WorldWideScience

Sample records for cytotoxic t-cell clones

  1. Antigen-specific cytotoxic T cell and antigen-specific proliferating T cell clones can be induced to cytolytic activity by monoclonal antibodies against T3

    NARCIS (Netherlands)

    Spits, H.; Yssel, H.; Leeuwenberg, J.; de Vries, J. E.

    1985-01-01

    T3 is a human differentiation antigen expressed exclusively on mature T cells. In this study it is shown that anti-T3 monoclonal antibodies, in addition to their capacity to induce T cells to proliferate, are able to induce antigen-specific cytotoxic T lymphocyte clones to mediate antigen

  2. Lysis of cells infected with typhus group rickettsiae by a human cytotoxic T cell clone

    International Nuclear Information System (INIS)

    Carl, M.; Robbins, F.; Hartzman, R.J.; Dasch, G.A.

    1987-01-01

    Cytolytic human T cells clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii, as measured by 51 Cr-release from target cells. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes

  3. Immune-mediated bone marrow failure syndromes of progenitor and stem cells: molecular analysis of cytotoxic T cell clones.

    Directory of Open Access Journals (Sweden)

    Ramon Tiu

    2007-03-01

    Full Text Available The unique structure of the T cell receptor (TCR enables molecular identification of individual T cell clones and provides an unique opportunity for the design of molecular diagnostic tests based on the structure of the rearranged TCR chain e.g., using the TCR CDR3 region. Initially, clonal T cell malignancies, including T cell large granular lymphocyte leukemia (T-LGL, mucosis fungoides and peripheral T cell lymphoma were targets for the TCR-based analytic assays such as detection of clonality by T-gamma rearrangement using y-chain-specific PCR or Southern Blotting. Study of these disorders facilitated further analytic concepts and application of rational methods of TCR analysis to investigations of polyclonal T cell-mediated diseases. In hematology, such conditions include graft versus host disease (GvHD and immune-mediated bone marrow failure syndromes. In aplastic anemia (AA, myelodysplastic syndrome (MDS or paroxysmal nocturnal hemoglobinuria (PNH, cytotoxic T cell responses may be directed against certain antigens located on stem or more lineage-restricted progenitor cells in single lineage cytopenias. The nature of the antigenic targets driving polyclonal CTL responses remains unclear. Novel methods of TCR repertoire analysis, include VB flow cytometry, peptide-specific tetramer staining, in vitro stimulation assays and TCR CDR3-specific PCR. Such PCR assay can be either VB family-specific or multiplexed for all VB families. Amplified products can be characterized and quantitated to facilitate detection of the most immunodominant clonotypes. Such clonotypes may serve as markers for the global polyclonal T cell response. Identification of these clonotypes can be performed in blood and tissue biopsy material by various methods. Once immunodominant clonotypes corresponding to pathogenic CTL clones are identified they can serve as surrogate markers for the activity of the pathophysiologic process or even indicate the presence of specific

  4. Human T cell leukemia/lymphoma virus type I infection of a CD4+ proliferative/cytotoxic T cell clone progresses in at least two distinct phases based on changes in function and phenotype of the infected cells

    NARCIS (Netherlands)

    Yssel, H.; de Waal Malefyt, R.; Duc Dodon, M. D.; Blanchard, D.; Gazzolo, L.; de Vries, J. E.; Spits, H.

    1989-01-01

    The effect of human T cell leukemia/lymphoma virus type I (HTLV-I) infection on the function and the phenotype of a human proliferating/cytotoxic T cell clone, specific for tetanus toxin, was investigated. During the period after infection, two distinct phases were observed, based on growth

  5. Inhibition of clone formation as an assay for T cell-mediated cytotoxicity: short-term kinetics and comparison with 51Cr release

    International Nuclear Information System (INIS)

    Lees, R.K.; MacDonald, H.R.; Sinclair, N.R.; University of Western Ontario London

    1977-01-01

    The short-term kinetics of T cell-mediated cytotoxicity was investigated using a cloning inhibition assay. Murine cytotoxic thymus-derived lymphocytes generated in vitro in mixed leukocyte cultures were incubated for various periods of time at 37degC with allogeneic mastocytoma target cells. The mixtures were then plated in soft agar, and mastocytoma clone formation was assessed after 5-7 days incubation. Using this technique, it was demonstrated that events leading to the loss of cloning ability could be detected after 1-3 min incubation at 37degC, and after 20-30 min, 95% of the clone forming cells had been inactivated. When these results were compared directly with those obtained using the conventional 51 Cr-release assay, it was found that the events leading to loss of cloning ability occurred more rapidly than indicated by the isotope assay. However, a modification of the 51 Cr-release assay involving EDTA addition gave comparable result to the cloning inhibition assay. These results raise the possibility that the events leading to 51 Cr-release of tumor target cells may be related in time to those leading to the loss of cloning ability

  6. DNA fragmentation: manifestation of target cell destruction mediated by cytotoxic T-cell lines, lymphotoxin-secreting helper T-cell clones, and cell-free lymphotoxin-containing supernatant

    International Nuclear Information System (INIS)

    Schmid, D.S.; Tite, J.P.; Ruddle, N.H.

    1986-01-01

    A Lyt-2 + , trinitrophenyl-specific, lymphotoxin-secreting, cytotoxic T-cell line, PCl 55, mediates the digestion of target cell DNA into discretely sized fragments. This phenomenon manifests itself within 30 min after effector cell encounter as measured by the release of 3 H counts from target cells prelabeled with [ 3 H]deoxythymidine and occurs even at very low effector to target cell ratios (0.25:1). A Lyt-1 + , ovalbumin-specific, lymphotoxin-secreting T-helper cell clone, 5.9.24, is also able to mediate fragmentation of target cell DNA over a time course essentially indistinguishable from the cytotoxic T lymphocyte-mediated hit. Cell-free lymphotoxin-containing supernatants also cause release of DNA from targets, although they require a longer time course, on the order of 24 hr. In contrast, lysis of cells by antibody plus complement or Triton X-100 does not result in DNA release even after extended periods of incubation (24 hr). All three treatments that result in the release of DNA from cells cause fragmentation of that DNA into discretely sized pieces that are multiples of 200 base pairs. The results thus suggest that cytotoxic T cells, lymphotoxin-secreting helper clones with cytolytic activity, and lymphotoxin all effect target cell destruction by means of a similar mechanism and that observed differences in time course and the absence of target cell specificity in killing mediated by lymphotoxin may simply reflect differences in the mode of toxin delivery

  7. Cytotoxic human CD4(+) T cells

    NARCIS (Netherlands)

    van de Berg, Pablo J.; van Leeuwen, Ester M.; ten Berge, Ineke J.; van Lier, Rene

    2008-01-01

    The induction of adaptive immune responses critically depends on helper signals provided by CD4(+) T cells. These signals not only license antigen presenting cells (APC) to activate naïve CD8(+) T cells leading to the formation of vast numbers of cytotoxic T lymphocytes but also support the

  8. Universal cytotoxic activity of a HTLV-1 Tax-specific T cell clone from an HLA-A*24:02⁺ patient with adult T-cell leukemia against a variety of HTLV-I-infected T-cells.

    Science.gov (United States)

    Tanaka, Yukie; Yamazaki, Rie; Terasako-Saito, Kiriko; Nakasone, Hideki; Akahoshi, Yu; Nakano, Hirofumi; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Ishihara, Yuko; Kawamura, Koji; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Kimura, Shun-ichi; Kikuchi, Misato; Kako, Shinichi; Kanda, Junya; Tanihara, Aki; Nishida, Junji; Kanda, Yoshinobu

    2014-01-01

    Adult T cell leukemia/lymphoma (ATL) is an aggressive mature T cell malignancy that is causally associated with human T cell lymphotropic virus type 1 (HTLV-1) infection. The HTLV-1 regulatory protein Tax aggressively accelerates the proliferation of host cells and is also an important target antigen for CD8(+) cytotoxic T cells (CTLs). We previously reported that several predominant HLA-A*24:02-restricted HTLV-1 Tax301-309-specific CTL clones commonly expressed a particular amino acid sequence motif (P-D-R) in complementarity-determining region 3 of T-cell receptor (TCR)-β chain among unrelated ATL patients who underwent allogeneic stem cell transplantation (allo-HSCT). Furthermore, a PDR-motif(+) CTL clone persistently existed in a long-term survivor as a central CTL clone with strong CTL activities after HSCT. Although a larger analysis of the relationship between PDR-motif(+) CTLs and the clinical course is required, the expression of PDR-motif(+) TCR on CD8(+) T cells may play a critical role in the management of anti-HTLV-1 activities for HLA-A24:02(+) ATL patients. Therefore, in this study, we prepared an HTLV-1 Tax301-309 peptide-specific CTL clone (HT-9) expressing PDR-motif(+) TCR isolated from a long-term survivor after HSCT, and evaluated its CTL activity against a variety of HTLV-1-infected T-cells from HLA-A*24:02(+) ATL patients. Before the assay of CTL function, we confirmed that HT-9 expressed less-differentiated effector-memory phenotypes (CD45RA(-)CCR7(-)CD27(+)CD28(+/-)CD57(+/-)) and T-cell exhaustion marker PD-1(+). In assays of CTL function, HT-9 recognized HTLV-1 Tax in an HLA-restricted fashion and demonstrated strong CTL activities against a variety of HTLV-1-infected T-cells from HLA-A*24:02(+) ATL patients regardless of whether the sources were autologous or allogeneic, but not normal cells. These data indicate that PDR-motif(+) TCR could be an important TCR candidate for TCR-gene immunotherapy for HLA-A24:02(+) ATL patients, provided

  9. Quantitative Proteomics of Gut-Derived Th1 and Th1/Th17 Clones Reveal the Presence of CD28+ NKG2D- Th1 Cytotoxic CD4+ T cells.

    Science.gov (United States)

    Riaz, Tahira; Sollid, Ludvig Magne; Olsen, Ingrid; de Souza, Gustavo Antonio

    2016-03-01

    T-helper cells are differentiated from CD4+ T cells and are traditionally characterized by inflammatory or immunosuppressive responses in contrast to cytotoxic CD8+ T cells. Mass-spectrometry studies on T-helper cells are rare. In this study, we aimed to identify the proteomes of human Th1 and Th1/Th17 clones derived from intestinal biopsies of Crohn's disease patients and to identify differentially expressed proteins between the two phenotypes. Crohn's disease is an inflammatory bowel disease, with predominantly Th1- and Th17-mediated response where cells of the "mixed" phenotype Th1/Th17 have also been commonly found. High-resolution mass spectrometry was used for protein identification and quantitation. In total, we identified 7401 proteins from Th1 and Th1/Th17 clones, where 334 proteins were differentially expressed. Major differences were observed in cytotoxic proteins that were overrepresented in the Th1 clones. The findings were validated by flow cytometry analyses using staining with anti-granzyme B and anti-perforin and by a degranulation assay, confirming higher cytotoxic features of Th1 compared with Th1/Th17 clones. By testing a larger panel of T-helper cell clones from seven different Crohn's disease patients, we concluded that only a subgroup of the Th1 cell clones had cytotoxic features, and these expressed the surface markers T-cell-specific surface glycoprotein CD28 and were negative for expression of natural killer group 2 member D. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Immunobiology of T cell responses to Mls-locus-disparate stimulator cells. III. Helper and cytolytic functions of cloned, Mls-reactive T cell lines

    International Nuclear Information System (INIS)

    Katz, M.E.; Tite, J.P.; Janeway, C.A. Jr.

    1986-01-01

    Mls-specific T cell clones derived by limiting dilution were tested for cytotoxic activity in a lectin-dependent 51 Cr-release assay. All the T cell clones tested were cytotoxic in such an assay in apparent contrast to previous reports (1, 2). However, only those target cells sensitive to cytolysis by other L3T4a + cytolytic T cells (3) were killed by Mls-specific T cell clones in short term 51 Cr-release assays, possibly explaining this discrepancy. All the T cell clones tested were L3T4a + ,Lyt-2 - and stimulated B cells from Mls strains of mice to proliferate and secrete immunoglobulin. Furthermore, lysis of innocent bystander targets was observed when the T cells were stimulated with Mls-disparate stimulator cells. These results are consistent with those obtained with L3T4a - T cells specific for protein antigen:self Ia and that express cytotoxic potential (3)

  11. The role of Ca2+ and Mg2+ in the cytotoxic T lymphocyte reaction and in the secretion of N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester-serine esterase by human T cell clones

    NARCIS (Netherlands)

    Blanchard, D.; Aubry, J. P.; de Vries, J. E.; Spits, H.

    1989-01-01

    Human T cell clones contain enzymes that can cleave the substrate N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT). All CTL clones tested in this study secreted BLT-serine esterase activity, whereas only one of three tested non-cytolytic T cell clones secreted this enzymatic activity upon

  12. T cell clones which share T cell receptor epitopes differ in phenotype, function and specificity

    NARCIS (Netherlands)

    Yssel, H.; Blanchard, D.; Boylston, A.; de Vries, J. E.; Spits, H.

    1986-01-01

    Recently, we described a monoclonal antibody (3D6) that reacts with the T cell receptor (Ti) of the T leukemic cell line HPB-ALL and that cross-reacts with 2-10% of the T cells of normal healthy individuals. In this study we report the establishment of T cell clones that are 3D6+ but that differ in

  13. Semi-automated limit-dilution assay and clonal expansion of all T-cell precursors of cytotoxic lymphocytes

    International Nuclear Information System (INIS)

    Wilson, A.; Chen, W.-F.; Scollay, R.; Shortman, K.

    1982-01-01

    A limit-dilution microculture system is described, where almost all precursor T cells of the cytotoxic lineage (CTL-p) develop into extended clones of cytotoxic T cells (CTL), which are then detected with a new radio-autographic 111 In-release assay. The principle is to polyclonally activate all T cells with concanavalin A, to expand the resultant clones over an 8-9 day period in cultures saturated with growth factors, then to detect all clones with cytotoxic function by phytohaemagglutinin mediated lysis of P815 tumour cells. The key variables for obtaining high cloning efficiency are the use of flat-bottomed 96-well culture trays, the use of appropriately irradiated spleen filler cells, and the inclusion of a T-cell growth factor supplement. Cultures are set up at input levels of around one T cell per well. Forty percent of T cells then form CTL clones readily detected by the cytotoxic assay. The lytic activity of the average clone is equivalent to 3000 CTL, but clone size appears to be much larger. The precursor cells are predominantly if not entirely from the Lyt 2 + T-cell subclass and almost all cells of this subclass form cytolytic clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of the CTL-p frequency estimates being distorted by helper or suppressor effects. (Auth.)

  14. Semi-automated limit-dilution assay and clonal expansion of all T-cell precursors of cytotoxic lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.; Chen, W.F.; Scollay, R.; Shortman, K. (Walter and Eliza Hall Inst. of Medical Research, Parkville (Australia))

    1982-08-13

    A limit-dilution microculture system is described, where almost all precursor T cells of the cytotoxic lineage (CTL-p) develop into extended clones of cytotoxic T cells (CTL), which are then detected with a new radio-autographic /sup 111/In-release assay. The principle is to polyclonally activate all T cells with concanavalin A, to expand the resultant clones over an 8-9 day period in cultures saturated with growth factors, then to detect all clones with cytotoxic function by phytohaemagglutinin mediated lysis of P815 tumour cells. The key variables for obtaining high cloning efficiency are the use of flat-bottomed 96-well culture trays, the use of appropriately irradiated spleen filler cells, and the inclusion of a T-cell growth factor supplement. Cultures are set up at input levels of around one T cell per well. Forty percent of T cells then form CTL clones readily detected by the cytotoxic assay. The lytic activity of the average clone is equivalent to 3000 CTL, but clone size appears to be much larger. The precursor cells are predominantly if not entirely from the Lyt 2/sup +/ T-cell subclass and almost all cells of this subclass form cytolytic clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of the CTL-p frequency estimates being distorted by helper or suppressor effects.

  15. Cloning the interleukin 1 receptor from human T cells

    International Nuclear Information System (INIS)

    Sims, J.E.; Acres, R.B.; Grubin, C.E.; McMahan, C.J.; Wignall, J.M.; March, C.J.; Dower, S.K.

    1989-01-01

    cDNA clones of the interleukin 1 (IL-1) receptor expressed in a human T-cell clone have been isolated by using a murine IL-1 receptor cDNA as a probe. The human and mouse receptors show a high degree of sequence conservation. Both are integral membrane proteins possessing a single membrane-spanning segment. Similar to the mouse receptor, the human IL-1 receptor contains a large cytoplasmic region and an extracellular, IL-1 binding portion composed of three immunoglobulin-like domains. When transfected into COS cells, the human IL-1 receptor cDNA clone leads to expression of two different affinity classes of receptors, with K a values indistinguishable from those determined for IL-1 receptors in the original T-cell clone. An IL-1 receptor expressed in human dermal fibroblasts has also been cloned and sequenced and found to be identical to the IL-1 receptor expressed in T cells

  16. Autoreactive T cell clones specific for class I and class II HLA antigens isolated from a human chimera

    NARCIS (Netherlands)

    Roncarolo, M. G.; Yssel, H.; Touraine, J. L.; Betuel, H.; de Vries, J. E.; Spits, H.

    1988-01-01

    T cell clones of donor origin that specifically react with recipient cells were obtained from a SCID patient successfully reconstituted by allogeneic fetal liver and thymus transplantation performed 10 yr ago. The majority of these clones displayed both cytotoxic and proliferative responses towards

  17. Peripheral blood and intrathyroidal T cell clones from patients with thyroid autoimmune diseases.

    Science.gov (United States)

    Massart, C; Caroff, G; Maugendre, D; Genetet, N; Gibassier, J

    1999-01-01

    For a better understanding of the pathogenesis of thyroid autoimmune diseases, we have studied morphological and functional properties of T clones from peripheral blood lymphocytes (PBL) and from intrathyroidal lymphocytes (ITL) obtained from 3 patients with Graves' disease or 1 Hashimoto's thyroiditis. Investigations were carried out on clones cultured alone or cocultured with autologous thyrocytes. Clonage efficiency ranged from 30% to 33% for PBL and 10% to 36% for ITL. A predominance of CD4-positive clones was observed whatever the origin of the lymphocytes or the autoimmune pathology. Gamma interferon (IFN-gamma) was detected in the majority (17/19) of the clones tested. Intracytoplasmic interleukin (IL-4) was secreted in 7/19 clones and both cytokines were produced in 5/19 clones. In coculture a proliferative response and tumour necrosis factor (TNF-alpha) production were observed with 6 clones (4 from Graves thyrocytes and 2 from thyroiditis). No cytotoxic clone was derived from Graves or thyroiditis tissues. These data demonstrate that the large majority of T clones are principally CD4-T cells; all the clones secreted TNF-alpha and a large majority produced IFN-gamma. Only a few clones produced IL-4 alone or associated with IFN-gamma. Six T clones induced proliferative response and of TNF-alpha secretion in coculture. Further investigations must be performed on these antigen-reactive T clones to analyse their role in the pathogenesis of the human thyroid autoimmune diseases.

  18. Analysis of cytotoxic T cell epitopes in relation to cancer

    DEFF Research Database (Denmark)

    Stranzl, Thomas

    The human immune system is a highly adaptable system, defending our bodies against pathogens and tumor cells. Cytotoxic T cells (CTL) are cells of the adaptive immune system, capable of inducing a programmed cell death and thus able to eliminate infected or tumor cells. CTLs discriminate between...

  19. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Aileen G Rowan

    2016-11-01

    Full Text Available There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL, human T lymphotropic virus type-1 (HTLV-1, contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1 to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease.

  20. Research progress of follicular cytotoxic T cells in HIV infection

    Directory of Open Access Journals (Sweden)

    Guo Ming

    2018-04-01

    Full Text Available Recently, a new type of CD8+ T-cell subset, namely, the chemokine (C-X-C motif receptor 5 (CXCR5+ cluster of differentiation (CD8+ T-cell subset (also called the follicular cytotoxic T-cell (TFC subgroup, has been discovered around B-cell follicles. The discovery has aroused widespread interest. However, the processes and mechanisms of TFCs taking part in the immune response of the germinal center and their specific roles must still be clearly identified. This article reviews domestic and foreign studies on factors regulating the phenotype, physiological functions, maturity, and differentiation of TFCs and roles and clinical significance of these cells in HIV infection. This review has shown good application prospects for TFCs. The author believes that further studies on TFCs can provide another tool for cytotherapy to control or cure chronic viral infections or tumors.

  1. The Transcription Factor Hobit Identifies Human Cytotoxic CD4(+) T Cells

    NARCIS (Netherlands)

    Oja, Anna E.; Vieira Braga, Felipe A.; Remmerswaal, Ester B. M.; Kragten, Natasja A. M.; Hertoghs, Kirsten M. L.; Zuo, Jianmin; Moss, Paul A.; van Lier, René A. W.; van Gisbergen, Klaas P. J. M.; Hombrink, Pleun

    2017-01-01

    The T cell lineage is commonly divided into CD4-expressing helper T cells that polarize immune responses through cytokine secretion and CD8-expressing cytotoxic T cells that eliminate infected target cells by virtue of the release of cytotoxic molecules. Recently, a population of CD4(+) T cells that

  2. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    Science.gov (United States)

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    Science.gov (United States)

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  4. Isolation and partial characterization of peripheral blood CD4+ T cell clones expressing γδT cell receptors

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki, Yoichiro.

    1990-06-01

    Rare T cell clones bearing both CD4 and T cell receptors (TCRγ and TCRδ) were obtained from human peripheral blood by cell sorting using anti-CD4 and anti-TCRδ1 antibodies. All the clones established were reactive with anti-TCRγδ1 antibody, whereas only about 20 % of the clones showed reactivity with anti-δTCS1 antibody. Unlike CD4 + T cells bearing TCRαβ, all the clones tested were lectin-dependent and showed CD3 antibody-redirected cytolytic activity. About 60 % exhibited natural killer cell-like activity. Immunoprecipitation analysis of TCRγδ showed that each clone expressed either a disulfide-linked or nondisulfide-linked heterodimer consisting of 37-44 kilodalton TCRγ and TCRδ chains. Southern blot analyses of TCRγ and TCRδ genes revealed some identical rearrangement patterns, suggesting the limited heterogeneity of CD4 + TCRγδ + T cells in peripheral blood. (author)

  5. Clonal analysis of the T-cell response to in vivo expressed Mycobacterium tuberculosis protein Rv2034, using a CD154 expression based T-cell cloning method.

    Directory of Open Access Journals (Sweden)

    Susanna Commandeur

    Full Text Available Tuberculosis (TB, caused by Mycobacterium tuberculosis (Mtb, remains a leading cause of death worldwide. A better understanding of the role of CD4+ and CD8+ T cells, which are both important to TB protection, is essential to unravel the mechanisms of protection and to identify the key antigens seen by these T cells. We have recently identified a set of in vivo expressed Mtb genes (IVE-TB which is expressed during in vivo pulmonary infection in mice, and shown that their encoded antigens are potently recognized by polyclonal T cells from tuberculin skin test-positive, in vitro ESAT-6/CFP10-responsive individuals. Here we have cloned T cells specific for one of these newly identified in vivo expressed Mtb (IVE-TB antigens, Rv2034. T cells were enriched based on the expression of CD154 (CD40L, which represents a new method for selecting antigen-specific (low frequency T cells independent of their specific function. An Rv2034-specific CD4+ T-cell clone expressed the Th1 markers T-bet, IFN-γ, TNF-α, IL-2 and the cytotoxicity related markers granzyme B and CD107a as measured by flow cytometry. The clone specifically recognized Rv2034 protein, Rv2034 peptide p81-100 and Mtb lysate. Remarkably, while the recognition of the dominant p81-100 epitope was HLA-DR restricted, the T-cell clone also recognized a neighboring epitope (p88-107 in an HLA-DR- as well as HLA-DQ1-restricted fashion. Importantly, the T-cell clone was able to inhibit Mtb outgrowth from infected monocytes significantly. The characterization of the polyfunctional and Mtb inhibitory T-cell response to IVE-TB Rv2034 at the clonal level provides detailed further insights into the potential of IVE-TB antigens as new vaccine candidate antigens in TB. Our new approach allowed the identification of T-cell subsets that likely play a significant role in controlling Mtb infection, and can be applied to the analysis of T-cell responses in patient populations.

  6. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.

    Science.gov (United States)

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-05-01

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Control of CD56 expression and tumor cell cytotoxicity in human Vγ2Vδ2 T cells

    Directory of Open Access Journals (Sweden)

    Focaccetti Chiara

    2009-09-01

    Full Text Available Abstract Background In lymphocyte subsets, expression of CD56 (neural cell adhesion molecule-1 correlates with cytotoxic effector activity. For cells bearing the Vγ2Vδ2 T cell receptor, isoprenoid pyrophosphate stimulation leads to uniform activation and proliferation, but only a fraction of cells express CD56 and display potent cytotoxic activity against tumor cells. Our goal was to show whether CD56 expression was regulated stochastically, similar to conventional activation antigens, or whether CD56 defined a lineage of cells committed to the cytotoxic phenotype. Results Tracking individual cell clones defined by their Vγ2 chain CDR3 region sequences, we found that CD56 was expressed on precursor cytotoxic T cells already present in the population irrespective of their capacity to proliferate after antigen stimulation. Public T cell receptor sequences found in the CD56+ subset from one individual might appear in the CD56- subset of another donor. The commitment of individual clones to CD56+ or CD56- lineages was stable for each donor over a 1 year interval. Conclusion The ability to express CD56 was not predicted by TCR sequence or by the strength of signal received by the TCR. For γδ T cells, cytotoxic effector function is acquired when cytotoxic precursors within the population are stimulated to proliferate and express CD56. Expression of CD56 defines a committed lineage to the cytotoxic phenotype.

  8. T cell epitopes on the 36K and 65K Mycobacterium leprae antigens defined by human T cell clones

    NARCIS (Netherlands)

    van Schooten, W. C.; Ottenhoff, T. H.; Klatser, P. R.; Thole, J.; de Vries, R. R.; Kolk, A. H.

    1988-01-01

    To identify the molecular localization and specificity of Mycobacterium leprae antigenic determinants inducing T cell activation, we studied the reactivity of M. leprae-reactive T cell clones from two tuberculoid leprosy patients towards a battery of different mycobacterial strains and purified

  9. In vivo localization of cloned IL-2-dependent T cells

    International Nuclear Information System (INIS)

    Carroll, A.M.; Palladino, M.A.; Oettgen, H.; De Sousa, M.

    1983-01-01

    The quantitative organ distribution and tissue microenvironment positioning of radioisotopically labeled cloned T cells were characterized. Intravenous (iv) injection of 51chromium ( 51 Cr)-labeled, long-term cultured cloned T-helper cells and cells from several cloned cytolytic T-lymphocyte lines (CTLL) resulted in poor localization of these cells in recipient lymphoid tissues, similar to results reported for activated lymphoblastoid cells. Simultaneous administration of interleukin 2 (IL-2) with labeled cells resulted in enhanced recovery from recipient spleen. By the intraperitoneal (ip) injection route, overall percentage recovery of injected radioactivity was lower than by the iv route, but significant localization to lymph nodes occurred. Examination of autoradiographs of tissue sections from recipients of [ 3 H]adenosine-labeled cells showed most label associated with intact, isolated cells in the liver, lungs, spleen, and small intestine. By 24 hr after iv injection, labeled cells in spleen sections were distributed to both nonlymphoid and T- and B-lymphoid areas. These findings suggest that poor localization of these cells to recipient lymphoid tissue is due both to intrinsic characteristics of cultured lymphocytes and to the possible reduced viability of IL-2-dependent cells in vivo

  10. A novel SIV gag-specific CD4(+)T-cell clone suppresses SIVmac239 replication in CD4(+)T cells revealing the interplay between antiviral effector cells and their infected targets.

    Science.gov (United States)

    Ayala, Victor I; Trivett, Matthew T; Coren, Lori V; Jain, Sumiti; Bohn, Patrick S; Wiseman, Roger W; O'Connor, David H; Ohlen, Claes; Ott, David E

    2016-06-01

    To study CD4(+)T-cell suppression of AIDS virus replication, we isolated nine rhesus macaque SIVGag-specific CD4(+)T-cell clones. One responding clone, Gag68, produced a typical cytotoxic CD8(+)T-cell response: induction of intracellular IFN-γ, MIP-1α, MIP-1β, and CD107a degranulation. Gag68 effectively suppressed the spread of SIVmac239 in CD4(+)T cells with a corresponding reduction of infected Gag68 effector cells, suggesting that CD4(+)effectors need to suppress their own infection in addition to their targets to be effective. Gag68 TCR cloning and gene transfer into CD4(+)T cells enabled additional experiments with this unique specificity after the original clone senesced. Our data supports the idea that CD4(+)T cells can directly limit AIDS virus spread in T cells. Furthermore, Gag68 TCR transfer into CD4(+)T-cell clones with differing properties holds promise to better understand the suppressive effector mechanisms used by this important component of the antiviral response using the rhesus macaque model. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. TNP-specific Lyt-2+ cytolytic T cell clones preferentially respond to TNP-conjugated epidermal cells

    International Nuclear Information System (INIS)

    Shimada, S.; Katz, S.I.

    1985-01-01

    A most effective method for the induction of hapten-specific allergic contact sensitivity (CS) is via epicutaneous application of the hapten. Another effective method is by the administration of haptenated epidermal cells (EC) subcutaneously. The latter method induces more intense and longer lasting CS than does the subcutaneous administration of haptenated spleen cells (SC). Thus, there may be something unique about EC which, when haptenated, allows them to generate effector cells more effectively than do SC. The authors therefore, attempted to generate T cell clones that were both hapten- and epidermal-specific. Four days after painting mice with 7% trinitrochlorobenzene, draining lymph node cells were obtained and T cells were purified. These cells were co-cultured with trinitrophenylated (TNP) Langerhans cell-enriched EC. After 4 days, cells were harvested and rested on non-TNP-conjugated EC. The cells were restimulated and rested three times, and were then cloned by limiting dilution with added interleukin 2, which was then continually added. Proliferation of T cells was assessed by [ 3 H]-thymidine incorporation. Cytotoxicity assays utilized TNP-conjugated concanavalin A SC blasts or EC as targets. Clones A-2 and E-4 are Thy-1+, Lyt-2+, and L3T4-, and TNP-specific. In contrast to noncloned TNP-specific T cells, the clones proliferate preferentially in response to TNP-EC rather than TNP-SC. Also in contrast to noncloned T cells, the clones were preferentially cytotoxic for TNP-EC; compared to TNP-SC, there was an eight- to 32-fold increase in killing when TNP-EC were used as targets. Clones A-2 and E-4 therefore exhibit hapten and epidermal specificity

  12. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick

    2011-01-01

    in mouse models of cancer in a nontoxic fashion. Here, we describe the immunogenicity of IDO2 by showing the presence of spontaneous cytotoxic T-cell reactivity against IDO2 in peripheral blood of both healthy donors and cancer patients. Furthermore, we show that these IDO2-specific T cells are cytotoxic...

  13. HBV-specific CD4+ cytotoxic T cells in hepatocellular carcinoma are less cytolytic toward tumor cells and suppress CD8+ T cell-mediated antitumor immunity.

    Science.gov (United States)

    Meng, Fanzhi; Zhen, Shoumei; Song, Bin

    2017-08-01

    In East Asia and sub-Saharan Africa, chronic infection is the main cause of the development of hepatocellular carcinoma, an aggressive cancer with low survival rate. Cytotoxic T cell-based immunotherapy is a promising treatment strategy. Here, we investigated the possibility of using HBV-specific CD4 + cytotoxic T cells to eliminate tumor cells. The naturally occurring HBV-specific cytotoxic CD4 + and CD8 + T cells were identified by HBV peptide pool stimulation. We found that in HBV-induced hepatocellular carcinoma patients, the HBV-specific cytotoxic CD4 + T cells and cytotoxic CD8 + T cells were present at similar numbers. But compared to the CD8 + cytotoxic T cells, the CD4 + cytotoxic T cells secreted less cytolytic factors granzyme A (GzmA) and granzyme B (GzmB), and were less effective at eliminating tumor cells. In addition, despite being able to secrete cytolytic factors, CD4 + T cells suppressed the cytotoxicity mediated by CD8 + T cells, even when CD4 + CD25 + regulator T cells were absent. Interestingly, we found that interleukin 10 (IL-10)-secreting Tr1 cells were enriched in the cytotoxic CD4 + T cells. Neutralization of IL-10 abrogated the suppression of CD8 + T cells by CD4 + CD25 - T cells. Neither the frequency nor the absolute number of HBV-specific CD4 + cytotoxic T cells were correlated with the clinical outcome of advanced stage hepatocellular carcinoma patients. Together, this study demonstrated that in HBV-related hepatocellular carcinoma, CD4 + T cell-mediated cytotoxicity was present naturally in the host and had the potential to exert antitumor immunity, but its capacity was limited and was associated with immunoregulatory properties. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  14. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice.

    Science.gov (United States)

    Peterson, J D; Pike, B; McDuffie, M; Haskins, K

    1994-09-15

    To investigate diabetes resistance to T cell-mediated disease transfer, we administered islet-specific T cell clones to the F1 progeny of nonobese diabetic (NOD) mice that were crossed with various nondiabetes-prone inbred mouse strains. We investigated four diabetogenic CD4+ T cell clones and all induced insulitis and full development of diabetes in (SWR x NOD)F1, (SJL x NOD)F1, and (C57BL/6 x NOD)F1 mice. In contrast, (BALB/c x NOD)F1 and (CBA x NOD)F1 mice were susceptible to disease transfer by some T cell clones but not others, and (C57/L x NOD)F1 mice seemed to be resistant to both insulitis and disease transfer by all of the clones tested. Disease induced by the T cell clones in susceptible F1 strains was age dependent and could only be observed in recipients younger than 13 days old. Full or partial disease resistance did not correlate with the presence or absence of I-E, different levels of Ag expression in islet cells, or differences in APC function. The results from this study suggest that there may be multiple factors contributing to susceptibility of F1 mice to T cell clone-mediated induction of diabetes, including non-MHC-related genetic background, the immunologic maturity of the recipient, and individual characteristics of the T cell clones.

  15. Transfer of experimental autoimmune thyroiditis with T cell clones

    International Nuclear Information System (INIS)

    Romball, C.G.; Weigle, W.O.

    1987-01-01

    We have investigated three T lymphocyte clones isolated from CBA/CaJ mice primed with mouse thyroid extract (MTE) in adjuvant. All three clones are L3T4+, Ig-, and Lyt2- and proliferate to MTE, mouse thyroglobulin (MTG) and rat thyroid extract. Clones A7 and B7 transfer thyroiditis to irradiated (475 rad) syngeneic mice, but not to normal recipients. The thyroid lesion induced by the B7 clone is characterized by the infiltration of both mononuclear and polymorphonuclear cells. The thyroiditis is transient in that lesions are apparent 7 and 14 days after transfer, but thyroids return to normal by day 21. Clone B7 showed helper activity for trinitrophenyl-keyhole limpet hemocyanin-primed B cells in vitro when stimulated with trinitrophenyl-MTG and also stimulated the production of anti-MTG antibody in recipient mice. Clone A7 induced thyroid lesions characterized by infiltration of the thyroid with mononuclear cells, with virtually no polymorphonuclear cell infiltration. This clone has shown no helper activity following stimulation with trinitrophenyl-MTG. The third clone (D2) proliferates to and shows helper activity to MTG, but fails to transfer thyroiditis to syngeneic, irradiated mice. On continuous culture, clone B7 lost its surface Thy. The loss of Thy appears unrelated to the ability to transfer thyroiditis since subclones of B7 with markedly different percentages of Thy+ cells transferred disease equally well

  16. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, J.M.; Moran, P.A.; Brewer, L.; Ashley, R.; Corey, L.

    1988-12-01

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.

  17. Establishment and characterization of canine parvovirus-specific murine CD4+ T cell clones and their use for the delineation of T cell epitopes.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); R.W.J. van der Heijden (Roger); E.J. Tijhaar (Edwin); M.C.M. Poelen (Martien); J. Carlson; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1990-01-01

    textabstractCanine parvovirus (CPV)-specific T cell clones were generated by culturing lymph node cells from CPV-immunized BALB/c mice at limiting dilutions in the presence of CPV antigen and interleukin-2 (IL-2). All isolated T cell clones exhibited the cell surface phenotype Thy1+, CD4+, CD8- and

  18. Dynamics of the cytotoxic T cell response to a model of acute viral infection.

    Science.gov (United States)

    DeWitt, William S; Emerson, Ryan O; Lindau, Paul; Vignali, Marissa; Snyder, Thomas M; Desmarais, Cindy; Sanders, Catherine; Utsugi, Heidi; Warren, Edus H; McElrath, Juliana; Makar, Karen W; Wald, Anna; Robins, Harlan S

    2015-04-01

    A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8(+) T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8(+) T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor β-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼ 2,000 CD8(+) T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we extend this

  19. Pha-induced T-cell cytotoxity. Mechanism and application in haemodialysis and renal transplant patients.

    NARCIS (Netherlands)

    Huges-Wirawan, Gladys Ratna Widhi Indrati

    1978-01-01

    This thesis describes a method to measure PHA-incluced cytotoxicity of human lymphocytes (nonspecific T-cell cytotoxicity), using 3H-thymidine prelabelled target cells (HeLa cells). The method has some advantages over the widely used 51Cr-release assay. Its application in two clinical conditions is

  20. Generation and functional analysis of T cell lines and clones specific for schistosomula released products (SRP-A).

    Science.gov (United States)

    Damonneville, M; Velge, F; Verwaerde, C; Pestel, J; Auriault, C; Capron, A

    1987-01-01

    Antigens present in the products released by the larval stage of schistosome (SRP-A) were shown to induce a strong cytotoxic and protective IgE response both in the rat and the monkey. T cell lines and clones specific for SRP-A or 26 kD antigens which are the main target of the cytotoxic IgE have been derived. The passive transfer of SRP-A specific T lymphocytes into infected rats led to an increase of the IgE response, conferring a significant level of protection to the rats. In coculture assays in vitro, these cell lines significantly enhanced the production of IgE by SRP-A sensitized rat spleen cells. This helper effect on the IgE response was confirmed with 26 kD T cell clone supernatants. Moreover, supernatants obtained after stimulation with phorbol myristate acetate were able to enhance the IgE production of a hybridoma B cell line (B48-14) producing a monoclonal IgE antibody, cytotoxic for the schistosomula. PMID:3498590

  1. Generation and functional analysis of T cell lines and clones specific for schistosomula released products (SRP-A).

    Science.gov (United States)

    Damonneville, M; Velge, F; Verwaerde, C; Pestel, J; Auriault, C; Capron, A

    1987-08-01

    Antigens present in the products released by the larval stage of schistosome (SRP-A) were shown to induce a strong cytotoxic and protective IgE response both in the rat and the monkey. T cell lines and clones specific for SRP-A or 26 kD antigens which are the main target of the cytotoxic IgE have been derived. The passive transfer of SRP-A specific T lymphocytes into infected rats led to an increase of the IgE response, conferring a significant level of protection to the rats. In coculture assays in vitro, these cell lines significantly enhanced the production of IgE by SRP-A sensitized rat spleen cells. This helper effect on the IgE response was confirmed with 26 kD T cell clone supernatants. Moreover, supernatants obtained after stimulation with phorbol myristate acetate were able to enhance the IgE production of a hybridoma B cell line (B48-14) producing a monoclonal IgE antibody, cytotoxic for the schistosomula.

  2. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  3. Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone.

    Science.gov (United States)

    Leung, K N; Nash, A A; Sia, D Y; Wildy, P

    1984-12-01

    A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed.

  4. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection.

    Science.gov (United States)

    Tian, Yuan; Sette, Alessandro; Weiskopf, Daniela

    2016-01-01

    Dengue virus (DENV) has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by trafficking to infected tissues and providing help to innate immune responses, B cells, as well as CD8 T cells. However, it is now evident that CD4 T cells can also perform cytotoxic functions and induce the apoptosis of target cells. Importantly, accumulating studies demonstrate that cytotoxic CD4 T cells develop following DENV infections and may play a crucial role in protecting the host from severe dengue disease. We review our current understanding of the differentiation and function of cytotoxic CD4 T cells, with a focus on DENV infection, and discuss the potential of harnessing these cells for the prevention and treatment of DENV infection and disease.

  5. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4+ T Cells

    Science.gov (United States)

    Muraro, Elena; Merlo, Anna; Martorelli, Debora; Cangemi, Michela; Dalla Santa, Silvia; Dolcetti, Riccardo; Rosato, Antonio

    2017-01-01

    CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors. PMID:28289418

  6. Differentiation of human B lymphocyte subpopulations induced by an alloreactive helper T-cell clone

    International Nuclear Information System (INIS)

    Anderson, S.J.; Hummell, D.S.; Lawton, A.R.

    1988-01-01

    We have used cloned alloreactive helper T cells to determine if direct T cell-B cell interaction can induce differentiation of human peripheral blood B cells which do not respond to pokeweed mitogen (PWM). T-cell clone 2F8 was derived from a one-way mixed lymphocyte reaction. 2F8 cells are T3+T4+T8-IL-2R+ and proliferate in response to irradiated stimulator cells, but not autologous cells, in the absence of exogenous interleukin-2. 2F8 cells provide allospecific help for polyclonal proliferation and differentiation of B cells in the absence of any other stimulus. The magnitude of this response is comparable to that of the response of the same B cells to PWM and fresh autologous T cells. 2F8 cells could also provide nonspecific help for unrelated donor B cells in the presence of PWM, with no requirement for costimulation by irradiated stimulator cells. Allospecific stimulation of B cells was completely inhibited by antibodies to class II major histocompatibility complex (MHC) framework determinants and was abrogated by 1000-rad irradiation. Cloned 2F8 T cells stimulated differentiation of both small, high-density B cells and larger B cells, generating up to 30% plasma cells with either fraction. B cells forming rosettes with mouse erythrocytes were also induced to differentiate by the helper T cell clone. As found previously, neither small, high-density B cells nor mouse rosette+ B cells responded well to PWM. Direct interaction with allospecific T cells induces differentiation of a broader spectrum of B cells than soluble growth and differentiation factors in conjunction with polyclonal activators such as PWM and protein A containing staphylococci

  7. Characterization of T cell clones from chagasic patients: predominance of CD8 surface phenotype in clones from patients with pathology

    Directory of Open Access Journals (Sweden)

    Washington R. Cuna

    1995-08-01

    Full Text Available Human Chagas' disease, caused by the protozoan Trypanosoma cruzi, is associated with pathological processes whose mechanisms are not known. To address this question, T cell lines were developed from chronic chagasic patients peripheral blood mononuclear cells (PBMC and cloned. These T cell clones (TCC were analyzed phenotypically with monoclonal antibodies by the use of a fluorescence microscope. The surface phenotype of the TCC from the asymptomatic patient were predominantly CD4 positive (86%. On the contrary, the surface phenotype CD8 was predominant in the TCC from the patients suffering from cardiomegaly with right bundle branch block (83%, bradycardia with megacolon (75 % and bradycardia (75%. Future studies will be developed in order to identify the antigens eliciting these T cell subpopulations.

  8. Measuring T cell-mediated cytotoxicity using fluorogenic caspase substrates.

    Science.gov (United States)

    Chahroudi, A; Silvestri, G; Feinberg, M B

    2003-10-01

    Cytotoxic T lymphocytes (CTLs) play a major role in the immune response against viruses and other intracellular pathogens. In addition, CTLs are implicated in the control of tumor cells in certain settings. Accurate measures of CTL function are of critical importance to study the pathogenesis of infectious diseases and to evaluate the efficacy of new vaccines and immunotherapies. To this end, we have recently developed a flow cytometry-based CTL (FCC) assay that measures the CTL-induced caspase activation within target cells using cell permeable fluorogenic caspase substrates. This novel assay reliably detects, by flow cytometry or fluorescence/confocal microscopy, antigen-specific CTLs in a wide variety of human and murine systems, and is safer and more informative than the standard 51Cr-release assay. In addition, the flow cytometric CTL (FCC) assay provides an alternative method that is often more sensitive and physiologically informative when compared to previously described FCC assays, as it measures a biological indicator of apoptosis within the target cell. The FCC assay may thus represent a useful tool to further understand the molecular and cellular mechanisms that underlie CTL-mediated killing during tumorigenesis or following infection with viruses or other intracellular pathogens.

  9. Glucocorticoids inhibit the proliferation of IL-2-dependent T cell clones

    International Nuclear Information System (INIS)

    Fresno, M.; Redondo, J.M.; Lopez-Rivas, A.

    1986-01-01

    It has been shown that glucocorticoids inhibit mitogen or antigen-induced lymphocyte proliferation by decreasing the production of interleukin-2 (IL-2). They have studied the effect of dexamethasone (Dx) on the proliferation of IL-2-dependent T cell clones. They have found that preincubation of these clones with Dx inhibits ( 3 H) thymidine incorporation and cell proliferation in a dose-dependent manner (ID 50 % 5 x 10 -10 M). The inhibition of DNA synthesis by Dx was dependent on the concentration of IL-2. High concentration of IL-2 reversed completely this inhibition. The action of Dx seems to be mediated through the induction of a protein since the simultaneous presence of cycloheximide and Dx prevented the inhibitory effect of the latter. Moreover, dialyzed conditioned medium of Dx treated cells inhibited DNA synthesis by T cell clones. The biochemical characterization of this protein is in progress

  10. HIV-specific cytotoxic T lymphocyte precursors exist in a CD28-CD8+ T cell subset and increase with loss of CD4 T cells.

    Science.gov (United States)

    Lewis, D E; Yang, L; Luo, W; Wang, X; Rodgers, J R

    1999-06-18

    To determine whether the CD28-CD8+ T cells that develop during HIV infection contain HIV-specific cytotoxic precursor cells. CD8 subpopulations from six asymptomatic HIV-positive adults, with varying degrees of CD4 T cell loss, were sorted by flow cytometry and HIV-specific precursor cytotoxic T lymphocyte frequencies were measured. Three populations of CD8 T cells were tested: CD28+CD5-- T cells, CD28-CD57+ T cells (thought to be memory cells) and CD28-CD57- T cells (function unknown). Sorted CD8 subsets were stimulated with antigen presenting cells expressing HIV-1 Gag/Pol molecules. Cytotoxic T cell assays on Gag/Pol expressing 51Cr-labeled Epstein-Barr virus transformed autologous B cells lines or control targets were performed after 2 weeks. Specific lysis and precursor frequencies were calculated. Both CD28 positive and CD28-CD57+ populations contained appreciable numbers of precursors (9-1720 per 10(6) CD8+ T cells). However, the CD28-CD57- population had fewer precursors in five out of six people studied. More CD28 positive HIV-specific cytotoxic T lymphocyte precursors were found in patients with CD4:CD8 ratios > 1, whereas more CD28-CD57+ precursors were found in patients whose CD4:CD8 ratios were < 1 (r2, 0.68). Memory HIV-specific precursor cytotoxic T lymphocytes are found in both CD28 positive and CD28-CD8+ cells, however, a CD28-CD57- subpopulation had fewer. Because CD28-CD57+ cells are antigen-driven with limited diversity, the loss of CD28 on CD8 T cells during disease progression may reduce the response to new HIV mutations; this requires further testing.

  11. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    International Nuclear Information System (INIS)

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-01-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage λgt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16 + natural killer cells and CD3 + , CD16 - T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells

  12. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    International Nuclear Information System (INIS)

    Gualde, N.; Goodwin, J.S.

    1984-01-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [ 3 H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [ 3 H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset

  13. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  14. Myeloid-Derived Suppressor Cells Specifically Suppress IFN-γ Production and Antitumor Cytotoxic Activity of Vδ2 T Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Sacchi

    2018-06-01

    Full Text Available γδ T cells represent less than 5% of circulating T cells; they exert a potent cytotoxic function against tumor or infected cells and secrete cytokines like conventional αβ T cells. As αβ T cells γδ T cells reside in the typical T cell compartments (the lymph nodes and spleen, but are more widely distributed in tissues throughout the body. For these reasons, some investigators are exploring the possibility of immunotherapies aimed to expand and activate Vδ2 T cells, or using them as Chimeric Antigen Receptor carriers. However, the role of immunosuppressive microenvironment on Vδ2 T cells during infections and cancers has not been completely elucidated. In particular, the effects of myeloid-derived suppressor cells (MDSC, largely expanded in such pathologies, were not explored. In the present work, we demonstrated that MDSC may inhibit IFN-γ production and degranulation of phosphoantigen-activated Vδ2 T cells. Moreover, the Vδ2 T cells cytotoxic activity against the Burkitt lymphoma cell line Daudi and Jurkat cell line were impaired by MDSC. The Arginase I seems to be involved in the impairment of Vδ2 T cell function induced by both tumor cells and MDSC. These data open a key issue in the context of Vδ2-targeted immunoteraphy, suggesting the need of combined strategies aimed to boost Vδ2 T cells circumventing tumor- and MDSC-induced Vδ2 T cells suppression.

  15. Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions

    Science.gov (United States)

    Saadoun, Samira; Bridges, Leslie R.; Verkman, A. S.; Papadopoulos, Marios C.

    2013-01-01

    Neuromyelitis optica is a severe inflammatory demyelinating disease of the central nervous system. Most patients with neuromyelitis optica have circulating immunoglobulin G (IgG) antibodies against the astrocytic water channel protein aquaporin-4 (AQP4), which are pathogenic. Anti-AQP4 IgG-mediated complement-dependent astrocyte toxicity is a key mechanism of central nervous system damage in neuromyelitis optica, but the role of natural killer and cytotoxic T cells is unknown. Our objective was to determine whether natural killer and cytotoxic T cells play a role in human neuromyelitis optica lesions. We immunostained four actively demyelinating lesions, obtained from patients with anti-AQP4 IgG positive neuromyelitis optica, for Granzyme B and Perforin. The inflammatory cells were perivascular neutrophils, eosinophils and macrophages, with only occasional Granzyme B+ or Perforin + cells. Greater than 95% of inflamed vessels in each lesion had no surrounding Granzyme B+ or Perforin + cells. Granzyme B+ or Perforin+ cells were abundant in human spleen (positive control). Although natural killer cells produce central nervous system damage in mice injected with anti-AQP4 IgG, our findings here indicate that natural killer-mediated and T cell-mediated cytotoxicity are probably not involved in central nervous system damage in human neuromyelitis optica. PMID:23108041

  16. Primer sets for cloning the human repertoire of T cell Receptor Variable regions

    Directory of Open Access Journals (Sweden)

    Santoro Claudio

    2008-08-01

    Full Text Available Abstract Background Amplification and cloning of naïve T cell Receptor (TR repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Results Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT®, the ImMunoGeneTics information system®. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. Conclusion This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  17. Primer sets for cloning the human repertoire of T cell Receptor Variable regions.

    Science.gov (United States)

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-08-29

    Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT, the ImMunoGeneTics information system. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  18. Long term presence of a single predominant tyrosinase-specific T-cell clone associated with disease control in a patient with metastatic melanoma.

    Science.gov (United States)

    Ochsenreither, Sebastian; Fusi, Alberto; Busse, Antonia; Letsch, Anne; Haase, Doreen; Thiel, Eckhard; Scheibenbogen, Carmen; Keilholz, Ulrich

    2010-05-15

    In an earlier study, we described a patient who developed an anti-tyrosinase T-cell response leading to long-term tumor control. Here we analyzed this response with regard to T-cell receptor (TCR) Vbeta family usage and clonality in order to further elucidate the nature of the T cell response in this patient. For identification of expanded specific cytotoxic T-cell (CTL) clones, tetramer enrichment of tyrosinase reactive T-cells was followed by comparative quantitative reverse transcribed PCR (qRT PCR) quantification of all TCR Vbeta-families and sequencing of family Vbeta4 elevated in the enriched fraction. The predominant specific clone was quantified by clonotypic qRT PCR in multiple samples from blood, bone marrow, and tumor tissue. FACS analyses with staining of TYR.A2 and TCR Vbeta4 were performed. Epitope specific enrichment revealed an isolated increase of Vbeta-family 4. FACS analysis showed a shift of specific CTLs to Vbeta-family 4 during tumor regression with a maximum of 80% of all TYR.A2 specific cells belonging to this family. Sequencing revealed a single predominant clone against polyclonal background coding for identical CDR3 loops. The predominant clone was highly expressed in bone marrow and tumor tissue, and was detectable in blood over a period of ten years. Considering the results of previous studies showing a specific effector phenotype in blood and a specific memory compartment in bone marrow of this patient, this data implicate the predominant clone featured all attributes of a sufficient CTL response including homing capacity and memory formation resulting in long term clonal persistence and tumor control.

  19. Concanavalin A-mediated in vitro activation of a secondary cytotoxic T-cell response in virus-primed splenocytes

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Jensen, B L

    1980-01-01

    In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt to chara......In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt...... to characterize further these effector cells and, in particular, to establish whether the Con A-activated cytotoxic effectors are qualitatively different from the secondary cytotoxic T cells induced by restimulation with the homologous antigen. It was found that: (1) in vitro activation with Con A could......, since no evidence was found to indicate a role for other cell types or soluble (cytotoxic or arming) factors; (4) cytotoxicity was specific with regard to both virus and 'self'. By comparison with previous data on LCMV-induced cytotoxic T cells, it is concluded that Con A induces the generation...

  20. Delineation of canine parvovirus T cell epitopes with peripheral blood mononuclear cells and T cell clones from immunized dogs.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); M.C.M. Poelen (Martien); R.H. Meloen; J. Carlson; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractThree synthetic peptides derived from the amino acid sequence of VP2 of canine parvovirus (CPV) which were recently shown to represent three distinct T cell epitopes for BALB/c mice could prime BALB/c mice for a CPV-specific proliferative T cell response upon immunization. Proliferative

  1. Clinical Control of HIV-1 by Cytotoxic T Cells Specific for Multiple Conserved Epitopes.

    Science.gov (United States)

    Murakoshi, Hayato; Akahoshi, Tomohiro; Koyanagi, Madoka; Chikata, Takayuki; Naruto, Takuya; Maruyama, Rie; Tamura, Yoshiko; Ishizuka, Naoki; Gatanaga, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi

    2015-05-01

    Identification and characterization of CD8(+) T cells effectively controlling HIV-1 variants are necessary for the development of AIDS vaccines and for studies of AIDS pathogenesis, although such CD8(+) T cells have been only partially identified. In this study, we sought to identify CD8(+) T cells controlling HIV-1 variants in 401 Japanese individuals chronically infected with HIV-1 subtype B, in which protective alleles HLA-B*57 and HLA-B*27 are very rare, by using comprehensive and exhaustive methods. We identified 13 epitope-specific CD8(+) T cells controlling HIV-1 in Japanese individuals, though 9 of these epitopes were not previously reported. The breadths of the T cell responses to the 13 epitopes were inversely associated with plasma viral load (P = 2.2 × 10(-11)) and positively associated with CD4 count (P = 1.2 × 10(-11)), indicating strong synergistic effects of these T cells on HIV-1 control in vivo. Nine of these epitopes were conserved among HIV-1 subtype B-infected individuals, whereas three out of four nonconserved epitopes were cross-recognized by the specific T cells. These findings indicate that these 12 epitopes are strong candidates for antigens for an AIDS vaccine. The present study highlighted a strategy to identify CD8(+) T cells controlling HIV-1 and demonstrated effective control of HIV-1 by those specific for 12 conserved or cross-reactive epitopes. HLA-B*27-restricted and HLA-B*57-restricted cytotoxic T lymphocytes (CTLs) play a key role in controlling HIV-1 in Caucasians and Africans, whereas it is unclear which CTLs control HIV-1 in Asian countries, where HLA-B*57 and HLA-B*27 are very rare. A recent study showed that HLA-B*67:01 and HLA-B*52:01-C*12:02 haplotypes were protective alleles in Japanese individuals, but it is unknown whether CTLs restricted by these alleles control HIV-1. In this study, we identified 13 CTLs controlling HIV-1 in Japan by using comprehensive and exhaustive methods. They included 5 HLA-B*52:01-restricted

  2. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Fen; Ye, Bin

    2016-10-01

    Cystic echinococcosis is a worldwide zoonosis caused by Echinococcus granulosus. Because the methods of diagnosis and treatment for cystic echinococcosis were limited, it is still necessary to screen target proteins for the development of new anti-hydatidosis vaccine. In this study, the triosephosphate isomerase gene of E. granulosus was in silico cloned. The B cell and T cell epitopes were predicted by bioinformatics methods. The cDNA sequence of EgTIM was composition of 1094 base pairs, with an open reading frame of 753 base pairs. The deduced amino acid sequences were composed of 250 amino acids. Five cross-reactive epitopes, locating on 21aa-35aa, 43aa-57aa, 94aa-107aa, 115-129aa, and 164aa-183aa, could be expected to serve as candidate epitopes in the development of vaccine against E. granulosus. These results could provide bases for gene cloning, recombinant expression, and the designation of anti-hydatidosis vaccine.

  3. T-Cell Therapy Using Interleukin-21-Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression.

    Science.gov (United States)

    Chapuis, Aude G; Roberts, Ilana M; Thompson, John A; Margolin, Kim A; Bhatia, Shailender; Lee, Sylvia M; Sloan, Heather L; Lai, Ivy P; Farrar, Erik A; Wagener, Felecia; Shibuya, Kendall C; Cao, Jianhong; Wolchok, Jedd D; Greenberg, Philip D; Yee, Cassian

    2016-11-01

    Purpose Peripheral blood-derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti-CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8 + T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  4. T-Cell Therapy Using Interleukin-21–Primed Cytotoxic T-Cell Lymphocytes Combined With Cytotoxic T-Cell Lymphocyte Antigen-4 Blockade Results in Long-Term Cell Persistence and Durable Tumor Regression

    Science.gov (United States)

    Chapuis, Aude G.; Roberts, Ilana M.; Thompson, John A.; Margolin, Kim A.; Bhatia, Shailender; Lee, Sylvia M.; Sloan, Heather L.; Lai, Ivy P.; Farrar, Erik A.; Wagener, Felecia; Shibuya, Kendall C.; Cao, Jianhong; Wolchok, Jedd D.; Greenberg, Philip D.

