachol, a cholinergic receptor agonist, was done 5min after intra-accumbal administration of different doses of SCH23390 (D1-like receptor antagonist) or sulpiride (D2-like receptor antagonist). After 5min, 50μl of 1% formalin was subcutaneously injected into the upper lip for inducing the orofacial pain. Carbachol alone dose-dependently reduced both phases of the formalin-induced orofacial pain. Intra-accumbal administration of SCH23390 (0.25, 1 and 4μg/0.5μl saline) or sulpiride (0.25, 1 and 4μg/0.5μl DMSO) before LH stimulation by carbachol (250nM/0.5μl saline) antagonized the antinociceptive responses during both phases of orofacial formalin test. The effects of D1- and D2-like receptor antagonism on the LH stimulation-induced antinociception were almost similar during the early phase. However, compared to D1-like receptor antagonism, D2-like receptor antagonism was a little more effective but not significant, at blocking the LH stimulation-induced antinociception during the late phase of formalin test. The findings revealed that there is a direct or indirect neural pathway from the LH to the NAc which is at least partially contributed to the modulation of formalin-induced orofacial nociception through recruitment of both dopaminergic receptors in this region. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Detection of Heteromers Formed by Cannabinoid CB1, Dopamine D2, and Adenosine A2A G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer

    Science.gov (United States)

    Navarro, Gemma; Carriba, Paulina; Gandí, Jorge; Ciruela, Francisco; Casadó, Vicent; Cortés, Antoni; Mallol, Josefa; Canela, Enric I.; Lluis, Carmen; Franco, Rafael

    2008-01-01

    Functional interactions in signaling occur between dopamine D2 (D2R) and cannabinoid CB1 (CB1R) receptors, between CB1R and adenosine A2A (A2AR) receptors, and between D2R and A2AR. Furthermore, direct molecular interactions have been reported for the pairs CB1R-D2R, A2AR-D2R, and CB1R-A2AR. Here a combination of bimolecular fluorescence complementation and bioluminescence energy transfer techniques was used to identify the occurrence of D2R-CB1R-A2AR hetero-oligomers in living cells. PMID:18956124

  3. Detection of Heteromers Formed by Cannabinoid CB1, Dopamine D2, and Adenosine A2A G-Protein-Coupled Receptors by Combining Bimolecular Fluorescence Complementation and Bioluminescence Energy Transfer

    Directory of Open Access Journals (Sweden)

    Gemma Navarro

    2008-01-01

    Full Text Available Functional interactions in signaling occur between dopamine D2 (D2R and cannabinoid CB1 (CB1R receptors, between CB1R and adenosine A2A (A2AR receptors, and between D2R and A2AR. Furthermore, direct molecular interactions have been reported for the pairs CB1R-D2R, A2AR-D2R, and CB1R-A2AR. Here a combination of bimolecular fluorescence complementation and bioluminescence energy transfer techniques was used to identify the occurrence of D2R-CB1R-A2AR hetero-oligomers in living cells.

  4. ACE inhibition is superior to angiotensin receptor blockade for renography in renal artery stenosis

    International Nuclear Information System (INIS)

    Karanikas, Georgios; Becherer, Alexander; Wiesner, Karoline; Dudczak, Robert; Kletter, Kurt

    2002-01-01

    Angiotensin converting enzyme (ACE) inhibitors as well as angiotensin II receptor antagonists are able to prevent the vasoconstrictive effect of angiotensin II on the efferent renal vessels, which is believed to play an important role in renovascular hypertension. This effect is assumed to be essential for the demonstration of renovascular hypertension by captopril renography. In this study, renographic changes induced by captopril and the AT1 receptor antagonist valsartan were compared in patients with a high probability for renovascular hypertension. Twenty-five patients with 33 stenosed renal arteries (grade of stenosis >50%) and hypertension were studied. Captopril, valsartan and baseline renography were performed within 48 h using technetium-99m mercaptoacetyltriglycine. Blood pressure was monitored, plasma renin concentration before and after intervention was determined and urinary flow was estimated from the urinary output of the hydrated patients. Alterations in renographic curves after intervention were evaluated according to the Santa Fe consensus on ACE inhibitor renography. Captopril renography was positive, indicating renovascular hypertension, in 25 of the 33 stenosed vessels, whereas valsartan renography was positive in only ten. Blood pressure during captopril and valsartan renography was not different; reduction in blood pressure was the same after valsartan and captopril. Plasma renin concentration was comparable for valsartan and captopril studies, showing suppressed values after intervention in as many as 12 of the 25 patients. Urinary flow after valsartan was higher than after captopril (P<0.05). However, this difference could not explain the markedly higher sensitivity of captopril compared with valsartan in demonstrating renal artery stenosis. In 14 of the 25 patients, blood pressure response to revascularisation was monitored, showing a much better predictive value for captopril renography. It is concluded that captopril renography is much

  5. ACE inhibition is superior to angiotensin receptor blockade for renography in renal artery stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Karanikas, Georgios; Becherer, Alexander; Wiesner, Karoline; Dudczak, Robert; Kletter, Kurt [Department of Nuclear Medicine, University of Vienna (Austria)

    2002-03-01

    Angiotensin converting enzyme (ACE) inhibitors as well as angiotensin II receptor antagonists are able to prevent the vasoconstrictive effect of angiotensin II on the efferent renal vessels, which is believed to play an important role in renovascular hypertension. This effect is assumed to be essential for the demonstration of renovascular hypertension by captopril renography. In this study, renographic changes induced by captopril and the AT1 receptor antagonist valsartan were compared in patients with a high probability for renovascular hypertension. Twenty-five patients with 33 stenosed renal arteries (grade of stenosis >50%) and hypertension were studied. Captopril, valsartan and baseline renography were performed within 48 h using technetium-99m mercaptoacetyltriglycine. Blood pressure was monitored, plasma renin concentration before and after intervention was determined and urinary flow was estimated from the urinary output of the hydrated patients. Alterations in renographic curves after intervention were evaluated according to the Santa Fe consensus on ACE inhibitor renography. Captopril renography was positive, indicating renovascular hypertension, in 25 of the 33 stenosed vessels, whereas valsartan renography was positive in only ten. Blood pressure during captopril and valsartan renography was not different; reduction in blood pressure was the same after valsartan and captopril. Plasma renin concentration was comparable for valsartan and captopril studies, showing suppressed values after intervention in as many as 12 of the 25 patients. Urinary flow after valsartan was higher than after captopril (P<0.05). However, this difference could not explain the markedly higher sensitivity of captopril compared with valsartan in demonstrating renal artery stenosis. In 14 of the 25 patients, blood pressure response to revascularisation was monitored, showing a much better predictive value for captopril renography. It is concluded that captopril renography