    2016-01-01

    Purpose Peripheral blood–derived antigen-specific cytotoxic T cells (CTLs) provide a readily available source of effector cells that can be administered with minimal toxicity in an outpatient setting. In metastatic melanoma, this approach results in measurable albeit modest clinical responses in patients resistant to conventional therapy. We reasoned that concurrent cytotoxic T-cell lymphocyte antigen-4 (CTLA-4) checkpoint blockade might enhance the antitumor activity of adoptively transferred CTLs. Patients and Methods Autologous MART1-specific CTLs were generated by priming with peptide-pulsed dendritic cells in the presence of interleukin-21 and enriched by peptide-major histocompatibility complex multimer-guided cell sorting. This expeditiously yielded polyclonal CTL lines uniformly expressing markers associated with an enhanced survival potential. In this first-in-human strategy, 10 patients with stage IV melanoma received the MART1-specific CTLs followed by a standard course of anti–CTLA-4 (ipilimumab). Results The toxicity profile of the combined treatment was comparable to that of ipilimumab monotherapy. Evaluation of best responses at 12 weeks yielded two continuous complete remissions, one partial response (PR) using RECIST criteria (two PRs using immune-related response criteria), and three instances of stable disease. Infused CTLs persisted with frequencies up to 2.9% of CD8+ T cells for as long as the patients were monitored (up to 40 weeks). In patients who experienced complete remissions, PRs, or stable disease, the persisting CTLs acquired phenotypic and functional characteristics of long-lived memory cells. Moreover, these patients also developed responses to nontargeted tumor antigens (epitope spreading). Conclusion We demonstrate that combining antigen-specific CTLs with CTLA-4 blockade is safe and produces durable clinical responses, likely reflecting both enhanced activity of transferred cells and improved recruitment of new responses

  5. Rabies virus cross-reactive murine T cell clones: analysis of helper and delayed-type hypersensitivity function.

    NARCIS (Netherlands)

    H. Bunschoten; B. Dietzschold; I.J.Th.M. Claassen (Ivo); R. Klapmuts; F. UytdeHaag; A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractThree T cell clones derived from rabies virus-immunized BALB/c mice were analysed for specificity and function. The clones proved to be broadly cross-reactive by responding to different rabies virus isolates (PM, ERA, CVS, HEP) and other representatives of the genus Lyssavirus, like the

  6. MAdCAM-1 is needed for diabetes development mediated by the T cell clone, BDC-2·5

    Science.gov (United States)

    Phillips, Jenny M; Haskins, Kathryn; Cooke, Anne

    2005-01-01

    The NOD-derived islet-reactive CD4+ T cell clone, BDC-2·5, is able to transfer diabetes to neonatal non-obese diabetic (NOD) mice but is unable to transfer disease to either adult NOD or NOD scid recipients. Transfer of diabetes to adult recipients by BDC-2·5 is only accomplished by cotransfer of CD8+ T cells from a diabetic donor. To understand why this CD4+ T cell clone is able to mediate diabetes in neonatal but not the adult recipients we examined the ability of the clone to traffic in the different recipients. Our studies showed that MAdCAM-1 has a very different expression pattern in the neonatal and adult pancreas. Blockade of this addressin prevents the clone from transferring diabetes to neonatal mice, suggesting that the differential pancreatic expression of MAdCAM-1 in neonatal and adult pancreas provides an explanation of the differences in diabetes development. PMID:16313366

  7. Cytotoxic T cells are preferentially activated in the duodenal epithelium from patients with florid coeliac disease.

    Science.gov (United States)

    Buri, Caroline; Burri, Philipp; Bähler, Peter; Straumann, Alex; Müller-Schenker, Beatrice; Birrer, Stefan; Mueller, Christoph

    2005-06-01

    Villous atrophy and increased numbers of intraepithelial T cells in duodenal biopsies represent a hallmark of coeliac disease. In the present study, an attempt has been made to define whether cytotoxic cell subsets are activated in situ in the affected mucosa of susceptible individuals early after ingestion of a gluten-containing diet. Duodenal biopsies from 11 patients with coeliac disease who repeatedly underwent endoscopic biopsy after ingestion of individually dosed amounts of gluten were used for immunohistochemistry and in situ hybridization. To identify the cell subsets expressing perforin mRNA and protein, in situ hybridization and FACS analyses were performed on cells isolated from fresh biopsies. Compared with normal mucosa, the number of intraepithelial lymphocytes containing perforin mRNA and protein increased significantly in tissue samples showing moderate or florid coeliac disease and closely paralleled the severity of morphological alteration, whereas the frequency of perforin-expressing lamina propria lymphocytes increased only moderately. Cells isolated from florid biopsies that expressed perforin mRNA and protein were preferentially T-cell receptor (TCR) alphabeta T cells. The increase in both the absolute number and the percentage of lymphocytes expressing perforin mRNA indicates in situ activation of lymphocytes within the epithelial compartment in florid coeliac disease upon ingestion of a gluten-containing diet in patients predisposed to coeliac disease. Copyright 2005 Pathological Society of Great Britain and Ireland

  8. Failure of anti-T-cell receptor V beta antibodies to consistently identify a malignant T-cell clone in Sézary syndrome.

    Science.gov (United States)

    Bigler, R D; Boselli, C M; Foley, B; Vonderheid, E C

    1996-11-01

    Monoclonal antibodies (MAbs) reacting with the human T cell receptor (TCR) V beta or V alpha region have been shown to be almost as specific as a private idiotypic MAb in identifying T cell clones. When available, V beta-specific MAbs offer the ease of immunofluorescence analysis to identify and quantitate expanded malignant or nonmalignant T cell populations without requiring polymerase chain reaction (PCR) technology to evaluate expression of V beta gene families. The V beta expression of peripheral blood lymphocytes from twenty-three consecutive patients with Sézary syndrome has been analyzed by reverse transcriptase (RT)-PCR. Ten patients had malignant T cell clones that expressed a TCR V beta corresponding to a commercially available anti-V beta antibody. Immunofluorescence staining with anti-V beta MAbs showed a direct correlation with RT-PCR results in seven of ten patients. No false positive reactivity was noted on immunofluorescence staining with any MAb. Cells from three patients, however, did not react with the corresponding anti-V beta MAb. These three cases expressed a TCR V beta from gene families containing a single member, ie, V beta 14, V beta 18, and V beta 20, yet MAbs reported to be specific for these regions failed to react with the T cell clone from these patients. Sequencing of the PCR product in these cases confirmed the RT-PCR results. Cells from two patients expressed a TCR using V beta 5.1-D beta 1.1 genes with different J-C segments. One patient's cells reacted with an anti-V beta 5.1 MAb (LC4) whereas the other patient's cells bound one-tenth the amount of this same MAb. These results indicate that currently available anti-TCR V region MAbs may not react consistently with T cell clones expressing the corresponding V region or may react with a low affinity making detection difficult. Differences in the J-C junction or in CDR3 may influence the binding of these MAbs. Until the false negative rate is reduced and the fine specificity and

  9. Cytotoxicity of arctigenin and matairesinol against the T-cell lymphoma cell line CCRF-CEM.

    Science.gov (United States)

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-09-01

    Arctigenin and matairesinol possess a diversity of bioactivities. Here we investigated the cytotoxicity of arctigenin and matairesinol against a T-cell lymphoma cell line CCRF-CEM and the underlying mechanisms that have not been explored before. The cytotoxic activity was investigated using MTT assay. The cell cycle arrest and reactive oxygen species (ROS) accumulation were determined by flow cytometric analysis. The apoptosis induction was assessed using Annexin V/Propidium Iodide assay. The gene quantification analysis was measured through real-time polymerase chain reaction. Arctigenin and matairesinol exhibited significant antiproliferative activity against CCRF-CEM cells after 72 h treatment with IC50 values of 1.21 ± 0.15 μm and 4.27 ± 0.41 μm, respectively. In addition, both lignans arrest CCRF-CEM cells in the S phase. Furthermore, they could induce apoptosis in CCRF-CEM cells in a concentration- and time-dependent manner. Interestingly, the lignans differentially regulated the expression of several key genes involved in apoptosis pathways, including Bax, Bad and caspase-9. Moreover, both lignans could increase ROS levels in CCRF-CEM cells. Our study provides an insight into the potential of arctigenin and matairesinol as good candidates for the development of novel agents against T-cell lymphoma. © 2015 Royal Pharmaceutical Society.

  10. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response.

    Science.gov (United States)

    Ueda, Norihiro; Uemura, Yasushi; Zhang, Rong; Kitayama, Shuichi; Iriguchi, Shoichi; Kawai, Yohei; Yasui, Yutaka; Tatsumi, Minako; Ueda, Tatsuki; Liu, Tian-Yi; Mizoro, Yasutaka; Okada, Chihiro; Watanabe, Akira; Nakanishi, Mahito; Senju, Satoru; Nishimura, Yasuharu; Kuzushima, Kiyotaka; Kiyoi, Hitoshi; Naoe, Tomoki; Kaneko, Shin

    2018-06-05

    CD4 + T helper (Th) cell activation is essential for inducing cytotoxic T lymphocyte (CTL) responses against malignancy. We reprogrammed a Th clone specific for chronic myelogenous leukemia (CML)-derived b3a2 peptide to pluripotency and re-differentiated the cells into original TCR-expressing T-lineage cells (iPS-T cells) with gene expression patterns resembling those of group 1 innate lymphoid cells. CD4 gene transduction into iPS-T cells enhanced b3a2 peptide-specific responses via b3a2 peptide-specific TCR. iPS-T cells upregulated CD40 ligand (CD40L) expression in response to interleukin-2 and interleukin-15. In the presence of Wilms tumor 1 (WT1) peptide, antigen-specific dendritic cells (DCs) conditioned by CD4-modified CD40L high iPS-T cells stimulated WT1-specific CTL priming, which eliminated WT1 peptide-expressing CML cells in vitro and in vivo. Thus, CD4 modification of CD40L high iPS-T cells generates innate lymphoid helper-like cells inducing bcr-abl-specific TCR signaling that mediates effectiveanti-leukemic CTL responses via DC maturation, showing potential for adjuvant immunotherapy against leukemia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. T-cell receptor (TCR) phenotype of nodal Epstein-Barr virus (EBV)-positive cytotoxic T-cell lymphoma (CTL): a clinicopathologic study of 39 cases.

    Science.gov (United States)

    Kato, Seiichi; Asano, Naoko; Miyata-Takata, Tomoko; Takata, Katsuyoshi; Elsayed, Ahmed Ali; Satou, Akira; Takahashi, Emiko; Kinoshita, Tomohiro; Nakamura, Shigeo

    2015-04-01

    Among Epstein-Barr virus (EBV)-positive cytotoxic T/NK-cell lymphoma, there are only a few reports on the clinicopathologic features of patients with primary nodal presentation (nodal EBV cytotoxic T-cell lymphoma [CTL]). Here, we compared the clinicopathologic profiles of 39 patients with nodal EBV CTL with those of 27 cases of "extranasal" NK/T-cell lymphoma of nasal type (ENKTL), especially addressing their T-cell receptor (TCR) phenotype. Histologically, 22 of 39 nodal EBV CTL cases (56%) were unique in having centroblastoid appearance, which was contrasted with the lower incidence of this feature in ENKTL (15%, P=0.001). In contrast, pleomorphic appearance was more frequently seen in ENKTL than in nodal EBV CTL (67% vs. 23%, P=0.001). Thirty-three of 39 nodal EBV CTL cases (85%) were of T-cell lineage on the basis of TCR expression and/or TCRγ gene rearrangement; in detail, 18 cases (46%) were TCRβ positive (αβ T), 5 (13%) were TCRγ and/or δ positive (γδ T), and 10 (26%) were TCR-silent type with clonal TCRγ gene rearrangement but no expression of TCRβ, γ, or δ. These results were clearly contrasted by a lower incidence of T-cell lineage in ENKTL (7 cases, 26%, P<0.001). Notably, the survival time of the 5 nodal lymphoma patients with γδ T-cell phenotype was within 3 months, which was inferior to those of αβ T and TCR-silent types (P=0.003), and 3 of those with available clinical information were all found to be associated with autoimmune diseases. These data suggest that nodal EBV CTL is distinct from ENKTL.

  12. Abundant tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes.

    Science.gov (United States)

    Hanon, E; Hall, S; Taylor, G P; Saito, M; Davis, R; Tanaka, Y; Usuku, K; Osame, M; Weber, J N; Bangham, C R

    2000-02-15

    The role of the cellular immune response in human T-cell leukemia virus type I (HTLV-I) infection is not fully understood. A persistently activated cytotoxic T lymphocyte (CTL) response to HTLV-I is found in the majority of infected individuals. However, it remains unclear whether this CTL response is protective or causes tissue damage. In addition, several observations paradoxically suggest that HTLV-I is transcriptionally silent in most infected cells and, therefore, not detectable by virus-specific CTLs. With the use of a new flow cytometric procedure, we show here that a high proportion of naturally infected CD4+ peripheral blood mononuclear cells (PBMC) (between 10% and 80%) are capable of expressing Tax, the immunodominant target antigen recognized by virus-specific CTLs. Furthermore, we provide direct evidence that autologous CD8+ T cells rapidly kill CD4+ cells naturally infected with HTLV-I and expressing Tax in vitro by a perforin-dependent mechanism. Consistent with these observations, we observed a significant negative correlation between the frequency of Tax(11-19)-specific CD8+ T cells and the percentage of CD4+ T cells in peripheral blood of patients infected with HTLV-I. Those results are in accordance with the view that virus-specific CTLs participate in a highly efficient immune surveillance mechanism that persistently destroys Tax-expressing HTLV-I-infected CD4+ T cells in vivo. (Blood. 2000;95:1386-1392)

  13. Cysteine Cathepsins as Regulators of the Cytotoxicity of NK and T Cells

    Science.gov (United States)

    Perišić Nanut, Milica; Sabotič, Jerica; Jewett, Anahid; Kos, Janko

    2014-01-01

    Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes. PMID:25520721

  14. Heterogeneity in cytokine profiles of Babesia bovis-specific bovine CD4+ T cells clones activated in vitro.

    OpenAIRE

    Brown, W C; Woods, V M; Dobbelaere, D A; Logan, K S

    1993-01-01

    The central role of T cells in the immune response against hemoprotozoan parasites, both as helper cells for T cell-dependent antibody production and as effector cells acting on intracellular parasites through the elaboration of cytokines, has prompted an investigation of the bovine cellular immune response against Babesia bovis antigens. CD4+ T helper (Th) cell clones generated from four B. bovis-immune cattle by in vitro stimulation with a soluble or membrane-associated merozoite antigen we...

  15. Specific Schistosoma mansoni rat T cell clones. I. Generation and functional analysis in vitro and in vivo.

    Science.gov (United States)

    Pestel, J; Dissous, C; Dessaint, J P; Louis, J; Engers, H; Capron, A

    1985-06-01

    In an attempt to determine the role of schistosome-specific T cells in the immune mechanisms developed during schistosomiasis, Schistosoma mansoni-specific T cells and clones were generated in vitro and some of their functions analyzed in vitro and in vivo in the fischer rat model. The data presented here can be summarized as follows: a) Lymph node cells (LNC) from rats primed with the excretory/secretory antigens-incubation products (IPSm) of adult worms proliferate in vitro only in response to the homologous schistosome antigens and not to unrelated antigens (Ag) such as ovalbumin (OVA) or Dipetalonema viteae and Fasciola hepatica parasite extracts. b) After in vitro restimulation of the primed LNC population with IPSm in the presence of antigen-presenting cells (APC) and maintenance in IL 2-containing medium, the frequency of IPSm-specific T cells is increased and the T cells can be restimulated only in the presence of APC possessing the same major histocompatibility complex (MHC) antigens. c) Following appropriate limiting dilution assays (LDA) (1 cell/well), 10 IPSm-specific T cell clones were obtained, and two of four maintained in culture were tested for their helper activity because they expressed only the W3/13+ W3/25+ surface phenotypes. d) The two highly proliferating IPSm-specific T cell clones (G5 and E23) exhibit an IPSm-dependent helper activity, as shown by the increase in IgG production by IPSm-primed B cells. e) IPSm-T cell clone (G5) as well as IPSm-T cell lines when injected in S. mansoni-infested rats can exert an in vivo helper activity, which is characterized by an accelerated production of IgG antibodies specific for the previously identified 30 to 40 kilodaltons (kd) schistosomula surface antigens (Ag). As recent studies have demonstrated that rat monoclonal antibodies recognize some incubation products of adult S. mansoni as well as one of the 30 to 40 kd schistosomula surface antigens, and taking into account the fact that the T cell

  16. Protective immunization with B16 melanoma induces antibody response and not cytotoxic T cell response

    International Nuclear Information System (INIS)

    Sarzotti, M.; Sriyuktasuth, P.; Klimpel, G.R.; Cerny, J.

    1986-01-01

    C57BL/6 mice immunized with three intraperitoneal injections of syngeneic, irradiated B16 melanoma cells, became resistant to B16 tumor challenge. Immunized mice had high levels of serum antibody against a membrane antigen of B16 cells. The B16 antigen recognized by the anti-B16 sera formed a major band of 90 KD in gel electrophoresis. The anti-B16 antibody was partially protective when mixed with B16 cells and injected into normal recipient mice. Surprisingly, B16 resistance mice were incapable of generating cytotoxic T cells (CTL) specific for the B16 tumor. Both spleen and lymph node cell populations from immunized mice did not generate B16-specific CTL. Allogeneic mice (DBA/2 or C3H) were also unable to generate B16-specific CTL: however, alloreactive CTL produced in these strains of mice by immunization with C57BL/6 lymphocytes, did kill B16 target cells. Interestingly, spleen cells from syngeneic mice immunized with B16 tumor produced 6-fold more interleukin-2 (IL-2) than normal spleen cells, in vitro. These data suggest that immunization with B16 tumor activates a helper subset of T cells (for antibody and IL-2 production) but not the effector CTL response

  17. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity.

    Science.gov (United States)

    Akane, Kazuyuki; Kojima, Seiji; Mak, Tak W; Shiku, Hiroshi; Suzuki, Haruhiko

    2016-03-01

    The Fas/FasL (CD95/CD178) system is required for immune regulation; however, it is unclear in which cells, when, and where Fas/FasL molecules act in the immune system. We found that CD8(+)CD122(+) cells, which are mostly composed of memory T cells in comparison with naïve cells in the CD8(+)CD122(-) population, were previously shown to include cells with regulatory activity and could be separated into CD49d(low) cells and CD49d(high) cells. We established in vitro and in vivo experimental systems to evaluate the regulatory activity of CD122(+) cells. Regulatory activity was observed in CD8(+)CD122(+)CD49d(low) but not in CD8(+)CD122(+)CD49d(high) cells, indicating that the regulatory cells in the CD8(+)CD122(+) population could be narrowed down to CD49d(low) cells. CD8(+)CD122(-) cells taken from lymphoproliferation (lpr) mice were resistant to regulation by normal CD122(+) Tregs. CD122(+) Tregs taken from generalized lymphoproliferative disease (gld) mice did not regulate wild-type CD8(+)CD122(-) cells, indicating that the regulation by CD122(+) Tregs is Fas/FasL-dependent. CD122(+) Tregs taken from IL-10-deficient mice could regulate CD8(+)CD122(-) cells as equally as wild-type CD122(+) Tregs both in vitro and in vivo. MHC class I-missing T cells were not regulated by CD122(+) Tregs in vitro. CD122(+) Tregs also regulated CD4(+) cells in a Fas/FasL-dependent manner in vitro. These results suggest an essential role of Fas/FasL as a terminal effector of the CD122(+) Tregs that kill activated T cells to maintain immune homeostasis.

  18. Candidate mosaic proteins for a pan-filoviral cytotoxic T-Cell lymphocyte vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Paul W [Los Alamos National Laboratory; Fischer, William M [Los Alamos National Laboratory; Kuiken, Carla [Los Alamos National Laboratory; Foley, Brian T [Los Alamos National Laboratory; Thurmond, J R [Los Alamos National Laboratory; Yusim, K [Los Alamos National Laboratory; Korber, B T [Los Alamos National Laboratory

    2008-01-01

    The extremely high fatality rates of many filovirus (FILV) strains the recurrent but rarely identified origin of human epidemics, the only partly identified viral reservoirs and the continuing non-human primate epizootics in Africa make a broadly-protective filovirus vaccine highly desirable. Cytotoxic T-cells (CTL) have been shown to be protective in mice, guinea pigs and non-human primates. In murine models the cytotoxic T-cell epitopes that are protective against Ebola virus have been mapped and in non-human primates CTL-mediated protection between viral strains (John Dye: specify) has been demonstrated using two filoviral proteins, nucleoprotein (NP) and glycoprotein (GP). These immunological results suggest that the CTL avenue of immunity deserves consideration for a vaccine. The poorly-understood viral reservoirs means that it is difficult to predict what strains are likely to cause epidemics. Thus, there is a premium on developing a pan-filoviral vaccine. The genetic diversity of FILV is large, roughly the same scale as human immunodeficiency virus (HIV). This presents a serious challenge for the vaccine designer because a traditional vaccine aspiring to pan-filoviral coverage is likely to require the inclusion of many antigenic reagents. A recent method for optimizing cytotoxic T-cell lymphocyte epitope coverage with mosaic antigens was successful in improving potential CTL epitope coverage against HIV and may be useful in the context of very different viruses, such as the filoviruses discussed here. Mosaic proteins are recombinants composed of fragments of wild-type proteins joined at locations resulting in exclusively natural k-mers, 9 {le} k {le} 15, and having approximately the same length as the wild-type proteins. The use of mosaic antigens is motivated by three conjectures: (1) optimizing a mosaic protein to maximize coverage of k-mers found in a set of reference proteins will give better odds of including broadly-protective CTL epitopes in a vaccine

  19. Assessment of the usefulness of the murine cytotoxic T cell line CTLL-2 for immunotoxicity screening by transcriptomics

    NARCIS (Netherlands)

    Schmeits, P.C.; Volger, O.L.; Zandvliet, E.T.; Loveren, van H.; Peijnenburg, A.; Hendriksen, P.J.

    2013-01-01

    A toxicogenomics approach was applied to assess the usefulness of the mouse cytotoxic T cell line CTLL-2 for in vitro immunotoxicity testing. CTLL-2 cells were exposed for 6 h to two model immunotoxic compounds: (1) the mycotoxin deoxynivalenol (DON, 1 and 2 µM), a ribotoxic stress inducer, and (2)

  20. Th1-like human T-cell clones recognizing Leishmania gp63 inhibit Leishmania major in human macrophages

    DEFF Research Database (Denmark)

    Kemp, M; Hey, A S; Bendtzen, K

    1994-01-01

    The major surface protease of Leishmania major, gp63, has been suggested as a vaccine candidate for cutaneous leishmaniasis. In this study gp63 was purified from L. major promastigotes. A panel of human T-cell clones recognizing this protein were generated from individuals who had previously had...... resembling Th1 cells. Autologous mononuclear cells and Epstein-Barr virus-transformed B cell lines were equally efficient in presenting the antigen to the T cells. The gp63 reactive T cells induced resistance to infection in cultured human macrophages by L. major. The data confirm that human CD4+ T cells...... recognizing gp63 can take part in the host defence against L. major infections....

  1. Single TCR-Vβ2 evaluation discloses the circulating T cell clone in Sezary syndrome: one family fits all!

    Science.gov (United States)

    Scala, Enrico; Abeni, Damiano; Pomponi, Debora; Russo, Nicoletta; Russo, Giandomenico; Narducci, Maria Grazia

    2015-08-01

    Sézary Syndrome (SS/L-CTCL) is a rare but aggressive variant of cutaneous T cell lymphoma (CTCL), characterized by erythroderma, lymphadenopathy, and the presence of a circulating memory CD4(+) T cell malignant clone with a skin homing behavior, lacking CD26 and CD49d and over-expressing CD60. The availability of a panel of monoclonal antibodies recognizing distinct TCR-Vβ families, allows to typify the clone by flow cytometry in about 70 % of cases. The TCR-Vβ repertoire of 533 individuals, comprising 308 patients affected by CTCL, 50 healthy donors, and subjects affected by various non-neoplastic dermatological affections was evaluated by flow cytometry. Statistical analyses were performed using the SPSS statistical software package for Microsoft Windows (SPSS, version 21, Chicago, IL). TCR-Vβ2 levels below 5.4 % or above 39.5 %, within total CD4(+) T cells, showed the best balance between sensitivity (98.1 %) and specificity (96 %) to identify the presence of a clone in the peripheral blood of patients affected by SS. Based on this observation, a "two-step" procedure in the detection of the malignant T cell clone in CTCLs is herein suggested. TCR-Vβ2 assessment in all cases (first step). In the case of TCR-Vβ2 levels above 39.5 %, the presence of a clonal expansion of this family is suggested, deserving further confirmation by means of T cell gene rearrangement evaluation. In patients having a TCR-Vβ2 reactivity below 5.4 % (second step), the entire TCR-Vβ repertoire should be evaluated to typify the expanded clone. In conclusion, the single TCR-Vβ2 expression check, instead of the entire repertoire assessment, represents an easy and cost-effective method for the recognition of CTCL aggressive leukemic variant.

  2. CD4+ T cell-mediated cytotoxicity is associated with MHC class II expression on malignant CD19+ B cells in diffuse large B cell lymphoma.

    Science.gov (United States)

    Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing

    2018-01-15

    Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Growth of single T cells and single thymocytes in a high cloning efficiency filler-cell free microculture system.

    Science.gov (United States)

    Chen, W F; Ewing, T; Scollay, R; Shortman, K

    1988-01-01

    A high cloning-efficiency microculture system is described in which single T cells, stimulated to divide by phorbol ester and calcium ionophore, grow rapidly under the influence of purified growth factors in the absence of other cells. The kinetics of clonal growth has been monitored over a five day period by phase-contrast microscopy. Mature peripheral T cells, and mature subpopulations from the thymus, responded with a cloning efficiency over 80%; they required IL-2 as a minimum but several other factors enhanced growth. Ly2+L3T4- thymocytes (mean doubling time 10.4 hr) grew more rapidly than Ly2-L3T4+ thymocytes (mean doubling time 15.2 hr). Early (Ly2-L3T4-) thymocytes responded with a cloning efficiency of 60%; their efficient growth was dependent on both IL-1 and IL-2. The typical Ly2+L3T4+ cortical thymocyte did not grow under these conditions.

  4. IgE production by normal human B cells induced by alloreactive T cell clones is mediated by IL-4 and suppressed by IFN-gamma

    NARCIS (Netherlands)

    Pène, J.; Rousset, F.; Brière, F.; Chrétien, I.; Paliard, X.; Banchereau, J.; Spits, H.; de Vries, J. E.

    1988-01-01

    Seven T cell clones were established from mixed leukocyte cultures in which PBMC from two healthy donors and from one patient suffering from the hyper-IgE syndrome were stimulated by the irradiated EBV-transformed B cell lines JY or UD53. Five of seven T cell clones, after activation by

  5. Rabies virus-specific human T cell clones provide help for an in vitro antibody response against neutralizing antibody-inducing determinants of the viral glycoprotein.

    NARCIS (Netherlands)

    H. Bunschoten; R.J. Klapmuts; I.J.Th.M. Claassen (Ivo); S.D. Reijneveld; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractHuman T cell clones were prepared from peripheral blood mononuclear cells from a vaccinated human donor and kept in culture in the presence of rabies virus antigen and growth factors. Phenotypic analysis of the T cell clones revealed expression of the CD3 and CD4 cell surface markers,

  6. A Unique T-Cell Receptor Amino Acid Sequence Selected by Human T-Cell Lymphotropic Virus Type 1 Tax301-309-Specific Cytotoxic T Cells in HLA-A24:02-Positive Asymptomatic Carriers and Adult T-Cell Leukemia/Lymphoma Patients.

    Science.gov (United States)

    Ishihara, Yuko; Tanaka, Yukie; Kobayashi, Seiichiro; Kawamura, Koji; Nakasone, Hideki; Gomyo, Ayumi; Hayakawa, Jin; Tamaki, Masaharu; Akahoshi, Yu; Harada, Naonori; Kusuda, Machiko; Kameda, Kazuaki; Ugai, Tomotaka; Wada, Hidenori; Sakamoto, Kana; Sato, Miki; Terasako-Saito, Kiriko; Kikuchi, Misato; Kimura, Shun-Ichi; Tanihara, Aki; Kako, Shinichi; Uchimaru, Kaoru; Kanda, Yoshinobu

    2017-10-01

    We previously reported that the T-cell receptor (TCR) repertoire of human T-cell lymphotropic virus type 1 (HTLV-1) Tax 301-309 -specific CD8 + cytotoxic T cells (Tax 301-309 -CTLs) was highly restricted and a particular amino acid sequence motif, the PDR motif, was conserved among HLA-A*24:02-positive (HLA-A*24:02 + ) adult T-cell leukemia/lymphoma (ATL) patients who had undergone allogeneic hematopoietic cell transplantation (allo-HSCT). Furthermore, we found that donor-derived PDR + CTLs selectively expanded in ATL long-term HSCT survivors with strong CTL activity against HTLV-1. On the other hand, the TCR repertoires in Tax 301-309 -CTLs of asymptomatic HTLV-1 carriers (ACs) remain unclear. In this study, we directly identified the DNA sequence of complementarity-determining region 3 (CDR3) of the TCR-β chain of Tax 301-309 -CTLs at the single-cell level and compared not only the TCR repertoires but also the frequencies and phenotypes of Tax 301-309 -CTLs between ACs and ATL patients. We did not observe any essential difference in the frequencies of Tax 301-309 -CTLs between ACs and ATL patients. In the single-cell TCR repertoire analysis of Tax 301-309 -CTLs, 1,458 Tax 301-309 -CTLs and 140 clones were identified in this cohort. Tax 301-309 -CTLs showed highly restricted TCR repertoires with a strongly biased usage of BV7, and PDR, the unique motif in TCR-β CDR3, was exclusively observed in all ACs and ATL patients. However, there was no correlation between PDR + CTL frequencies and HTLV-1 proviral load (PVL). In conclusion, we have identified, for the first time, a unique amino acid sequence, PDR, as a public TCR-CDR3 motif against Tax in HLA-A*24:02 + HTLV-1-infected individuals. Further investigations are warranted to elucidate the role of the PDR + CTL response in the progression from carrier state to ATL. IMPORTANCE ATL is an aggressive T-cell malignancy caused by HTLV-1 infection. The HTLV-1 regulatory protein Tax aggressively promotes the

  7. Virus-specific cytotoxic T cells in chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Shibayama, Haruna; Imadome, Ken-Ichi; Onozawa, Erika; Tsuzura, Akiho; Miura, Osamu; Koyama, Takatoshi; Arai, Ayako

    2017-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a disease characterized by clonally proliferating and activated EBV-infected T or NK cells accompanied by chronic inflammation and T- or NK-cell neoplasms. However, the mechanism for developing CAEBV has not been clarified to date. Because the decreased number or inactivation of EBV-specific cytotoxic T lymphocytes (CTLs) resulted in the development of EBV-positive B-cell neoplasms, we investigated the number of CTLs in CAEBV patients using the tetrameric complexes of HLA-restricted EBV-specific peptides. Among the seven patients examined, EBV-specific CTLs were detected in the peripheral blood mononuclear cells (PBMCs) of four cases but were not detected in three cases. The ratio of EBV-specific CTLs in PBMCs tended to be higher in the patients with active disease than in those with inactive disease. In two patients in whom EBV-specific CTLs had not been detected, CTLs appeared after the eradication of EBV-infected T cells by allogeneic bone marrow transplantation. These results suggested that the failure of CTLs had a role in developing CAEBV, although the induction number and function of EBV-specific CTLs might vary in each patient.

  8. Repertoire Development and the Control of Cytotoxic/Effector Function in Human γδ T Cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Urban

    2010-01-01

    Full Text Available T cells develop into two major populations distinguished by their T cell receptor (TCR chains. Cells with the αβ TCR generally express CD4 or CD8 lineage markers and mostly fall into helper or cytotoxic/effector subsets. Cells expressing the alternate γδ TCR in humans generally do not express lineage markers, do not require MHC for antigen presentation, and recognize nonpeptidic antigens. We are interested in the dominant Vγ2Vδ2+ T cell subset in human peripheral blood and the control of effector function in this population. We review the literature on γδ T cell generation and repertoire selection, along with recent work on CD56 expression and defining a cytotoxic/effector lineage within the phosphoantigen-reactive Vγ2Vδ2 cells. A unique mechanism for MHC-independent repertoire selection is linked to the control of effector function that is vital to the role for γδ T cells in tumor surveillance. Better understanding of these mechanisms will improve our ability to exploit this population for tumor immunotherapy.

  9. Nasal-associated lymphoid tissues (NALTs) support the recall but not priming of influenza virus-specific cytotoxic T cells.

    Science.gov (United States)

    Pizzolla, Angela; Wang, Zhongfang; Groom, Joanna R; Kedzierska, Katherine; Brooks, Andrew G; Reading, Patrick C; Wakim, Linda M

    2017-05-16

    The lymphoid tissue that drains the upper respiratory tract represents an important induction site for cytotoxic T lymphocyte (CTL) immunity to airborne pathogens and intranasal vaccines. Here, we investigated the role of the nasal-associated lymphoid tissues (NALTs), which are mucosal-associated lymphoid organs embedded in the submucosa of the nasal passage, in the initial priming and recall expansion of CD8 + T cells following an upper respiratory tract infection with a pathogenic influenza virus and immunization with a live attenuated influenza virus vaccine. Whereas NALTs served as the induction site for the recall expansion of memory CD8 + T cells following influenza virus infection or vaccination, they failed to support activation of naïve CD8 + T cells. Strikingly, NALTs, unlike other lymphoid tissues, were not routinely surveyed during the steady state by circulating T cells. The selective recruitment of memory T cells into these lymphoid structures occurred in response to infection-induced elevation of the chemokine CXCL10, which attracted CXCR3 + memory CD8 + T cells. These results have significant implications for intranasal vaccines, which deliver antigen to mucosal-associated lymphoid tissue and aim to elicit protective CTL-mediated immunity.

  10. Immunoregulatory T cells in man. Histamine-induced suppressor T cells are derived from a Leu 2+ (T8+) subpopulation distinct from that which gives rise to cytotoxic T cells

    International Nuclear Information System (INIS)

    Sansoni, P.; Silverman, E.D.; Khan, M.M.; Melmon, K.L.; Engleman, E.G.

    1985-01-01

    One mechanism of histamine-mediated inhibition of the immune response in man is to activate T suppressor cells that bear the Leu 2 (OKT8) marker. The current study was undertaken to characterize the histamine-induced suppressor cell using a monoclonal antibody (9.3) shown previously to distinguish cytotoxic T cells from antigen-specific suppressor T cells. Leu 2+ cells isolated from peripheral blood were further separated with antibody 9.3 into Leu 2+, 9.3+, and Leu 2+, 9.3- subsets and each subset was incubated with different concentrations of histamine before determining their ability to suppress immune responses in vitro. The results indicate that the Leu 2+, 9.3- subpopulation includes all histamine-induced suppressor cells, that 10(-4) M histamine is the optimal concentration for suppressor cell induction, and that exposure of Leu 2+, 9.3- cells to histamine for 30 s is sufficient to initiate the induction process. After treatment with histamine these cells inhibit both phytohemagglutinin-induced T cell proliferation and pokeweed mitogen-induced B cell differentiation. The suppression of phytohemagglutinin-induced proliferation was resistant to x-irradiation with 1,200 rad, either before or after histamine exposure, suggesting that Leu 2+, 9.3- cells need not proliferate to become suppressor cells or exert suppression. Moreover, suppression by these cells was not due to altered kinetics of the response. Finally, a histamine type 2 receptor antagonist (cimetidine) but not a type 1 receptor antagonist (mepyramine) blocked the induction of suppressor cells. On the basis of these results and our previous studies of antigen specific suppressor cells, we conclude that Leu 2+ suppressor cells in man are derived from a precursor pool that is phenotypically distinct from cells that can differentiate into cytotoxic T cells

  11. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections.

    Science.gov (United States)

    Crespo, Ângela C; van der Zwan, Anita; Ramalho-Santos, João; Strominger, Jack L; Tilburgs, Tamara

    2017-02-01

    To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Complete dissection of the Hb(64-76) determinant using T helper 1, T helper 2 clones, and T cell hybridomas

    DEFF Research Database (Denmark)

    Evavold, B D; Williams, S G; Hsu, B L

    1992-01-01

    We have generated cloned Th1 cells, Th2 cells, and T cell hybridomas specific for the single immunogenic peptide from the beta-chain of murine hemoglobin (Hb(64-76)). The availability of these various types of T cells provided us an unique opportunity to examine and dissect the T cell response...... to an immunogenic peptide. A panel of altered Hb peptides was made by replacing each amino acid in the Hb peptide (positions 64-76) with a conservative amino acid substitution or an alanine. Although none of the eleven T cell clones and hybridomas tested exhibited the same pattern of reactivity to the substituted...... Hb peptides, some general features were identified for all T cell responses. The primary T cell contact residue of Hb(64-76) was shown to be asparagine 72. For every Hb(64-76) specific T cell, no activation was observed using a peptide containing the conservative substitution of a glutamine...

  13. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor

    Directory of Open Access Journals (Sweden)

    Vasyl Eisenberg

    2017-09-01

    Full Text Available Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs. In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.

  14. Functional cloning of a gp100-reactive T-cell receptor from vitiligo patient skin

    NARCIS (Netherlands)

    Klarquist, Jared; Eby, Jonathan M.; Henning, Steven W.; Li, Mingli; Wainwright, Derek A.; Westerhof, Wiete; Luiten, Rosalie M.; Nishimura, Michael I.; Le Poole, I. Caroline

    2016-01-01

    We isolated gp100-reactive T cells from perilesional skin of a patient with progressive vitiligo with superior reactivity toward melanoma cells compared with tumor-infiltrating lymphocytes 1520, a melanoma-derived T-cell line reactive with the same cognate peptide. After dimer enrichment and limited

  15. Mycobacterium leprae-specific protein antigens defined by cloned human helper T cells

    NARCIS (Netherlands)

    Ottenhoff, T. H.; Klatser, P. R.; Ivanyi, J.; Elferink, D. G.; de Wit, M. Y.; de Vries, R. R.

    1986-01-01

    Leprosy displays a remarkable spectrum of symptoms correlating with the T-cell-mediated immune reactivity of the host against the causative organism, Mycobacterium leprae. At one pole of this spectrum are lepromatous leprosy patients showing a M. leprae-specific T-cell unresponsiveness; at the other

  16. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells

    Science.gov (United States)

    Backer, Ronald; Schwandt, Timo; Greuter, Mascha; Oosting, Marije; Jüngerkes, Frank; Tüting, Thomas; Boon, Louis; O’Toole, Tom; Kraal, Georg; Limmer, Andreas; den Haan, Joke M. M.

    2009-01-01

    The spleen is the lymphoid organ that induces immune responses toward blood-borne pathogens. Specialized macrophages in the splenic marginal zone are strategically positioned to phagocytose pathogens and cell debris, but are not known to play a role in the activation of T-cell responses. Here we demonstrate that splenic marginal metallophilic macrophages (MMM) are essential for cross-presentation of blood-borne antigens by splenic dendritic cells (DCs). Our data demonstrate that antigens targeted to MMM as well as blood-borne adenoviruses are efficiently captured by MMM and exclusively transferred to splenic CD8+ DCs for cross-presentation and for the activation of cytotoxic T lymphocytes. Depletion of macrophages in the marginal zone prevents cytotoxic T-lymphocyte activation by CD8+ DCs after antibody targeting or adenovirus infection. Moreover, we show that tumor antigen targeting to MMM is very effective as antitumor immunotherapy. Our studies point to an important role for splenic MMM in the initial steps of CD8+ T-cell immunity by capturing and concentrating blood-borne antigens and the transfer to cross-presenting DCs which can be used to design vaccination strategies to induce antitumor cytotoxic T-cell immunity. PMID:20018690

  17. Cloning analysis of HBV-specific CD8 T cell receptor gene in patients with acute hepatitis B

    Directory of Open Access Journals (Sweden)

    Ning DING

    2011-05-01

    Full Text Available Objective To investigate the molecular mechanism of T cell receptor(TCR in CD8 T cell-mediated immune response to HBV in patients with acute hepatitis B(AHB.Methods Peripheral blood mononuclear cells(PBMCs were collected from HLA-A2-positive AHB patients.To determine HBsAg183-191 and HBsAg335-343-specific CD8 T cell frequencies,the PBMCs were stained by fluorescence-labeled anti-CD3,anti-CD8 and pentamers,and analyzed by flow cytometry.PBMCs from 6 patients were stimulated with epitopic peptide HBsAg335-343 in vitro for 3 to 4 weeks.HBV-specific CD8 T cells were isolated by magnetic activated cell sorting followed by flow florescence activated cell sorting.The mRNA of sorted cells was extracted after expanding by IL-2,anti-CD3 and anti-CD8.The full-length gene fragments of variable region of TCR α and β chains were gained by 5’-RACE,and then cloned and sequenced(≥50 clones for single chain of each sample.The gene families of TCR α and β chains were identified and the sequence characters of CDR3 were compared.Results Analysis of more than 600 cloned gene sequences of TCR α and β chains showed that the proliferated HBV-specific CD8 T cells from 6 AHB patients presented a predominant expression in TCR α and chains,with 2-4 α chain families and 1-4 chain families in each case.The α2,α14,α15,β3,β13 and 23 families were detected in more than one case.The chain genes were all 13 for all tested clones in one case.For the same α chain or-chain family,CDR3 sequences tended to be identical in one case but different among cases.Conclusions HBV-specific CD8 T cells with antigenic peptide-induced proliferation present predominance in the usage of TCR α and β chains.This property might be one of the important molecular factors influencing anti-HBV immunity.

  18. Identification of candidate vaccine antigens of bovine hemoparasites Theileria parva and Babesia bovis by use of helper T cell clones.

    Science.gov (United States)

    Brown, W C; Zhao, S; Logan, K S; Grab, D J; Rice-Ficht, A C

    1995-03-01

    Current vaccines for bovine hemoparasites utilize live attenuated organisms or virulent organisms administered concurrently with antiparasitic drugs. Although such vaccines can be effective, for most hemoparasites the mechanisms of acquired resistance to challenge infection with heterologous parasite isolates have not been clearly defined. Selection of potentially protective antigens has traditionally made use of antibodies to identify immunodominant proteins. However, numerous studies have indicated that induction of high antibody titers neither predicts the ability of an antigen to confer protective immunity nor correlates with protection. Because successful parasites have evolved antibody evasion tactics, alternative strategies to identify protective immunogens should be used. Through the elaboration of cytokines, T helper 1-(Th1)-like T cells and macrophages mediate protective immunity against many intracellular parasites, and therefore most likely play an important role in protective immunity against bovine hemoparasites. CD4+ T cell clones specific for soluble or membrane antigens of either Theileria parva schizonts or Babesia bovis merozoites were therefore employed to identify parasite antigens that elicit strong Th cell responses in vitro. Soluble cytosolic parasite antigen was fractionated by gel filtration, anion exchange chromatography or hydroxylapatite chromatography, or a combination thereof, and fractions were tested for the ability to induce proliferation of Th cell clones. This procedure enabled the identification of stimulatory fractions containing T. parva proteins of approximately 10 and 24 kDa. Antisera raised against the purified 24 kDa band reacted with a native schizont protein of approximately 30 kDa. Babesia bovis-specific Th cell clones tested against fractionated soluble Babesia bovis merozoite antigen revealed the presence of at least five distinct antigenic epitopes. Proteins separated by gel filtration revealed four patterns of

  19. Ionizing radiation affects generation of MART-1-specific cytotoxic T cell responses by dendritic cells

    International Nuclear Information System (INIS)

    Liao, Y.P.; Wang, C.-C.; McBride, W.H.

    2003-01-01

    Full text: The human MART-1/Melan-A (MART-1) melanoma tumor antigen is known to be recognized by cytotoxic T lymphocytes (CTLs) and several groups are using this target for clinical immunotherapy. Most approaches use dendritic cells (DCs) that are potent antigen presentation cells for initiating CTL responses. In order for CTL recognition to occur, DCs must display 9-residue antigenic peptides on MHC class I molecules. These peptides are generated by proteasome degradation and then transported through the endoplasmic reticulum to the cell surface where they stabilize MHC class I expression. Our previous data showed that irradiation inhibits proteasome function and, therefore, we hypothesized that irradiation may inhibit antigen processing and CTL activation, as has been shown for proteasome inhibitors. To study the importance of irradiation effects on DCs, we studied the generation MART-1-specific CTL responses. Preliminary data showed that irradiation of murine bone marrow derived DCs did not affect expression of MHC class I, II, CD80, or CD86, as assessed by flow cytometric analyses 24-hour after irradiation. The effect of irradiation on MART-1 antigen processing by DCs was evaluated using DC transduced with adenovirus MART-1 (AdVMART1). C57BL/6 mice were immunized with AdVMART1 transduced DCs, with and without prior irradiation. IFN-γ production was measured by ELISPOT assays after 10-14 days of immunization. Prior radiation treatment resulted in a significant decrease in MART-1-specific T cell responses. The ability of irradiated and non-irradiated AdVMART1/DC vaccines to protect mice against growth of murine B16 tumors, which endogenously express murine MART-1, was also examined. AdVMART1/DC vaccination protected C57BL/6 mice against challenge with viable B16 melanoma cells while DCs irradiated (10 Gy) prior to AdVMART1 transduction abrogated protection. These results suggest that proteasome inhibition in DCs by irradiation may be a possible pathway in

  20. Antigen-specific murine T cell clones produce soluble interleukin 2 receptor on stimulation with specific antigens

    International Nuclear Information System (INIS)

    Wagner, D.K.; York-Jolley, J.; Malek, T.R.; Berzofsky, J.A.; Nelson, D.L.

    1986-01-01

    In this study, monoclonal antibodies were used to the murine IL 2 receptor (IL 2R) termed 3C7 and 7D4, which bind to different epitopes on the murine IL 2R, to develop an ELISA to measure soluble murine IL 2R. Surprisingly, stimulated murine spleen cells not only expressed cell-associated IL 2R, but also produced a considerable level of cellfree IL 2R in the culture supernatant fluid. To assess the fine specificity of this response, myoglobin-immune murine T cell clones were stimulated with appropriate or inappropriate antigen and syngeneic or allogeneic presenting cells. Proliferation, measured by [ 3 H] thymidine incorporation, and levels of soluble IL 2R were determined at day 4. The production of soluble IL2R displayed the same epitope fine specificity, genetic restriction, and antigen dose-response as the proliferative response. Indeed, in some cases there was sharper discrimination of epitope specificity and genetic restriction with the soluble IL 2R levels. There was also reproducible clone-to-clone variation in the amount of soluble receptor produced in response to antigen among 12 T cell clones and lines tested. In time course experiments, proliferation was greatest at day 3, whereas soluble IL 2R levels continued to rise in subsequent days. To the authors' knowledge, this is the first demonstration of release of secretion of soluble IL 2R by murine T cells, and the first demonstration of the fine specificity and genetic restriction of the induction of soluble IL 2R by specific antigen

  1. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    Science.gov (United States)

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  2. Antigen entrapped in the escheriosomes leads to the generation of CD4(+) helper and CD8(+) cytotoxic T cell response.

    Science.gov (United States)

    Syed, Faisal M; Khan, Masood A; Nasti, Tahseen H; Ahmad, Nadeem; Mohammad, Owais

    2003-06-02

    In previous study, we demonstrated the potential of Escherichia coli (E. coli) lipid liposomes (escheriosomes) to undergo membrane-membrane fusion with cytoplasmic membrane of the target cells including professional antigen presenting cells. Our present study demonstrates that antigen encapsulated in escheriosomes could be successfully delivered simultaneously to the cytosolic as well as endosomal processing pathways of antigen presenting cells, leading to the generation of both CD4(+) T-helper and CD8(+) cytotoxic T cell response. In contrast, encapsulation of same antigen in egg phosphatidyl-choline (egg PC) liposomes, just like antigen-incomplete Freund's adjuvant (IFA) complex, has inefficient access to the cytosolic pathway of MHC I-dependent antigen presentation and failed to generate antigen-specific CD8(+) cytotoxic T cell response. However, both egg PC liposomes as well as escheriosomes-encapsulated antigen elicited strong humoral immune response in immunized animals but antibody titre was significantly higher in the group of animals immunized with escheriosomes-encapsulated antigen. These results imply usage of liposome-based adjuvant as potential candidate vaccine capable of eliciting both cell-mediated as well as humoral immune responses. Furthermore, antigen entrapped in escheriosomes stimulates antigen-specific CD4(+) T cell proliferation and also enhances the level of IL-2, IFN-gamma and IL-4 in the immunized animals.

  3. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice.

    Directory of Open Access Journals (Sweden)

    Olga Antsiferova

    2014-08-01

    Full Text Available Epstein Barr virus (EBV infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice. However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.

  4. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes.

    Science.gov (United States)

    Lavocat, Fabien; Maggi, Laura; Annunziato, Francesco; Miossec, Pierre

    2016-12-01

    To compare the direct effect of cytokines on synoviocytes and endothelial cells to the effects of supernatants from Th1, Th17 and Th1/17 clones and the direct cell-cell interactions with the same clones. Th17 and Th1/17 clones were obtained from the CD161+CCR6+ fraction and Th1 clones from the CD161-CCR6- fraction of human CD4+ T-cells. Endothelial cells or synoviocytes were cultured in the presence of either isolated pro-inflammatory cytokines (IL-17 and/or TNF-α) or supernatants from the T-cell clones or co-cultured with T-cell clones themselves. IL-6 and IL-8 expression and production were analyzed. IL-17 and TNF-α induced IL-6 and IL-8 expression, although IL-17 alone had a limited effect on endothelial cells compared to synoviocytes. Supernatants from activated T-helper clones also induced IL-6 and IL-8 expression but with discrepancies between endothelial cells and synoviocytes. Endothelial cells were mostly activated by Th1 clone supernatants whereas synoviocytes were activated by all T-cell subtypes. Finally, cell-cell contact experiments showed a great heterogeneity among cell clones, even from the same lineage. IL-6 expression was mostly induced by contact with Th1 clones both in endothelial and mesenchymal cells whereas IL-8 expression was induced by all T-cell clones whatever their phenotype. We showed that endothelial cells were much more sensitive to Th1 activation whereas synoviocytes were activated by all T-helper lineages. This work highlights the heterogeneity of interactions between T-cells and stromal cells through soluble factors or direct cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. High-Throughput Flow Cytometric Method for the Simultaneous Measurement of CAR-T Cell Characterization and Cytotoxicity against Solid Tumor Cell Lines.

    Science.gov (United States)

    Martinez, Emily M; Klebanoff, Samuel D; Secrest, Stephanie; Romain, Gabrielle; Haile, Samuel T; Emtage, Peter C R; Gilbert, Amy E

    2018-04-01

    High-throughput flow cytometry is an attractive platform for the analysis of adoptive cellular therapies such as chimeric antigen receptor T cell therapy (CAR-T) because it allows for the concurrent measurement of T cell-dependent cellular cytotoxicity (TDCC) and the functional characterization of engineered T cells with respect to percentage of CAR transduction, T cell phenotype, and measurement of T cell function such as activation in a single assay. The use of adherent tumor cell lines can be challenging in these flow-based assays. Here, we present the development of a high-throughput flow-based assay to measure TDCC for a CAR-T construct co-cultured with multiple adherent tumor cell lines. We describe optimal assay conditions (such as adherent cell dissociation techniques to minimize impact on cell viability) that result in robust cytotoxicity assays. In addition, we report on the concurrent use of T cell transduction and activation antibody panels (CD25) that provide further dissection of engineered T cell function. In conclusion, we present the development of a high-throughput flow cytometry method allowing for in vitro interrogation of solid tumor, targeting CAR-T cell-mediated cytotoxicity, CAR transduction, and engineered T cell characterization in a single assay.

  6. Cloning of the gene encoding the δ subunit of the human T-cell receptor reveals its physical organization within the α-subunit locus and its involvement in chromosome translocations in T-cell malignancy

    International Nuclear Information System (INIS)

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M.

    1988-01-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) δ-chain gene. They analyzed clones spanning the entire J α region extending 115 kilobases 5' of the TCR α-chain constant region and have shown that the TCR δ-chain gene is located over 80 kilobases 5' of C α . TCR δ-chain gene is rearranged in the γ/δ-expressing T-cell line Peer and is deleted in α/β-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C δ and J δ segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J δ segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR δ chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11

  7. Concanavalin A-induced activation of lymphocytic choriomeningitis virus memory lymphocytes into specifically cytotoxic T cells

    DEFF Research Database (Denmark)

    Marker, O; Thomsen, Allan Randrup; Andersen, G T

    1977-01-01

    When spleen cells, which have been primed to Lymphocytic Choriomeningitis (LCM) virus during a primary infection several months previously, are stimulated in vitro with Con A. highly specific secondary cytotoxic effector cells are generated. The degree of cytotoxicity revealed by such Con A...

  8. In vitro analysis of cytotoxic T cell recruitment mediated by the DC-derived chemokine CCL17

    OpenAIRE

    sprotocols

    2015-01-01

    Dendritic cell (DC) licensing in cross-priming requires physical interaction of several rare immune cells, i.e. cytotoxic T cells (CTL), and cross-presenting DCs. Here we describe a novel in vitro method of analyzing chemokine effects on complex recruitment events in a multi-cellular system. To study CTL recruitment towards CCL17-producing DCs, we established a co-culture system of murine splenic DCs with polyclonal splenic CTL from donor mice, which enables visualization of cell motility and...

  9. Low antigen dose formulated in CAF09 adjuvant Favours a cytotoxic T-cell response following intraperitoneal immunization in Göttingen minipigs

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Jakobsen, Jeanne Toft

    2017-01-01

    in order to generate a certain type of immune response. To investigate this area further, we used Göttingen minipigs asan animal model especially due to the similar body size and high degree of immunome similarity between humans and pigs. In this study, we show that both a humoral and a cell......-dose immunization. Independent of antigen dose, intraperitoneal administration of antigen increased the amount of TT-specific cytotoxic CD8β+ T cells within the cytokine-producing T-cell pool when compared to the non-cytokine producing T-cell compartment. Taken together, these results demonstrate that a full...... protein formulated in the CAF09 adjuvant and administered to pigs via the intraperitoneal route effectively generates a cytotoxic T-cell response. Moreover, we confirm the inverse relationship between the antigen dose and the induction of polyfunctional T cells in a large animal model. These finding can...

  10. Use of high throughput qPCR screening to rapidly clone low frequency tumour specific T-cells from peripheral blood for adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Serrano Oscar K

    2008-10-01

    Full Text Available Abstract Background The adoptive transfer of autologous tumor reactive lymphocytes can mediate significant tumor regression in some patients with refractory metastatic cancer. However, a significant obstacle for this promising therapy has been the availability of highly efficient methods to rapidly isolate and expand a variety of potentially rare tumor reactive lymphocytes from the natural repertoire of cancer patients. Methods We developed a novel in vitro T cell cloning methodology using high throughput quantitative RT-PCR (qPCR assay as a rapid functional screen to detect and facilitate the limiting dilution cloning of a variety of low frequency T cells from bulk PBMC. In preclinical studies, this strategy was applied to the isolation and expansion of gp100 specific CD8+ T cell clones from the peripheral blood of melanoma patients. Results In optimization studies, the qPCR assay could detect the reactivity of 1 antigen specific T cell in 100,000 background cells. When applied to short term sensitized PBMC microcultures, this assay could detect T cell reactivity against a variety of known melanoma tumor epitopes. This screening was combined with early limiting dilution cloning to rapidly isolate gp100154–162 reactive CD8+ T cell clones. These clones were highly avid against peptide pulsed targets and melanoma tumor lines. They had an effector memory phenotype and showed significant proliferative capacity to reach cell numbers appropriate for adoptive transfer trials (~1010 cells. Conclusion This report describes a novel high efficiency strategy to clone tumor reactive T cells from peripheral blood for use in adoptive immunotherapy.

  11. Allograft cytotoxicity co-operation between alloimmune T cells and macrophages

    International Nuclear Information System (INIS)

    Jones, B.; Jones, T.C.

    1978-01-01

    T cells from the spleens of C57BL 10 (H-2sup(b)) mice 7 to 12 days after immunization with P815Y (H-2sup(d)) mastocytoma cells have been shown to co-operate synergistically with an adherent component of non-immune starch induced peritoneal cells in the cytostasis of target cells. Although significant values for synergy could be obtained using the ( 125 I) UdR incorporation assay to measure cytostasis, normal peritoneal cells were incapable of co-operating with T cells in cytolysis as measured by 51 Cr release from pre-labelled target cells. Initially, the synergistic interaction was immunologically specific, but non-specific activity could be induced by challenge with specific antigen. (author)

  12. Induction of Foot-and-Mouth Disease Virus-Specific Cytotoxic T Cell Killing by Vaccination

    DEFF Research Database (Denmark)

    Patch, J.R.; Pedersen, Lasse Eggers; Toka, F.N.

    2011-01-01

    Foot-and-mouth disease (FMD) continues to be a significant threat to the health and economic value of livestock species. This acute infection is caused by the highly contagious FMD virus (FMDV), which infects cloven-hoofed animals including large and small ruminants and swine. Current vaccine...... cytopathic virus. Here, we have used recombinant human adenovirus vectors as a means of delivering FMDV antigens in a T cell-directed vaccine in pigs. We tested the hypothesis that impaired processing of the FMDV capsid would enhance cytolytic activity, presumably by targeting all proteins for degradation...... and effectively increasing the class I MHC/FMDV peptide concentration for stimulation of a CTL response. We compared such a T cell targeting vaccine with the parental vaccine, previously shown to effectively induce a neutralizing antibody response. Our results show induction of FMDV-specific CD8(+) CTL killing...

  13. Oral Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells

    OpenAIRE

    1990-01-01

    Oral immunization with an attenuated Salmonella typhimurium recombinant containing the full-length Plasmodium berghei circumsporozoite (CS) gene induces protective immunity against P. berghei sporozoite challenge in the absence of antibody. We found that this immunity was mediated through the induction of specific CD8+ T cells since in vivo elimination of CD8+ cells abrogated protection. In vitro studies revealed that this Salmonella-P. berghei CS recombinant induced class I- restricted CD8+ ...

  14. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro

    International Nuclear Information System (INIS)

    Han, Hui; Peng, Ji-Run; Chen, Peng-Cheng; Gong, Lei; Qiao, Shi-Shi; Wang, Wen-Zhen; Cui, Zhu-Qingqing; Yu, Xin; Wei, Yu-Hua; Leng, Xi-Sheng

    2011-01-01

    Highlights: → Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. → An ideal artificial APCs system was successfully prepared in vivo. → Controlled release of IL-2 leads to much more T-cell expansion. → This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.

  15. A novel system of artificial antigen-presenting cells efficiently stimulates Flu peptide-specific cytotoxic T cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hui [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Peng, Ji-Run, E-mail: pengjr@medmail.com.cn [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Chen, Peng-Cheng; Gong, Lei [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Qiao, Shi-Shi [Department of Hepatobiliary Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052 (China); Wang, Wen-Zhen; Cui, Zhu-Qingqing; Yu, Xin; Wei, Yu-Hua [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China); Leng, Xi-Sheng, E-mail: lengxs2003@yahoo.com.cn [Department of Hepatobiliary Surgery, Peking University People' s Hospital, Beijing 100044 (China)

    2011-08-05

    Highlights: {yields} Adoptive immunotherapy depends on relevant numbers of cytolytic T lymphocytes. {yields} An ideal artificial APCs system was successfully prepared in vivo. {yields} Controlled release of IL-2 leads to much more T-cell expansion. {yields} This system is better than general cellular APCs on T-cell expansion. -- Abstract: Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin-biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.

  16. The production of lymphokines by primary alloreactive T-cell clones: a co-ordinate analysis of 233 clones in seven lymphokine assays.

    Science.gov (United States)

    Sanderson, C J; Strath, M; Warren, D J; O'Garra, A; Kirkwood, T B

    1985-01-01

    A total of 233 primary alloreactive T-cell clones have been tested for the production of interleukin-2 (IL-2), interleukin-3 (IL-3), immune(gamma) interferon (IFN) and granulocyte-macrophage colony-stimulating factor (CSF-2), B-cell growth factor I and II (BCGFI, BCGFII), and eosinophil differentiation factor (EDF). EDF was assayed by means of the eosinophil differentiation assay (EDA). Two principal correlations were observed: IL-3 was shown to be the major lymphokine detected in the bone marrow proliferation assay (BMPA) used to detect CSF-2, and there was a high correlation between the EDA and BCGFII. Subsequent work has suggested that this latter correlation is because a single factor is responsible for both activities. Apart from these two exceptions, and low level correlations probably due to the fact that different assays detect more than one lymphokine, there was no evidence for co-ordinate expression of lymphokines. There was a large variation in amounts of individual lymphokines produced. More clones produced multiple lymphokines than would be expected from independent control. Taken together, this pattern of regulation is consistent with the hypothesis that antigen stimulation of T cells results in the activation of all the lymphokine genes, but the amount of each produced is determined by secondary controlling mechanisms. PMID:3935571

  17. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+ T cells.

    Science.gov (United States)

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-05-01

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells have cytotoxic properties. Given that CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4 + T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4 + T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas - target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  18. T-cell receptor Vβ skewing frequently occurs in refractory cytopenia of childhood and is associated with an expansion of effector cytotoxic T cells: a prospective study by EWOG-MDS

    International Nuclear Information System (INIS)

    Aalbers, A M; Heuvel-Eibrink, M M van den; Baumann, I; Beverloo, H B; Driessen, G J; Dworzak, M; Fischer, A; Göhring, G; Hasle, H; Locatelli, F; De Moerloose, B; Noellke, P; Schmugge, M; Stary, J; Yoshimi, A; Zecca, M; Zwaan, C M; Dongen, J J M van; Pieters, R; Niemeyer, C M; Velden, V H J van der; Langerak, A W

    2014-01-01

    Immunosuppressive therapy (IST), consisting of antithymocyte globulin and cyclosporine A, is effective in refractory cytopenia of childhood (RCC), suggesting that, similar to low-grade myelodysplastic syndromes in adult patients, T lymphocytes are involved in suppressing hematopoiesis in a subset of RCC patients. However, the potential role of a T-cell-mediated pathophysiology in RCC remains poorly explored. In a cohort of 92 RCC patients, we prospectively assessed the frequency of T-cell receptor (TCR) β-chain variable (Vβ) domain skewing in bone marrow and peripheral blood by heteroduplex PCR, and analyzed T-cell subsets in peripheral blood by flow cytometry. TCRVβ skewing was present in 40% of RCC patients. TCRVβ skewing did not correlate with bone marrow cellularity, karyotype, transfusion history, HLA-DR15 or the presence of a PNH clone. In 28 patients treated with IST, TCRVβ skewing was not clearly related with treatment response. However, TCRVβ skewing did correlate with a disturbed CD4 + /CD8 + T-cell ratio, a reduction in naive CD8 + T cells, an expansion of effector CD8 + T cells and an increase in activated CD8 + T cells (defined as HLA-DR + , CD57 + or CD56 + ). These data suggest that T lymphocytes contribute to RCC pathogenesis in a proportion of patients, and provide a rationale for treatment with IST in selected patients with RCC

  19. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib.

    Science.gov (United States)

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-09-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8 + T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses.

  20. "Proliferation of cytotoxic and activated T cells during acute Epstein-Barr virus induced Infectious Mononucleosis "

    Directory of Open Access Journals (Sweden)

    Mansoori SD

    2002-05-01

    Full Text Available The immune responses that develop following Epstien-Barr Virus (EBV infection are complex and involve both humoral and to a greater extent cell-mediated immune mechanisms. To evaluate the immune response, flow cytometric analysis of the peripheral blood of six patients during the acute phase of EBV infection was performed. This analysis revealed a significant increase in the percentages and the absolute number of CD8+cytotoxic and activated (HLA-DR+ - T lymphocytes and in some cases with a concomitan decrease in the percentages of B (CD19+ lymphocytes and T helper (CD4+ lymphocytes. These patient invariably had inverted CD4/CD8 ratio. All changes reversed to normal level during the recovery phase of infection. It is therefore concluded that EBV specific cytotoxic and activated T lymphocytes are essential in controlling acute EBV infection presented by the infected B cells.

  1. Cytotoxic T cells in chronic idiopathic neutropenia express restricted antigen receptors.

    Science.gov (United States)

    Mastrodemou, Semeli; Stalika, Evangelia; Vardi, Anna; Gemenetzi, Katerina; Spanoudakis, Michalis; Karypidou, Maria; Mavroudi, Irene; Hadzidimitriou, Anastasia; Stavropoulos-Giokas, Catherine; Papadaki, Helen A; Stamatopoulos, Kostas

    2017-12-01

    Chronic idiopathic neutropenia (CIN) is an acquired disorder of granulopoiesis characterized by female predominance and mostly uncomplicated course. Crucial to CIN pathophysiology is the presence of activated T lymphocytes with myelosuppressive properties in both peripheral blood (PB) and bone marrow (BM). We systematically profiled the T cell receptor beta chain (TRB) gene repertoire in CD8 + cells of 34 CIN patients through subcloning/Sanger sequencing analysis of TRBV-TRBD-TRBJ gene rearrangements. Remarkable repertoire skewing and oligoclonality were observed, along with shared clonotypes between different patients, alluding to antigen selection. Cross-comparison of our sequence dataset with public TRB sequence databases revealed that CIN may rarely share common immunogenetic features with other entities, however, the CIN TRB repertoire is largely disease-biased. Overall, these findings suggest that CIN may be driven by long-term exposure to a restricted set of specific CIN-associated antigens.

  2. In vitro generation of Epstein-Barr virus-specific cytotoxic T cells in patients receiving haplo-identical allogeneic stem cell transplantation.

    Science.gov (United States)

    Musk, P; Szmania, S; Galloway, A T; Johnson, K; Scott, A; Guttman, S; Bridges, K; Bruorton, M; Gatlin, J; Garcia, J V; Lamb, L; Chiang, K Y; Spencer, T; Henslee-Downey, J; van Rhee, F

    2001-01-01

    Use of a partially mismatched related donor (PMRD) is an option for patients who require allogeneic transplantation but do not have a matched sibling or unrelated donor. Epstein-Barr virus (EBV)-induced lymphoma is a major cause of mortality after PMRD transplantation. In this study, we present a clinical grade culture system for donor-derived EBV-specific cytotoxic T cells (CTLs) that do not recognize haplo-identical recipient cells. The EBV-specific CTLs were tested for cytolytic specificity and other functional properties, including ability to transgress into tissues, propensity for apoptosis, degree of clonality, stability of dominant T-cell clones, and Tc and Th phenotypes. The EBV-specific CTLs were routinely expanded to greater than 80 x 10(6) over a period of 5 weeks, which is sufficient for clinical application. A CD8+ phenotype predominated, and the CTLs were highly specific for donor lymphoblastoid cell lines (LCLs) without killing of recipient targets or K562. Vbeta spectratyping showed an oligoclonal population that was stable on prolonged culture. The EBV-specific CTLs were activated (D-related human leukocyte antigen [HLA-DR+], L-selectin+/-) and of memory phenotype (CD45RO+). Expression of the integrin VLA-4 suggested that these CTLs could adhere to endothelium and migrate into tissues. The Bcl-2 message was upregulated, which may protect the CTLs from the apoptosis. The first demonstration of overexpression of bcl-2 in human memory CTLs. In addition, we show that lymphoblastoid cell lines used to generate CTLs are readily genetically modified with recombinant lentivirus, indicating that genetically engineered antigen presentation is feasible.

  3. Revisiting the identification and cDNA cloning of T cell-replacing factor/interleukin-5

    Directory of Open Access Journals (Sweden)

    Kiyoshi eTakatsu

    2014-12-01

    Full Text Available This is a perspective based on the paper Cloning of complementary DNA encoding T cell replacing factor and identity with B cell growth factor II, by Kinashi T, Harada N, Severinson E, Tanabe T, Sideras P, Konishi M, Azuma C, Tominaga A, Bergstedt-Lindqvist S, Takahashi M, Matsuda F, Yaoita Y, Takatsu K, and Honjo, T. Nature (1986 32(6092: 70-3. We have been interested in understanding the molecular basis of T-B cell cooperation for antibody formation. Although many investigators had described a number of different soluble factors that appeared to have biological relevance to T-B cell interactions, molecular basis of such active substances remained unknown for a long period of time. In this perspective, I will briefly summarize the history of the initial discovery of T cell-replacing factor/B cell growth factor II that appeared to be involved in B-cell growth and differentiation, and outline the discovery and characterization of interleukin-5. Studies of interleukin-5 have provided strong evidence that a single cytokine exerts a variety of activities on diverse target cells.

  4. Cytotoxic T lymphocyte responses by chimeric thymocytes. Self-recognition is determined early in T cell development

    International Nuclear Information System (INIS)

    Kruisbeek, A.M.; Hodes, R.J.; Singer, A.

    1981-01-01

    In this study the cytotoxic T lymphocyte (CTL) recognition pattern of thymocytes from recently reconstituted parent leads to F1 and F1 leads to parent radiation bone marrow chimeras was investigated. Chimeric thymocytes were entirely of donor origin approximately 4 weeks after irradiation and reconstitution but were not capable of autonomously generating either alloreactive or trinitrophenyl (TNP)-modified-self-reactive CTL responses. These experiments demonstrte that even at the earliest time CTL effectors of donor origin from the thymuses of chimeras can be studied, their self-receptor repertoire has already been restricted to recognition of host MHC determinants. These results support the cocept that the host environment influences the self-recognition capacity of T cells at the pre- or intrathymic stage of differentation

  5. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells

    Science.gov (United States)

    Fisher, Daniel T.; Chen, Qing; Skitzki, Joseph J.; Muhitch, Jason B.; Zhou, Lei; Appenheimer, Michelle M.; Vardam, Trupti D.; Weis, Emily L.; Passanese, Jessica; Wang, Wan-Chao; Gollnick, Sandra O.; Dewhirst, Mark W.; Rose-John, Stefan; Repasky, Elizabeth A.; Baumann, Heinz; Evans, Sharon S.

    2011-01-01

    Immune cells are key regulators of neoplastic progression, which is often mediated through their release of cytokines. Inflammatory cytokines such as IL-6 exert tumor-promoting activities by driving growth and survival of neoplastic cells. However, whether these cytokines also have a role in recruiting mediators of adaptive anticancer immunity has not been investigated. Here, we report that homeostatic trafficking of tumor-reactive CD8+ T cells across microvascular checkpoints is limited in tumors despite the presence of inflammatory cytokines. Intravital imaging in tumor-bearing mice revealed that systemic thermal therapy (core temperature elevated to 39.5°C ± 0.5°C for 6 hours) activated an IL-6 trans-signaling program in the tumor blood vessels that modified the vasculature such that it could support enhanced trafficking of CD8+ effector/memory T cells (Tems) into tumors. A concomitant decrease in tumor infiltration by Tregs during systemic thermal therapy resulted in substantial enhancement of Tem/Treg ratios. Mechanistically, IL-6 produced by nonhematopoietic stromal cells acted cooperatively with soluble IL-6 receptor–α and thermally induced gp130 to promote E/P-selectin– and ICAM-1–dependent extravasation of cytotoxic T cells in tumors. Parallel increases in vascular adhesion were induced by IL-6/soluble IL-6 receptor–α fusion protein in mouse tumors and patient tumor explants. Finally, a causal link was established between IL-6–dependent licensing of tumor vessels for Tem trafficking and apoptosis of tumor targets. These findings suggest that the unique IL-6–rich tumor microenvironment can be exploited to create a therapeutic window to boost T cell–mediated antitumor immunity and immunotherapy. PMID:21926464

  6. Reappraisal of nodal Epstein-Barr Virus-negative cytotoxic T-cell lymphoma: identification of indolent CD5+ diseases.

    Science.gov (United States)

    Yamashita, Daisuke; Shimada, Kazuyuki; Takata, Katsuyoshi; Miyata-Takata, Tomoko; Kohno, Kei; Satou, Akira; Sakakibara, Ayako; Nakamura, Shigeo; Asano, Naoko; Kato, Seiichi

    2018-05-29

    Nodal cytotoxic molecule (CM)-positive peripheral T-cell lymphoma (CTL) has recently been recognized as a clinicopathologically distinct disease. To further characterize this disease, here we compared 58 patients with Epstein-Barr virus (EBV)-negative CTL to 48 patients with EBV-positive CTL. The two groups did not differ in histopathology, T-cell receptor (TCR) expression or rearrangement incidences, or survival curves. However, patients with EBV-negative CTL less frequently showed hepatic involvement (P = 0.007), B symptoms (P = 0.020), hemophagocytosis (P = 0.024), and detectable CD4 (P = 0.002) and CD5 (P = 0.009). Univariate and multivariate analyses identified three factors that independently predicted favorable survival, onset age diseases: CD5 + TCRαβ (n = 13), and CD5 + NK-cell type lacking TCR expression or clonal TCRγ rearrangement (n = 4). The survival curves for these two groups were significantly superior to others (n = 29, P diseases appear to be unique in their indolent clinical behavior, and should be managed differently from other diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Cytotoxic Effect of the Genus Sinularia Extracts on Human SCC25 and HaCaT Cells

    International Nuclear Information System (INIS)

    Wang, G.H.; Chou, T.H.; Liang, C.H.; Lin, R.J.; Sheu, J.H.; Wang, S.H.

    2009-01-01

    Soft corals of the genus Sinularia are being increasingly adopted to treat a wide variety of disease processes. However, the mechanism underlying its activity against human oral cancer cells is poorly understood. This study evaluates the cyototoxicity effects of the genus Sinularia extracts (S. grandilobata, S. parva, S. triangula, S. scabra, S. nanolobata and S. gibberosa) by SCC25 and HaCaT cells. The cell adhesion assay indicates that extracts reduce the cell attachment. Extracts exhibit a dose-dependent cytotoxic effect using MTS assay.Treatment of extracts to observe the morphological alterations in cells, membrane blebbing, nuclear condensation, and apoptotic bodies is demonstrated. Flow cytometry shows that extracts sensitized the cells in the G0/G1 and G2/M phases with a concomitant significantly increased sub-G1 fraction, suggesting cell death by apoptosis. Extracts of the genus Sinularia thus apparently cause apoptosis of SCC25 and HaCaT cells, and warrant further research investigating the possible antioral cancer compounds in these soft corals.

  8. Limited transplantation of antigen-expressing hematopoietic stem cells induces long-lasting cytotoxic T cell responses.

    Directory of Open Access Journals (Sweden)

    Warren L Denning

    2011-02-01

    Full Text Available Harnessing the ability of cytotoxic T lymphocytes (CTLs to recognize and eradicate tumor or pathogen-infected cells is a critical goal of modern immune-based therapies. Although multiple immunization strategies efficiently induce high levels of antigen-specific CTLs, the initial increase is typically followed by a rapid contraction phase resulting in a sharp decline in the frequency of functional CTLs. We describe a novel approach to immunotherapy based on a transplantation of low numbers of antigen-expressing hematopoietic stem cells (HSCs following nonmyeloablative or partially myeloablative conditioning. Continuous antigen presentation by a limited number of differentiated transgenic hematopoietic cells results in an induction and prolonged maintenance of fully functional effector T cell responses in a mouse model. Recipient animals display high levels of antigen-specific CTLs four months following transplantation in contrast to dendritic cell-immunized animals in which the response typically declines at 4-6 weeks post-immunization. Majority of HSC-induced antigen-specific CD8+ T cells display central memory phenotype, efficiently kill target cells in vivo, and protect recipients against tumor growth in a preventive setting. Furthermore, we confirm previously published observation that high level engraftment of antigen-expressing HSCs following myeloablative conditioning results in tolerance and an absence of specific cytotoxic activity in vivo. In conclusion, the data presented here supports potential application of immunization by limited transplantation of antigen-expressing HSCs for the prevention and treatment of cancer and therapeutic immunization of chronic infectious diseases such as HIV-1/AIDS.

  9. Characterization of the CDR3 structure of the Vβ21 T cell clone in patients with P210(BCR-ABL)-positive chronic myeloid leukemia and B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Zha, Xianfeng; Chen, Shaohua; Yang, Lijian; Li, Bo; Chen, Yu; Yan, Xiaojuan; Li, Yangqiu

    2011-10-01

    The clonally expanded T cells identified in most cancer patients that respond to tumor-associated antigen such as P210(BCR-ABL) protein have definite, specific antitumor cytotoxicity. T cell receptor (TCR) Vβ CDR3 repertoire diversity was analyzed in patients with chronic myeloid leukemia (CML) and BCR-ABL(+) B-cell acute lymphoblastic leukemia (B-ALL) by GeneScan. A high frequency of oligoclonal expansion of the TCR Vβ21 subfamily was observed in the peripheral blood of CML and B-ALL patients. These clonally expanded Vβ21 T cells were correlated with the pathophysiologic process of CML. A conserved amino acid motif (SLxxV) was observed within the CDR3 region in only 3 patients with CML. Preferential usage of the Jβ segments was also observed in a minority of patients. The 3-dimensional structures of the CDR3 region containing the same motif or using the same Jβ segment displayed low similarity; on the contrary, the conformation of the CDR3 region containing no conserved motif in some T cell clones was highly similar. In conclusion, our findings indicate a high frequency of TCR Vβ21 subfamily expansion in p210(BCR-ABL)-positive CML and B-ALL patients. The characterization of the CDR3 structure was complex. Regrettably, at this time it was not possible to confirm that the Vβ21 T cell clones were derived from the stimulation of p210(BCR-ABL) protein. Copyright © 2011 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  10. Persistence of collagen type II-specific T-cell clones in the synovial membrane of a patient with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Londei, M.; Savill, C.M.; Verhoef, A.; Brennan, F.; Leech, Z.A.; Feldmann, M.; Duance, V.; Maini, R.N.

    1989-01-01

    Rheumatoid arthritis is an autoimmune disease characterized by T-cell infiltration of the synovium of joints. Analysis of the phenotype and antigen specificity of the infiltrating cells may thus provide insight into the pathogenesis of rheumatoid arthritis. T cells were cloned with interleukin 2, a procedure that selects for in vivo-activated cells. All clones had the CD4 CDW29 phenotype. Their antigen specificity was tested by using a panel of candidate joint autoantigens. Four of 17 reacted against autologous blood mononuclear cells. Two clones proliferated in response to collagen type II. After 21 months, another set of clones was derived from synovial tissue of the same joint. One of eight clones tested showed a strong proliferative response against collagen type II. The uncloned synovial T cells of a third operation from another joint also responded to collagen type II. The persistence of collagen type II-specific T cells in active rheumatoid joints over a period of 3 years suggests that collagen type II could be one of the autoantigens involved in perpetuating the inflammatory process in rheumatoid arthritis

  11. Repression of tax expression is associated both with resistance of human T-cell leukemia virus type 1-infected T cells to killing by tax-specific cytotoxic T lymphocytes and with impaired tumorigenicity in a rat model.

    Science.gov (United States)

    Nomura, Machiko; Ohashi, Takashi; Nishikawa, Keiko; Nishitsuji, Hironori; Kurihara, Kiyoshi; Hasegawa, Atsuhiko; Furuta, Rika A; Fujisawa, Jun-ichi; Tanaka, Yuetsu; Hanabuchi, Shino; Harashima, Nanae; Masuda, Takao; Kannagi, Mari

    2004-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Although the viral transactivation factor, Tax, has been known to have apparent transforming ability, the exact function of Tax in ATL development is still not clear. To understand the role of Tax in ATL development, we introduced short-interfering RNAs (siRNAs) against Tax in a rat HTLV-1-infected T-cell line. Our results demonstrated that expression of siRNA targeting Tax successfully downregulated Tax expression. Repression of Tax expression was associated with resistance of the HTLV-1-infected T cells to Tax-specific cytotoxic-T-lymphocyte killing. This may be due to the direct effect of decreased Tax expression, because the Tax siRNA did not alter the expression of MHC-I, CD80, or CD86. Furthermore, T cells with Tax downregulation appeared to lose the ability to develop tumors in T-cell-deficient nude rats, in which the parental HTLV-1-infected cells induce ATL-like lymphoproliferative disease. These results indicated the importance of Tax both for activating host immune response against the virus and for maintaining the growth ability of infected cells in vivo. Our results provide insights into the mechanisms how the host immune system can survey and inhibit the growth of HTLV-1-infected cells during the long latent period before the onset of ATL.

  12. Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium

    Science.gov (United States)

    Begum, Jusnara; Lal, Neeraj; Zuo, Jianmin; Beggs, Andrew; Moss, Paul

    2016-01-01

    Cytomegalovirus (CMV) infection elicits a very strong and sustained intravascular T cell immune response which may contribute towards development of accelerated immune senescence and vascular disease in older people. Virus-specific CD8+ T cell responses have been investigated extensively through the use of HLA-peptide tetramers but much less is known regarding CMV-specific CD4+ T cells. We used a range of HLA class II-peptide tetramers to investigate the phenotypic and transcriptional profile of CMV-specific CD4+ T cells within healthy donors. We show that such cells comprise an average of 0.45% of the CD4+ T cell pool and can reach up to 24% in some individuals (range 0.01–24%). CMV-specific CD4+ T cells display a highly differentiated effector memory phenotype and express a range of cytokines, dominated by dual TNF-α and IFN-γ expression, although substantial populations which express IL-4 were seen in some donors. Microarray analysis and phenotypic expression revealed a profile of unique features. These include the expression of CX3CR1, which would direct cells towards fractalkine on activated endothelium, and the β2-adrenergic receptor, which could permit rapid response to stress. CMV-specific CD4+ T cells display an intense cytotoxic profile with high level expression of granzyme B and perforin, a pattern which increases further during aging. In addition CMV-specific CD4+ T cells demonstrate strong cytotoxic activity against antigen-loaded target cells when isolated directly ex vivo. PD-1 expression is present on 47% of cells but both the intensity and distribution of the inhibitory receptor is reduced in older people. These findings reveal the marked accumulation and unique phenotype of CMV-specific CD4+ T cells and indicate how such T cells may contribute to the vascular complications associated with CMV in older people. PMID:27606804

  13. CD4+ T-cell clones obtained from cattle chronically infected with Fasciola hepatica and specific for adult worm antigen express both unrestricted and Th2 cytokine profiles.

    Science.gov (United States)

    Brown, W C; Davis, W C; Dobbelaere, D A; Rice-Ficht, A C

    1994-01-01

    The well-established importance of helper T (Th)-cell subsets in immunity and immunoregulation of many experimental helminth infections prompted a detailed study of the cellular immune response against Fasciola hepatica in the natural bovine host. T-cell lines established from two cattle infected with F. hepatica were characterized for the expression of T-cell surface markers and proliferative responses against F. hepatica adult worm antigen. Parasite-specific T-cell lines contained a mixture of CD4+, CD8+, and gamma/delta T-cell-receptor-bearing T cells. However, cell lines containing either fewer than 10% CD8+ T cells or depleted of gamma/delta T cells proliferated vigorously against F. hepatica antigen, indicating that these T-cell subsets are not required for proliferative responses in vitro. Seventeen F. hepatica-specific CD4+ Th-cell clones were examined for cytokine expression following concanavalin A stimulation. Biological assays to measure interleukin-2 (IL-2) or IL-4, gamma interferon (IFN-gamma), and tumor necrosis factor and Northern (RNA) blot analysis to verify the expression of IL-2, IL-4, and IFN-gamma revealed that the Th-cell clones expressed a spectrum of cytokine profiles. Several Th-cell clones were identified as Th2 cells by the strong expression of IL-4 but little or no IL-2 or IFN-gamma mRNA. The majority of Th-cell clones were classified as Th0 cells by the expression of either all three cytokines or combinations of IL-2 and IL-4 or IL-4 and IFN-gamma. No Th1-cell clones were obtained. All of the Th-cell clones expressed a typical memory cell surface phenotype, characterized as CD45Rlow, and all expressed the lymph node homing receptor (L selectin). These results are the first to describe cytokine responses of F. hepatica-specific T cells obtained from infected cattle and extend our previous analysis of Th0 and Th1 cells from cattle immune to Babesia bovis (W. C. Brown, V. M. Woods, D. A. E. Dobbelaere, and K. S. Logan, Infect. Immun. 61

  14. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    Science.gov (United States)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  15. An altered gp100 peptide ligand with decreased binding by TCR and CD8alpha dissects T cell cytotoxicity from production of cytokines and activation of NFAT

    Directory of Open Access Journals (Sweden)

    Niels eSchaft

    2013-09-01

    Full Text Available Altered peptide ligands (APLs provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100(280-288 APLs with respect to T cell cytotoxicity, production of cytokines and activation of Nuclear Factor of Activated T cells (NFAT by human T cells gene-engineered with a gp100-HLA-A2-specific TCRalpha/beta. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3, which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6 elicited T cell cytotoxicity and production of IFNgamma, and to a lesser extent TNFalpha, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, TCR-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wt peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8alpha. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8alpha. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications.

  16. Generation and characterization of peptide-specific, MHC-restricted cytotoxic T lymphocyte (CTL) and helper T cell lines from unprimed T cells under microculture conditions.

    Science.gov (United States)

    Sambhara, S R; Upadhya, A G; Miller, R G

    1990-06-12

    We describe a microculture system for the generation of CTL and T helper cells against peptides. Tryptic digest and cyanogen bromide fragments of chicken ovalbumin and synthetic peptides of ovalbumin (323-339) and influenza virus (NP 365-380) were used to generate CTL and T helper lines from unprimed T cells. These lines were both peptide-specific and MHC-restricted. The relative ease of generating peptide-specific, MHC-restricted CTL and helper T cell lines with as few as 10(6) unprimed lymphocytes can be an efficient method of detecting potential immunogenic determinants of an antigen.

  17. Antigen recognition by cloned cytotoxic T lymphocytes follows rules predicted by the altered-self hypothesis

    International Nuclear Information System (INIS)

    Huenig, T.R.; Bevan, M.J.

    1982-01-01

    Radiation chimeras prepared by injecting H-2 heterozygous F1 stem cells into lethally irradiated parental hosts show a marked, but not absolute, preference for host-type H-2 antigens in the H-2-restricted cytotoxic T lymphocyte (CTL) response to minor histocompatibility (minor H) antigens. We have selected for the anti-minor HCTL that are restricted to the parental H-2 type absent from the chimeric host and found that in two out of eight cases, such CTL lysed target cells of either parental H-2 type. From one of these CTL populations that lysed H-2d and H-2k target cells expressing BALB minor H antigens, clones were derived and further analyzed. The results showed that: (a) lysis of both H-2d and H-2k target cells was H-2 restricted; (b) H-2d restriction mapped to Dd, and H-2k restriction mapped to Kk; (c) testing against various H-2d and H-2k strains of different and partially overlapping minor H backgrounds as well as against the appropriate F1 crosses revealed that in Dd- and Kk-restricted killing, different minor H antigens were recognized. In a second system, a CTL population was selected from normal (H-2d x H-2k)F1 mice that was specific for H-2d plus minor H antigens and for H-2k plus trinitrophenylated bovine serum albumin. We interpret these findings in terms of the altered-self hypothesis: The association of one H-2 antigen with one conventional antigen X may be recognized by the same T cell receptor specific for the complex formed by a different H-2 antigen in association with a second conventional antigen Y. The implications of these observations for the influence of self H-2 on the generation of the T cell receptor repertoire are discussed

  18. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor.

    Science.gov (United States)

    Boissonnas, Alexandre; Fetler, Luc; Zeelenberg, Ingrid S; Hugues, Stéphanie; Amigorena, Sebastian

    2007-02-19

    Although the immune system evolved to fight infections, it may also attack and destroy solid tumors. In most cases, tumor rejection is initiated by CD8(+) cytotoxic T lymphocytes (CTLs), which infiltrate solid tumors, recognize tumor antigens, and kill tumor cells. We use a combination of two-photon intravital microscopy and immunofluorescence on ordered sequential sections to analyze the infiltration and destruction of solid tumors by CTLs. We show that in the periphery of a thymoma growing subcutaneously, activated CTLs migrate with high instantaneous velocities. The CTLs arrest in close contact to tumor cells expressing their cognate antigen. In regions where most tumor cells are dead, CTLs resume migration, sometimes following collagen fibers or blood vessels. CTLs migrating along blood vessels preferentially adopt an elongated morphology. CTLs also infiltrate tumors in depth, but only when the tumor cells express the cognate CTL antigen. In tumors that do not express the cognate antigen, CTL infiltration is restricted to peripheral regions, and lymphocytes neither stop moving nor kill tumor cells. Antigen expression by tumor cells therefore determines both CTL motility within the tumor and profound tumor infiltration.

  19. IL-6 trans-Signaling-Dependent Rapid Development of Cytotoxic CD8+ T Cell Function

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2014-09-01

    Full Text Available Immune control of infections with viruses or intracellular bacteria relies on cytotoxic CD8+ T cells that use granzyme B (GzmB for elimination of infected cells. During inflammation, mature antigen-presenting dendritic cells instruct naive T cells within lymphoid organs to develop into effector T cells. Here, we report a mechanistically distinct and more rapid process of effector T cell development occurring within 18 hr. Such rapid acquisition of effector T cell function occurred through cross-presenting liver sinusoidal endothelial cells (LSECs in the absence of innate immune stimulation and known costimulatory signaling. Rather, interleukin-6 (IL-6 trans-signaling was required and sufficient for rapid induction of GzmB expression in CD8+ T cells. Such LSEC-stimulated GzmB-expressing CD8+ T cells further responded to inflammatory cytokines, eliciting increased and protracted effector functions. Our findings identify a role for IL-6 trans-signaling in rapid generation of effector function in CD8+ T cells that may be beneficial for vaccination strategies.

  20. Rejection of a kidney transplant does not always lead to priming of cytotoxic T cells against mismatched donor HLA class I antigens

    NARCIS (Netherlands)

    van Kampen, C. A.; Versteeg-van der Voort Maarschalk, M. F.; Roelen, D. L.; ten Berge, I. J.; Claas, F. H.

    2001-01-01

    BACKGROUND: Previous studies showed that graft rejection is often associated with the presence of primed cytotoxic T cells (CTLs) with a high avidity for donor cells. Similar high avidity CTLs have been found in individuals who have formed IgG anti-HLA antibodies. The presence of such CTLs to a

  1. Differential requirements of CD4(+) T-cell signals for effector cytotoxic T-lymphocyte (CTL) priming and functional memory CTL development at higher CD8(+) T-cell precursor frequency.

    Science.gov (United States)

    Umeshappa, Channakeshava S; Nanjundappa, Roopa H; Xie, Yufeng; Freywald, Andrew; Xu, Qingyong; Xiang, Jim

    2013-04-01

    Increased CD8(+) T-cell precursor frequency (PF) precludes the requirement of CD4(+) helper T (Th) cells for primary CD8(+) cytotoxic T-lymphocyte (CTL) responses. However, the key questions of whether unhelped CTLs generated at higher PF are functional effectors, and whether unhelped CTLs can differentiate into functional memory cells at higher PF are unclear. In this study, ovalbumin (OVA) -pulsed dendritic cells (DC(OVA)) derived from C57BL/6, CD40 knockout (CD40(-/-)) or CD40 ligand knockout (CD40L(-/-)) mice were used to immunize C57BL/6, Ia(b-/-), CD40(-/-) or CD40L(-/-) mice, whose PF was previously increased with transfer of 1 × 10(6) CD8(+) T cells derived from OVA-specific T-cell receptor (TCR) transgenic OTI, OTI(CD40(-/-)) or OTI(CD40L(-/-)) mice. All the immunized mice were then assessed for effector and memory CTL responses. Following DC immunization, relatively comparable CTL priming occurred without CD4(+) T-cell help and Th-provided CD40/CD40L signalling. In addition, the unhelped CTLs were functional effectors capable of inducing therapeutic immunity against established OVA-expressing tumours. In contrast, the functional memory development of CTLs was severely impaired in the absence of CD4(+) T-cell help and CD40/CD40L signalling. Finally, unhelped memory CTLs failed to protect mice against lethal tumour challenge. Taken together, these results demonstrate that CD4(+) T-cell help at higher PF, is not required for effector CTL priming, but is required for functional memory CTL development against cancer. Our data may impact the development of novel preventive and therapeutic approaches in cancer patients with compromised CD4(+) T-cell functions. © 2012 Blackwell Publishing Ltd.

  2. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells.

    Science.gov (United States)

    Ohira, Kosuke; Nakahara, Ayako; Konnai, Satoru; Okagawa, Tomohiro; Nishimori, Asami; Maekawa, Naoya; Ikebuchi, Ryoyo; Kohara, Junko; Murata, Shiro; Ohashi, Kazuhiko

    2016-03-01

    CD4(+)CD25(high)Foxp3(+) T cells suppress excess immune responses that lead to autoimmune and/or inflammatory diseases, and maintain host immune homeostasis. However, CD4(+)CD25(high)Foxp3(+) T cells reportedly contribute to disease progression by over suppressing immune responses in some chronic infections. In this study, kinetic and functional analyses of CD4(+)CD25(high)Foxp3(+) T cells were performed in cattle with bovine leukemia virus (BLV) infections, which have reported immunosuppressive characteristics. In initial experiments, production of the Th1 cytokines IFN-γ and TNF-α was reduced in BLV-infected cattle compared with uninfected cattle, and numbers of IFN-γ or TNF-α producing CD4(+) T cells decreased with disease progression. In contrast, IFN-γ production by NK cells was inversely correlated with BLV proviral loads in infected cattle. Additionally, during persistent lymphocytosis disease stages, NK cytotoxicity was depressed as indicated by low expression of the cytolytic protein perforin. Concomitantly, total CD4(+)CD25(high)Foxp3(+) T cell numbers and percentages of TGF-β(+) cells were increased, suggesting that TGF-β plays a role in the functional declines of CD4(+) T cells and NK cells. In further experiments, recombinant bovine TGF-β suppressed IFN-γ and TNF-α production by CD4(+) T cells and NK cytotoxicity in cultured cells. These data suggest that TGF-β from CD4(+)CD25(high)Foxp3(+) T cells is immunosuppressive and contributes to disease progression and the development of opportunistic infections during BLV infection.

  3. Selection of restriction specificities of virus-specific cytotoxic T cells in the thymus: no evidence for a crucial role of antigen-presenting cells

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.

    1982-01-01

    The proposal was tested that (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras expressed predominantly P1-restricted T cells because donor derived stem cells were exposed to recipient derived antigen-presenting cells in the thymus. Because P1 recipient-derived antigen-presenting cells are replaced only slowly after 6-8 wk by (P1 X P2) donor-derived antigen-presenting cells in the thymus and because replenished pools of mature T cells may by then prevent substantial numbers of P2-restricted T cells to be generated, a large portion of thymus cells and mature T cells were eliminated using the following treatments of 12-20-wk-old (P1 X P2) F1 leads to P1 irradiation bone marrow chimeras: (a) cortisone plus antilymphocyte serum, (b) Cytoxan, (c) three doses of sublethal irradiation (300 rad) 2d apart, and (d) lethal irradiation (850 rad) and reconstitution with T cell-depleted (P1 X P2) F1 stem cells. 12-20 wk after this second treatment, (P1 X P2) leads to P1 chimeras were infected with vaccinia-virus. Virus-specific cytotoxic T cell reactivity was expressed by chimeric T cells of (P1 X P[2) F1 origin and was restricted predominantly to P1. Virus-specific cytotoxic T cells, therefore, do not seem to be selected to measurable extent by the immigrating donor-derived antigen-presenting cells in the thymus; their selection depends apparently from the recipient-derived radioresistant thymus cells

  4. The primary immune response to Vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype.

    Science.gov (United States)

    Munier, C Mee Ling; van Bockel, David; Bailey, Michelle; Ip, Susanna; Xu, Yin; Alcantara, Sheilajen; Liu, Sue Min; Denyer, Gareth; Kaplan, Warren; Suzuki, Kazuo; Croft, Nathan; Purcell, Anthony; Tscharke, David; Cooper, David A; Kent, Stephen J; Zaunders, John J; Kelleher, Anthony D

    2016-10-17

    Smallpox was eradicated by a global program of inoculation with Vaccinia virus (VV). Robust VV-specific CD4 T-cell responses during primary infection are likely essential to controlling VV replication. Although there is increasing interest in cytolytic CD4 T-cells across many viral infections, the importance of these cells during acute VV infection is unclear. We undertook a detailed functional and genetic characterization of CD4 T-cells during acute VV-infection of humans. VV-specific T-cells were identified by up-regulation of activation markers directly ex vivo and through cytokine and co-stimulatory molecule expression. At day-13-post primary inoculation with VV, CD38highCD45RO+ CD4 T-cells were purified by cell sorting, RNA isolated and analysed by microarray. Differential expression of up-regulated genes in activated CD4 T-cells was confirmed at the mRNA and protein levels. We compared analyses of VV-specific CD4 T-cells to studies on 12 subjects with primary HIV infection (PHI). VV-specific T-cells lines were established from PBMCs collected post vaccination and checked for cytotoxicity potential. A median 11.9% CD4 T-cells were CD38highCD45RO+ at day-13 post-VV inoculation, compared to 3.0% prior and 10.4% during PHI. Activated CD4 T-cells had an up-regulation of genes related to cytolytic function, including granzymes K and A, perforin, granulysin, TIA-1, and Rab27a. No difference was seen between CD4 T-cell expression of perforin or TIA-1 to VV and PHI, however granzyme k was more dominant in the VV response. At 25:1 effector to target ratio, two VV-specific T-cell lines exhibited 62% and 30% cytotoxicity respectively and CD107a degranulation. We show for the first time that CD4 CTL are prominent in the early response to VV. Understanding the role of CD4 CTL in the generation of an effective anti-viral memory may help develop more effective vaccines for diseases such as HIV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. Metformin inhibits proliferation and cytotoxicity and induces apoptosis via AMPK pathway in CD19-chimeric antigen receptor-modified T cells

    Directory of Open Access Journals (Sweden)

    Mu Q

    2018-04-01

    Full Text Available Qian Mu,1,2,* Miao Jiang,1,* Yuzhu Zhang,1 Fei Wu,1 Hui Li,1 Wen Zhang,1 Fang Wang,1 Jiang Liu,1 Liang Li,1 Dongshan Wang,3 Wenjuan Wang,1 Shiwu Li,1 Haibo Song,4 Dongqi Tang1 1Gene and Immunotherapy Center, The Second Hospital of Shandong University, Jinan, People’s Republic of China; 2Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 3Health Management Center, The Second Hospital of Shandong University, Jinan, People’s Republic of China; 4Central Research Laboratory, Zibo Maternal and Child Health Hospital, Affiliated to Shandong Academy of Medical Science, Zibo, People’s Republic of China *These authors contributed equally to this work Background: CD19-chimericantigen receptor (CAR modified T cells (CD19-CAR T cells have been well documented to possess potent anti-tumor properties against CD19-expressingleukemia cells. As a traditional medicine, metformin has been widely used to treat type II diabetes mellitus and more recently has become a candidate for the treatment of cancer. However, no report has revealed the direct effect of metformin on CD19-CAR T cell biological function and its underling mechanisms. Purpose: The purpose of this research was to explore the effect of metformin on CD19-CAR T cell biological function and the mechanisms involved. Methods: CD19-CAR T cells proliferation, apoptosis and cytotoxicity were mainly tested by CCK-8 assay, flow cytometry and ELISA. The detection of mechanism primarily used western blot. Bioluminescence imaging is the main application technology of animal studies. Results: In the current study, it was found that metformin inhibited CD19-CAR T cell proliferation and cytotoxicity and induced apoptosis. Furthermore, our study revealed that metformin activated AMPK and suppressed mTOR and HIF1α expression. By using an AMPK inhibitor, compound C, we demonstrated the crucial roles of AMPK in CD19

  6. C22:0- and C24:0-dihydroceramides confer mixed cytotoxicity in T-cell acute lymphoblastic leukemia cell lines.

    Directory of Open Access Journals (Sweden)

    Michael W Holliday

    Full Text Available We previously reported that fenretinide (4-HPR was cytotoxic to acute lymphoblastic leukemia (ALL cell lines in vitro in association with increased levels of de novo synthesized dihydroceramides, the immediate precursors of ceramides. However, the cytotoxic potentials of native dihydroceramides have not been defined. Therefore, we determined the cytotoxic effects of increasing dihydroceramide levels via de novo synthesis in T-cell ALL cell lines and whether such cytotoxicity was dependent on an absolute increase in total dihydroceramide mass versus an increase of certain specific dihydroceramides. A novel method employing supplementation of individual fatty acids, sphinganine, and the dihydroceramide desaturase-1 (DES inhibitor, GT-11, was used to increase de novo dihydroceramide synthesis and absolute levels of specific dihydroceramides and ceramides. Sphingolipidomic analyses of four T-cell ALL cell lines revealed strong positive correlations between cytotoxicity and levels of C22:0-dihydroceramide (ρ = 0.74-0.81, P ≤ 0.04 and C24:0-dihydroceramide (ρ = 0.84-0.90, P ≤ 0.004, but not between total or other individual dihydroceramides, ceramides, or sphingoid bases or phosphorylated derivatives. Selective increase of C22:0- and C24:0-dihydroceramide increased level and flux of autophagy marker, LC3B-II, and increased DNA fragmentation (TUNEL assay in the absence of an increase of reactive oxygen species; pan-caspase inhibition blocked DNA fragmentation but not cell death. C22:0-fatty acid supplemented to 4-HPR treated cells further increased C22:0-dihydroceramide levels (P ≤ 0.001 and cytotoxicity (P ≤ 0.001. These data demonstrate that increases of specific dihydroceramides are cytotoxic to T-cell ALL cells by a caspase-independent, mixed cell death mechanism associated with increased autophagy and suggest that dihydroceramides may contribute to 4-HPR-induced cytotoxicity. The targeted increase of specific acyl chain dihydroceramides

  7. Long-term persistence of robust antibody and cytotoxic T cell responses in recovered patients infected with SARS coronavirus.

    Directory of Open Access Journals (Sweden)

    Taisheng Li

    2006-12-01

    Full Text Available Most of the individuals infected with SARS coronavirus (SARS-CoV spontaneously recovered without clinical intervention. However, the immunological correlates associated with patients' recovery are currently unknown. In this report, we have sequentially monitored 30 recovered patients over a two-year period to characterize temporal changes in SARS-CoV-specific antibody responses as well as cytotoxic T cell (CTL responses. We have found persistence of robust antibody and CTL responses in all of the study subjects throughout the study period, with a moderate decline one year after the onset of symptoms. We have also identified two potential major CTL epitopes in N proteins based on ELISPOT analysis of pooled peptides. However, despite the potent immune responses and clinical recovery, peripheral lymphocyte counts in the recovered patients have not yet been restored to normal levels. In summary, our study has, for the first time, characterized the temporal and dynamic changes of humoral and CTL responses in the natural history of SARS-recovered individuals, and strongly supports the notion that high and sustainable levels of immune responses correlate strongly with the disease outcome. Our findings have direct implications for future design and development of effective therapeutic agents and vaccines against SARS-CoV infection.

  8. Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspase-dependent NADPH oxidase activation.

    Science.gov (United States)

    Aguiló, Juan I; Anel, Alberto; Catalán, Elena; Sebastián, Alvaro; Acín-Pérez, Rebeca; Naval, Javier; Wallich, Reinhard; Simon, Markus M; Pardo, Julián

    2010-07-01

    Induction of reactive oxygen species (ROS) is a hallmark of granzyme B (gzmB)-mediated pro-apoptotic processes and target cell death. However, it is unclear to what extent the generated ROS derive from mitochondrial and/or extra-mitochondrial sources. To clarify this point, we have produced a mutant EL4 cell line, termed EL4-rho(0), which lacks mitochondrial DNA, associated with a decreased mitochondrial membrane potential and a defective ROS production through the electron transport chain of oxidative phosphorylation. When incubated with either recombinant gzmB plus streptolysin or ex vivo gzmB(+) cytotoxic T cells, EL4-rho(0) cells showed phosphatydylserine translocation, caspase 3 activation, Bak conformational change, cytochrome c release and apoptotic morphology comparable to EL4 cells. Moreover, EL4-rho(0) cells produced ROS at levels similar to EL4 under these conditions. GzmB-mediated ROS production was almost totally abolished in both cell lines by the pan-caspase inhibitor, Z-VAD-fmk. However, addition of apocynin, a specific inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, led to a significant reduction of ROS production and cell death only in EL4-rho(0) but not EL4 cells. These data suggest that gzmB-induced cell death is accompanied by a caspase-dependent pathway of extra-mitochondrial ROS production, most probably through activation of NADPH oxidase.

  9. Cytotoxic reactivity of gut lamina propria CD4+ alpha beta T cells in SCID mice with colitis

    DEFF Research Database (Denmark)

    Bonhagen, K; Thoma, S; Bland, P

    1996-01-01

    Polyclonal, mucosa-seeking memory/effector CD4+ T cells containing a large fraction of blasts activated in situ accumulate in the gut lamina propria of severe-combined immunodeficient (SCID) mice developing colitis after CD4+ T cell transplantation. CD4+ T cells isolated from different repopulated...

  10. Leishmania donovani-reactive Th1- and Th2-like T-cell clones from individuals who have recovered from visceral leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, M; Kurtzhals, J A; Bendtzen, K

    1993-01-01

    analyzed in a panel of L. donovani-reactive CD4+ human T-cell clones generated from individuals who had recovered from VL after antimonial treatment. Two of the T-cell clones produced large amounts of IL-4 without production of IFN-gamma, seven clones produced both IFN-gamma and IL-4, and eight produced...... by interleukin-4 (IL-4)-producing Th2 cells, or cure may result by Th1 cells secreting gamma interferon (IFN-gamma). The present study examined the potential of human T cells to generate Th1 or Th2 responses to L. donovani. The profiles of IFN-gamma, IL-4, and lymphotoxin secretion after antigen stimulation were...... only IFN-gamma. This is the first report of a Th1- and Th2-type response in human leishmaniasis. These results suggest that in analogy with murine models, there is a dichotomy in the human T-cell response to L. donovani infections. Preferential activation of IL-4-producing Th2-like cells may...

  11. SENIEUR status of the originating cell donor negates certain 'anti-immunosenescence' effects of ebselen and N-acetyl cysteine in human T cell clone cultures.

    Science.gov (United States)

    Marthandan, Shiva; Freeburn, Robin; Steinbrecht, Susanne; Pawelec, Graham; Barnett, Yvonne

    2014-01-01

    Damage to T cells of the immune system by reactive oxygen species may result in altered cell function or cell death and thereby potentially impact upon the efficacy of a subsequent immune response. Here, we assess the impact of the antioxidants Ebselen and N-acetyl cysteine on a range of biological markers in human T cells derived from a SENIEUR status donor. In addition, the impact of these antioxidants on different MAP kinase pathways in T cells from donors of different ages was also examined. T cell clones were derived from healthy 26, 45 and SENIEUR status 80 year old people and the impact of titrated concentrations of Ebselen or N-acetyl cysteine on their proliferation and in vitro lifespan, GSH:GSSG ratio as well as levels of oxidative DNA damage and on MAP kinase signaling pathways was examined. In this investigation neither Ebselen nor N-acetyl cysteine supplementation had any impact on the biological endpoints examined in the T cells derived from the SENIEUR status 80 year old donor. This is in contrast to the anti-immunosenescent effects of these antioxidants on T cells from donors of 26 or 45 years of age. The analysis of MAP kinases showed that pro-apoptotic pathways become activated in T cells with increasing in vitro age and that Ebselen or N-acetyl cysteine could decrease activation (phosphorylation) in T cells from 26 or 45 year old donors, but not from the SENIEUR status 80 year old donor. The results of this investigation demonstrate that the biological phenotype of SENIEUR status derived human T cells negates the anti-immunosenescence effects of Ebselen and also N-acetyl cysteine. The results highlight the importance of pre-antioxidant intervention evaluation to determine risk-benefit.

  12. A novel strategy for the identification of antigens that are recognised by bovine MHC class I restricted cytotoxic T cells in a protozoan infection using reverse vaccinology.

    Science.gov (United States)

    Graham, Simon P; Honda, Yoshikazu; Pellé, Roger; Mwangi, Duncan M; Glew, E Jane; de Villiers, Etienne P; Shah, Trushar; Bishop, Richard; van der Bruggen, Pierre; Nene, Vishvanath; Taracha, Evans L N

    2007-02-09

    Immunity against the bovine protozoan parasite Theileria parva has previously been shown to be mediated through lysis of parasite-infected cells by MHC class I restricted CD8+ cytotoxic T lymphocytes. It is hypothesized that identification of CTL target schizont antigens will aid the development of a sub-unit vaccine. We exploited the availability of the complete genome sequence data and bioinformatics tools to identify genes encoding secreted or membrane anchored proteins that may be processed and presented by the MHC class I molecules of infected cells to CTL. Of the 986 predicted open reading frames (ORFs) encoded by chromosome 1 of the T. parva genome, 55 were selected based on the presence of a signal peptide and/or a transmembrane helix domain. Thirty six selected ORFs were successfully cloned into a eukaryotic expression vector, transiently transfected into immortalized bovine skin fibroblasts and screened in vitro using T. parva-specific CTL. Recognition of gene products by CTL was assessed using an IFN-gamma ELISpot assay. A 525 base pair ORF encoding a 174 amino acid protein, designated Tp2, was identified by T. parva-specific CTL from 4 animals. These CTL recognized and lysed Tp2 transfected skin fibroblasts and recognized 4 distinct epitopes. Significantly, Tp2 specific CD8+ T cell responses were observed during the protective immune response against sporozoite challenge. The identification of an antigen containing multiple CTL epitopes and its apparent immunodominance during a protective anti-parasite response makes Tp2 an attractive candidate for evaluation of its vaccine potential.

  13. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.; Haenseler, E.; Leist, T.; Cerny, A.; Hengartner, H.; Althage, A.

    1986-01-01

    A model for immunologically T cell-mediated hepatitis was established in mice infected with lymphocytic choriomeningitis virus (LCMV). The severity of hepatitis was monitored histologically and by determination of changes in serum levels of the enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), and alkaline phosphatase (AP). Kinetics of histological disease manifestations, increases of liver enzyme levels in the serum, and cytotoxic T cell activities in livers and spleens all correlated and were dependent upon several parameters: LCMV-isolate; LCMV-WE caused extensive hepatitis, LCMV-Armstrong virtually none. Virus dose. Route of infection; i.v. or i.p. infection caused hepatitis, whereas infection into the footpad did not. The general genetic background of the murine host; of the strains tested, Swiss mice and A-strain mice were more susceptible than C57BL or CBA mice; BALB/c and DBA/2 mice were least susceptible. The degree of immunocompetence of the murine host; T cell deficient nu/nu mice never developed hepatitis, whereas nu/+ or +/+ mice always did. B cell-depleted anti-IgM-treated mice developed immune-mediated hepatitis comparably or even more extensively than control mice. Local cytotoxic T cell activity; mononuclear cells isolated from livers during the period of overt hepatitis were two to five times more active than equal numbers of spleen cells. Adoptive transfer of nylon wool-nonadherent anti-Thy-1.2 and anti-Lyt-2 plus C-sensitive, anti-L3T4 plus C-resistant lymphocytes into irradiated mice preinfected with LCMV-WE caused a rapid time- and dose-dependent linear increase of serum enzyme levels. This increase was caused by adoptive transfer of lymphocytes if immune cell donors and recipient mice shared class I, but not when they shared class II histocompatibility antigens

  14. A systematic molecular analysis of the T cell-stimulating antigens from Mycobacterium leprae with T cell clones of leprosy patients. Identification of a novel M. leprae HSP 70 fragment by M. leprae-specific T cells

    NARCIS (Netherlands)

    Janson, A. A.; Klatser, P. R.; van der Zee, R.; Cornelisse, Y. E.; de Vries, R. R.; Thole, J. E.; Ottenhoff, T. H.

    1991-01-01

    Both protective immunity and immunopathology induced by mycobacteria are dependent on Ag-specific, CD4+ MHC class II-restricted T lymphocytes. The identification of Ag recognized by T cells is fundamental to the understanding of protective and pathologic immunity as well as to the design of

  15. Cytotoxic potential of lung CD8(+) T cells increases with chronic obstructive pulmonary disease severity and with in vitro stimulation by IL-18 or IL-15.

    Science.gov (United States)

    Freeman, Christine M; Han, MeiLan K; Martinez, Fernando J; Murray, Susan; Liu, Lyrica X; Chensue, Stephen W; Polak, Timothy J; Sonstein, Joanne; Todt, Jill C; Ames, Theresa M; Arenberg, Douglas A; Meldrum, Catherine A; Getty, Christi; McCloskey, Lisa; Curtis, Jeffrey L

    2010-06-01

    Lung CD8(+) T cells might contribute to progression of chronic obstructive pulmonary disease (COPD) indirectly via IFN-gamma production or directly via cytolysis, but evidence for either mechanism is largely circumstantial. To gain insights into these potential mechanisms, we analyzed clinically indicated lung resections from three human cohorts, correlating findings with spirometrically defined disease severity. Expression by lung CD8(+) T cells of IL-18R and CD69 correlated with severity, as did mRNA transcripts for perforin and granzyme B, but not Fas ligand. These correlations persisted after correction for age, smoking history, presence of lung cancer, recent respiratory infection, or inhaled corticosteroid use. Analysis of transcripts for killer cell lectin-like receptor G1, IL-7R, and CD57 implied that lung CD8(+) T cells in COPD do not belong to the terminally differentiated effector populations associated with chronic infections or extreme age. In vitro stimulation of lung CD8(+) T cells with IL-18 plus IL-12 markedly increased production of IFN-gamma and TNF-alpha, whereas IL-15 stimulation induced increased intracellular perforin expression. Both IL-15 and IL-18 protein expression could be measured in whole lung tissue homogenates, but neither correlated in concentration with spirometric severity. Although lung CD8(+) T cell expression of mRNA for both T-box transcription factor expressed in T cells and GATA-binding protein 3 (but not retinoic acid receptor-related orphan receptor gamma or alpha) increased with spirometric severity, stimulation of lung CD8(+) T cells via CD3epsilon-induced secretion of IFN-gamma, TNF-alpha, and GM-CSF, but not IL-5, IL-13, and IL-17A. These findings suggest that the production of proinflammatory cytokines and cytotoxic molecules by lung-resident CD8(+) T cells contributes to COPD pathogenesis.

  16. Cytotoxic T cell recognition of an endogenous class I HLA peptide presented by a class II HLA molecule.

    Science.gov (United States)

    Chen, B P; Madrigal, A; Parham, P

    1990-09-01

    Human leukocytes were stimulated in vitro with peptides corresponding in sequence to the highly variable helix of the alpha 1 domain of various HLA-B and -C molecules. A CD4+ CD8- cytotoxic T cell line, CTL-AV, that is specific for the HLA-B7 peptide presented by HLA-DR11.1 was obtained. The HLA-DR11.2 molecule, which only differs at three residues from HLA-DR11.1, did not present the HLA-B7 peptide to CTL-AV. Peptides from the alpha 1 domain helix of other HLA-A and HLA-B molecules, but not HLA-C molecules, competed with the HLA-B7 peptide for binding to HLA-DR11.1. A cell line (WT50) that coexpresses HLA-B7 and HLA-DR11.1 was killed by CTL-AV in the absence of any added HLA-B7 peptide. The processing and presentation of HLA-B7 in these cells appears to be through the endogenous, and not the exogenous, pathway of antigen presentation. Thus, Brefeldin A inhibits presentation and chloroquine does not. Furthermore, introduction of purified HLA-B7 molecules into HLA-DR11.1+, HLA-B7- cells by cytoplasmic loading via osmotic lysis of pinosomes, but not by simple incubation, rendered them susceptible to CTL-AV killing. These results provide an example of class II major histocompatibility complex (MHC) presentation of a constitutively synthesized self protein that uses the endogenous pathway of antigen presentation. They also emphasize the capacity for presentation of MHC peptides by MHC molecules.

  17. Cytotoxic T lymphocyte responses in allogeneic radiation bone marrow chimeras. The chimeric host strictly dictates the self-repertoire of Ia-restricted T cells but not H-2K/D-restricted T cells

    International Nuclear Information System (INIS)

    Bradley, S.M.; Kruisbeek, A.M.; Singer, A.

    1982-01-01

    The present report has used fully H-2 allogeneic radiation bone marrow chimeras to assess the role of host restriction elements in determining the self-specificity of Ia- and H-2K/D-restricted T cells that participate in the generation of trinitrophenyl (TNP)-specific cytotoxic T lymphocytes (CTL). It was demonstrated that there exists a stringent requirement for the recognition of host thymic-type Ia determinants, but there exists only a preference for host thymic-type H-2K/D determinants. Indeed, once the stringent requirement for recognition of host Ia determinants was fulfilled, anti-TNP CTL were generated in response to TNP-modified stimulators that expressed either donor-type or host-type H-2K/D determinants. The CTL that were generated in response to TNP-modified donor-type stimulators were shown to be specific for TNP and restricted to the non-thymic H-2K/D determinants of the chimeric donor. Thus, these results demonstrate in a single immune response that the thymic hypothesis accurately predicts the self-specificity expressed by Ia-restricted T cells, but does not fully account for the self-specificity expressed by H-2K/D-restricted T cells. These results are consistent with the concept that H-2K/D-restricted T cells, but not Ia-restricted T cells, can differentiate into functional competence either intrathymically or extra-thymically. The results demonstrate that the generation of anti-TNP CTL responses involve two parallel sets of major histocompatibility complex-restricted cell interactions, an Ia-restricted TH-accessory cell interaction required for TH cell activation, and an H-2K/D-restricted pCTL-stimulator cell interaction required for pCTL stimulation. The interaction between activated TH cells and stimulated pCTL is mediated, at least in part, by nonspecific soluble helper factors

  18. Generation in vivo of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II peptide-pulsed DCs

    Directory of Open Access Journals (Sweden)

    Satthaporn Sukchai

    2009-03-01

    Full Text Available Abstract Background Optimal techniques for DC generation for immunotherapy in cancer are yet to be established. Study aims were to evaluate: (i DC activation/maturation milieu (TNF-α +/- IFN-α and its effects on CD8+ hTERT-specific T cell responses to class I epitopes (p540 or p865, (ii CD8+ hTERT-specific T cell responses elicited by vaccination with class I alone or both class I and II epitope (p766 and p672-pulsed DCs, prepared without IFN-α, (iii association between circulating T regulatory cells (Tregs and clinical responses. Methods Autologous DCs were generated from 10 patients (HLA-0201 with advanced cancer by culturing CD14+ blood monocytes in the presence of GM-CSF and IL-4 supplemented with TNF-α [DCT] or TNF-α and IFN-α [DCTI]. The capacity of the DCs to induce functional CD8+ T cell responses to hTERT HLA-0201 restricted nonapeptides was assessed by MHC tetramer binding and peptide-specific cytotoxicity. Each DC preparation (DCT or DCTI was pulsed with only one type of hTERT peptide (p540 or p865 and both preparations were injected into separate lymph node draining regions every 2–3 weeks. This vaccination design enabled comparison of efficacy between DCT and DCTI in generating hTERT peptide specific CD8+ T cells and comparison of class I hTERT peptide (p540 or p865-loaded DCT with or without class II cognate help (p766 and p672 in 6 patients. T regulatory cells were evaluated in 8 patients. Results (i DCTIs and DCTs, pulsed with hTERT peptides, were comparable (p = 0.45, t-test in inducing peptide-specific CD8+ T cell responses. (ii Class II cognate help, significantly enhanced (p (iii Clinical responders had significantly lower (p Conclusion Addition of IFN-α to ex vivo monocyte-derived DCs, did not significantly enhance peptide-specific T cell responses in vivo, compared with TNF-α alone. Class II cognate help significantly augments peptide-specific T cell responses. Clinically favourable responses were seen in patients

  19. Analysis of intrahepatic HBV-specific cytotoxic T-cells during and after acute HBV infection in humans

    NARCIS (Netherlands)

    Sprengers, Dave; van der Molen, Renate G.; Kusters, Johannes G.; de Man, Robert A.; Niesters, Hubert G. M.; Schalm, Solko W.; Janssen, Harry L. A.

    2006-01-01

    Characteristics of the intrahepatic virus-specific T-cell response in patients with acute hepatitis B virus (HBV) infection have not been studied due to the risk of complications associated with standard liver biopsies. In this study we aimed to characterize the virus-specific CD8 + T-cell response

  20. Serine esterase and hemolytic activity in human cloned cytotoxic T lymphocytes

    OpenAIRE

    1988-01-01

    Target cell lysis by most murine cytotoxic T lymphocytes appears to be mediated by a complement (C9)-like protein called perforin, contained in high-density cytoplasmic granules. These granules also contain high levels of serine esterase activity, which may also play a role in cytolysis. Analysis of 17 cloned human cytotoxic T lymphocytes revealed the presence of serine esterase that is very similar to its murine counterpart in substrate and inhibitor specificities, pH optimum, and molecular ...

  1. In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jia Zhong

    Full Text Available Noninvasive biomarkers of anti-tumoral efficacy are of great importance to the development of therapeutic agents. Tumor oxygenation has been shown to be an important indicator of therapeutic response. We report the use of intracellular labeling of tumor cells with perfluorocarbon (PFC molecules, combined with quantitative ¹⁹F spin-lattice relaxation rate (R₁ measurements, to assay tumor cell oxygen dynamics in situ. In a murine central nervous system (CNS GL261 glioma model, we visualized the impact of Pmel-1 cytotoxic T cell immunotherapy, delivered intravenously, on intracellular tumor oxygen levels. GL261 glioma cells were labeled ex vivo with PFC and inoculated into the mouse striatum. The R₁ of ¹⁹F labeled cells was measured using localized single-voxel magnetic resonance spectroscopy, and the absolute intracellular partial pressure of oxygen (pO₂ was ascertained. Three days after tumor implantation, mice were treated with 2×10⁷ cytotoxic T cells intravenously. At day five, a transient spike in pO₂ was observed indicating an influx of T cells into the CNS and putative tumor cell apoptosis. Immunohistochemistry and quantitative flow cytometry analysis confirmed that the pO₂ was causally related to the T cells infiltration. Surprisingly, the pO₂ spike was detected even though few (∼4×10⁴ T cells actually ingress into the CNS and with minimal tumor shrinkage. These results indicate the high sensitivity of this approach and its utility as a non-invasive surrogate biomarker of anti-cancer immunotherapeutic response in preclinical models.

  2. Depletion of cytotoxic T-cells does not protect NUP98-HOXD13 mice from myelodysplastic syndrome but reveals a modest tumor immunosurveillance effect.

    Directory of Open Access Journals (Sweden)

    Sheryl M Gough

    Full Text Available Myelodysplastic syndrome (MDS and aplastic anemia (AA patients both present with symptoms of bone marrow failure. In many AA patients, these features are thought to result from an oligoclonal expansion of cytotoxic T-cells that destroy haematopoietic stem or progenitor cells. This notion is supported by the observation that AA patients respond to immunosuppressive therapy. A fraction of MDS patients also respond well to immunosuppressive therapy suggesting a similar role for cytotoxic T-cells in the etiology of MDS, however the role of cytotoxic T-cells in MDS remains unclear. Mice that express a NUP98-HOXD13 (NHD13 transgene develop a MDS that closely mimics the human condition in terms of dysplasia, ineffective hematopoiesis, and transformation to acute myeloid leukemia (AML. We followed a cohort of NHD13 mice lacking the Rag1 protein (NHD13/Rag1KO to determine if the absence of lymphocytes might 1 delay the onset and/or diminish the severity of the MDS, or 2 effect malignant transformation and survival of the NHD13 mice. No difference was seen in the onset or severity of MDS between the NHD13 and NHD13/Rag1KO mice. However, NHD13/Rag1KO mice had decreased survival and showed a trend toward increased incidence of transformation to AML compared to the NHD13 mice, suggesting protection from AML transformation by a modest immuno-surveillance effect. In the absence of functional Tcrb signaling in the NHD13/Rag1KO T-cell tumors, Pak7 was identified as a potential Tcrb surrogate survival signal.

  3. Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells.

    Science.gov (United States)

    Lee, Pei-Ling; Chen, Bo-Chia; Gollavelli, Ganesh; Shen, Sin-Yu; Yin, Yu-Sheng; Lei, Shiu-Ling; Jhang, Cian-Ling; Lee, Woan-Ruoh; Ling, Yong-Chien

    2014-07-30

    Zinc oxide nanoparticles (ZnO NPs) exhibit novel physiochemical properties and have found increasing use in sunscreen products and cosmetics. The potential toxicity is of increasing concern due to their close association with human skin. A time-of-flight secondary ion mass spectrometry (TOF-SIMS) and confocal laser scanning microscopy (CLSM) imaging method was developed and validated for rapid and sensitive cytotoxicity study of ZnO NPs using human skin equivalent HaCaT cells as a model system. Assorted material, chemical, and toxicological analysis methods were used to confirm their shape, size, crystalline structure, and aggregation properties as well as dissolution behavior and effect on HaCaT cell viability in the presence of various concentrations of ZnO NPs in aqueous media. Comparative and correlative analyses of aforementioned results with TOF-SIMS and CLSM imaging results exhibit reasonable and acceptable outcome. A marked drop in survival rate was observed with 50μg/ml ZnO NPs. The CLSM images reveal the absorption and localization of ZnO NPs in cytoplasm and nuclei. The TOF-SIMS images demonstrate elevated levels of intracellular ZnO concentration and associated Zn concentration-dependent (40)Ca/(39)K ratio, presumably caused by the dissolution behavior of ZnO NPs. Additional validation by using stable isotope-labeled (68)ZnO NPs as tracers under the same experimental conditions yields similar cytotoxicity effect. The imaging results demonstrate spatially-resolved cytotoxicity relationship between intracellular ZnO NPs, (40)Ca/(39)K ratio, phosphocholine fragments, and glutathione fragments. The trend of change in TOF-SIMS spectra and images of ZnO NPs treated HaCaT cells demonstrate the possible mode of actions by ZnO NP involves cell membrane disruption, cytotoxic response, and ROS mediated apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Abrogation of bone marrow allograft resistance in mice by increased total body irradiation correlates with eradication of host clonable T cells and alloreactive cytotoxic precursors

    International Nuclear Information System (INIS)

    Schwartz, E.; Lapidot, T.; Gozes, D.; Singer, T.S.; Reisner, Y.

    1987-01-01

    Host-vs-graft activity presents a major obstacle for transplantation of T cell-depleted bone marrow in HLA-mismatched patients. In a primate model, conditioned exactly like leukemia patients, it was shown that residual host clonable T cells, as well as alloreactive cytotoxic precursors, were present in peripheral blood and spleen after completion of cytoreduction. We have now extended this study in a mouse model for allogeneic bone marrow transplantation. C 3 H/HeJ mice were treated by 9 Gy total body irradiation (TBI), and 24 hr later their spleen cells were cultured in the presence of T cell growth factor and phytohemagglutinin according to the limit dilution procedure. After 7 days of culture the average frequency of clonable cells was 2.5 X 10(-3) compared with 37 X 10(-3) in the spleens of normal mice. The T cell derivation of the growing cells was ascertained by complement-mediated cytotoxicity with anti-Thy-1 as well as with anti-Lyt-2 and anti-Ly-3T4. In parallel, we found that the initial engraftment rate of bone marrow allograft in mice given 9 Gy TBI was lower than that found in recipients of syngeneic marrow. The initial engraftment rate was measured by the number of colony-forming units in the spleen and by splenic uptake of 125 IUdR. A slight increase in TBI from 9 Gy to 11 Gy markedly reduced the difference in the number of spleen colony-forming units or the IUdR uptake between recipients of allogeneic and syngeneic bone marrow. This increase in TBI also coincided with eradication of detectable clonable T cells. Moreover, in mice transplanted with T cell-depleted bone marrow after 9 Gy TBI, we also demonstrate that cytotoxicity against donor-type target cells is present in the spleen 10 to 14 days posttransplantation, whereas in mice treated by 11 Gy TBI such alloreactivity could not be detected

  5. Induction of Type I Interferons by Therapeutic Nanoparticle-Based Vaccination Is Indispensable to Reinforce Cytotoxic CD8+ T Cell Responses During Chronic Retroviral Infection

    Science.gov (United States)

    Knuschke, Torben; Rotan, Olga; Bayer, Wibke; Kollenda, Sebastian; Dickow, Julia; Sutter, Kathrin; Hansen, Wiebke; Dittmer, Ulf; Lang, Karl S.; Epple, Matthias; Buer, Jan; Westendorf, Astrid M.

    2018-01-01

    T cell dysfunction and immunosuppression are characteristic for chronic viral infections and contribute to viral persistence. Overcoming these burdens is the goal of new therapeutic strategies to cure chronic infectious diseases. We recently described that therapeutic vaccination of chronic retrovirus infected mice with a calcium phosphate (CaP) nanoparticle (NP)-based vaccine carrier, functionalized with CpG and viral peptides is able to efficiently reactivate the CD8+ T cell response and improve the eradication of virus infected cells. However, the mechanisms underlying this effect were largely unclear. While type I interferons (IFNs I) are considered to drive T cell exhaustion by persistent immune activation during chronic viral infection, we here describe an indispensable role of IFN I induced by therapeutic vaccination to efficiently reinforce cytotoxic CD8+ T cells (CTL) and improve control of chronic retroviral infection. The induction of IFN I is CpG dependent and leads to significant IFN signaling indicated by upregulation of IFN stimulated genes. By vaccinating chronically retrovirus-infected mice lacking the IFN I receptor (IFNAR−/−) or by blocking IFN I signaling in vivo during therapeutic vaccination, we demonstrate that IFN I signaling is necessary to drive full reactivation of CTLs. Surprisingly, we also identified an impaired suppressive capability of regulatory T cells in the presence of IFNα, which implicates an important role for vaccine-induced IFNα in the regulation of the T cell response during chronic retroviral infection. Our data suggest that inducing IFN I signaling in conjunction with the presentation of viral antigens can reactivate immune functions and reduce viral loads in chronic infections. Therefore, we propose CaP NPs as potential therapeutic tool to treat chronic infections. PMID:29740425

  6. Induction of Type I Interferons by Therapeutic Nanoparticle-Based Vaccination Is Indispensable to Reinforce Cytotoxic CD8+ T Cell Responses During Chronic Retroviral Infection

    Directory of Open Access Journals (Sweden)

    Torben Knuschke

    2018-04-01

    Full Text Available T cell dysfunction and immunosuppression are characteristic for chronic viral infections and contribute to viral persistence. Overcoming these burdens is the goal of new therapeutic strategies to cure chronic infectious diseases. We recently described that therapeutic vaccination of chronic retrovirus infected mice with a calcium phosphate (CaP nanoparticle (NP-based vaccine carrier, functionalized with CpG and viral peptides is able to efficiently reactivate the CD8+ T cell response and improve the eradication of virus infected cells. However, the mechanisms underlying this effect were largely unclear. While type I interferons (IFNs I are considered to drive T cell exhaustion by persistent immune activation during chronic viral infection, we here describe an indispensable role of IFN I induced by therapeutic vaccination to efficiently reinforce cytotoxic CD8+ T cells (CTL and improve control of chronic retroviral infection. The induction of IFN I is CpG dependent and leads to significant IFN signaling indicated by upregulation of IFN stimulated genes. By vaccinating chronically retrovirus-infected mice lacking the IFN I receptor (IFNAR−/− or by blocking IFN I signaling in vivo during therapeutic vaccination, we demonstrate that IFN I signaling is necessary to drive full reactivation of CTLs. Surprisingly, we also identified an impaired suppressive capability of regulatory T cells in the presence of IFNα, which implicates an important role for vaccine-induced IFNα in the regulation of the T cell response during chronic retroviral infection. Our data suggest that inducing IFN I signaling in conjunction with the presentation of viral antigens can reactivate immune functions and reduce viral loads in chronic infections. Therefore, we propose CaP NPs as potential therapeutic tool to treat chronic infections.

  7. Program death-1 signaling and regulatory T cells collaborate to resist the function of adoptively transferred cytotoxic T lymphocytes in advanced acute myeloid leukemia.

    Science.gov (United States)

    Zhou, Qing; Munger, Meghan E; Highfill, Steven L; Tolar, Jakub; Weigel, Brenda J; Riddle, Megan; Sharpe, Arlene H; Vallera, Daniel A; Azuma, Miyuki; Levine, Bruce L; June, Carl H; Murphy, William J; Munn, David H; Blazar, Bruce R

    2010-10-07

    Tumor-induced immune defects can weaken host immune response and permit tumor cell growth. In a systemic model of murine acute myeloid leukemia (AML), tumor progression resulted in increased regulatory T cells (Treg) and elevation of program death-1 (PD-1) expression on CD8(+) cytotoxic T cells (CTLs) at the tumor site. PD-1 knockout mice were more resistant to AML despite the presence of similar percentage of Tregs compared with wild type. In vitro, intact Treg suppression of CD8(+) T-cell responses was dependent on PD-1 expression by T cells and Tregs and PD-L1 expression by antigen-presenting cells. In vivo, the function of adoptively transferred AML-reactive CTLs was reduced by AML-associated Tregs. Anti-PD-L1 monoclonal antibody treatment increased the proliferation and function of CTLs at tumor sites, reduced AML tumor burden, and resulted in long-term survivors. Treg depletion followed by PD-1/PD-L1 blockade showed superior efficacy for eradication of established AML. These data demonstrated that interaction between PD-1 and PD-L1 can facilitate Treg-induced suppression of T-effector cells and dampen the antitumor immune response. PD-1/PD-L1 blockade coupled with Treg depletion represents an important new approach that can be readily translated into the clinic to improve the therapeutic efficacy of adoptive AML-reactive CTLs in advanced AML disease.

  8. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1.

    Science.gov (United States)

    Osada, Takuya; Patel, Sandip P; Hammond, Scott A; Osada, Koya; Morse, Michael A; Lyerly, H Kim

    2015-06-01

    Bispecific T cell-engaging (BiTE) antibodies recruit polyclonal cytotoxic T cells (CTL) to tumors. One such antibody is carcinoembryonic antigen (CEA) BiTE that mediates T cell/tumor interaction by simultaneously binding CD3 expressed by T cells and CEA expressed by tumor cells. A widely operative mechanism for mitigating cytotoxic T cell-mediated killing is the interaction of tumor-expressed PD-L1 with T cell-expressed PD-1, which may be partly reversed by PD-1/PD-L1 blockade. We hypothesized that PD-1/PD-L1 blockade during BiTE-mediated T cell killing would enhance CTL function. Here, we determined the effects of PD-1 and PD-L1 blockade during initial T cell-mediated killing of CEA-expressing human tumor cell lines in vitro, as well as subsequent T cell-mediated killing by T lymphocytes that had participated in tumor cell killing. We observed a rapid upregulation of PD-1 expression and diminished cytolytic function of T cells after they had engaged in CEA BiTE-mediated killing of tumors. T cell cytolytic activity in vitro could be maximized by administration of anti-PD-1 or anti-PD-L1 antibodies alone or in combination if applied prior to a round of T cell killing, but T cell inhibition could not be fully reversed by this blockade once the T cells had killed tumor. In conclusion, our findings demonstrate that dual blockade of PD-1 and PD-L1 maximizes T cell killing of tumor directed by CEA BiTE in vitro, is more effective if applied early, and provides a rationale for clinical use.

  9. Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure

    DEFF Research Database (Denmark)

    Khamri, Wafa; Abeles, Robin D; Hou, Tie Zheng

    2017-01-01

    , hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood...... mice with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+ T cells from patients with ALF......BACKGROUND & AIMS: Patients with acute liver failure (ALF) have defects in innate immune responses to microbes (immune paresis) and are susceptible to sepsis. Cytotoxic T-lymphocyte-associated protein 4 (CTLA4), which interacts with the membrane receptor B7 (also called CD80 and CD86...

  10. Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Pei-Ling; Chen, Bo-Chia; Gollavelli, Ganesh [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Shen, Sin-Yu [Graduate Institute of Medical Science, Taipei Medical University, Taipei 11031, Taiwan (China); Yin, Yu-Sheng; Lei, Shiu-Ling [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Jhang, Cian-Ling; Lee, Woan-Ruoh [Department of Dermatology, Taipei Medical University, Taipei 11031, Taiwan (China); Ling, Yong-Chien, E-mail: ycling@mx.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Graduate Institute of Medical Science, Taipei Medical University, Taipei 11031, Taiwan (China)

    2014-07-30

    Highlights: • Assorted material, chemical, and toxicological analysis methods were used to confirm the shape, size, crystalline structure, and aggregation properties of ZnO NPS as well as their dissolution behavior and effect on HaCaT cell viability. • The developed TOF-SIMS and CLSM imaging method for rapid and sensitive study of ZnO NPs in HaCaT cells was validated by comparative and correlative analyses to aforementioned experimental results. • The imaging results demonstrate spatially-resolved cytotoxicity relationship between intracellular ZnO NPs concentration, {sup 40}Ca/{sup 39}K ratio, phosphocholine fragments, and glutathione fragments. CLSM images reveal the localization of ZnO NPs in cytoplasm and nuclei. • The trend of change in TOF-SIMS spectra and images of ZnO NPs treated HaCaT cells demonstrate the possible mode of actions by ZnO NP involves cell membrane disruption, cytotoxic response, and ROS mediated apoptosis. - Abstract: Zinc oxide nanoparticles (ZnO NPs) exhibit novel physiochemical properties and have found increasing use in sunscreen products and cosmetics. The potential toxicity is of increasing concern due to their close association with human skin. A time-of-flight secondary ion mass spectrometry (TOF-SIMS) and confocal laser scanning microscopy (CLSM) imaging method was developed and validated for rapid and sensitive cytotoxicity study of ZnO NPs using human skin equivalent HaCaT cells as a model system. Assorted material, chemical, and toxicological analysis methods were used to confirm their shape, size, crystalline structure, and aggregation properties as well as dissolution behavior and effect on HaCaT cell viability in the presence of various concentrations of ZnO NPs in aqueous media. Comparative and correlative analyses of aforementioned results with TOF-SIMS and CLSM imaging results exhibit reasonable and acceptable outcome. A marked drop in survival rate was observed with 50 μg/ml ZnO NPs. The CLSM images reveal the

  11. Ta1, a novel 105 KD human T cell activation antigen defined by a monoclonal antibody.

    Science.gov (United States)

    Fox, D A; Hussey, R E; Fitzgerald, K A; Acuto, O; Poole, C; Palley, L; Daley, J F; Schlossman, S F; Reinherz, E L

    1984-09-01

    By using a murine monoclonal antibody produced against an IL 2-dependent human T cell line, we defined a T lineage-specific molecule, termed Ta1, that is expressed strongly on activated T lymphocytes of both the T4 and T8 subsets, as well as on T cell lines and clones, but only weakly on a fraction of resting T cells. SDS-PAGE analysis of immunoprecipitates from 125I-labeled, activated T cells demonstrates a single major band of apparent m.w. 105 KD under both reducing and nonreducing conditions. Unlike anti-IL 2 receptor antibodies, anti-Ta1 does not inhibit T cell proliferative responses to mitogen, antigen, or IL 2-containing medium. Moreover, anti-Ta1 has no effect on T cell-mediated cytotoxicity. Ta1 appears to be a novel human T cell-specific activation antigen that may serve as a useful marker of T cell activation in human disease.

  12. Clonally expanded cytotoxic CD4+ T cells and the pathogenesis of IgG4-related disease.

    Science.gov (United States)

    Mattoo, Hamid; Stone, John H; Pillai, Shiv

    2017-02-01

    IgG4-related disease (IgG4-RD) is a systemic condition of unknown cause characterized by highly fibrotic lesions, with dense lymphoplasmacytic infiltrates containing a preponderance of IgG4-expressing plasma cells. CD4 + T cells and B cells constitute the major inflammatory cell populations in IgG4-RD lesions. IgG4-RD patients with active, untreated disease show a marked expansion of plasmablasts in the circulation. Although the therapeutic depletion of B cells suggests a role for these cells in the disease, a direct role for B cells or IgG4 in the pathogenesis of IgG4-RD is yet to be demonstrated. Among the CD4 + T-cell subsets, Th2 cells were initially thought to contribute to IgG4-RD pathogenesis, but many previous studies were confounded by the concomitant history of allergic diseases in the patients studied and the failure to use multi-color staining to definitively identify T-cell subsets in tissue samples. More recently, using an unbiased approach to characterize CD4 + T-cell subsets in patients with IgG4-RD - based on their clonal expansion and ability to infiltrate affected tissue sites - CD4 + CTLs have been identified as the major CD4 + T-cell subset in disease lesions as well as in the circulation. CD4 + CTLs in affected tissues secrete pro-fibrotic cytokines including IL-1β, TGF-β1, and IFN-γ as well as cytolytic molecules such as perforin and granzymes A and B. In this review, we examine possible mechanisms by which activated B cells and plasmablasts may collaborate with the expanded CD4 + CTLs in driving the fibrotic pathology of the disease and describe the lacunae in the field and in our understanding of IgG4-RD pathogenesis.

  13. Stable cytotoxic T cell escape mutation in hepatitis C virus is linked to maintenance of viral fitness.

    Directory of Open Access Journals (Sweden)

    Luke Uebelhoer

    2008-09-01

    Full Text Available Mechanisms by which hepatitis C virus (HCV evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA class I-restricted epitopes targeted by CD8(+ T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS3(1629-1637, displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC anchor and T cell receptor (TCR contact residues. Only one of these amino acid substitutions at position 9 (P9 of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7 TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily

  14. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins.

    Science.gov (United States)

    Sparwasser, T; Vabulas, R M; Villmow, B; Lipford, G B; Wagner, H

    2000-12-01

    Receptors for conserved molecular patterns associated with microbial pathogens induce synthesis of co-stimulatory molecules and cytokines in immature dendritic cells (DC), as do antigen-reactive CD4 T helper cells via CD40 signaling. Once activated, antigen-presenting DC may activate CD8 T cell responses in a T helper cell-independent fashion. Using immunostimulatory CpG-oligonucleotides (ODN) mimicking bacterial CpG-DNA, we tested whether CpG-DNA bypasses the need for T helper cells in CTL responses towards proteins by directly activating antigen-presenting DC to transit into professional APC. We describe that immature DC in situ constitutively process soluble proteins and generate CD8 T cell determinants yet CD8 T cell responses remain abortive. Induction of primary antigen-specific CD8 cytotoxic T lymphocyte (CTL)-mediated responses becomes initiated in wild-type as well as T helper cell-deficient mice, provided soluble protein and CpG-ODN are draining into the same lymph node. Specifically we show that CpG-ODN trigger antigen-presenting immature DC within the draining lymph node to acutely up-regulate co-stimulatory molecules and produce IL-12. These results provide new insights for generating in vivo efficient CTL responses to soluble proteins which may influence vaccination strategies.

  15. Repeated cycles of 5-fluorouracil chemotherapy impaired anti-tumor functions of cytotoxic T cells in a CT26 tumor-bearing mouse model.

    Science.gov (United States)

    Wu, Yanhong; Deng, Zhenling; Wang, Huiru; Ma, Wenbo; Zhou, Chunxia; Zhang, Shuren

    2016-09-20

    Recently, the immunostimulatory roles of chemotherapeutics have been increasingly revealed, although bone marrow suppression is still a common toxicity of chemotherapy. While the numbers and ratios of different immune subpopulations are analyzed after chemotherapy, changes to immune status after each cycle of treatment are less studied and remain unclear. To determine the tumor-specific immune status and functions after different cycles of chemotherapy, we treated CT26 tumor-bearing mice with one to four cycles of 5-fluorouracil (5-FU). Overall survival was not improved when more than one cycle of 5-FU was administered. Here we present data concerning the immune statuses after one and three cycles of chemotherapy. We analyzed the amount of spleen cells from mice treated with one and three cycles of 5-FU as well as assayed their proliferation and cytotoxicity against the CT26 tumor cell line. We found that the absolute numbers of CD8 T-cells and NK cells were not influenced significantly after either one or three cycles of chemotherapy. However, after three cycles of 5-FU, proliferated CD8 T-cells were decreased, and CT26-specific cytotoxicity and IFN-γ secretion of spleen cells were impaired in vitro. After one cycle of 5-FU, there was a greater percentage of tumor infiltrating CD8 T-cells. In addition, more proliferated CD8 T-cells, enhanced tumor-specific cytotoxicity as well as IFN-γ secretion of spleen cells against CT26 in vitro were observed. Given the increased expression of immunosuppressive factors, such as PD-L1 and TGF-β, we assessed the effect of early introduction of immunotherapy in combination with chemotherapy. We found that mice treated with cytokine induced killer cells and PD-L1 monoclonal antibodies after one cycle of 5-FU had a better anti-tumor performance than those treated with chemotherapy or immunotherapy alone. These data suggest that a single cycle of 5-FU treatment promoted an anti-tumor immune response, whereas repeated chemotherapy

  16. Activated STAT5 promotes long-lived cytotoxic CD8+ T cells that induce regression of autochthonous melanoma.

    Science.gov (United States)

    Grange, Magali; Buferne, Michel; Verdeil, Grégory; Leserman, Lee; Schmitt-Verhulst, Anne-Marie; Auphan-Anezin, Nathalie

    2012-01-01

    Immunotherapy based on adoptive transfer of tumor antigen-specific CD8(+) T cell (TC) is generally limited by poor in vivo expansion and tumor infiltration. In this study, we report that activated STAT5 transcription factors (STAT5CA) confer high efficiency on CD8(+) effector T cells (eTC) for host colonization after adoptive transfer. Engineered expression of STAT5CA in antigen-experienced TCs with poor replicative potential was also sufficient to convert them into long-lived antigen-responsive eTCs. In transplanted mastocytoma- or melanoma-bearing hosts, STAT5CA greatly enhanced the ability of eTCs to accumulate in tumors, become activated by tumor antigens, and to express the cytolytic factor granzyme B. Taken together, these properties contributed to an increase in tumor regression by STAT5CA-transduced, as compared with untransduced, TCs including when the latter control cells were combined with infusion of interleukin (IL)-2/anti-IL-2 complexes. In tumors arising in the autochthonous TiRP transgenic model of melanoma associated with systemic chronic inflammation, endogenous CD8(+) TCs were nonfunctional. In this setting, adoptive transfer of STAT5CA-transduced TCs produced superior antitumor effects compared with nontransduced TCs. Our findings imply that STAT5CA expression can render TCs resistant to the immunosuppressive environment of melanoma tumors, enhancing their ability to home to tumors and to maintain high granzyme B expression, as well as their capacity to stimulate granzyme B expression in endogenous TCs. ©2011 AACR.

  17. The porcine skin associated T-cell homing chemokine CCL27: molecular cloning and mRNA expression in piglets infected experimentally with Staphylococcus hyicus

    DEFF Research Database (Denmark)

    Johnsen, C. K.; Jensen, Annette Nygaard; Ahrens, P.

    2003-01-01

    CCL27 (also named CTACK, ALP, ILC and ESkine) is a CC chemokine primarily expressed by keratinocytes of the skin. The cognate receptor of CCL27 named CCR10 (GPR-2), is also expressed in skin-derived cells, and in addition by a subset of peripheral blood T-cells and in a variety of other tissues....... In this paper, we report the cloning of porcine CCL27 cDNA and investigation of CCL27 mRNA expression in Staphylococcus hyicus infected piglets. At the protein level, 77 and 74% homology was found to human and mouse CCL27 sequences, respectively. The results of the expression analyses show that CCL27 m...

  18. Molecular cloning of human T-cell lymphotrophic virus type I-like proviral genome from the peripheral lymphocyte DNA of a patient with chronic neurologic disorders

    International Nuclear Information System (INIS)

    Reddy, E.P.; Mettus, R.V.; DeFreitas, E.; Wroblewska, Z.; Cisco, M.; Koprowski, H.

    1988-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-I), the etiologic agent of human T-cell leukemia, has recently been shown to be associated with neurologic disorders such as tropical spastic paraparesis, HTLV-associated myelopathy, and possibly with multiple sclerosis. In this communication, the authors have examined one specific case of neurologic disorder that can be classified as multiple sclerosis or tropical spastic paraparesis. The patient suffering from chronic neurologic disorder was found to contain antibodies to HTLV-I envelope and gag proteins in his serum and cerebrospinal fluid. Lymphocytes from peripheral blood and cerebrospinal fluid of the patient were shown to express viral RNA sequences by in situ hybridization. Southern blot analysis of the patient lymphocyte DNA revealed the presence of HTLV-I-related sequences. Blot-hybridization analysis of the RNA from fresh peripheral lymphocytes stimulated with interleukin 2 revealed the presence of abundant amounts of genomic viral RNA with little or no subgenomic RNA. They have clones the proviral genome from the DNA of the peripheral lymphocytes and determined its restriction map. This analysis shows that this proviral genome is very similar if not identical to that of the prototype HTLV-I genome

  19. Ultraviolet irradiation modulates MHC-alloreactive cytotoxic T-cell precursors involved in the onset of graft-versus-host disease

    International Nuclear Information System (INIS)

    Prooijen, H.C. Van; Aarts-Riemens, M.I.; Weelden, H. Van; Grijzenhout, M.A.

    1992-01-01

    Ultraviolet B (UVB) irradiation of cellular blood components has been proposed as a new technology to prevent HLA sensitization in recipients. Earlier studies have shown that a dose of 2 J/cm 2 abrogates the ability of lymphocytes to serve as stimulators in mixed lymphocyte cultures (MLC). In this study the authors evaluate the effect of UV energy on T-lymphocytes for the prevention of transfusion-associated graft-versus-host disease (TA-GvHD). The response of cytotoxic T-lymphocyte precursors against host alloantigens was almost undetectable at a dose of 0.5 J/cm 2 . T-cell proliferation in MLC or in response to phytohaemagglutinin was inhibited by more than 95% at doses of 1 J/cm 2 or higher. The data suggest that UV irradiation can be used to prevent both HLA sensitization and TA-GvHD in recipients. (Author)

  20. Induction of novel CD8+ T-cell responses during chronic untreated HIV-1 infection by immunization with subdominant cytotoxic T-lymphocyte epitopes

    DEFF Research Database (Denmark)

    Kloverpris, Henrik; Karlsson, Ingrid; Bonde, Jesper

    2009-01-01

    OBJECTIVE:: To investigate the potential to induce additional cytotoxic T-lymphocyte (CTL) immunity during chronic HIV-1 infection. DESIGN:: We selected infrequently targeted or subdominant but conserved HLA-A*0201-binding epitopes in Gag, Pol, Env, Vpu and Vif. These relatively immune silent...... epitopes were modified as anchor-optimized peptides to improve immunogenicity and delivered on autologous monocyte-derived dendritic cells (MDDCs). METHODS:: Twelve treatment-naïve HLA-A*0201 HIV-1-infected Danish individuals received 1 x 10 MDDCs subcutaneously (s.c.) (weeks 0, 2, 4 and 8), pulsed......-cell counts was observed. CONCLUSION:: These data show that it is possible to generate new T-cell responses in treatment-naive HIV-1-infected individuals despite high viral loads, and thereby redirect immunity to target new multiple and rationally selected subdominant CTL epitopes. Further optimization could...

  1. Identification of an MSI-H Tumor-Specific Cytotoxic T Cell Epitope Generated by the (−1 Frame of U79260(FTO

    Directory of Open Access Journals (Sweden)

    Michael Linnebacher

    2010-01-01

    Full Text Available Microsatellite instability (MSI-H induced by defects of the DNA mismatch repair system results in insertion or deletion of single nucleotides at short repetitive DNA sequences. About 15% of sporadic and approximately 90% of hereditary nonpolyposis colorectal cancers display MSI-H. When affecting coding regions, MSI-H results in frameshift mutations and expression of corresponding frameshift peptides (FSPs. Functional tumor promoting relevance has been demonstrated for a growing number of genes frequently hit by MSI-H. Contrary, immune reactions against FSPs are involved in the immune surveillance of MSI-H cancers. Here, we provide conclusive data that the (−1 frame of U79260(FTO encodes an HLA-A0201-restricted cytotoxic T cell epitope (FSP11; TLSPGWSAV. T cells specific for FSP11 efficiently recognized HLA-A0201(pos tumor cells harboring the mutated reading frame. Considering the exceptionally high mutation rate of U79260(FTO in MSI-H colorectal carcinoma (81.8%, this recommends that FSP11 be a component of future vaccines.

  2. Identification of swine influenza virus epitopes and analysis of multiple specificities expressed by cytotoxic T cell subsets

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Breum, Solvej Østergaard; Riber, Ulla

    2014-01-01

    Background: Major histocompatibility complex (MHC) class I peptide binding and presentation are essential for antigen-specific activation of cytotoxic T lymphocytes (CTLs) and swine MHC class I molecules, also termed swine leukocyte antigens (SLA), thus play a crucial role in the process that leads...... to elimination of viruses such as swine influenza virus (SwIV). This study describes the identification of SLA-presented peptide epitopes that are targets for a swine CTL response, and further analyses multiple specificities expressed by SwIV activated CTL subsets. Findings: Four SwIV derived peptides were...

  3. A virus-sensitive suppressor cell is involved in the regulation of human allospecific T cell-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Muluk, S.C.; Bernstein, D.C.; Shearer, G.M.

    1989-01-01

    The in vitro generation of allospecific CTL by human PBMC was enhanced 4- to 16-fold by sequential plastic and nylon wool adherence, which depleted the PBMC of macrophages and B cells. The enhanced CTL response was suppressed by adding back irradiated, unfractionated PBMC or adherent cells to the depleted cells. This finding suggests that the enhanced CTL response was not simply a consequence of enrichment of T cells, but was instead due to active suppression by radioresistant cells contained in the adherent fraction. Of note is the finding that, unlike the CTL response, the proliferative response to allostimulation was not affected by the removal of adherent cells. The suppressor function could be abrogated by preincubation of irradiated PBMC with influenza A virus before the coculture with depleted cells. Furthermore, costimulation of unfractionated PBMC with influenza A virus and allogeneic stimulators augmented allospecific CTL activity. Thus, in the adherent fraction of human PBMC, there appears to be a native suppressor population that can be functionally inactivated by virus. This result may account for the clinical observation of increased allograft rejection after certain viral infections

  4. Cytotoxic T-lymphocyte clones, established by stimulation with the HLA-A2 binding p5365-73 wild type peptide loaded on dendritic cells In vitro, specifically recognize and lyse HLA-A2 tumour cells overexpressing the p53 protein

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Petersen, T R; Kirkin, A F

    2000-01-01

    of recognizing p53 derived wild type (self) peptides. Furthermore, the capacity of R9V specific T cell clones to exert HLA restricted cytotoxicity, argues that the R9V peptide is naturally presented on certain cancer cells. This supports the view that p53 derived wild type peptides might serve as candidate......Mutations in the tumour suppressor gene p53 are among the most frequent genetic alterations in human malignancies, often associated with an accumulation of the p53 protein in the cytoplasm. We have generated a number of cytotoxic T lymphocyte (CTL) clones that specifically recognize the HLA-A*0201...

  5. A case of atomic bomb survivor exhibiting a high frequency of peripheral blood TCRαβ+CD4-8-T cells

    International Nuclear Information System (INIS)

    Kusunoki, Yoichiro; Hirai, Yuko; Yamaoka, Mika; Morishita, Yukari; Tanabe, Kazumi; Takahashi, Keiko; Koyama, Kazuaki; Akiyama, Mitoshi

    1990-01-01

    In a healthy A-bomb female survivor aged 47, a high incidence of TCRαβ + CD4 - 8 - T cells (8.7%) was detected in the peripheral blood lymphocytes. Thirteen TCRαβ + CD4 - 8 - T cell clones were established and were analyzed by using a T-cell receptor (TCR) β chain cDNA as a probe. These clones were different from each other in TCR gene reconstitution pattern, surface phenotype, and cytotoxic activity. These findings indicated multi-clonal proliferation of TCRαβ + CD4 - 8 - T cell. (N.K.)

  6. Dairy cows produce cytokine and cytotoxic T cell responses following vaccination with an antigenic fraction from Streptococcus uberis.

    Science.gov (United States)

    Wedlock, D Neil; Buddle, Bryce M; Williamson, John; Lacy-Hulbert, S Jane; Turner, Sally-Anne; Subharat, Supatsak; Heiser, Axel

    2014-07-15

    Streptococcus uberis is a major cause of mastitis in dairy cows worldwide and currently, there is no vaccine commercially available against this form of mastitis. In the current study, cell-free extracts (CFE) were prepared from each of three different S. uberis strains, designated as #3, #24 and #363 representative of the three main sequence types of S. uberis that cause mastitis in New Zealand. These proteins were formulated into vaccines with Emulsigen-D and the immunogenicity of the vaccines was determined in both calves and dairy cows. Two groups of calves (n=5/group) were vaccinated subcutaneously with CFE from strain #24 or strains #3, #24 and #363 formulated with Emulsigen-D, respectively. A third group (n=5) was vaccinated with CFE from the three strains formulated with Emulsigen-D and also containing recombinant bovine granulocyte macrophage colony-stimulating factor while, a control group (n=5) was not vaccinated. Vaccinated animals produced strong antibody responses to the S. uberis antigens and an antigen-specific cytotoxic effect against blood monocytes/macrophages that had phagocytosed S. uberis, with no significant differences in responses observed between the three vaccinated groups. In a second trial, the safety and immunogenicity of the vaccine containing CFE from all three strains of S. uberis and Emulsigen-D was determined in dairy cows. A group of six cows were vaccinated subcutaneously at 3 and 1 week prior to dry off and revaccinated 2-3 weeks before calving. Immune responses in blood and mammary gland secretions (MGS) were monitored during the dry period and in the subsequent lactation. The vaccine was well tolerated with no adverse effect from vaccination observed in any of the cows. Vaccination induced an antigen-specific cytotoxic effect against blood monocytes/macrophages that had phagocytosed S. uberis, moderate antigen-specific IFN-γ responses in blood and strong antibody responses in both blood and MGS. In conclusion, the results

  7. A Comparative Study of the Expression of Cytotoxic Proteins in Allergic Contact Dermatitis and Psoriasis : Spongiotic Skin Lesions in Allergic Contact Dermatitis Are Highly Infiltrated by T Cells Expressing Perforin and Granzyme B

    OpenAIRE

    Yawalkar, Nikhil; Hunger, Robert E.; Buri, Caroline; Schmid, Simone; Egli, Fabienne; Brand, Christoph U.; Mueller, Christoph; Pichler, Werner J.; Braathen, Lasse R.

    2001-01-01

    Recent reports indicate that cytotoxic T cells are critically involved in contact hypersensitivity reactions in animals. In this study we sought to investigate the in vivo expression of cytotoxic granule proteins in the elicitation phase of allergic contact dermatitis in humans. Skin biopsy specimens were obtained from patients with allergic contact dermatitis (n = 8) and psoriasis (n = 6) and from controls with normal skin (n = 6). Expression of perforin and granzyme B was investigated by in...

  8. Type 1- and type 2-like lesional skin-derived Mycobacterium leprae-responsive T cell clones are characterized by coexpression of IFN-gamma/TNF-alpha and IL-4/IL-5/IL-13, respectively

    NARCIS (Netherlands)

    Verhagen, C. E.; van der Pouw Kraan, T. C.; Buffing, A. A.; Chand, M. A.; Faber, W. R.; Aarden, L. A.; Das, P. K.

    1998-01-01

    In an earlier study, we generated a large number of Mycobacterium leprae-responsive and M. leprae-nonresponsive T cell clones (TCC) from the lesional skin of immunologic unstable borderline leprosy patients. In that study, we divided TCC into type 1- and type 2-like on the basis of their IFN-gamma

  9. Cytotoxic effector functions of T cells are not required for protective immunity against fatal Rickettsia typhi infection in a murine model of infection: Role of TH1 and TH17 cytokines in protection and pathology.

    Directory of Open Access Journals (Sweden)

    Kristin Moderzynski

    2017-02-01

    Full Text Available Endemic typhus caused by Rickettsia (R. typhi is an emerging febrile disease that can be fatal due to multiple organ pathology. Here we analyzed the requirements for protection against R. typhi by T cells in the CB17 SCID model of infection. BALB/c wild-type mice generate CD4+ TH1 and cytotoxic CD8+ T cells both of which are sporadically reactivated in persistent infection. Either adoptively transferred CD8+ or CD4+ T cells protected R. typhi-infected CB17 SCID mice from death and provided long-term control. CD8+ T cells lacking either IFNγ or Perforin were still protective, demonstrating that the cytotoxic function of CD8+ T cells is not essential for protection. Immune wild-type CD4+ T cells produced high amounts of IFNγ, induced the release of nitric oxide in R. typhi-infected macrophages and inhibited bacterial growth in vitro via IFNγ and TNFα. However, adoptive transfer of CD4+IFNγ-/- T cells still protected 30-90% of R. typhi-infected CB17 SCID mice. These cells acquired a TH17 phenotype, producing high amounts of IL-17A and IL-22 in addition to TNFα, and inhibited bacterial growth in vitro. Surprisingly, the neutralization of either TNFα or IL-17A in CD4+IFNγ-/- T cell recipient mice did not alter bacterial elimination by these cells in vivo, led to faster recovery and enhanced survival compared to isotype-treated animals. Thus, collectively these data show that although CD4+ TH1 cells are clearly efficient in protection against R. typhi, CD4+ TH17 cells are similarly protective if the harmful effects of combined production of TNFα and IL-17A can be inhibited.

  10. Switch from perforin-expressing to perforin-deficient CD8(+) T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo.

    Science.gov (United States)

    Meiraz, Avihai; Garber, Orit Gal; Harari, Shaul; Hassin, David; Berke, Gideon

    2009-09-01

    Although CD8(+) cytotoxic T lymphocytes (CTL) exhibit both Fas ligand (FasL) -based and perforin-based lytic activities, the accepted hallmark of a fully active CTL remains its perforin killing machinery. Yet the origin, rationale for possessing both a slow-acting (FasL) and a fast-acting (perforin) killing mechanism has remained enigmatic. Here we have investigated perforin expression in CTL directly involved in acute tumour (i.e. leukaemias EL4 and L1210) allograft rejection occurring within the peritoneal cavity. We show that at the height of the immune response, the majority of conjugate-forming CD8(+) CTL express high levels of perforin messenger RNA and protein, and kill essentially via perforin. Later however, coinciding with complete rejection, fully cytocidal CTL emerge which exhibit a stark decrease in perforin and now kill preferentially via constitutively expressed FasL. Although late in emergence, and persistent, these powerful CTL are neither effector-memory nor memory CTL. This finding has implications for the monitoring of anti-transplant responses in clinical settings, based on assessing perforin expression in graft infiltrating CD8(+) T cells. The results show that as the immune response progresses in vivo, targeted cellular suicide mainly prunes high perforin-expressing CD8(+) cells, resulting in the gradual switch in effector CTL, from mostly perforin-based to largely Fas/FasL-based killers. Hence, two kinds of CD8(+) CTL have two killing strategies.

  11. Switch from perforin-expressing to perforin-deficient CD8+ T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo

    Science.gov (United States)

    Meiraz, Avihai; Garber, Orit Gal; Harari, Shaul; Hassin, David; Berke, Gideon

    2009-01-01

    Although CD8+ cytotoxic T lymphocytes (CTL) exhibit both Fas ligand (FasL) -based and perforin-based lytic activities, the accepted hallmark of a fully active CTL remains its perforin killing machinery. Yet the origin, rationale for possessing both a slow-acting (FasL) and a fast-acting (perforin) killing mechanism has remained enigmatic. Here we have investigated perforin expression in CTL directly involved in acute tumour (i.e. leukaemias EL4 and L1210) allograft rejection occurring within the peritoneal cavity. We show that at the height of the immune response, the majority of conjugate-forming CD8+ CTL express high levels of perforin messenger RNA and protein, and kill essentially via perforin. Later however, coinciding with complete rejection, fully cytocidal CTL emerge which exhibit a stark decrease in perforin and now kill preferentially via constitutively expressed FasL. Although late in emergence, and persistent, these powerful CTL are neither effector-memory nor memory CTL. This finding has implications for the monitoring of anti-transplant responses in clinical settings, based on assessing perforin expression in graft infiltrating CD8+ T cells. The results show that as the immune response progresses in vivo, targeted cellular suicide mainly prunes high perforin-expressing CD8+ cells, resulting in the gradual switch in effector CTL, from mostly perforin-based to largely Fas/FasL-based killers. Hence, two kinds of CD8+ CTL have two killing strategies. PMID:19689737

  12. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells.

    Science.gov (United States)

    Tofolean, Ioana Teodora; Ganea, Constanta; Ionescu, Diana; Filippi, Alexandru; Garaiman, Alexandru; Goicea, Alexandru; Gaman, Mihnea-Alexandru; Dimancea, Alexandru; Baran, Irina

    2016-01-01

    We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Genomewide analyses of pathogenic and regulatory T cells of NOD ...

    Indian Academy of Sciences (India)

    DANG SUN

    Two regulatory T cell clones (Tregs) were used in this study. Treg1 cells were clone-derived from the previously described. Keywords. methylation; cDNA microarray; type 1 diabetes; pathogenic T cells; .... Gender-specific differences in.

  14. In Vitro Evidence of the Presence of Mesenchymal Stromal Cells in Cervical Cancer and Their Role in Protecting Cancer Cells from Cytotoxic T Cell Activity

    Science.gov (United States)

    Montesinos, Juan J.; Mora-García, María de L.; Mayani, Héctor; Flores-Figueroa, Eugenia; García-Rocha, Rosario; Fajardo-Orduña, Guadalupe R.; Castro-Manrreza, Marta E.; Weiss-Steider, Benny

    2013-01-01

    Mesenchymal stromal cells (MSCs) have been isolated from different tumors and it has been suggested that they support tumor growth through immunosuppression processes that favor tumor cell evasion from the immune system. To date, however, the presence of MSCs in cervical cancer (CeCa) and their possible role in tumor growth remains unknown. Herein we report on the presence of MSCs in cervical tissue, both in normal conditions (NCx-MSCs) and in CeCa (CeCa-MSCs), and described several biological properties of such cells. Our study showed similar patterns of cell surface antigen expression, but distinct differentiation potentials, when we compared both cervical MSC populations to MSCs from normal bone marrow (BM-MSCs, the gold standard). Interestingly, CeCa-MSCs were negative for the presence of human papiloma virus, indicating that these cells are not infected by such a viral agent. Also, interestingly, and in contrast to NCx-MSCs, CeCa-MSCs induced significant downregulation of surface HLA class I molecules (HLA-A*0201) on CaSki cells and other CeCa cell lines. We further observed that CeCa-MSCs inhibited antigen-specific T cell recognition of CaSki cells by cytotoxic T lymphocytes (CTLs). HLA class I downregulation on CeCa cells correlated with the production of IL-10 in cell cocultures. Importantly, this cytokine strongly suppressed recognition of CeCa cells by CTLs. In summary, this study demonstrates the presence of MSCs in CeCa and suggests that tumor-derived MSCs may provide immune protection to tumor cells by inducing downregulation of HLA class I molecules. This mechanism may have important implications in tumor growth. PMID:23656504

  15. Old and New World arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones

    International Nuclear Information System (INIS)

    Meulen, Jan ter; Badusche, Marlis; Satoguina, Judith; Strecker, Thomas; Lenz, Oliver; Loeliger, Cornelius; Sakho, Mohamed; Koulemou, Kekoura; Koivogui, Lamine; Hoerauf, Achim

    2004-01-01

    Data from human studies and animal experiments indicate a dominant role of T-cells over antibodies in controlling acute Lassa virus infection and providing immunity to reinfection. Knowledge of the epitopes recognized by T-cells may therefore be crucial to the development of a recombinant Lassa virus vaccine. In order to study human T-cell reactivity to the most conserved structural protein of Lassa virus, the glycoprotein 2 (GP2), seven GP2-specific CD4+ T-cell clones (TCCs) were generated from the lymphocytes of a Lassa antibody positive individual. All TCC displayed high specific proliferation, showed DR-restriction, and produced IFN-γ upon stimulation with recombinant GP2. The epitope of four of the clones was localized to a short stretch of 13 amino acids located in the N-terminal part of GP2 (aa 289-301, numbering according to sequence of GPC). This epitope is conserved in all strains of Lassa virus and lymphocytic choriomeningitis virus (LCMV), shows >90% similarity in all New World arenaviruses of clade B, and overlaps with the proposed fusion domain of GP2. Peptides with conservative aa exchanges, as they naturally occur in the epitope 289-301 of the Old World arenavirus Mopeia and some New World arenaviruses, continued to effectively stimulate the Lassa-GP2-specific T-cell clones tested. The finding of a human T-helper cell epitope, which is highly conserved between Old and New World arenaviruses, is of importance for the design of arenavirus vaccines

  16. Amino acid similarity accounts for T cell cross-reactivity and for "holes" in the T cell repertoire

    DEFF Research Database (Denmark)

    Pletscher-Frankild, Sune; de Boer, Rob J.; Lund, Ole

    2008-01-01

    Background: Cytotoxic T cell (CTL) cross-reactivity is believed to play a pivotal role in generating immune responses but the extent and mechanisms of CTL cross-reactivity remain largely unknown. Several studies suggest that CTL clones can recognize highly diverse peptides, some sharing no obvious...... sequence identity. The emerging realization in the field is that T cell receptors (TcR) recognize multiple distinct ligands. Principal Findings: First, we analyzed peptide scans of the HIV epitope SLFNTVATL (SFL9) and found that TCR specificity is position dependent and that biochemically similar amino...... to demonstrate that seemingly distinct T cell epitopes, i.e., ones with low sequence identity, are in fact more biochemically similar than expected. Additionally, an analysis of HIV immunogenicity data with our model showed that CTLs have the tendency to respond mostly to peptides that do not resemble self...

  17. Cloning

    Science.gov (United States)

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  18. T cell epitopes of the major fraction of rye grass Lolium perenne (Lol p I) defined using overlapping peptides in vitro and in vivo. I. Isoallergen clone1A.

    Science.gov (United States)

    Bungy Poor Fard, G A; Latchman, Y; Rodda, S; Geysen, M; Roitt, I; Brostoff, J

    1993-10-01

    One hundred and fifteen overlapping synthetic peptides spanning the entire sequence of the iso-allergen clone1A of Lol p I from rye grass Lolium perenne were synthesized by the multi-pin technique. The peptides were overlapping 12mers, offset by two residues and overlapping by 10 residues. Sets of six adjacent overlapping peptides (except pool-1, 15, 20) were pooled and were used in vitro and in vivo to map the T cell epitopes on Lol p I. Six atopics who were skin test and RAST positive to rye grass showed T cell responses to L. perenne extract (LPE) and its major fraction (Lol p I). Five out of six showed T cell responses in vitro to peptide pool-17, while five non-atopics did not respond to any of the peptide pools. By testing the individual peptides of pool-17, we have located the T cell epitope on Lol p I. Interestingly, when we tested pool-17 and its single peptides in vivo by intradermal skin testing we found in one patient a typical DTH after 24-48 h to pool-17 and its peptides (peptides 3 and 4) which exactly matched the in vitro responses. By defining the T cell epitopes in this way a greater understanding of the allergic response to pollen will be obtained, and a more effective and less dangerous vaccine may be possible for treating patients with hay fever.

  19. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4

    DEFF Research Database (Denmark)

    Sonkoly, Enikö; Janson, Peter; Majuri, Marja-Leena

    2010-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs that suppress gene expression at the posttranscriptional level. Atopic dermatitis is a common chronic inflammatory skin disease characterized by the presence of activated T cells within the skin.......MicroRNAs (miRNAs) are short noncoding RNAs that suppress gene expression at the posttranscriptional level. Atopic dermatitis is a common chronic inflammatory skin disease characterized by the presence of activated T cells within the skin....

  20. Mapping of T cell epitopes of the major fraction of rye grass using peripheral blood mononuclear cells from atopics and non-atopics. II. Isoallergen clone 5A of Lolium perenne group I (Lol p I).

    Science.gov (United States)

    Bungy, G A; Rodda, S; Roitt, I; Brostoff, J

    1994-09-01

    Rye grass is the major cause of hay fever which currently affects 20% of the population. Lolium perenne group I (Lol p I) is a glycoprotein of 240 amino acid residues, representing the main allergen of rye grass. We have used peripheral blood mononuclear cells (PBMC) from controls and subjects allergic to rye grass and cultured them with L. perenne extract (LPE) and Lol p I and measured lymphocyte activation using thymidine incorporation. Patients were further studied against the 115 overlapping peptides of the iso-allergen clone 5A of Lol p I to see whether the 4 amino acid residue differences between clone 1A and clone 5A affect the T cell epitope and thus, lymphocyte activation. There are 24 peptide differences between isoallergen clone 1A and clone 5A occurring in pools 4, 13, 16 and 19 each one of which could be an immunodominant epitope. The PBMC from all allergic patients studied showed a strong proliferative response to LPE and Lol p I. Five immunogenic peptide pools, pool 6, 15, 16, 17 and 19 of the isoallergen clone 5A were also identified. Most of these pools are in the C-terminal region of Lol p I. Out of 20 pools tested in vitro 1 pool (pool-17) induced PBMC proliferation in five out of six patients who were not restricted to an HLA class II DR gene product. However, three out of the six subjects responded to various other peptide pools in addition to the immunodominant pool. In spite of the amino acid differences between the two clones, pool 17 still remains the immunodominant T cell epitope. Control subjects showed only weak responses to LPE and no detectable response to either Lol p I or peptide pools. From within the most active pool we have defined two peptides of the isoallergen clone 5A (identical in sequence with clone 1A) which stimulate lymphocytes from rye grass-sensitive patients in vitro. Previous studies with the two continuous sequences (193WGAVWRIDTPDK204 and 195AVWRIDTPDKLT206) tested in vivo by intradermal skin testing have shown

  1. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    International Nuclear Information System (INIS)

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho

    2007-01-01

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 μM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins

  2. Simultaneous assessment of cytotoxic T lymphocyte responses against multiple viral infections by combined usage of optimal epitope matrices, anti- CD3 mAb T-cell expansion and "RecycleSpot"

    Directory of Open Access Journals (Sweden)

    Wong Johnson T

    2005-05-01

    Full Text Available Abstract The assessment of cellular anti-viral immunity is often hampered by the limited availability of adequate samples, especially when attempting simultaneous, high-resolution determination of T cell responses against multiple viral infections. Thus, the development of assay systems, which optimize cell usage, while still allowing for the detailed determination of breadth and magnitude of virus-specific cytotoxic T lymphocyte (CTL responses, is urgently needed. This study provides an up-to-date listing of currently known, well-defined viral CTL epitopes for HIV, EBV, CMV, HCV and HBV and describes an approach that overcomes some of the above limitations through the use of peptide matrices of optimally defined viral CTL epitopes in combination with anti-CD3 in vitro T cell expansion and re-use of cells from negative ELISpot wells. The data show that, when compared to direct ex vivo cell preparations, antigen-unspecific in vitro T cell expansion maintains the breadth of detectable T cell responses and demonstrates that harvesting cells from negative ELISpot wells for re-use in subsequent ELISpot assays (RecycleSpot, further maximized the use of available cells. Furthermore when combining T cell expansion and RecycleSpot with the use of rationally designed peptide matrices, antiviral immunity against more than 400 different CTL epitopes from five different viruses can be reproducibly assessed from samples of less than 10 milliliters of blood without compromising information on the breadth and magnitude of these responses. Together, these data support an approach that facilitates the assessment of cellular immunity against multiple viral co-infections in settings where sample availability is severely limited.

  3. Viral dsRNA-activated human dendritic cells produce IL-27, which selectively promotes cytotoxicity in naive CD8(+) T cells

    NARCIS (Netherlands)

    de Groot, Rosa; van Beelen, Astrid J.; Bakdash, Ghaith; Taanman-Kueter, Esther W. M.; de Jong, Esther C.; Kapsenberg, Martien L.

    2012-01-01

    Viral recognition programs DCs to express Signal 3 molecules that promote the differentiation of effector CD8(+) T cells. Besides IL-12, another DC-derived IL-12 family member, IL-27, has been reported to contribute herein, but its specific role is not well understood. Here, we show that whereas

  4. Natural CD8{sup +}25{sup +} regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yufeng; Zhang, Xueshu; Zhao, Tuo; Li, Wei; Xiang, Jim, E-mail: jim.xiang@saskcancer.ca

    2013-08-16

    Highlights: •CD8{sup +}25{sup +} regulatory T cells secrete tolerogenic exosomes. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4{sup +}25{sup +} and CD8{sup +}25{sup +} regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8{sup +}25{sup +} Tr cells from C57BL/6 mouse naive CD8{sup +} T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXO{sub Tr}) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXO{sub Tr} had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DC{sub OVA}) plus Tr cells or EXO{sub Tr}, and then assessed OVA-specific CD8{sup +} T cell responses using PE-H-2K{sup b}/OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10{sub OVA} melanoma cells. We demonstrated that DC{sub OVA}-stimulated CD8{sup +} T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p < 0.05), and from 8/8 to 2/8 and 5/8 mice DC{sub OVA} (p < 0.05) in immunized mice with co-injection of Tr cells and EXO{sub Tr}, respectively. Our results indicate that natural CD8{sup +}25{sup +} Tr cell-released EXOs, alike CD8{sup +}25{sup +} Tr cells, can inhibit CD8{sup +} T cell responses and antitumor immunity. Therefore, EXOs derived from

  5. Natural CD8+25+ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    International Nuclear Information System (INIS)

    Xie, Yufeng; Zhang, Xueshu; Zhao, Tuo; Li, Wei; Xiang, Jim

    2013-01-01

    Highlights: •CD8 + 25 + regulatory T cells secrete tolerogenic exosomes. •CD8 + 25 + regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8 + 25 + regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4 + 25 + and CD8 + 25 + regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8 + 25 + Tr cells from C57BL/6 mouse naive CD8 + T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXO Tr ) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXO Tr had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DC OVA ) plus Tr cells or EXO Tr , and then assessed OVA-specific CD8 + T cell responses using PE-H-2K b /OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10 OVA melanoma cells. We demonstrated that DC OVA -stimulated CD8 + T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p OVA (p Tr , respectively. Our results indicate that natural CD8 + 25 + Tr cell-released EXOs, alike CD8 + 25 + Tr cells, can inhibit CD8 + T cell responses and antitumor immunity. Therefore, EXOs derived from natural CD4 + 25 + and CD8 + 25 + Tr cells may become an alternative for immunotherapy of autoimmune diseases

  6. Self-reactive T cells

    DEFF Research Database (Denmark)

    Becker, Jürgen C; thor Straten, Per; Andersen, Mads Hald

    2014-01-01

    -proteins expressed in regulatory immune cells have been reported, especially in patients with cancer. The seemingly lack of tolerance toward such proteins is interesting, as it suggests a regulatory function of self-reactive T (srT) cells, which may be important for the fine tuning of the immune system......The immune system is a tightly regulated and complex system. An important part of this immune regulation is the assurance of tolerance toward self-antigens to maintain immune homeostasis. However, in recent years, antigen-specific cellular immune responses toward several normal self....... In particular, surprising has been the description of cytotoxic srT cells that are able to eliminate normal regulatory immune cells. Such srT cells may be important as effector cells that suppress regulatory suppressor cells. The current knowledge of the nature and function of srT cells is still limited. Still...

  7. Effect of Light Irradiation and Sex Hormones on Jurkat T Cells: 17β-Estradiol but Not Testosterone Enhances UVA-Induced Cytotoxicity in Jurkat Lymphocytes

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2005-04-01

    Full Text Available In Eastern cultures, such as India, it is traditionally recommended that women but not men cover their heads while working in the scorching sun. The purpose of this pilot study was to determine whether there was any scientific basis for this cultural tradition. We examined the differential cytotoxic effects of ultraviolet A light (UVA on an established T cell line treated with female and male sex hormones. CD4+ Jurkat T cells were plated in 96 well plates at 2 x 106 cells/ml and treated with 17β-estradiol (EST or testosterone (TE. These cells were irradiated by UVA light with an irradiance of 170 J/cm2 for 15min at a distance of 6 cm from the surface of the 96-well plate. Controls included cells not treated with hormones or UVA. The effects of EST and TE were investigated between 1 and 20 ng/mL. Cytotoxicity by fluorescein-diacetate staining and COMET assay generating single strand DNA cleavage, tail length and tail moment measurements were examined. The effect of estrogen (5ng/mL on apoptosis and its mediators was further studied using DNA laddering and western blotting for bcl-2 and p53. We found that EST alone, without UVA, enhanced Jurkat T cell survival. However, EST exhibited a dose-related cytotoxicity in the presence of UVA; up to 28% at 20 ng/ml. TE did not alter UVA-induced cytotoxicity. Since TE did not alter cell viability in the presence of UVA further damaging studies were not performed. COMET assay demonstrated the harmful effects of EST in the presence of UVA while EST without UVA had no significant effect on the nuclear damage. Apoptosis was not present as indicated by the absence of DNA laddering on agarose gel electrophoresis at 5ng/ml EST or TE ± UVA. Western blot showed that estrogen down regulated bcl-2 independently of UVA radiation while p53 was down regulated in the presence of UVA treatment. EST and TE have differential effects on UVA-induced cytotoxicity in Jurkat T-lymphocyte which suggested that women

  8. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy.

    Science.gov (United States)

    Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F

    2004-07-01

    Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

  9. Increased Expression of Cytotoxic T-Lymphocyte-Associated Protein 4 by T Cells, Induced by B7 in Sera, Reduces Adaptive Immunity in Patients With Acute Liver Failure

    DEFF Research Database (Denmark)

    Khamri, Wafa; Abeles, Robin D; Hou, Tie Zheng

    2017-01-01

    , hepatic sinusoidal endothelial cells, and biliary epithelial cells from healthy or diseased liver tissues. We also measured levels of soluble B7 serum samples from patients and controls, and mice with acetaminophen-induced liver injury using enzyme-linked immunosorbent assays. RESULTS: Peripheral blood...... were found to have increased concentrations of soluble B7 compared to sera from controls. Necrotic human primary hepatocytes exposed to acetaminophen, but not hepatic sinusoidal endothelial cells and biliary epithelial cells from patients with ALF, secreted high levels of soluble B7. Sera from mice...... with acetaminophen-induced liver injury contained high levels of soluble B7 compared to sera from mice without liver injury. Plasma exchange reduced circulating levels of soluble B7 in patients with ALF and expression of CTLA4 on T cells. CONCLUSIONS: Peripheral CD4+T cells from patients with ALF have increased...

  10. Evaluation of the ability of N-terminal fragment of lethal factor of Bacillus anthracis for delivery of Mycobacterium T cell antigen ESAT-6 into cytosol of antigen presenting cells to elicit effective cytotoxic T lymphocyte response

    International Nuclear Information System (INIS)

    Chandra, Subhash; Kaur, Manpreet; Midha, Shuchi; Bhatnagar, Rakesh; Banerjee-Bhatnagar, Nirupama

    2006-01-01

    We report the ability of N-terminal fragment of lethal factor of Bacillus anthracis to deliver genetically fused ESAT-6 (early secretory antigen target), a potent T cell antigen of Mycobacterium tuberculosis, into cytosol to elicit Cytotoxic T lymphocyte (CTL) response. In vitro Th1 cytokines data and CTL assay proved that efficient delivery of LFn.ESAT-6 occurs in cytosol, in the presence of protective antigen (PA), and leads to generation of effective CTL response. Since CTL response is essential for protection against intracellular pathogens and, it is well known that only single T cell epitope or single antigenic protein is not sufficient to elicit protective CTL response due to variation or polymorphism in MHC-I alleles among the individuals, we suggest that as a fusion protein LFn can be used to deliver multiepitopes of T cells or multiproteins which can generate effective CTLs against intracellular pathogens like M. tuberculosis. It can be used to enhance the protective efficacy of BCG vaccine

  11. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis.

    Science.gov (United States)

    Agrawal, Smriti M; Silva, Claudia; Wang, Janet; Tong, Jade Pui-Wai; Yong, V Wee

    2012-04-05

    Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin) is an inducer of the expression of several matrix metalloproteinases (MMPs). We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9) production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS.

  12. A novel anti-EMMPRIN function-blocking antibody reduces T cell proliferation and neurotoxicity: relevance to multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Agrawal Smriti M

    2012-04-01

    Full Text Available Abstract Background Extracellular matrix metalloproteinase inducer (EMMPRIN; CD147, basigin is an inducer of the expression of several matrix metalloproteinases (MMPs. We reported previously that blocking EMMPRIN activity reduced neuroinflammation and severity of disease in an animal model of multiple sclerosis (MS, experimental autoimmune encephalomyelitis (EAE. Methods To improve upon EMMPRIN blockade, and to help unravel the biological functions of EMMPRIN in inflammatory disorders, we have developed several anti-EMMPRIN monoclonal antibodies. Results Of these monoclonal antibodies, a particular one, clone 10, was efficient in binding mouse and human cells using several methods of detection. The specificity of clone 10 was demonstrated by its lack of staining of EMMPRIN-null embryos compared to heterozygous and wild-type mouse samples. Functionally, human T cells activated with anti-CD3 and anti-CD28 elevated their expression of EMMPRIN and the treatment of these T cells with clone 10 resulted in decreased proliferation and matrix metalloproteinase- 9 (MMP-9 production. Activated human T cells were toxic to human neurons in culture and clone 10 pretreatment reduced T cell cytotoxicity correspondent with decrease of granzyme B levels within T cells. In vivo, EAE mice treated with clone 10 had a markedly reduced disease score compared to mice treated with IgM isotype control. Conclusions We have produced a novel anti-EMMPRIN monoclonal antibody that blocks several aspects of T cell activity, thus highlighting the multiple roles of EMMPRIN in T cell biology. Moreover, clone 10 reduces EAE scores in mice compared to controls, and has activity on human cells, potentially allowing for the testing of anti-EMMPRIN treatment not only in EAE, but conceivably also in MS.

  13. Derivation from an alloreactive T-cell line of a clone which cross-reacts with a self H2-E-restricted minor alloantigen

    DEFF Research Database (Denmark)

    Owens, T; Liddell, M E; Crispe, I N

    1984-01-01

    An alloreactive T-helper-cell line [(A.TH X Balb/c) anti-A.TL] was shown to recognize both H2-Ek and H2-Ed. Both proliferation and polyclonal B-cell activation (protein A plaques) were used in the analyses of specificity. On cloning, the H2-Ek/Ed cross-reaction was shown by one clonotype...

  14. Functional isotypes are not encoded by the constant region genes of the beta subunit of the T cell receptor for antigen/major histocompatibility complex

    OpenAIRE

    1984-01-01

    Human T cell clones and a cDNA probe specific for constant regions of the beta subunit of the antigen/major histocompatibility complex (MHC) receptor, TiC beta 1 and TiC beta 2, were employed to determine whether these genes were differentially used by functional classes of T lymphocytes. DNA from 10 interleukin-2-dependent T cell clones including class I and class II MHC-specific cytotoxic T lymphocytes (n = 6), T4+ inducer T lymphocytes (n = 2), and T8+ suppressor T lymphocytes (n = 2) show...

  15. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  16. Upregulation of adhesion molecules on leukemia targets improves the efficacy of cytotoxic T cells transduced with chimeric anti-CD19 receptor.

    Science.gov (United States)

    Laurin, David; Marin, Virna; Biagi, Ettore; Pizzitola, Irene; Agostoni, Valentina; Gallot, Géraldine; Vié, Henri; Jacob, Marie Christine; Chaperot, Laurence; Aspord, Caroline; Plumas, Joël

    2013-04-01

    T lymphocytes engineered to express chimeric antigen receptors (CARs) interact directly with cell surface molecules, bypassing MHC antigen presentation dependence. We generated human anti-CD19ζ CAR cytotoxic T lymphocytes and cytokine-induced killer cells and studied their sensitivity to the expression of adhesion molecules for the killing of primary B-lineage acute lymphoblastic leukemia (B-ALL) targets. Despite a very low basal expression of surface adhesion molecules, B-ALL blasts were lysed by the anti-CD19ζ-CAR transduced effectors as expected. We next investigated the regulatory role of adhesion molecules during CAR-mediated cytolysis. The blocking of these accessory molecules strongly limited the chimeric effector's cytotoxicity. Thereafter, B-ALL cells surface adhesion molecule level expression was induced by IFN-γ or by the combined use of CD40L and IL-4 and the cells were submitted to anti-CD19ζ-CAR transduced effectors lysis. Upregulation of adhesion molecules expression by blasts potentiated their killing. The improved cytotoxicity observed was dependent on target surface expression of adhesion molecules, particularly CD54. Taken together, these results indicate that adhesion molecules, and principally CD54, are involved in the efficiency of recognition by effector chimeric ζ. These observations have potential implications for the design of immunotherapy treatment approaches for hematological malignancies and tumors based on the adoption of CAR effector cells.

  17. Cloning and Characterization of a Unique Cytotoxic Protein Parasporin-5 Produced by Bacillus thuringiensis A1100 Strain

    Directory of Open Access Journals (Sweden)

    Keisuke Ekino

    2014-06-01

    Full Text Available Parasporin is the cytocidal protein present in the parasporal inclusion of the non-insecticidal Bacillus thuringiensis strains, which has no hemolytic activity but has cytocidal activities, preferentially killing cancer cells. In this study, we characterized a cytocidal protein that belongs to this category, which was designated parasporin-5 (PS5. PS5 was purified from B. thuringiensis serovar tohokuensis strain A1100 based on its cytocidal activity against human leukemic T cells (MOLT-4. The 50% effective concentration (EC50 of PS5 to MOLT-4 cells was approximately 0.075 μg/mL. PS5 was expressed as a 33.8-kDa inactive precursor protein and exhibited cytocidal activity only when degraded by protease at the C-terminal into smaller molecules of 29.8 kDa. Although PS5 showed no significant homology with other known parasporins, a Position Specific Iterative-Basic Local Alignment Search Tool (PSI-BLAST search revealed that the protein showed slight homology to, not only some B. thuringiensis Cry toxins, but also to aerolysin-type β-pore-forming toxins (β-PFTs. The recombinant PS5 protein could be obtained as an active protein only when it was expressed in a precursor followed by processing with proteinase K. The cytotoxic activities of the protein against various mammalian cell lines were evaluated. PS5 showed strong cytocidal activity to seven of 18 mammalian cell lines tested, and low to no cytotoxicity to the others.

  18. Flow-cytometric measurement of CD4-8- T cells bearing T-cell receptor αβ chains, 1

    International Nuclear Information System (INIS)

    Kusunoki, Yoichiro; Hirai, Yuko; Kyoizumi, Seishi; Akiyama, Mitoshi.

    1992-09-01

    In this study we detected rare, possibly abnormal, T cells bearing CD3 surface antigen and T-cell receptor (TCR) αβ chains but lacking both CD4 and CD8 antigens (viz., TCRαβ + CD4 - 8 - cells, as determined by flow cytometry). The TCRαβ + CD4 - 8 - T cells were detected at a mean frequency of 0.63 ± 0.35 % (mean ± standard deviation) in peripheral blood TCRαβ + cells of 119 normal persons. Two unusual cases besides the 119 normal persons showed extremely elevated frequencies of TCRαβ + CD4 - 8 - T cells, viz., approximately 5 % to 10 % and 14 % to 19 % in whole TCRαβ + cells. Both individuals were males who were otherwise physiologically quite normal with no history of severe illness, and these high frequencies were also observed in blood samples collected 2 or 8 years prior to the current measurements. The TCRαβ + CD4 - 8 - T cells of the two individuals were found to express mature T-cell markers such as CD2,3, and 5 antigens, as well as natural killer (NK) cell markers, viz., CD11b, 16, 56, and 57 antigens, when peripheral blood lymphocytes were subjected to three-color flow cytometry. Lectin-dependent or redirected antibody-dependent cell-mediated cytotoxicities were observed for both freshly sorted TCRαβ + CD4 - 8 - cells and in vitro established clones. Nevertheless, NK-like activity was not detected. Further, Southern blot analysis of TCRβ and γ genes revealed identical rearrangement patterns for all the TCRαβ + CD4 - 8 - clones established in vitro. These results suggest that the TCRαβ + CD4 - 8 - T cells from these two mean exhibit unique characteristics and proliferate clonally in vivo. (author)

  19. Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector

    International Nuclear Information System (INIS)

    Zhou Hongsheng; Zhang Donghua; Wang Yaya; Dai Ming; Zhang Lu; Liu Wenli; Liu Dan; Tan Huo; Huang Zhenqian

    2006-01-01

    CML28 is an attractive target for antigen-specific immunotherapy. SOCS1 represents an inhibitory control mechanism for DC antigen presentation and the magnitude of adaptive immunity. In this study, we evaluated the potential for inducing CML28-specific cytotoxic T lymphocytes (CTL) responses by dendritic cells (DCs)-based vaccination. We constructed a CML28 DNA vaccine and a SOCS1 siRNA vector and then cotransfect monocyte-derived DCs. Flow cytometry analysis showed gene silencing of SOCS1 resulted in higher expressions of costimulative moleculars in DCs. Mixed lymphocyte reaction (MLR) indicated downregulation of SOCS1 stronger capability to stimulate proliferation of responder cell in DCs. The CTL assay revealed transfected DCs effectively induced autologous CML28-specific CTL responses and the lytic activities induced by SOCS1-silenced DCs were significantly higher compared with those induced by SOCS1-expressing DCs. These results in our study indicates gene silencing of SOCS1 remarkably enhanced the cytotoxicity efficiency of CML28 DNA vaccine in DCs

  20. Antibacterial Activity of 7-Epiclusianone and Its Novel Copper Metal Complex on Streptococcus spp. Isolated from Bovine Mastitis and Their Cytotoxicity in MAC-T Cells.

    Science.gov (United States)

    de Barros, Mariana; Perciano, Pedro Griffo; Dos Santos, Marcelo Henrique; De Oliveira, Leandro Licursi; Costa, Éderson D'Martin; Moreira, Maria Aparecida Scatamburlo

    2017-05-17

    Mastitis is an inflammation of mammary gland parenchyma that adversely affects bovine health and dairy production worldwide despite significant efforts to eradicate it. The aim of this work was to characterize the antimicrobial activity of 7-epiclusianone (7-epi), a compound extracted from the Rheedia brasiliensis fruit, its complex with copper against Streptococcus spp. isolated from bovine mastitis, and to assess their cytotoxicity to bovine mammary alveolar cells (MAC-T). The complex 7-epiclusianone-Cu (7-epi-Cu) was an amorphous green solid with optical activity. Its vibrational spectrum in the infrared region showed absorption bands in the high-frequency region, as well as bands that can be attributed to the unconjugated and conjugated stretching of the free ligand. The complex was anhydrous. One of the tested bacterial strains was not sensitive to the compounds, while the other three had MIC values of 7.8 µg mL -1 and minimum bactericidal concentration (MBC) values between 15.6 and 31.3 µg mL -1 . These two compounds are bacteriostatic, did not cause damage to the cell wall and, at sub-inhibitory concentrations, did not induce bacterial adhesion. The compounds were not cytotoxic. Based on these results, 7-epi and 7-epi-Cu exhibited desirable antimicrobial properties and could potentially be used in bovine mastitis treatment.

  1. B7.1 expression on tumor cells circumvents the need of professional antigen presentation for in vitro propagation of cytotoxic T cell lines.

    Science.gov (United States)

    Iezzi, G; Protti, M P; Rugarli, C; Bellone, M

    1996-01-01

    In vitro propagation of tumor-specific CTLs, to be used for identification of tumor antigens (Ag) and/or adoptive immunotherapy, is hampered by the need of large amounts of professional antigen-presenting cells (APC) used for periodical cycles of restimulation. We evaluated whether RMA T lymphoma cells, stably transfected with the cDNA encoding for the B7.1 costimulatory molecule, provided the activation signals to CD8+ T lymphocytes in the absence of professional APC and CD4+ helper cells. We demonstrate here that long-term CD8+ cell lines can be efficiently propagated in vitro by repeated cycles of stimulation with tumor cells stably expressing B7.1. Professional APC and CD4+ helper cells are not required as far as interleukin 2 is exogenously provided. Furthermore, CD8+ blasts needed both signal 1 (Ag in the contest of the MHC molecule) and signal 2 (interaction of costimulatory molecules) for restimulation. T cell blasts in the presence of signal 1 or 2 only still retained their effector potential but did not undergo clonal expansion. These results are very promising for further applications of specific immunotherapies in humans.

  2. Cytotoxic T lymphocyte response to herpes simplex virus type 1 is composed of both CD8+ and CD4+ T cell phenotypes in acute and memory states

    International Nuclear Information System (INIS)

    Niemialtowski, Marek G.; Rouse, Barry T.

    1994-01-01

    Mice were infected via the cornea with HSV-1. Next, draining lymph nodes (DLN) and spleen cells were analyzed at various times post infection for the presence of cytotoxic T lymphocyte precursors (CTL-p) of both the CD8 + and CD4 + phenotypes. Responses were greatest in the DLN, but memory CTL persisted in the spleen and were undetectable in DLN by 60 days. On all occasions, the frequency of CD8 + CTL outnumbered CD4 + CTL. The murine CTL responses to HSV-1 differ from those in man where CD4 + MHC class II restricted CTL appear to dominate the response at least in the memory phase. (author). 28 refs, 2 figs, 1 tab

  3. Novel understanding of self-reactive T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2016-01-01

    In a recent issue of Immunity, Mark Davis and colleagues describe that thymic selection does not eliminate but prunes self-reactive T cell clones. Self-reactive T cells are a natural part of the T-cell repertoire and may be important in the fight against pathogens in addition to being important...

  4. Suppression induction in vivo by a T helper clone?

    DEFF Research Database (Denmark)

    Crispe, I N; Owens, T

    1985-01-01

    We have previously described a helper T cell clone which augments in vivo cytotoxic T cell responses when injected at 10(4) cells per mouse, but not at 10(5) per mouse (Crispe, I. N. et al., Immunology 1984. 52:55). To test whether this dose-response relationship was due to the induction...... of suppression, naive syngeneic mice were injected with 10(5) cloned T helper cells, and their spleen cells were subsequently assayed for suppressive activity in adoptive transfer experiments. Lymphocytes from such mice indeed suppressed an antigen-specific cytotoxic response, but only in the presence...... of the same T helper cell clone freshly added at the time of adoptive transfer. On this basis we argue that the distinction between T helper cell activity and T suppressor-inducer activity corresponds to differences in cell numbers, rather than to two separate cell lineages....

  5. CD107a Expression and IFN-γ Production as Markers for Evaluation of Cytotoxic CD3+ CD8+ T Cell Response to CMV Antigen in Women with Recurrent Spontaneous Abortion.

    Science.gov (United States)

    Tarokhian, Batoul; Sherkat, Roya; Nasr Esfahani, Mohamma Hossein; Adib, Minoo; Kiani Esfahani, Abbas; Ataei, Behrooz

    2014-01-01

    Some evidence has shown a relationship between primary human cytomegalovirus (CMV) infection and pregnancy loss. The impact of CMV infection reactivation during pregnancy on adverse pregnancy outcomes is not completely understood. It is proposed that altered immune response, and therefore, recurrence or reactivation of latent CMV infection may relate to recurrent spontaneous abortion (RSA); however, few data are available in this regard. To find out about any cell mediated defect and reactivation of latent CMV infection in women with RPL, cellular immunity to the virus has been evaluated by specific cytotoxic T lymphocyte (CTL) response to CMV. In a case control study, CTL CD107a expression and in- tercellular IFN-γ production in response to CMV pp65 antigen and staphylococcus enterotoxin B (SEB) in women with RSA were assessed by flow cytometric analysis. Forty-four cases with history of recurrent pregnancy and forty-four controls with history of successful pregnancies were included. The FACSCaliber flow cytometer were used for analysis. No significant difference was observed between CD107a expression and IFN-γ production in response to CMV PP65 antigen in RPL patients and control group. How- ever, the cytotoxic response to SEB antigen in patients with RPL was significantly lower than control group (p=0.042). The results of this study show that impaired CD107a expression and IFN-γ production as CTL response to CMV does not appear to be a major contrib- uting and immune incompetence factor in patients with RPL, but cytotoxic T cell response defect to other antigens requires to be assessed further in these patients.

  6. CD4(+)and CD8(+)T-cell reactions against leukemia-associated- or minor-histocompatibility-antigens in AML-patients after allogeneic SCT.

    Science.gov (United States)

    Steger, Brigitte; Milosevic, Slavoljub; Doessinger, Georg; Reuther, Susanne; Liepert, Anja; Braeu, Marion; Schick, Julia; Vogt, Valentin; Schuster, Friedhelm; Kroell, Tanja; Busch, Dirk H; Borkhardt, Arndt; Kolb, Hans-Jochem; Tischer, Johanna; Buhmann, Raymund; Schmetzer, Helga

    2014-04-01

    T-cells play an important role in the remission-maintenance in AML-patients (pts) after SCT, however the role of LAA- (WT1, PR1, PRAME) or minor-histocompatibility (mHag, HA1) antigen-specific CD4(+) and CD8(+)T-cells is not defined. A LAA/HA1-peptide/protein stimulation, cloning and monitoring strategy for specific CD8(+)/CD4(+)T-cells in AML-pts after SCT is given. Our results show that (1) LAA-peptide-specific CD8+T-cells are detectable in every AML-pt after SCT. CD8(+)T-cells, recognizing two different antigens detectable in 5 of 7 cases correlate with long-lasting remissions. Clonal TCR-Vβ-restriction exemplarily proven by spectratyping in PRAME-specific CD8(+)T-cells; high PRAME-peptide-reactivity was CD4(+)-associated, as shown by IFN-γ-release. (2) Two types of antigen-presenting cells (APCs) were tested for presentation of LAA/HA1-proteins to CD4(+)T-cells: miniEBV-transduced lymphoblastoid cells (B-cell-source) and CD4-depleted MNC (source for B-cell/monocyte/DC). We provide a refined cloning-system for proliferating, CD40L(+)CD4(+)T-cells after LAA/HA1-stimulation. CD4(+)T-cells produced cytokines (GM-CSF, IFN-γ) upon exposure to LAA/HA1-stimulation until after at least 7 restimulations and demonstrated cytotoxic activity against naive blasts, but not fibroblasts. Antileukemic activity of unstimulated, stimulated or cloned CD4(+)T-cells correlated with defined T-cell-subtypes and the clinical course of the disease. In conclusion we provide immunological tools to enrich and monitor LAA/HA1-CD4(+)- and CD8(+)T-cells in AML-pts after SCT and generate data with relevant prognostic value. We were able to demonstrate the presence of LAA-peptide-specific CD8(+)T-cell clones in AML-pts after SCT. In addition, we were also able to enrich specific antileukemic reactive CD4(+)T-cells without GvH-reactivity upon repeated LAA/HA1-protein stimulation and limiting dilution cloning. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. A novel peptide-nucleotide dual vaccine of human telomerase reverse transcriptase induces a potent cytotoxic T-cell response in vivo

    International Nuclear Information System (INIS)

    Guo, Hong; Hao, Jia; Wu, Chao; Shi, Yun; Zhao, Xiao-yan; Fang, Dian-chun

    2007-01-01

    Human telomerase reverse transcriptase (hTERT) is highly expressed in over 85% of human cancers, which makes it a broadly applicable molecular target for cancer therapy. Several groups have demonstrated that hTERT can efficiently evoke specific cytotoxic T lymphocytes (CTL) responses for malignant tumors. In the present study, we developed a novel virus-like particulate peptide-nucleotide dual vaccine (PNDV) of hTERT, which was composed of a low-affinity epitope variant with encoding full-length gene in the same virus-size particulate. We verified the formation of PNDV by DNA retarding assay, DNase I protection assay and transmission electron microscopy, and confirmed its immunogenicity and transfection activities in mammalian cells. Furthermore, in vivo immunization of HLA-A2.1 transgenic mice generated efficient IFN-γ secretion and hTERT-specific CTLs which are known to cause selective cell death of telomerase positive gastrointestinal cancer cells. To our knowledge, this represents the first report on collocating a low-affinity epitope variant with a full-length hTERT gene for anti-cancer vaccine design. This novel strategy for vaccine design not only enables enhanced immunity to a universal tumor antigen, but also has the potential to generate CTLs effective in telomerase-positive tumor cells of diverse tissue origins. Therefore, our findings bear significant implications for immunotherapy of human cancers

  8. Pharmacological modification of multi-drug resistance (MDR) in vitro detected by a novel fluorometric microculture cytotoxicity assay. Reversal of resistance and selective cytotoxic actions of cyclosporin A and verapamil on MDR leukemia T-cells.

    Science.gov (United States)

    Larsson, R; Nygren, P

    1990-07-15

    A novel fluorometric microculture cytotoxicity assay (FMCA), based on measurements of fluorescein diacetate (FDA) hydrolysis and DNA staining by Hoechst 33342, was used for drug sensitivity testing and detection of resistance reversal in acute lymphoblastic leukemia (ALL) cell lines. The 72-hr assay was found to be sensitive, reproducible and linearly related to the number of viable cells within a broad range of cell concentrations. At clinically achievable drug concentrations, the calcium channel blocker Verapamil (ver) and the immunosuppressant Cyclosporin A (csA) were found to partly reverse acquired Vincristine (vcr) resistance in multi-drug resistant (MDR) T-ALL L100 cells with little or no effect on the drug-sensitive parental L0 cell line. By combining the fluorometric indices, we found that low concentrations of csA were growth-inhibitory, whereas higher concentrations (greater than 10 micrograms/ml) were progressively cytotoxic for drug-sensitive L0 cells. In MDR L100 cells, on the other hand, csA produced significant cell kill even at low drug concentrations. Ver had no effects on sensitive L0 cells but showed considerable cytotoxic action towards MDR L100 cells. There was no apparent relationship between drug reversal of vcr resistance and the cytotoxic actions of the drug per se since the calcium channel blocker diltiazem (dil) significantly potentiated the actions of vcr on MDR L100 cells without being more toxic to these cells (compared to vcr-sensitive L0 cells).

  9. A chemically inert drug can stimulate T cells in vitro by their T cell receptor in non-sensitised individuals

    International Nuclear Information System (INIS)

    Engler, Olivier B.; Strasser, Ingrid; Naisbitt, Dean J.; Cerny, Andreas; Pichler, Werner J.

    2004-01-01

    Drugs can interact with T cell receptors (TCR) after binding to peptide-MHC structures. This binding may involve the formation of a stable, covalent bond between a chemically reactive drug and MHC or the peptide embedded within. Alternatively, if the drug is chemically inert, the binding may be non-covalent and readily reversible. Both types of drug presentation account for a substantial number of adverse side effects to drugs. Presently no tests are available to predict the ability of chemically inert drugs to stimulate an immune response. Here we present data on the successful induction of a primary T cell immune response in vitro against a chemically inert drug using blood from healthy individuals, previously not exposed to the drug. Blood lymphocytes were stimulated by the chemically inert drug sulfamethoxazole and the protein-reactive drug-metabolite sulfamethoxazole-nitroso in the presence of IL-2. 9/10 individuals reacted in response to sulfamethoxazole-nitroso, but only three reacted to the chemically inert compound sulfamethoxazole. Drug reactive T cells could be detected after 14-35 days of cell culture by drug-specific proliferation or cytotoxicity, which was MHC-restricted. These cells were CD4, CD8 positive or CD4/CD8 double positive and T cell clones generated secreted Th0 type cytokines. Drug interaction lead to down-regulation of specific TCR. These data confirm the ability of chemically inert drugs to stimulate certain T cells by their TCR and may provide the opportunity to screen new drugs for their ability to interact with TCRs

  10. Antigen-specific primed cytotoxic T cells eliminate tumour cells in vivo and prevent tumour development, regardless of the presence of anti-apoptotic mutations conferring drug resistance.

    Science.gov (United States)

    Jaime-Sánchez, Paula; Catalán, Elena; Uranga-Murillo, Iratxe; Aguiló, Nacho; Santiago, Llipsy; M Lanuza, Pilar; de Miguel, Diego; A Arias, Maykel; Pardo, Julián

    2018-05-09

    Cytotoxic CD8 + T (Tc) cells are the main executors of transformed and cancer cells during cancer immunotherapy. The latest clinical results evidence a high efficacy of novel immunotherapy agents that modulate Tc cell activity against bad prognosis cancers. However, it has not been determined yet whether the efficacy of these treatments can be affected by selection of tumoural cells with mutations in the cell death machinery, known to promote drug resistance and cancer recurrence. Here, using a model of prophylactic tumour vaccination based on the LCMV-gp33 antigen and the mouse EL4 T lymphoma, we analysed the molecular mechanism employed by Tc cells to eliminate cancer cells in vivo and the impact of mutations in the apoptotic machinery on tumour development. First of all, we found that Tc cells, and perf and gzmB are required to efficiently eliminate EL4.gp33 cells after LCMV immunisation during short-term assays (1-4 h), and to prevent tumour development in the long term. Furthermore, we show that antigen-pulsed chemoresistant EL4 cells overexpressing Bcl-X L or a dominant negative form of caspase-3 are specifically eliminated from the peritoneum of infected animals, as fast as parental EL4 cells. Notably, antigen-specific Tc cells control the tumour growth of the mutated cells, as efficiently as in the case of parental cells. Altogether, expression of the anti-apoptotic mutations does not confer any advantage for tumour cells neither in the short-term survival nor in long-term tumour formation. Although the mechanism involved in the elimination of the apoptosis-resistant tumour cells is not completely elucidated, neither necroptosis nor pyroptosis seem to be involved. Our results provide the first experimental proof that chemoresistant cancer cells with mutations in the main cell death pathways are efficiently eliminated by Ag-specific Tc cells in vivo during immunotherapy and, thus, provide the molecular basis to treat chemoresistant cancer cells with CD8 Tc

  11. Establishment and characterization of Epstein-Barr virus-specific human CD4+ T lymphocyte clones

    International Nuclear Information System (INIS)

    Honda, S.; Okuno, K.; Yasutomi, M.; Takasaki, T.; Kurane, I.

    1998-01-01

    We developed a simple method for establishing Epstein-Barr virus (EBV)-specific, human CD4+ T cell clones. The method originates from our experience that the regression of cell growth in in vitro EBV transformation of B cells occurs when round lymphoid cells appear in the culture. Peripheral blood mononuclear cells were cultured with EBV; and IL-2 (20 U/ml) was added to the culture on day 17 after the virus addition. The phenotype of the growing cells was CD3+ , CD4+ , and CD8-. The cells were cytotoxic for autologous lymphoblastoid B cell line (LCL) and EBV-super-infected autologous LCL. The cytotoxic T lymphocytes (CTLs) were confirmed to be CD4+ T cells but not CD8+ T cells in the culture. CTL clones were established by a limiting dilution method. All the CTL clones had the phenotype of CD3+ , CD4+ and CD8-, and proliferated in response to autologous LCL. They produced interferon (IFN)-gamma, interleukin 2 (IL-2) and tumour necrosis factor (TNF)-beta but not IL-4. All but one clone responded to both autologous, EBV-super-infected and non-super-infected LCLs. Proliferative and cytotoxic responses to allogeneic LCLs were heterogeneous. These results suggest that this method induces heterogeneous, EBV-specific CD4+ CTL clones and is useful for analysis of CD4+ T cells in EBV infections. (authors)

  12. T cells in chronic lymphocytic leukaemia display an exhausted phenotype and impaired functionality that can be restored by chemotherapy

    International Nuclear Information System (INIS)

    Gassner, F.

    2012-01-01

    In chronic lymphocytic leukaemia (CLL), beside a massive accumulation of neoplastic B cells, tumour-induced deficiencies in autologous T cells have been reported that impede efficient tumour control and might even support survival of the malignant clone. Here, we investigated our hypothesis that T cells in CLL, due to the persistent availability of tumour antigen, are exhausted, and that reduction of tumour load by chemotherapy might restore T cell functions. We could show that T cells in CLL patients and in a CLL mouse model display an exhausted phenotype, with high expression of the inhibitory surface receptor PD-1, that is clearly induced by the presence of tumour cells. Although the PD-1 ligand PD-L1 is not expressed on peripheral CLL cells, abundant expression could be shown in lymph node sections. Intriguingly, blocking the PD-1/PD-L1 pathway increased short term tumour lysis in a murine in vivo cytotoxicity assay. Furthermore, we present data that after cytoreduction by fludarabine, a standard chemotherapy agent for CLL, the surviving T cell pool consists mainly of fully functional memory T cells with high proliferative potential and increased secretion of pro-inflammatory Th1 cytokines. Taken together, we conclude that the impaired tumour surveillance observed in CLL might be rooted in the exhaustion of tumour-specific effector T cells. A combination of cytodepletion by chemotherapy and blockade of PD-1 might hence represent a novel therapeutic approach for CLL. (author) [de

  13. A robust and scalable TCR-based reporter cell assay to measure HIV-1 Nef-mediated T cell immune evasion.

    Science.gov (United States)

    Anmole, Gursev; Kuang, Xiaomei T; Toyoda, Mako; Martin, Eric; Shahid, Aniqa; Le, Anh Q; Markle, Tristan; Baraki, Bemuluyigza; Jones, R Brad; Ostrowski, Mario A; Ueno, Takamasa; Brumme, Zabrina L; Brockman, Mark A

    2015-11-01

    HIV-1 evades cytotoxic T cell responses through Nef-mediated downregulation of HLA class I molecules from the infected cell surface. Methods to quantify the impact of Nef on T cell recognition typically employ patient-derived T cell clones; however, these assays are limited by the cost and effort required to isolate and maintain primary cell lines. The variable activity of different T cell clones and the limited number of cells generated by re-stimulation can also hinder assay reproducibility and scalability. Here, we describe a heterologous T cell receptor reporter assay and use it to study immune evasion by Nef. Induction of NFAT-driven luciferase following co-culture with peptide-pulsed or virus-infected target cells serves as a rapid, quantitative and antigen-specific measure of T cell recognition of its cognate peptide/HLA complex. We demonstrate that Nef-mediated downregulation of HLA on target cells correlates inversely with T cell receptor-dependent luminescent signal generated by effector cells. This method provides a robust, flexible and scalable platform that is suitable for studies to measure Nef function in the context of different viral peptide/HLA antigens, to assess the function of patient-derived Nef alleles, or to screen small molecule libraries to identify novel Nef inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. CD4+ T cell effects on CD8+ T cell location defined using bioluminescence.

    Directory of Open Access Journals (Sweden)

    Mitra Azadniv

    2011-01-01

    Full Text Available T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are "helped" by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell "help" is to program the homing potential of CD8+ T cells.

  15. T cell immunity

    OpenAIRE

    Emel Bülbül Başkan

    2013-01-01

    Since birth, our immune system is constantly bombarded with self-antigens and foreign pathogens. To stay healthy, complex immune strategies have evolved in our immune system to maintain self-tolerance and to defend against foreign pathogens. Effector T cells are the key players in steering the immune responses to execute immune functions. While effector T cells were initially identified to be immune promoting, recent studies unraveled negative regulatory functions of effector T cells...

  16. Targetless T cells in cancer immunotherapy

    DEFF Research Database (Denmark)

    thor Straten, Eivind Per; Garrido, Federico

    2016-01-01

    Attention has recently focused on new cancer immunotherapy protocols aiming to activate T cell mediated anti-tumor responses. To this end, administration of antibodies that target inhibitory molecules regulating T-cell cytotoxicity has achieved impressive clinical responses, as has adoptive cell...... infiltrate tumor tissues and destroy HLA class I positive tumor cells expressing the specific antigen. In fact, current progress in the field of cancer immune therapy is based on the capacity of T cells to kill cancer cells that present tumor antigen in the context on an HLA class I molecule. However......, it is also well established that cancer cells are often characterized by loss or down regulation of HLA class I molecules, documented in a variety of human tumors. Consequently, immune therapy building on CD8 T cells will be futile in patients harboring HLA class-I negative or deficient cancer cells...

  17. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  18. A comparative study of N-glycolylneuraminic acid (Neu5Gc and cytotoxic T cell (CT carbohydrate expression in normal and dystrophin-deficient dog and human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Paul T Martin

    Full Text Available The expression of N-glycolylneuraminic acid (Neu5Gc and the cytotoxic T cell (CT carbohydrate can impact the severity of muscular dystrophy arising from the loss of dystrophin in mdx mice. Here, we describe the expression of these two glycans in skeletal muscles of dogs and humans with or without dystrophin-deficiency. Neu5Gc expression was highly reduced (>95% in muscle from normal golden retriever crosses (GR, n = 3 and from golden retriever with muscular dystrophy (GRMD, n = 5 dogs at multiple ages (3, 6 and 13 months when compared to mouse muscle, however, overall sialic acid expression in GR and GRMD muscles remained high at all ages. Neu5Gc was expressed on only a minority of GRMD satellite cells, CD8⁺ T lymphocytes and macrophages. Human muscle from normal (no evident disease, n = 3, Becker (BMD, n = 3 and Duchenne (DMD, n = 3 muscular dystrophy individuals had absent to very low Neu5Gc staining, but some punctate intracellular muscle staining was present in BMD and DMD muscles. The CT carbohydrate was localized to the neuromuscular junction in GR muscle, while GRMD muscles had increased expression on a subset of myofibers and macrophages. In humans, the CT carbohydrate was ectopically expressed on the sarcolemmal membrane of some BMD muscles, but not normal human or DMD muscles. These data are consistent with the notion that altered Neu5Gc and CT carbohydrate expression may modify disease severity resulting from dystrophin deficiency in dogs and humans.

  19. Memory T Cell Migration

    OpenAIRE

    Qianqian eZhang; Qianqian eZhang; Fadi G. Lakkis

    2015-01-01

    Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review...

  20. Functional properties of T cells in patients with chronic T gamma lymphocytosis and chronic T cell neoplasia

    NARCIS (Netherlands)

    Rümke, H. C.; Miedema, F.; ten Berge, I. J.; Terpstra, F.; van der Reijden, H. J.; van de Griend, R. J.; de Bruin, H. G.; von dem Borne, A. E.; Smit, J. W.; Zeijlemaker, W. P.; Melief, C. J.

    1982-01-01

    The expanded T cell populations of 10 patients with either T gamma lymphocytosis (five patients) or proven chronic T cell malignancy (five patients) were analyzed with respect to functional activity in vitro, including proliferative responses to mitogens, cytotoxic activity (killer [K] and natural

  1. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    International Nuclear Information System (INIS)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku; Okada, Naoki

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8"+ CAR-T cells had antigen-specific cytotoxic activity. • CD4"+ CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  2. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke; Hirobe, Sachiko; Nakagawa, Shinsaku, E-mail: nakagawa@phs.osaka-u.ac.jp; Okada, Naoki, E-mail: okada@phs.osaka-u.ac.jp

    2016-04-22

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period of pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.

  3. T cell recognition of breast cancer antigens

    DEFF Research Database (Denmark)

    Petersen, Nadia Viborg; Andersen, Sofie Ramskov; Andersen, Rikke Sick

    Recent studies are encouraging research of breast cancer immunogenicity to evaluate the applicability ofimmunotherapy as a treatment strategy. The epitope landscape in breast cancer is minimally described, thus it is necessary to identify T cell targets to develop immune mediated therapies.......This project investigates four proteins commonly upregulated in breast cancer and thus probable tumor associated antigens (TAAs). Aromatase, prolactin, NEK3, and PIAS3 contribute to increase growth, survival, and motility of malignant cells. Aspiring to uncover novel epitopes for cytotoxic T cells, a reverse...... recognition utilizing DNA barcode labeled MHC multimers to screen peripheral blood lymphocytes from breast cancer patients and healthy donor samples. Signif-icantly more TAA specific T cell responses were detected in breast cancer patients than healthy donors for both HLA-A*0201 (P

  4. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Ingrid; Birnir, Bryndis

    2006-01-01

    Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS) inflamma......Neurons have been neglected as cells with a major immune-regulatory function because they do not express major histocompatibility complex class II. Our data show that neurons are highly immune regulatory, having a crucial role in governing T-cell response and central nervous system (CNS......) inflammation. Neurons induce the proliferation of activated CD4+ T cells through B7-CD28 and transforming growth factor (TGF)-beta1-TGF-beta receptor signaling pathways, resulting in amplification of T-cell receptor signaling through phosphorylated ZAP-70, interleukin (IL)-2 and IL-9. The interaction between...... neurons and T cells results in the conversion of encephalitogenic T cells to CD25+ TGF-beta1+ CTLA-4+ FoxP3+ T regulatory (Treg) cells that suppress encephalitogenic T cells and inhibit experimental autoimmune encephalomyelitis. Suppression is dependent on cytotoxic T lymphocyte antigen (CTLA)-4...

  5. CD4+/CD8+ double-positive T cells

    DEFF Research Database (Denmark)

    Overgaard, Nana H; Jung, Ji-Won; Steptoe, Raymond J

    2015-01-01

    CD4(+)/CD8(+) DP thymocytes are a well-described T cell developmental stage within the thymus. However, once differentiated, the CD4(+) lineage or the CD8(+) lineage is generally considered to be fixed. Nevertheless, mature CD4(+)/CD8(+) DP T cells have been described in the blood and peripheral...... cells, CD4(+)/CD8(+) T cell populations, outside of the thymus, have recently been described to express concurrently ThPOK and Runx3. Considerable heterogeneity exists within the CD4(+)/CD8(+) DP T cell pool, and the function of CD4(+)/CD8(+) T cell populations remains controversial, with conflicting...... reports describing cytotoxic or suppressive roles for these cells. In this review, we describe how transcriptional regulation, lineage of origin, heterogeneity of CD4 and CD8 expression, age, species, and specific disease settings influence the functionality of this rarely studied T cell population....

  6. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Garbe, Yvette; Klier, Ulrike; Linnebacher, Michael

    2011-01-01

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4 + , activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI + carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  7. Ectopic hTERT expression extends the life span of human CD4(+) helper and regulatory T-cell clones and confers resistance to oxidative stress-induced apoptosis

    NARCIS (Netherlands)

    Luiten, Rosalie M.; Péne, Jérome; Yssel, Hans; Spits, Hergen

    2003-01-01

    Human somatic cells have a limited life span in vitro. Upon aging and with each cell division, shortening of telomeres occurs, which eventually will lead to cell cycle arrest. Ectopic hTERT expression has been shown to extend the life span of human T cells by preventing this telomere erosion. In the

  8. Autoimmune Destruction of Skin Melanocytes by Perilesional T Cells from Vitiligo Patients

    NARCIS (Netherlands)

    van den Boorn, Jasper G.; Konijnenberg, Debby; Dellemijn, Trees A. M.; van der Veen, J. P. Wietze; Bos, Jan D.; Melief, Cornelis J. M.; Vyth-Dreese, Florry A.; Luiten, Rosalie M.

    2009-01-01

    In vitiligo, cytotoxic T cells infiltrating the perilesional margin are suspected to be involved in the pathogenesis of the disease. However, it remains to be elucidated whether these T cells are a cause or a consequence of the depigmentation process. T cells we obtained from perilesional skin

  9. Suppressor T-cell factor(s) display an altered pattern of Igh (immunoglobulin heavy chain locus) genetic restriction when developed in an Igh-congeneic host

    International Nuclear Information System (INIS)

    HayGlass, K.T.; Naides, S.J.; Benacerraf, B.; Sy, M.S.

    1985-01-01

    Suppressor T cell factor(s) (TsF 1 ) inhibit the in vivo priming of azobenzenearsonate-specific cytotoxic T-cell responses. The activity of TsF 1 is restricted by genes linked to Igh-1 allotypic markers. TsF 1 obtained from B6.Igh-1/sup n/ mice was unable to suppress the immune response in B6.Igh-1/sup b/ mice and vice versa. However, TsF 1 prepared from B6.Igh-1/sup n/ T cells parked in an Igh-congeneic B6.Igh-1/sup b/ environment displays an additional restriction specificity of the host. Thus, TsF 1 prepared from these Igh-chimeric mice suppressed immune responses in both B6.Igh-1/sup n/ (donor) and B6.Igh-1/sup b/ (recipient) mice but not in mice of the unrelated strain BALB/c.Igh-1/sup a/. The results indicate that the establishment of the suppressor T-cell repertoire is dependent not only upon the genetic background of the individual T cell but also upon the influence of Igh-linked determinants present when T-cell clones are selected during the response

  10. Metabolic Adaptation of Human CD4+ and CD8+ T-Cells to T-Cell Receptor-Mediated Stimulation

    Directory of Open Access Journals (Sweden)

    Nicholas Jones

    2017-11-01

    Full Text Available Linking immunometabolic adaptation to T-cell function provides insight for the development of new therapeutic approaches in multiple disease settings. T-cell activation and downstream effector functions of CD4+ and CD8+ T-cells are controlled by the strength of interaction between the T-cell receptor (TCR and peptides presented by human leukocyte antigens (pHLA. The role of TCR–pHLA interactions in modulating T-cell metabolism is unknown. Here, for the first time, we explore the relative contributions of the main metabolic pathways to functional responses in human CD4+ and CD8+ T-cells. Increased expression of hexokinase II accompanied by higher basal glycolysis is demonstrated in CD4+ T-cells; cytokine production in CD8+ T-cells is more reliant on oxidative phosphorylation. Using antigen-specific CD4+ and CD8+ T-cell clones and altered peptide ligands, we demonstrate that binding affinity tunes the underlying metabolic shift. Overall, this study provides important new insight into how metabolic pathways are controlled during antigen-specific activation of human T-cells.

  11. Construction of a new anti-CD19 chimeric antigen receptor and the anti-leukemia function study of the transduced T cells

    Science.gov (United States)

    An, Na; Tao, Zhongfei; Li, Saisai; Xing, Haiyan; Tang, Kejing; Tian, Zheng; Rao, Qing; Wang, Min; Wang, Jianxiang

    2016-01-01

    Chimeric antigen receptor (CAR) transduced T cells have been used to efficiently kill the target tumor cells depending on the single chain variable fragment (scFv) against the specific tumor associated antigen. Here we show the high specific cytotoxicity of the CAR-T cells with very low effector to target cell (E:T) ratio owing to the CD19-scFv, which was constructed in our laboratory and proved to be highly effective in our previous study. Four plasmids containing three generation of CAR were constructed by cloning the CD19-CAR fragment into the lentiviral vector pCDH. CD3 positive T cells were successfully transduced and the CAR protein expression was confirmed by flow cytometry and Western blot. When cocultured with CD19 positive leukemia cell line Nalm-6 cells, CAR-T cells showed specific cytotoxicity: the percentage of target cells decreased to 0 in 24 hours; IL-2, IFN-γ and TNF-α produced in cocultured supernatants increased obviously; and the cytotoxicity reached more than 80%, still remarkable even when the E:T ratio was as low as 1:4. Dynamic change of cell interaction between CAR-T and leukemia cells was visually tracked by using living cells workstation for the first time. A NOD/SCID B-ALL murine model was established using Nalm-6 cells inoculation with a morbidity rate of 100%, and the survival time was prolonged statistically with CAR-T cell treatment. These data demonstrate that the CAR-T cells we prepared could be a promising treatment strategy for CD19 positive tumor diseases. PMID:26840021

  12. Changing T cell specificity by retroviral T cell receptor display

    NARCIS (Netherlands)

    Kessels, H. W.; van den Boom, M. D.; Spits, H.; Hooijberg, E.; Schumacher, T. N.

    2000-01-01

    The diversity of the T cell receptor (TCR) repertoire is limited, because of the processes of positive and negative T cell selection. To obtain T cells with specificities beyond the immune system's capacity, we have developed a strategy for retroviral TCR display. In this approach, a library of T

  13. Angioimmunoblastic T-Cell Lymphoma

    Science.gov (United States)

    ... Non-Hodgkin Lymphoma Peripheral T-Cell Lymphoma Primary Central Nervous System Lymphoma T-Cell Lymphoma Transformed Mycosis Fungoides Waldenstrom Macroglobulinemia Young Adult Lymphoma Overview Treatment Options Relapsed/Refractory Long-term ...

  14. Peripheral T-Cell Lymphoma

    Science.gov (United States)

    ... Non-Hodgkin Lymphoma Peripheral T-Cell Lymphoma Primary Central Nervous System Lymphoma T-Cell Lymphoma Transformed Mycosis Fungoides Waldenstrom Macroglobulinemia Young Adult Lymphoma Overview Treatment Options Relapsed/Refractory Long-term ...

  15. Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells.

    Science.gov (United States)

    Goreham, Renee V; Schroeder, Kathryn L; Holmes, Amy; Bradley, Siobhan J; Nann, Thomas

    2018-01-24

    The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.

  16. Light-induced mutagenicity in Salmonella TA102 and genotoxicity/cytotoxicity in human T-cells by 3,3'-dichlorobenzidine: a chemical used in the manufacture of dyes and pigments and in tattoo inks

    International Nuclear Information System (INIS)

    Wang Lei; Yan Jian; Hardy, William; Mosley, Charity; Wang Shuguang; Yu Hongtao

    2005-01-01

    DCB, 3,3'-dichlorobenzidine, is used primarily as an intermediate in the manufacture of diarylide yellow or azo red pigments for printing ink, textile, paint, and plastics. It is also used in tattoo inks. In this article, we investigate light-induced toxicity of DCB in both bacteria and human Jurkat T-cells. DCB itself is not toxic or mutagenic to Salmonella typhimurium TA102, but is photomutagenic at concentrations as low as 2 μM and phototoxic at concentrations >100 μM when bacteria are exposed to DCB and light at the same time (1.2 J/cm 2 of UVA and 2.1 J/cm 2 of visible light). Furthermore, DCB is both photocytotoxic and photogenotoxic to human Jurkat T-cells. Under a light irradiation dose of 2.3 J/cm 2 of UVA and 4.2 J/cm 2 of visible light, it causes the Jurkat T-cells to become nonviable in a DCB dose-dependent manner and the nonviable cells reaches 60% at DCB concentrations higher than 50 μM. At the same time, DNA fragmentation is observed for cells exposed to both DCB and light, determined by single cell gel electrophoresis (alkaline comet assay). As much as 5% (average) DNA fragmentation was observed when exposed to 200 μM DCB and light irradiation. This suggests that DCB can penetrate the cell membrane and enter the cell. Upon light activation, DCB in the cells can cause various cellular damages, leading to nonviable Jurkat T-cells. It appears, the nonviable cells are not caused solely by fragmentation of cellular DNA, but by other damages such as to proteins and cell membranes, or DNA alkylation. Therefore, persons exposed to DCB through environmental contamination or through tattoo piercing using DCB-containing inks must not only concern about its toxicity without exposing to light, but also its phototoxicity

  17. Adsorption of multimeric T cell antigens on carbon nanotubes

    DEFF Research Database (Denmark)

    Fadel, Tarek R; Li, Nan; Shah, Smith

    2013-01-01

    Antigen-specific activation of cytotoxic T cells can be enhanced up to three-fold more than soluble controls when using functionalized bundled carbon nanotube substrates ((b) CNTs). To overcome the denaturing effects of direct adsorption on (b) CNTs, a simple but robust method is demonstrated...... to stabilize the T cell stimulus on carbon nanotube substrates through non-covalent attachment of the linker neutravidin....

  18. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  19. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells.

    Science.gov (United States)

    Drobek, Ales; Moudra, Alena; Mueller, Daniel; Huranova, Martina; Horkova, Veronika; Pribikova, Michaela; Ivanek, Robert; Oberle, Susanne; Zehn, Dietmar; McCoy, Kathy D; Draber, Peter; Stepanek, Ondrej

    2018-05-11

    Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8 + T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Changes in T-cell subsets after radiation therapy

    International Nuclear Information System (INIS)

    Yang, S.J.; Rafla, S.; Youssef, E.; Selim, H.; Salloum, N.; Chuang, J.Y.

    1988-01-01

    The T-cell subsets of 129 patients with cancer were counted before and after radiation therapy. The cells were labeled with monoclonal antibodies that were specific for each type of T cell. Significant changes after therapy were decreases in the proportion of T-helper/inducer cells, pan-T cells, and in the ratio of T-helper/inducer to T-suppressor/cytotoxic cells. There was an increase in the percentage of T-suppressor/cytotoxic cells. When the site of the primary cancer was considered, genitourinary cancer and cancer of the head and neck both showed a decreased percentage of T-helper/inducer cells and a reduced ratio of T-helper/inducer to T-suppressor/cytotoxic cells. The percentage of pan-T cells in head and neck cancer and the ratio of T-helper/inducer to T-suppressor/cytotoxic cells in breast cancer were decreased. The percentage of T-helper cells was particularly decreased by radiation therapy in advanced stages of cancer, in higher grade tumors, and in larger tumors. The absolute numbers of various T-cell subsets were decreased in all groups

  1. Engineering CAR-T cells.

    Science.gov (United States)

    Zhang, Cheng; Liu, Jun; Zhong, Jiang F; Zhang, Xi

    2017-01-01

    Chimeric antigen receptor redirected T cells (CAR-T cells) have achieved inspiring outcomes in patients with B cell malignancies, and are now being investigated in other hematologic malignancies and solid tumors. CAR-T cells are generated by the T cells from patients' or donors' blood. After the T cells are expanded and genetically modified, they are reinfused into the patients. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. In this review, we first discuss the structure and evolution of chimeric antigen receptors. We then report on the tools used for production of CAR-T cells. Finally, we address the challenges posed by CAR-T cells.

  2. CD4+ virtual memory: Antigen-inexperienced T cells reside in the naïve, regulatory, and memory T cell compartments at similar frequencies, implications for autoimmunity.

    Science.gov (United States)

    Marusina, Alina I; Ono, Yoko; Merleev, Alexander A; Shimoda, Michiko; Ogawa, Hiromi; Wang, Elizabeth A; Kondo, Kayo; Olney, Laura; Luxardi, Guillaume; Miyamura, Yoshinori; Yilma, Tilahun D; Villalobos, Itzel Bustos; Bergstrom, Jennifer W; Kronenberg, Daniel G; Soulika, Athena M; Adamopoulos, Iannis E; Maverakis, Emanual

    2017-02-01

    It is widely accepted that central and effector memory CD4 + T cells originate from naïve T cells after they have encountered their cognate antigen in the setting of appropriate co-stimulation. However, if this were true the diversity of T cell receptor (TCR) sequences within the naïve T cell compartment should be far greater than that of the memory T cell compartment, which is not supported by TCR sequencing data. Here we demonstrate that aged mice with far fewer naïve T cells, respond to the model antigen, hen eggwhite lysozyme (HEL), by utilizing the same TCR sequence as their younger counterparts. CD4 + T cell repertoire analysis of highly purified T cell populations from naive animals revealed that the HEL-specific clones displayed effector and central "memory" cell surface phenotypes even prior to having encountered their cognate antigen. Furthermore, HEL-inexperienced CD4 + T cells were found to reside within the naïve, regulatory, central memory, and effector memory T cell populations at similar frequencies and the majority of the CD4 + T cells within the regulatory and memory populations were unexpanded. These findings support a new paradigm for CD4 + T cell maturation in which a specific clone can undergo a differentiation process to exhibit a "memory" or regulatory phenotype without having undergone a clonal expansion event. It also demonstrates that a foreign-specific T cell is just as likely to reside within the regulatory T cell compartment as it would the naïve compartment, arguing against the specificity of the regulatory T cell compartment being skewed towards self-reactive T cell clones. Finally, we demonstrate that the same set of foreign and autoreactive CD4 + T cell clones are repetitively generated throughout adulthood. The latter observation argues against T cell-depleting strategies or autologous stem cell transplantation as therapies for autoimmunity-as the immune system has the ability to regenerate pathogenic clones. Published by

  3. The Role of Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) Gene, Thyroid Stimulating Hormone Receptor (TSHR) Gene and Regulatory T-cells as Risk Factors for Relapse in Patients with Graves Disease.

    Science.gov (United States)

    Eliana, Fatimah; Suwondo, Pradana; Asmarinah, Asmarinah; Harahap, Alida; Djauzi, Samsuridjal; Prihartono, Joedo; Pemayun, Tjokorda Gde Dalem

    2017-07-01

    graves' disease (GD) is the most common condition of thyrotoxicosis. The management of GD is initiated with the administration of antithyroid drugs; however, it requires a long time to achieve remission. In reality more than 50% of patients who had remission may be at risk for relapse after the drug is stopped. This study aimed to evaluate the role of clinical factors such as smoking habit, degree of ophtalmopathy, degree of thyroid enlargement; genetic factors such as CTLA-4 gene on nucleotide 49 at codon 17 of exon 1, CTLA-4 gene of promotor -318, TSHR gene polymorphism rs2268458 of intron 1; and immunological factors such as regulatory T cells (Treg) and thyroid receptor antibody (TRAb); that affecting the relapse of patients with Graves' disease in Indonesia. this was a case-control study, that compared 72 subjects who had relapse and 72 subjects without relapse at 12 months after cessation of antithyroid treatment, who met the inclusion criteria. Genetic polymorphism examination was performed using PCR-RFLP. The number of regulatory T cells was counted using flow cytometry analysis and ELISA was used to measure TRAb. The logistic regression was used since the dependent variables were categorical variables. the analysis of this study demonstrated that there was a correlation between relapse of disease and family factors (p=0.008), age at diagnosis (p=0.021), 2nd degree of Graves' ophthalmopathy (p=0.001), enlarged thyroid gland, which exceeded the lateral edge of the sternocleidomastoid muscles (p=0.040), duration of remission period (p=0.029), GG genotype of CTLA-4 gene on the nucleotide 49 at codon 17 of exon 1 (p=0.016), CC genotype of TSHR gene on the rs2268458 of intron 1 (p=0.003), the number of regulatory T cells (p=0.001) and TRAb levels (p=0.002). genetic polymorphisms of CTLA-4 gene on the nucleotide 49 at codon 17 of exon 1, TSHR gene SNP rs2268458 of intron 1, number of regulatory T cells and TRAb levels play a role as risk factors for relapse in

  4. The Role of Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4 Gene, Thyroid Stimulating Hormone Receptor (TSHR Gene and Regulatory T-cells as Risk Factors for Relapse in Patients with Graves Disease

    Directory of Open Access Journals (Sweden)

    Fatimah Eliana

    2017-11-01

    Full Text Available Background: graves’ disease (GD is the most common condition of thyrotoxicosis. The management of GD is initiated with the administration of antithyroid drugs; however, it requires a long time to achieve remission. In reality more than 50% of patients who had remission may be at risk for relapse after the drug is stopped. This study aimed to evaluate the role of clinical factors such as smoking habit, degree of ophtalmopathy, degree of thyroid enlargement; genetic factors such as CTLA-4 gene on nucleotide 49 at codon 17 of exon 1, CTLA-4 gene of promotor -318, TSHR gene polymorphism rs2268458 of intron 1; and immunological factors such as regulatory T cells (Treg and thyroid receptor antibody (TRAb; that affecting the relapse of patients with Graves’ disease in Indonesia. Methods: this was a case-control study, that compared 72 subjects who had relapse and 72 subjects without relapse at 12 months after cessation of antithyroid treatment, who met the inclusion criteria. Genetic polymorphism examination was performed using PCR-RFLP. The number of regulatory T cells was counted using flow cytometry analysis and ELISA was used to measure TRAb. The logistic regression was used since the dependent variables were categorical variables. Results: the analysis of this study demonstrated that there was a correlation between relapse of disease and family factors (p=0.008, age at diagnosis (p=0.021, 2nd degree of Graves’ ophthalmopathy (p=0.001, enlarged thyroid gland, which exceeded the lateral edge of the sternocleidomastoid muscles (p=0.040, duration of remission period (p=0.029, GG genotype of CTLA-4 gene on the nucleotide 49 at codon 17 of exon 1 (p=0.016, CC genotype of TSHR gene on the rs2268458 of intron 1 (p=0.003, the number of regulatory T cells (p=0.001 and TRAb levels (p=0.002. Conclusion: genetic polymorphisms of CTLA-4 gene on the nucleotide 49 at codon 17 of exon 1, TSHR gene SNP rs2268458 of intron 1, number of regulatory T cells and

  5. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies.

    Science.gov (United States)

    Png, Yi Tian; Vinanica, Natasha; Kamiya, Takahiro; Shimasaki, Noriko; Coustan-Smith, Elaine; Campana, Dario

    2017-11-28

    Effective immunotherapies for T-cell malignancies are lacking. We devised a novel approach based on chimeric antigen receptor (CAR)-redirected T lymphocytes. We selected CD7 as a target because of its consistent expression in T-cell acute lymphoblastic leukemia (T-ALL), including the most aggressive subtype, early T-cell precursor (ETP)-ALL. In 49 diagnostic T-ALL samples (including 14 ETP-ALL samples), median CD7 expression was >99%; CD7 expression remained high at relapse (n = 14), and during chemotherapy (n = 54). We targeted CD7 with a second-generation CAR (anti-CD7-41BB-CD3ζ), but CAR expression in T lymphocytes caused fratricide due to the presence of CD7 in the T cells themselves. To downregulate CD7 and control fratricide, we applied a new method (protein expression blocker [PEBL]), based on an anti-CD7 single-chain variable fragment coupled with an intracellular retention domain. Transduction of anti-CD7 PEBL resulted in virtually instantaneous abrogation of surface CD7 expression in all transduced T cells; 2.0% ± 1.7% were CD7 + vs 98.1% ± 1.5% of mock-transduced T cells (n = 5; P < .0001). PEBL expression did not impair T-cell proliferation, interferon-γ and tumor necrosis factor-α secretion, or cytotoxicity, and eliminated CAR-mediated fratricide. PEBL-CAR T cells were highly cytotoxic against CD7 + leukemic cells in vitro and were consistently more potent than CD7 + T cells spared by fratricide. They also showed strong anti-leukemic activity in cell line- and patient-derived T-ALL xenografts. The strategy described in this study fits well with existing clinical-grade cell manufacturing processes and can be rapidly implemented for the treatment of patients with high-risk T-cell malignancies.

  6. Can resting B cells present antigen to T cells

    International Nuclear Information System (INIS)

    Ashwell, J.D.; DeFranco, A.L.; Paul, W.E.; Schwartz, R.H.

    1985-01-01

    Antigen stimulation of T lymphocytes can occur only in the presence of an antigen-presenting cell (APC). An ever-increasing number of cell types have been found to act as APCs; these include macrophages, splenic and lymph node dendritic cells, and Langerhans cells of the skin. Although activated B lymphocytes and B cell lymphomas are known to serve as APCs, it has been generally believed that resting B cells cannot perform this function. However, in recent studies the authors have found that resting B cells can indeed present soluble antigen to T cell clones as well as to antigen-primed T cells. The previous difficulty in demonstrating this activity can be explained by the finding that, in contrast to macrophages and dendritic cells, the antigen-presenting ability of resting B cells is very radiosensitive. Macrophages are usually irradiated with 2000-3300 rads to prevent them from incorporating [ 3 H]thymidine in the T cell proliferation assay. Resting B cells, however, begin to lose presenting function at 1500 rads and have completely lost this activity at 3300 rads. It was also possible to distinguish two distinct T cell clonal phenotypes when resting B cells were used as APCs on the basis of two different assays (T cell proliferation, and B cell proliferation resulting from T cell activation). The majority of T cell clones tested were capable of both proliferating themselves and inducing the proliferation of B cells. Some T cells clones, however, could not proliferate in the presence of antigen and B cell APCs, although they were very good at inducing the proliferation of B cells

  7. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation.

    Science.gov (United States)

    Bajgain, Pradip; Tawinwung, Supannikar; D'Elia, Lindsey; Sukumaran, Sujita; Watanabe, Norihiro; Hoyos, Valentina; Lulla, Premal; Brenner, Malcolm K; Leen, Ann M; Vera, Juan F

    2018-05-10

    The adoptive transfer of T cells redirected to tumor via chimeric antigen receptors (CARs) has produced clinical benefits for the treatment of hematologic diseases. To extend this approach to breast cancer, we generated CAR T cells directed against mucin1 (MUC1), an aberrantly glycosylated neoantigen that is overexpressed by malignant cells and whose expression has been correlated with poor prognosis. Furthermore, to protect our tumor-targeted cells from the elevated levels of immune-inhibitory cytokines present in the tumor milieu, we co-expressed an inverted cytokine receptor linking the IL4 receptor exodomain with the IL7 receptor endodomain (4/7ICR) in order to transform the suppressive IL4 signal into one that would enhance the anti-tumor effects of our CAR T cells at the tumor site. First (1G - CD3ζ) and second generation (2G - 41BB.CD3ζ) MUC1-specific CARs were constructed using the HMFG2 scFv. Following retroviral transduction transgenic expression of the CAR±ICR was assessed by flow cytometry. In vitro CAR/ICR T cell function was measured by assessing cell proliferation and short- and long-term cytotoxic activity using MUC1+ MDA MB 468 cells as targets. In vivo anti-tumor activity was assessed using IL4-producing MDA MB 468 tumor-bearing mice using calipers to assess tumor volume and bioluminescence imaging to track T cells. In the IL4-rich tumor milieu, 1G CAR.MUC1 T cells failed to expand or kill MUC1+ tumors and while co-expression of the 4/7ICR promoted T cell expansion, in the absence of co-stimulatory signals the outgrowing cells exhibited an exhausted phenotype characterized by PD-1 and TIM3 upregulation and failed to control tumor growth. However, by co-expressing 2G CAR.MUC1 (signal 1 - activation + signal 2 - co-stimulation) and 4/7ICR (signal 3 - cytokine), transgenic T cells selectively expanded at the tumor site and produced potent and durable tumor control in vitro and in vivo. Our findings demonstrate the feasibility of targeting breast

  8. IL-15 improves the cytotoxicity of cytokine-induced killer cells against leukemia cells by upregulating CD3+CD56+ cells and downregulating regulatory T cells as well as IL-35.

    Science.gov (United States)

    Tao, Qianshan; Chen, Tianping; Tao, Lili; Wang, Huiping; Pan, Ying; Xiong, Shudao; Zhai, Zhimin

    2013-01-01

    Cytokine-induced killer (CIK) cells are usually generated from peripheral blood mononuclear cells with the stimulation of IL-2 in vitro. Unlike the conventional IL-2-stimulated CIK cells (IL-2-CIK cells), we investigated the characteristics and potential mechanism of IL-15-stimulated CIK cells (IL-15-CIK cells) in this study. Compared with IL-2-CIK cells, the percentage of CD3CD56 cells was significantly increased in IL-15-CIK cells, but the expression of regulatory T (Treg) cells and IL-35 was significantly decreased in IL-15-CIK cells. Meanwhile, the in vitro cytotoxicity against human myeloid leukemia cells K562 of IL-15-CIK cells was significantly augmented compared with IL-2-CIK cells. These data suggest that IL-15 may improve the cytotoxicity of CIK cells against leukemia cells by upregulating CD3CD56 cells and downregulating Treg cells and IL-35.

  9. CCL22-specific T Cells

    DEFF Research Database (Denmark)

    Martinenaite, Evelina; Munir Ahmad, Shamaila; Hansen, Morten

    2016-01-01

    Tumor cells and tumor-infiltrating macrophages produce the chemokine CCL22, which attracts regulatory T cells (Tregs) into the tumor microenvironment, decreasing anticancer immunity. Here, we investigated the possibility of targeting CCL22-expressing cells by activating specific T cells. We...... analyzed the CCL22 protein signal sequence, identifying a human leukocyte antigen A2- (HLA-A2-) restricted peptide epitope, which we then used to stimulate peripheral blood mononuclear cells (PMBCs) to expand populations of CCL22-specific T cells in vitro. T cells recognizing an epitope derived from...... the signal-peptide of CCL22 will recognize CCL22-expressing cells even though CCL22 is secreted out of the cell. CCL22-specific T cells recognized and killed CCL22-expressing cancer cells. Furthermore, CCL22-specific T cells lysed acute monocytic leukemia cells in a CCL22 expression-dependent manner. Using...

  10. Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors.

    Science.gov (United States)

    Aldoss, I; Bargou, R C; Nagorsen, D; Friberg, G R; Baeuerle, P A; Forman, S J

    2017-04-01

    Recent advances in antibody technology to harness T cells for cancer immunotherapy, particularly in the difficult-to-treat setting of relapsed/refractory acute lymphoblastic leukemia (r/r ALL), have led to innovative methods for directing cytotoxic T cells to specific surface antigens on cancer cells. One approach involves administration of soluble bispecific (or dual-affinity) antibody-based constructs that temporarily bridge T cells and cancer cells. Another approach infuses ex vivo-engineered T cells that express a surface plasma membrane-inserted antibody construct called a chimeric antigen receptor (CAR). Both bispecific antibodies and CARs circumvent natural target cell recognition by creating a physical connection between cytotoxic T cells and target cancer cells to activate a cytolysis signaling pathway; this connection allows essentially all cytotoxic T cells in a patient to be engaged because typical tumor cell resistance mechanisms (such as T-cell receptor specificity, antigen processing and presentation, and major histocompatibility complex context) are bypassed. Both the bispecific T-cell engager (BiTE) antibody construct blinatumomab and CD19-CARs are immunotherapies that have yielded encouraging remission rates in CD19-positive r/r ALL, suggesting that they might serve as definitive treatments or bridging therapies to allogeneic hematopoietic cell transplantation. With the introduction of these immunotherapies, new challenges arise related to unique toxicities and distinctive pathways of resistance. An increasing body of knowledge is being accumulated on how to predict, prevent, and manage such toxicities, which will help to better stratify patient risk and tailor treatments to minimize severe adverse events. A deeper understanding of the precise mechanisms of action and immune resistance, interaction with other novel agents in potential combinations, and optimization in the manufacturing process will help to advance immunotherapy outcomes in the r

  11. A highly restricted T-cell receptor dominates the CD8+ T-cell response to parvovirus B19 infection in HLA-A*2402-positive individuals

    DEFF Research Database (Denmark)

    Kasprowicz, V; Isa, Adiba; Jeffery, K

    2006-01-01

    Six of seven HLA-A*2402-positive individuals with acute parvovirus B19 infections made vigorous CD8-positive cytotoxic T-cell (CTL) responses to the viral epitope FYTPLADQF. All responders showed highly focused T-cell receptor (TCR) usage, using almost exclusively BV5.1. The BV5.1 TCR dominated...

  12. Mechanisms behind functional avidity maturation in T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak, Martin; Geisler, Carsten

    2012-01-01

    During an immune response antigen-primed B-cells increase their antigen responsiveness by affinity maturation mediated by somatic hypermutation of the genes encoding the antigen-specific B-cell receptor (BCR) and by selection of higher-affinity B cell clones. Unlike the BCR, the T-cell receptor...

  13. Human T Cell Memory: A Dynamic View

    Directory of Open Access Journals (Sweden)

    Derek C. Macallan

    2017-02-01

    Full Text Available Long-term T cell-mediated protection depends upon the formation of a pool of memory cells to protect against future pathogen challenge. In this review we argue that looking at T cell memory from a dynamic viewpoint can help in understanding how memory populations are maintained following pathogen exposure or vaccination. For example, a dynamic view resolves the apparent paradox between the relatively short lifespans of individual memory cells and very long-lived immunological memory by focussing on the persistence of clonal populations, rather than individual cells. Clonal survival is achieved by balancing proliferation, death and differentiation rates within and between identifiable phenotypic pools; such pools correspond broadly to sequential stages in the linear differentiation pathway. Each pool has its own characteristic kinetics, but only when considered as a population; single cells exhibit considerable heterogeneity. In humans, we tend to concentrate on circulating cells, but memory T cells in non-lymphoid tissues and bone marrow are increasingly recognised as critical for immune defence; their kinetics, however, remain largely unexplored. Considering vaccination from this viewpoint shifts the focus from the size of the primary response to the survival of the clone and enables identification of critical system pinch-points and opportunities to improve vaccine efficacy.

  14. Membranes of activated CD4+ T cells expressing T cell receptor (TcR) alpha beta or TcR gamma delta induce IgE synthesis by human B cells in the presence of interleukin-4

    NARCIS (Netherlands)

    Gascan, H.; Aversa, G. G.; Gauchat, J. F.; van Vlasselaer, P.; Roncarolo, M. G.; Yssel, H.; Kehry, M.; Spits, H.; de Vries, J. E.

    1992-01-01

    In the present study it is demonstrated that human B cells can be induced to switch to IgE production following a contact-mediated signal provided by activated T cell receptor (TcR) gamma delta+, CD4+ and TcR alpha beta+, CD4+ T cell clones and interleukin (IL)-4. The signal provided by these T cell

  15. Designing bovine T cell vaccines via reverse immunology

    DEFF Research Database (Denmark)

    Nene, Vishvanath; Svitek, Nicholas; Toye, Philip

    2012-01-01

    T cell responses contribute to immunity against many intracellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymph...

  16. Designing bovine T-cell vaccines via reverse immunology

    Science.gov (United States)

    T-cell responses contribute to immunity against many intra-cellular infections. There is, for example, strong evidence that major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTLs) play an essential role in mediating immunity to East Coast fever (ECF), a fatal lymphop...

  17. T cell receptor-transgenic primary T cells as a tool for discovery of leukaemia-associated antigens

    NARCIS (Netherlands)

    Ivanov, R.; Hol, S.; Aarts, T. I.; Hagenbeek, A.; Ebeling, S. B.

    2006-01-01

    Identification of a broad array of leukaemia-associated antigens is a crucial step towards immunotherapy of haematological malignancies. However, it is frequently hampered by the decrease of proliferative potential and functional activity of T cell clones used for screening procedures. Transfer of

  18. T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness

    NARCIS (Netherlands)

    C.H.J. Lamers (Cor); S. van Steenbergen-Langeveld (Sabine); M. van Brakel (Mandy); C.M. Groot-van Ruijven (Corrien); P.M.M.L. van Elzakker (Pascal); B.A. van Krimpen (Brigitte); S. Sleijfer (Stefan); J.E.M.A. Debets (Reno)

    2014-01-01

    textabstractTherapy with autologous T cells that have been gene-engineered to express chimeric antigen receptors (CAR) or T cell receptors (TCR) provides a feasible and broadly applicable treatment for cancer patients. In a clinical study in advanced renal cell carcinoma (RCC) patients with CAR T

  19. CD1b-mycolic acid tetramers demonstrate T-cell fine specificity for mycobacterial lipid tails

    NARCIS (Netherlands)

    Van Rhijn, Ildiko; Iwany, Sarah K; Fodran, Peter; Cheng, Tan-Yun; Gapin, Laurent; Minnaard, Adriaan J; Moody, D Branch

    Mycobacterium tuberculosis synthesizes a thick cell wall comprised of mycolic acids (MA), which are foreign antigens for human T cells. T-cell clones from multiple donors were used to determine the fine specificity of MA recognition by human αβ T cells. Most CD1-presented lipid antigens contain

  20. The timing of T cell priming and cycling

    Directory of Open Access Journals (Sweden)

    Reinhard eObst

    2015-11-01

    Full Text Available The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4+ and CD8+ cells. The results suggest a degree of programming by early signals for effector differentiation, particularly in the CD8+ T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4+ T cell expansion and new avenues towards a molecular understanding of cell cycle regulation in lymphocytes are discussed.

  1. Establishing guidelines for CAR-T cells: challenges and considerations.

    Science.gov (United States)

    Wang, Wei; Qin, Di-Yuan; Zhang, Bing-Lan; Wei, Wei; Wang, Yong-Sheng; Wei, Yu-Quan

    2016-04-01

    T cells, genetically modified by chimeric antigen receptors (CAR-T), are endowed with specificity to a desired antigen and are cytotoxic to cells expressing the targeted antigen. CAR-T-based cancer immunotherapy is a promising therapy for curing hematological malignancy, such as acute lymphoid leukemia, and is promising for extending their efficacy to defeat solid tumors. To date, dozens of different CAR-T cells have been evaluated in clinical trials to treat tumors; this necessitates the establishment of guidelines for the production and application of CAR-T cells. However, it is challenging to standardize CAR-T cancer therapy because it involves a combination of gene therapy and cell therapy. In this review, we compare the existing guidelines for CAR-T cells and discuss the challenges and considerations for establishing guidance for CAR-T-based cancer immunotherapy.

  2. Peripheral T cell lymphoma: clinical utility of romidepsin

    Directory of Open Access Journals (Sweden)

    Sawey K

    2012-06-01

    Full Text Available Jasmine Zain, Kathryn SaweyNYU Langone Medical Center, New York, USAIntroduction: Direct therapeutic targets, such as aberrant tumor cell genes and tumor cell markers, have been the focus of cancer treatment for more than 50 years. The resulting damage to normal cells and emergence of drug-resistant tumor cells after exposure to conventional chemotherapy have led researchers to study indirect targets, like the tumor vasculature. A more recent indirect approach involves targeting the epigenetic modifiers, DNA methyltransferase and histone deacetylase. Histone deacetylase inhibitors have been shown to be active cytotoxic agents in T cell lymphoma. The current treatments approved by the US Food and Drug Administration for relapsed cutaneous T cell lymphoma are vorinostat and romidepsin. The diversity and rarity of peripheral T cell lymphomas present a challenge for effective treatment. With their poor overall survival rate, new targeted therapies need to be developed.Keywords: peripheral T cell lymphoma, treatment, romidepsin

  3. Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Cancer

    Directory of Open Access Journals (Sweden)

    Marc Cartellieri

    2010-01-01

    Full Text Available CD4+ and CD8+ T lymphocytes are powerful components of adaptive immunity, which essentially contribute to the elimination of tumors. Due to their cytotoxic capacity, T cells emerged as attractive candidates for specific immunotherapy of cancer. A promising approach is the genetic modification of T cells with chimeric antigen receptors (CARs. First generation CARs consist of a binding moiety specifically recognizing a tumor cell surface antigen and a lymphocyte activating signaling chain. The CAR-mediated recognition induces cytokine production and tumor-directed cytotoxicity of T cells. Second and third generation CARs include signal sequences from various costimulatory molecules resulting in enhanced T-cell persistence and sustained antitumor reaction. Clinical trials revealed that the adoptive transfer of T cells engineered with first generation CARs represents a feasible concept for the induction of clinical responses in some tumor patients. However, further improvement is required, which may be achieved by second or third generation CAR-engrafted T cells.

  4. [gammadelta T cells stimulated by zoledronate kill osteosarcoma cells].

    Science.gov (United States)

    Jiang, Hui; Xu, Qiang; Yang, Chao; Cao, Zhen-Guo; Li, Zhao-Xu; Ye, Zhao-Ming

    2010-12-01

    To investigate the cytotoxicity of human γδT cells from PBMCs stimulated by zoledronate against osteosarcoma cell line HOS in vitro and in vivo and evaluate the relavent pathways. The peripheral blood mononuclear cells (PBMCs)of healthy donors were stimulated by single dose zoledronate and cultured in the present of IL-2 for two weeks, analysising the percentage of γδT cells on a FACSCalibur cytometer.Study the cytotoxicity of γδT cells against the osteosarcoma line HOS using LDH release assay kit. Pre-treatment of γδT cells with anti-human γδTCR antibody, anti-human NKG2D antibody and concanamycin A to bolck the relavent pathways for evaluating the mechenisms of its cytotoxicity. In vivo, BALB/c mice were inoculated subcutaneously osteosarcoma cell HOS for developing hypodermal tumors. And they were randomized into two groups: unteated group, γδT cell therapy group. Tumor volume and weight of the two groups were compared. After two weeks of culture, γδT cells from zoledronate-stimulated PBMCs could reach (95±3)%. When the E:T as 6:1, 12:1, 25:1, 50:1, the percentage of osteosarcoma cell HOS killed by γδT cells was 26.8%, 31.5%, 37.8%, 40.9%, respectively.When anti-huma γδTCR antibody, anti-human NKG2D antibody and concanamycin A blocked the relavent pathways, the percentage was 32.3%, 4.7%, 16.7% ( E:T as 25:1), respectively. In vivo, the tumor inhibition rate of the group of γδT cell therapy was 42.78%. γδT cells derived from PBMCs stimulated by zoledronate can acquired pure γδT cells. And they show strong cytoxicity against osteosarcoma cell line HOS in vitro and in vivo.

  5. Identification of T-cell epitopes of Lol p 9, a major allergen of ryegrass (Lolium perenne) pollen.

    Science.gov (United States)

    Blaher, B; Suphioglu, C; Knox, R B; Singh, M B; McCluskey, J; Rolland, J M

    1996-07-01

    T-cell recognition of Lol p 9, a major allergen of ryegrass pollen, was investigated by using a T-cell line and T-cell clones generated from the peripheral blood of an atopic donor. The T-cell line reacted with purified Lol p 9, as well as with crude ryegrass pollen extract, but failed to cross-react with Bermuda grass pollen extract. All of six T-cell clones generated from this line proliferated in response to Lol p 9. Epitope mapping was carried out with a panel of 34 overlapping synthetic peptides, which spanned the entire sequence of the Lol p 9 12R isoform. The T-cell line responded to two of the peptides, Lol p 9 (105-116) and Lol p 9 (193-204), whereas reactivity with one or other of these peptides was shown by five T-cell clones. These two peptides contained sequences consistent with motifs previously reported for major histocompatibility complex class II-restricted peptides. HLA antibody blocking studies showed that presentation of peptide Lol p 9 (105-116) to one T-cell clone was HLA-DR-restricted; this clone expressed a T helper cell phenotype (CD3+, CD4+) and the T-cell receptor alpha beta. The identification of immunodominant T-cell epitope(s) on allergens is essential for devising safer and more effective immunotherapy strategies, which can interrupt the chain of events leading to allergic disease.

  6. T Cells and Pathogenesis of Hantavirus Cardiopulmonary Syndrome and Hemorrhagic Fever with Renal Syndrome

    OpenAIRE

    Francis A. Ennis; Masanori Terajima

    2011-01-01

    We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell ...

  7. The new numerology of immunity mediated by virus-specific CD8(+) T cells.

    Science.gov (United States)

    Doherty, P C

    1998-08-01

    Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.

  8. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  9. T cell dysfunction in the diabetes-prone BB rat. A role for thymic migrants that are not T cell precursors

    International Nuclear Information System (INIS)

    Georgiou, H.M.; Lagarde, A.C.; Bellgrau, D.

    1988-01-01

    Diabetes-prone BB (BB-DP) rats express several T cell dysfunctions which include poor proliferative and cytotoxic responses to alloantigen. The goal of this study was to determine the origin of these T cell dysfunctions. When BB-DP rats were thymectomized, T cell depleted, and transplanted with neonatal thymus tissue from diabetes-resistant and otherwise normal DA/BB F1 rats, the early restoration of T cell function proceeded normally on a cell-for-cell basis; i.e., peripheral T cells functioned like those from the thymus donor. Because the thymus in these experiments was subjected to gamma irradiation before transplantation and there was no evidence of F1 chimerism in the transplanted BB-DP rats, it appeared that the BB-DP T cell precursors could mature into normally functioning T cells if the maturation process occurred in a normal thymus. If the F1 thymus tissue was treated with dGua before transplantation, the T cells of these animals functioned poorly like those from untreated BB-DP rats. dGua poisons bone marrow-derived cells, including gamma radiation-resistant cells of the macrophage/dendritic cell lineages, while sparing the thymic epithelium. Therefore, the reversal of the T cell dysfunction depends on the presence in the F1 thymus of gamma radiation-resistant, dGua-sensitive F1 cells. Conversely, thymectomized and T cell-depleted F1 rats expressed T cell dysfunction when transplanted with gamma-irradiated BB thymus grafts. T cell responses were normal in animals transplanted with dGua-treated BB thymus grafts. With increasing time after thymus transplantation, T cells from all animals gradually expressed the functional phenotype of the bone marrow donor. Taken together these results suggest that BB-DP bone marrow-derived cells that are not T cell precursors influence the maturation environment in the thymus of otherwise normal BB-DP T cell precursors

  10. Gammadelta receptor bearing T cells in scleroderma: enhanced interaction with vascular endothelial cells in vitro.

    Science.gov (United States)

    Kahaleh, M B; Fan, P S; Otsuka, T

    1999-05-01

    In view of the documented perivascular mononuclear cell infiltration in the involved organs in scleroderma (SSc) and the reported accumulation of gammadelta-T cells in SSc skin and lung, we evaluated gammadelta-T cell interaction with endothelial cells (EC) in vitro. gammadelta- and alphabeta-T cells were isolated from BPMN of SSc patients with early diffuse disease and of matched control subjects by an immunomagnetic method after stimulation with mycobacterium lysate and interleukin-2 for 2 weeks. Lymphocyte adhesion, proliferation, and cytotoxicity to EC were investigated. SSc gammadelta-T cells adhered to cultured EC and proliferated at higher rates than control cells. Furthermore, significant EC cytotoxicity by SSc gammadelta was seen. The cytotoxicity was blocked by addition of anti-gammadelta-TCR antibody and by anti-granzyme A antibody but not by anti-MHC class I and II antibodies. Expression of granzyme A mRNA was seen in five/five SSc gammadelta-T cells and in one/five control cells. alphabeta-T cells from both SSc and control subjects were significantly less interactive with EC than gammadelta-T cells. The data demonstrate EC recognition by SSc gammadelta-T cells and propose gammadelta-T cells as a possible effector cell type in the immune pathogenesis of SSc. Copyright 1999 Academic Press.

  11. Cytotoxic Constituents from the Leaves of Zanthoxylum schinifolium

    International Nuclear Information System (INIS)

    Fang, Zhe; Min, Byung Sun; Kim, Ae Kyong; Woo, Mi Hee; Jun, Do Youn; Kim, Young Ho

    2010-01-01

    The roots, stems, pericarps, and seeds of Z. schinifolium were each extracted with MeOH, and the leaves were extracted with 80% MeOH and concentrated. These extracts were examined on MTT for cytotoxicity against Jurkat T cell clone E6.1. The results showed that the leaves extract had the strongest MTT cytotoxicity. The MeOH extract of Z. schinifolium leaves was subsequently fractionated into four parts: methylene chloride, ethyl acetate, n-butanol and water. These fractions were examined on MTT for cytotoxicity. The results showed that the methylene chloride fraction exhibited the strongest MTT cytotoxicity. Chromatographic separation of the methylene chloride and butanol fractions had yielded a quinolin (1), three phenylpropanoids (2, 3, 12), four coumarins (4 ∼ 7), three triterpenoids (8 ∼ 10), an alkaloid (11), an alcohol glucoside (13) and three monoterpene glucosides (14, 15, 16). One of these compounds were identified as new threo-6-amino-5-hydroxy-5-methyl-1,3-oxazinan-4-one (11) together with fifteen known, 3-heptyl-2-methylisoquinolin-1(2H)-one (1), integrifoliodiol (2), cuspidiol (3), bergapten (4), aurapten (5), 8-hydroxy-7-methoxy-chromen-2-one (6), 6,7-dimethoxy-2H-naphthalen-1-one (7), lupeol (8), lupeone (9), β-sitosterol (10), syringin (12), 2-propyl alchol β-D-glucopyranoside (13), vomifoliol-9-O-β-D-glucopyranoside (14), betulalbuside A (15) and cnidioside C (16) on the basis of spectroscopic and chemical evidences. All of the compounds were isolated for the first time from this plant except 5 and 7. In the MTT cytotoxicity assay against Jurkat T cell clone E6.1, IC 50 values of cuspidiol (3) and auraptene (5) were obtained at 7.3 μg/mL and 16.5 μg/mL, respectively

  12. Cytotoxic Constituents from the Leaves of Zanthoxylum schinifolium

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhe; Min, Byung Sun; Kim, Ae Kyong; Woo, Mi Hee [Catholic Univ. of Daegu, Gyeongsan (Korea, Republic of); Jun, Do Youn; Kim, Young Ho [Kyungpook National Univ., Daegu (Korea, Republic of)

    2010-04-15

    The roots, stems, pericarps, and seeds of Z. schinifolium were each extracted with MeOH, and the leaves were extracted with 80% MeOH and concentrated. These extracts were examined on MTT for cytotoxicity against Jurkat T cell clone E6.1. The results showed that the leaves extract had the strongest MTT cytotoxicity. The MeOH extract of Z. schinifolium leaves was subsequently fractionated into four parts: methylene chloride, ethyl acetate, n-butanol and water. These fractions were examined on MTT for cytotoxicity. The results showed that the methylene chloride fraction exhibited the strongest MTT cytotoxicity. Chromatographic separation of the methylene chloride and butanol fractions had yielded a quinolin (1), three phenylpropanoids (2, 3, 12), four coumarins (4 ∼ 7), three triterpenoids (8 ∼ 10), an alkaloid (11), an alcohol glucoside (13) and three monoterpene glucosides (14, 15, 16). One of these compounds were identified as new threo-6-amino-5-hydroxy-5-methyl-1,3-oxazinan-4-one (11) together with fifteen known, 3-heptyl-2-methylisoquinolin-1(2H)-one (1), integrifoliodiol (2), cuspidiol (3), bergapten (4), aurapten (5), 8-hydroxy-7-methoxy-chromen-2-one (6), 6,7-dimethoxy-2H-naphthalen-1-one (7), lupeol (8), lupeone (9), β-sitosterol (10), syringin (12), 2-propyl alchol β-D-glucopyranoside (13), vomifoliol-9-O-β-D-glucopyranoside (14), betulalbuside A (15) and cnidioside C (16) on the basis of spectroscopic and chemical evidences. All of the compounds were isolated for the first time from this plant except 5 and 7. In the MTT cytotoxicity assay against Jurkat T cell clone E6.1, IC{sub 50} values of cuspidiol (3) and auraptene (5) were obtained at 7.3 μg/mL and 16.5 μg/mL, respectively.

  13. γδ T cells as a potential tool in colon cancer immunotherapy.

    Science.gov (United States)

    Ramutton, Thiranut; Buccheri, Simona; Dieli, Francesco; Todaro, Matilde; Stassi, Giorgio; Meraviglia, Serena

    2014-01-01

    γδ T cells are capable of recognizing tumor cells and exert potent cellular cytotoxicity against a large range of tumors, including colon cancer. However, tumors utilize numerous strategies to escape recognition or killing by patrolling γδ T cells, such a downregulation of NKG2D ligands, MICA/B and ULBPs. Therefore, the combined upregulation of T-cell receptorand NKG2D ligands on tumor cells and induction of NKG2D expression on γδ T cells may greatly enhance tumor killing and unlock the functions of γδ T cells. Here, we briefly review current data on the mechanisms of γδ T-cell recognition and killing of colon cancer cells and propose that γδ T cells may represent a promising target for the design of novel and highly innovative immunotherapy in patients with colon cancer.

  14. CD8+ T cells induce thyroid epithelial cell hyperplasia and fibrosis.

    Science.gov (United States)

    Yu, Shiguang; Fang, Yujiang; Sharav, Tumenjargal; Sharp, Gordon C; Braley-Mullen, Helen

    2011-02-15

    CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.

  15. Human immunodeficiencies related to APC/T cell interaction

    Directory of Open Access Journals (Sweden)

    Marinos eKallikourdis

    2015-08-01

    Full Text Available The primary event for initiating adaptive immune responses is the encounter between T lymphocytes and antigen presenting cells (APC in the T cell area of secondary lymphoid organs and the formation of highly organized inter-cellular junctions referred to as the immune synapses. In vivo live-cell imaging of APC-T cell interactions combined to functional studies unveiled that T cell fate is dictated, in large part, by the stability of the initial contact. Immune cell interaction is equally important during delivery of T cell help to B cells and for the killing of target cells by cytotoxic T cells and NK cells. The critical role of contact dynamics and synapse stability on the immune response is well illustrated by human immune deficiencies in which disease pathogenesis is linked to altered adhesion or defective cross-talk between the synaptic partners. Here we will discuss in details the mechanisms of defective APC-T cell communications in Wiskott-Aldrich syndrome (WAS and in warts, hypogammaglobulinemia, infections, myelokathexis syndrome (WHIM. In addition, we will summarize the evidences pointing to a compromised conjugate formation in WIP deficiency, DOCK8 deficiency and X-linked lymphoproliferative syndrome.

  16. Analysis of the paired TCR α- and β-chains of single human T cells.

    Directory of Open Access Journals (Sweden)

    Song-Min Kim

    Full Text Available Analysis of the paired i.e. matching TCR α- and β-chain rearrangements of single human T cells is required for a precise investigation of clonal diversity, tissue distribution and specificity of protective and pathologic T-cell mediated immune responses. Here we describe a multiplex RT-PCR based technology, which for the first time allows for an unbiased analysis of the complete sequences of both α- and β-chains of TCR from single T cells. We validated our technology by the analysis of the pathologic T-cell infiltrates from tissue lesions of two T-cell mediated autoimmune diseases, psoriasis vulgaris (PV and multiple sclerosis (MS. In both disorders we could detect various T cell clones as defined by multiple T cells with identical α- and β-chain rearrangements distributed across the tissue lesions. In PV, single cell TCR analysis of lesional T cells identified clonal CD8(+ T cell expansions that predominated in the epidermis of psoriatic plaques. An MS brain lesion contained two dominant CD8(+ T-cell clones that extended over the white and grey matter and meninges. In both diseases several clonally expanded T cells carried dual TCRs composed of one Vβ and two different Vα-chain rearrangements. These results show that our technology is an efficient instrument to analyse αβ-T cell responses with single cell resolution in man. It should facilitate essential new insights into the mechanisms of protective and pathologic immunity in many human T-cell mediated conditions and allow for resurrecting functional TCRs from any αβ-T cell of choice that can be used for investigating their specificity.

  17. Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    International Nuclear Information System (INIS)

    Bathe, Oliver F; Dalyot-Herman, Nava; Malek, Thomas R

    2003-01-01

    Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several

  18. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor

    Science.gov (United States)

    Schreiner, Jens; Thommen, Daniela S.; Herzig, Petra; Bacac, Marina; Klein, Christian; Roller, Andreas; Belousov, Anton; Levitsky, Victor; Savic, Spasenija; Moersig, Wolfgang; Uhlenbrock, Franziska; Heinzelmann-Schwarz, Viola A.; Umana, Pablo; Pisa, Pavel; von Bergwelt-Baildon, M.; Lardinois, Didier; Müller, Philipp; Karanikas, Vaios; Zippelius, Alfred

    2016-01-01

    ABSTRACT T-cell bispecific antibodies (TCBs) are a novel therapeutic tool designed to selectively recruit T-cells to tumor cells and simultaneously activate them. However, it is currently unknown whether the dysfunctional state of T-cells, embedded into the tumor microenvironment, imprints on the therapeutic activity of TCBs. We performed a comprehensive analysis of activation and effector functions of tumor-infiltrating T-cells (TILs) in different tumor types, upon stimulation by a TCB targeting folate receptor 1 and CD3 (FolR1-TCB). We observed a considerable heterogeneity in T-cell activation, cytokine production and tumor cell killing upon exposure to FolR1-TCB among different FolR1-expressing tumors. Of note, tumors presenting with a high frequency of PD-1hi TILs displayed significantly impaired tumor cell killing and T-cell function. Further characterization of additional T-cell inhibitory receptors revealed that PD-1hi TILs defined a T-cell subset with particularly high levels of multiple inhibitory receptors compared with PD-1int and PD-1neg T-cells. PD-1 blockade could restore cytokine secretion but not cytotoxicity of TILs in a subset of patients with scarce PD-1hi expressing cells; in contrast, patients with abundance of PD-1hi expressing T-cells did not benefit from PD-1 blockade. Our data highlight that FolR1-TCB is a promising novel immunotherapeutic treatment option which is capable of activating intratumoral T-cells in different carcinomas. However, its therapeutic efficacy may be substantially hampered by a pre-existing dysfunctional state of T-cells, reflected by abundance of intratumoral PD-1hi T-cells. These findings present a rationale for combinatorial approaches of TCBs with other therapeutic strategies targeting T-cell dysfunction. PMID:27057429

  19. Use of retroviral-mediated gene transfer to deliver and test function of chimeric antigen receptors in human T-cells

    Directory of Open Access Journals (Sweden)

    Ana C. Parente-Pereira

    2014-07-01

    Full Text Available Chimeric antigen receptors (CARs are genetically delivered fusion molecules that elicit T-cell activation upon binding of a native cell surface molecule. These molecules can be used to generate a large number of memory and effector T-cells that are capable of recognizing and attacking tumor cells. Most commonly, stable CAR expression is achieved in T-cells using retroviral vectors. In the method described here, retroviral vectors are packaged in a two-step procedure. First, H29D human retroviral packaging cells (a derivative of 293 cells are transfected with the vector of interest, which is packaged transiently in vesicular stomatitis virus (VSV G pseudotyped particles. These particles are used to deliver the vector to PG13 cells, which achieve stable packaging of gibbon ape leukaemia virus (GALV-pseudotyped particles that are suitable for infection of human T-cells. The key advantage of the method reported here is that it robustly generates polyclonal PG13 cells that are 100% positive for the vector of interest. This means that efficient gene transfer may be repeatedly achieved without the need to clone individual PG13 cells for experimental pre-clinical testing. To achieve T-cell transduction, cells must first be activated using a non-specific mitogen. Phytohemagglutinin (PHA provides an economic and robust stimulus to achieve this. After 48-72 h, activated T-cells and virus-conditioned medium are mixed in RetroNectin-coated plasticware, which enhances transduction efficiency. Transduced cells are analyzed for gene transfer efficiency by flow cytometry 48 h following transduction and may then be tested in several assays to evaluate CAR function, including target-dependent cytotoxicity, cytokine production and proliferation.

  20. Gamma-delta (γδ) T cells: friend or foe in cancer development?

    Science.gov (United States)

    Zhao, Yijing; Niu, Chao; Cui, Jiuwei

    2018-01-10

    γδ T cells are a distinct subgroup of T cells containing T cell receptors (TCRs) γ and TCR δ chains with diverse structural and functional heterogeneity. As a bridge between the innate and adaptive immune systems, γδ T cells participate in various immune responses during cancer progression. Because of their direct/indirect antitumor cytotoxicity and strong cytokine production ability, the use of γδ T cells in cancer immunotherapy has received a lot of attention over the past decade. Despite the promising potential of γδ T cells, the efficacy of γδ T cell immunotherapy is limited, with an average response ratio of only 21%. In addition, research over the past 2 years has shown that γδ T cells could also promote cancer progression by inhibiting antitumor responses, and enhancing cancer angiogenesis. As a result, γδ T cells have a dual effect and can therefore be considered as being both "friends" and "foes" of cancer. In order to solve the sub-optimal efficiency problem of γδ T cell immunotherapy, we review recent observations regarding the antitumor and protumor activities of major structural and functional subsets of human γδ T cells, describing how these subsets are activated and polarized, and how these events relate to subsequent effects in cancer immunity. A mixture of both antitumor or protumor γδ T cells used in adoptive immunotherapy, coupled with the fact that γδ T cells can be polarized from antitumor cells to protumor cells appear to be the likely reasons for the mild efficacy seen with γδ T cells. The future holds the promise of depleting the specific protumor γδ T cell subgroup before therapy, choosing multi-immunocyte adoptive therapy, modifying the cytokine balance in the cancer microenvironment, and using a combination of γδ T cells adoptive immunotherapy with immune checkpoint inhibitors.

  1. Anti-regulatory T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2017-01-01

    responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune...... reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells......Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host...

  2. Cutting edge: identification of novel T cell epitopes in Lol p5a by computational prediction.

    Science.gov (United States)

    de Lalla, C; Sturniolo, T; Abbruzzese, L; Hammer, J; Sidoli, A; Sinigaglia, F; Panina-Bordignon, P

    1999-08-15

    Although atopic allergy affects Lol p5a allergen from rye grass. In vitro binding studies confirmed the promiscuous binding characteristics of these peptides. Moreover, most of the predicted ligands were novel T cell epitopes that were able to stimulate T cells from atopic patients. We generated a panel of Lol p5a-specific T cell clones, the majority of which recognized the peptides in a cross-reactive fashion. The computational prediction of DR ligands might thus allow the design of T cell epitopes with potential useful application in novel immunotherapy strategies.

  3. T cells recognizing a peptide contaminant undetectable by mass spectrometry

    DEFF Research Database (Denmark)

    Brezar, Vedran; Culina, Slobodan; Østerbye, Thomas

    2011-01-01

    Synthetic peptides are widely used in immunological research as epitopes to stimulate their cognate T cells. These preparations are never completely pure, but trace contaminants are commonly revealed by mass spectrometry quality controls. In an effort to characterize novel major histocompatibility...... complex (MHC) Class I-restricted ß-cell epitopes in non-obese diabetic (NOD) mice, we identified islet-infiltrating CD8+ T cells recognizing a contaminating peptide. The amount of this contaminant was so small to be undetectable by direct mass spectrometry. Only after concentration by liquid...... chromatography, we observed a mass peak corresponding to an immunodominant islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)(206-214) epitope described in the literature. Generation of CD8+ T-cell clones recognizing IGRP(206-214) using a novel method confirmed the identity...

  4. In Vitro Priming of Naı̈ve T-cells with p-Phenylenediamine and Bandrowski's Base.

    Science.gov (United States)

    Gibson, Andrew; Kim, Seung-Hyun; Faulkner, Lee; Evely, Jane; Pirmohamed, Munir; Park, Kevin B; Naisbitt, Dean J

    2015-10-19

    p-Phenylenediamine (PPD) is a component of hair dye formulations that is associated with T-cell mediated allergic contact dermatitis. Antigen-specific T-cells from allergic contact dermatitis patients are activated with either PPD or the oxidation product, Bandrowski's base. In nonallergic individuals, T-cells that are activated by Bandrowski's base, but not by PPD, are readily detectable. The aim of the current study was to use an in vitro T-cell priming assay to assess the activation of memory and naı̈ve T-cells from healthy donors with PPD and Bandrowski's base, and to compare these responses to those observed from allergic patients. Both PPD and Bandrowski's base-responsive clones were generated from allergic patients. The majority of Bandrowski's base-responsive clones were CD4+ and displayed a lack of PPD reactivity. In contrast, CD4+ and CD8+ clones displaying PPD reactivity were detected. Approximately 25% of these displayed low levels of reactivity to Bandrowski's base. Clones from the allergic patients secreted a range of cytokines including IFN-γ, Il-13, and Il-22. In healthy donors, Bandrowski's base-specific T-cell proliferative responses and cytokine secretion were detected with both naı̈ve and memory T-cells. T-cell clones generated from the Bandrowski's base-responsive cultures responded to Bandrowski's base but not PPD. PPD-specific naı̈ve and memory T-cell responses were not detected from healthy donors. These data show that Bandrowski's base stimulates pre-existing memory T-cells isolated from healthy donors and primes naı̈ve T-cells when the chemical is bound to autologous dendritic cells. Priming naı̈ve T-cells against PPD failed, suggesting an important individual susceptibility factor is missing from the in vitro T-cell priming assay.

  5. Similar Responses of Intestinal T Cells From Untreated Children and Adults With Celiac Disease to Deamidated Gluten Epitopes.

    Science.gov (United States)

    Ráki, Melinda; Dahal-Koirala, Shiva; Yu, Hao; Korponay-Szabó, Ilma R; Gyimesi, Judit; Castillejo, Gemma; Jahnsen, Jørgen; Qiao, Shuo-Wang; Sollid, Ludvig M

    2017-09-01

    Celiac disease is a chronic small intestinal inflammatory disorder mediated by an immune response to gluten peptides in genetically susceptible individuals. Celiac disease is often diagnosed in early childhood, but some patients receive a diagnosis late in life. It is uncertain whether pediatric celiac disease is distinct from adult celiac disease. It has been proposed that gluten-reactive T cells in children recognize deamidated and native gluten epitopes, whereas T cells from adults only recognize deamidated gluten peptides. We studied the repertoire of gluten epitopes recognized by T cells from children and adults. We examined T-cell responses against gluten by generating T-cell lines and T-cell clones from intestinal biopsies of adults and children and tested proliferative response to various gluten peptides. We analyzed T cells from 14 children (2-5 years old) at high risk for celiac disease who were followed for celiac disease development. We also analyzed T cells from 6 adults (26-55 years old) with untreated celiac disease. All children and adults were positive for HLA-DQ2.5. Biopsies were incubated with gluten digested with chymotrypsin (modified or unmodified by the enzyme transglutaminase 2) or the peptic-tryptic digest of gliadin (in native and deamidated forms) before T-cell collection. Levels of T-cell responses were higher to deamidated gluten than to native gluten in children and adults. T cells from children and adults each reacted to multiple gluten epitopes. Several T-cell clones were cross-reactive, especially clones that recognized epitopes from γ-and ω-gliadin. About half of the generated T-cell clones from children and adults reacted to unknown epitopes. T-cell responses to different gluten peptides appear to be similar between adults and children at the time of diagnosis of celiac disease. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Limit-dilution assay and clonal expansion of all T cells capable of proliferation

    International Nuclear Information System (INIS)

    Chen, W.-F.; Wilson, A.; Scollay, R.; Shortman, K.

    1982-01-01

    A limit-dilution microculture system is presented in which almost all mature T cells, cultured at a level of about 1 cell/well, grow and expand to clones averaging 60,000 cells over an 8-9 day period. Cloning efficiency is 70-100%, so the set of expanded clones is representative of the starting T-cell population. T cells of all Lyt phenotypes form clones of progeny cells. The system involves culture in flat-bottom microtitre trays, in the presence of concanavalin A as the initiating stimulus, together with appropriately irradiated spleen filler cells and a supplementary source of soluble T cell growth factors. The resultant clones may be screened for cytolytic function, as described in the accompanying paper. The system may be used to assay the level of T cells capable of expansion or precursor function (PTL-p) by using [ 3 H]TdR uptake as a readout for the presence or absence of proliferating clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of complicating suppressor or helper effects. (Auth.)

  7. Limit-dilution assay and clonal expansion of all T cells capable of proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.F.; Wilson, A.; Scollay, R.; Shortman, K. (Walter and Eliza Hall Inst. of Medical Research, Parkville (Australia))

    1982-08-13

    A limit-dilution microculture system is presented in which almost all mature T cells, cultured at a level of about 1 cell/well, grow and expand to clones averaging 60,000 cells over an 8-9 day period. Cloning efficiency is 70-100%, so the set of expanded clones is representative of the starting T-cell population. T cells of all Lyt phenotypes form clones of progeny cells. The system involves culture in flat-bottom microtitre trays, in the presence of concanavalin A as the initiating stimulus, together with appropriately irradiated spleen filler cells and a supplementary source of soluble T cell growth factors. The resultant clones may be screened for cytolytic function, as described in the accompanying paper. The system may be used to assay the level of T cells capable of expansion or precursor function (PTL-p) by using (/sup 3/H)TdR uptake as a readout for the presence or absence of proliferating clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of complicating suppressor or helper effects.

  8. Presentation of an immunodominant immediate-early CD8+ T cell epitope resists human cytomegalovirus immunoevasion.

    Directory of Open Access Journals (Sweden)

    Stefanie Ameres

    Full Text Available Control of human cytomegalovirus (HCMV depends on CD8+ T cell responses that are shaped by an individual's repertoire of MHC molecules. MHC class I presentation is modulated by a set of HCMV-encoded proteins. Here we show that HCMV immunoevasins differentially impair T cell recognition of epitopes from the same viral antigen, immediate-early 1 (IE-1, that are presented by different MHC class I allotypes. In the presence of immunoevasins, HLA-A- and HLA-B-restricted T cell clones were ineffective, but HLA-C*0702-restricted T cell clones recognized and killed infected cells. Resistance of HLA-C*0702 to viral immunoevasins US2 and US11 was mediated by the alpha3 domain and C-terminal region of the HLA heavy chain. In healthy donors, HLA-C*0702-restricted T cells dominated the T cell response to IE-1. The same HLA-C allotype specifically protected infected cells from attack by NK cells that expressed a corresponding HLA-C-specific KIR. Thus, allotype-specific viral immunoevasion allows HCMV to escape control by NK cells and HLA-A- and HLA-B-restricted T cells, while the virus becomes selectively vulnerable to an immunodominant population of HLA-C-restricted T cells. Our work identifies a T cell population that may be of particular efficiency in HCMV-specific immunotherapy.

  9. T Cells and Pathogenesis of Hantavirus Cardiopulmonary Syndrome and Hemorrhagic Fever with Renal Syndrome

    Directory of Open Access Journals (Sweden)

    Francis A. Ennis

    2011-07-01

    Full Text Available We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS and hemorrhagic fever with renal syndrome (HFRS may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions and protection (vaccine design which may need to take into account viral factors and the influence of HLA on T cell responses.

  10. Anti-ATLA (antibody to adult T-cell leukemia virus-associated antigen), highly positive in OKT4-positive mature T-cell malignancies.

    Science.gov (United States)

    Tobinai, K; Nagai, M; Setoya, T; Shibata, T; Minato, K; Shimoyama, M

    1983-01-01

    Serum or plasma specimens from 252 patients with lymphoid malignancies were screened for reactivity with adult T-cell leukemia virus-associated antigen (ATLA), and the relationship between the immunologic phenotype of the tumor cells and ATLA reactivity was determined. Anti-ATLA antibodies were found in 24 (29.3%) of 82 patients with T-cell malignancy. In contrast, the antibodies were found in none of the 106 patients with B-cell malignancy and only rarely in patients with other lymphoid malignancies without blood transfusions. Among the patients with T-cell malignancy, anti-ATLA antibodies were found in 23 (45.1%) of the 51 patients with OKT4-positive mature T-cell (inducer/helper T-cell) malignancy, but in none of the patients with T-cell malignancy of pre-T, thymic T-cell or OKT8-positive mature T-cell (suppressor/cytotoxic T-cell) phenotype. Furthermore, among the OKT4-positive mature T-cell malignancies, the antibodies were found in 16 (84.2%) of 19 patients with ATL and in 5 (27.8%) of 18 patients with mature (peripheral) T-cell lymphoma, in none of four with typical T-chronic lymphocytic leukemia, in one of nine with mycosis fungoides and in the one patient with small-cell variant of Sézary's syndrome. These results suggest that anti-ATLA positive T-cell malignancies with OKT4-positive mature T-cell phenotype must be the same disease, because it is highly possible that they have the same etiology and the same cellular origin. In the atypical cases, it seems necessary to demonstrate monoclonal integration of proviral DNA of ATLV or HTLV into the tumor cells in order to establish the final diagnosis of ATL.

  11. Functional Heterogeneity in the CD4+ T Cell Response to Murine γ-Herpesvirus 68

    Science.gov (United States)

    Hu, Zhuting; Blackman, Marcia A.; Kaye, Kenneth M.; Usherwood, Edward J.

    2015-01-01

    CD4+ T cells are critical for the control of virus infections, T cell memory and immune surveillance. Here we studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4+ T cells using gp150-specific TCR transgenic mice. This allowed a more detailed study of the characteristics of the CD4+ T cell response than previously available approaches for this virus. Most gp150-specific CD4+ T cells expressed T-bet and produced IFN-γ, indicating MHV-68 infection triggered differentiation of CD4+ T cells largely into the Th1 subset, whereas some became TFH and Foxp3+ regulatory T cells. These CD4+ T cells were protective against MHV-68 infection, in the absence of CD8+ T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4+ T cells, based on Ly6C expression. Ly6C expression positively correlated with IFN-γ, TNF-α and granzyme B production, T-bet and KLRG1 expression, proliferation and CD4+ T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression and secondary expansion potential. Ly6C+ and Ly6C− gp150-specific CD4+ T cells were able to interconvert in a bidirectional manner upon secondary antigen exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4+ T cells, but inversely correlated with memory potential. Interconversion between Ly6C+ and Ly6C− cells may maintain a balance between the two antigen-specific CD4+ T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4+ T cells during persistent virus infection. PMID:25662997

  12. Failure to synthesize the human T-cell CD3-zeta chain and its consequence for the T-cell receptor-CD3 complex expression

    DEFF Research Database (Denmark)

    Geisler, C; Kuhlmann, J; Plesner, T

    1989-01-01

    components, the human T-cell tumour line Jurkat was chemically mutagenized followed by negative selection with F101.01 (a monoclonal antibody against the TcR-CD3 complex), and cloning. Growing clones were analysed for TcR-CD3 expression by immunofluorescence. One clone, J79, was found to express greatly...... diminished levels of TcR-CD3. This clone produced all the TcR-CD3 components except the CD3-zeta, as demonstrated by metabolic labelling and immunoprecipitation followed by one- and two-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis. These data indicate that the CD3-zeta determines...

  13. Functional heterogeneity of human effector CD8+ T cells.

    Science.gov (United States)

    Takata, Hiroshi; Naruto, Takuya; Takiguchi, Masafumi

    2012-02-09

    Effector CD8(+) T cells are believed to be terminally differentiated cells having cytotoxic activity and the ability to produce effector cytokines such as INF-γ and TNF-α. We investigated the difference between CXCR1(+) and CXCR1(-) subsets of human effector CD27(-)CD28(-)CD8(+) T cells. The subsets expressed cytolytic molecules similarly and exerted substantial cytolytic activity, whereas only the CXCR1(-) subset had IL-2 productivity and self-proliferative activity and was more resistant to cell death than the CXCR1(+) subset. These differences were explained by the specific up-regulation of CAMK4, SPRY2, and IL-7R in the CXCR1(-) subset and that of pro-apoptotic death-associated protein kinase 1 (DAPK1) in the CXCR1(+) subset. The IL-2 producers were more frequently found in the IL-7R(+) subset of the CXCR1(-) effector CD8(+) T cells than in the IL-7R(-) subset. IL-7/IL-7R signaling promoted cell survival only in the CXCR1(-) subset. The present study has highlighted a novel subset of effector CD8(+) T cells producing IL-2 and suggests the importance of this subset in the homeostasis of effector CD8(+) T cells.

  14. Palindromic nucleotide analysis in human T cell receptor rearrangements.

    Directory of Open Access Journals (Sweden)

    Santosh K Srivastava

    Full Text Available Diversity of T cell receptor (TCR genes is primarily generated by nucleotide insertions upon rearrangement from their germ line-encoded V, D and J segments. Nucleotide insertions at V-D and D-J junctions are random, but some small subsets of these insertions are exceptional, in that one to three base pairs inversely repeat the sequence of the germline DNA. These short complementary palindromic sequences are called P nucleotides. We apply the ImmunoSeq deep-sequencing assay to the third complementarity determining region (CDR3 of the β chain of T cell receptors, and use the resulting data to study P nucleotides in the repertoire of naïve and memory CD8(+ and CD4(+ T cells. We estimate P nucleotide distributions in a cross section of healthy adults and different T cell subtypes. We show that P nucleotide frequency in all T cell subtypes ranges from 1% to 2%, and that the distribution is highly biased with respect to the coding end of the gene segment. Classification of observed palindromic sequences into P nucleotides using a maximum conditional probability model shows that single base P nucleotides are very rare in VDJ recombination; P nucleotides are primarily two bases long. To explore the role of P nucleotides in thymic selection, we compare P nucleotides in productive and non-productive sequences of CD8(+ naïve T cells. The naïve CD8(+ T cell clones with P nucleotides are more highly expanded.

  15. LOCAL IMMUNITY BY TISSUE-RESIDENT CD8+ MEMORY T CELLS

    Directory of Open Access Journals (Sweden)

    Thomas eGebhardt

    2012-11-01

    Full Text Available Microbial infection primes a CD8+ cytotoxic T cell response that gives rise to a long-lived population of circulating memory cells able to provide protection against systemic reinfection. Despite this, effective CD8+ T cell surveillance of barrier tissues such as skin and mucosa typically wanes with time, resulting in limited T cell-mediated protection in these peripheral tissues. However, recent evidence suggests that a specialized subset of CD103+ memory T cells can permanently lodge and persist in peripheral tissues, and that these cells can compensate for the loss of peripheral immune surveillance by circulating memory T cells. Here, we review evolving concepts regarding the generation and long-term persistence of these tissue-resident memory T cells (TRM in epithelial and neuronal tissues. We further discuss the role of TRM cells in local infection control and their contribution to localized immune phenomena, in both mice and humans.

  16. Dynamical system modeling to simulate donor T cell response to whole exome sequencing-derived recipient peptides: Understanding randomness in alloreactivity incidence following stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Vishal Koparde

    Full Text Available Quantitative relationship between the magnitude of variation in minor histocompatibility antigens (mHA and graft versus host disease (GVHD pathophysiology in stem cell transplant (SCT donor-recipient pairs (DRP is not established. In order to elucidate this relationship, whole exome sequencing (WES was performed on 27 HLA matched related (MRD, & 50 unrelated donors (URD, to identify nonsynonymous single nucleotide polymorphisms (SNPs. An average 2,463 SNPs were identified in MRD, and 4,287 in URD DRP (p<0.01; resulting peptide antigens that may be presented on HLA class I molecules in each DRP were derived in silico (NetMHCpan ver2.0 and the tissue expression of proteins these were derived from determined (GTex. MRD DRP had an average 3,670 HLA-binding-alloreactive peptides, putative mHA (pmHA with an IC50 of <500 nM, and URD, had 5,386 (p<0.01. To simulate an alloreactive donor cytotoxic T cell response, the array of pmHA in each patient was considered as an operator matrix modifying a hypothetical cytotoxic T cell clonal vector matrix; each responding T cell clone's proliferation was determined by the logistic equation of growth, accounting for HLA binding affinity and tissue expression of each alloreactive peptide. The resulting simulated organ-specific alloreactive T cell clonal growth revealed marked variability, with the T cell count differences spanning orders of magnitude between different DRP. Despite an estimated, uniform set of constants used in the model for all DRP, and a heterogeneously treated group of patients, higher total and organ-specific T cell counts were associated with cumulative incidence of moderate to severe GVHD in recipients. In conclusion, exome wide sequence differences and the variable alloreactive peptide binding to HLA in each DRP yields a large range of possible alloreactive donor T cell responses. Our findings also help understand the apparent randomness observed in the development of alloimmune responses.

  17. Antiviral T cell competence and restriction specificity of mixed allogeneic (P1 + P2----P1) irradiation chimeras

    International Nuclear Information System (INIS)

    Rueedi, E.S.; Sykes, M.; Ildstad, S.T.; Chester, C.H.; Althage, A.; Hengartner, H.; Sachs, D.H.; Zinkernagel, R.M.

    1989-01-01

    Mixed irradiation bone marrow chimeras were prepared by reconstituting lethally irradiated C57BL/10 (B10) or B10.D2 mice with T cell-depleted bone marrow cells of B10 plus B10.D2 origin. These chimeras were healthy and survived well under conventional housing conditions and after experimental laboratory infections. Of a total of 17 chimeras tested, 2 died spontaneously or from the injected virus. Twelve of fifteen chimeras mounted a measurable cytotoxic T cell response to virus. Despite approximately equal percentages of B10 and B10.D2 lymphocytes in chimeras, cytotoxic T cell responses to vaccinia virus and lymphocytic choriomeningitis virus were mediated variably by either syngeneic or allogeneic donor lymphocytes; thus the H-2 type of effector T cells frequently did not correspond to the 50:50 distribution of spleen or peripheral blood lymphocytes. Cytotoxic responses were restricted exclusively to recipient H-2 type. All mixed chimeras examined were able to mount a good IgG response to vesicular stomatitis virus. These results confirm previous data suggesting that such mixed chimeras are healthy and immunocompetent and demonstrate strict recipient-determined restriction specificity of effector T cells; they also suggest that if T help is necessary for induction of virus-specific cytotoxic T cells, it does not require host-restricted interactions between helper T cells and precursor cytotoxic T cells

  18. Ibrutinib Therapy Increases T Cell Repertoire Diversity in Patients with Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Yin, Qingsong; Sivina, Mariela; Robins, Harlan; Yusko, Erik; Vignali, Marissa; O'Brien, Susan; Keating, Michael J; Ferrajoli, Alessandra; Estrov, Zeev; Jain, Nitin; Wierda, William G; Burger, Jan A

    2017-02-15

    The Bruton's tyrosine kinase inhibitor ibrutinib is a highly effective, new targeted therapy for chronic lymphocytic leukemia (CLL) that thwarts leukemia cell survival, growth, and tissue homing. The effects of ibrutinib treatment on the T cell compartment, which is clonally expanded and thought to support the growth of malignant B cells in CLL, are not fully characterized. Using next-generation sequencing technology, we characterized the diversity of TCRβ-chains in peripheral blood T cells from 15 CLL patients before and after 1 y of ibrutinib therapy. We noted elevated CD4 + and CD8 + T cell numbers and a restricted TCRβ repertoire in all pretreatment samples. After 1 y of ibrutinib therapy, elevated peripheral blood T cell numbers and T cell-related cytokine levels had normalized, and T cell repertoire diversity increased significantly. Dominant TCRβ clones in pretreatment samples declined or became undetectable, and the number of productive unique clones increased significantly during ibrutinib therapy, with the emergence of large numbers of low-frequency TCRβ clones. Importantly, broader TCR repertoire diversity was associated with clinical efficacy and lower rates of infections during ibrutinib therapy. These data demonstrate that ibrutinib therapy increases diversification of the T cell compartment in CLL patients, which contributes to cellular immune reconstitution. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Plasticity of gamma delta T cells: impact on the anti-tumor response

    Directory of Open Access Journals (Sweden)

    Virginie eLafont

    2014-12-01

    Full Text Available The tumor immune microenvironment contributes to tumor initiation, progression and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of gamma and delta chains (gamma delta T cells are of particular interest. gamma delta T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary and prostate cancer directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating gamma delta T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that gamma delta T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating gamma deltaT cells could exert an immunosuppressive activity by negatively regulating DC maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to gamma delta T cells and promote their differentiation into gamma delta T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of gamma delta T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying gamma delta T cell expansion, differentiation and recruitment in the tumor microenvironment.

  20. Amino acid substitutions in the melanoma antigen recognized by T cell 1 peptide modulate cytokine responses in melanoma-specific T cells

    DEFF Research Database (Denmark)

    Nielsen, M B; Kirkin, A F; Loftus, D

    2000-01-01

    enhances the production of mRNA for interleukin (IL)-5, IL-10, IL-13, IL-15, and interferon-gamma and significantly enhances release of IL-13 and IL-10 from anti-MART-1 cytotoxic T cells. Another heteroclitic peptide, 1L, with an A to L substitution in MART-1(27-35), also enhances the tyrosine...... phosphorylation response in anti-MART-1 cytotoxic CD8+ T cells. Yet, 1L does not enhance the production of T helper cell type 2-like cytokines (IL-10 and IL-13). Together these data show that minor amino acid modifications of immunodominant melanoma peptides profoundly influence the cytokine response in melanoma...

  1. Tracking the elusive cytotoxic T cell response in pigs

    DEFF Research Database (Denmark)

    Jungersen, Gregers; Nielsen, Morten; Overgaard, Nana Haahr

    -based, high-resolution SLA genotyping method by standard PCR for specific detection of eight in-house SLA molecules; and a next-generation sequencing method for parallel detection of up to 50 samples of barcoded cDNA PCR products spanning exon 2 and 3. The latter for a wider characterization of expressed...

  2. T-cell prolymphocytic leukemia

    OpenAIRE

    Graham, Robbie L.; Cooper, Barry; Krause, John R.

    2013-01-01

    T-cell prolymphocytic leukemia is a rare and unusual malignancy characterized by the proliferation of small- to medium-sized prolymphocytes of postthymic origin with distinctive clinical, morphologic, immunophenotypic, and cytogenetic features. Involvement of the peripheral blood, bone marrow, lymph nodes, liver, spleen, and skin can occur. The clinical course is typically very aggressive with poor response to conventional chemotherapy and short survival rates, and the only potential long-ter...

  3. γδ T cells confer protection against murine cytomegalovirus (MCMV.

    Directory of Open Access Journals (Sweden)

    Camille Khairallah

    2015-03-01

    Full Text Available Cytomegalovirus (CMV is a leading infectious cause of morbidity in immune-compromised patients. γδ T cells have been involved in the response to CMV but their role in protection has not been firmly established and their dependency on other lymphocytes has not been addressed. Using C57BL/6 αβ and/or γδ T cell-deficient mice, we here show that γδ T cells are as competent as αβ T cells to protect mice from CMV-induced death. γδ T cell-mediated protection involved control of viral load and prevented organ damage. γδ T cell recovery by bone marrow transplant or adoptive transfer experiments rescued CD3ε-/- mice from CMV-induced death confirming the protective antiviral role of γδ T cells. As observed in humans, different γδ T cell subsets were induced upon CMV challenge, which differentiated into effector memory cells. This response was observed in the liver and lungs and implicated both CD27+ and CD27- γδ T cells. NK cells were the largely preponderant producers of IFNγ and cytotoxic granules throughout the infection, suggesting that the protective role of γδ T cells did not principally rely on either of these two functions. Finally, γδ T cells were strikingly sufficient to fully protect Rag-/-γc-/- mice from death, demonstrating that they can act in the absence of B and NK cells. Altogether our results uncover an autonomous protective antiviral function of γδ T cells, and open new perspectives for the characterization of a non classical mode of action which should foster the design of new γδ T cell based therapies, especially useful in αβ T cell compromised patients.

  4. Regulatory T Cells in Radiotherapeutic Responses

    International Nuclear Information System (INIS)

    Schaue, Dörthe; Xie, Michael W.; Ratikan, Josephine A.; McBride, William H.

    2012-01-01

    Radiation therapy (RT) can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling “danger.” The multiple mechanisms that can be evoked include a shift toward a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs), suppressor macrophages, and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the “brakes” on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.

  5. Regulatory T cells in radiotherapeutic responses

    Directory of Open Access Journals (Sweden)

    Dörthe eSchaue

    2012-08-01

    Full Text Available Radiation therapy (RT can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling danger. The multiple mechanisms that can be evoked include a shift towards a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs, suppressor macrophages and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the brakes on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.

  6. Genetically Modified T-Cell-Based Adoptive Immunotherapy in Hematological Malignancies

    Directory of Open Access Journals (Sweden)

    Baixin Ye

    2017-01-01

    Full Text Available A significant proportion of hematological malignancies remain limited in treatment options. Immune system modulation serves as a promising therapeutic approach to eliminate malignant cells. Cytotoxic T lymphocytes (CTLs play a central role in antitumor immunity; unfortunately, nonspecific approaches for targeted recognition of tumor cells by CTLs to mediate tumor immune evasion in hematological malignancies imply multiple mechanisms, which may or may not be clinically relevant. Recently, genetically modified T-cell-based adoptive immunotherapy approaches, including chimeric antigen receptor (CAR T-cell therapy and engineered T-cell receptor (TCR T-cell therapy, promise to overcome immune evasion by redirecting the specificity of CTLs to tumor cells. In clinic trials, CAR-T-cell- and TCR-T-cell-based adoptive immunotherapy have produced encouraging clinical outcomes, thereby demonstrating their therapeutic potential in mitigating tumor development. The purpose of the present review is to (1 provide a detailed overview of the multiple mechanisms for immune evasion related with T-cell-based therapies; (2 provide a current summary of the applications of CAR-T-cell- as well as neoantigen-specific TCR-T-cell-based adoptive immunotherapy and routes taken to overcome immune evasion; and (3 evaluate alternative approaches targeting immune evasion via optimization of CAR-T and TCR-T-cell immunotherapies.

  7. Human CD8 T cells generated in vitro from hematopoietic stem cells are functionally mature

    Directory of Open Access Journals (Sweden)

    Zúñiga-Pflücker Juan

    2011-03-01

    Full Text Available Abstract Background T cell development occurs within the highly specialized thymus. Cytotoxic CD8 T cells are critical in adaptive immunity by targeting virally infected or tumor cells. In this study, we addressed whether functional CD8 T cells can be generated fully in vitro using human umbilical cord blood (UCB hematopoietic stem cells (HSCs in coculture with OP9-DL1 cells. Results HSC/OP9-DL1 cocultures supported the differentiation of CD8 T cells, which were TCR/CD3hi CD27hi CD1aneg and thus phenotypically resembled mature functional CD8 single positive thymocytes. These in vitro-generated T cells also appeared to be conventional CD8 cells, as they expressed high levels of Eomes and low levels of Plzf, albeit not identical to ex vivo UCB CD8 T cells. Consistent with the phenotypic and molecular characterization, upon TCR-stimulation, in vitro-generated CD8 T cells proliferated, expressed activation markers (MHC-II, CD25, CD38, secreted IFN-γ and expressed Granzyme B, a cytotoxic T-cell effector molecule. Conclusion Taken together, the ability to direct human hematopoietic stem cell or T-progenitor cells towards a mature functional phenotype raises the possibility of establishing cell-based treatments for T-immunodeficiencies by rapidly restoring CD8 effector function, thereby mitigating the risks associated with opportunistic infections.

  8. Short communication an interferon-γ ELISPOT assay with two cytotoxic T cell epitopes derived from HTLV-1 tax region 161-233 discriminates HTLV-1-associated myelopathy/tropical spastic paraparesis patients from asymptomatic HTLV-1 carriers in a Peruvian population.

    Science.gov (United States)

    Best, Ivan; López, Giovanni; Talledo, Michael; MacNamara, Aidan; Verdonck, Kristien; González, Elsa; Tipismana, Martín; Asquith, Becca; Gotuzzo, Eduardo; Vanham, Guido; Clark, Daniel

    2011-11-01

    HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic and progressive disorder caused by the human T-lymphotropic virus type 1 (HTLV-1). In HTLV-1 infection, a strong cytotoxic T cell (CTL) response is mounted against the immunodominant protein Tax. Previous studies carried out by our group reported that increased IFN-γ enzyme-linked immunospot (ELISPOT) responses against the region spanning amino acids 161 to 233 of the Tax protein were associated with HAM/TSP and increased HTLV-1 proviral load (PVL). An exploratory study was conducted on 16 subjects with HAM/TSP, 13 asymptomatic carriers (AC), and 10 HTLV-1-seronegative controls (SC) to map the HAM/TSP-associated CTL epitopes within Tax region 161-233. The PVL of the infected subjects was determined and the specific CTL response was evaluated with a 6-h incubation IFN-γ ELISPOT assay using peripheral blood mononuclear cells (PBMCs) stimulated with 16 individual overlapping peptides covering the Tax region 161-233. Other proinflammatory and Th1/Th2 cytokines were also quantified in the supernatants by a flow cytometry multiplex assay. In addition, a set of human leukocyte antigen (HLA) class I alleles that bind with high affinity to the CTL epitopes of interest was determined using computational tools. Univariate analyses identified an association between ELISPOT responses to two new CTL epitopes, Tax 173-185 and Tax 181-193, and the presence of HAM/TSP as well as an increased PVL. The HLA-A*6801 allele, which is predicted to bind to the Tax 181-193 peptide, was overpresented in the HAM/TSP patients tested.

  9. Cloning of T lymphocytes from bronchoalveolar lavage fluid

    NARCIS (Netherlands)

    Hol, B. E.; Krouwels, F. H.; Bruinier, B.; Reijneke, R. M.; Mengelers, H. J.; Koenderman, L.; Jansen, H. M.; Out, T. A.

    1992-01-01

    We have prepared T-cell clones from bronchoalveolar lavage fluid (BALF) from four healthy, nonsmoking persons and from four patients with allergic asthma. T cells were cloned by direct limiting dilution and with the use of a fluorescent activated cell sorter with an automated cell deposition unit.

  10. Antigen-Specificity of T Cell Infiltrates in Biopsies With T Cell-Mediated Rejection and BK Polyomavirus Viremia: Analysis by Next Generation Sequencing.

    Science.gov (United States)

    Zeng, G; Huang, Y; Huang, Y; Lyu, Z; Lesniak, D; Randhawa, P

    2016-11-01

    This study interrogates the antigen-specificity of inflammatory infiltrates in renal biopsies with BK polyomavirus (BKPyV) viremia (BKPyVM) with or without allograft nephropathy (BKPyVN). Peripheral blood mononuclear cells (PBMC) from five healthy HLA-A0101 subjects were stimulated by peptides derived from the BKPYV proteome or polymorphic regions of HLA. Next generation sequencing of the T cell-receptor complementary DNA was performed on peptide-stimulated PBMC and 23 biopsies with T cell-mediated rejection (TCMR) or BKPyVN. Biopsies from patients with BKPyVM or BKVPyVN contained 7.7732 times more alloreactive than virus-reactive clones. Biopsies with TCMR also contained BKPyV-specific clones, presumably a manifestation of heterologous immunity. The mean cumulative T cell clonal frequency was 0.1378 for alloreactive clones and 0.0375 for BKPyV-reactive clones. Samples with BKPyVN and TCMR clustered separately in dendrograms of V-family and J-gene utilization patterns. Dendrograms also revealed that V-gene, J-gene, and D-gene usage patterns were a function of HLA type. In conclusion, biopsies with BKPyVN contain abundant allospecific clones that exceed the number of virus-reactive clones. The T cell component of tissue injury in viral nephropathy appears to be mediated primarily by an "innocent bystander" mechanism in which the principal element is secondary T cell influx triggered by both antiviral and anti-HLA immunity. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Direct evidence for a chronic CD8+-T-cell-mediated immune reaction to tax within the muscle of a human T-cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis.

    Science.gov (United States)

    Ozden, Simona; Cochet, Madeleine; Mikol, Jacqueline; Teixeira, Antonio; Gessain, Antoine; Pique, Claudine

    2004-10-01

    Human T-cell leukemia/lymphoma virus type 1 (HTLV-1) infection can lead to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), concomitantly with or without other inflammatory disorders such as myositis. These pathologies are considered immune-mediated diseases, and it is assumed that migration within tissues of both HTLV-1-infected CD4(+) T cells and anti-HTLV-1 cytotoxic T cells represents a pivotal event. However, although HTLV-1-infected T cells were found in inflamed lesions, the antigenic specificity of coinfiltrated CD8(+) T cells remains to be determined. In this study, we performed both ex vivo and in situ analyses using muscle biopsies obtained from an HTLV-1-infected patient with HAM/TSP and sporadic inclusion body myositis. We found that both HTLV-1-infected CD4(+) T cells and CD8(+) T cells directed to the dominant Tax antigen can be amplified from muscle cell cultures. Moreover, we were able to detect in two successive muscle biopsies both tax mRNA-positive mononuclear cells and T cells recognized by the Tax11-19/HLA-A*02 tetramer and positive for perforin. These findings provide the first direct demonstration that anti-Tax cytotoxic T cells are chronically recruited within inflamed tissues of an HTLV-1 infected patient, which validates the cytotoxic immune reaction model for the pathogenesis of HTLV-1-associated inflammatory disease.

  12. Gut microbiota modulate T cell trafficking into human colorectal cancer.

    Science.gov (United States)

    Cremonesi, Eleonora; Governa, Valeria; Garzon, Jesus Francisco Glaus; Mele, Valentina; Amicarella, Francesca; Muraro, Manuele Giuseppe; Trella, Emanuele; Galati-Fournier, Virginie; Oertli, Daniel; Däster, Silvio Raffael; Droeser, Raoul A; Weixler, Benjamin; Bolli, Martin; Rosso, Raffaele; Nitsche, Ulrich; Khanna, Nina; Egli, Adrian; Keck, Simone; Slotta-Huspenina, Julia; Terracciano, Luigi M; Zajac, Paul; Spagnoli, Giulio Cesare; Eppenberger-Castori, Serenella; Janssen, Klaus-Peter; Borsig, Lubor; Iezzi, Giandomenica

    2018-02-06

    Tumour-infiltrating lymphocytes (TILs) favour survival in human colorectal cancer (CRC). Chemotactic factors underlying their recruitment remain undefined. We investigated chemokines attracting T cells into human CRCs, their cellular sources and microenvironmental triggers. Expression of genes encoding immune cell markers, chemokines and bacterial 16S ribosomal RNA (16SrRNA) was assessed by quantitative reverse transcription-PCR in fresh CRC samples and corresponding tumour-free tissues. Chemokine receptor expression on TILs was evaluated by flow cytometry on cell suspensions from digested tissues. Chemokine production by CRC cells was evaluated in vitro and in vivo, on generation of intraperitoneal or intracecal tumour xenografts in immune-deficient mice. T cell trafficking was assessed on adoptive transfer of human TILs into tumour-bearing mice. Gut flora composition was analysed by 16SrRNA sequencing. CRC infiltration by distinct T cell subsets was associated with defined chemokine gene signatures, including CCL5, CXCL9 and CXCL10 for cytotoxic T lymphocytes and T-helper (Th)1 cells; CCL17, CCL22 and CXCL12 for Th1 and regulatory T cells; CXCL13 for follicular Th cells; and CCL20 and CCL17 for interleukin (IL)-17-producing Th cells. These chemokines were expressed by tumour cells on exposure to gut bacteria in vitro and in vivo. Their expression was significantly higher in intracecal than in intraperitoneal xenografts and was dramatically reduced by antibiotic treatment of tumour-bearing mice. In clinical samples, abundance of defined bacteria correlated with high chemokine expression, enhanced T cell infiltration and improved survival. Gut microbiota stimulate chemokine production by CRC cells, thus favouring recruitment of beneficial T cells into tumour tissues. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Role of LAP+CD4+ T cells in the tumor microenvironment of colorectal cancer.

    Science.gov (United States)

    Zhong, Wu; Jiang, Zhi-Yuan; Zhang, Lei; Huang, Jia-Hao; Wang, Shi-Jun; Liao, Cun; Cai, Bin; Chen, Li-Sheng; Zhang, Sen; Guo, Yun; Cao, Yun-Fei; Gao, Feng

    2017-01-21

    To investigate the abundance and potential functions of LAP + CD4 + T cells in colorectal cancer (CRC). Proportions of LAP + CD4 + T cells were examined in peripheral blood and tumor/paratumor tissues of CRC patients and healthy controls using flow cytometry. Expression of phenotypic markers such as forkhead box (Fox)p3, cytotoxic T-lymphocyte-associated protein (CTLA)-4, chemokine CC receptor (CCR)4 and CCR5 was measured using flow cytometry. LAP - CD4 + and LAP + CD4 + T cells were isolated using a magnetic cell-sorting system and cell purity was analyzed by flow cytometry. Real-time quantitative polymerase chain reaction was used to measure expression of cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. The proportion of LAP + CD4 + T cells was significantly higher in peripheral blood from patients (9.44% ± 3.18%) than healthy controls (1.49% ± 1.00%, P CD4 + T cells was significantly higher in tumor tissues (11.76% ± 3.74%) compared with paratumor tissues (3.87% ± 1.64%, P CD4 + T cells and TNM stage ( P cell sorting gave an overall enrichment of LAP + CD4 + T cells (95.02% ± 2.87%), which was similar for LAP - CD4 + T cells (94.75% ± 2.76%). In contrast to LAP - CD4 + T cells, LAP + CD4 + T cells showed lower Foxp3 expression but significantly higher levels of CTLA-4, CCR4 and CCR5 ( P CD4 + T cells expressed significantly larger amounts of IL-10 and TGF-β but lower levels of IL-2, IL-4, IL-17 and interferon-γ, compared with LAP - CD4 + T cells. LAP + CD4 + T cells accumulated in the tumor microenvironment of CRC patients and were involved in immune evasion mediated by IL-10 and TGF-β.

  14. Adult T-Cell Leukemia/Lymphoma

    Science.gov (United States)

    ... Non-Hodgkin Lymphoma Peripheral T-Cell Lymphoma Primary Central Nervous System Lymphoma T-Cell Lymphoma Transformed Mycosis Fungoides Waldenstrom Macroglobulinemia Young Adult Lymphoma Overview Treatment Options Relapsed/Refractory Long-term ...

  15. Properties of HTLV-I transformed CD8+ T-cells in response to HIV-1 infection.

    Science.gov (United States)

    Gulzar, N; Shroff, A; Buberoglu, B; Klonowska, D; Kim, J E; Copeland, K F T

    2010-10-25

    HIV-1 infection studies of primary CD8(+) T-cells are hampered by difficulty in obtaining a significant number of targets for infection and low levels of productive infection. Further, there exists a paucity of CD8-expressing T-cell lines to address questions pertaining to the study of CD8(+) T-cells in the context of HIV-1 infection. In this study, a set of CD8(+) T-cell clones were originated through HTLV-I transformation in vitro, and the properties of these cells were examined. The clones were susceptible to T-cell tropic strains of the virus and exhibited HIV-1 production 20-fold greater than primary CD4(+) T-cells. Productive infection resulted in a decrease in expression of CD8 and CXCR4 molecules on the surface of the CD8(+) T-cell clones and antibodies to these molecules abrogated viral binding and replication. These transformed cells provide an important tool in the study of CD8(+) T-cells and may provide important insights into the mechanism(s) behind HIV-1 induced CD8(+) T-cell dysfunction. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids.

    Science.gov (United States)

    Seet, Christopher S; He, Chongbin; Bethune, Michael T; Li, Suwen; Chick, Brent; Gschweng, Eric H; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B; Baltimore, David; Crooks, Gay M; Montel-Hagen, Amélie

    2017-05-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3 + TCR-αβ + single-positive CD8 + or CD4 + cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.

  17. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism

    Science.gov (United States)

    Yang, Wei; Bai, Yibing; Xiong, Ying; Zhang, Jin; Chen, Shuokai; Zheng, Xiaojun; Meng, Xiangbo; Li, Lunyi; Wang, Jing; Xu, Chenguang; Yan, Chengsong; Wang, Lijuan; Chang, Catharine C. Y.; Chang, Ta-Yuan; Zhang, Ti; Zhou, Penghui; Song, Bao-Liang; Liu, Wanli; Sun, Shao-cong; Liu, Xiaolong; Li, Bo-liang; Xu, Chenqi

    2016-01-01

    CD8+ T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment1–4. Reactivating the cytotoxicity of CD8+ T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8+ T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme5, led to potentiated effector function and enhanced proliferation of CD8+ but not CD4+ T cells. This is due to the increase in the plasma membrane cholesterol level of CD8+ T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8+ T cells were better than wild-type CD8+ T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile6,7, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy. PMID:26982734

  18. Neonatal CD8+ T-cell differentiation is dependent on interleukin-12.

    LENUS (Irish Health Repository)

    McCarron, Mark J

    2012-02-01

    Neonatal CD8(+) T-cell activation is significantly impaired compared with that in adults. Recent studies have demonstrated that interleukin (IL)-12 is necessary as a third signal, in addition to antigen and co-stimulation, to authorize the differentiation of naive CD8(+) T cells. We examined whether human neonatal CD8(+) T cells, which possess an exclusively naive T-cell phenotype, required a third signal to authorize a productive T-cell response. IL-12 enhanced activated naive CD8(+) T-cell survival, expansion, CD25 expression, and IL-2 production. Activated CD8(+) T cells produced interferon-gamma and intracellular granzyme B and were cytotoxic only in the presence of IL-12. Sustained IL-12 signaling for 72 hours was required for optimal interferon-gamma production. IL-12, in concert with T cell receptor (TCR) stimulation, sustained late-stage (48-72 hours) intracellular phosphorylation and particularly total protein levels of the proximal TCR components, Lck, and CD3xi. The requirement for a third signal for productive human neonatal CD8(+) T-cell differentiation may have implications for neonatal vaccination strategies.

  19. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy.

    Science.gov (United States)

    Golubovskaya, Vita; Wu, Lijun

    2016-03-15

    This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy--a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4⁺ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8⁺ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4⁺ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  20. Latent HIV reservoirs exhibit inherent resistance to elimination by CD8+ T cells.

    Science.gov (United States)

    Huang, Szu-Han; Ren, Yanqin; Thomas, Allison S; Chan, Dora; Mueller, Stefanie; Ward, Adam R; Patel, Shabnum; Bollard, Catherine M; Cruz, Conrad Russell; Karandish, Sara; Truong, Ronald; Macedo, Amanda B; Bosque, Alberto; Kovacs, Colin; Benko, Erika; Piechocka-Trocha, Alicja; Wong, Hing; Jeng, Emily; Nixon, Douglas F; Ho, Ya-Chi; Siliciano, Robert F; Walker, Bruce D; Jones, R Brad

    2018-02-01

    The presence of persistent, latent HIV reservoirs in CD4+ T cells obstructs current efforts to cure infection. The so-called kick-and-kill paradigm proposes to purge these reservoirs by combining latency-reversing agents with immune effectors such as cytotoxic T lymphocytes. Support for this approach is largely based on success in latency models, which do not fully reflect the makeup of latent reservoirs in individuals on long-term antiretroviral therapy (ART). Recent studies have shown that CD8+ T cells have the potential to recognize defective proviruses, which comprise the vast majority of all infected cells, and that the proviral landscape can be shaped over time due to in vivo clonal expansion of infected CD4+ T cells. Here, we have shown that treating CD4+ T cells from ART-treated individuals with combinations of potent latency-reversing agents and autologous CD8+ T cells consistently reduced cell-associated HIV DNA, but failed to deplete replication-competent virus. These CD8+ T cells recognized and potently eliminated CD4+ T cells that were newly infected with autologous reservoir virus, ruling out a role for both immune escape and CD8+ T cell dysfunction. Thus, our results suggest that cells harboring replication-competent HIV possess an inherent resistance to CD8+ T cells that may need to be addressed to cure infection.

  1. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    Directory of Open Access Journals (Sweden)

    Vita Golubovskaya

    2016-03-01

    Full Text Available This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.; intracellular markers (FOXP3; epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic; and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  2. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    Science.gov (United States)

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  3. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site

    Directory of Open Access Journals (Sweden)

    Claudia Zelle-Rieser

    2016-11-01

    Full Text Available Abstract Background Multiple myeloma is an incurable plasma cell malignancy that is mostly restricted to the bone marrow. Cancer-induced dysfunction of cytotoxic T cells at the tumor site may be responsible for immune evasion and therapeutical failure of immunotherapies. Therefore, enhanced knowledge about the actual status of T cells in myeloma bone marrow is urgently needed. Here, we assessed the expression of inhibitory molecules PD-1, CTLA-4, 2B4, CD160, senescence marker CD57, and CD28 on T cells of naive and treated myeloma patients in the bone marrow and peripheral blood and collected data on T cell subset distribution in both compartments. In addition, T cell function concerning proliferation and expression of T-bet, IL-2, IFNγ, and CD107a was investigated after in vitro stimulation by CD3/CD28. Finally, data was compared to healthy, age-matched donor T cells from both compartments. Methods Multicolor flow cytometry was utilized for the analyses of surface molecules, intracellular staining of cytokines was also performed by flow cytometry, and proliferation was assessed by 3H-thymidine incorporation. Statistical analyses were performed utilizing unpaired T test and Mann-Whitney U test. Results We observed enhanced T cell exhaustion and senescence especially at the tumor site. CD8+ T cells expressed several molecules associated with T cell exhaustion (PD-1, CTLA-4, 2B4, CD160 and T cell senescence (CD57, lack of CD28. This phenotype was associated with lower proliferative capacity and impaired function. Despite a high expression of the transcription factor T-bet, CD8+ T cells from the tumor site failed to produce IFNγ after CD3/CD28 in vitro restimulation and displayed a reduced ability to degranulate in response to T cell stimuli. Notably, the percentage of senescent CD57+CD28− CD8+ T cells was significantly lower in treated myeloma patients when compared to untreated patients. Conclusions T cells from the bone marrow of myeloma

  4. Definition of natural T cell antigens with mimicry epitopes obtained from dedicated synthetic peptide libraries.

    Science.gov (United States)

    Hiemstra, H S; van Veelen, P A; Schloot, N C; Geluk, A; van Meijgaarden, K E; Willemen, S J; Leunissen, J A; Benckhuijsen, W E; Amons, R; de Vries, R R; Roep, B O; Ottenhoff, T H; Drijfhout, J W

    1998-10-15

    Progress has recently been made in the use of synthetic peptide libraries for the identification of T cell-stimulating ligands. T cell epitopes identified from synthetic libraries are mimics of natural epitopes. Here we show how the mimicry epitopes obtained from synthetic peptide libraries enable unambiguous identification of natural T cell Ags. Synthetic peptide libraries were screened with Mycobacterium tuberculosis-reactive and -autoreactive T cell clones. In two cases, database homology searches with mimicry epitopes isolated from a dedicated synthetic peptide library allowed immediate identification of the natural antigenic protein. In two other cases, an amino acid pattern that reflected the epitope requirements of the T cell was determined by substitution and omission mixture analysis. Subsequently, the natural Ag was identified from databases using this refined pattern. This approach opens new perspectives for rapid and reliable Ag definition, representing a feasible alternative to the biochemical and genetic approaches described thus far.

  5. Neurons are MHC class I-dependent targets for CD8 T cells upon neurotropic viral infection.

    Directory of Open Access Journals (Sweden)

    Grégoire Chevalier

    2011-11-01

    Full Text Available Following infection of the central nervous system (CNS, the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL because they do not express major histocompatibility class I (MHC I molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV, in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and

  6. Shared fine specificity between T-cell receptors and an antibody recognizing a peptide/major histocompatibility class I complex

    DEFF Research Database (Denmark)

    Stryhn, A; Andersen, P S; Pedersen, L O

    1996-01-01

    Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide...... each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T...... cells. A striking similarity between the specificity of the T cells and that of the pSAN antibody was found and most of the peptide residues, which could be recognized by the T cells, could also be recognized by the antibody....

  7. Association of inclusion body myositis with T cell large granular lymphocytic leukaemia

    DEFF Research Database (Denmark)

    Greenberg, Steven A; Pinkus, Jack L; Amato, Anthony A

    2016-01-01

    SEE HOHLFELD AND SCHULZE-KOOPS DOI101093/BRAIN/AWW053 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Inclusion body myositis and T cell large granular lymphocytic leukaemia are rare diseases involving pathogenic cytotoxic CD8+ T cells. After encountering four patients with both disorders, we...... prospectively screened 38 patients with inclusion body myositis for the presence of expanded large granular lymphocyte populations by standard clinical laboratory methods (flow cytometry, examination of blood smears, and T cell receptor gene rearrangements), and performed muscle immunohistochemistry for CD8, CD......57, and TIA1. Most (22/38; 58%) patients with inclusion body myositis had aberrant populations of large granular lymphocytes in their blood meeting standard diagnostic criteria for T cell large granular lymphocytic leukaemia. These T cell populations were clonal in 20/20 patients and stably present...

  8. T cell-B cell interactions in primary immunodeficiencies.

    Science.gov (United States)

    Tangye, Stuart G; Deenick, Elissa K; Palendira, Umaimainthan; Ma, Cindy S

    2012-02-01

    Regulated interactions between cells of the immune system facilitate the generation of successful immune responses, thereby enabling efficient neutralization and clearance of pathogens and the establishment of both cell- and humoral-mediated immunological memory. The corollary of this is that impediments to efficient cell-cell interactions, normally necessary for differentiation and effector functions of immune cells, underly the clinical features and disease pathogenesis of primary immunodeficiencies. In affected individuals, these defects manifest as impaired long-term humoral immunity and susceptibility to infection by specific pathogens. In this review, we discuss the importance of, and requirements for, effective interactions between B cells and T cells during the formation of CD4(+) T follicular helper cells and the elicitation of cytotoxic function of virus-specific CD8(+) T cells, as well as how these processes are abrogated in primary immunodeficiencies due to loss-of-function mutations in defined genes. © 2012 New York Academy of Sciences.

  9. New insights into how trafficking regulates T cell receptor signaling

    Directory of Open Access Journals (Sweden)

    Jieqiong Lou

    2016-07-01

    Full Text Available AbstractThere is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR signaling. The trafficking molecules involved in lytic granule (LG secretion in cytotoxic T lymphocytes (CTL have been well studied due to the immune disorder known as familial hemophagocytic lymphohisiocytosis (FHLH. However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions.

  10. PD-L1-specific T cells

    DEFF Research Database (Denmark)

    Ahmad, Shamaila Munir; Borch, Troels Holz; Hansen, Morten

    2016-01-01

    -specific T cells that recognize both PD-L1-expressing immune cells and malignant cells. Thus, PD-L1-specific T cells have the ability to modulate adaptive immune reactions by reacting to regulatory cells. Thus, utilization of PD-L1-derived T cell epitopes may represent an attractive vaccination strategy...... for targeting the tumor microenvironment and for boosting the clinical effects of additional anticancer immunotherapy. This review summarizes present information about PD-L1 as a T cell antigen, depicts the initial findings about the function of PD-L1-specific T cells in the adjustment of immune responses...

  11. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity.

    Science.gov (United States)

    Almeida, Jorge R; Sauce, Delphine; Price, David A; Papagno, Laura; Shin, So Youn; Moris, Arnaud; Larsen, Martin; Pancino, Gianfranco; Douek, Daniel C; Autran, Brigitte; Sáez-Cirión, Asier; Appay, Victor

    2009-06-18

    CD8(+) T cells are major players in the immune response against HIV. However, recent failures in the development of T cell-based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell-mediated efficacy. CD8(+) T cells from HIV-1-infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8(+) T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8(+) T cells from infected donors. We report that attributes of CD8(+) T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8(+) T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8(+) T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy.

  12. The Hayflick Limit May Determine the Effective Clonal Diversity of Naive T Cells.

    Science.gov (United States)

    Ndifon, Wilfred; Dushoff, Jonathan

    2016-06-15

    Having a large number of sufficiently abundant T cell clones is important for adequate protection against diseases. However, as shown in this paper and elsewhere, between young adulthood and >70 y of age the effective clonal diversity of naive CD4/CD8 T cells found in human blood declines by a factor of >10. (Effective clonal diversity accounts for both the number and the abundance of T cell clones.) The causes of this observation are incompletely understood. A previous study proposed that it might result from the emergence of certain rare, replication-enhancing mutations in T cells. In this paper, we propose an even simpler explanation: that it results from the loss of T cells that have attained replicative senescence (i.e., the Hayflick limit). Stochastic numerical simulations of naive T cell population dynamics, based on experimental parameters, show that the rate of homeostatic T cell proliferation increases after the age of ∼60 y because naive T cells collectively approach replicative senescence. This leads to a sharp decline of effective clonal diversity after ∼70 y, in agreement with empirical data. A mathematical analysis predicts that, without an increase in the naive T cell proliferation rate, this decline will occur >50 yr later than empirically observed. These results are consistent with a model in which exhaustion of the proliferative capacity of naive T cells causes a sharp decline of their effective clonal diversity and imply that therapeutic potentiation of thymopoiesis might either prevent or reverse this outcome. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. Antiviral T-cell therapy

    OpenAIRE

    Leen, Ann M; Heslop, Helen E; Brenner, Malcolm K

    2014-01-01

    Serious viral infections are a common cause of morbidity and mortality after allogeneic stem cell transplantation. They occur in the majority of allograft recipients and are fatal in 17–20%. These severe infections may be prolonged or recurrent and add substantially to the cost, both human and financial, of the procedure. Many features of allogeneic stem cell transplantation contribute to this high rate of viral disease. The cytotoxic and immunosuppressive drugs administered pre-transplant to...

  14. Acquired transcriptional programming in functional and exhausted virus-specific CD8 T cells.

    Science.gov (United States)

    Youngblood, Ben; Wherry, E John; Ahmed, Rafi

    2012-01-01

    Failure to control viral infections such as HIV results in T-cell receptor (TCR) and inhibitory receptor driven exhaustion of antigen-specific T cells. Persistent signaling by these receptors during chronic viral infection sculpts the transcriptional regulatory programs of virus-specific T cells. The resulting gene expression profile is tailored to temper the potentially damaging effector functions of cytotoxic T cells and adapt them to an antigen-rich and inflammation-rich environment. Here we review recent studies investigating mechanisms of transcriptional regulation of effector, functional memory, and exhausted T-cell functions during acute versus chronic infections. Patterns of gene expression in virus-specific CD8 T cells are a result of a combination of pro and inhibitory signals from antigen presentation (TCR-mediated) and co-inhibitory receptor ligation (PD-1, 2B4). Further, memory-specific transcriptional regulation of 2B4 expression and signaling impose a self-limiting secondary effector response to a prolonged viral infection. Additionally, differentiation of functional memory CD8 T cells is coupled with acquisition of a repressive epigenetic program for PD-1 expression. However, chronic infection provides a signal that blocks the acquisition of these epigenetic modifications reinforcing the suppression of cytotoxic lymphocyte (CTL) functions in exhausted cells. Current findings suggest that the mechanism(s) that delineate functional memory versus exhaustion are coupled with acquisition of transcriptional programs at the effector stage of differentiation, reinforced by cessation or persistence of TCR signaling.

  15. New targeted treatments for cutaneous T-cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Martine Bagot

    2017-01-01

    Full Text Available Cutaneous T-cell lymphomas (CTCLs represent a group of rare and heterogeneous diseases that are very difficult to treat at advanced stages. The development of monoclonal antibodies is a new hope for the treatment of these diseases. Alemtuzumab (Campath is a humanized IgG1 kappa monoclonal antibody specific for CD52, an antigen expressed by most T and B lymphocytes. Alemtuzumab may frequently induce long-term remissions in patients with Sezary syndrome but high-dose treatments lead to severe cytopenia, immune depletion, and opportunistic infections. This treatment is less efficient in mycosis fungoides (MF. Brentuximab vedotin is a chimeric anti-CD30 monoclonal antibody conjugated to monomethyl auristatin E, a cytotoxic antitubulin agent. Brentuximab vedotin is a very interesting new treatment for advanced tumor MF, Sezary syndrome, and primary cutaneous CD30+ lymphoproliferative disorders. The main limiting adverse event is neurosensitive peripheral neuropathy. Mogamulizumab is a humanized anti-C-C chemokine receptor Type 4 monoclonal antibody with a defucosylated Fc region leading to increased antibody-dependent cellular cytotoxicity. Mogamulizumab is very efficient on aggressive peripheral T-cell lymphomas, particularly adult T-cell leukemia/lymphoma and CTCLs, especially on the blood component of tumor cells. The main limiting events are related to the concomitant depletion of regulatory T-cells. IPH4102 is a humanized monoclonal antibody that targets the immune receptor KIR3DL2/CD158k. Preclinical results with this antibody offer proofs of concept for the clinical development of IPH4102 to treat patients with advanced CTCL.

  16. Multiple differences in gene expression in regulatory Vα24JαQ T cells from identical twins discordant for type I diabetes

    Science.gov (United States)

    Wilson, S. Brian; Kent, Sally C.; Horton, Heidi F.; Hill, Andrew A.; Bollyky, Paul L.; Hafler, David A.; Strominger, Jack L.; Byrne, Michael C.

    2000-01-01

    Quantitative and qualitative defects in CD1d-restricted T cells have been demonstrated in human and murine autoimmune diseases. To investigate the transcriptional consequences of T cell receptor activation in human Vα24JαQ T cell clones, DNA microarrays were used to quantitate changes in mRNA levels after anti-CD3 stimulation of clones derived from identical twins discordant for type 1 diabetes and IL-4 secretion. Activation resulted in significant modulation of 226 transcripts in the IL-4 secreting clone and 86 in the IL-4-null clone. Only 28 of these genes were in common. The differences observed suggest both ineffective differentiation of diabetic Vα24JαQ T cells and a role for invariant T cells in the recruitment and activation of cells from the myeloid lineage. PMID:10840051

  17. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival

    DEFF Research Database (Denmark)

    Gjerdrum, L M; Woetmann, A; Odum, Niels

    2007-01-01

    FOXP3 is a unique marker for CD4+CD25+ regulatory T cells (Tregs). In solid tumours, high numbers of Tregs are associated with a poor prognosis. Knowledge about the implications of Tregs for the behaviour of haematological malignancies is limited. In this study, skin biopsies from 86 patients...... with mycosis fungoides (MF) and cutaneous T-cell lymphoma (CTCL) unspecified were analysed for the expression of FOXP3 on tumour cells and tumour-infiltrating Tregs. Labelling of above 10% of the neoplastic cells was seen in one case classified as an aggressive epidermotropic CD8+ cytotoxic CTCL....... In the remaining 85 cases, the atypical neoplastic infiltrate was either FOXP3 negative (n=80) or contained only very occasional weakly positive cells (n=5). By contrast, all biopsies showed varying numbers of strongly FOXP3+ tumour-infiltrating Tregs. MF with early or infiltrated plaques had significantly higher...

  18. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    Science.gov (United States)

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  19. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning; Yano, Juliana; Lio, Wai Man; Trinidad, Portia; Honjo, Tomoyuki; Cercek, Bojan; Shah, Prediman K.; Chyu, Kuang-Yuh, E-mail: Chyuk@cshs.org

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.

  20. The regulation of CD5 expression in murine T cells

    Directory of Open Access Journals (Sweden)

    Herzenberg Leonard A

    2001-05-01

    Full Text Available Abstract Background CD5 is a pan-T cell surface marker that is also present on a subset of B cells, B-1a cells.Functional and developmental subsets of T cells express characteristic CD5 levels that vary over roughly a 30-fold range. Previous investigators have cloned a 1.7 Kb fragment containing the CD5 promoter and showed that it can confer similar lymphocyte-specific expression pattern as observed for endogenous CD5 expression. Results We further characterize the CD5 promoter and identify minimal and regulatory regions on the CD5 promoter. Using a luciferase reporter system, we show that a 43 bp region on the CD5 promoter regulates CD5 expression in resting mouse thymoma EL4 T cells and that an Ets binding site within the 43 bp region mediates the CD5 expression. In addition, we show that Ets-1, a member of the Ets family of transcription factors, recognizes the Ets binding site in the electrophoretic mobility shift assay (EMSA. This Ets binding site is directly responsible for the increase in reporter activity when co-transfected with increasing amounts of Ets-1 expression plasmid. We also identify two additional evolutionarily-conserved regions in the CD5 promoter (CD5X and CD5Y and demonstrate the respective roles of the each region in the regulation of CD5 transcription. Conclusion Our studies define a minimal and regulatory promoter for CD5 and show that the CD5 expression level in T cells is at least partially dependent on the level of Ets-1 protein. Based on the findings in this report, we propose a model of CD5 transcriptional regulation in T cells.

  1. T-cell help permits memory CD8(+) T-cell inflation during cytomegalovirus latency.

    Science.gov (United States)

    Walton, Senta M; Torti, Nicole; Mandaric, Sanja; Oxenius, Annette

    2011-08-01

    CD4(+) T cells are implied to sustain CD8(+) T-cell responses during persistent infections. As CD4(+) T cells are often themselves antiviral effectors, they might shape CD8(+) T-cell responses via help or via controlling antigen load. We used persistent murine CMV (MCMV) infection to dissect the impact of CD4(+) T cells on virus-specific CD8(+) T cells, distinguishing between increased viral load in the absence of CD4(+) T cells and CD4(+) T-cell-mediated helper mechanisms. Absence of T-helper cells was associated with sustained lytic MCMV replication and led to a slow and gradual reduction of the size and function of the MCMV-specific CD8(+) T-cell pool. However, when virus replication was controlled in the absence of CD4(+) T cells, CD8(+) T-cell function was comparably impaired, but in addition CD8(+) T-cell inflation, a hallmark of CMV infection, was completely abolished. Thus, CD8(+) T-cell inflation during latent CMV infection is strongly dependent on CD4(+) T-cell helper functions, which can partially be compensated by ongoing lytic viral replication in the absence of CD4(+) T cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells.

    Science.gov (United States)

    Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K

    2017-01-01

    CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  3. [Amplification of γδ T cells in PBMCs of healthy donors and osteosarcoma patients stimulated by zoledronate].

    Science.gov (United States)

    Li, Zhao-xu; Sun, Ling-ling; Cheng, Rui-lin; Sun, Zheng-wang; Ye, Zhao-ming

    2012-08-01

    To investigate the amplification and cytotoxicity of γδ T cells in peripheral blood mononuclear cells (PBMCs) of healthy donors and osteosarcoma patients stimulated by zoledronate (Zol) and IL-2. PBMCs from healthy donors and osteosarcoma patients were stimulated with IL-2 and Zol+IL-2, respectively. After 14-day culture, the purity of γδ T cells was assessed by flow cytometry. The cytotoxicity of γδ T cells against target cells was analyzed using a standard lactate dehydrogenase release assay with γδ T lymphocyte-sensitive Daudi cells, γδ T lymphocyte-resistant Raji cells and human osteoblast cell line, hFOB, as the target cells. After 2-week culture ex vivo of PBMCs from healthy donors and osteosarcoma patients, compared with stimulation of IL-2, Zol+IL-2 significantly promoted the amplification of γδ T cells. In addition, γδ T cells showed the higher cytotoxicity against Daudi cells, but no cytotoxic effect on normal cells like hFOB. γδ T cells of high purity and high cytotoxicity can be obtained by the stimulation of Zol combined with IL-2 on PBMCs from healthy donors and osteosarcoma patients.

  4. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.

    Science.gov (United States)

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven

    2016-09-20

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.

  5. Direct Ex Vivo Analysis of Activated, Fas-sensitive Autoreactive T Cells in Human Autoimmune Disease

    Science.gov (United States)

    Bieganowska, Katarzyna D.; Ausubel, Lara J.; Modabber, Yalda; Slovik, Elissa; Messersmith, Wells; Hafler, David A.

    1997-01-01

    The frequency of clonally expanded and persistent T cells recognizing the immunodominant autoantigenic peptide of myelin basic protein (MBP)p85-99 was directly measured ex vivo in subjects with typical relapsing remitting multiple sclerosis (MS). T cells expressing mRNA transcripts encoding T cell receptor (TCR)-α and -β chains found in T cell clones previously isolated from these subjects recognizing the MBPp85-99 epitope were examined. In contrast to frequencies of 1 in 105–106 as measured by limiting dilution analysis, estimates of the T cell frequencies expressing MBPp85-99–associated TCR chain transcripts were as high as 1 in 300. These high frequencies were confirmed by performing PCR on single T cells isolated by flow cytometry. MBPp85-99 TCR transcripts were present in IL-2 receptor α–positive T cells which were induced to undergo Fas-mediated cell death upon antigen stimulation. These data demonstrate that at least a subpopulation of patients with MS can have a very high frequency of activated autoreactive T cells. PMID:9151896

  6. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells.

    Science.gov (United States)

    Watanabe, Toshiki

    2017-03-02

    Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1 , PRKCB , and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4 + T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated. © 2017 by The American Society of Hematology.

  7. Peripheral blood T cell activation after radioiodine treatment for Graves' disease

    Energy Technology Data Exchange (ETDEWEB)

    Wei-Ping Teng; Stark, R.; Borysiewicz, L.K.; Weetman, A.P. (Department of Medicine, University of Cambridge Clinical School, Level 5, Addenbrooke' s Hospital, Cambridge (UK)); Munro, A.J. (Department of Clinical Oncology, Hammersmith Hospital, London (UK)); McHardy Young, S. (Department of Medicine, Central Middlesex Hospital, London (UK))

    1990-01-01

    Radioiodine therapy for Graves' thyrotoxicosis produces a rise in thyroid autoantibodies in the first three months after treatment, but little is known of its effects on T cells. We have therefore followed the changes in T cell subsets in sequential samples from 23 patients with Graves' disease treated with radioiodine, using dualcolour flow cytometry. In the first month after treatment there was a significant rise in activated T cells, identified by the markers HLA-DR(la) and CDw26/Tal (p<0.025 in both cases). CD45RO-positive T cells, which are the primed population containing memory cells, also increased (p<0.025), but there was no change in CD45R-positive, resting T cells or in the CD4 to CD8 (helper to cytotoxic/suppressor) ratio. Vicia villosa-binding T cells, containing the contrasuppressor population, showed a more variable response, but the trend was to an overall increase from pre-treatment values (p<0.025). The changes did not appear to be related to antithyroid drug treatment, since they were seen irrespective of whether patients continued such therapy. These results suggest that T cell activation and enhanced contrasuppressor activity may in part be responsible for the rise in autoantibodies after radioiodine. The T cell changes could also contribute to the worsening of ophthalmopathy seen in some radioiodine-treated patients. (author).

  8. Incorporation of a hinge domain improves the expansion of chimeric antigen receptor T cells

    Directory of Open Access Journals (Sweden)

    Le Qin

    2017-03-01

    Full Text Available Abstract Background Multiple iterations of chimeric antigen receptors (CARs have been developed, mainly focusing on intracellular signaling modules. However, the effect of non-signaling extracellular modules on the expansion and therapeutic efficacy of CARs remains largely undefined. Methods We generated two versions of CAR vectors, with or without a hinge domain, targeting CD19, mesothelin, PSCA, MUC1, and HER2, respectively. Then, we systematically compared the effect of the hinge domains on the growth kinetics, cytokine production, and cytotoxicity of CAR T cells in vitro and in vivo. Results During in vitro culture period, the percentages and absolute numbers of T cells expressing the CARs containing a hinge domain continuously increased, mainly through the promotion of CD4+ CAR T cell expansion, regardless of the single-chain variable fragment (scFv. In vitro migration assay showed that the hinges enhanced CAR T cells migratory capacity. The T cells expressing anti-CD19 CARs with or without a hinge had similar antitumor capacities in vivo, whereas the T cells expressing anti-mesothelin CARs containing a hinge domain showed enhanced antitumor activities. Conclusions Hence, our results demonstrate that a hinge contributes to CAR T cell expansion and is capable of increasing the antitumor efficacy of some specific CAR T cells. Our results suggest potential novel strategies in CAR vector design.

  9. Driving CAR T-cells forward

    Science.gov (United States)

    Jackson, Hollie J.; Rafiq, Sarwish; Brentjens, Renier J.

    2017-01-01

    The engineered expression of chimeric antigen receptors (CARs) on the surface of T cells enables the redirection of T-cell specificity. Early clinical trials using CAR T cells for the treatment of patients with cancer showed modest results, but the impressive outcomes of several trials of CD19-targeted CAR T cells in the treatment of patients with B-cell malignancies have generated an increased enthusiasm for this approach. Important lessons have been derived from clinical trials of CD19-specific CAR T cells, and ongoing clinical trials are testing CAR designs directed at novel targets involved in haematological and solid malignancies. In this Review, we discuss these trials and present strategies that can increase the antitumour efficacy and safety of CAR T-cell therapy. Given the fast-moving nature of this field, we only discuss studies with direct translational application currently or soon-to-be tested in the clinical setting. PMID:27000958

  10. TCR tuning of T cell subsets.

    Science.gov (United States)

    Cho, Jae-Ho; Sprent, Jonathan

    2018-05-01

    After selection in the thymus, the post-thymic T cell compartments comprise heterogenous subsets of naive and memory T cells that make continuous T cell receptor (TCR) contact with self-ligands bound to major histocompatibility complex (MHC) molecules. T cell recognition of self-MHC ligands elicits covert TCR signaling and is particularly important for controlling survival of naive T cells. Such tonic TCR signaling is tightly controlled and maintains the cells in a quiescent state to avoid autoimmunity. Here, we review how naive and memory T cells are differentially tuned and wired for TCR sensitivity to self and foreign ligands. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Asymptomatic memory CD8+ T cells

    Science.gov (United States)

    Khan, Arif Azam; Srivastava, Ruchi; Lopes, Patricia Prado; Wang, Christine; Pham, Thanh T; Cochrane, Justin; Thai, Nhi Thi Uyen; Gutierrez, Lucas; BenMohamed, Lbachir

    2014-01-01

    Generation and maintenance of high quantity and quality memory CD8+ T cells determine the level of protection from viral, bacterial, and parasitic re-infections, and hence constitutes a primary goal for T cell epitope-based human vaccines and immunotherapeutics. Phenotypically and functionally characterizing memory CD8+ T cells that provide protection against herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections, which cause blinding ocular herpes, genital herpes, and oro-facial herpes, is critical for better vaccine design. We have recently categorized 2 new major sub-populations of memory symptomatic and asymptomatic CD8+ T cells based on their phenotype, protective vs. pathogenic function, and anatomical locations. In this report we are discussing a new direction in developing T cell-based human herpes vaccines and immunotherapeutics based on the emerging new concept of “symptomatic and asymptomatic memory CD8+ T cells.” PMID:24499824

  12. Infliximab induces clonal expansion of γδ-T cells in Crohn's disease: a predictor of lymphoma risk?

    Directory of Open Access Journals (Sweden)

    Jens Kelsen

    Full Text Available BACKGROUND: Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD, the incidence of hepato-splenic gamma-delta (γδ-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. METHODOLOGY/PRINCIPAL FINDINGS: We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n=20 or adalimumab (Humira®; n=26 using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6% comparable to healthy individuals (mean 2.2%, and 11 CD patients (24% exhibited an increased level of γδ-T cells (5-15%. In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. CONCLUSION/SIGNIFICANCE: CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell

  13. Infliximab induces clonal expansion of γδ-T cells in Crohn's disease: a predictor of lymphoma risk?

    Science.gov (United States)

    Kelsen, Jens; Dige, Anders; Schwindt, Heinrich; D'Amore, Francesco; Pedersen, Finn S; Agnholt, Jørgen; Christensen, Lisbet A; Dahlerup, Jens F; Hvas, Christian L

    2011-03-31

    Concominant with the widespread use of combined immunotherapy in the management of Crohn's disease (CD), the incidence of hepato-splenic gamma-delta (γδ)-T cell lymphoma has increased sharply in CD patients. Malignant transformation of lymphocytes is believed to be a multistep process resulting in the selection of malignant γδ-T cell clones. We hypothesised that repeated infusion of anti-TNF-α agents may induce clonal selection and that concurrent treatment with immunomodulators further predisposes patients to γδ-T cell expansion. We investigated dynamic changes in the γδ-T cells of patient with CD following treatment with infliximab (Remicade®; n=20) or adalimumab (Humira®; n=26) using flow cytometry. In patients with a high γδ-T cell level, the γδ-T cells were assessed for clonality. Of these 46 CD patients, 35 had a γδ-T cells level (mean 1.6%) comparable to healthy individuals (mean 2.2%), and 11 CD patients (24%) exhibited an increased level of γδ-T cells (5-15%). In the 18 patients also receiving thiopurines or methotrexate, the average baseline γδ-T cell level was 4.4%. In three male CD patients with a high baseline value, the γδ-T cell population increased dramatically following infliximab therapy. A fourth male patient also on infliximab monotherapy presented with 20% γδ-T cells, which increased to 25% shortly after treatment and was 36% between infusions. Clonality studies revealed an oligoclonal γδ-T cell pattern with dominant γδ-T cell clones. In support of our clinical findings, in vitro experiments showed a dose-dependent proliferative effect of anti-TNF-α agents on γδ-T cells. CD patients treated with immunomodulators had constitutively high levels of γδ-T cells. Infliximab exacerbated clonal γδ-T cell expansion in vivo and induced γδ-T cell proliferation in vitro. Overall, young, male CD patients with high baseline γδ-T cell levels may be at an increased risk of developing malignant γδ-T cell lymphomas

  14. T Cell Genesis: In Vitro Veritas Est?

    OpenAIRE

    Brauer, Patrick M.; Singh, Jastaranpreet; Xhiku, Sintia; Zúñiga-Pflücker, Juan Carlos

    2016-01-01

    T cells, as orchestrators of the adaptive immune response, serve important physiological and potentially therapeutic roles, for example in cancer immunotherapy. T cells are readily isolated from patients; however, the yield of antigen-specific T cells is limited, thus making their clinical use challenging. Therefore, the generation of T lymphocytes from hematopoietic stem/progenitor cells (HSPCs) and human pluripotent stem cells (PSCs) in vitro provides an attractive method for large-scale pr...

  15. Vγ9Vδ2 T cells and zoledronate mediate antitumor activity in an orthotopic mouse model of human chondrosarcoma.

    Science.gov (United States)

    Sun, L; Li, Y; Jiang, Z; Zhang, J; Li, H; Li, B; Ye, Z

    2016-06-01

    Chondrosarcoma (CS) is a cartilaginous malignant neoplasm characterized by resistance to conventional adjuvant therapy. The prognosis of unresectable or metastatic CS is poor. Therefore, it is imperative to explore novel therapeutic approaches to improve the treatment efficacy for those CS patients. Emerging data has implicated the synergistic antitumor activity of zoledronate (ZOL) and Vγ9Vδ2 T cells. However, whether ZOL-stimulated Vγ9Vδ2 T cells could infiltrate bone sarcoma and inhibit tumor growth has not been thoroughly answered yet. In this study, Vγ9Vδ2 T cells from healthy donors and CS patients were expanded in the presence of ZOL (1 μM) and IL-2 (400 IU/ml). The antitumor activity of Vγ9Vδ2 T cells to ZOL-pretreated human CS was examined both in vitro and in vivo. ZOL pretreatment substantially enhanced the cytotoxicity of Vγ9Vδ2 T cells to SW1353 and primary CS cells. ZOL potentiated the migration and cytotoxicity of Vγ9Vδ2 T cells to SW1353 in dose- and time-dependent manner. Moreover, weekly intravenous ZOL followed by Vγ9Vδ2 T cells inhibited subcutaneous xenograft growth. Thus, Vγ9Vδ2 T cells were able to infiltrate bone tumor and significantly suppressed the development of orthotopic SW1353 xenografts. Altogether, the study raises the possibility of combining ZOL with Vγ9Vδ2 T cells for CS treatment.

  16. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    Directory of Open Access Journals (Sweden)

    Gunter Rappl

    Full Text Available Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+ CD57(+ CD7(- phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter.

  17. CAR-T cells are serial killers.

    Science.gov (United States)

    Davenport, Alexander J; Jenkins, Misty R; Ritchie, David S; Prince, H Miles; Trapani, Joseph A; Kershaw, Michael H; Darcy, Phillip K; Neeson, Paul J

    2015-12-01

    Chimeric antigen receptor (CAR) T cells have enjoyed unprecedented clinical success against haematological malignancies in recent years. However, several aspects of CAR T cell biology remain unknown. We recently compared CAR and T cell receptor (TCR)-based killing in the same effector cell and showed that CAR T cells can not only efficiently kill single tumor targets, they can also kill multiple tumor targets in a sequential manner. Single and serial killing events were not sustained long term due to CAR down-regulation after 20 hours.

  18. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells.

    Science.gov (United States)

    Ali, Ramadan A; Camick, Christina; Wiles, Katherine; Walseth, Timothy F; Slama, James T; Bhattacharya, Sumit; Giovannucci, David R; Wall, Katherine A

    2016-02-26

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+) mobilizing second messenger discovered to date, has been implicated in Ca(2+) signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca(2+) signaling or the identity of the Ca(2+) stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca(2+) signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca(2+) signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca(2+) stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca(2+) signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca(2+) release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Nicotinic Acid Adenine Dinucleotide Phosphate Plays a Critical Role in Naive and Effector Murine T Cells but Not Natural Regulatory T Cells*

    Science.gov (United States)

    Ali, Ramadan A.; Camick, Christina; Wiles, Katherine; Walseth, Timothy F.; Slama, James T.; Bhattacharya, Sumit; Giovannucci, David R.; Wall, Katherine A.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca2+ mobilizing second messenger discovered to date, has been implicated in Ca2+ signaling in some lymphomas and T cell clones. In contrast, the role of NAADP in Ca2+ signaling or the identity of the Ca2+ stores targeted by NAADP in conventional naive T cells is less clear. In the current study, we demonstrate the importance of NAADP in the generation of Ca2+ signals in murine naive T cells. Combining live-cell imaging methods and a pharmacological approach using the NAADP antagonist Ned-19, we addressed the involvement of NAADP in the generation of Ca2+ signals evoked by TCR stimulation and the role of this signal in downstream physiological end points such as proliferation, cytokine production, and other responses to stimulation. We demonstrated that acidic compartments in addition to the endoplasmic reticulum were the Ca2+ stores that were sensitive to NAADP in naive T cells. NAADP was shown to evoke functionally relevant Ca2+ signals in both naive CD4 and naive CD8 T cells. Furthermore, we examined the role of this signal in the activation, proliferation, and secretion of effector cytokines by Th1, Th2, Th17, and CD8 effector T cells. Overall, NAADP exhibited a similar profile in mediating Ca2+ release in effector T cells as in their counterpart naive T cells and seemed to be equally important for the function of these different subsets of effector T cells. This profile was not observed for natural T regulatory cells. PMID:26728458

  20. Alteration of the gene expression profile of T-cell receptor αβ-modified T-cells with diffuse large B-cell lymphoma specificity.

    Science.gov (United States)

    Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu

    2013-05-01

    Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.

  1. CD8+ T cell infiltration in breast and colon cancer: A histologic and statistical analysis.

    Directory of Open Access Journals (Sweden)

    James Ziai

    Full Text Available The prevalence of cytotoxic tumor infiltrating lymphocytes (TILs has demonstrated prognostic value in multiple tumor types. In particular, CD8 counts (in combination with CD3 and CD45RO have been shown to be superior to traditional UICC staging in colon cancer patients and higher total CD8 counts have been associated with better survival in breast cancer patients. However, immune infiltrate heterogeneity can lead to potentially significant misrepresentations of marker prevalence in routine histologic sections. We examined step sections of breast and colorectal cancer samples for CD8+ T cell prevalence by standard chromogenic immunohistochemistry to determine marker variability and inform practice of T cell biomarker assessment in formalin-fixed, paraffin-embedded (FFPE tissue samples. Stained sections were digitally imaged and CD8+ lymphocytes within defined regions of interest (ROI including the tumor and surrounding stroma were enumerated. Statistical analyses of CD8+ cell count variability using a linear model/ANOVA framework between patients as well as between levels within a patient sample were performed. Our results show that CD8+ T-cell distribution is highly homogeneous within a standard tissue sample in both colorectal and breast carcinomas. As such, cytotoxic T cell prevalence by immunohistochemistry on a single level or even from a subsample of biopsy fragments taken from that level can be considered representative of cytotoxic T cell infiltration for the entire tumor section within the block. These findings support the technical validity of biomarker strategies relying on CD8 immunohistochemistry.

  2. High level of surface CD4 prevents stable human immunodeficiency virus infection of T-cell transfectants.

    OpenAIRE

    Marshall, W L; Diamond, D C; Kowalski, M M; Finberg, R W

    1992-01-01

    CD4 is the principal receptor for the human immunodeficiency virus (HIV). We have isolated and studied CD4-expressing tumor cell clones made by expressing CD4 in the T-cell tumor line HSB. Two clones, one designated HSBCD4, a clone expressing low levels of CD4, and the other, HSB10xCD4, a high-expresser CD4+ clone, were studied for their ability to bind and replicate HIV. In contrast to many other CD4+ cells that down-modulate CD4 following HIV infection, the HSB10xCD4 clones continued to exp...

  3. Saporin-conjugated tetramers identify efficacious anti-HIV CD8+ T-cell specificities

    DEFF Research Database (Denmark)

    Leitman, Ellen M.; Palmer, Christine D.; Buus, Søren

    2017-01-01

    Antigen-specific T-cells are highly variable, spanning potent antiviral efficacy and damaging auto-reactivity. In virus infections, identifying the most efficacious responses is critical to vaccine design. However, current methods depend on indirect measures or on ex vivo expanded CTL clones. We...

  4. Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires.

    Directory of Open Access Journals (Sweden)

    Mikhail V Pogorelyy

    2017-07-01

    Full Text Available The diversity of T-cell receptors recognizing foreign pathogens is generated through a highly stochastic recombination process, making the independent production of the same sequence rare. Yet unrelated individuals do share receptors, which together constitute a "public" repertoire of abundant clonotypes. The TCR repertoire is initially formed prenatally, when the enzyme inserting random nucleotides is downregulated, producing a limited diversity subset. By statistically analyzing deep sequencing T-cell repertoire data from twins, unrelated individuals of various ages, and cord blood, we show that T-cell clones generated before birth persist and maintain high abundances in adult organisms for decades, slowly decaying with age. Our results suggest that large, low-diversity public clones are created during pre-natal life, and survive over long periods, providing the basis of the public repertoire.

  5. REGULATORY T CELLS AND VASECTOMY

    Science.gov (United States)

    Rival, Claudia; Wheeler, Karen; Jeffrey, Sarah; Qiao, Hui; Luu, Brian; Tewalt, Eric F; Engelhard, Victor H; Tardif, Stephen; Hardy, Daniel; del Rio, Roxana; Teuscher, Cory; Tung, Kenneth

    2013-01-01

    CD4+CD25+ regulatory T cells (Tregs) strongly influence the early and late autoimmune responses to meiotic germ cell antigens (MGCA) and the gonadal immunopathology in vasectomized mice. This is supported by the published and recently acquired information presented here. Within 24 hours of unilateral vasectomy (uni-vx) the ipsilateral epididymis undergoes epithelial cell apoptosis followed by necrosis, severe inflammation, and granuloma formation. Unexpectedly, vasectomy alone induced MGCA-specific tolerance. In contrast, uni-vx plus simultaneous Treg depletion resulted in MGCA-specific autoimmune response and bilateral autoimmune orchitis. Both tolerance and autoimmunity were strictly linked to the early epididymal injury. We now discovered that testicular autoimmunity in uni-vx mice did not occur when Treg depletion was delayed by one week. Remarkably, this delayed Treg depletion also prevented tolerance induction. Therefore, tolerance depends on a rapid de novo Treg response to MGCA exposed after vasectomy. Moreover, tolerance was blunted in mice genetically deficient in PD-1 ligand, suggesting the involvement of induced Treg. We conclude that pre-existing natural Treg prevents post-vasectomy autoimmunity, whereas vasectomy-induced Treg maintains post-vasectomy tolerance. We further discovered that vasectomized mice were still resistant to autoimmune orchitis induction for at least 12–16 months; thus, tolerance is long-lasting. Although significant sperm autoantibodies of low titers became detectable in uni-vx mice at seven months, the antibody titers fluctuated over time, suggesting a dynamic “balance” between the autoimmune and tolerance states. Finally, we observed severe epididymal fibrosis and hypo-spermatogenesis at 12 months after uni-vx: findings of highly critical clinical significance. PMID:24080233

  6. Evolution of MHC-based technologies used for detection of antigen-responsive T cells

    DEFF Research Database (Denmark)

    Bentzen, Amalie Kai; Hadrup, Sine Reker

    2017-01-01

    T cell-mediated recognition of peptide-major histocompatibility complex (pMHC) class I and II molecules is crucial for the control of intracellular pathogens and cancer, as well as for stimulation and maintenance of efficient cytotoxic responses. Such interactions may also play a role in the deve...

  7. The Role of B Cells for in Vivo T Cell Responses to a Friend Virus-Induced Leukemia

    Science.gov (United States)

    Schultz, Kirk R.; Klarnet, Jay P.; Gieni, Randall S.; Hayglass, Kent T.; Greenberg, Philip D.

    1990-08-01

    B cells can function as antigen-presenting cells and accessory cells for T cell responses. This study evaluated the role of B cells in the induction of protective T cell immunity to a Friend murine leukemia virus (F-MuLV)-induced leukemia (FBL). B cell-deficient mice exhibited significantly reduced tumor-specific CD4^+ helper and CD8^+ cytotoxic T cell responses after priming with FBL or a recombinant vaccinia virus containing F-MuLV antigens. Moreover, these mice had diminished T cell responses to the vaccinia viral antigens. Tumor-primed T cells transferred into B cell-deficient mice effectively eradicated disseminated FBL. Thus, B cells appear necessary for efficient priming but not expression of tumor and viral T cell immunity.

  8. Spontaneous presence of FOXO3-specific T cells in cancer patients

    DEFF Research Database (Denmark)

    Larsen, Stine Kiaer; Ahmad, Shamaila Munir; Idorn, Manja

    2014-01-01

    In the present study, we describe forkhead box O3 (FOXO3)-specific, cytotoxic CD8(+) T cells existent among peripheral-blood mononuclear cells (PBMCs) of cancer patients. FOXO3 immunogenicity appears specific, as we did not detect reactivity toward FOXO3 among T cells in healthy individuals. FOXO3...... may naturally serve as a target antigen for tumor-reactive T cells as it is frequently over-expressed in cancer cells. In addition, expression of FOXO3 plays a critical role in immunosuppression mediated by tumor-associated dendritic cells (TADCs). Indeed, FOXO3-specific cytotoxic T lymphocytes (CTLs......) were able to specifically recognize and kill both FOXO3-expressing cancer cells as well as dendritic cells. Thus, FOXO3 was processed and presented by HLA-A2 on the cell surface of both immune cells and cancer cells. As FOXO3 programs TADCs to become tolerogenic, FOXO3 signaling thereby comprises...

  9. Expression of activating natural killer-cell receptors is a hallmark of the innate-like T-cell neoplasm in peripheral T-cell lymphomas.

    Science.gov (United States)

    Uemura, Yu; Isobe, Yasushi; Uchida, Akiko; Asano, Junko; Nishio, Yuji; Sakai, Hirotaka; Hoshikawa, Masahiro; Takagi, Masayuki; Nakamura, Naoya; Miura, Ikuo

    2018-04-01

    Peripheral T- or natural killer (NK)-cell lymphomas are rare and difficult-to-recognize diseases. It remains arduous to distinguish between NK cell- and cytotoxic T-lymphocyte-derived lymphomas through routine histological evaluation. To clarify the cells of origin, we focused on NK-cell receptors and examined the expression using immunohistochemistry in 22 cases with T- and NK-cell neoplasms comprising angioimmunoblastic T-cell lymphoma, anaplastic lymphoma kinase (ALK)-positive and -negative anaplastic large-cell lymphomas, extranodal NK/T-cell lymphoma, nasal type, monomorphic epitheliotropic intestinal T-cell lymphoma, aggressive NK-cell leukemia, and other peripheral T-cell lymphomas. Inhibitory receptor leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) was detected in 14 (64%) cases, whereas activating receptors DNAM1, NKp46, and NKG2D were expressed in 7 (32%), 9 (41%), and 5 (23%) cases, respectively. Although LILRB1 was detected regardless of the disease entity, the activating NK-cell receptors were expressed predominantly in TIA-1-positive neoplasms (DNAM1, 49%; NKp46, 69%; and NKG2D, 38%). In addition, NKp46 and NKG2D were detected only in NK-cell neoplasms and cytotoxic T-lymphocyte-derived lymphomas including monomorphic epitheliotropic intestinal T-cell lymphoma. One Epstein-Barr virus-harboring cytotoxic T-lymphocyte-derived lymphoma mimicking extranodal NK/T-cell lymphoma, nasal type lacked these NK-cell receptors, indicating different cell origin from NK and innate-like T cells. Furthermore, NKG2D expression showed a negative impact on survival among the 22 examined cases, which mainly received the standard chemotherapy regimen (log-rank test, P = .024). We propose that the presence of activating NK-cell receptors may provide new insights into understanding peripheral T-cell lymphomas and characterizing them as innate-like T-cell neoplasm. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on

  10. Self-recognition specificity expressed by T cells from nude mice. Absence of detectable Ia-restricted T cells in nude mice that do exhibit self-K/D-restricted T cell responses

    International Nuclear Information System (INIS)

    Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.; Longo, D.L.

    1984-01-01

    The presence in athymic nude mice of precursor T cells with self-recognition specificity for either H-2 K/D or H-2 I region determinants was investigated. Chimeras were constructed of lethally irradiated parental mice receiving a mixture of F1 nude mouse (6-8 wk old) spleen and bone marrow cells. The donor inoculum was deliberately not subjected to any T cell depletion procedure, so that any potential major histocompatibility complex-committed precursor T cells were allowed to differentiate and expand in the normal parental recipients. 3 mo after reconstitution, the chimeras were immunized with several protein antigens in complete Freund's adjuvant in the footpads and their purified draining lymph node T cells tested 10 d later for ability to recognize antigen on antigen-presenting cells of either parental haplotype. Also, their spleen and lymph node cells were tested for ability to generate a cytotoxic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified stimulator cells of either parental haplotype. It was demonstrated that T cell proliferative responses of these F1(nude)----parent chimeras were restricted solely to recognizing parental host I region determinants as self and expressed the Ir gene phenotype of the host. In contrast, CTL responses could be generated (in the presence of interleukin 2) to TNP-modified stimulator cells of either parental haplotype. Thus these results indicate that nude mice which do have CTL with self-specificity for K/D region determinants lack proliferating T cells with self-specificity for I region determinants. These results provide evidence for the concepts that development of the I region-restricted T cell repertoire is strictly an intrathymically determined event and that young nude mice lack the unique thymic elements responsible for education of I region-restricted T cells

  11. Regulation of T cell responses in atherosclerosis

    NARCIS (Netherlands)

    Puijvelde, Gijsbrecht Henricus Maria van

    2007-01-01

    One of the most important characteristics of atherosclerosis is the chronic inflammatory response in which T cells and NKT cells are very important. In this thesis several methods to modulate the activity of these T and NKT cells in atherosclerosis are described. The induction of regulatory T cells

  12. The numerology of T cell functional diversity.

    Science.gov (United States)

    Haining, W Nicholas

    2012-01-27

    Memory T cells are heterogeneous in phenotype and function. In this issue of Immunity, Newell et al. (2012) use a new flow cytometry platform to show that the functional heterogeneity of the human T cell compartment is even greater than previously thought. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The Numerology of T Cell Functional Diversity

    OpenAIRE

    Haining, W. Nicholas

    2012-01-01

    Memory T cells are heterogeneous in phenotype and function. In this issue of Immunity Newell et al. (2012) use a new flow cytometry platform to show that the functional heterogeneity in the human T cell compartment is even greater than expected.

  14. Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γδT Cells.

    Science.gov (United States)

    Shimizu, Kanako; Shinga, Jun; Yamasaki, Satoru; Kawamura, Masami; Dörrie, Jan; Schaft, Niels; Sato, Yusuke; Iyoda, Tomonori; Fujii, Shin-Ichiro

    2015-01-01

    Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.

  15. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  16. Human Epidermal Langerhans Cells Maintain Immune Homeostasis in Skin by Activating Skin Resident Regulatory T Cells

    Science.gov (United States)

    Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.

    2013-01-01

    Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445

  17. T cells in vascular inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Lucas L Lintermans

    2014-10-01

    Full Text Available Inflammation of the human vasculature is a manifestation of many different diseases ranging from systemic autoimmune diseases to chronic inflammatory diseases, in which multiple types of immune cells are involved. For both autoimmune diseases and chronic inflammatory diseases several observations support a key role for T lymphocytes in these disease pathologies, but the underlying mechanisms are poorly understood. Previous studies in several autoimmune diseases have demonstrated a significant role for a specific subset of CD4+ T cells termed effector memory T cells. This expanded population of effector memory T cells may contribute to tissue injury and disease progression. These cells exert multiple pro-inflammatory functions through the release of effector cytokines. Many of these cytokines have been detected in the inflammatory lesions and participate in the vasculitic reaction, contributing to recruitment of macrophages, neutrophils, dendritic cells, NK cells, B cells and T cells. In addition, functional impairment of regulatory T cells paralyzes anti-inflammatory effects in vasculitic disorders. Interestingly, activation of effector memory T cells in uniquely dependent on the voltage-gated Kv1.3 potassium channel providing an anchor for specific drug targeting. In this review, we focus on the CD4+ T cells in the context of vascular inflammation and describe the evidence supporting the role of different T cell subsets in vascular inflammation. Selective targeting of pathogenic effector memory T cells might enable a more tailored therapeutic approach that avoids unwanted adverse side effects of generalized immunosuppression by modulating the effector functions of T cell responses to inhibit the development of vascular inflammation.

  18. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  19. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki; Yoichiro; Tanabe, Kazumi; Umeki, Shigeko; Nakamura, Nori; Yamakido, Michio; Hamamoto, Kazuko.

    1990-04-01

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4 + T cells. The presence of variant CD4 + T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  20. Exchange of cytosolic content between T cells and tumor cells activates CD4 T cells and impedes cancer growth.

    Directory of Open Access Journals (Sweden)

    Matthias Hardtke-Wolenski

    Full Text Available BACKGROUND: T cells are known to participate in the response to tumor cells and react with cytotoxicity and cytokine release. At the same time tumors established versatile mechanisms for silencing the immune responses. The interplay is far from being completely understood. In this study we show contacts between tumor cells and lymphocytes revealing novel characteristics in the interaction of T cells and cancer cells in a way not previously described. METHODS/ FINDINGS: Experiments are based on the usage of a hydrophilic fluorescent dye that occurs free in the cytosol and thus transfer of fluorescent cytosol from one cell to the other can be observed using flow cytometry. Tumor cells from cell lines of different origin or primary hepatocellular carcinoma (HCC cells were incubated with lymphocytes from human and mice. This exposure provoked a contact dependent uptake of tumor derived cytosol by lymphocytes--even in CD4⁺ T cells and murine B cells--which could not be detected after incubation of lymphocytes with healthy cells. The interaction was a direct one, not requiring the presence of accessory cells, but independent of cytotoxicity and TCR engagement. Electron microscopy disclosed 100-200 nm large gaps in the cell membranes of connected cells which separated viable and revealed astonishing outcome. While the lymphocytes were induced to proliferate in a long term fashion, the tumor cells underwent a temporary break in cell division. The in vitro results were confirmed in vivo using a murine acute lymphoblastic leukemia (ALL model. The arrest of tumor proliferation resulted in a significant prolonged survival of challenged mice. CONCLUSIONS: The reported cell-cell contacts reveal new characteristics i.e. the enabling of cytosol flow between the cells including biological active proteins that influence the cell cycle and biological behaviour of the recipient cells. This adds a completely new aspect in tumor induced immunology.

  1. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent.

    Science.gov (United States)

    Papeta, Natalia; Chen, Tao; Vianello, Fabrizio; Gererty, Lyle; Malik, Ashish; Mok, Ying-Ting; Tharp, William G; Bagley, Jessamyn; Zhao, Guiling; Stevceva, Liljana; Yoon, Victor; Sykes, Megan; Sachs, David; Iacomini, John; Poznansky, Mark C

    2007-01-27

    Alloantigen specific T cells have been shown to be required for allograft rejection. The chemokine, stromal cell derived factor-1 (SDF-1) at high concentration, has been shown to act as a T-cell chemorepellent and abrogate T-cell infiltration into a site of antigen challenge in vivo via a mechanism termed fugetaxis or chemorepulsion. We postulated that this mechanism could be exploited therapeutically and that allogeneic cells engineered to express a chemorepellent protein would not be rejected. Allogeneic murine insulinoma beta-TC3 cells and primary islets from BALB/C mice were engineered to constitutively secrete differential levels of SDF-1 and transplanted into allogeneic diabetic C57BL/6 mice. Rejection was defined as the permanent return of hyperglycemia and was correlated with the level of T-cell infiltration. The migratory response of T-cells to SDF-1 was also analyzed by transwell migration assay and time-lapse videomicroscopy. The cytotoxicity of cytotoxic T cell (CTLs) against beta-TC3 cells expressing high levels of SDF-1 was measured in standard and modified chromium-release assays in order to determine the effect of CTL migration on killing efficacy. Control animals rejected allogeneic cells and remained diabetic. In contrast, high level SDF-1 production by transplanted cells resulted in increased survival of the allograft and a significant reduction in blood glucose levels and T-cell infiltration into the transplanted tissue. This is the first demonstration of a novel approach that exploits T-cell chemorepulsion to induce site specific immune isolation and thereby overcomes allograft rejection without the use of systemic immunosuppression.

  2. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8+ and CD4+ T cells.

    Science.gov (United States)

    Boudousquie, Caroline; Bossi, Giovanna; Hurst, Jacob M; Rygiel, Karolina A; Jakobsen, Bent K; Hassan, Namir J

    2017-11-01

    The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8 + and CD4 + T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8 + and CD4 + repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8 + T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4 + effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8 + and CD4 + repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-β, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8 + T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  3. Gamma delta T cell responses associated with the development of tuberculosis in health care workers.

    Science.gov (United States)

    Ordway, Diane J; Pinto, Luisa; Costa, Leonor; Martins, Marta; Leandro, Clara; Viveiros, Miguel; Amaral, Leonard; Arroz, Maria J; Ventura, Fernando A; Dockrell, Hazel M

    2005-03-01

    This study evaluated T cell immune responses to purified protein derivative (PPD) and Mycobacterium tuberculosis (Mtb) in health care workers who remained free of active tuberculosis (HCWs w/o TB), health care workers who went on to develop active TB (HCWs w/TB), non-health care workers who were TB free (Non-HCWs) and tuberculosis patients presenting with minimal (Min TB) or advanced (Adv TB) disease. Peripheral blood mononuclear cells (PBMC) were stimulated with Mtb and PPD and the expression of T cell activation markers CD25+ and HLA-DR+, intracellular IL-4 and IFN-gamma production and cytotoxic responses were evaluated. PBMC from HCWs who developed TB showed decreased percentages of cells expressing CD8+CD25+ in comparison to HCWs who remained healthy. HCWs who developed TB showed increased gammadelta TCR+ cell cytotoxicity and decreased CD3+gammadelta TCR- cell cytotoxicity in comparison to HCWs who remained healthy. PBMC from TB patients with advanced disease showed decreased percentages of CD25+CD4+ and CD25+CD8+ T cells that were associated with increased IL-4 production in CD8+ and gammadelta TCR+ phenotypes, in comparison with TB patients presenting minimal disease. TB patients with advanced disease showed increased gammadelta TCR+ cytotoxicity and reduced CD3+gammadelta TCR- cell cytotoxicity. Our results suggest that HCWs who developed TB show an early compensatory mechanism involving an increase in lytic responses of gammadelta TCR+ cells which did not prevent TB.

  4. Major histocompatibility complex-unrestricted cytolytic activity of human T cells: analysis of precursor frequency and effector phenotype

    International Nuclear Information System (INIS)

    Patel, S.S.; Thiele, D.L.; Lipsky, P.E.

    1987-01-01

    The frequency and phenotype of human T cells that mediate major histocompatibility complex (MHC)-unrestricted cytolysis were analyzed. T cell clones were generated by culturing adherent cell-depleted peripheral blood mononuclear cells at a density of 0.3 cell/well with phytohemagglutinin, recombinant interleukin 2 (rIL-2), and irradiated autologous peripheral blood mononuclear cells and/or Epstein-Barr virus-transformed lymphoblastoid cell lines. All of the 198 clones generated by this method were T cells (CD2 + , CD3 + , CD4 + or CD2 + , CD3 + , CD8 + ) that possessed potent lytic activity against K562, an erythroleukemia line sensitive to lysis by human natural killer cells, and Cur, a renal carcinoma cell line resistant to human natural killer activity. Cytolysis, measured by 51 Cr release, was MHC-unrestricted, since the clones were able to lyse MHC class I or class II negative targets, as well as MHC class I and class II negative targets. Although the clones produced tissue necrosis factor/lymphotoxin-like molecules, lysis of Cur of K562 was not mediated by a soluble factor secreted by the clones. These data indicate that the capacity for MHC-unrestricted tumoricidal activity and expression of NKH1 and CD11b, but not CD 16, are properties common to all or nearly all human peripheral blood-derived T cell clones regardless of CD4 or CD8 phenotype

  5. Combination of Interleukin-11Rα chimeric antigen receptor T-cells and programmed death-1 blockade as an approach to targeting osteosarcoma cells In vitro

    Directory of Open Access Journals (Sweden)

    Hatel Rana Moonat

    2017-01-01

    Conclusion: This combination of IL-11Rα-CAR T-cells and an anti-PD-1 antibody did not provide any additional cytotoxic benefit over IL-11Rα-CAR T-cell therapy alone in this setting. Further studies are needed as simple interference with surface PD-1 expression alone may not be sufficient to inhibit this immune checkpoint pathway to then enhance IL-11Rα-CAR T-cell therapeutic effects.

  6. How Do CD4+ T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?

    Science.gov (United States)

    Haabeth, Ole Audun Werner; Tveita, Anders Aune; Fauskanger, Marte; Schjesvold, Fredrik; Lorvik, Kristina Berg; Hofgaard, Peter O.; Omholt, Hilde; Munthe, Ludvig A.; Dembic, Zlatko; Corthay, Alexandre; Bogen, Bjarne

    2014-01-01

    CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR) transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor-specific antigen by host antigen-presenting cells (APCs) appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315), where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR-transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-γ stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed. PMID:24782871

  7. How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules?

    Directory of Open Access Journals (Sweden)

    Ole Audun Werner Haabeth

    2014-04-01

    Full Text Available CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor specific antigen by host antigen presenting cells (APCs appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315, where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-g stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed.

  8. Immunopolarization of CD4(+) and CD8(+) T cells to type-1-like is associated with melanocyte loss in human vitiligo

    NARCIS (Netherlands)

    Wańkowicz-Kalińska, Anna; van den Wijngaard, René M. J. G. J.; Tigges, Bert J.; Westerhof, Wiete; Ogg, Graham S.; Cerundolo, Vincenzo; Storkus, Walter J.; Das, Pranab K.

    2003-01-01

    Vitiligo is an autoimmune condition characterized by loss of epidermal melanocytes. High frequencies of melanocyte-reactive cytotoxic T cells in the peripheral blood of vitiligo patients and the observed correlation between perilesional T-cell infiltration and melanocyte loss in situ suggest the

  9. What is Cloning?

    Science.gov (United States)

    Donate Home Cloning What is Cloning What is Cloning Clones are organisms that are exact genetic copies. ... clones made through modern cloning technologies. How Is Cloning Done? Many people first heard of cloning when ...

  10. Cellular basis of the immunohematologic defects observed in short-term semiallogeneic B6C3F1→C3H chimeras: evidence for host-versus-graft reaction initiated by radioresistant T cells

    International Nuclear Information System (INIS)

    Aizawa, S.; Sado, T.; Kamisaku, H.; Kubo, E.

    1980-01-01

    Lethally irradiated C3Hf mice reconstituted with a relatively low dose (2 x 10 6 ) of B6C3F 1 bone marrow cells (B6C3F 1 →C3Hf chimeras) frequently manifest immunohematologic deficiencies during the first month following injection of bone marrow cells. They show slow recovery of antibody-forming potential to sheep red blood cells (SRBC) as compared to that observed in syngeneic (C3Hf→C3Hf or B6C3F 1 →B6C3F 1 ) chimeras. They also show a deficiency of B-cell activity as assessed by antibody response to SRBC following further reconstitution with B6C3F 1 -derived thymus cells 1 week after injection of bone marrow cells. A significant fraction of B6C3F 1 →C3Hf chimeras was shown to manifest a sudden loss of cellularity of spleens during the second week following injection of bone marrow cells even though cellularity was restored to the normal level within 1 week. The splenic mononuclear cells recovered from such chimeras almost invariably showed strong cytotoxicity against target cells expressing donor-type specific H-2 antigens (H-2/sup b/) when assesed by 51 Cr-release assay in vitro. The effector cells responsible for the observed anti-donor specific cytotoxicity were shown to be residual host-derived T cells. These results indicate strongly that residual host T cells could develop anti-donor specific cytotoxicity even after exposure to a supralethal dose (1050 R) of radiation and that the immunohematologic disturbances observed in shortterm F 1 to parent bone marrow chimeras (B6C3F 1 →C3Hf) were due to host-versus-graft reaction (HVGR) initiated by residual host T cells. The implication of these findings on the radiobiological nature of the residual T cells and the persistence of potentially anti-donor reactive T-cell clones in long-surviving allogeneic bone marrow chimeras was discussed

  11. Leukemia -- Chronic T-Cell Lymphocytic

    Science.gov (United States)

    ... social workers, and patient advocates. Cancer.Net Guide Leukemia - Chronic T-Cell Lymphocytic Introduction Statistics Risk Factors Symptoms and Signs Diagnosis Stages Treatment Options About Clinical Trials Latest Research ...

  12. Surviving the crash: T-cell homeostasis

    Indian Academy of Sciences (India)

    TOSHIBA

    The formation of higher order apoptotic structures at the mitochondrion precedes cellular collapse dead. Tracking bax multimerization at mitochondria wildtype. Bax active -6A7. Nucleus – H33342. Apoptotic T-cells ...

  13. Cross–dressers turn on T cells

    OpenAIRE

    YEWDELL, JONATHAN W.; DOLAN, BRIAN P.

    2011-01-01

    Memory T cells remember viruses from previous infections, providing immunity by facilitating the killing of infected cells. For this, they exploit cross-dressing, the transfer of antigens between antigen-presenting cells.

  14. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  15. HIV-specific CD8+ T cells: serial killers condemned to die?

    Science.gov (United States)

    Petrovas, Constantinos; Mueller, Yvonne M; Katsikis, Peter D

    2004-04-01

    An increasing body of evidence supports a key role for cytotoxic CD8+ T cells (CTL) in controlling HIV infection. Although a vigorous HIV-specific CD8+ T cell response is raised during the primary infection, these cells ultimately fail to control virus and prevent disease progression. The failure of CTL to control HIV infection has been attributed to a number of strategies HIV employs to evade the immune system. Recently, intrinsic defects in the CTL themselves have been proposed to contribute to the failure of CTL to control HIV. HIV-specific CD8+ T cells differ in their effector/memory phenotype from other virus-specific CD8+ T cells indicating that their differentiation status differs. This altered differentiation may affect effector functions as well as homing properties of these cells. Other studies have indicated that activation of HIV-specific CTL may be impaired and this contributes to their dysfunction. The effector function of these CTL may also be affected. There are conflicting reports about their ability to kill, whereas IFNgamma production does not appear to be impaired in these cells. In this review we focus on recent work indicating that apoptosis may be an important mechanism through which HIV evades the CTL response. In particular, HIV-specific CD8+ T cells are highly susceptible to CD95/Fas-induced apoptosis. This leads to the hypothesis that virus-specific cytotoxic T cells can be eliminated upon binding CD95L/FasL on HIV-infected cells. Understanding the intrinsic defects of CTL in HIV infection could lead to new therapeutic strategies and optimized vaccination protocols that enhance the HIV-specific cytotoxic response.

  16. γδ T Cells Support Pancreatic Oncogenesis by Restraining αβ T Cell Activation.

    Science.gov (United States)

    Daley, Donnele; Zambirinis, Constantinos Pantelis; Seifert, Lena; Akkad, Neha; Mohan, Navyatha; Werba, Gregor; Barilla, Rocky; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu Raj Kumar; Avanzi, Antonina; Tippens, Daniel; Narayanan, Rajkishen; Jang, Jung-Eun; Newman, Elliot; Pillarisetty, Venu Gopal; Dustin, Michael Loran; Bar-Sagi, Dafna; Hajdu, Cristina; Miller, George

    2016-09-08

    Inflammation is paramount in pancreatic oncogenesis. We identified a uniquely activated γδT cell population, which constituted ∼40% of tumor-infiltrating T cells in human pancreatic ductal adenocarcinoma (PDA). Recruitment and activation of γδT cells was contingent on diverse chemokine signals. Deletion, depletion, or blockade of γδT cell recruitment was protective against PDA and resulted in increased infiltration, activation, and Th1 polarization of αβT cells. Although αβT cells were dispensable to outcome in PDA, they became indispensable mediators of tumor protection upon γδT cell ablation. PDA-infiltrating γδT cells expressed high levels of exhaustion ligands and thereby negated adaptive anti-tumor immunity. Blockade of PD-L1 in γδT cells enhanced CD4(+) and CD8(+) T cell infiltration and immunogenicity and induced tumor protection suggesting that γδT cells are critical sources of immune-suppressive checkpoint ligands in PDA. We describe γδT cells as central regulators of effector T cell activation in cancer via novel cross-talk. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Recombinant immunotoxin for cancer treatment with low immunogenicity by identification and silencing of human T-cell epitopes

    OpenAIRE

    Mazor, Ronit; Eberle, Jaime A.; Hu, Xiaobo; Vassall, Aaron N.; Onda, Masanori; Beers, Richard; Lee, Elizabeth C.; Kreitman, Robert J.; Lee, Byungkook; Baker, David; King, Chris; Hassan, Raffit; Benhar, Itai; Pastan, Ira

    2014-01-01

    Recombinant immunotoxins have produced complete remissions in leukemia patients where many doses can be given but are less active in patients with solid tumors because their immune system makes antidrug antibodies, which inactivate the immunotoxin. To suppress the immune response, we have identified and largely silenced the T-cell epitopes responsible for the immune response. A redesigned immunotoxin with T-cell epitope mutations is highly cytotoxic to cell lines and to cells isolated from ca...

  18. Malaria drives T cells to exhaustion

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2014-05-01

    Full Text Available Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp.. Recent research on malaria, has investigated the Programmed cell death-1 (PD-1 pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria.

  19. Endogenous T-Cell Therapy: Clinical Experience.

    Science.gov (United States)

    Yee, Cassian; Lizee, Greg; Schueneman, Aaron J

    2015-01-01

    Adoptive cellular therapy represents a robust means of augmenting the tumor-reactive effector population in patients with cancer by adoptive transfer of ex vivo expanded T cells. Three approaches have been developed to achieve this goal: the use of tumor-infiltrating lymphocytes or tumor-infiltrating lymphocytess extracted from patient biopsy material; the redirected engineering of lymphocytes using vectors expressing a chimeric antigen receptor and T-cell receptor; and third, the isolation and expansion of often low-frequency endogenous T cells (ETCs) reactive to tumor antigens from the peripheral blood of patients. This last form of adoptive transfer of T cells, known as ETC therapy, requires specialized methods to isolate and expand from peripheral blood the very low-frequency tumor-reactive T cells, methods that have been developed over the last 2 decades, to the point where such an approach may be broadly applicable not only for the treatment of melanoma but also for that of other solid tumor malignancies. One compelling feature of ETC is the ability to rapidly deploy clinical trials following identification of a tumor-associated target epitope, a feature that may be exploited to develop personalized antigen-specific T-cell therapy for patients with almost any solid tumor. With a well-validated antigen discovery pipeline in place, clinical studies combining ETC with agents that modulate the immune microenvironment can be developed that will transform ETC into a feasible treatment modality.

  20. Aberrant phenotypes in peripheral T cell lymphomas.

    Science.gov (United States)

    Hastrup, N; Ralfkiaer, E; Pallesen, G

    1989-01-01

    Seventy six peripheral T cell lymphomas were examined immunohistologically to test their reactivity with a panel of monoclonal antibodies against 11 T cell associated antigens (CD1-8, CD27, UCHL1, and the T cell antigen receptor). Sixty two (82%) lymphomas showed aberrant phenotypes, and four main categories were distinguished as follows: (i) lack of one or several pan-T cell antigens (49, 64% of the cases); (ii) loss of both the CD4 and CD8 antigens (11, 15% of the cases); (iii) coexpression of the CD4 and CD8 antigens (13, 17% of the cases); and (iv) expression of the CD1 antigen (eight, 11% of the cases). No correlation was seen between the occurrence of aberrant phenotypes and the histological subtype. It is concluded that the demonstration of an aberrant phenotype is a valuable supplement to histological assessment in the diagnosis of peripheral T cell lymphomas. It is recommended that the panel of monoclonal antibodies against T cell differentiation antigens should be fairly large, as apparently any antigen may be lost in the process of malignant transformation. Images Figure PMID:2469701

  1. Generation and characterization of APOBEC3G-positive 293T cells for HIV-1 Vif study

    OpenAIRE

    Piroozmand, Ahmad; Yamamoto, Yoshihiko; Khamsri, Boonruang; Fujita, Mikako; Uchiyama, Tsuneo; Adachi, Akio

    2007-01-01

    We have established a number of 293T cell lines that express a human anti HIV-1 factor APOBEC3G. Out of seven cell clones examined, four were readily demonstrated to express APOBEC3G by immunoblotting analysis. In particular, two clones (A3G-C1 and -C4) were found to produce a much higher level of functional APOBEC3G relative to that by pooled cell clones. The transfection efficiency of all these cell clones were similar to that of the parental cells, producing a comparable level of virions u...

  2. T cell-macrophage interaction in arginase-mediated resistance to herpes simplex virus.

    Science.gov (United States)

    Bonina, L; Nash, A A; Arena, A; Leung, K N; Wildy, P

    1984-09-01

    Peritoneal macrophages activated by-products derived from a herpes simplex virus-specific helper T cell clone were used to investigate intrinsic and extrinsic resistance mechanisms to herpes simplex virus type 1 infection in vitro. T cell-activated macrophages produced fewer infective centres, indicating enhanced intrinsic resistance, and markedly reduced the growth of virus in a permissive cell line. The reduction in virus growth correlated with the depletion of arginine in the support medium, presumably resulting from increased arginase production by activated macrophages. The significance of these findings for antiviral immunity in vivo is discussed.

  3. Subcutaneous panniculitis-like T-cell lymphoma: MRI features and literature review

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Benjamin D.; Seeger, Leanne L.; Motamedi, Kambiz [UCLA-Santa Monica Medical Center and Orthopedic Hospital, Department of Radiological Sciences, Santa Monica, CA (United States); James, Aaron W. [UCLA-Santa Monica Medical Center and Orthopedic Hospital, Department of Pathology and Laboratory Medicine, Santa Monica, CA (United States)

    2014-09-15

    Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) represents a rare subclassification of peripheral T-cell lymphoma (PTCL). We present a case of a 21-year-old female who presented with a 1-month history of pain in the left buttock and hip, tender left inguinal lymph nodes, fevers, and night sweats. Percutaneous core needle biopsy was diagnostic for SPTCL with CD8+ cells positive for cytotoxic granules. Magnetic resonance imaging (MRI) features of SPTCL with a review of the literature are discussed. (orig.)

  4. Constitutive Signaling from an Engineered IL7 Receptor Promotes Durable Tumor Elimination by Tumor-Redirected T Cells.

    Science.gov (United States)

    Shum, Thomas; Omer, Bilal; Tashiro, Haruko; Kruse, Robert L; Wagner, Dimitrios L; Parikh, Kathan; Yi, Zhongzhen; Sauer, Tim; Liu, Daofeng; Parihar, Robin; Castillo, Paul; Liu, Hao; Brenner, Malcolm K; Metelitsa, Leonid S; Gottschalk, Stephen; Rooney, Cliona M

    2017-11-01

    Successful adoptive T-cell immunotherapy of solid tumors will require improved expansion and cytotoxicity of tumor-directed T cells within tumors. Providing recombinant or transgenic cytokines may produce the desired benefits but is associated with significant toxicities, constraining clinical use. To circumvent this limitation, we constructed a constitutively signaling cytokine receptor, C7R, which potently triggers the IL7 signaling axis but is unresponsive to extracellular cytokine. This strategy augments modified T-cell function following antigen exposure, but avoids stimulating bystander lymphocytes. Coexpressing the C7R with a tumor-directed chimeric antigen receptor (CAR) increased T-cell proliferation, survival, and antitumor activity during repeated exposure to tumor cells, without T-cell dysfunction or autonomous T-cell growth. Furthermore, C7R-coexpressing CAR T cells were active against metastatic neuroblastoma and orthotopic glioblastoma xenograft models even at cell doses that had been ineffective without C7R support. C7R may thus be able to enhance antigen-specific T-cell therapies against cancer. Significance: The constitutively signaling C7R system developed here delivers potent IL7 stimulation to CAR T cells, increasing their persistence and antitumor activity against multiple preclinical tumor models, supporting its clinical development. Cancer Discov; 7(11); 1238-47. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 1201 . ©2017 American Association for Cancer Research.

  5. FOXO3 regulates CD8 T cell memory by T cell-intrinsic mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeremy A Sullivan

    2012-02-01

    Full Text Available CD8 T cell responses have three phases: expansion, contraction, and memory. Dynamic alterations in proliferation and apoptotic rates control CD8 T cell numbers at each phase, which in turn dictate the magnitude of CD8 T cell memory. Identification of signaling pathways that control CD8 T cell memory is incomplete. The PI3K/Akt signaling pathway controls cell growth in many cell types by modulating the activity of FOXO transcription factors. But the role of FOXOs in regulating CD8 T cell memory remains unknown. We show that phosphorylation of Akt, FOXO and mTOR in CD8 T cells occurs in a dynamic fashion in vivo during an acute viral infection. To elucidate the potentially dynamic role for FOXO3 in regulating homeostasis of activated CD8 T cells in lymphoid and non-lymphoid organs, we infected global and T cell-specific FOXO3-deficient mice with Lymphocytic Choriomeningitis Virus (LCMV. We found that FOXO3 deficiency induced a marked increase in the expansion of effector CD8 T cells, preferentially in the spleen, by T cell-intrinsic mechanisms. Mechanistically, the enhanced accumulation of proliferating CD8 T cells in FOXO3-deficient mice was not attributed to an augmented rate of cell division, but instead was linked to a reduction in cellular apoptosis. These data suggested that FOXO3 might inhibit accumulation of growth factor-deprived proliferating CD8 T cells by reducing their viability. By virtue of greater accumulation of memory precursor effector cells during expansion, the numbers of memory CD8 T cells were strikingly increased in the spleens of both global and T cell-specific FOXO3-deficient mice. The augmented CD8 T cell memory was durable, and FOXO3 deficiency did not perturb any of the qualitative attributes of memory T cells. In summary, we have identified FOXO3 as a critical regulator of CD8 T cell memory, and therapeutic modulation of FOXO3 might enhance vaccine-induced protective immunity against intracellular pathogens.

  6. A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet.

    Science.gov (United States)

    Xin, Annie; Masson, Frederick; Liao, Yang; Preston, Simon; Guan, Tianxia; Gloury, Renee; Olshansky, Moshe; Lin, Jian-Xin; Li, Peng; Speed, Terence P; Smyth, Gordon K; Ernst, Matthias; Leonard, Warren J; Pellegrini, Marc; Kaech, Susan M; Nutt, Stephen L; Shi, Wei; Belz, Gabrielle T; Kallies, Axel

    2016-04-01

    T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.

  7. Alloantigen-specific suppressor T cells are not inhibited by cyclosporin A, but do require IL 2 for activation

    International Nuclear Information System (INIS)

    Bucy, R.P.

    1986-01-01

    Alloantigen-specific suppressor T cells are activated from normal murine spleen cells in mixed lymphocyte reactions (MLR). These T cells are radioresistant and suppress the activation of cytotoxic T lymphocytes (CTL) in second primary MLR cultures. This report demonstrates that cyclosporin A (CsA) blocks the activation of these suppressor cells at a dose of 1 microgram/ml. However, reconstitution of CsA blocked cultures with IL 2 restores the activation of the suppressor T cells, but fails to significantly restore the activation of CTL in these same cultures. This differential activation requirement was used to establish T cell lines that demonstrate enriched suppressor cell activity but depletion of CTL activity. These findings are discussed in terms of the mechanism of action of CsA in these distinct T cell subsets and the relevance to models of allograft unresponsiveness

  8. FasL Mediates T-Cell Eradication of Tumor Cells Presenting Low Levels of Antigens | Center for Cancer Research

    Science.gov (United States)

    One approach to cancer immunotherapy, as opposed to therapeutic vaccination, is the transfusion of large numbers of tumor-specific killer T cells (cytotoxic T cells or CTLs) into patients. The body’s own defense killer T cells are a subgroup of T lymphocytes (a type of white blood cells) that are capable of inducing death in tumor cells. CTLs can cause the death of target cells either by releasing granules containing toxic molecules including perforin, or by producing a membrane protein called Fas ligand (FasL) which on interaction with the tumor cell results in cell death.

  9. Identification and Functional Characterization of Human Cd4+Cd25+ T Cells with Regulatory Properties Isolated from Peripheral Blood

    OpenAIRE

    Jonuleit, Helmut; Schmitt, Edgar; Stassen, Michael; Tuettenberg, Andrea; Knop, Jurgen; Enk, Alexander H.

    2001-01-01

    A subpopulation of peripheral human CD4+CD25+ T cells that expresses CD45RO, histocompatibility leukocyte antigen DR, and intracellular cytotoxic T lymphocyte–associated antigen (CTLA) 4 does not expand after stimulation and markedly suppresses the expansion of conventional T cells in a contact-dependent manner. After activation, CD4+CD25+ T cells express CTLA-4 on the surface detectable for several weeks. These cells show a G1/G0 cell cycle arrest and no production of interleukin (IL)-2, IL-...

  10. A novel method to generate T-cell receptor-deficient chimeric antigen receptor T cells.

    Science.gov (United States)

    Kamiya, Takahiro; Wong, Desmond; Png, Yi Tian; Campana, Dario

    2018-03-13

    Practical methods are needed to increase the applicability and efficacy of chimeric antigen receptor (CAR) T-cell therapies. Using donor-derived CAR-T cells is attractive, but expression of endogenous T-cell receptors (TCRs) carries the risk for graft-versus-host-disease (GVHD). To remove surface TCRαβ, we combined an antibody-derived single-chain variable fragment specific for CD3ε with 21 different amino acid sequences predicted to retain it intracellularly. After transduction in T cells, several of these protein expression blockers (PEBLs) colocalized intracellularly with CD3ε, blocking surface CD3 and TCRαβ expression. In 25 experiments, median TCRαβ expression in T lymphocytes was reduced from 95.7% to 25.0%; CD3/TCRαβ cell depletion yielded virtually pure TCRαβ-negative T cells. Anti-CD3ε PEBLs abrogated TCRαβ-mediated signaling, without affecting immunophenotype or proliferation. In anti-CD3ε PEBL-T cells, expression of an anti-CD19-41BB-CD3ζ CAR induced cytokine secretion, long-term proliferation, and CD19 + leukemia cell killing, at rates meeting or exceeding those of CAR-T cells with normal CD3/TCRαβ expression. In immunodeficient mice, anti-CD3ε PEBL-T cells had markedly reduced GVHD potential; when transduced with anti-CD19 CAR, these T cells killed engrafted leukemic cells. PEBL blockade of surface CD3/TCRαβ expression is an effective tool to prepare allogeneic CAR-T cells. Combined PEBL and CAR expression can be achieved in a single-step procedure, is easily adaptable to current cell manufacturing protocols, and can be used to target other T-cell molecules to further enhance CAR-T-cell therapies. © 2018 by The American Society of Hematology.

  11. Defective immunoregulatory T-cell function in chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Han, T.; Ozer, H.; Henderson, E.S.; Dadey, B.; Nussbaum-Blumenson, A.; Barcos, M.

    1981-01-01

    Chronic lymphocytic leukemia (CLL) of B-cell origin results in the malignant proliferation of small immunoglobulin-bearing lymphocytes. There is currently a controversy in the literature regarding both the ability of this leukemic population to differentiate into mature plasma cells, as well as the ability of apparently normal T cells from these patients to regulate allogeneic B-cell differentiation. In the present study we have examined the lymphocytes of CLL patients in various clinical stages of their disease and with different surface phenotypes of their leukemic B-cell population. Our results show that leukemic CLL B cells from all 20 patients (including one patient with a monoclonal IgM paraprotein and another with a monoclonal IgG paraprotein) are incapable of further differentiation even in the absence of suppressor T cells and the presence of helper T lymphocytes. This lack of capacity to differentiate is unaffected by clinical stage, by therapy, or by the phenotype of the malignant population. Since the leukemic B population did not suppress normal allogeneic B-cell differentiation, the maturation deficit is evidently intrinsic to the leukemic clone rather than a result of activity of non-T suppressor cells. T helper function was also variably depressed in the blood of some patients with CLL, and this depression did not correlate with clinical stage, with therapy, or with the degree of lymphocytosis. Dysfunction of radiosensitive T suppressor cells was found to be the most consistent regulatory deficit of CLL T cells. Each of 11 patients whose leukemic cell population was of the μdelta, μα, or μ phenotype had both helper and suppressor cell defects

  12. Unique and cross-reactive T cell epitope peptides of the major Bahia grass pollen allergen, Pas n 1.

    Science.gov (United States)

    Etto, Tamara; de Boer, Carmela; Prickett, Sara; Gardner, Leanne M; Voskamp, Astrid; Davies, Janet M; O'Hehir, Robyn E; Rolland, Jennifer M

    2012-01-01

    Bahia grass pollen (BaGP) is a major cause of allergic rhinitis. Subcutaneous allergen-specific immunotherapy is effective for grass pollen allergy, but is unsuitable for patients with moderate to severe asthma due to the risk of anaphylaxis. T cell-reactive but IgE nonreactive peptides provide a safer treatment option. This study aimed to identify and characterize dominant CD4(+) T cell epitope peptides of the major BaGP allergen, Pas n 1. Pas n 1-specific T cell lines generated from the peripheral blood of BaGP-allergic subjects were tested for proliferative and cytokine response to overlapping 20-mer Pas n 1 peptides. Cross-reactivity to homologous peptides from Lol p 1 and Cyn d 1 of Ryegrass and Bermuda grass pollen, respectively, was assessed using Pas n 1 peptide-specific T cell clones. MHC class II restriction of Pas n 1 peptide T cell recognition was determined by HLA blocking assays and peptide IgE reactivity tested by dot blotting. Three Pas n 1 peptides showed dominant T cell reactivity; 15 of 18 (83%) patients responded to one or more of these peptides. T cell clones specific for dominant Pas n 1 peptides showed evidence of species-specific T cell reactivity as well as cross-reactivity with other group 1 grass pollen allergens. The dominant Pas n 1 T cell epitope peptides showed HLA binding diversity and were non-IgE reactive. The immunodominant T cell-reactive Pas n 1 peptides are candidates for safe immunotherapy for individuals, including those with asthma, who are allergic to Bahia and possibly other grass pollens. Copyright © 2012 S. Karger AG, Basel.

  13. Peripheral blood T cell activation after radioiodine treatment for graves' disease

    International Nuclear Information System (INIS)

    Teng Weiping; Weetman, A.P.

    1992-01-01

    Radioiodine therapy for Graves' thyrotoxicosis produces a rise in thyroid autoantibodies in the first three months after treatment, but little is known of its effects on T cells. We have therefore followed the changes in T cells subsets in sequential samples from 23 patients with Graves' disease treated with radioiodine, using dual-colour flow cytometry. In the first month after treatment there was a significant rise in activated T cells, identified by the markers HLA-DR (Ia) and CDW 26/Ta 1 (P<0.025 in both case). CD45RO-positive T cells, which are the prime population containing memory cells, also increased (P<0.025), but there was no change in CD45R-positive, resting cells or in the CD4/CD8 (helper to cytotoxic/suppressor) ratio. Vicia villosa-binding T cells, containing the contra-suppressor population, showed a more variable response, but the trend was to an overall increase from pre-treatment values (P<0.025). The change did not appear to be related to antithyroid drugs treatment, since they were seen irrespective of whether patients convinced such therapy. These results suggest that T cell activation and enhanced contra-suppressor activity may in part be responsible for the rise in autoantibodies after radioiodine therapy

  14. Chimeric antigen receptor T cells: a novel therapy for solid tumors

    Directory of Open Access Journals (Sweden)

    Shengnan Yu

    2017-03-01

    Full Text Available Abstract The chimeric antigen receptor T (CAR-T cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2, and mesothelin (MSLN, as well as the challenges for CAR-T cell therapy.

  15. Balancing Inflammation: The Link between Th17 and Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Maggie L. Diller

    2016-01-01

    Full Text Available CD4+ T cell compartments in mouse and man are composed of multiple distinct subsets each possessing unique phenotypic and functional characteristics. IL-17-producing CD4+ T cells (Th17 cells represent a distinct subset of the CD4+ T cell lineage. Recent evidence suggests that Th17 cells carry out effector functions similar to cytotoxic CD8+ T cells and play an important role in the clearance of extracellular pathogens and fungi. Th17 cell differentiation and function are closely related to the development and function of regulatory T cells (TREG. The balance between these two cell populations is essential for immune homeostasis and dysregulation of this balance has been implicated in a variety of inflammatory conditions including autoimmunity, allograft rejection, and tumorigenesis. Emerging evidence reports a significant amount of plasticity between the Th17 and regulatory T cell compartments, and the mechanisms by which these cells communicate and influence each other are just beginning to be understood. In this review, we highlight recent findings detailing the mechanisms driving Th17 and TREG plasticity and discuss the biologic consequences of their unique relationship.

  16. GLYCAN-DIRECTED CAR-T CELLS.

    Science.gov (United States)

    Steentoft, Catharina; Migliorini, Denis; King, Tiffany R; Mandel, Ulla; June, Carl H; Posey, Avery D

    2018-01-23

    Cancer immunotherapy is rapidly advancing in the treatment of a variety of hematopoietic cancers, including pediatric acute lymphoblastic leukemia and diffuse large B cell lymphoma, with chimeric antigen receptor (CAR)-T cells. CARs are genetically encoded artificial T cell receptors that combine the antigen specificity of an antibody with the machinery of T cell activation. However, implementation of CAR technology in the treatment of solid tumors has been progressing much slower. Solid tumors are characterized by a number of challenges that need to be overcome, including cellular heterogeneity, immunosuppressive tumor microenvironment (TME), and, in particular, few known cancer-specific targets. Post-translational modifications that differentially occur in malignant cells generate valid cell surface, cancer-specific targets for CAR-T cells. We previously demonstrated that CAR-T cells targeting an aberrant O-glycosylation of MUC1, a common cancer marker associated with changes in cell adhesion, tumor growth, and poor prognosis, could control malignant growth in mouse models. Here, we discuss the field of glycan-directed CAR-T cells and review the different classes of antibodies specific for glycan-targeting, including the generation of high affinity O-glycopeptide antibodies. Finally, we discuss historic and recently investigated glycan targets for CAR-T cells and provide our perspective on how targeting the tumor glycoproteome and/or glycome will improve CAR-T immunotherapy. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Supernatural T cells: genetic modification of T cells for cancer therapy.

    Science.gov (United States)

    Kershaw, Michael H; Teng, Michele W L; Smyth, Mark J; Darcy, Phillip K

    2005-12-01

    Immunotherapy is receiving much attention as a means of treating cancer, but complete, durable responses remain rare for most malignancies. The natural immune system seems to have limitations and deficiencies that might affect its ability to control malignant disease. An alternative to relying on endogenous components in the immune repertoire is to generate lymphocytes with abilities that are greater than those of natural T cells, through genetic modification to produce 'supernatural' T cells. This Review describes how such T cells can circumvent many of the barriers that are inherent in the tumour microenvironment while optimizing T-cell specificity, activation, homing and antitumour function.

  18. T-cell receptor transfer into human T cells with ecotropic retroviral vectors.

    Science.gov (United States)

    Koste, L; Beissert, T; Hoff, H; Pretsch, L; Türeci, Ö; Sahin, U

    2014-05-01

    Adoptive T-cell transfer for cancer immunotherapy requires genetic modification of T cells with recombinant T-cell receptors (TCRs). Amphotropic retroviral vectors (RVs) used for TCR transduction for this purpose are considered safe in principle. Despite this, TCR-coding and packaging vectors could theoretically recombine to produce replication competent vectors (RCVs), and transduced T-cell preparations must be proven free of RCV. To eliminate the need for RCV testing, we transduced human T cells with ecotropic RVs so potential RCV would be non-infectious for human cells. We show that transfection of synthetic messenger RNA encoding murine cationic amino-acid transporter 1 (mCAT-1), the receptor for murine retroviruses, enables efficient transient ecotropic transduction of human T cells. mCAT-1-dependent transduction was more efficient than amphotropic transduction performed in parallel, and preferentially targeted naive T cells. Moreover, we demonstrate that ecotropic TCR transduction results in antigen-specific restimulation of primary human T cells. Thus, ecotropic RVs represent a versatile, safe and potent tool to prepare T cells for the adoptive transfer.

  19. Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging

    Directory of Open Access Journals (Sweden)

    Claire E. Gustafson

    2017-06-01

    Full Text Available Aging is associated with an increased susceptibility to infection and a failure to control latent viruses thought to be driven, at least in part, by alterations in CD8 T cell function. The aging T cell repertoire is characterized by an accumulation of effector CD8 T cells, many of which express the negative regulatory receptor CD85j. To define the biological significance of CD85j expression on CD8 T cells and to address the question whether presence of CD85j in older individuals is beneficial or detrimental for immune function, we examined the specific attributes of CD8 T cells expressing CD85j as well as the functional role of CD85j in antigen-specific CD8 T cell responses during immune aging. Here, we show that CD85j is mainly expressed by terminally differentiated effector (TEMRAs CD8 T cells, which increase with age, in cytomegalovirus (CMV infection and in males. CD85j+ CMV-specific cells demonstrate clonal expansion. However, TCR diversity is similar between CD85j+ and CD85j− compartments, suggesting that CD85j does not directly impact the repertoire of antigen-specific cells. Further phenotypic and functional analyses revealed that CD85j identifies a specific subset of CMV-responsive CD8 T cells that coexpress a marker of senescence (CD57 but retain polyfunctional cytokine production and expression of cytotoxic mediators. Blocking CD85j binding enhanced proliferation of CMV-specific CD8 T cells upon antigen stimulation but did not alter polyfunctional cytokine production. Taken together, these data demonstrate that CD85j characterizes a population of “senescent,” but not exhausted antigen-specific effector CD8 T cells and indicates that CD85j is an important checkpoint regulator controlling expansion of virus-specific T cells during aging. Inhibition of CD85j activity may be a mechanism to promote stronger CD8 T cell effector responses during immune aging.

  20. Regulatory T-cells and autoimmunity.

    LENUS (Irish Health Repository)

    Ni Choileain, Niamh

    2012-02-03

    Approximately 20% of the population is affected by autoimmune or inflammatory diseases mediated by an abnormal immune response. A characteristic feature of autoimmune disease is the selective targeting of a single cell type, organ or tissue by certain populations of autoreactive T-cells. Examples of such diseases include rheumatoid arthritis, insulin-dependent diabetes mellitus, and systemic lupus erythematosus (SLE), all of which are characterized by chronic inflammation, tissue destruction and target organ malfunction. Although strong evidence links most autoimmune diseases to specific genes, considerable controversy prevails regarding the role of regulatory T-cell populations in the disease process. These cells are now also believed to play a key role in mediating transplantation tolerance and inhibiting the induction of tumor immunity. Though the concept of therapeutic immune regulation aimed at treating autoimmune pathology has been validated in many animal models, the development of strategies for the treatment of human autoimmune disorders remains in its infancy. The main obstacles to this include the conflicting findings of different model systems, as well as the contrasting functions of regulatory T-cells and cytokines involved in the development of such disorders. This review examines the role of regulatory T-cells in the pathogenesis of autoimmunity and describes the therapeutic potential of these cells for the prevention of immune-mediated pathologies in the future. Although much remains to be learned about such pathologies, a clearer understanding of the mechanisms by which regulatory T-cells function will undoubtedly lead to exciting new possibilities for immunotherapeutics.